1
|
Sia CM, Baines SL, Valcanis M, Lee DYJ, Gonçalves da Silva A, Ballard SA, Easton M, Seemann T, Howden BP, Ingle DJ, Williamson DA. Genomic diversity of antimicrobial resistance in non-typhoidal Salmonella in Victoria, Australia. Microb Genom 2021; 7:000725. [PMID: 34907895 PMCID: PMC8767345 DOI: 10.1099/mgen.0.000725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/21/2021] [Indexed: 01/18/2023] Open
Abstract
Non-typhoidal Salmonella (NTS) is the second most common cause of foodborne bacterial gastroenteritis in Australia with antimicrobial resistance (AMR) increasing in recent years. Whole-genome sequencing (WGS) provides opportunities for in silico detection of AMR determinants. The objectives of this study were two-fold: (1) establish the utility of WGS analyses for inferring phenotypic resistance in NTS, and (2) explore clinically relevant genotypic AMR profiles to third generation cephalosporins (3GC) in NTS lineages. The concordance of 2490 NTS isolates with matched WGS and phenotypic susceptibility data against 13 clinically relevant antimicrobials was explored. In silico serovar prediction and typing was performed on assembled reads and interrogated for known AMR determinants. The surrounding genomic context, plasmid determinants and co-occurring AMR patterns were further investigated for multidrug resistant serovars harbouring bla CMY-2, bla CTX-M-55 or bla CTX-M-65. Our data demonstrated a high correlation between WGS and phenotypic susceptibility testing. Phenotypic-genotypic concordance was observed between 2440/2490 (98.0 %) isolates, with overall sensitivity and specificity rates >98 % and positive and negative predictive values >97 %. The most common AMR determinants were bla TEM-1, sul2 , tet (A), strA-strB and floR . Phenotypic resistance to cefotaxime and azithromycin was low and observed in 6.2 % (151/2486) and 0.9 % (16/1834) of the isolates, respectively. Several multi-drug resistant NTS lineages were resistant to 3GC due to different genetic mechanisms including bla CMY-2, bla CTX-M-55 or bla CTX-M-65. This study shows WGS can enhance existing AMR surveillance in NTS datasets routinely produced in public health laboratories to identify emerging AMR in NTS. These approaches will be critical for developing capacity to detect emerging public health threats such as resistance to 3GC.
Collapse
Affiliation(s)
- Cheryll M. Sia
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sarah L. Baines
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Mary Valcanis
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Darren Y. J. Lee
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Anders Gonçalves da Silva
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Susan A. Ballard
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | | | - Torsten Seemann
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Benjamin P. Howden
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Danielle J. Ingle
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australia
| | - Deborah A. Williamson
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Microbiology, Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
2
|
Wildlife symbiotic bacteria are indicators of the health status of the host and its ecosystem. Appl Environ Microbiol 2021; 88:e0138521. [PMID: 34669453 PMCID: PMC8752132 DOI: 10.1128/aem.01385-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactic acid bacteria (LAB) are gut symbionts that can be used as a model to understand the host-microbiota crosstalk under unpredictable environmental conditions such as wildlife ecosystems. The aim of this study was to determine whether viable LAB can be informative of the health status of wild boar populations. We monitored the genotype and phenotype of LAB based on markers that included safety and phylogenetic origin, antibacterial activity and immunomodulatory properties. A LAB profile dominated by lactobacilli appears to stimulate protective immune responses and relates to strains widely used as probiotics, resulting in a potentially healthy wildlife population whereas microbiota overpopulated by enterococci was observed in a hostile environment. These enterococci were closely related to pathogenic strains that have developed mechanisms to evade innate immune system, posing a potential risk for the host health. Furthermore, our LAB isolates displayed antibacterial properties in a species-dependent manner. Nearly all of them were able to inhibit bacterial pathogens, raising the possibility of using them as a la carte antibiotic alternative in the unexplored field of wildlife disease mitigation. Our study highlights that microbiological characterization of LAB is a useful indicator of wildlife health status and the ecological origin from which they derive. Significance Statement The wildlife symbiotic microbiota is an important component to the greater for greater diversity and functionality of their bacterial populations, influencing the host health and adaptability to its ecosystem. Although many microbes are partly responsible for the development of multiple physiological processes, only certain bacterial groups such as lactic acid bacteria (LAB) have the capacity to overpopulate the gut, promoting health (or disease) when specific genetic and environmental conditions are present. LAB have been exploited in many ways due to their probiotic properties, in particular lactobacilli, however their relationship with wildlife gut-associated microbiota hosts remains to be elucidated. On the other hand, it is unclear whether LAB such as enterococci, which have been associated with detrimental health effects, could lead to disease. These important questions have not been properly addressed in the field of wildlife, and therefore, should be clearly attained.
Collapse
|
3
|
Gutiérrez-Escobar AJ, Velapatiño B, Borda V, Rabkin CS, Tarazona-Santos E, Cabrera L, Cok J, Hooper CC, Jahuira-Arias H, Herrera P, Noureen M, Wang D, Romero-Gallo J, Tran B, Peek RM, Berg DE, Gilman RH, Camargo MC. Identification of New Helicobacter pylori Subpopulations in Native Americans and Mestizos From Peru. Front Microbiol 2020; 11:601839. [PMID: 33381095 PMCID: PMC7767971 DOI: 10.3389/fmicb.2020.601839] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/16/2020] [Indexed: 01/01/2023] Open
Abstract
Region-specific Helicobacter pylori subpopulations have been identified. It is proposed that the hspAmerind subpopulation is being displaced from the Americans by an hpEurope population following the conquest. Our study aimed to describe the genomes and methylomes of H. pylori isolates from distinct Peruvian communities: 23 strains collected from three groups of Native Americans (Asháninkas [ASHA, n = 9], Shimaas [SHIM, n = 5] from Amazonas, and Punos from the Andean highlands [PUNO, n = 9]) and 9 modern mestizos from Lima (LIM). Closed genomes and DNA modification calls were obtained using SMRT/PacBio sequencing. We performed evolutionary analyses and evaluated genomic/epigenomic differences among strain groups. We also evaluated human genome-wide data from 74 individuals from the selected Native communities (including the 23 H. pylori strains donors) to compare host and bacterial backgrounds. There were varying degrees of hspAmerind ancestry in all strains, ranging from 7% in LIM to 99% in SHIM. We identified three H. pylori subpopulations corresponding to each of the Native groups and a novel hspEuropePeru which evolved in the modern mestizos. The divergence of the indigenous H. pylori strains recapitulated the genetic structure of Native Americans. Phylogenetic profiling showed that Orthogroups in the indigenous strains seem to have evolved differentially toward epigenomic regulation and chromosome maintenance, whereas OGs in the modern mestizo (LIM) seem to have evolved toward virulence and adherence. The prevalence of cagA+/vacA s1i1m1 genotype was similar across populations (p = 0.32): 89% in ASHA, 67% in PUNO, 56% in LIM and 40% in SHIM. Both cagA and vacA sequences showed that LIM strains were genetically differentiated (p < 0.001) as compared to indigenous strains. We identified 642 R-M systems with 39% of the associated genes located in the core genome. We found 692 methylation motifs, including 254 population-specific sequences not previously described. In Peru, hspAmerind is not extinct, with traces found even in a heavily admixed mestizo population. Notably, our study identified three new hspAmerind subpopulations, one per Native group; and a new subpopulation among mestizos that we named hspEuropePeru. This subpopulation seems to have more virulence-related elements than hspAmerind. Purifying selection driven by variable host immune response may have shaped the evolution of Peruvian subpopulations, potentially impacting disease outcomes.
Collapse
Affiliation(s)
| | - Billie Velapatiño
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada.,Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Victor Borda
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica (LNCC/MCTIC), Petrópolis, Brazil
| | - Charles S Rabkin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, United States
| | - Eduardo Tarazona-Santos
- Universidad Peruana Cayetano Heredia, Lima, Peru.,Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Jaime Cok
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | | | | | - Mehwish Noureen
- National Institute of Genetics, Mishima, Japan.,Department of Genetics, Graduate School of Life Sciences, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
| | - Difei Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, United States
| | - Judith Romero-Gallo
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Bao Tran
- Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Richard M Peek
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Douglas E Berg
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Robert H Gilman
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - M Constanza Camargo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, United States
| |
Collapse
|
4
|
Saidenberg ABS, van Vliet AH, Brandão PE, de Sá LRM, Cunha MPV, La Ragione RM, Knöbl T. Genomic characterization of enteropathogenic Escherichia coli (EPEC) of avian origin and rabbit ileal loop response; a pet macaw ( Ara chloropterus) as a possible zoonotic reservoir. Vet Q 2020; 40:331-341. [PMID: 33269989 PMCID: PMC7717848 DOI: 10.1080/01652176.2020.1845916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 10/26/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) constitutes one of the main causes of mortality in children in low- to medium-income countries. Diverse animal species have been linked as reservoirs, including birds. The aim of this study was to describe the genomic and phylogenetic features of an EPEC recovered from a pet macaw and further characterizing the macro and microscopic lesion in a rabbit ileal loop experimental model. The isolate was whole-genome sequenced (WGS) obtaining its genotypic and phenotypic in silico characteristics and inoculated in a rabbit experimental model with subsequently evaluating the strain's pathogenicity by scanning electron microscopy (SEM) and histopathology. The isolate was characterized as O109:H21-B1-ST40 typical EPEC, harboring several virulence factors of diarrheagenic E. coli. The macaw EPEC genome was located in a monophyletic clade of human and animal ST40 EPEC sequences. In vivo inoculation demonstrated severe hemorrhage with SEM and histopathological analysis confirming these lesions to be associated with intra-epithelial lymphocytes. Therefore, the isolate not only shared several genotypic and phylogenetic similarities with EPEC that affects humans and animals, but was able to induce severe tissue injury in a mammal model. These findings highlight the underrated role of pet birds as zoonotic reservoirs and the diversity in virulence factors being unraveled by new WGS studies.
Collapse
Affiliation(s)
| | - Arnoud H.M. van Vliet
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Paulo Eduardo Brandão
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | | | - Roberto M. La Ragione
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Terezinha Knöbl
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Roszczenko-Jasińska P, Wojtyś MI, Jagusztyn-Krynicka EK. Helicobacter pylori treatment in the post-antibiotics era-searching for new drug targets. Appl Microbiol Biotechnol 2020; 104:9891-9905. [PMID: 33052519 PMCID: PMC7666284 DOI: 10.1007/s00253-020-10945-w] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 12/14/2022]
Abstract
Abstract Helicobacter pylori, a member of Epsilonproteobacteria, is a Gram-negative microaerophilic bacterium that colonizes gastric mucosa of about 50% of the human population. Although most infections caused by H. pylori are asymptomatic, the microorganism is strongly associated with serious diseases of the upper gastrointestinal tract such as chronic gastritis, peptic ulcer, duodenal ulcer, and gastric cancer, and it is classified as a group I carcinogen. The prevalence of H. pylori infections varies worldwide. The H. pylori genotype, host gene polymorphisms, and environmental factors determine the type of induced disease. Currently, the most common therapy to treat H. pylori is the first line clarithromycin–based triple therapy or a quadruple therapy replacing clarithromycin with new antibiotics. Despite the enormous recent effort to introduce new therapeutic regimens to combat this pathogen, treatment for H. pylori still fails in more than 20% of patients, mainly due to the increased prevalence of antibiotic resistant strains. In this review we present recent progress aimed at designing new anti-H. pylori strategies to combat this pathogen. Some novel therapeutic regimens will potentially be used as an extra constituent of antibiotic therapy, and others may replace current antibiotic treatments. Key points • Attempts to improve eradication rate of H. pylori infection. • Searching for new drug targets in anti-Helicobacter therapies.
Collapse
Affiliation(s)
- Paula Roszczenko-Jasińska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, Univeristy of Warsaw, Miecznikowa 1, 02-096, Warszawa, Poland
| | - Marta Ilona Wojtyś
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, Univeristy of Warsaw, Miecznikowa 1, 02-096, Warszawa, Poland.,Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, Univeristy of Warsaw, Pasteura 5, 02-093, Warszawa, Poland
| | - Elżbieta K Jagusztyn-Krynicka
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, Univeristy of Warsaw, Miecznikowa 1, 02-096, Warszawa, Poland.
| |
Collapse
|
6
|
Kaufer A, Stark D, Ellis J. A review of the systematics, species identification and diagnostics of the Trypanosomatidae using the maxicircle kinetoplast DNA: from past to present. Int J Parasitol 2020; 50:449-460. [PMID: 32333942 DOI: 10.1016/j.ijpara.2020.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 11/25/2022]
Abstract
The Trypanosomatid family are a diverse and widespread group of protozoan parasites that belong to the higher order class Kinetoplastida. Containing predominantly monoxenous species (i.e. those having only a single host) that are confined to invertebrate hosts, this class is primarily known for its pathogenic dixenous species (i.e. those that have two hosts), serving as the aetiological agents of the important neglected tropical diseases including leishmaniasis, American trypanosomiasis (Chagas disease) and human African trypanosomiasis. Over the past few decades, a multitude of studies have investigated the diversity, classification and evolutionary history of the trypanosomatid family using different approaches and molecular targets. The mitochondrial-like DNA of the trypanosomatid parasites, also known as the kinetoplast, has emerged as a unique taxonomic and diagnostic target for exploring the evolution of this diverse group of parasitic eukaryotes. This review discusses recent advancements and important developments that have made a significant impact in the field of trypanosomatid systematics and diagnostics in recent years.
Collapse
Affiliation(s)
- Alexa Kaufer
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Damien Stark
- Department of Microbiology, St Vincent's Hospital Sydney, Darlinghurst, NSW 2010, Australia
| | - John Ellis
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
7
|
Mehat JW, La Ragione RM, van Vliet AHM. Campylobacter jejuni and Campylobacter coli autotransporter genes exhibit lineage-associated distribution and decay. BMC Genomics 2020; 21:314. [PMID: 32306949 PMCID: PMC7168839 DOI: 10.1186/s12864-020-6704-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/27/2020] [Indexed: 11/17/2022] Open
Abstract
Background Campylobacter jejuni and Campylobacter coli are major global causes of bacterial gastroenteritis. Whilst several individual colonisation and virulence factors have been identified, our understanding of their role in the transmission, pathogenesis and ecology of Campylobacter has been hampered by the genotypic and phenotypic diversity within C. jejuni and C. coli. Autotransporter proteins are a family of outer membrane or secreted proteins in Gram-negative bacteria such as Campylobacter, which are associated with virulence functions. In this study we have examined the distribution and predicted functionality of the previously described capC and the newly identified, related capD autotransporter gene families in Campylobacter. Results Two capC-like autotransporter families, designated capC and capD, were identified by homology searches of genomes of the genus Campylobacter. Each family contained four distinct orthologs of CapC and CapD. The distribution of these autotransporter genes was determined in 5829 C. jejuni and 1347 C. coli genomes. Autotransporter genes were found as intact, complete copies and inactive formats due to premature stop codons and frameshift mutations. Presence of inactive and intact autotransporter genes was associated with C. jejuni and C. coli multi-locus sequence types, but for capC, inactivation was independent from the length of homopolymeric tracts in the region upstream of the capC gene. Inactivation of capC or capD genes appears to represent lineage-specific gene decay of autotransporter genes. Intact capC genes were predominantly associated with the C. jejuni ST-45 and C. coli ST-828 generalist lineages. The capD3 gene was only found in the environmental C. coli Clade 3 lineage. These combined data support a scenario of inter-lineage and interspecies exchange of capC and subsets of capD autotransporters. Conclusions In this study we have identified two novel, related autotransporter gene families in the genus Campylobacter, which are not uniformly present and exhibit lineage-specific associations and gene decay. The distribution and decay of the capC and capD genes exemplifies the erosion of species barriers between certain lineages of C. jejuni and C. coli, probably arising through co-habitation. This may have implications for the phenotypic variability of these two pathogens and provide opportunity for new, hybrid genotypes to emerge.
Collapse
Affiliation(s)
- Jai W Mehat
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, UK.
| | - Roberto M La Ragione
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Arnoud H M van Vliet
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, UK.
| |
Collapse
|
8
|
Stedman A, van Vliet AHM, A Chambers M, Gutierrez-Merino J. Gut commensal bacteria show beneficial properties as wildlife probiotics. Ann N Y Acad Sci 2020; 1467:112-132. [PMID: 32026493 DOI: 10.1111/nyas.14302] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/19/2019] [Accepted: 01/02/2020] [Indexed: 01/04/2023]
Abstract
Probiotics are noninvasive, environmentally friendly alternatives for reducing infectious diseases in wildlife species. Our aim in the present study was to evaluate the potential of gut commensals such as lactic acid bacteria (LAB) as wildlife probiotics. The LAB selected for our analyses were isolated from European badgers (Meles meles), a wildlife reservoir of bovine tuberculosis, and comprised four different genera: Enterococcus, Weissella, Pediococcus, and Lactobacillus. The enterococci displayed a phenotype and genotype that included the production of antibacterial peptides and stimulation of antiviral responses, as well as the presence of virulence and antibiotic resistance genes; Weissella showed antimycobacterial activity owing to their ability to produce lactate and ethanol; and lactobacilli and pediococci modulated proinflammatory phagocytic responses that associate with protection against pathogens, responses that coincide with the presence of immunomodulatory markers in their genomes. Although both lactobacilli and pediococci showed resistance to antibiotics, this was naturally acquired, and almost all isolates demonstrated a phylogenetic relationship with isolates from food and healthy animals. Our results show that LAB display probiotic benefits that depend on the genus, and that lactobacilli and pediococci are probably the most obvious candidates as probiotics against infectious diseases in wildlife because of their food-grade status and ability to modulate protective innate immune responses.
Collapse
Affiliation(s)
- Anna Stedman
- School of Biosciences and Medicine, University of Surrey-Nutritional Sciences, Guildford, United Kingdom.,The Pirbright Institute, Surrey, United Kingdom
| | | | - Mark A Chambers
- School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom.,Bacteriology Department, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Jorge Gutierrez-Merino
- School of Biosciences and Medicine, University of Surrey-Nutritional Sciences, Guildford, United Kingdom
| |
Collapse
|
9
|
Glaize A, Gutierrez-Rodriguez E, Hanning I, Díaz-Sánchez S, Gunter C, van Vliet AHM, Watson W, Thakur S. Transmission of antimicrobial resistant non-O157 Escherichia coli at the interface of animal-fresh produce in sustainable farming environments. Int J Food Microbiol 2019; 319:108472. [PMID: 31901751 DOI: 10.1016/j.ijfoodmicro.2019.108472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/24/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023]
Abstract
The interaction of typical host adapted enteric bacterial pathogens with fresh produce grown in fields is complex. These interactions can be more pronounced in co-managed or sustainable farms where animal operations are, by design, close to fresh produce, and growers frequently move between the two production environments. The primary objectives of this study were to 1) determine the transmission of STEC or enteric pathogens from small and large animal herds or operations to fresh produce on sustainable farms in TN and NC, 2) identify the possible sources that impact transmission of AMR E. coli, specifically STEC on these systems, and 3) WGS to characterize recovered E. coli from these sources. Samples were collected from raw and composted manure, environment, and produce sources. The serotype, virulence, and genotypic resistance profile were determined using the assembled genome sequences sequenced by Illumina technology. Broth microdilution was used to determine the antimicrobial susceptibility of each isolate against a panel of fourteen antimicrobials. The prevalence of E. coli increased during the summer season for all sources tested. ParSNP trees generated demonstrated that the transmission of AMR E. coli is occurring between animal feeding operations and fresh produce. Ten isolates were identified as serotype O45, a serotype that is associated with the "Big Six" group that is frequently linked with foodborne outbreaks caused by non-O157 E. coli. However, these isolates did not possess the stx gene. The highest frequency of resistance was detected against streptomycin (n = 225), ampicillin (n = 190) and sulfisoxazole FIS (n = 140). A total of 35 (13.7%) isolates from two TN farms were positive for the blaCMY (n = 5) and blaTEM (n = 32) genes. The results of this study show the potential of AMR E. coli transmission between animal feeding operations and fresh produce, and more studies are recommended to study this interaction and prevent dissemination in sustainable farming systems.
Collapse
Affiliation(s)
- Ayanna Glaize
- Department of Population Health & Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Eduardo Gutierrez-Rodriguez
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Irene Hanning
- College of Genome Sciences and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Sandra Díaz-Sánchez
- College of Genome Sciences and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Chris Gunter
- Extension Vegetable Production Specialist, Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Arnoud H M van Vliet
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, Surrey GU2 7AL, UK
| | - Wes Watson
- Entomology and Plant Pathology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Siddhartha Thakur
- Department of Population Health & Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA.
| |
Collapse
|
10
|
Evolutionary Insight into the Trypanosomatidae Using Alignment-Free Phylogenomics of the Kinetoplast. Pathogens 2019; 8:pathogens8030157. [PMID: 31540520 PMCID: PMC6789588 DOI: 10.3390/pathogens8030157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022] Open
Abstract
Advancements in next-generation sequencing techniques have led to a substantial increase in the genomic information available for analyses in evolutionary biology. As such, this data requires the exponential growth in bioinformatic methods and expertise required to understand such vast quantities of genomic data. Alignment-free phylogenomics offer an alternative approach for large-scale analyses that may have the potential to address these challenges. The evolutionary relationships between various species within the trypanosomatid family, specifically members belonging to the genera Leishmania and Trypanosoma have been extensively studies over the last 30 years. However, there is a need for a more exhaustive analysis of the Trypanosomatidae, summarising the evolutionary patterns amongst the entire family of these important protists. The mitochondrial DNA of the trypanosomatids, better known as the kinetoplast, represents a valuable taxonomic marker given its unique presence across all kinetoplastid protozoans. The aim of this study was to validate the reliability and robustness of alignment-free approaches for phylogenomic analyses and its applicability to reconstruct the evolutionary relationships between the trypanosomatid family. In the present study, alignment-free analyses demonstrated the strength of these methods, particularly when dealing with large datasets compared to the traditional phylogenetic approaches. We present a maxicircle genome phylogeny of 46 species spanning the trypanosomatid family, demonstrating the superiority of the maxicircle for the analysis and taxonomic resolution of the Trypanosomatidae.
Collapse
|
11
|
Reimer A, Weedmark K, Petkau A, Peterson CL, Walker M, Knox N, Kent H, Mabon P, Berry C, Tyler S, Tschetter L, Jerome M, Allen V, Hoang L, Bekal S, Clark C, Nadon C, Van Domselaar G, Pagotto F, Graham M, Farber J, Gilmour M. Shared genome analyses of notable listeriosis outbreaks, highlighting the critical importance of epidemiological evidence, input datasets and interpretation criteria. Microb Genom 2019; 5. [PMID: 30648944 PMCID: PMC6412057 DOI: 10.1099/mgen.0.000237] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The persuasiveness of genomic evidence has pressured scientific agencies to supplement or replace well-established methodologies to inform public health and food safety decision-making. This study of 52 epidemiologically defined Listeria monocytogenes isolates, collected between 1981 and 2011, including nine outbreaks, was undertaken (1) to characterize their phylogenetic relationship at finished genome-level resolution, (2) to elucidate the underlying genetic diversity within an endemic subtype, CC8, and (3) to re-evaluate the genetic relationship and epidemiology of a CC8-delimited outbreak in Canada in 2008. Genomes representing Canadian Listeria outbreaks between 1981 and 2010 were closed and manually annotated. Single nucleotide variants (SNVs) and horizontally acquired traits were used to generate phylogenomic models. Phylogenomic relationships were congruent with classical subtyping and epidemiology, except for CC8 outbreaks, wherein the distribution of SNV and prophages revealed multiple co-evolving lineages. Chronophyletic reconstruction of CC8 evolution indicates that prophage-related genetic changes among CC8 strains manifest as PFGE subtype reversions, obscuring the relationship between CC8 isolates, and complicating the public health interpretation of subtyping data, even at maximum genome resolution. The size of the shared genome interrogated did not change the genetic relationship measured between highly related isolates near the tips of the phylogenetic tree, illustrating the robustness of these approaches for routine public health applications where the focus is recent ancestry. The possibility exists for temporally and epidemiologically distinct events to appear related even at maximum genome resolution, highlighting the continued importance of epidemiological evidence.
Collapse
Affiliation(s)
- Aleisha Reimer
- 1Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | - Kelly Weedmark
- 2Health Canada, Bureau of Microbial Hazards, Ottawa, ON, K1A 0K9, Canada
| | - Aaron Petkau
- 1Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | | | - Matthew Walker
- 1Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | - Natalie Knox
- 1Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | - Heather Kent
- 1Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | - Philip Mabon
- 1Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | - Chrystal Berry
- 1Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | - Shaun Tyler
- 1Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | | | - Morganne Jerome
- 1Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | - Vanessa Allen
- 3Public Health Ontario, Toronto, ON, M5G 1M1, Canada
| | - Linda Hoang
- 4British Columbia Centre for Disease Control, Public Health Microbiology and Reference Laboratory, Vancouver, BC V5Z 4R4, Canada
| | - Sadjia Bekal
- 5Laboratoire de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Québec, H9X 3R5, Canada
| | - Clifford Clark
- 1Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | - Celine Nadon
- 1Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | | | - Franco Pagotto
- 2Health Canada, Bureau of Microbial Hazards, Ottawa, ON, K1A 0K9, Canada
| | - Morag Graham
- 1Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | - Jeff Farber
- 6University of Guelph, Guelph, ON, N1G 2W, Canada
| | - Matthew Gilmour
- 1Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| |
Collapse
|
12
|
Pornsukarom S, van Vliet AHM, Thakur S. Whole genome sequencing analysis of multiple Salmonella serovars provides insights into phylogenetic relatedness, antimicrobial resistance, and virulence markers across humans, food animals and agriculture environmental sources. BMC Genomics 2018; 19:801. [PMID: 30400810 PMCID: PMC6218967 DOI: 10.1186/s12864-018-5137-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/02/2018] [Indexed: 11/13/2022] Open
Abstract
Background Salmonella enterica is a significant foodborne pathogen, which can be transmitted via several distinct routes, and reports on acquisition of antimicrobial resistance (AMR) are increasing. To better understand the association between human Salmonella clinical isolates and the potential environmental/animal reservoirs, whole genome sequencing (WGS) was used to investigate the epidemiology and AMR patterns within Salmonella isolates from two adjacent US states. Results WGS data of 200 S. enterica isolates recovered from human (n = 44), swine (n = 32), poultry (n = 22), and farm environment (n = 102) were used for in silico prediction of serovar, distribution of virulence genes, and phylogenetically clustered using core genome single nucleotide polymorphism (SNP) and feature frequency profiling (FFP). Furthermore, AMR was studied both by genotypic prediction using five curated AMR databases, and compared to phenotypic AMR using broth microdilution. Core genome SNP-based and FFP-based phylogenetic trees showed consistent clustering of isolates into the respective serovars, and suggested clustering of isolates based on the source of isolation. The overall correlation of phenotypic and genotypic AMR was 87.61% and 97.13% for sensitivity and specificity, respectively. AMR and virulence genes clustered with the Salmonella serovars, while there were also associations between the presence of virulence genes in both animal/environmental isolates and human clinical samples. Conclusions WGS is a helpful tool for Salmonella phylogenetic analysis, AMR and virulence gene predictions. The clinical isolates clustered closely with animal and environmental isolates, suggesting that animals and environment are potential sources for dissemination of AMR and virulence genes between Salmonella serovars. Electronic supplementary material The online version of this article (10.1186/s12864-018-5137-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suchawan Pornsukarom
- Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-ok, Chonburi, Thailand
| | - Arnoud H M van Vliet
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Surrey, UK
| | - Siddhartha Thakur
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA. .,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
13
|
Ghattargi VC, Gaikwad MA, Meti BS, Nimonkar YS, Dixit K, Prakash O, Shouche YS, Pawar SP, Dhotre DP. Comparative genome analysis reveals key genetic factors associated with probiotic property in Enterococcus faecium strains. BMC Genomics 2018; 19:652. [PMID: 30180794 PMCID: PMC6122445 DOI: 10.1186/s12864-018-5043-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/27/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Enterococcus faecium though commensal in the human gut, few strains provide a beneficial effect to humans as probiotics while few are responsible for the nosocomial infection. Comparative genomics of E. faecium can decipher the genomic differences responsible for probiotic, pathogenic and non-pathogenic properties. In this study, we compared E. faecium strain 17OM39 with a marketed probiotic, non-pathogenic non-probiotic (NPNP) and pathogenic strains. RESULTS E. faecium 17OM39 was found to be closely related with marketed probiotic strain T110 based on core genome analysis. Strain 17OM39 was devoid of known vancomycin, tetracycline resistance and functional virulence genes. Moreover, E. faecium 17OM39 genome was found to be more stable due to the absence of frequently found transposable elements. Genes imparting beneficial functional properties were observed to be present in marketed probiotic T110 and 17OM39 strains. Genes associated with colonization and survival within gastrointestinal tract was also detected across all the strains. CONCLUSIONS Beyond shared genetic features; this study particularly identified genes that are responsible for imparting probiotic, non-pathogenic and pathogenic features to the strains of E. faecium. Higher genomic stability, absence of known virulence factors and antibiotic resistance genes and close genomic relatedness with marketed probiotics makes E. faecium 17OM39 a potential probiotic candidate. The work presented here demonstrates that comparative genome analyses can be applied to large numbers of genomes, to find potential probiotic candidates.
Collapse
Affiliation(s)
- Vikas C. Ghattargi
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, Maharashtra 411021 India
- Department of Biotechnology, Basaveshwar Engineering College, Bagalkot, Karnataka 587102 India
| | - Meghana A. Gaikwad
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, Maharashtra 411021 India
| | - Bharati S. Meti
- Department of Biotechnology, Basaveshwar Engineering College, Bagalkot, Karnataka 587102 India
| | - Yogesh S. Nimonkar
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, Maharashtra 411021 India
| | - Kunal Dixit
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, Maharashtra 411021 India
| | - Om Prakash
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, Maharashtra 411021 India
| | - Yogesh S. Shouche
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, Maharashtra 411021 India
| | - Shrikant P. Pawar
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, Maharashtra 411021 India
| | - Dhiraj P. Dhotre
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, Maharashtra 411021 India
| |
Collapse
|
14
|
Lowering the Barriers to Routine Whole-Genome Sequencing of Bacteria in the Clinical Microbiology Laboratory. J Clin Microbiol 2018; 56:JCM.00813-18. [PMID: 29950328 DOI: 10.1128/jcm.00813-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Whole-genome sequencing of bacterial isolates is increasingly being used to predict antibacterial susceptibility and resistance. Mason and coauthors describe the phenotypic susceptibility interpretations of more than 1,300 Staphylococcus aureus isolates tested against a dozen antistaphylococcal agents, and they compared these findings to susceptibility predictions made by analyzing whole-genome sequence data (J Clin Microbiol 56:e01815-17, 2018, https://doi.org/10.1128/JCM.01815-17). The genotype-phenotype susceptibility interpretations correlated in 96.3% (2,720/2,825) of resistant findings and 98.8% (11,504/11,639) of susceptible findings. This work by Mason and colleagues is helping to lower the barriers to using whole-genome sequencing of S. aureus in clinical microbiology practice.
Collapse
|
15
|
Integrase-Controlled Excision of Metal-Resistance Genomic Islands in Acinetobacter baumannii. Genes (Basel) 2018; 9:genes9070366. [PMID: 30037042 PMCID: PMC6070778 DOI: 10.3390/genes9070366] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022] Open
Abstract
Genomic islands (GIs) are discrete gene clusters encoding for a variety of functions including antibiotic and heavy metal resistance, some of which are tightly associated to lineages of the core genome phylogenetic tree. We have investigated the functions of two distinct integrase genes in the mobilization of two metal resistant GIs, G08 and G62, of Acinetobacter baumannii. Real-time PCR demonstrated integrase-dependent GI excision, utilizing isopropyl β-d-1-thiogalactopyranoside IPTG-inducible integrase genes in plasmid-based mini-GIs in Escherichia coli. In A. baumannii, integrase-dependent excision of the original chromosomal GIs could be observed after mitomycin C induction. In both E. coli plasmids and A. baumannii chromosome, the rate of excision and circularization was found to be dependent on the expression level of the integrases. Susceptibility testing in A. baumannii strain ATCC 17978, A424, and their respective ΔG62 and ΔG08 mutants confirmed the contribution of the GI-encoded efflux transporters to heavy metal decreased susceptibility. In summary, the data evidenced the functionality of two integrases in the excision and circularization of the two Acinetobacter heavy-metal resistance GIs, G08 and G62, in E. coli, as well as when chromosomally located in their natural host. These recombination events occur at different frequencies resulting in genome plasticity and may participate in the spread of resistance determinants in A. baumannii.
Collapse
|
16
|
Kiu R, Caim S, Alexander S, Pachori P, Hall LJ. Probing Genomic Aspects of the Multi-Host Pathogen Clostridium perfringens Reveals Significant Pangenome Diversity, and a Diverse Array of Virulence Factors. Front Microbiol 2017; 8:2485. [PMID: 29312194 PMCID: PMC5733095 DOI: 10.3389/fmicb.2017.02485] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/29/2017] [Indexed: 01/08/2023] Open
Abstract
Clostridium perfringens is an important cause of animal and human infections, however information about the genetic makeup of this pathogenic bacterium is currently limited. In this study, we sought to understand and characterise the genomic variation, pangenomic diversity, and key virulence traits of 56 C. perfringens strains which included 51 public, and 5 newly sequenced and annotated genomes using Whole Genome Sequencing. Our investigation revealed that C. perfringens has an "open" pangenome comprising 11667 genes and 12.6% of core genes, identified as the most divergent single-species Gram-positive bacterial pangenome currently reported. Our computational analyses also defined C. perfringens phylogeny (16S rRNA gene) in relation to some 25 Clostridium species, with C. baratii and C. sardiniense determined to be the closest relatives. Profiling virulence-associated factors confirmed presence of well-characterised C. perfringens-associated exotoxins genes including α-toxin (plc), enterotoxin (cpe), and Perfringolysin O (pfo or pfoA), although interestingly there did not appear to be a close correlation with encoded toxin type and disease phenotype. Furthermore, genomic analysis indicated significant horizontal gene transfer events as defined by presence of prophage genomes, and notably absence of CRISPR defence systems in >70% (40/56) of the strains. In relation to antimicrobial resistance mechanisms, tetracycline resistance genes (tet) and anti-defensins genes (mprF) were consistently detected in silico (tet: 75%; mprF: 100%). However, pre-antibiotic era strain genomes did not encode for tet, thus implying antimicrobial selective pressures in C. perfringens evolutionary history over the past 80 years. This study provides new genomic understanding of this genetically divergent multi-host bacterium, and further expands our knowledge on this medically and veterinary important pathogen.
Collapse
Affiliation(s)
- Raymond Kiu
- Gut Health and Food Safety, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Shabhonam Caim
- Gut Health and Food Safety, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | | | - Purnima Pachori
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Lindsay J. Hall
- Gut Health and Food Safety, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
17
|
Gutiérrez-Escobar AJ, Trujillo E, Acevedo O, Bravo MM. Phylogenomics of Colombian Helicobacter pylori isolates. Gut Pathog 2017; 9:52. [PMID: 28912838 PMCID: PMC5594506 DOI: 10.1186/s13099-017-0201-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/03/2017] [Indexed: 12/27/2022] Open
Abstract
Background During the Spanish colonisation of South America, African slaves and Europeans arrived in the continent with their corresponding load of pathogens, including Helicobacter pylori. Colombian strains have been clustered with the hpEurope population and with the hspWestAfrica subpopulation in multilocus sequence typing (MLST) studies. However, ancestry studies have revealed the presence of population components specific to H. pylori in Colombia. The aim of this study was to perform a thorough phylogenomic analysis to describe the evolution of the Colombian urban H. pylori isolates. Results A total of 115 genomes of H. pylori were sequenced with Illumina technology from H. pylori isolates obtained in Colombia in a region of high risk for gastric cancer. The genomes were assembled, annotated and underwent phylogenomic analysis with 36 reference strains. Additionally, population differentiation analyses were performed for two bacterial genes. The phylogenetic tree revealed clustering of the Colombian strains with hspWestAfrica and hpEurope, along with three clades formed exclusively by Colombian strains, suggesting the presence of independent evolutionary lines for Colombia. Additionally, the nucleotide diversity of horB and vacA genes from Colombian isolates was lower than in the reference strains and showed a significant genetic differentiation supporting the hypothesis of independent clades with recent evolution. Conclusions The presence of specific lineages suggest the existence of an hspColombia subtype that emerged from a small and relatively isolated ancestral population that accompanied crossbreeding of human population in Colombia. Electronic supplementary material The online version of this article (doi:10.1186/s13099-017-0201-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrés Julián Gutiérrez-Escobar
- Grupo de Investigaciones Biomédicas y Genética Humana Aplicada, Programa de Medicina, Universidad de Ciencias Aplicadas y Ambientales, Calle 222 55-37, Bogotá, Colombia.,Programa de Doctorado en Ciencias Biológicas, Universidad Javeriana, Carrera 7 40-62, Bogotá, Colombia
| | - Esperanza Trujillo
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Calle 1 9-85, Bogotá, Colombia
| | - Orlando Acevedo
- Grupo de Biofísica y Bioquímica Estructural, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 40-62, Bogotá, Colombia
| | - María Mercedes Bravo
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Calle 1 9-85, Bogotá, Colombia
| |
Collapse
|
18
|
Arslan N, Yılmaz Ö, Demiray-Gürbüz E. Importance of antimicrobial susceptibility testing for the management of eradication in Helicobacter pylori infection. World J Gastroenterol 2017; 23:2854-2869. [PMID: 28522904 PMCID: PMC5413781 DOI: 10.3748/wjg.v23.i16.2854] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/06/2017] [Accepted: 03/30/2017] [Indexed: 02/06/2023] Open
Abstract
The management of Helicobacter pylori (H. pylori) infection treatment differs from the common treatment protocol for other infectious diseases. Because culture- or molecular-guided approaches face several practical issues, such as the invasive procedures required to obtain gastric biopsy specimens and the lack of availability of routine laboratory testing in some places, H. pylori treatment includes the administration of two or three empirically selected antibiotics combined with a proton pump inhibitor rather than evidence-based eradication treatment. The efficacy of empirical therapy is decreasing, mostly due to increasing multiple resistance. Multiresistance to levofloxacin, clarithromycin, and metronidazole, which are commonly used in empirical treatments, appears to have increased in many countries. Mutations play a primary role in the antimicrobial resistance of H. pylori, but many different mechanisms can be involved in the development of antibiotic resistance. Determining and understanding these possible mechanisms might allow the development of new methods for the detection of H. pylori and the determination of antimicrobial resistance. A treatment based on the detection of antimicrobial resistance is usually more effective than empirical treatment. Nevertheless, such an approach before treatment is still not recommended in the Maastricht guidelines due to the difficulty associated with the routine application of available culture- or molecular-based susceptibility tests, which are usually administered in cases of treatment failure. The management of first and rescue treatments requires further research due to the steadily increase in antimicrobial resistance.
Collapse
|
19
|
Draper JL, Hansen LM, Bernick DL, Abedrabbo S, Underwood JG, Kong N, Huang BC, Weis AM, Weimer BC, van Vliet AHM, Pourmand N, Solnick JV, Karplus K, Ottemann KM. Fallacy of the Unique Genome: Sequence Diversity within Single Helicobacter pylori Strains. mBio 2017; 8:e02321-16. [PMID: 28223462 PMCID: PMC5358919 DOI: 10.1128/mbio.02321-16] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 01/30/2017] [Indexed: 12/30/2022] Open
Abstract
Many bacterial genomes are highly variable but nonetheless are typically published as a single assembled genome. Experiments tracking bacterial genome evolution have not looked at the variation present at a given point in time. Here, we analyzed the mouse-passaged Helicobacter pylori strain SS1 and its parent PMSS1 to assess intra- and intergenomic variability. Using high sequence coverage depth and experimental validation, we detected extensive genome plasticity within these H. pylori isolates, including movement of the transposable element IS607, large and small inversions, multiple single nucleotide polymorphisms, and variation in cagA copy number. The cagA gene was found as 1 to 4 tandem copies located off the cag island in both SS1 and PMSS1; this copy number variation correlated with protein expression. To gain insight into the changes that occurred during mouse adaptation, we also compared SS1 and PMSS1 and observed 46 differences that were distinct from the within-genome variation. The most substantial was an insertion in cagY, which encodes a protein required for a type IV secretion system function. We detected modifications in genes coding for two proteins known to affect mouse colonization, the HpaA neuraminyllactose-binding protein and the FutB α-1,3 lipopolysaccharide (LPS) fucosyltransferase, as well as genes predicted to modulate diverse properties. In sum, our work suggests that data from consensus genome assemblies from single colonies may be misleading by failing to represent the variability present. Furthermore, we show that high-depth genomic sequencing data of a population can be analyzed to gain insight into the normal variation within bacterial strains.IMPORTANCE Although it is well known that many bacterial genomes are highly variable, it is nonetheless traditional to refer to, analyze, and publish "the genome" of a bacterial strain. Variability is usually reduced ("only sequence from a single colony"), ignored ("just publish the consensus"), or placed in the "too-hard" basket ("analysis of raw read data is more robust"). Now that whole-genome sequences are regularly used to assess virulence and track outbreaks, a better understanding of the baseline genomic variation present within single strains is needed. Here, we describe the variability seen in typical working stocks and colonies of pathogen Helicobacter pylori model strains SS1 and PMSS1 as revealed by use of high-coverage mate pair next-generation sequencing (NGS) and confirmed by traditional laboratory techniques. This work demonstrates that reliance on a consensus assembly as "the genome" of a bacterial strain may be misleading.
Collapse
Affiliation(s)
- Jenny L Draper
- Institute of Environmental Science and Research, Porirua, New Zealand
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, California, USA
- Department of Microbiology & Environmental Toxicology, UC Santa Cruz, Santa Cruz, California, USA
| | - Lori M Hansen
- Departments of Medicine and Microbiology & Immunology, Center for Comparative Medicine, UC Davis, California, USA
| | - David L Bernick
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, California, USA
| | - Samar Abedrabbo
- Department of Microbiology & Environmental Toxicology, UC Santa Cruz, Santa Cruz, California, USA
| | | | - Nguyet Kong
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, UC Davis, Davis, California, USA
| | - Bihua C Huang
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, UC Davis, Davis, California, USA
| | - Allison M Weis
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, UC Davis, Davis, California, USA
| | - Bart C Weimer
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, UC Davis, Davis, California, USA
| | - Arnoud H M van Vliet
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Nader Pourmand
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, California, USA
| | - Jay V Solnick
- Departments of Medicine and Microbiology & Immunology, Center for Comparative Medicine, UC Davis, California, USA
| | - Kevin Karplus
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, California, USA
| | - Karen M Ottemann
- Department of Microbiology & Environmental Toxicology, UC Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
20
|
Salehi M, Ghasemian A, Shokouhi Mostafavi SK, Najafi S, Rajabi Vardanjani H. Sero-prevalence of Helicobacter pylori Infection in Neyshabur, Iran, During 2010-2015. IRANIAN JOURNAL OF PATHOLOGY 2017; 12. [PMID: 29515642 PMCID: PMC5831076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUNDS & OBJECTIVE The Helicobacter pylori prevalence has continuously decreased during recent years in Iran. The current study aimed at determining H. pylori prevalence in Neyshabur city, Northeast Iran, during 2010-2015. METHODS The current epidemiologic survey was conducted in Neyshabur from 2010 to 2015 to determine the prevalence of H. pylori infection. A total of 11596 participants (3681 male with the mean age of 31.7±6.2 years and 7915 female with mean age of 68.3±4.7 years) were included. The enzyme-linked immunosorbent assay kits for the detection of H. pylori and Stat Fax 3200® Microplate Reader (USA) with a sensitivity of 95% and specificity of 98% were used. Titers above 12 units were considered positive for IgG, IgA, and IgM (negative <8, equivocal 8 to 12, and positive >12 U). The Chi-square t test and F test were used to analyze data. RESULTS AND CONCLUSION The overall IgA, IgG, and IgM seropositive samples among the study participants were 852 (7.2%), 9000 (72.8%), and 1256 (5.2%), respectively. The IgA seropositivity was significantly high among the age group above 51 years, compared with the other age groups. Moreover, the IgG and IgM seropositivity were significantly high among the age groups 41 to 50 and 31 to 40 years respectively, compared with the other age groups. There was no significant difference between male and female cases regarding IgA and IgG seropositive samples, but IgM level was significantly higher among females, compared with that of the male cases. Furthermore, there was no significant alteration in IgA, IgG, and IgM seropositivity during 2010-2014 in Neyshabur. The prevalence of H. pylori in Neyshabur was high in the healthy population. Furthermore, the H. pylori prevalence did not change from 2010 to 2014 in the studied city. Effective approaches to improve health, educational, and socioeconomic status should be implemented to minimize and control H. pylori infection.
Collapse
Affiliation(s)
- Mohammad Salehi
- Medical Diagnostic Laboratory of Neyshabour, Center of Medical, Pathological and Genetic Diagnostic Services, Iranian Academic Center for Education, Culture and Research (ACECR), Mashhad Branch, Mashhad, Iran,Research Center for HIV/AIDS, HTLV and Viral Hepatitis, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Abdolmajid Ghasemian
- Microbiology Department, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran,Dept. of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Somayyeh Najafi
- Dept. of Microbiology, Faculty of Biological Sciences, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | | |
Collapse
|
21
|
Gundogdu O, da Silva DT, Mohammad B, Elmi A, Wren BW, van Vliet AHM, Dorrell N. The Campylobacter jejuni Oxidative Stress Regulator RrpB Is Associated with a Genomic Hypervariable Region and Altered Oxidative Stress Resistance. Front Microbiol 2016; 7:2117. [PMID: 28082970 PMCID: PMC5183652 DOI: 10.3389/fmicb.2016.02117] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/15/2016] [Indexed: 11/25/2022] Open
Abstract
Campylobacter jejuni is the leading cause of bacterial foodborne diarrhoeal disease worldwide. Despite the microaerophilic nature of the bacterium, C. jejuni can survive the atmospheric oxygen conditions in the environment. Bacteria that can survive either within a host or in the environment like C. jejuni require variable responses to survive the stresses associated with exposure to different levels of reactive oxygen species. The MarR-type transcriptional regulators RrpA and RrpB have recently been shown to play a role in controlling both the C. jejuni oxidative and aerobic stress responses. Analysis of 3,746 C. jejuni and 486 C. coli genome sequences showed that whilst rrpA is present in over 99% of C. jejuni strains, the presence of rrpB is restricted and appears to correlate with specific MLST clonal complexes (predominantly ST-21 and ST-61). C. coli strains in contrast lack both rrpA and rrpB. In C. jejuni rrpB+ strains, the rrpB gene is located within a variable genomic region containing the IF subtype of the type I Restriction-Modification (hsd) system, whilst this variable genomic region in C. jejuni rrpB- strains contains the IAB subtype hsd system and not the rrpB gene. C. jejuni rrpB- strains exhibit greater resistance to peroxide and aerobic stress than C. jejuni rrpB+ strains. Inactivation of rrpA resulted in increased sensitivity to peroxide stress in rrpB+ strains, but not in rrpB- strains. Mutation of rrpA resulted in reduced killing of Galleria mellonella larvae and enhanced biofilm formation independent of rrpB status. The oxidative and aerobic stress responses of rrpB- and rrpB+ strains suggest adaptation of C. jejuni within different hosts and niches that can be linked to specific MLST clonal complexes.
Collapse
Affiliation(s)
- Ozan Gundogdu
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine London, UK
| | - Daiani T da Silva
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine London, UK
| | - Banaz Mohammad
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine London, UK
| | - Abdi Elmi
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine London, UK
| | - Brendan W Wren
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine London, UK
| | - Arnoud H M van Vliet
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey Guildford, UK
| | - Nick Dorrell
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine London, UK
| |
Collapse
|
22
|
van Vliet AHM. Use of pan-genome analysis for the identification of lineage-specific genes of Helicobacter pylori. FEMS Microbiol Lett 2016; 364:fnw296. [PMID: 28011701 DOI: 10.1093/femsle/fnw296] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/08/2016] [Accepted: 12/22/2016] [Indexed: 12/23/2022] Open
Abstract
The human bacterial pathogen Helicobacter pylori has a highly variable genome, with significant allelic and sequence diversity between isolates and even within well-characterised strains, hampering comparative genomics of H. pylori In this study, pan-genome analysis has been used to identify lineage-specific genes of H. pylori A total of 346 H. pylori genomes spanning the hpAfrica1, hpAfrica2, hpAsia2, hpEurope, hspAmerind and hspEAsia multilocus sequence typing (MLST) lineages were searched for genes specifically overrepresented or underrepresented in MLST lineages or associated with the cag pathogenicity island. The only genes overrepresented in cag-positive genomes were the cag pathogenicity island genes themselves. In contrast, a total of 125 genes were either overrepresented or underrepresented in one or more MLST lineages. Of these 125 genes, alcohol/aldehyde-reducing enzymes linked with acid resistance and production of toxic aldehydes were found to be overrepresented in African lineages. Conversely, the FecA2 ferric citrate receptor was missing from hspAmerind genomes, but present in all other lineages. This work shows the applicability of pan-genome analysis for identification of lineage-specific genes of H. pylori, facilitating further investigation to allow linkage of differential distribution of genes with disease outcome or virulence of H. pylori.
Collapse
Affiliation(s)
- Arnoud H M van Vliet
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7AD, UK
| |
Collapse
|
23
|
Brunt J, van Vliet AHM, van den Bos F, Carter AT, Peck MW. Diversity of the Germination Apparatus in Clostridium botulinum Groups I, II, III, and IV. Front Microbiol 2016; 7:1702. [PMID: 27840626 PMCID: PMC5083711 DOI: 10.3389/fmicb.2016.01702] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/12/2016] [Indexed: 01/17/2023] Open
Abstract
Clostridium botulinum is a highly dangerous pathogen that forms very resistant endospores that are ubiquitous in the environment, and which, under favorable conditions germinate to produce vegetative cells that multiply and form the exceptionally potent botulinum neurotoxin. To improve the control of botulinum neurotoxin-forming clostridia, it is important to understand the mechanisms involved in spore germination. Here we present models for spore germination in C. botulinum based on comparative genomics analyses, with C. botulinum Groups I and III sharing similar pathways, which differ from those proposed for C. botulinum Groups II and IV. All spores germinate in response to amino acids interacting with a germinant receptor, with four types of germinant receptor identified [encoded by various combinations of gerA, gerB, and gerC genes (gerX)]. There are three gene clusters with an ABC-like configuration; ABC [gerX1], ABABCB [gerX2] and ACxBBB [gerX4], and a single CA-B [gerX3] gene cluster. Subtypes have been identified for most germinant receptor types, and the individual GerX subunits of each cluster show similar grouping in phylogenetic trees. C. botulinum Group I contained the largest variety of gerX subtypes, with three gerX1, three gerX2, and one gerX3 subtypes, while C. botulinum Group III contained two gerX1 types and one gerX4. C. botulinum Groups II and IV contained a single germinant receptor, gerX3 and gerX1, respectively. It is likely that all four C. botulinum Groups include a SpoVA channel involved in dipicolinic acid release. The cortex-lytic enzymes present in C. botulinum Groups I and III appear to be CwlJ and SleB, while in C. botulinum Groups II and IV, SleC appears to be important.
Collapse
Affiliation(s)
- Jason Brunt
- Gut Health and Food Safety, Institute of Food ResearchNorwich, UK
| | - Arnoud H. M. van Vliet
- Gut Health and Food Safety, Institute of Food ResearchNorwich, UK
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of SurreyGuildford, UK
| | | | - Andrew T. Carter
- Gut Health and Food Safety, Institute of Food ResearchNorwich, UK
| | - Michael W. Peck
- Gut Health and Food Safety, Institute of Food ResearchNorwich, UK
| |
Collapse
|
24
|
Abstract
The development of high-throughput whole genome sequencing (WGS) technologies is changing the face of microbiology, facilitating the comparison of large numbers of genomes from different lineages of a same organism. Our aim was to review the main advances on Helicobacter pylori "omics" and to understand how this is improving our knowledge of the biology, diversity and pathogenesis of H. pylori. Since the first H. pylori isolate was sequenced in 1997, 510 genomes have been deposited in the NCBI archive, providing a basis for improved understanding of the epidemiology and evolution of this important pathogen. This review focuses on works published between April 2015 and March 2016. Helicobacter "omics" is already making an impact and is a growing research field. Ultimately these advances will be translated into a routine clinical laboratory setting in order to improve public health.
Collapse
Affiliation(s)
- Elvire Berthenet
- College of Medicine, Institute of Life Science, Swansea University, Swansea, UK
| | - Sam Sheppard
- Departments of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Filipa F Vale
- Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed-ULisboa), Instituto de Medicina Molecular, Faculdade de Farmácia da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
25
|
Dwivedi R, Nothaft H, Garber J, Xin Kin L, Stahl M, Flint A, van Vliet AHM, Stintzi A, Szymanski CM. L-fucose influences chemotaxis and biofilm formation in Campylobacter jejuni. Mol Microbiol 2016; 101:575-89. [PMID: 27145048 DOI: 10.1111/mmi.13409] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 04/15/2016] [Indexed: 11/28/2022]
Abstract
Campylobacter jejuni and Campylobacter coli are zoonotic pathogens once considered asaccharolytic, but are now known to encode pathways for glucose and fucose uptake/metabolism. For C. jejuni, strains with the fuc locus possess a competitive advantage in animal colonization models. We demonstrate that this locus is present in > 50% of genome-sequenced strains and is prevalent in livestock-associated isolates of both species. To better understand how these campylobacters sense nutrient availability, we examined biofilm formation and chemotaxis to fucose. C. jejuni NCTC11168 forms less biofilms in the presence of fucose, although its fucose permease mutant (fucP) shows no change. In a newly developed chemotaxis assay, both wild-type and the fucP mutant are chemotactic towards fucose. C. jejuni 81-176 naturally lacks the fuc locus and is unable to swim towards fucose. Transfer of the NCTC11168 locus into 81-176 activated fucose uptake and chemotaxis. Fucose chemotaxis also correlated with possession of the pathway for C. jejuni RM1221 (fuc+) and 81116 (fuc-). Systematic mutation of the NCTC11168 locus revealed that Cj0485 is necessary for fucose metabolism and chemotaxis. This study suggests that components for fucose chemotaxis are encoded within the fuc locus, but downstream signals only in fuc + strains, are involved in coordinating fucose availability with biofilm development.
Collapse
Affiliation(s)
- Ritika Dwivedi
- Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Harald Nothaft
- Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Jolene Garber
- Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Lin Xin Kin
- Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Martin Stahl
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Annika Flint
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Arnoud H M van Vliet
- Institute of Food Research, Gut Health and Food Safety Programme, Norwich Research Park, Norwich, NR4 7UA, UK
| | - Alain Stintzi
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Christine M Szymanski
- Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| |
Collapse
|
26
|
Pearson BM, Louwen R, van Baarlen P, van Vliet AHM. Differential Distribution of Type II CRISPR-Cas Systems in Agricultural and Nonagricultural Campylobacter coli and Campylobacter jejuni Isolates Correlates with Lack of Shared Environments. Genome Biol Evol 2015; 7:2663-79. [PMID: 26338188 PMCID: PMC4607530 DOI: 10.1093/gbe/evv174] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
CRISPR (clustered regularly interspaced palindromic repeats)-Cas (CRISPR-associated) systems are sequence-specific adaptive defenses against phages and plasmids which are widespread in prokaryotes. Here we have studied whether phylogenetic relatedness or sharing of environmental niches affects the distribution and dissemination of Type II CRISPR-Cas systems, first in 132 bacterial genomes from 15 phylogenetic classes, ranging from Proteobacteria to Actinobacteria. There was clustering of distinct Type II CRISPR-Cas systems in phylogenetically distinct genera with varying G+C%, which share environmental niches. The distribution of CRISPR-Cas within a genus was studied using a large collection of genome sequences of the closely related Campylobacter species Campylobacter jejuni (N = 3,746) and Campylobacter coli (N = 486). The Cas gene cas9 and CRISPR-repeat are almost universally present in C. jejuni genomes (98.0% positive) but relatively rare in C. coli genomes (9.6% positive). Campylobacter jejuni and agricultural C. coli isolates share the C. jejuni CRISPR-Cas system, which is closely related to, but distinct from the C. coli CRISPR-Cas system found in C. coli isolates from nonagricultural sources. Analysis of the genomic position of CRISPR-Cas insertion suggests that the C. jejuni-type CRISPR-Cas has been transferred to agricultural C. coli. Conversely, the absence of the C. coli-type CRISPR-Cas in agricultural C. coli isolates may be due to these isolates not sharing the same environmental niche, and may be affected by farm hygiene and biosecurity practices in the agricultural sector. Finally, many CRISPR spacer alleles were linked with specific multilocus sequence types, suggesting that these can assist molecular epidemiology applications for C. jejuni and C. coli.
Collapse
Affiliation(s)
- Bruce M Pearson
- Institute of Food Research, Gut Health and Food Safety Programme, Norwich Research Park, Norwich, United Kingdom
| | - Rogier Louwen
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Peter van Baarlen
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Arnoud H M van Vliet
- Institute of Food Research, Gut Health and Food Safety Programme, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|