1
|
Garbuglia AR, Pauciullo S, Zulian V, Del Porto P. Update on Hepatitis C Vaccine: Results and Challenges. Viruses 2024; 16:1337. [PMID: 39205311 PMCID: PMC11359353 DOI: 10.3390/v16081337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Therapy against the Hepatitis C virus (HCV) has significantly improved with the introduction of direct-acting antiviral drugs (DAAs), achieving over 95% sustained virological response (SVR). Despite this, the development of an effective anti-HCV vaccine remains a critical challenge due to the low number of patients treated with DAAs and the occurrence of HCV reinfections in high-risk groups. Current vaccine strategies aim to stimulate either B-cell or T-cell responses. Vaccines based on E1 and E2 proteins can elicit broad cross-neutralizing antibodies against all major HCV genotypes, though with varying efficiencies and without full protection against infection. In humans, the neutralizing antibodies induced by such vaccines mainly target the AR3 region, but their levels are generally insufficient for broad neutralization. Various HCV proteins expressed through different viral vectors have been utilized to elicit T cell immune responses, showing sustained expansion of HCV-specific effector memory T cells and improved proliferation and polyfunctionality of memory T cells over time. However, despite these advancements, the frequency and effectiveness of T-cell responses remain limited.
Collapse
Affiliation(s)
- Anna Rosa Garbuglia
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (S.P.); (V.Z.)
| | - Silvia Pauciullo
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (S.P.); (V.Z.)
| | - Verdiana Zulian
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (S.P.); (V.Z.)
| | - Paola Del Porto
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00100 Rome, Italy;
| |
Collapse
|
2
|
Morsica G, Messina E, Bagaglio S, Galli L, Lolatto R, Sampaolo M, Barakat M, Israel RJ, Castagna A, Clementi N. Clinico-Virological Outcomes and Mutational Profile of SARS-CoV-2 in Adults Treated with Ribavirin Aerosol for COVID-19 Pneumonia. Microorganisms 2024; 12:1146. [PMID: 38930529 PMCID: PMC11205916 DOI: 10.3390/microorganisms12061146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
The emergence of new SARS-CoV-2 variants can affect vaccine efficacy, laboratory diagnosis and the therapies already available, triggering interest in the search for antiviral agents for SARS-CoV-2 infections. Ribavirin (RBV) is a broad-spectrum antiviral with demonstrated in vitro activity against multiple viruses, including SARS-CoV-2. This retrospective study evaluated the dynamics and viral clearance of SARS-CoV-2 in hospitalised adult participants (PTs) with COVID-19 pneumonia who received an RBV aerosol within a compassionate use study. The impact of RBV on the clinical outcome and the mutational profile of SARS-CoV-2 was also assessed. The median RNA values measured in nine PTs included in this study decreased from baseline to discharge (at BL, threshold cycle (Ct) = 22.4, IQR 19.84-5.07; at discharge, Ct = 27.92, IQR 26.43-36.11), with a significant decline in the Ct value evaluated by Friedman rank ANOVA analysis, p = 0.032. Seven out of nine PTs experienced a clinical improvement, while two PTs deceased during hospitalisation. In PTs with a favourable outcome, the virus clearance rate at discharge was 28.6%. The cumulative clearance rate was 71.4% within 14 days from discharge. A mutational pattern after RBV was detected in three out of five PTs in whom whole-genome sequencing was available. Our findings suggest that RBV limits SARS-CoV-2 replication, possibly resulting in a favourable clinical outcome. Ribavirin may also contribute to the mutational spectrum of SARS-CoV-2.
Collapse
Affiliation(s)
- Giulia Morsica
- Unit of Infectious Diseases, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (E.M.); (S.B.); (L.G.); (R.L.); (A.C.)
| | - Emanuela Messina
- Unit of Infectious Diseases, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (E.M.); (S.B.); (L.G.); (R.L.); (A.C.)
| | - Sabrina Bagaglio
- Unit of Infectious Diseases, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (E.M.); (S.B.); (L.G.); (R.L.); (A.C.)
| | - Laura Galli
- Unit of Infectious Diseases, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (E.M.); (S.B.); (L.G.); (R.L.); (A.C.)
| | - Riccardo Lolatto
- Unit of Infectious Diseases, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (E.M.); (S.B.); (L.G.); (R.L.); (A.C.)
| | - Michela Sampaolo
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (M.S.); (N.C.)
| | | | | | - Antonella Castagna
- Unit of Infectious Diseases, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (E.M.); (S.B.); (L.G.); (R.L.); (A.C.)
- Faculty of Medicine and Surgery, Vita-Salute University, 20132 Milan, Italy
| | - Nicola Clementi
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (M.S.); (N.C.)
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
3
|
Zhang H, Bull RA, Quadeer AA, McKay MR. HCV E1 influences the fitness landscape of E2 and may enhance escape from E2-specific antibodies. Virus Evol 2023; 9:vead068. [PMID: 38107333 PMCID: PMC10722114 DOI: 10.1093/ve/vead068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/27/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
The Hepatitis C virus (HCV) envelope glycoprotein E1 forms a non-covalent heterodimer with E2, the main target of neutralizing antibodies. How E1-E2 interactions influence viral fitness and contribute to resistance to E2-specific antibodies remain largely unknown. We investigate this problem using a combination of fitness landscape and evolutionary modeling. Our analysis indicates that E1 and E2 proteins collectively mediate viral fitness and suggests that fitness-compensating E1 mutations may accelerate escape from E2-targeting antibodies. Our analysis also identifies a set of E2-specific human monoclonal antibodies that are predicted to be especially resilient to escape via genetic variation in both E1 and E2, providing directions for robust HCV vaccine development.
Collapse
Affiliation(s)
- Hang Zhang
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
| | - Rowena A Bull
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- The Kirby Institute for Infection and Immunity, Sydney, NSW 2052, Australia
| | - Ahmed Abdul Quadeer
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
- Department of Electrical and Electronic Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| | - Matthew R McKay
- Department of Electrical and Electronic Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| |
Collapse
|
4
|
Zhang H, Quadeer AA, McKay MR. Direct-acting antiviral resistance of Hepatitis C virus is promoted by epistasis. Nat Commun 2023; 14:7457. [PMID: 37978179 PMCID: PMC10656532 DOI: 10.1038/s41467-023-42550-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 10/13/2023] [Indexed: 11/19/2023] Open
Abstract
Direct-acting antiviral agents (DAAs) provide efficacious therapeutic treatments for chronic Hepatitis C virus (HCV) infection. However, emergence of drug resistance mutations (DRMs) can greatly affect treatment outcomes and impede virological cure. While multiple DRMs have been observed for all currently used DAAs, the evolutionary determinants of such mutations are not currently well understood. Here, by considering DAAs targeting the nonstructural 3 (NS3) protein of HCV, we present results suggesting that epistasis plays an important role in the evolution of DRMs. Employing a sequence-based fitness landscape model whose predictions correlate highly with experimental data, we identify specific DRMs that are associated with strong epistatic interactions, and these are found to be enriched in multiple NS3-specific DAAs. Evolutionary modelling further supports that the identified DRMs involve compensatory mutational interactions that facilitate relatively easy escape from drug-induced selection pressures. Our results indicate that accounting for epistasis is important for designing future HCV NS3-targeting DAAs.
Collapse
Affiliation(s)
- Hang Zhang
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Ahmed Abdul Quadeer
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China.
| | - Matthew R McKay
- Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, VIC, Australia.
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| |
Collapse
|
5
|
Abstract
Understanding the factors that shape viral evolution is critical for developing effective antiviral strategies, accurately predicting viral evolution, and preventing pandemics. One fundamental determinant of viral evolution is the interplay between viral protein biophysics and the host machineries that regulate protein folding and quality control. Most adaptive mutations in viruses are biophysically deleterious, resulting in a viral protein product with folding defects. In cells, protein folding is assisted by a dynamic system of chaperones and quality control processes known as the proteostasis network. Host proteostasis networks can determine the fates of viral proteins with biophysical defects, either by assisting with folding or by targeting them for degradation. In this review, we discuss and analyze new discoveries revealing that host proteostasis factors can profoundly shape the sequence space accessible to evolving viral proteins. We also discuss the many opportunities for research progress proffered by the proteostasis perspective on viral evolution and adaptation.
Collapse
Affiliation(s)
- Jimin Yoon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Jessica E Patrick
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - C Brandon Ogbunugafor
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
6
|
Caspi I, Meir M, Ben Nun N, Abu Rass R, Yakhini U, Stern A, Ram Y. Mutation rate, selection, and epistasis inferred from RNA virus haplotypes via neural posterior estimation. Virus Evol 2023; 9:vead033. [PMID: 37305706 PMCID: PMC10256221 DOI: 10.1093/ve/vead033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/30/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
RNA viruses are particularly notorious for their high levels of genetic diversity, which is generated through the forces of mutation and natural selection. However, disentangling these two forces is a considerable challenge, and this may lead to widely divergent estimates of viral mutation rates, as well as difficulties in inferring the fitness effects of mutations. Here, we develop, test, and apply an approach aimed at inferring the mutation rate and key parameters that govern natural selection, from haplotype sequences covering full-length genomes of an evolving virus population. Our approach employs neural posterior estimation, a computational technique that applies simulation-based inference with neural networks to jointly infer multiple model parameters. We first tested our approach on synthetic data simulated using different mutation rates and selection parameters while accounting for sequencing errors. Reassuringly, the inferred parameter estimates were accurate and unbiased. We then applied our approach to haplotype sequencing data from a serial passaging experiment with the MS2 bacteriophage, a virus that parasites Escherichia coli. We estimated that the mutation rate of this phage is around 0.2 mutations per genome per replication cycle (95% highest density interval: 0.051-0.56). We validated this finding with two different approaches based on single-locus models that gave similar estimates but with much broader posterior distributions. Furthermore, we found evidence for reciprocal sign epistasis between four strongly beneficial mutations that all reside in an RNA stem loop that controls the expression of the viral lysis protein, responsible for lysing host cells and viral egress. We surmise that there is a fine balance between over- and underexpression of lysis that leads to this pattern of epistasis. To recap, we have developed an approach for joint inference of the mutation rate and selection parameters from full haplotype data with sequencing errors and used it to reveal features governing MS2 evolution.
Collapse
Affiliation(s)
- Itamar Caspi
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
| | - Moran Meir
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
| | - Nadav Ben Nun
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
| | | | - Uri Yakhini
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
| | | | - Yoav Ram
- *Corresponding author: E-mail: ;
| |
Collapse
|
7
|
Atypical Mutational Spectrum of SARS-CoV-2 Replicating in the Presence of Ribavirin. Antimicrob Agents Chemother 2023; 67:e0131522. [PMID: 36602354 PMCID: PMC9872624 DOI: 10.1128/aac.01315-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We report that ribavirin exerts an inhibitory and mutagenic activity on SARS-CoV-2-infecting Vero cells, with a therapeutic index higher than 10. Deep sequencing analysis of the mutant spectrum of SARS-CoV-2 replicating in the absence or presence of ribavirin indicated an increase in the number of mutations, but not in deletions, and modification of diversity indices, expected from a mutagenic activity. Notably, the major mutation types enhanced by replication in the presence of ribavirin were A→G and U→C transitions, a pattern which is opposite to the dominance of G→A and C→U transitions previously described for most RNA viruses. Implications of the inhibitory activity of ribavirin, and the atypical mutational bias produced on SARS-CoV-2, for the search for synergistic anti-COVID-19 lethal mutagen combinations are discussed.
Collapse
|
8
|
Viral proteases as therapeutic targets. Mol Aspects Med 2022; 88:101159. [PMID: 36459838 PMCID: PMC9706241 DOI: 10.1016/j.mam.2022.101159] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
Some medically important viruses-including retroviruses, flaviviruses, coronaviruses, and herpesviruses-code for a protease, which is indispensable for viral maturation and pathogenesis. Viral protease inhibitors have become an important class of antiviral drugs. Development of the first-in-class viral protease inhibitor saquinavir, which targets HIV protease, started a new era in the treatment of chronic viral diseases. Combining several drugs that target different steps of the viral life cycle enables use of lower doses of individual drugs (and thereby reduction of potential side effects, which frequently occur during long term therapy) and reduces drug-resistance development. Currently, several HIV and HCV protease inhibitors are routinely used in clinical practice. In addition, a drug including an inhibitor of SARS-CoV-2 main protease, nirmatrelvir (co-administered with a pharmacokinetic booster ritonavir as Paxlovid®), was recently authorized for emergency use. This review summarizes the basic features of the proteases of human immunodeficiency virus (HIV), hepatitis C virus (HCV), and SARS-CoV-2 and discusses the properties of their inhibitors in clinical use, as well as development of compounds in the pipeline.
Collapse
|
9
|
Gregori J, Colomer-Castell S, Campos C, Ibañez-Lligoña M, Garcia-Cehic D, Rando-Segura A, Adombie CM, Pintó R, Guix S, Bosch A, Domingo E, Gallego I, Perales C, Cortese MF, Tabernero D, Buti M, Riveiro-Barciela M, Esteban JI, Rodriguez-Frias F, Quer J. Quasispecies Fitness Partition to Characterize the Molecular Status of a Viral Population. Negative Effect of Early Ribavirin Discontinuation in a Chronically Infected HEV Patient. Int J Mol Sci 2022; 23:14654. [PMID: 36498981 PMCID: PMC9739305 DOI: 10.3390/ijms232314654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
The changes occurring in viral quasispecies populations during infection have been monitored using diversity indices, nucleotide diversity, and several other indices to summarize the quasispecies structure in a single value. In this study, we present a method to partition quasispecies haplotypes into four fractions according to their fitness: the master haplotype, rare haplotypes at two levels (those present at <0.1%, and those at 0.1−1%), and a fourth fraction that we term emerging haplotypes, present at frequencies >1%, but less than that of the master haplotype. We propose that by determining the changes occurring in the volume of the four quasispecies fitness fractions together with those of the Hill number profile we will be able to visualize and analyze the molecular changes in the composition of a quasispecies with time. To develop this concept, we used three data sets: a technical clone of the complete SARS-CoV-2 spike gene, a subset of data previously used in a study of rare haplotypes, and data from a clinical follow-up study of a patient chronically infected with HEV and treated with ribavirin. The viral response to ribavirin mutagenic treatment was selection of a rich set of synonymous haplotypes. The mutation spectrum was very complex at the nucleotide level, but at the protein (phenotypic/functional) level the pattern differed, showing a highly prevalent master phenotype. We discuss the putative implications of this observation in relation to mutagenic antiviral treatment.
Collapse
Affiliation(s)
- Josep Gregori
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Sergi Colomer-Castell
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Plaça Cívica, 08193 Cerdanyola del Vallès, Spain
| | - Carolina Campos
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Plaça Cívica, 08193 Cerdanyola del Vallès, Spain
| | - Marta Ibañez-Lligoña
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Damir Garcia-Cehic
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Ariadna Rando-Segura
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Caroline Melanie Adombie
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Institute of Agropastoral Management, University Peleforo Gon Coulibaly, Korhogo BP 1328, Côte d’Ivoire
| | - Rosa Pintó
- Enteric Virus Laboratory, Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain
- Enteric Virus Laboratory, Institute of Nutrition and Food Safety (INSA), University of Barcelona, 08028 Barcelona, Spain
| | - Susanna Guix
- Enteric Virus Laboratory, Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain
- Enteric Virus Laboratory, Institute of Nutrition and Food Safety (INSA), University of Barcelona, 08028 Barcelona, Spain
| | - Albert Bosch
- Enteric Virus Laboratory, Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain
- Enteric Virus Laboratory, Institute of Nutrition and Food Safety (INSA), University of Barcelona, 08028 Barcelona, Spain
| | - Esteban Domingo
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” (CBMSO, CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Isabel Gallego
- Centro de Biología Molecular “Severo Ochoa” (CBMSO, CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Celia Perales
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” (CBMSO, CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM) Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - Maria Francesca Cortese
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Biochemistry Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - David Tabernero
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Biochemistry Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Maria Buti
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Medicine Department, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Plaça Cívica, 08193 Bellaterra, Spain
| | - Mar Riveiro-Barciela
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Medicine Department, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Plaça Cívica, 08193 Bellaterra, Spain
| | - Juan Ignacio Esteban
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Medicine Department, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Plaça Cívica, 08193 Bellaterra, Spain
| | - Francisco Rodriguez-Frias
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Biochemistry Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Josep Quer
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Plaça Cívica, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
10
|
Tisthammer KH, Solis C, Orcales F, Nzerem M, Winstead R, Dong W, Joy JB, Pennings PS. Assessing in vivo mutation frequencies and creating a high-resolution genome-wide map of fitness costs of Hepatitis C virus. PLoS Genet 2022; 18:e1010179. [PMID: 35500034 PMCID: PMC9113599 DOI: 10.1371/journal.pgen.1010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/17/2022] [Accepted: 03/30/2022] [Indexed: 11/18/2022] Open
Abstract
Like many viruses, Hepatitis C Virus (HCV) has a high mutation rate, which helps the virus adapt quickly, but mutations come with fitness costs. Fitness costs can be studied by different approaches, such as experimental or frequency-based approaches. The frequency-based approach is particularly useful to estimate in vivo fitness costs, but this approach works best with deep sequencing data from many hosts are. In this study, we applied the frequency-based approach to a large dataset of 195 patients and estimated the fitness costs of mutations at 7957 sites along the HCV genome. We used beta regression and random forest models to better understand how different factors influenced fitness costs. Our results revealed that costs of nonsynonymous mutations were three times higher than those of synonymous mutations, and mutations at nucleotides A or T had higher costs than those at C or G. Genome location had a modest effect, with lower costs for mutations in HVR1 and higher costs for mutations in Core and NS5B. Resistance mutations were, on average, costlier than other mutations. Our results show that in vivo fitness costs of mutations can be site and virus specific, reinforcing the utility of constructing in vivo fitness cost maps of viral genomes.
Collapse
Affiliation(s)
- Kaho H. Tisthammer
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
- * E-mail:
| | - Caroline Solis
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Faye Orcales
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Madu Nzerem
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Ryan Winstead
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Weiyan Dong
- BC Centre for Excellence in HIV/AIDS, Vancouver, British Colombia, Canada
| | - Jeffrey B. Joy
- BC Centre for Excellence in HIV/AIDS, Vancouver, British Colombia, Canada
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Bioinformatics Programme, University of British Columbia, Vancouver, British Colombia, Canada
| | - Pleuni S. Pennings
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| |
Collapse
|
11
|
Mutational spectrum of hepatitis C virus in patients with chronic hepatitis C determined by single molecule real-time sequencing. Sci Rep 2022; 12:7083. [PMID: 35490163 PMCID: PMC9056513 DOI: 10.1038/s41598-022-11151-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/18/2022] [Indexed: 11/08/2022] Open
Abstract
The emergence of hepatitis C virus (HCV) with resistance-associated substitution (RAS), produced by mutations in the HCV genome, is a major problem in direct acting antivirals (DAA) treatment. This study aimed to clarify the mutational spectrum in HCV-RNA and the substitution pattern for the emergence of RASs in patients with chronic HCV infection. HCV-RNA from two HCV replicon cell lines and the serum HCV-RNA of four non-liver transplant and four post-liver transplant patients with unsuccessful DAA treatment were analyzed using high-accuracy single-molecule real-time long-read sequencing. Transition substitutions, especially A>G and U>C, occurred prominently under DAAs in both non-transplant and post-transplant patients, with a mutational bias identical to that occurring in HCV replicon cell lines during 10-year culturing. These mutational biases were reproduced in natural courses after DAA treatment. RASs emerged via both transition and transversion substitutions. NS3-D168 and NS5A-L31 RASs resulted from transversion mutations, while NS5A-Y93 RASs was caused by transition substitutions. The fidelity of the RNA-dependent RNA polymerase, HCV-NS5B, produces mutational bias in the HCV genome, characterized by dominant transition mutations, notably A>G and U>C substitutions. However, RASs are acquired by both transition and transversion substitutions, and the RASs-positive HCV clones are selected and proliferated under DAA treatment pressure.
Collapse
|
12
|
Hadj Hassine I, Ben M’hadheb M, Menéndez-Arias L. Lethal Mutagenesis of RNA Viruses and Approved Drugs with Antiviral Mutagenic Activity. Viruses 2022; 14:841. [PMID: 35458571 PMCID: PMC9024455 DOI: 10.3390/v14040841] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/11/2022] Open
Abstract
In RNA viruses, a small increase in their mutation rates can be sufficient to exceed their threshold of viability. Lethal mutagenesis is a therapeutic strategy based on the use of mutagens, driving viral populations to extinction. Extinction catastrophe can be experimentally induced by promutagenic nucleosides in cell culture models. The loss of HIV infectivity has been observed after passage in 5-hydroxydeoxycytidine or 5,6-dihydro-5-aza-2'-deoxycytidine while producing a two-fold increase in the viral mutation frequency. Among approved nucleoside analogs, experiments with polioviruses and other RNA viruses suggested that ribavirin can be mutagenic, although its mechanism of action is not clear. Favipiravir and molnupiravir exert an antiviral effect through lethal mutagenesis. Both drugs are broad-spectrum antiviral agents active against RNA viruses. Favipiravir incorporates into viral RNA, affecting the G→A and C→U transition rates. Molnupiravir (a prodrug of β-d-N4-hydroxycytidine) has been recently approved for the treatment of SARS-CoV-2 infection. Its triphosphate derivative can be incorporated into viral RNA and extended by the coronavirus RNA polymerase. Incorrect base pairing and inefficient extension by the polymerase promote mutagenesis by increasing the G→A and C→U transition frequencies. Despite having remarkable antiviral action and resilience to drug resistance, carcinogenic risks and genotoxicity are important concerns limiting their extended use in antiviral therapy.
Collapse
Affiliation(s)
- Ikbel Hadj Hassine
- Unité de Recherche UR17ES30 “Génomique, Biotechnologie et Stratégies Antivirales”, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir 5000, Tunisia; (I.H.H.); (M.B.M.)
| | - Manel Ben M’hadheb
- Unité de Recherche UR17ES30 “Génomique, Biotechnologie et Stratégies Antivirales”, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir 5000, Tunisia; (I.H.H.); (M.B.M.)
| | - Luis Menéndez-Arias
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), 28049 Madrid, Spain
| |
Collapse
|
13
|
Zhang H, Quadeer AA, McKay MR. Evolutionary modeling reveals enhanced mutational flexibility of HCV subtype 1b compared with 1a. iScience 2022; 25:103569. [PMID: 34988406 PMCID: PMC8704487 DOI: 10.1016/j.isci.2021.103569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/19/2021] [Accepted: 12/02/2021] [Indexed: 11/24/2022] Open
Abstract
Hepatitis C virus (HCV) is a leading cause of liver-associated disease and liver cancer. Of the major HCV subtypes, patients infected with subtype 1b have been associated with having a higher risk of developing chronic infection and hepatocellular carcinoma. However, underlying reasons for this increased disease severity remain unknown. Here, we provide an evolutionary rationale, based on a comparative study of fitness landscape and in-host evolutionary models of the E2 glycoprotein of HCV subtypes 1a and 1b. Our analysis demonstrates that a higher chronicity rate of 1b may be attributed to lower fitness constraints, enabling 1b viruses to more easily escape antibody responses. More generally, our results suggest that differences in evolutionary constraints between HCV subtypes may be an important factor in mediating distinct disease outcomes. Our analysis also identifies antibodies that appear escape-resistant against both subtypes 1a and 1b, providing directions for designing HCV vaccines having cross-subtype protection.
Collapse
Affiliation(s)
- Hang Zhang
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
| | - Ahmed A. Quadeer
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
| | - Matthew R. McKay
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
- Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
14
|
Sabariegos R, Ortega-Prieto AM, Díaz-Martínez L, Grande-Pérez A, García Crespo C, Gallego I, de Ávila AI, Albentosa-González L, Soria ME, Gastaminza P, Domingo E, Perales C, Mas A. Guanosine inhibits hepatitis C virus replication and increases indel frequencies, associated with altered intracellular nucleotide pools. PLoS Pathog 2022; 18:e1010210. [PMID: 35085375 PMCID: PMC8794218 DOI: 10.1371/journal.ppat.1010210] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 12/30/2022] Open
Abstract
In the course of experiments aimed at deciphering the inhibition mechanism of mycophenolic acid and ribavirin in hepatitis C virus (HCV) infection, we observed an inhibitory effect of the nucleoside guanosine (Gua). Here, we report that Gua, and not the other standard nucleosides, inhibits HCV replication in human hepatoma cells. Gua did not directly inhibit the in vitro polymerase activity of NS5B, but it modified the intracellular levels of nucleoside di- and tri-phosphates (NDPs and NTPs), leading to deficient HCV RNA replication and reduction of infectious progeny virus production. Changes in the concentrations of NTPs or NDPs modified NS5B RNA polymerase activity in vitro, in particular de novo RNA synthesis and template switching. Furthermore, the Gua-mediated changes were associated with a significant increase in the number of indels in viral RNA, which may account for the reduction of the specific infectivity of the viral progeny, suggesting the presence of defective genomes. Thus, a proper NTP:NDP balance appears to be critical to ensure HCV polymerase fidelity and minimal production of defective genomes.
Collapse
Affiliation(s)
- Rosario Sabariegos
- Laboratorio de Virología Molecular, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, Albacete, Spain
- Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
- Unidad de Biomedicina UCLM-CSIC, Albacete, Spain
| | - Ana María Ortega-Prieto
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Campus de Cantoblanco, Madrid, Spain
| | - Luis Díaz-Martínez
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHMS-UMA-CSIC), Málaga, Spain
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Ana Grande-Pérez
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHMS-UMA-CSIC), Málaga, Spain
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Carlos García Crespo
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Gallego
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Ana I. de Ávila
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Campus de Cantoblanco, Madrid, Spain
| | - Laura Albentosa-González
- Laboratorio de Virología Molecular, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, Albacete, Spain
| | - María Eugenia Soria
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Campus de Cantoblanco, Madrid, Spain
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - Pablo Gastaminza
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Esteban Domingo
- Unidad de Biomedicina UCLM-CSIC, Albacete, Spain
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- * E-mail: (AM); (CP); (ED)
| | - Celia Perales
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
- * E-mail: (AM); (CP); (ED)
| | - Antonio Mas
- Laboratorio de Virología Molecular, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, Albacete, Spain
- Unidad de Biomedicina UCLM-CSIC, Albacete, Spain
- Facultad de Farmacia, Universidad de Castilla-La Mancha, Albacete, Spain
- * E-mail: (AM); (CP); (ED)
| |
Collapse
|
15
|
Echeverría N, Comas V, Aldunate F, Perbolianachis P, Moreno P, Cristina J. In the era of rapid mRNA-based vaccines: Why is there no effective hepatitis C virus vaccine yet? World J Hepatol 2021; 13:1234-1268. [PMID: 34786164 PMCID: PMC8568586 DOI: 10.4254/wjh.v13.i10.1234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/14/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is responsible for no less than 71 million people chronically infected and is one of the most frequent indications for liver transplantation worldwide. Despite direct-acting antiviral therapies fuel optimism in controlling HCV infections, there are several obstacles regarding treatment accessibility and reinfection continues to remain a possibility. Indeed, the majority of new HCV infections in developed countries occur in people who inject drugs and are more plausible to get reinfected. To achieve global epidemic control of this virus the development of an effective prophylactic or therapeutic vaccine becomes a must. The coronavirus disease 19 (COVID-19) pandemic led to auspicious vaccine development against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus, which has renewed interest on fighting HCV epidemic with vaccination. The aim of this review is to highlight the current situation of HCV vaccine candidates designed to prevent and/or to reduce HCV infectious cases and their complications. We will emphasize on some of the crossroads encountered during vaccine development against this insidious virus, together with some key aspects of HCV immunology which have, so far, hampered the progress in this area. The main focus will be on nucleic acid-based as well as recombinant viral vector-based vaccine candidates as the most novel vaccine approaches, some of which have been recently and successfully employed for SARS-CoV-2 vaccines. Finally, some ideas will be presented on which methods to explore for the design of live-attenuated vaccines against HCV.
Collapse
Affiliation(s)
- Natalia Echeverría
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Victoria Comas
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Fabián Aldunate
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Paula Perbolianachis
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Pilar Moreno
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Juan Cristina
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay.
| |
Collapse
|
16
|
Liatsos GD. Controversies’ clarification regarding ribavirin efficacy in measles and coronaviruses: Comprehensive therapeutic approach strictly tailored to COVID-19 disease stages. World J Clin Cases 2021; 9:5135-5178. [PMID: 34307564 PMCID: PMC8283580 DOI: 10.12998/wjcc.v9.i19.5135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/01/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ribavirin is a broad-spectrum nucleoside antiviral drug with multimodal mechanisms of action, which supports its longevity and quality as a clinical resource. It has been widely administered for measles and coronavirus infections. Despite the large amount of data concerning the use of ribavirin alone or in combination for measles, severe acute respiratory syndrome, Middle East respiratory syndrome, and coronavirus disease 2019 (COVID-19) outbreaks, the conclusions of these studies have been contradictory. Underlying reasons for these discrepancies include possible study design inaccuracies and failures and misinterpretations of data, and these potential confounds should be addressed.
AIM To determine the confounding factors of ribavirin treatment studies and propose a therapeutic scheme for COVID-19.
METHODS PubMed database was searched over a period of five decades utilizing the terms “ribavirin” alone or combined with other compounds in measles, severe acute respiratory syndrome, Middle East respiratory syndrome, and COVID-19 infections. The literature search was performed and described according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Articles were considered eligible when they reported on ribavirin dose regimens and/or specified outcomes concerning its efficacy and/or possible adverse-effects. In vitro and animal studies were also retrieved. A chapter on ribavirin’s pharmacology was included as well.
RESULTS In addition to the difficulties and pressures of an emerging pandemic, there is the burden of designing and conducting well-organized, double-blind, randomized controlled trials. Many studies have succumbed to specific pitfalls, one of which was identified in naturally ribavirin-resistant Vero cell lines in in vitro studies. Other pitfalls include study design inconsistent with the well-established clinical course of disease; inappropriate pharmacology of applied treatments; and the misinterpretation of study results with misconceived generalizations. A comprehensive treatment for COVID-19 is proposed, documented by thorough, long-term investigation of ribavirin regimens in coronavirus infections.
CONCLUSION A comprehensive treatment strictly tailored to distinct disease stages was proposed based upon studies on ribavirin and coronavirus infections.
Collapse
Affiliation(s)
- George D Liatsos
- Department of Internal Medicine, "Hippokration" General Hospital, Athens 11527, Attiki, Greece
| |
Collapse
|
17
|
Mohammadi E, Shafiee F, Shahzamani K, Ranjbar MM, Alibakhshi A, Ahangarzadeh S, Beikmohammadi L, Shariati L, Hooshmandi S, Ataei B, Javanmard SH. Novel and emerging mutations of SARS-CoV-2: Biomedical implications. Biomed Pharmacother 2021; 139:111599. [PMID: 33915502 PMCID: PMC8062574 DOI: 10.1016/j.biopha.2021.111599] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/18/2021] [Accepted: 03/27/2021] [Indexed: 12/31/2022] Open
Abstract
Coronavirus disease-19 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 virus strains has geographical diversity associated with diverse severity, mortality rate, and response to treatment that were characterized using phylogenetic network analysis of SARS-CoV-2 genomes. Although, there is no explicit and integrative explanation for these variations, the genetic arrangement, and stability of SARS-CoV-2 are basic contributing factors to its virulence and pathogenesis. Hence, understanding these features can be used to predict the future transmission dynamics of SARS-CoV-2 infection, drug development, and vaccine. In this review, we discuss the most recent findings on the mutations in the SARS-CoV-2, which provide valuable information on the genetic diversity of SARS-CoV-2, especially for DNA-based diagnosis, antivirals, and vaccine development for COVID-19.
Collapse
Affiliation(s)
- Elmira Mohammadi
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran; Core Research Facilities, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Shafiee
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kiana Shahzamani
- Isfahan Gastroenterology and Hepatology Research Center (lGHRC), Isfahan University of medical sciences, Isfahan, Iran
| | - Mohammad Mehdi Ranjbar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
| | - Abbas Alibakhshi
- Molecular Medicine Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahrzad Ahangarzadeh
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Leila Beikmohammadi
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Laleh Shariati
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands; Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, 14155-6559 Tehran, Iran
| | - Soodeh Hooshmandi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Behrooz Ataei
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
18
|
Intra-host evolutionary dynamics of the hepatitis C virus among people who inject drugs. Sci Rep 2021; 11:9986. [PMID: 33976241 PMCID: PMC8113533 DOI: 10.1038/s41598-021-88132-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/31/2021] [Indexed: 02/03/2023] Open
Abstract
Most individuals chronically infected with hepatitis C virus (HCV) are asymptomatic during the initial stages of infection and therefore the precise timing of infection is often unknown. Retrospective estimation of infection duration would improve existing surveillance data and help guide treatment. While intra-host viral diversity quantifications such as Shannon entropy have previously been utilized for estimating duration of infection, these studies characterize the viral population from only a relatively short segment of the HCV genome. In this study intra-host diversities were examined across the HCV genome in order to identify the region most reflective of time and the degree to which these estimates are influenced by high-risk activities including those associated with HCV acquisition. Shannon diversities were calculated for all regions of HCV from 78 longitudinally sampled individuals with known seroconversion timeframes. While the region of the HCV genome most accurately reflecting time resided within the NS3 gene, the gene region with the highest capacity to differentiate acute from chronic infections was identified within the NS5b region. Multivariate models predicting duration of infection from viral diversity significantly improved upon incorporation of variables associated with recent public, unsupervised drug use. These results could assist the development of strategic population treatment guidelines for high-risk individuals infected with HCV and offer insights into variables associated with a likelihood of transmission.
Collapse
|
19
|
Geraghty RJ, Aliota MT, Bonnac LF. Broad-Spectrum Antiviral Strategies and Nucleoside Analogues. Viruses 2021; 13:667. [PMID: 33924302 PMCID: PMC8069527 DOI: 10.3390/v13040667] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 01/18/2023] Open
Abstract
The emergence or re-emergence of viruses with epidemic and/or pandemic potential, such as Ebola, Zika, Middle East Respiratory Syndrome (MERS-CoV), Severe Acute Respiratory Syndrome Coronavirus 1 and 2 (SARS and SARS-CoV-2) viruses, or new strains of influenza represents significant human health threats due to the absence of available treatments. Vaccines represent a key answer to control these viruses. However, in the case of a public health emergency, vaccine development, safety, and partial efficacy concerns may hinder their prompt deployment. Thus, developing broad-spectrum antiviral molecules for a fast response is essential to face an outbreak crisis as well as for bioweapon countermeasures. So far, broad-spectrum antivirals include two main categories: the family of drugs targeting the host-cell machinery essential for virus infection and replication, and the family of drugs directly targeting viruses. Among the molecules directly targeting viruses, nucleoside analogues form an essential class of broad-spectrum antiviral drugs. In this review, we will discuss the interest for broad-spectrum antiviral strategies and their limitations, with an emphasis on virus-targeted, broad-spectrum, antiviral nucleoside analogues and their mechanisms of action.
Collapse
Affiliation(s)
- Robert J. Geraghty
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Matthew T. Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA;
| | - Laurent F. Bonnac
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
20
|
Tyshkovskiy A, Panchin AY. There is no evidence of SARS-CoV-2 laboratory origin: Response to Segreto and Deigin (DOI: 10.1002/bies.202000240). Bioessays 2021; 43:e2000325. [PMID: 33751609 PMCID: PMC8250263 DOI: 10.1002/bies.202000325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 01/10/2023]
Abstract
The origin of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is the subject of many hypotheses. One of them, proposed by Segreto and Deigin, assumes artificial chimeric construction of SARS‐CoV‐2 from a backbone of RaTG13‐like CoV and receptor binding domain (RBD) of a pangolin MP789‐like CoV, followed by serial cell or animal passage. Here we show that this hypothesis relies on incorrect or weak assumptions, and does not agree with the results of comparative genomics analysis. The genetic divergence between SARS‐CoV‐2 and both its proposed ancestors is too high to have accumulated in a lab, given the timeframe of several years. Furthermore, comparative analysis of S‐protein gene sequences suggests that the RBD of SARS‐CoV‐2 probably represents an ancestral non‐recombinant variant. These and other arguments significantly weaken the hypothesis of a laboratory origin for SARS‐CoV‐2, while the hypothesis of a natural origin is consistent with all available genetic and experimental data.
Collapse
Affiliation(s)
- Alexander Tyshkovskiy
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia.,Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Alexander Y Panchin
- Sector of molecular evolution, Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
21
|
Maheden K, Todd B, Gordon CJ, Tchesnokov EP, Götte M. Inhibition of viral RNA-dependent RNA polymerases with clinically relevant nucleotide analogs. Enzymes 2021; 49:315-354. [PMID: 34696837 PMCID: PMC8517576 DOI: 10.1016/bs.enz.2021.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The treatment of viral infections remains challenging, in particular in the face of emerging pathogens. Broad-spectrum antiviral drugs could potentially be used as a first line of defense. The RNA-dependent RNA polymerase (RdRp) of RNA viruses serves as a logical target for drug discovery and development efforts. Herein we discuss compounds that target RdRp of poliovirus, hepatitis C virus, influenza viruses, respiratory syncytial virus, and the growing data on coronaviruses. We focus on nucleotide analogs and mechanisms of action and resistance.
Collapse
Affiliation(s)
- Kieran Maheden
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Brendan Todd
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Calvin J Gordon
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Egor P Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada; Li Ka Shing Institute of Virology at University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
22
|
Martinez MA, Franco S. Therapy Implications of Hepatitis C Virus Genetic Diversity. Viruses 2020; 13:E41. [PMID: 33383891 PMCID: PMC7824680 DOI: 10.3390/v13010041] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/11/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) is an important human pathogen with a high chronicity rate. An estimated 71 million people worldwide are living with chronic hepatitis C (CHC) infection, which carries the risk of progression to hepatic fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Similar to other RNA viruses, HCV has a high rate of genetic variability generated by its high mutation rate and the actions of evolutionary forces over time. There are two levels of HCV genetic variability: intra-host variability, characterized by the distribution of HCV mutant genomes present in an infected individual, and inter-host variability, represented by the globally circulating viruses that give rise to different HCV genotypes and subtypes. HCV genetic diversity has important implications for virus persistence, pathogenesis, immune responses, transmission, and the development of successful vaccines and antiviral strategies. Here we will discuss how HCV genetic heterogeneity impacts viral spread and therapeutic control.
Collapse
Affiliation(s)
- Miguel Angel Martinez
- Miguel Angel Martínez, IrsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain;
| | | |
Collapse
|
23
|
Wu J, Bisaro DM. Biased Pol II fidelity contributes to conservation of functional domains in the Potato spindle tuber viroid genome. PLoS Pathog 2020; 16:e1009144. [PMID: 33351860 PMCID: PMC7787683 DOI: 10.1371/journal.ppat.1009144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/06/2021] [Accepted: 11/10/2020] [Indexed: 01/25/2023] Open
Abstract
Accurate calculation of mutation rates for viruses and viroids is necessary for evolutionary studies and to evaluate adaptation potential. However, estimation of in vivo mutation rates is complicated by selection, which leads to loss or proliferation of certain mutations. To minimize this concern, lethal mutations, including nonsense and non-synonymous mutations, have been used to determine mutation rates for several viruses and viroids, including Potato spindle tuber viroid (PSTVd). However, this approach has limitations, including focus on a relatively small number of genome sites and the possibility that mutations may not actually be lethal or may be maintained by wild type individuals. To avoid selection bias altogether, we sequenced minus-strand PSTVd dimers from concatemeric replication intermediates. The underlying rationale is that mutations found in only one of the monomers were likely generated de novo during RNA polymerase II (Pol II) transcription of the circular plus-strand RNA genome. This approach yielded an apparent Pol II error rate of ~1/1837 nucleotides per transcription cycle, and an estimated mutation rate of ~1/919 nucleotides for a single replication cycle. Remarkably, de novo mutations were nearly absent from the most conserved, replication-critical regions of the PSTVd genome, suggesting that sequence conservation is a consequence of both essential function and template optimization for greater Pol II fidelity. Such biased fidelity may constitute a novel strategy to ensure population success while allowing abundant sampling of sequence space in other genome regions. Comparison with variants in progeny populations derived from a cloned, wild type PSTVd master sequence revealed that most de novo mutations were lost through selection. Polymerase errors are the major source of variation in virus and viroid genomes, and as a consequence polymerase error rates are major determinants of adaptation potential. Accurate calculation of in vivo mutation rates is complicated by selection. To circumvent this issue, dimeric PSTVd minus-strand replication intermediates generated in vivo by host RNA polymerase II (Pol II) were sequenced to identify de novo mutations. This analysis revealed a very high error rate for Pol II transcribing genomic PSTVd RNA, leading to an extremely high mutation rate. Remarkably, however, de novo mutations were rare in the most highly conserved, replication-critical genome regions, suggesting these sequences are selected for both function and enhanced transcription fidelity. This biased fidelity may reveal a novel strategy to ensure population survival while maximizing adaptation potential. Further, comparison of mutations identified by minus-strand dimer sequencing with mutations observed in progeny variants derived from wild type PSTVd showed that most de novo mutations were lost through selection.
Collapse
Affiliation(s)
- Jian Wu
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - David M. Bisaro
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
24
|
Romero-López C, Berzal-Herranz A. The Role of the RNA-RNA Interactome in the Hepatitis C Virus Life Cycle. Int J Mol Sci 2020; 21:1479. [PMID: 32098260 PMCID: PMC7073135 DOI: 10.3390/ijms21041479] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 02/05/2023] Open
Abstract
RNA virus genomes are multifunctional entities endowed with conserved structural elements that control translation, replication and encapsidation, among other processes. The preservation of these structural RNA elements constraints the genomic sequence variability. The hepatitis C virus (HCV) genome is a positive, single-stranded RNA molecule with numerous conserved structural elements that manage different steps during the infection cycle. Their function is ensured by the association of protein factors, but also by the establishment of complex, active, long-range RNA-RNA interaction networks-the so-called HCV RNA interactome. This review describes the RNA genome functions mediated via RNA-RNA contacts, and revisits some canonical ideas regarding the role of functional high-order structures during the HCV infective cycle. By outlining the roles of long-range RNA-RNA interactions from translation to virion budding, and the functional domains involved, this work provides an overview of the HCV genome as a dynamic device that manages the course of viral infection.
Collapse
Affiliation(s)
- Cristina Romero-López
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN-CSIC), Av. Conocimiento 17, Armilla, 18016 Granada, Spain
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN-CSIC), Av. Conocimiento 17, Armilla, 18016 Granada, Spain
| |
Collapse
|
25
|
Duncan JD, Urbanowicz RA, Tarr AW, Ball JK. Hepatitis C Virus Vaccine: Challenges and Prospects. Vaccines (Basel) 2020; 8:vaccines8010090. [PMID: 32079254 PMCID: PMC7157504 DOI: 10.3390/vaccines8010090] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/25/2020] [Accepted: 02/04/2020] [Indexed: 02/07/2023] Open
Abstract
The hepatitis C virus (HCV) causes both acute and chronic infection and continues to be a global problem despite advances in antiviral therapeutics. Current treatments fail to prevent reinfection and remain expensive, limiting their use to developed countries, and the asymptomatic nature of acute infection can result in individuals not receiving treatment and unknowingly spreading HCV. A prophylactic vaccine is therefore needed to control this virus. Thirty years since the discovery of HCV, there have been major gains in understanding the molecular biology and elucidating the immunological mechanisms that underpin spontaneous viral clearance, aiding rational vaccine design. This review discusses the challenges facing HCV vaccine design and the most recent and promising candidates being investigated.
Collapse
Affiliation(s)
- Joshua D. Duncan
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK; (R.A.U.); (A.W.T.); (J.K.B.)
- NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- Correspondence:
| | - Richard A. Urbanowicz
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK; (R.A.U.); (A.W.T.); (J.K.B.)
- NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Alexander W. Tarr
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK; (R.A.U.); (A.W.T.); (J.K.B.)
- NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Jonathan K. Ball
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK; (R.A.U.); (A.W.T.); (J.K.B.)
- NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
26
|
|
27
|
Haqqi A, Munir R, Khalid M, Khurram M, Zaid M, Ali M, Shah ZH, Ahmed H, Afzal MS. Prevalence of Hepatitis C Virus Genotypes in Pakistan: Current Scenario and Review of Literature. Viral Immunol 2019; 32:402-413. [PMID: 31556811 DOI: 10.1089/vim.2019.0058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a major public health concern globally, resulting in liver-related complications. Approximately 6% population of Pakistan is infected with HCV. HCV is error prone, due to which it is classified into 7 genotypes and 67 subtypes. HCV genotype determination is critical for treatment and therapy response. In this study, 3,539 samples were collected from 2015 to 2019 from all over Punjab. RNA was extracted from samples using QIA Amp Viral RNA MINI kit (Qiagen, Germany) and viral genotyping was performed. Furthermore, a systemized literature search (2009-2018) was done to analyze the HCV genotype distribution pattern in Pakistan. In Punjab, genotype 3a (86.46%) is most prevalent, followed by untypable (7.17%) and genotype 1a (3.84%) and 3b (1.04%). Mixed genotype constitutes only 0.67% of total infections. Genotype 2a, 2b, 3c, and 4 were found to be rare. Data available from literature review when compiled showed that HCV genotype 3a (58.16%) was predominant in Pakistan, followed by genotypes 3b (9.05%), 2a (6.70%), 1a (6.22%), and 1b (2.39%). The frequency of mixed genotypes was found to be 4% and 12% of untypable HCV variants. This study highlights the HCV genotype distribution pattern in different regions of Pakistan. Therapy response and disease management depend on genotype, so HCV genotype determination is crucial. In Pakistan, the most prevalent genotype is 3a, followed by untypable genotype. Both interferon and sofosbuvir are effective against genotype 3a, but treatment with sofosbuvir has comparatively high sustained virological response, less adverse effects, and more tolerability.
Collapse
Affiliation(s)
- Aleena Haqqi
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| | - Rimsha Munir
- Cancer Biology Lab, MMG, University of the Punjab, Lahore, Pakistan
- Hormone Lab, Lahore, Pakistan
| | | | - Muhammad Khurram
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| | - Muhammad Zaid
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| | - Muhammad Ali
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| | - Zaheer Hussain Shah
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| | - Haroon Ahmed
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Muhammad Sohail Afzal
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| |
Collapse
|
28
|
Saito Y, Imamura M, Uchida T, Osawa M, Teraoka Y, Fujino H, Nakahara T, Ono A, Murakami E, Kawaoka T, Miki D, Tsuge M, Serikawa M, Aikata H, Abe-Chayama H, Hayes CN, Chayama K. Ribavirin induces hepatitis C virus genome mutations in chronic hepatitis patients who failed to respond to prior daclatasvir plus asunaprevir therapy. J Med Virol 2019; 92:210-218. [PMID: 31584207 DOI: 10.1002/jmv.25602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022]
Abstract
Ribavirin (RBV) induces nucleotide (nt) substitutions in hepatitis C virus (HCV) genome nonstructural (NS) regions. Although emergence of drug resistance-associated variants is associated with direct-acting antiviral treatment failure, the effect of RBV on genome substitutions in such patients is unknown. Genotype 1b HCV subgenomic replicon cells were treated with RBV for 120 hours. Six patients with chronic genotype 1b with HCV-infected patients who failed to respond to prior daclatasvir plus asunaprevir (DCV/ASV) therapy were treated with 12 weeks of sofosbuvir and ledipasvir plus RBV after 4 weeks of RBV monotherapy. RBV-induced genome mutations in the HCV NS region (nt3493-9301) in replicon cells and in patients during 4 weeks of RBV monotherapy were analyzed by deep sequencing. RBV-associated G-to-A and C-to-U transitions increased in a dose-dependent manner in HCV replicon cells after the RBV treatment. In patients with prior DCV/ASV treatment failures, the median serum HCV RNA level was 6.25 ± 0.31 log IU/mL at the start of RBV therapy and decreased significantly to 5.95 ± 0.4 log IU/mL (P = .03) after 4 weeks of RBV monotherapy. Although predominant HCV genome substitutions rates were similar between nontreatment and RBV-treatment periods (0.042 and 0.031 per base pair, respectively; P = .248), the frequencies of G-to-A and C-to-U transitions significantly increased after RBV monotherapy. These transitions were enriched, particularly within the HCV NS3 region in all patients. RBV treatment induces G-to-A and C-to-U transitions in the HCV genome even in chronic patients with hepatitis C with prior DCV/ASV treatment failures.
Collapse
Affiliation(s)
- Yuhei Saito
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Michio Imamura
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Takuro Uchida
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Mitsutaka Osawa
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Yuji Teraoka
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Hatsue Fujino
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Takashi Nakahara
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Atsushi Ono
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Eisuke Murakami
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Tomokazu Kawaoka
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Daiki Miki
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Masataka Tsuge
- Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan.,Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Masahiro Serikawa
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Aikata
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Hiromi Abe-Chayama
- Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan.,Center for Medical Specialist Graduate Education and Research, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - C Nelson Hayes
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
29
|
Bradshaw D, Mbisa JL, Geretti AM, Healy BJ, Cooke GS, Foster GR, Thomson EC, McLauchlan J, Agarwal K, Sabin C, Mutimer D, Moss P, Irving WL, Barnes E. Consensus recommendations for resistance testing in the management of chronic hepatitis C virus infection: Public Health England HCV Resistance Group. J Infect 2019; 79:503-512. [PMID: 31629015 DOI: 10.1016/j.jinf.2019.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 12/12/2022]
Abstract
The treatment of hepatitis C virus (HCV) infection has been revolutionised by the advent of oral, well-tolerated, direct acting antiviral therapies (DAA), with high cure rates. However, in some scenarios, HCV resistance to antiviral therapies may have an impact on treatment success. Public Health England's HCV Resistance Group was established to support clinicians treating people with HCV, where the issue of resistance may be a factor in clinical decision-making, and this review includes the Group's current recommendations on the use of HCV resistance testing. The authors describe the principles behind and approach to HCV resistance testing and consider evidence from in vitro studies, clinical trials and real world cohorts on the impact of HCV resistance on treatment outcomes for particular DAA regimens. Five scenarios are identified in the UK and similar settings, where, in the Group's opinion, resistance testing should be performed.
Collapse
Affiliation(s)
- Daniel Bradshaw
- National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK.
| | - Jean L Mbisa
- National Infection Service, Public Health England, London, UK
| | | | | | | | | | - Emma C Thomson
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, UK
| | - John McLauchlan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, UK
| | - Kosh Agarwal
- Institute of Liver Studies, King's College Hospital, London, UK
| | | | | | - Peter Moss
- Hull University Teaching Hospitals NHS Trust, UK
| | - William L Irving
- Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham, UK
| | - Ellie Barnes
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | | |
Collapse
|
30
|
Synergistic lethal mutagenesis of hepatitis C virus. Antimicrob Agents Chemother 2019:AAC.01653-19. [PMID: 31570400 DOI: 10.1128/aac.01653-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Lethal mutagenesis is an antiviral approach that consists in extinguishing a virus by an excess of mutations acquired during replication in the presence of a mutagenic agent, often a nucleotide analogue. One of its advantages is its broad spectrum nature that renders the strategy potentially effective against emergent RNA viral infections. Here we describe synergistic lethal mutagenesis of hepatitis C virus (HCV) by a combination of favipiravir (T-705) and ribavirin. Synergy has been documented over a broad range of analogue concentrations using the Chou-Talalay method as implemented in the CompuSyn graphics, with average dose reduction index (DRI) above 1 (68.02±101.6 for favipiravir, and 5.83±6.07 for ribavirin), and average combination indices (CI) below 1 (0.52±0.28). Furthermore, analogue concentrations that individually did not extinguish high fitness HCV in ten serial infections, when used in combination they extinguished high fitness HCV in one to two passages. Although both analogues display a preference for G→A and C→U transitions, deep sequencing analysis of mutant spectra indicated a different preference of the two analogues for the mutation sites, thus unveiling a new possible synergy mechanism in lethal mutagenesis. Prospects of synergy among mutagenic nucleotides as a strategy to confront emerging viral infections are discussed.
Collapse
|
31
|
Perales C, Gallego I, de Ávila AI, Soria ME, Gregori J, Quer J, Domingo E. The increasing impact of lethal mutagenesis of viruses. Future Med Chem 2019; 11:1645-1657. [PMID: 31469331 DOI: 10.4155/fmc-2018-0457] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/21/2019] [Indexed: 01/02/2025] Open
Abstract
Selection of viral mutants resistant to compounds used in therapy is a major determinant of treatment failure, a problem akin to antibiotic resistance in bacteria. In this scenario, mutagenic base and nucleoside analogs have entered the picture because they increase the mutation rate of viral populations to levels incompatible with their survival. This antiviral strategy is termed lethal mutagenesis. It has found a major impulse with the observation that some antiviral agents, which initially were considered only inhibitors of virus multiplication, may in effect exert part of their antiviral activity through mutagenesis. Here, we review the conceptual basis of lethal mutagenesis, the evidence of virus extinction through mutagenic nucleotide analogs and prospects for application in antiviral designs.
Collapse
Affiliation(s)
- Celia Perales
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM. Av. Reyes Católicos 2, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029, Madrid, Spain
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain
| | - Isabel Gallego
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029, Madrid, Spain
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain
| | - Ana Isabel de Ávila
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain
| | - María Eugenia Soria
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain
| | - Josep Gregori
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029, Madrid, Spain
- Liver Unit, Internal Medicine Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Roche Diagnostics, S.L., Sant Cugat del Vallés, 08174, Barcelona, Spain
| | - Josep Quer
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029, Madrid, Spain
- Liver Unit, Internal Medicine Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Universitat Autónoma deBarcelona, 08193, Barcelona, Spain
| | - Esteban Domingo
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029, Madrid, Spain
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
32
|
Identifying immunologically-vulnerable regions of the HCV E2 glycoprotein and broadly neutralizing antibodies that target them. Nat Commun 2019; 10:2073. [PMID: 31061402 PMCID: PMC6502829 DOI: 10.1038/s41467-019-09819-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 04/02/2019] [Indexed: 02/06/2023] Open
Abstract
Isolation of broadly neutralizing human monoclonal antibodies (HmAbs) targeting the E2 glycoprotein of Hepatitis C virus (HCV) has sparked hope for effective vaccine development. Nonetheless, escape mutations have been reported. Ideally, a potent vaccine should elicit HmAbs that target regions of E2 that are most difficult to escape. Here, aimed at addressing this challenge, we develop a predictive in-silico evolutionary model for E2 that identifies one such region, a specific antigenic domain, making it an attractive target for a robust antibody response. Specific broadly neutralizing HmAbs that appear difficult to escape from are also identified. By providing a framework for identifying vulnerable regions of E2 and for assessing the potency of specific antibodies, our results can aid the rational design of an effective prophylactic HCV vaccine. A good vaccine should direct the immune response to virus regions that are most difficult to escape. Here, Quadeer et al. develop a predictive in-silico evolutionary model for HCV E2 which identifies one such antigenic region and identifies multiple broadly neutralizing human antibodies that appear difficult to escape from.
Collapse
|
33
|
Hepatitis C Virus Genetic Variability, Human Immune Response, and Genome Polymorphisms: Which Is the Interplay? Cells 2019; 8:cells8040305. [PMID: 30987134 PMCID: PMC6523096 DOI: 10.3390/cells8040305] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/26/2019] [Accepted: 03/30/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) infection is the main cause of chronic hepatitis, affecting an estimated 150 million people worldwide. Initial exposure to HCV is most often followed by chronic hepatitis, with only a minority of individuals spontaneously clearing the virus. The induction of sustained and broadly directed HCV-specific CD4+ and CD8+ T cell responses, together with neutralizing antibodies (nAb), and specific genetic polymorphism have been associated with spontaneous resolution of the infection. However, due to its high variability, HCV is able to overwhelm the host immune response through the rapid acquisition of mutations in the epitopes targeted by T cells and neutralizing antibodies. In this context, immune-mediated pressure represents the main force in driving HCV evolution. This review summarizes the data on HCV diversity and the current state of knowledge about the contributions of antibodies, T cells, and host genetic polymorphism in driving HCV evolution in vivo.
Collapse
|
34
|
Hart GR, Ferguson AL. Computational design of hepatitis C virus immunogens from host-pathogen dynamics over empirical viral fitness landscapes. Phys Biol 2018; 16:016004. [PMID: 30484433 DOI: 10.1088/1478-3975/aaeec0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) afflicts 170 million people and kills 700 000 annually. Vaccination offers the most realistic and cost effective hope of controlling this epidemic, but despite 25 years of research, no vaccine is available. A major obstacle is HCV's extreme genetic variability and rapid mutational escape from immune pressure. Coupling maximum entropy inference with population dynamics simulations, we have employed a computational approach to translate HCV sequence databases into empirical landscapes of viral fitness and simulate the intrahost evolution of the viral quasispecies over these landscapes. We explicitly model the coupled host-pathogen dynamics by combining agent-based models of viral mutation with stochastically-integrated coupled ordinary differential equations for the host immune response. We validate our model in predicting the mutational evolution of the HCV RNA-dependent RNA polymerase (protein NS5B) within seven individuals for whom longitudinal sequencing data is available. We then use our approach to perform exhaustive in silico evaluation of putative immunogen candidates to rationally design tailored vaccines to simultaneously cripple viral fitness and block mutational escape within two selected individuals. By systematically identifying a small number of promising vaccine candidates, our empirical fitness landscapes and host-pathogen dynamics simulator can guide and accelerate experimental vaccine design efforts.
Collapse
Affiliation(s)
- Gregory R Hart
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801, United States of America. Present address: Department of Therapeutic Radiology, Yale University, 202 LLCI, 15 York Street, New Haven, CT 96510, United States of America
| | | |
Collapse
|
35
|
Resistance of high fitness hepatitis C virus to lethal mutagenesis. Virology 2018; 523:100-109. [PMID: 30107298 DOI: 10.1016/j.virol.2018.07.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 01/07/2023]
Abstract
Viral fitness quantifies the degree of virus adaptation to a given environment. How viral fitness can influence the mutant spectrum complexity of a viral quasispecies subjected to lethal mutagenesis has not been investigated. Here we document that two high fitness hepatitis C virus populations display higher resistance to the mutagenic nucleoside analogues favipiravir and ribavirin than their parental, low fitness HCV. All populations, however, exhibited a mutation transition bias indicative of active mutagenesis. Resistance to the analogues was associated with a limited expansion of mutant spectrum complexity, as evidenced by several diversity indices used to characterize mutant spectra. The results are consistent with a replicative site-drug competition mechanism that was previously proposed for HCV fitness-associated resistance to non-mutagenic inhibitors. Other alternative, non-mutually exclusive mechanisms are considered. The results introduce viral fitness as a relevant parameter to evaluate the response of viruses to lethal mutagenesis, with implications for antiviral designs.
Collapse
|
36
|
Bhardwaj N, Ragonnet-Cronin M, Murrell B, Chodavarapu K, Martin R, Chang S, Miller MD, Feld JJ, Sulkowski M, Mangia A, Wertheim JO, Osinusi A, McNally J, Brainard D, Mo H, Svarovskaia ES. Intrapatient viral diversity and treatment outcome in patients with genotype 3a hepatitis C virus infection on sofosbuvir-containing regimens. J Viral Hepat 2018; 25:344-353. [PMID: 29112331 DOI: 10.1111/jvh.12825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/02/2017] [Indexed: 12/27/2022]
Abstract
Treatment with the direct-acting antiviral agent (DAA) sofosbuvir (SOF), an NS5B inhibitor, and velpatasvir (VEL), an NS5A inhibitor, demonstrates viral cure rates of ≥95% in hepatitis C virus (HCV) genotypes (GT) 1-6. Here, we investigated intrapatient HCV diversity in NS5A and NS5B using Shannon entropy to examine the relationship between viral diversity and treatment outcome. At baseline, HCV diversity was lowest in patients infected with HCV GT3 as compared to the other GTs, and viral diversity was greater in NS5A than NS5B (P < .0001). Treatment outcome with SOF/VEL or the comparator regimen of SOF with ribavirin (RBV) was not correlated with baseline diversity. However, among persons treated with SOF/VEL, a decrease in diversity from baseline was observed at relapse in the majority virologic failures, consistent with a viral bottleneck event at relapse. In contrast, an increase in diversity was observed in 27% of SOF+RBV virologic failures. We investigated whether the increase in diversity was due to an increase in the transition rate, one mode of potential RBV-mediated mutagenesis; however, we found no evidence of this mechanism. Overall, we did not observe that viral diversity at baseline influenced treatment outcome, but the diversity changes observed at relapse can improve our understanding of RBV viral suppression in vivo.
Collapse
Affiliation(s)
- N Bhardwaj
- Clinical Virology, Gilead Sciences, Foster City, CA, USA
| | | | - B Murrell
- University of California San Diego, San Diego, CA, USA
| | - K Chodavarapu
- Clinical Virology, Gilead Sciences, Foster City, CA, USA
| | - R Martin
- Clinical Virology, Gilead Sciences, Foster City, CA, USA
| | - S Chang
- Clinical Virology, Gilead Sciences, Foster City, CA, USA
| | - M D Miller
- Clinical Virology, Gilead Sciences, Foster City, CA, USA
| | - J J Feld
- Toronto Centre for Liver Disease, University of Toronto, Toronto, ON, Canada
| | - M Sulkowski
- Johns Hopkins University, Baltimore, MD, USA
| | - A Mangia
- Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - J O Wertheim
- University of California San Diego, San Diego, CA, USA
| | - A Osinusi
- Clinical Virology, Gilead Sciences, Foster City, CA, USA
| | - J McNally
- Clinical Virology, Gilead Sciences, Foster City, CA, USA
| | - D Brainard
- Clinical Virology, Gilead Sciences, Foster City, CA, USA
| | - H Mo
- Clinical Virology, Gilead Sciences, Foster City, CA, USA
| | | |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW This review provides an overview of HCV resistance-associated substitutions (RASs) with a focus on NS3 protease and NS5A inhibitor resistance. Treatment approaches for managing resistance are also covered including the use of newly approved therapies with improved resistance profiles. RECENT FINDINGS HCV RASs are frequently selected if the patient is not cured during treatment; NS5A RASs persist for prolonged periods of time (years) after treatment failure and may adversely impact retreatment responses. Newly approved regimens with improved potency and resistance profiles are less impacted by resistance and provide the best retreatment options for patients who previously failed DAA therapy. The clinical impact of HCV RASs has been lessened significantly with the introduction of new DAA treatment regimens. Routine testing for resistance is unlikely to impact retreatment approaches if newer regimens are accessible. Knowledge of factors, such as the presence of cirrhosis and prior treatment regimens, remain as the key to optimizing retreatment approaches.
Collapse
Affiliation(s)
- David L Wyles
- Division of Infectious Diseases, Denver Health Medical Center, 660 Bannock St, MC 4000, Denver, CO, 80204, USA.
| |
Collapse
|
38
|
Carrasco-Hernandez R, Jácome R, López Vidal Y, Ponce de León S. Are RNA Viruses Candidate Agents for the Next Global Pandemic? A Review. ILAR J 2017; 58:343-358. [PMID: 28985316 PMCID: PMC7108571 DOI: 10.1093/ilar/ilx026] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 07/14/2017] [Accepted: 07/15/2017] [Indexed: 12/16/2022] Open
Abstract
Pathogenic RNA viruses are potentially the most important group involved in zoonotic disease transmission, and they represent a challenge for global disease control. Their biological diversity and rapid adaptive rates have proved to be difficult to overcome and to anticipate by modern medical technology. Also, the anthropogenic change of natural ecosystems and the continuous population growth are driving increased rates of interspecies contacts and the interchange of pathogens that can develop into global pandemics. The combination of molecular, epidemiological, and ecological knowledge of RNA viruses is therefore essential towards the proper control of these emergent pathogens. This review outlines, throughout different levels of complexity, the problems posed by RNA viral diseases, covering some of the molecular mechanisms allowing them to adapt to new host species-and to novel pharmaceutical developments-up to the known ecological processes involved in zoonotic transmission.
Collapse
Affiliation(s)
- R Carrasco-Hernandez
- R. Carrasco-Hernandez, PhD, is a postdoctoral research fellow at the Microbiome Laboratory in the Postgraduate Division of the Faculty of Medicine at the Universidad Nacional Autónoma de México, CDMX
| | - Rodrigo Jácome
- Rodrigo Jácome, MD, PhD, is a postdoctoral research fellow at the Microbiome Laboratory in the Postgraduate Division of the Faculty of Medicine at the Universidad Nacional Autónoma de México, CDMX
| | - Yolanda López Vidal
- Yolanda López-Vidal, MD, PhD, is an associate professor “C” and is responsible for the Program of Microbial Molecular Immunology in the Department of Microbiology and Parasitology of the Faculty of Medicine at the Universidad Nacional Autónoma de México, CDMX
| | - Samuel Ponce de León
- Samuel Ponce-de-León, MD, MSc, is an associate professor “C”, is responsible for the Microbiome Laboratory and Coordinator of the University Program for Health Research of the Faculty of Medicine at the Universidad Nacional Autónoma de México, CDMX
| |
Collapse
|
39
|
Alves da Silva R, de Souza Todão J, Kamitani FL, Silva AEB, de Carvalho-Filho RJ, Ferraz MLCG, de Carvalho IMVG. Molecular characterization of hepatitis C virus in end-stage renal disease patients under hemodialysis. J Med Virol 2017; 90:537-544. [PMID: 29064576 DOI: 10.1002/jmv.24976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 10/12/2017] [Indexed: 12/09/2022]
Abstract
New direct-acting antiviral (DAA) agents are in development or already approved for the treatment of chronic hepatitis C virus (HCV) infection. The effectiveness of these drugs is related to the previous existence of resistant variants. Certain clinical conditions can allow changes in immunological characteristics of the host and even modify genetic features of viral populations. The aim of this study was to perform HCV molecular characterization from samples of end-stage renal disease patients on hemodialysis (ESRD-HD). Nested PCR and Sanger sequencing were used to obtain genetic information from the NS5B partial region of a cohort composed by 86 treatment-naïve patients. Genomic sequences from the Los Alamos databank were employed for comparative analysis. Bioinformatics methodologies such as phylogenetic reconstructions, informational entropy, and mutation analysis were used to analyze datasets separated by geographical location, HCV genotype, and renal function status. ESRD-HD patients presented HCV genotypes 1a (n = 18), 1b (n = 16), 2a (n = 2), 2b (n = 2), and 3a (n = 4). Control subjects were infected with genotypes 1a (n = 11), 1b (n = 21), 2b (n = 4), and 3a (n = 8). Dataset phylogenetic reconstruction separated HCV subtype 1a into two distinct clades. The entropy analysis from the ESRD-HD group revealed two amino acid positions related to an epitope for cytotoxic T lymphocytes and T helper cells. Genotype 1a was found to be more diverse than subtype 1b. Also, genotype 1a ERSD-HD patients had a higher mean of amino acids changes in comparison to control group patients. The identification of specific mutations on epitopes and high genetic diversity within the NS5B HCV partial protein in hemodialysis patients can relate to host immunological features and geographical distribution patterns. This genetic diversity can affect directly the new DAA's resistance mechanisms.
Collapse
Affiliation(s)
- Rafael Alves da Silva
- Laboratório de Hepatologia Molecular Aplicada (LHeMA), Departamento de Gastroenterologia, Unidade de Hepatologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil.,Instituto Butantan, Laboratório de Parasitologia, São Paulo, Brazil
| | - Jardelina de Souza Todão
- Laboratório de Hepatologia Molecular Aplicada (LHeMA), Departamento de Gastroenterologia, Unidade de Hepatologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | | | - Antonio Eduardo Benedito Silva
- Laboratório de Hepatologia Molecular Aplicada (LHeMA), Departamento de Gastroenterologia, Unidade de Hepatologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil.,Departamento de Gastroenterologia, Unidade de Hepatologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | - Roberto José de Carvalho-Filho
- Laboratório de Hepatologia Molecular Aplicada (LHeMA), Departamento de Gastroenterologia, Unidade de Hepatologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil.,Departamento de Gastroenterologia, Unidade de Hepatologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | - Maria Lucia Cardoso Gomes Ferraz
- Laboratório de Hepatologia Molecular Aplicada (LHeMA), Departamento de Gastroenterologia, Unidade de Hepatologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil.,Departamento de Gastroenterologia, Unidade de Hepatologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | - Isabel Maria Vicente Guedes de Carvalho
- Laboratório de Hepatologia Molecular Aplicada (LHeMA), Departamento de Gastroenterologia, Unidade de Hepatologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil.,Instituto Butantan, Laboratório de Parasitologia, São Paulo, Brazil
| |
Collapse
|
40
|
Romero-López C, Berzal-Herranz A. The 5BSL3.2 Functional RNA Domain Connects Distant Regions in the Hepatitis C Virus Genome. Front Microbiol 2017; 8:2093. [PMID: 29163393 PMCID: PMC5671509 DOI: 10.3389/fmicb.2017.02093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/12/2017] [Indexed: 02/05/2023] Open
Abstract
Viral genomes are complexly folded entities that carry all the information required for the infective cycle. The nucleotide sequence of the RNA virus genome encodes proteins and functional information contained in discrete, highly conserved structural units. These so-called functional RNA domains play essential roles in the progression of infection, which requires their preservation from one generation to the next. Numerous functional RNA domains exist in the genome of the hepatitis C virus (HCV). Among them, the 5BSL3.2 domain in the cis-acting replication element (CRE) at the 3' end of the viral open reading frame has become of particular interest given its role in HCV RNA replication and as a regulator of viral protein synthesis. These functionalities are achieved via the establishment of a complex network of long-distance RNA-RNA contacts involving (at least as known to date) the highly conserved 3'X tail, the apical loop of domain IIId in the internal ribosome entry site, and/or the so-called Alt region upstream of the CRE. Changing contacts promotes the execution of different stages of the viral cycle. The 5BSL3.2 domain thus operates at the core of a system that governs the progression of HCV infection. This review summarizes our knowledge of the long-range RNA-RNA interaction network in the HCV genome, with special attention paid to the structural and functional consequences derived from the establishment of different contacts. The potential implications of such interactions in switching between the different stages of the viral cycle are discussed.
Collapse
Affiliation(s)
- Cristina Romero-López
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| |
Collapse
|
41
|
López-Carrasco A, Ballesteros C, Sentandreu V, Delgado S, Gago-Zachert S, Flores R, Sanjuán R. Different rates of spontaneous mutation of chloroplastic and nuclear viroids as determined by high-fidelity ultra-deep sequencing. PLoS Pathog 2017; 13:e1006547. [PMID: 28910391 PMCID: PMC5614642 DOI: 10.1371/journal.ppat.1006547] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 09/26/2017] [Accepted: 07/22/2017] [Indexed: 01/19/2023] Open
Abstract
Mutation rates vary by orders of magnitude across biological systems, being higher for simpler genomes. The simplest known genomes correspond to viroids, subviral plant replicons constituted by circular non-coding RNAs of few hundred bases. Previous work has revealed an extremely high mutation rate for chrysanthemum chlorotic mottle viroid, a chloroplast-replicating viroid. However, whether this is a general feature of viroids remains unclear. Here, we have used high-fidelity ultra-deep sequencing to determine the mutation rate in a common host (eggplant) of two viroids, each representative of one family: the chloroplastic eggplant latent viroid (ELVd, Avsunviroidae) and the nuclear potato spindle tuber viroid (PSTVd, Pospiviroidae). This revealed higher mutation frequencies in ELVd than in PSTVd, as well as marked differences in the types of mutations produced. Rates of spontaneous mutation, quantified in vivo using the lethal mutation method, ranged from 1/1000 to 1/800 for ELVd and from 1/7000 to 1/3800 for PSTVd depending on sequencing run. These results suggest that extremely high mutability is a common feature of chloroplastic viroids, whereas the mutation rates of PSTVd and potentially other nuclear viroids appear significantly lower and closer to those of some RNA viruses. Spontaneous mutations are the ultimate source of genetic variation and their characterization provides fundamental information about evolutionary processes. The highest mutation rate so far described corresponds to a hammerhead viroid infecting plant chloroplasts. Viroids are plant-exclusive parasites constituted by 250–400 nt-long, non-protein-coding RNAs, and are divided into two families with distinct mechanisms of replication and localization: chloroplastic (Avsunviroidae), and nuclear (Pospiviroidae). Here, we have used high-fidelity ultra-deep sequencing to compare side by side the mutation rates of one representative member of each viroid family in the same host. We found that the mutation rate of the nuclear viroid was several fold lower than that of the chloroplastic viroid.
Collapse
Affiliation(s)
- Amparo López-Carrasco
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, València, Spain
| | - Cristina Ballesteros
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, València, Spain
| | | | - Sonia Delgado
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, València, Spain
| | - Selma Gago-Zachert
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, València, Spain
- Department of Molecular Signal Processing, Leibniz Institute for Plant Biochemistry, Halle (Saale), Germany
| | - Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, València, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, València, Spain
- Departamento de Genética, Universitat de València, València, Spain
- * E-mail:
| |
Collapse
|
42
|
Quer J, Rodríguez-Frias F, Gregori J, Tabernero D, Soria ME, García-Cehic D, Homs M, Bosch A, Pintó RM, Esteban JI, Domingo E, Perales C. Deep sequencing in the management of hepatitis virus infections. Virus Res 2017; 239:115-125. [PMID: 28040474 DOI: 10.1016/j.virusres.2016.12.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/10/2016] [Accepted: 12/22/2016] [Indexed: 02/07/2023]
Abstract
The hepatitis viruses represent a major public health problem worldwide. Procedures for characterization of the genomic composition of their populations, accurate diagnosis, identification of multiple infections, and information on inhibitor-escape mutants for treatment decisions are needed. Deep sequencing methodologies are extremely useful for these viruses since they replicate as complex and dynamic quasispecies swarms whose complexity and mutant composition are biologically relevant traits. Population complexity is a major challenge for disease prevention and control, but also an opportunity to distinguish among related but phenotypically distinct variants that might anticipate disease progression and treatment outcome. Detailed characterization of mutant spectra should permit choosing better treatment options, given the increasing number of new antiviral inhibitors available. In the present review we briefly summarize our experience on the use of deep sequencing for the management of hepatitis virus infections, particularly for hepatitis B and C viruses, and outline some possible new applications of deep sequencing for these important human pathogens.
Collapse
Affiliation(s)
- Josep Quer
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Internal Medicine Department, Vall d'Hebron Institut Research-Hospital Universitari Vall d'Hebron (VHIR-HUVH), Universitat Autonoma de Barcelona, 08035, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Francisco Rodríguez-Frias
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain; Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Josep Gregori
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Internal Medicine Department, Vall d'Hebron Institut Research-Hospital Universitari Vall d'Hebron (VHIR-HUVH), Universitat Autonoma de Barcelona, 08035, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain; Roche Diagnostics, S.L., Sant Cugat del Vallés, Spain
| | - David Tabernero
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain; Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Maria Eugenia Soria
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Internal Medicine Department, Vall d'Hebron Institut Research-Hospital Universitari Vall d'Hebron (VHIR-HUVH), Universitat Autonoma de Barcelona, 08035, Barcelona, Spain
| | - Damir García-Cehic
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Internal Medicine Department, Vall d'Hebron Institut Research-Hospital Universitari Vall d'Hebron (VHIR-HUVH), Universitat Autonoma de Barcelona, 08035, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Maria Homs
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain; Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Albert Bosch
- Department of Microbiology, Enteric Virus Laboratory, University of Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Rosa María Pintó
- Department of Microbiology, Enteric Virus Laboratory, University of Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Juan Ignacio Esteban
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Internal Medicine Department, Vall d'Hebron Institut Research-Hospital Universitari Vall d'Hebron (VHIR-HUVH), Universitat Autonoma de Barcelona, 08035, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Esteban Domingo
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain; Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Celia Perales
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Internal Medicine Department, Vall d'Hebron Institut Research-Hospital Universitari Vall d'Hebron (VHIR-HUVH), Universitat Autonoma de Barcelona, 08035, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain; Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
43
|
Pauly MD, Procario MC, Lauring AS. A novel twelve class fluctuation test reveals higher than expected mutation rates for influenza A viruses. eLife 2017; 6. [PMID: 28598328 PMCID: PMC5511008 DOI: 10.7554/elife.26437] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/09/2017] [Indexed: 12/21/2022] Open
Abstract
Influenza virus’ low replicative fidelity contributes to its capacity for rapid evolution. Clonal sequencing and fluctuation tests have suggested that the influenza virus mutation rate is 2.7 × 10–6 - 3.0 × 10–5 substitutions per nucleotide per strand copied (s/n/r). However, sequencing assays are biased toward mutations with minimal fitness impacts and fluctuation tests typically investigate only a subset of all possible single nucleotide mutations. We developed a fluctuation test based on reversion to fluorescence in a set of virally encoded mutant green fluorescent proteins, which allowed us to measure the rates of selectively neutral mutations representative of the twelve different mutation types. We measured an overall mutation rate of 1.8 × 10–4 s/n/r for PR8 (H1N1) and 2.5 × 10–4 s/n/r for Hong Kong 2014 (H3N2) and a transitional bias of 2.7–3.6. Our data suggest that each replicated genome will have an average of 2–3 mutations and highlight the importance of mutational load in influenza virus evolution. DOI:http://dx.doi.org/10.7554/eLife.26437.001
Collapse
Affiliation(s)
- Matthew D Pauly
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, United States
| | - Megan C Procario
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, United States
| | - Adam S Lauring
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, United States.,Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, United States
| |
Collapse
|
44
|
Echeverría N, Moreno P, Cristina J. Molecular Evolution of Hepatitis C Virus: From Epidemiology to Antiviral Therapy (Current Research in Latin America). HUMAN VIROLOGY IN LATIN AMERICA 2017:333-359. [DOI: 10.1007/978-3-319-54567-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
45
|
Sanjuán R, Domingo-Calap P. Mechanisms of viral mutation. Cell Mol Life Sci 2016; 73:4433-4448. [PMID: 27392606 PMCID: PMC5075021 DOI: 10.1007/s00018-016-2299-6] [Citation(s) in RCA: 526] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 02/08/2023]
Abstract
The remarkable capacity of some viruses to adapt to new hosts and environments is highly dependent on their ability to generate de novo diversity in a short period of time. Rates of spontaneous mutation vary amply among viruses. RNA viruses mutate faster than DNA viruses, single-stranded viruses mutate faster than double-strand virus, and genome size appears to correlate negatively with mutation rate. Viral mutation rates are modulated at different levels, including polymerase fidelity, sequence context, template secondary structure, cellular microenvironment, replication mechanisms, proofreading, and access to post-replicative repair. Additionally, massive numbers of mutations can be introduced by some virus-encoded diversity-generating elements, as well as by host-encoded cytidine/adenine deaminases. Our current knowledge of viral mutation rates indicates that viral genetic diversity is determined by multiple virus- and host-dependent processes, and that viral mutation rates can evolve in response to specific selective pressures.
Collapse
Affiliation(s)
- Rafael Sanjuán
- Department of Genetics and Institute for Integrative Systems Biology (I2SysBio), Universitat de València, C/Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain.
| | - Pilar Domingo-Calap
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d'Immunologie et d'Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Fédération Hospitalo-Universitaire OMICARE, Centre de Recherche d'Immunologie et d'Hématologie, Strasbourg, France
| |
Collapse
|
46
|
de Ávila AI, Gallego I, Soria ME, Gregori J, Quer J, Esteban JI, Rice CM, Domingo E, Perales C. Lethal Mutagenesis of Hepatitis C Virus Induced by Favipiravir. PLoS One 2016; 11:e0164691. [PMID: 27755573 PMCID: PMC5068784 DOI: 10.1371/journal.pone.0164691] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/29/2016] [Indexed: 12/14/2022] Open
Abstract
Lethal mutagenesis is an antiviral approach that consists in extinguishing a virus by an excess of mutations acquired during replication in the presence of a mutagen. Here we show that favipiravir (T-705) is a potent mutagenic agent for hepatitis C virus (HCV) during its replication in human hepatoma cells. T-705 leads to an excess of G → A and C → U transitions in the mutant spectrum of preextinction HCV populations. Infectivity decreased significantly in the presence of concentrations of T-705 which are 2- to 8-fold lower than its cytotoxic concentration 50 (CC50). Passaging the virus five times in the presence of 400 μM T-705 resulted in virus extinction. Since T-705 has undergone advanced clinical trials for approval for human use, the results open a new approach based on lethal mutagenesis to treat hepatitis C virus infections. If proven effective for HCV in vivo, this new anti-HCV agent may be useful in patient groups that fail current therapeutic regimens.
Collapse
Affiliation(s)
- Ana I. de Ávila
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain
| | - Isabel Gallego
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Maria Eugenia Soria
- Liver Unit, Internal Medicine, Laboratory of Malalties Hepàtiques, Vall d’Hebron Institut de Recerca-Hospital Universitari Vall d´Hebron, (VHIR-HUVH), Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Josep Gregori
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Liver Unit, Internal Medicine, Laboratory of Malalties Hepàtiques, Vall d’Hebron Institut de Recerca-Hospital Universitari Vall d´Hebron, (VHIR-HUVH), Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
- Roche Diagnostics, S.L., Sant Cugat del Vallés, Spain
| | - Josep Quer
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Liver Unit, Internal Medicine, Laboratory of Malalties Hepàtiques, Vall d’Hebron Institut de Recerca-Hospital Universitari Vall d´Hebron, (VHIR-HUVH), Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
- Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Juan Ignacio Esteban
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Liver Unit, Internal Medicine, Laboratory of Malalties Hepàtiques, Vall d’Hebron Institut de Recerca-Hospital Universitari Vall d´Hebron, (VHIR-HUVH), Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
- Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Charles M. Rice
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, United States of America
| | - Esteban Domingo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Celia Perales
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Liver Unit, Internal Medicine, Laboratory of Malalties Hepàtiques, Vall d’Hebron Institut de Recerca-Hospital Universitari Vall d´Hebron, (VHIR-HUVH), Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| |
Collapse
|
47
|
Pereira-Gómez M, Bou JV, Andreu I, Sanjuán R. Lamivudine/Adefovir Treatment Increases the Rate of Spontaneous Mutation of Hepatitis B Virus in Patients. PLoS One 2016; 11:e0163363. [PMID: 27649318 PMCID: PMC5029863 DOI: 10.1371/journal.pone.0163363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/06/2016] [Indexed: 12/19/2022] Open
Abstract
The high levels of genetic diversity shown by hepatitis B virus (HBV) are commonly attributed to the low fidelity of its polymerase. However, the rate of spontaneous mutation of human HBV in vivo is currently unknown. Here, based on the evolutionary principle that the population frequency of lethal mutations equals the rate at which they are produced, we have estimated the mutation rate of HBV in vivo by scoring premature stop codons in 621 publicly available, full-length, molecular clone sequences derived from patients. This yielded an estimate of 8.7 × 10-5 spontaneous mutations per nucleotide per cell infection in untreated patients, which should be taken as an upper limit estimate because PCR errors and/or lack of effective lethality may inflate observed mutation frequencies. We found that, in patients undergoing lamivudine/adefovir treatment, the HBV mutation rate was elevated by more than sixfold, revealing a mutagenic effect of this treatment. Genome-wide analysis of single-nucleotide polymorphisms indicated that lamivudine/adefovir treatment increases the fraction of A/T-to-G/C base substitutions, consistent with recent work showing similar effects of lamivudine in cellular DNA. Based on these data, the rate at which HBV produces new genetic variants in treated patients is similar to or even higher than in RNA viruses.
Collapse
Affiliation(s)
- Marianoel Pereira-Gómez
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València, València, Spain
| | - Juan-Vicente Bou
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València, València, Spain
| | - Iván Andreu
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València, València, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València, València, Spain
- Departament de Genètica, Universitat de València, València, Spain
| |
Collapse
|
48
|
Raghwani J, Rose R, Sheridan I, Lemey P, Suchard MA, Santantonio T, Farci P, Klenerman P, Pybus OG. Exceptional Heterogeneity in Viral Evolutionary Dynamics Characterises Chronic Hepatitis C Virus Infection. PLoS Pathog 2016; 12:e1005894. [PMID: 27631086 PMCID: PMC5025083 DOI: 10.1371/journal.ppat.1005894] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/24/2016] [Indexed: 12/14/2022] Open
Abstract
The treatment of HCV infection has seen significant progress, particularly since the approval of new direct-acting antiviral drugs. However these clinical achievements have been made despite an incomplete understanding of HCV replication and within-host evolution, especially compared with HIV-1. Here, we undertake a comprehensive analysis of HCV within-host evolution during chronic infection by investigating over 4000 viral sequences sampled longitudinally from 15 HCV-infected patients. We compare our HCV results to those from a well-studied HIV-1 cohort, revealing key differences in the evolutionary behaviour of these two chronic-infecting pathogens. Notably, we find an exceptional level of heterogeneity in the molecular evolution of HCV, both within and among infected individuals. Furthermore, these patterns are associated with the long-term maintenance of viral lineages within patients, which fluctuate in relative frequency in peripheral blood. Together, our findings demonstrate that HCV replication behavior is complex and likely comprises multiple viral subpopulations with distinct evolutionary dynamics. The presence of a structured viral population can explain apparent paradoxes in chronic HCV infection, such as rapid fluctuations in viral diversity and the reappearance of viral strains years after their initial detection. Our knowledge of HCV within-host evolution is substantially limited, which is surprising given that highly successful therapies against the virus have been developed. Key aspects of HCV infection, such as rapid fluctuations in viral diversity and the reappearance of viral strains years after their initial detection, remain unexplained. To better understand this problem, we analyse viral sequences from HCV-infected patients sampled over several years. Our findings suggest that the replication dynamics during chronic HCV infection are distinct from those of HIV-1, and dominated by the co-circulation of multiple viral strains. Although a major difference between the two chronic-infecting viruses is the level of recombination, our results indicate that HCV within-host evolution is most likely to be shaped by a structured viral population. Crucially, our study shows that HCV sampled from blood does not fully represent the within-host viral population at that time. This may have important implications for HCV treatment, especially in patients that have seemingly cleared the virus, as well as for molecular epidemiology studies investigating HCV transmission.
Collapse
Affiliation(s)
- Jayna Raghwani
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail: (JR); (OGP)
| | - Rebecca Rose
- BioInfoExperts, Thibodaux, Los Angeles, California, United States of America
| | - Isabelle Sheridan
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Philippe Lemey
- Department of Microbiology and Immunology, Rega Institute, KU Leuven–University of Leuven, Leuven, Belgium
| | - Marc A. Suchard
- Departments of Biomathematics, Biostatistics, Human Genetics, University of California, Los Angeles, California, United States of America
| | | | - Patrizia Farci
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Oliver G. Pybus
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail: (JR); (OGP)
| |
Collapse
|
49
|
Biochemical Characterization of the Active Anti-Hepatitis C Virus Metabolites of 2,6-Diaminopurine Ribonucleoside Prodrug Compared to Sofosbuvir and BMS-986094. Antimicrob Agents Chemother 2016; 60:4659-69. [PMID: 27216050 DOI: 10.1128/aac.00318-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/12/2016] [Indexed: 12/20/2022] Open
Abstract
Ribonucleoside analog inhibitors (rNAI) target the hepatitis C virus (HCV) RNA-dependent RNA polymerase nonstructural protein 5B (NS5B) and cause RNA chain termination. Here, we expand our studies on β-d-2'-C-methyl-2,6-diaminopurine-ribonucleotide (DAPN) phosphoramidate prodrug 1 (PD1) as a novel investigational inhibitor of HCV. DAPN-PD1 is metabolized intracellularly into two distinct bioactive nucleoside triphosphate (TP) analogs. The first metabolite, 2'-C-methyl-GTP, is a well-characterized inhibitor of NS5B polymerase, whereas the second metabolite, 2'-C-methyl-DAPN-TP, behaves as an adenosine base analog. In vitro assays suggest that both metabolites are inhibitors of NS5B-mediated RNA polymerization. Additional factors, such as rNAI-TP incorporation efficiencies, intracellular rNAI-TP levels, and competition with natural ribonucleotides, were examined in order to further characterize the potential role of each nucleotide metabolite in vivo Finally, we found that although both 2'-C-methyl-GTP and 2'-C-methyl-DAPN-TP were weak substrates for human mitochondrial RNA (mtRNA) polymerase (POLRMT) in vitro, DAPN-PD1 did not cause off-target inhibition of mtRNA transcription in Huh-7 cells. In contrast, administration of BMS-986094, which also generates 2'-C-methyl-GTP and previously has been associated with toxicity in humans, caused detectable inhibition of mtRNA transcription. Metabolism of BMS-986094 in Huh-7 cells leads to 87-fold higher levels of intracellular 2'-C-methyl-GTP than DAPN-PD1. Collectively, our data characterize DAPN-PD1 as a novel and potent antiviral agent that combines the delivery of two active metabolites.
Collapse
|
50
|
Mouse Systems to Model Hepatitis C Virus Treatment and Associated Resistance. Viruses 2016; 8:v8060176. [PMID: 27338446 PMCID: PMC4926196 DOI: 10.3390/v8060176] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/12/2016] [Accepted: 06/16/2016] [Indexed: 12/15/2022] Open
Abstract
While addition of the first-approved protease inhibitors (PIs), telaprevir and boceprevir, to pegylated interferon (PEG-IFN) and ribavirin (RBV) combination therapy significantly increased sustained virologic response (SVR) rates, PI-based triple therapy for the treatment of chronic hepatitis C virus (HCV) infection was prone to the emergence of resistant viral variants. Meanwhile, multiple direct acting antiviral agents (DAAs) targeting either the HCV NS3/4A protease, NS5A or NS5B polymerase have been approved and these have varying potencies and distinct propensities to provoke resistance. The pre-clinical in vivo assessment of drug efficacy and resistant variant emergence underwent a great evolution over the last decade. This field had long been hampered by the lack of suitable small animal models that robustly support the entire HCV life cycle. In particular, chimeric mice with humanized livers (humanized mice) and chimpanzees have been instrumental for studying HCV inhibitors and the evolution of drug resistance. In this review, we present the different in vivo HCV infection models and discuss their applicability to assess HCV therapy response and emergence of resistant variants.
Collapse
|