1
|
Talebi AS, Mehnati P, Rajabi H, Rezaei H, Geramifar P. Precision individual dosimetry in Yttrium-90 transarterial radioembolization in the presence of Au nanoparticles. Radiat Phys Chem Oxf Engl 1993 2024; 222:111888. [DOI: 10.1016/j.radphyschem.2024.111888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
|
2
|
Gurajala R, Partovi S, DiFilippo FP, Li X, Coppa C, Shah SN, Karuppasamy K, Obuchowski N, Fayazzadeh E, McLennan G, Levitin A. Prospective comparison of positron emission tomography (PET)/magnetic resonance and PET/computed tomography dosimetry in hepatic malignant neoplastic disease after 90Y radioembolization treatment. J Gastrointest Oncol 2024; 15:356-367. [PMID: 38482235 PMCID: PMC10932664 DOI: 10.21037/jgo-23-890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/12/2024] [Indexed: 09/17/2024] Open
Abstract
Background 90Y radioembolization is an established treatment modality for hepatic malignancies. Successful radioembolization requires optimal dose delivery to tumors while minimizing dosages to parenchyma. Post-treatment positron emission tomography (PET)/computed tomography (CT) dosimetry is the established benchmark, whereas PET/magnetic resonance (MR) is an emerging modality. The goal of this study was to assess the intermodality agreement between PET/MR and PET/CT 90Y dosimetry. Methods In this single-institution study, 18 patients (20 treatment sessions) with a primary or metastatic hepatic malignancy underwent both PET/MR and PET/CT after 90Y radioembolization. Patients were randomized to undergo one modality first, followed by the other. The region of interest was delineated using MR images and tumor and liver dosimetry was calculated. Intermodality agreement was assessed using the Bland-Altman method. A generalized linear model was used to assess the effect of baseline variables on intermodality dose differences. Results PET/MR underestimated tumor and liver absorbed doses when compared to PET/CT by -3.7% (P=0.042) and -5.8% (P=0.029), respectively. A coverage probability plot demonstrated that 80% and 90% of tumor dose measurements fell within intermodality differences of 11% and 18%, respectively. PET/MR underestimated tumor dose at both low (<1 GBq) and high (>3 GBq) injected activity levels (P<0.001) by -22.3 [standard deviation (SD) =13.5] and -24.3 (SD =18.7), respectively. Conclusions Although PET/MR significantly underestimated the absorbed dose when compared to PET/CT, the intermodality agreement was high and the degree of underestimation was better than previously reported. Intermodality differences were more pronounced at low and high injected doses. Additional studies are required to assess the clinical implications of these findings.
Collapse
Affiliation(s)
- Ram Gurajala
- Section of Interventional Radiology, Imaging Institute, Cleveland Clinic Main Campus, Cleveland, Ohio, USA
| | - Sasan Partovi
- Section of Interventional Radiology, Imaging Institute, Cleveland Clinic Main Campus, Cleveland, Ohio, USA
| | - Frank P. DiFilippo
- Department of Nuclear Medicine, Imaging Institute, Cleveland Clinic Main Campus, Cleveland, Ohio, USA
| | - Xin Li
- Department of Radiology, Hospital of The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christopher Coppa
- Section of Abdominal Imaging, Imaging Institute, Cleveland Clinic Main Campus, Cleveland, Ohio, USA
| | - Shetal N. Shah
- Department of Nuclear Medicine, Imaging Institute, Cleveland Clinic Main Campus, Cleveland, Ohio, USA
- Section of Abdominal Imaging, Imaging Institute, Cleveland Clinic Main Campus, Cleveland, Ohio, USA
| | - Karunakaravel Karuppasamy
- Section of Interventional Radiology, Imaging Institute, Cleveland Clinic Main Campus, Cleveland, Ohio, USA
| | - Nancy Obuchowski
- Department of Quantitative Health Sciences, Cleveland Clinic Main Campus, Cleveland, Ohio, USA
| | - Ehsan Fayazzadeh
- Department of Radiology, Saint Louis University Hospital, St. Louis, Missouri, USA
| | - Gordon McLennan
- Section of Interventional Radiology, Department of Radiology, University of Colorado Anschutz Medical Campus, Denver, Colorado, USA
| | - Abraham Levitin
- Section of Interventional Radiology, Imaging Institute, Cleveland Clinic Main Campus, Cleveland, Ohio, USA
| |
Collapse
|
3
|
Budzyńska A, Kubik A, Kacperski K, Pastusiak P, Kuć M, Piasecki P, Konior M, Gryziński M, Dziuk M, Iller E. PET/CT and SPECT/CT imaging of 90Y hepatic radioembolization at therapeutic and diagnostic activity levels: Anthropomorphic phantom study. PLoS One 2024; 19:e0271711. [PMID: 38421965 PMCID: PMC10903856 DOI: 10.1371/journal.pone.0271711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
PURPOSE Prior to 90Y radioembolization procedure, a pretherapy simulation using 99mTc-MAA is performed. Alternatively, a small dosage of 90Y microspheres could be used. We aimed to assess the accuracy of lung shunt fraction (LSF) estimation in both high activity 90Y posttreatment and pretreatment scans with isotope activity of ~100 MBq, using different imaging techniques. Additionally, we assessed the feasibility of visualising hot and cold hepatic tumours in PET/CT and Bremsstrahlung SPECT/CT images. MATERIALS AND METHODS Anthropomorphic phantom including liver (with two spherical tumours) and lung inserts was filled with 90Y chloride to simulate an LSF of 9.8%. The total initial activity in the liver was 1451 MBq, including 19.4 MBq in the hot sphere. Nine measurement sessions including PET/CT, SPECT/CT, and planar images were acquired at activities in the whole phantom ranging from 1618 MBq down to 43 MBq. The visibility of the tumours was appraised based on independent observers' scores. Quantitatively, contrast-to-noise ratio (CNR) was calculated for both spheres in all images. RESULTS LSF estimation. For high activity in the phantom, PET reconstructions slightly underestimated the LSF; absolute difference was <1.5pp (percent point). For activity <100 MBq, the LSF was overestimated. Both SPECT and planar scintigraphy overestimated the LSF for all activities. Lesion visibility. For SPECT/CT, the cold tumour proved too small to be discernible (CNR <0.5) regardless of the 90Y activity in the liver, while hot sphere was visible for activity >200 MBq (CNR>4). For PET/CT, the cold tumour was only visible with the highest 90Y activity (CNR>4), whereas the hot one was seen for activity >100 MBq (CNR>5). CONCLUSIONS PET/CT may accurately estimate the LSF in a 90Y posttreatment procedure. However, at low activities of about 100 MBq it seems to provide unreliable estimations. PET imaging provided better visualisation of both hot and cold tumours.
Collapse
Affiliation(s)
- Anna Budzyńska
- Department of Nuclear Medicine, Military Institute of Medicine - National Research Institute, Warsaw, Poland
- Affidea Mazovian PET-CT Medical Centre, Warsaw, Poland
| | - Agata Kubik
- Department of Nuclear Medicine, Military Institute of Medicine - National Research Institute, Warsaw, Poland
| | - Krzysztof Kacperski
- Department of Nuclear Medicine, Military Institute of Medicine - National Research Institute, Warsaw, Poland
- National Centre for Nuclear Research, Particle Acceleration Physics and Technology Division (TJ1), Otwock—Świerk, Poland
| | - Patrycja Pastusiak
- Department of Nuclear Medicine, Military Institute of Medicine - National Research Institute, Warsaw, Poland
| | - Michał Kuć
- National Centre for Nuclear Research, Radiological Metrology and Biomedical Physics Division (H2), Otwock—Świerk, Poland
| | - Piotr Piasecki
- Department of Interventional Radiology, Military Institute of Medicine - National Research Institute, Warsaw, Poland
| | - Marcin Konior
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, Otwock - Świerk, Poland
| | - Michał Gryziński
- National Centre for Nuclear Research, Radiological Metrology and Biomedical Physics Division (H2), Otwock—Świerk, Poland
| | - Mirosław Dziuk
- Department of Nuclear Medicine, Military Institute of Medicine - National Research Institute, Warsaw, Poland
- Affidea Mazovian PET-CT Medical Centre, Warsaw, Poland
| | - Edward Iller
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, Otwock - Świerk, Poland
| |
Collapse
|
4
|
Outcomes following transarterial radioembolization with 90Y and nanoparticles loaded resin microspheres. Appl Radiat Isot 2022; 188:110405. [PMID: 35987141 DOI: 10.1016/j.apradiso.2022.110405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/26/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022]
Abstract
90Y bremsstrahlung Single-Photon Emission Tomography (SPECT) imaging is employed to check the possibility of extrahepatic uptake and the quantification of delivered dose in Transarterial Radioembolization (TARE). 90Y bremsstrahlung SPECT imaging is challenging due to the nature of bremsstrahlung photons. We reported a Monte Carlo study using the resin microspheres loaded with 90Y and Nanoparticles (NPs) in the TARE. By injection of Bismuth (Bi) and Europium (Eu) NPs into the resin microspheres, the sensitivity and the contrast to noise ratio increased for the bremsstrahlung planar images. The highest signal to background ratio was observed in the characteristic X-ray planar images taken with the energy window at the Kα1 ± 10 keV when Eu NPs were incorporated into the microsphere. The dose enhancement ratio decreased dramatically at NP concentrations >2.4 M. Incorporating NPs into the resin microspheres improves the quality of post-treatment images and establishes a standardized imaging protocol for post-treatment imaging by characteristic X-rays.
Collapse
|
5
|
Jokar N, Moradhaseli F, Ahmadzadehfar H, Jafari E, Nikeghbalian S, Rasekhi AR, Assadi M. Theranostic approach in liver cancer: an emerging paradigm to optimize personalized medicine. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Sharma NK, Kappadath SC, Chuong M, Folkert M, Gibbs P, Jabbour SK, Jeyarajah DR, Kennedy A, Liu D, Meyer JE, Mikell J, Patel RS, Yang G, Mourtada F. The American Brachytherapy Society consensus statement for permanent implant brachytherapy using Yttrium-90 microsphere radioembolization for liver tumors. Brachytherapy 2022; 21:569-591. [PMID: 35599080 PMCID: PMC10868645 DOI: 10.1016/j.brachy.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/25/2022] [Accepted: 04/14/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE To develop a multidisciplinary consensus for high quality multidisciplinary implementation of brachytherapy using Yttrium-90 (90Y) microspheres transarterial radioembolization (90Y TARE) for primary and metastatic cancers in the liver. METHODS AND MATERIALS Members of the American Brachytherapy Society (ABS) and colleagues with multidisciplinary expertise in liver tumor therapy formulated guidelines for 90Y TARE for unresectable primary liver malignancies and unresectable metastatic cancer to the liver. The consensus is provided on the most recent literature and clinical experience. RESULTS The ABS strongly recommends the use of 90Y microsphere brachytherapy for the definitive/palliative treatment of unresectable liver cancer when recommended by the multidisciplinary team. A quality management program must be implemented at the start of 90Y TARE program development and follow-up data should be tracked for efficacy and toxicity. Patient-specific dosimetry optimized for treatment intent is recommended when conducting 90Y TARE. Implementation in patients on systemic therapy should account for factors that may enhance treatment related toxicity without delaying treatment inappropriately. Further management and salvage therapy options including retreatment with 90Y TARE should be carefully considered. CONCLUSIONS ABS consensus for implementing a safe 90Y TARE program for liver cancer in the multidisciplinary setting is presented. It builds on previous guidelines to include recommendations for appropriate implementation based on current literature and practices in experienced centers. Practitioners and cooperative groups are encouraged to use this document as a guide to formulate their clinical practices and to adopt the most recent dose reporting policies that are critical for a unified outcome analysis of future effectiveness studies.
Collapse
Affiliation(s)
- Navesh K Sharma
- Department of Radiation Oncology, Penn State Hershey School of Medicine, Hershey, PA
| | - S Cheenu Kappadath
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, TX
| | - Michael Chuong
- Department of Radiation Oncology, Miami Cancer Institute, Miami, FL
| | - Michael Folkert
- Northwell Health Cancer Institute, Radiation Medicine at the Center for Advanced Medicine, New Hyde Park, NY
| | - Peter Gibbs
- Personalised Oncology Division, Walter and Eliza Hall Institute, Melbourne, Victoria, Australia
| | - Salma K Jabbour
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
| | | | | | - David Liu
- Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | | | - Rahul S Patel
- Icahn School of Medicine at Mount Sinai, New York, NY
| | - Gary Yang
- Loma Linda University, Loma Linda, CA
| | - Firas Mourtada
- Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE; Department of Radiation Oncology, Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA.
| |
Collapse
|
7
|
McArdle N, Cournane S, McCavana J, Lucey J, León Vintró L. Development of a scatter correction technique for planar 99mTc-MAA imaging to improve accuracy in lung shunt fraction estimation. Phys Med 2022; 99:94-101. [PMID: 35665625 DOI: 10.1016/j.ejmp.2022.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022] Open
Abstract
PURPOSE Prior to 90Y selective internal radiation therapy (SIRT) treatment, 99mTc-MAA scintigraphy imaging is used in the estimation of the lung shunt fraction (LSF). Planar imaging is recommended for determining a LSF ratio. However, the estimate may be affected by scatter contributions, attenuation and respiratory motion. The objective of this study was to correct for the effects of scatter in the LSF, towards the determination of a more accurate estimation method of LSF derived from planar scintigraphy imaging, which is recommended by international guidelines. METHODS The open access SIMIND Monte Carlo modelling software was used to estimate an optimum scatter window (SW) for scatter correction. The uncertainties associated with scatter and scatter contributions from the liver on the LSF were evaluated using an anthropomorphic thorax phantom and a virtual Vox-Man phantom. A brief retrospective examination of patient scans and tumour location investigated the impact that the inclusion of the simulated scatter corrections had on the LSF estimation. RESULTS The percentage overestimation of the manufacturer recommended method of LSF estimation was 192%. SW corrections improved the uncertainty to within 19% for the range of known LSFs. Similar findings were observed for our patient and tumour location studies. CONCLUSION The incorporated scatter corrections can significantly improve the accuracy of the LSF estimation, thereby providing a robust gamma camera, patient and tumour depth specific correction which is easily implementable. This is supported by Monte Carlo, phantom and preliminary patient studies.
Collapse
Affiliation(s)
- Niamh McArdle
- St. Vincent's University Hospital, Ireland; University College Dublin, Ireland.
| | - Seán Cournane
- St. Vincent's University Hospital, Ireland; University College Dublin, Ireland
| | | | | | | |
Collapse
|
8
|
Deidda D, Denis-Bacelar AM, Fenwick AJ, Ferreira KM, Heetun W, Hutton BF, Robinson AP, Scuffham J, Thielemans K. Hybrid kernelised expectation maximisation for Bremsstrahlung SPECT reconstruction in SIRT with 90Y micro-spheres. EJNMMI Phys 2022; 9:25. [PMID: 35377085 PMCID: PMC8980141 DOI: 10.1186/s40658-022-00452-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
Background Selective internal radiation therapy with Yttrium-90 microspheres is an effective therapy for liver cancer and liver metastases. Yttrium-90 is mainly a high-energy beta particle emitter. These beta particles emit Bremsstrahlung radiation during their interaction with tissue making post-therapy imaging of the radioactivity distribution feasible. Nevertheless, image quality and quantification is difficult due to the continuous energy spectrum which makes resolution modelling, attenuation and scatter estimation challenging and therefore the dosimetry quantification is inaccurate. As a consequence a reconstruction algorithm able to improve resolution could be beneficial. Methods In this study, the hybrid kernelised expectation maximisation (HKEM) is used to improve resolution and contrast and reduce noise, in addition a modified HKEM called frozen HKEM (FHKEM) is investigated to further reduce noise. The iterative part of the FHKEM kernel was frozen at the 72nd sub-iteration. When using ordered subsets algorithms the data is divided in smaller subsets and the smallest algorithm iterative step is called sub-iteration. A NEMA phantom with spherical inserts was used for the optimisation and validation of the algorithm, and data from 5 patients treated with Selective internal radiation therapy were used as proof of clinical relevance of the method. Results The results suggest a maximum improvement of 56% for region of interest mean recovery coefficient at fixed coefficient of variation and better identification of the hot volumes in the NEMA phantom. Similar improvements were achieved with patient data, showing 47% mean value improvement over the gold standard used in hospitals. Conclusions Such quantitative improvements could facilitate improved dosimetry calculations with SPECT when treating patients with Selective internal radiation therapy, as well as provide a more visible position of the cancerous lesions in the liver.
Collapse
Affiliation(s)
- Daniel Deidda
- National Physical Laboratory, Teddington, UK. .,Institute of Nuclear Medicine, University College London, London, UK.
| | | | | | | | | | - Brian F Hutton
- Institute of Nuclear Medicine, University College London, London, UK
| | - Andrew P Robinson
- National Physical Laboratory, Teddington, UK.,Christie Medical Physics and Engineering (CMPE), The Christie NHS Foundation Trust, Manchester, UK.,The University of Manchester, Manchester, UK
| | - James Scuffham
- National Physical Laboratory, Teddington, UK.,Department of Medical Physics, Royal Surrey NHS Foundation Trust, Guildford, UK
| | - Kris Thielemans
- Institute of Nuclear Medicine, University College London, London, UK
| |
Collapse
|
9
|
Talebi A, Rajabi H. Developing a protocol for 90Y bremsstrahlung imaging after Transarterial Radioembolization. JOURNAL OF INSTRUMENTATION 2022; 17:P03019. [DOI: 10.1088/1748-0221/17/03/p03019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Abstract
Yttrium-90 (90Y) is an almost pure beta emitter used in Transarterial Radioembolization (TARE). Post-TARE 90Y bremsstrahlung imaging is employed for quantification of the delivered dose. 90Y bremsstrahlung imaging is the most challenging issue in nuclear medicine because of the low photon yield, the continuous and non-pronounced peak of the bremsstrahlung spectrum. GATE Monte Carlo code was employed to find the most proper imaging protocol for 90Y bremsstrahlung imaging. Images were acquired using Medium-Energy Medium-Resolution (MEMR) and High-Energy Medium-Resolution (HEMR) in nine energy windows widths (50 to 500 keV). The quality of images was evaluated using contrast, resolution, sensitivity, Signal-to-Background Ratio (SBR), percentage of total counts in useful field of view, and Contrast-to-Noise Ratio (CNR). The HEMR collimator performed better than the MEMR collimator on all imaging criteria except for the sensitivity. The CNR values were equal in both collimators. Based on the measured parameters, images acquired by the HEMR collimator with the energy window of 50–200 keV are the best protocol for 90Y bremsstrahlung imaging. The findings in this study suggest the imaging protocol for 90Y bremsstrahlung imaging that can be practically used in the clinic.
Collapse
|
10
|
Role of nanoparticles in transarterial radioembolization with glass microspheres. Ann Nucl Med 2022; 36:479-487. [PMID: 35199286 DOI: 10.1007/s12149-022-01727-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/06/2022] [Indexed: 11/01/2022]
Abstract
OBJECTIVE Transarterial Radioembolization (TARE) with 90Y-loaded glass microspheres is a locoregional treatment option for Hepatocellular Carcinoma (HCC). Post-treatment 90Y bremsstrahlung imaging using Single-Photon Emission Tomography (SPECT) is currently a gold-standard imaging modality for quantifying the delivered dose. However, the nature of bremsstrahlung photons causes difficulty for dose estimation using SPECT imaging. This work aimed to investigate the possibility of using glass microspheres loaded with 90Y and Nanoparticles (NPs) to improve the quantification of delivered doses. METHODS The Monte Carlo codes were used to simulate the post-TARE 90Y planar imaging. Planar images from bremsstrahlung photons and characteristic X-rays are acquired when 0, 1.2 mol/L, 2.4 mol/L, and 4.8 mol/L of Gold (Au), Hafnium (Hf), and Gadolinium (Gd) NPs are incorporated into the glass microspheres. We evaluated the quality of acquired images by calculating sensitivity and Signal-to-Background Ratio (SBR). Therapeutic effects of NPs were evaluated by calculation of Dose Enhancement Ratio (DER) in tumoral and non-tumoral liver tissues. RESULTS The in silico results showed that the sensitivity values of bremsstrahlung and characteristic X-ray planar images increased significantly as the NPs concentration increased in the glass microspheres. The SBR values decreased as the NPs concentration increased for the bremsstrahlung planar images. In contrast, the SBR values increased for the characteristic X-ray planar images when Hf and Gd were incorporated into the glass microspheres. The DER values decreased in the tumoral and non-tumoral liver tissues as the NPs concentration increased. The maximum dose reduction was observed at the NPs concentration of 4.8 mol/L (≈ 7%). CONCLUSIONS The incorporation of Au, Hf, and Gd NPs into the glass microspheres improved the quality and quantity of post-TARE planar images. Also, treatment efficiency was decreased significantly at NPs concentration > 4.8 mol/L.
Collapse
|
11
|
Miller C, Rousseau J, Ramogida CF, Celler A, Rahmim A, Uribe CF. Implications of physics, chemistry and biology for dosimetry calculations using theranostic pairs. Theranostics 2022; 12:232-259. [PMID: 34987643 PMCID: PMC8690938 DOI: 10.7150/thno.62851] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/18/2021] [Indexed: 12/15/2022] Open
Abstract
Theranostics is an emerging paradigm that combines imaging and therapy in order to personalize patient treatment. In nuclear medicine, this is achieved by using radiopharmaceuticals that target identical molecular targets for both imaging (using emitted gamma rays) and radiopharmaceutical therapy (using emitted beta, alpha or Auger-electron particles) for the treatment of various diseases, such as cancer. If the therapeutic radiopharmaceutical cannot be imaged quantitatively, a “theranostic pair” imaging surrogate can be used to predict the absorbed radiation doses from the therapeutic radiopharmaceutical. However, theranostic dosimetry assumes that the pharmacokinetics and biodistributions of both radiopharmaceuticals in the pair are identical or very similar, an assumption that still requires further validation for many theranostic pairs. In this review, we consider both same-element and different-element theranostic pairs and attempt to determine if factors exist which may cause inaccurate dose extrapolations in theranostic dosimetry, either intrinsic (e.g. chemical differences) or extrinsic (e.g. injecting different amounts of each radiopharmaceutical) to the radiopharmaceuticals. We discuss the basis behind theranostic dosimetry and present common theranostic pairs and their therapeutic applications in oncology. We investigate general factors that could create alterations in the behavior of the radiopharmaceuticals or the quantitative accuracy of imaging them. Finally, we attempt to determine if there is evidence showing some specific pairs as suitable for theranostic dosimetry. We show that there are a variety of intrinsic and extrinsic factors which can significantly alter the behavior among pairs of radiopharmaceuticals, even if they belong to the same chemical element. More research is needed to determine the impact of these factors on theranostic dosimetry estimates and on patient outcomes, and how to correctly account for them.
Collapse
|
12
|
Chiesa C, Sjogreen-Gleisner K, Walrand S, Strigari L, Flux G, Gear J, Stokke C, Gabina PM, Bernhardt P, Konijnenberg M. EANM dosimetry committee series on standard operational procedures: a unified methodology for 99mTc-MAA pre- and 90Y peri-therapy dosimetry in liver radioembolization with 90Y microspheres. EJNMMI Phys 2021; 8:77. [PMID: 34767102 PMCID: PMC8589932 DOI: 10.1186/s40658-021-00394-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 06/21/2021] [Indexed: 11/27/2022] Open
Abstract
The aim of this standard operational procedure is to standardize the methodology employed for the evaluation of pre- and post-treatment absorbed dose calculations in 90Y microsphere liver radioembolization. Basic assumptions include the permanent trapping of microspheres, the local energy deposition method for voxel dosimetry, and the patient-relative calibration method for activity quantification.The identity of 99mTc albumin macro-aggregates (MAA) and 90Y microsphere biodistribution is also assumed. The large observed discrepancies in some patients between 99mTc-MAA predictions and actual 90Y microsphere distributions for lesions is discussed. Absorbed dose predictions to whole non-tumoural liver are considered more reliable and the basic predictors of toxicity. Treatment planning based on mean absorbed dose delivered to the whole non-tumoural liver is advised, except in super-selective treatments.Given the potential mismatch between MAA simulation and actual therapy, absorbed doses should be calculated both pre- and post-therapy. Distinct evaluation between target tumours and non-tumoural tissue, including lungs in cases of lung shunt, are vital for proper optimization of therapy. Dosimetry should be performed first according to a mean absorbed dose approach, with an optional, but important, voxel level evaluation. Fully corrected 99mTc-MAA Single Photon Emission Computed Tomography (SPECT)/computed tomography (CT) and 90Y TOF PET/CT are regarded as optimal acquisition methodologies, but, for institutes where SPECT/CT is not available, non-attenuation corrected 99mTc-MAA SPECT may be used. This offers better planning quality than non dosimetric methods such as Body Surface Area (BSA) or mono-compartmental dosimetry. Quantitative 90Y bremsstrahlung SPECT can be used if dedicated correction methods are available.The proposed methodology is feasible with standard camera software and a spreadsheet. Available commercial or free software can help facilitate the process and improve calculation time.
Collapse
Affiliation(s)
- Carlo Chiesa
- Nuclear Medicine Unit, Foundation IRCCS Istituto Nazionale Tumori, Milan, Italy
| | | | - Stephan Walrand
- Nuclear Medicine, Molecular Imaging, Radiotherapy and Oncology Unit (MIRO), IECR, Université Catholique de Louvain, Brussels, Belgium
| | - Lidia Strigari
- Medical Physics Division, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Glenn Flux
- Joint Department of Physics, Royal Marsden Hospital & Institute of Cancer Research, Sutton, UK
| | - Jonathan Gear
- Joint Department of Physics, Royal Marsden Hospital & Institute of Cancer Research, Sutton, UK
| | - Caroline Stokke
- Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
| | - Pablo Minguez Gabina
- Department of Medical Physics and Radiation Protection, Gurutzeta/Cruces University Hospital, Barakaldo, Spain
| | - Peter Bernhardt
- Department of Radiation Physics, Institute of Clinical Science, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mark Konijnenberg
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
13
|
Abstract
Transarterial radioembolization with yttrium-90 ( 90 Y) is a mainstay for the treatment of liver cancer. Imaging the distribution following delivery is a concept that dates back to the 1960s. As β particles are created during 90 Y decay, bremsstrahlung radiation is created as the particles interact with tissues, allowing for imaging with a gamma camera. Inherent qualities of bremsstrahlung radiation make its imaging difficult. SPECT and SPECT/CT can be used but suffer from limitations related to low signal-to-noise bremsstrahlung radiation. However, with optimized imaging protocols, clinically adequate images can still be obtained. A finite but detectable number of positrons are also emitted during 90 Y decay, and many studies have demonstrated the ability of commercial PET/CT and PET/MR scanners to image these positrons to understand 90 Y distribution and help quantify dose. PET imaging has been proven to be superior to SPECT for quantitative imaging, and therefore will play an important role going forward as we try and better understand dose/response and dose/toxicity relationships to optimize personalized dosimetry. The availability of PET imaging will likely remain the biggest barrier to its use in routine post- 90 Y imaging; thus, SPECT/CT imaging with optimized protocols should be sufficient for most posttherapy subjective imaging.
Collapse
Affiliation(s)
- Mitchell Rice
- Department of Radiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Matthew Krosin
- Department of Radiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Paul Haste
- Department of Radiology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
14
|
Nguyen MP, Goorden MC, Ramakers RM, Beekman FJ. Efficient Monte-Carlo based system modelling for image reconstruction in preclinical pinhole SPECT. Phys Med Biol 2021; 66. [PMID: 34049291 DOI: 10.1088/1361-6560/ac0682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/28/2021] [Indexed: 11/11/2022]
Abstract
The use of multi-pinhole collimation has enabled ultra-high-resolution imaging of SPECT and PET tracers in small animals. Key for obtaining high-quality images is the use of statistical iterative image reconstruction with accurate energy-dependent photon transport modelling through collimator and detector. This can be incorporated in a system matrix that contains the probabilities that a photon emitted from a certain voxel is detected at a specific detector pixel. Here we introduce a fast Monte-Carlo based (FMC-based) matrix generation method for pinhole imaging that is easy to apply to various radionuclides. The method is based on accelerated point source simulations combined with model-based interpolation to straightforwardly change or combine photon energies of the radionuclide of interest. The proposed method was evaluated for a VECTor PET-SPECT system with (i) a HE-UHR-M collimator and (ii) an EXIRAD-3D 3D autoradiography collimator. Both experimental scans with99mTc,111In, and123I, and simulated scans with67Ga and90Y were performed for evaluation. FMC was compared with two currently used approaches, one based on a set of point source measurements with99mTc (dubbed traditional method), and the other based on an energy-dependent ray-tracing simulation (ray-tracing method). The reconstruction results show better image quality when using FMC-based matrices than when applying the traditional or ray-tracing matrices in various cases. FMC-based matrices generalise better than the traditional matrices when imaging radionuclides with energies deviating too much from the energy used in the calibration and are computationally more efficient for very-high-resolution imaging than the ray-tracing matrices. In addition, FMC has the advantage of easily combining energies in a single matrix which is relevant when imaging radionuclides with multiple photopeak energies (e.g.67Ga and111In) or with a continuous energy spectrum (e.g.90Y). To conclude, FMC is an efficient, accurate, and versatile tool for creating system matrices for ultra-high-resolution pinhole SPECT.
Collapse
Affiliation(s)
- Minh Phuong Nguyen
- Section Biomedical Imaging, Delft University of Technology, Delft, The Netherlands
| | - Marlies C Goorden
- Section Biomedical Imaging, Delft University of Technology, Delft, The Netherlands
| | - Ruud M Ramakers
- Section Biomedical Imaging, Delft University of Technology, Delft, The Netherlands.,MILabs B.V., Utrecht, The Netherlands.,Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - Freek J Beekman
- Section Biomedical Imaging, Delft University of Technology, Delft, The Netherlands.,MILabs B.V., Utrecht, The Netherlands.,Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| |
Collapse
|
15
|
Thompson BC, Dezarn WA. Retrospective SPECT/CT dosimetry following transarterial radioembolization. J Appl Clin Med Phys 2021; 22:143-150. [PMID: 33710776 PMCID: PMC8035553 DOI: 10.1002/acm2.13213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/22/2021] [Accepted: 02/10/2021] [Indexed: 01/14/2023] Open
Abstract
Transarterial radioembolization (TARE) effectively treats unresectable primary and metastatic liver tumors through intra‐arterial injection of Yttrium‐90 (90Y) beta particle emitting microspheres which implant around the tumor. Current dosimetry models are highly simplistic and there is a large need for an image‐based dosimetry post‐TARE, which would improve treatment safety and efficacy. Current post‐TARE imaging is 90Y bremsstrahlung SPECT/CT and we study the use of these images for dosimetry. Retrospective image review of ten patients having a Philips HealthcareTM SPECT/CT following TARE SIR‐Spheres® implantation. Emission series with attenuation correction were resampled to 3 mm resolution and used to create image‐based dose distributions. Dose distributions and analysis were performed in MIM Software SurePlanTM utilizing SurePlanTM Local Deposition Method (LDM) and a dose convolution method (WFBH). We sought to implement a patient‐specific background subtraction prior to dose calculation to make these noisy bremsstrahlung SPECT images suitable for post‐TARE dosimetry. On average the percentage of mean background counts to maximum count in the image across all patients was 9.4 ± 4.9% (maximum = 7.6%, minimum = 2.3%). Absolute dose increased and profile line width decreased as background subtraction value increased. The average value of the LDM and WFBH dose methods was statistically the same. As background subtraction value increased, the DVH curves become unrealistic and distorted. Background subtraction on bremsstrahlung SPECT image has a large effect on post‐TARE dosimetry. The background contour defined provides a systematic estimate to the activity background that accounts for the scanner and patient conditions at the time of the image study and is easily implemented using commercially available software. Using the mean count in the background contour as a subtraction across the entire image gave the most realistic dose distributions. This methodology is independent of microsphere and software manufacturer allowing for use with any available products or tools.
Collapse
Affiliation(s)
- Briana C Thompson
- Department of Radiation Oncology, Wake Forest Baptist Hospital, Winston-Salem, NC, USA.,Wake Forest School of Medicine, Molecular Medicine and Translational Sciences, Winston Salem, NC, USA
| | - William A Dezarn
- Department of Radiation Oncology, Wake Forest Baptist Hospital, Winston-Salem, NC, USA.,Wake Forest School of Medicine, Molecular Medicine and Translational Sciences, Winston Salem, NC, USA
| |
Collapse
|
16
|
Li Y, Chen J, Brown JL, Treves ST, Cao X, Fahey FH, Sgouros G, Bolch WE, Frey EC. DeepAMO: a multi-slice, multi-view anthropomorphic model observer for visual detection tasks performed on volume images. J Med Imaging (Bellingham) 2021; 8:041204. [PMID: 33521164 DOI: 10.1117/1.jmi.8.4.041204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/31/2020] [Indexed: 11/14/2022] Open
Abstract
Purpose: We propose a deep learning-based anthropomorphic model observer (DeepAMO) for image quality evaluation of multi-orientation, multi-slice image sets with respect to a clinically realistic 3D defect detection task. Approach: The DeepAMO is developed based on a hypothetical model of the decision process of a human reader performing a detection task using a 3D volume. The DeepAMO is comprised of three sequential stages: defect segmentation, defect confirmation (DC), and rating value inference. The input to the DeepAMO is a composite image, typical of that used to view 3D volumes in clinical practice. The output is a rating value designed to reproduce a human observer's defect detection performance. In stages 2 and 3, we propose: (1) a projection-based DC block that confirms defect presence in two 2D orthogonal orientations and (2) a calibration method that "learns" the mapping from the features of stage 2 to the distribution of observer ratings from the human observer rating data (thus modeling inter- or intraobserver variability) using a mixture density network. We implemented and evaluated the DeepAMO in the context of Tc 99 m -DMSA SPECT imaging. A human observer study was conducted, with two medical imaging physics graduate students serving as observers. A 5 × 2 -fold cross-validation experiment was conducted to test the statistical equivalence in defect detection performance between the DeepAMO and the human observer. We also compared the performance of the DeepAMO to an unoptimized implementation of a scanning linear discriminant observer (SLDO). Results: The results show that the DeepAMO's and human observer's performances on unseen images were statistically equivalent with a margin of difference ( Δ AUC ) of 0.0426 at p < 0.05 , using 288 training images. A limited implementation of an SLDO had a substantially higher AUC (0.99) compared to the DeepAMO and human observer. Conclusion: The results show that the DeepAMO has the potential to reproduce the absolute performance, and not just the relative ranking of human observers on a clinically realistic defect detection task, and that building conceptual components of the human reading process into deep learning-based models can allow training of these models in settings where limited training images are available.
Collapse
Affiliation(s)
- Ye Li
- Johns Hopkins University, Whiting School of Engineering, Department of Electrical and Computer Engineering, Baltimore, Maryland, United States.,Johns Hopkins University, School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, Maryland, United States
| | - Junyu Chen
- Johns Hopkins University, Whiting School of Engineering, Department of Electrical and Computer Engineering, Baltimore, Maryland, United States.,Johns Hopkins University, School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, Maryland, United States
| | - Justin L Brown
- University of Florida, J. Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, Florida, United States
| | - S Ted Treves
- Brigham and Women's Hospital, Department of Radiology, Boston, Massachusetts, United States.,Harvard Medical School, Department of Radiology, Boston, Massachusetts, United States
| | - Xinhua Cao
- Harvard Medical School, Department of Radiology, Boston, Massachusetts, United States.,Boston Children's Hospital, Department of Radiology, Boston, Massachusetts, United States
| | - Frederic H Fahey
- Harvard Medical School, Department of Radiology, Boston, Massachusetts, United States.,Boston Children's Hospital, Department of Radiology, Boston, Massachusetts, United States
| | - George Sgouros
- Johns Hopkins University, School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, Maryland, United States
| | - Wesley E Bolch
- University of Florida, J. Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, Florida, United States
| | - Eric C Frey
- Johns Hopkins University, Whiting School of Engineering, Department of Electrical and Computer Engineering, Baltimore, Maryland, United States.,Johns Hopkins University, School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, Maryland, United States
| |
Collapse
|
17
|
Mok GSP, Dewaraja YK. Recent advances in voxel-based targeted radionuclide therapy dosimetry. Quant Imaging Med Surg 2021; 11:483-489. [PMID: 33532249 PMCID: PMC7779928 DOI: 10.21037/qims-20-1006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/27/2020] [Indexed: 02/04/2023]
Affiliation(s)
- Greta S. P. Mok
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau, China
- Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau, China
| | - Yuni K. Dewaraja
- Department of Radiology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
18
|
Li R, Li D, Jia G, Li X, Sun G, Zuo C. Diagnostic Performance of Theranostic Radionuclides Used in Transarterial Radioembolization for Liver Cancer. Front Oncol 2021; 10:551622. [PMID: 33569342 PMCID: PMC7868560 DOI: 10.3389/fonc.2020.551622] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
Primary liver tumor with hepatocellular carcinoma accounting for 75-80% of all such tumors, is one of the global leading causes of cancer-related death, especially in cirrhotic patients. Liver tumors are highly hypervascularized via the hepatic artery, while normal liver tissues are mainly supplied by the portal vein; consequently, intra-arterially delivered treatment, which includes transarterial chemoembolization (TACE) and transarterial radioembolization (TARE), is deemed as a palliative treatment. With the development of nuclear technology and radiochemistry, TARE has become an alternative for patients with hepatic cancer, especially for patients who failed other therapies, or for patients who need tumor downstaging treatment. In practice, some radionuclides have suitable physicochemical characteristics to act as radioactive embolism agents. Among them, 90Y emits β rays only and is suitable for bremsstrahlung single photon emission computed tomography (BS SPECT) and positron emission tomography (PET); meanwhile, some others, such as 131I, 153Sm, 166Ho, 177Lu, 186Re, and 188Re, emit both β and γ rays, enabling embolism beads to play a role in both therapy and single photon emission computed tomography (SPECT) imaging. During TARE, concomitant imaging provide additive diagnostic information and help to guide the course of liver cancer treatment. Therefore, we review the theranostic radionuclides that have been used or could potentially be used in TARE for liver cancer and focus on the clinical benefits of diagnostic applications, including real-time monitoring of embolism beads, evaluating irradiation dose, predicting therapy effects, and corresponding adjustments to TARE.
Collapse
Affiliation(s)
- Rou Li
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai, China
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Danni Li
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai, China
| | - Guorong Jia
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai, China
| | - Xiao Li
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai, China
| | - Gaofeng Sun
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai, China
| | - Changjing Zuo
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai, China
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
19
|
Kappadath SC, Lopez BP, Salem R, Lam MG. Lung shunt and lung dose calculation methods for radioembolization treatment planning. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2021; 65:32-42. [PMID: 33393753 DOI: 10.23736/s1824-4785.20.03287-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Radioembolization, also known as selective internal radiation therapy (SIRT), is firmly established in the management of patients with unresectable liver cancers. Advances in normal and tumor liver dosimetry and new knowledge about tumor dose response relationships have helped promote the safe use of higher prescribed doses, consequently transitioning radioembolization from palliative to curative therapy. The lungs are considered a critical organ of risk for radioembolization treatment planning. Unfortunately, lung dosimetry has not achieved similar advances in dose calculation methodology as liver dosimetry. Current estimations of lung dose are dependent on a number of parameters associated with data acquisition and processing algorithms, leading to poor accuracy and precision. Therefore, the efficacy of curative radioembolization may be compromised in patients for whom the lung dose derived using currently available methods unnecessarily limits the desired administered activity to the liver. We present a systematic review of the various methods of determining the lung shunt fraction (LSF) and lung mean dose (LD). This review encompasses pretherapy estimations and post-therapy assessments of the LSF and LD using both 2D planar and 3D SPECT/CT based calculations. The advantages and limitations of each of these methods are deliberated with a focus on accuracy and practical considerations. We conclude the review by presenting a lexicon to precisely describe the methodology used for the estimation of LSF and LD; specifically, category, agent, modality, contour and algorithm, in order to aid in their interpretation and standardization in routine clinical practice.
Collapse
Affiliation(s)
- S Cheenu Kappadath
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, TX, USA -
| | - Benjamin P Lopez
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Riad Salem
- Department of Radiology, Northwestern Memorial Hospital, Chicago, IL, USA
| | - Marnix G Lam
- Department of Radiology and Nuclear Medicine, University Medical Center, Utrecht, The Netherlands
| |
Collapse
|
20
|
SPECT and SPECT/CT. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
21
|
Hou X, Ma H, Esquinas PL, Uribe C, Tolhurst S, Bénard F, Liu D, Rahmim A, Celler A. Impact of image reconstruction method on dose distributions derived from 90Y PET images: phantom and liver radioembolization patient studies. Phys Med Biol 2020; 65:215022. [PMID: 33245057 DOI: 10.1088/1361-6560/aba8b5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PET images acquired after liver 90Y radioembolization therapies are typically very noisy, which significantly challenges both visualization and quantification of activity distributions. To improve their noise characteristics, regularized iterative reconstruction algorithms such as block sequential regularized expectation maximization (Q.Clear for GE Healthcare, USA) have been proposed. In this study, we aimed to investigate the effects which different reconstruction algorithms may have on patient images, with reconstruction parameters initially narrowed down using phantom studies. Moreover, we evaluated the impact of these reconstruction methods on voxel-based dose distribution in phantom and patient studies (lesions and healthy livers). The International Electrotechnical Commission (IEC)/NEMA phantom, containing six spheres, was filled with 90Y and imaged using a GE Discovery 690 PET/CT scanner with time-of-flight enabled. The images were reconstructed using Q.Clear (with β parameter ranging from 0 to 8000) and ordered subsets expectation maximization. The image quality and quantification accuracy were evaluated by computing the hot ([Formula: see text]) and cold ([Formula: see text]) contrast recovery coefficients, background variability (BV) and activity bias. Next, dose distributions and dose volume histograms were generated using MIM® software's SurePlan LiverY90 toolbox. Subsequently, parameters optimized in these phantom studies were applied to five patient datasets. Dose parameters, such as Dmax, Dmean, D70, and V100Gy, were estimated, and their variability for different reconstruction methods was investigated. Based on phantom studies, the β parameter values optimized for image quality and quantification accuracy were 2500 and 300, respectively. When all investigated reconstructions were applied to patient studies, Dmean, D50, D70, and V100Gy showed coefficients of variation below 8%; whereas the variability of Dmax was up to 30% for both phantom and patient images. Although β = 300-1000 would provide accurate activity quantification for a region of interest, when considering activity/dose voxelized distribution, higher β value (e.g. 4000-5000) would provide the greatest accuracy for dose distributions. In this 90Y radioembolization PET/CT study, the β parameter in regularized iterative (Q.Clear) reconstruction was investigated for image quality, accurate quantification and dose distributions based on phantom experiments and then applied to patient studies. Our results indicate that more accurate dose distribution can be achieved from smoother PET images, reconstructed with larger β values than those yielding the best activity quantifications but noisy images. Most importantly, these results suggest that quantitative measures, which are commonly used in clinics, such as SUVmax or SUVpeak( equivalent of Dmax), should not be employed for 90Y PET images, since their values would highly depend on the image reconstruction.
Collapse
Affiliation(s)
- Xinchi Hou
- Department of Radiology, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Brosch J, Gosewisch A, Kaiser L, Seidensticker M, Ricke J, Zellmer J, Bartenstein P, Ziegler S, Ilhan H, Todica A, Böning G. 3D image-based dosimetry for Yttrium-90 radioembolization of hepatocellular carcinoma: Impact of imaging method on absorbed dose estimates. Phys Med 2020; 80:317-326. [PMID: 33248338 DOI: 10.1016/j.ejmp.2020.11.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND To improve therapy outcome of Yttrium-90 selective internal radiation therapy (90Y SIRT), patient-specific post-therapeutic dosimetry is required. For this purpose, various dosimetric approaches based on different available imaging data have been reported. The aim of this work was to compare post-therapeutic 3D absorbed dose images using Technetium-99m (99mTc) MAA SPECT/CT, Yttrium-90 (90Y) bremsstrahlung (BRS) SPECT/CT, and 90Y PET/CT. METHODS Ten SIRTs of nine patients with unresectable hepatocellular carcinoma (HCC) were investigated. The 99mTc SPECT/CT data, obtained from 99mTc-MAA-based treatment simulation prior to 90Y SIRT, were scaled with the administered 90Y therapy activity. 3D absorbed dose images were generated by dose kernel convolution with scaled 99mTc/90Y SPECT/CT, 90Y BRS SPECT/CT, and 90Y PET/CT data of each patient. Absorbed dose estimates in tumor and healthy liver tissue obtained using the two SPECT/CT methods were compared against 90Y PET/CT. RESULTS The percentage deviation of tumor absorbed dose estimates from 90Y PET/CT values was on average -2 ± 18% for scaled 99mTc/90Y SPECT/CT, whereas estimates from 90Y BRS SPECT/CT differed on average by -50 ± 13%. For healthy liver absorbed dose estimates, all three imaging methods revealed comparable values. CONCLUSION The quantification capabilities of the imaging data influence 90Y SIRT tumor dosimetry, while healthy liver absorbed dose values were comparable for all investigated imaging data. When no 90Y PET/CT image data are available, the proposed scaled 99mTc/90Y SPECT/CT dosimetry method was found to be more appropriate for HCC tumor dosimetry than 90Y BRS SPECT/CT based dosimetry.
Collapse
Affiliation(s)
- Julia Brosch
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany.
| | - Astrid Gosewisch
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Lena Kaiser
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Max Seidensticker
- Department of Radiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Johannes Zellmer
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Harun Ilhan
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Andrei Todica
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Guido Böning
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
23
|
Ouahman M, Errifai R, Asmi H, Bouzekraoui Y, Douama S, Bentayeb F, Bonutti F. Collimator and Energy Window Evaluation in Ga-67 Imaging by Monte Carlo Simulation. Mol Imaging Radionucl Ther 2020; 29:118-123. [PMID: 33094575 PMCID: PMC7583743 DOI: 10.4274/mirt.galenos.2020.21549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objectives: Gallium-67 (Ga-67) imaging is affected by collimator penetration and scatter components owing to the high-energy (HE) gamma-ray emissions. The characterization of penetration and scatter distribution is essential for the optimization of low-energy high-resolution (LEHR), medium energy (ME), and HE collimators and for the development of an effective correction technique. We compared the image quality that can be achieved by 3 collimators for different energy windows using the SIMIND Monte Carlo code. Methods: Simulation experiments were conducted for LEHR, ME, and HE collimators for Ga-67 point source placed at 12-cm distance from the detector surface using the Monte Carlo SIMIND simulation code. Their spectra point spread functions as well as the original, penetration, scattering, and X-rays curves were drawn and analyzed. The parameters full-width at half maximum and full-width at tenth maximum were also investigated. Results: The original, penetration, and scatter curves within 10% for LEHR were 34.46%, 33.52%, 17.29%, and 14.72%, respectively. Similarly, the original, penetration, scatter, and X-rays within 10% for ME and HE were 83.06%, 10.25%, 6.69%, and 0% and 81.44%, 11.51%, 7.05%, and 0%, respectively. The trade-off between spatial resolution and sensitivity was achieved by using the ME collimator at 185 photopeak of Ga-67. Conclusion: The Monte Carlo simulation outcomes can be applied for optimal collimator designing and for the development of new correction method in Ga-67 imaging.
Collapse
Affiliation(s)
- Mina Ouahman
- Mohammed V-Rabat University Faculty of Science, Laboratory of High Energy Physics Modelisation Simulation, Rabat, Morocco
| | - Rachid Errifai
- Mohammed V-Rabat University Faculty of Science, Laboratory of High Energy Physics Modelisation Simulation, Rabat, Morocco
| | - Hicham Asmi
- Mohammed V-Rabat University Faculty of Science, Laboratory of High Energy Physics Modelisation Simulation, Rabat, Morocco
| | - Youssef Bouzekraoui
- Mohammed V-Rabat University Faculty of Science, Laboratory of High Energy Physics Modelisation Simulation, Rabat, Morocco
| | - Sanae Douama
- Mohammed V-Rabat University Faculty of Science, Laboratory of High Energy Physics Modelisation Simulation, Rabat, Morocco
| | - Farida Bentayeb
- Mohammed V-Rabat University Faculty of Science, Laboratory of High Energy Physics Modelisation Simulation, Rabat, Morocco
| | - Faustino Bonutti
- Academic Hospital of Udine, Clinic of Medical Physics, Udine, Italy
| |
Collapse
|
24
|
İnce C, Karadeniz Ö, Ertay T, Durak H. Collimator and energy window optimization for YTTRIUM-90 bremsstrahlung SPECT imaging. Appl Radiat Isot 2020; 167:109453. [PMID: 33039763 DOI: 10.1016/j.apradiso.2020.109453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/01/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
Abstract
The optimal collimator and energy window for Yttrium-90 bremsstrahlung SPECT imaging was investigated in the study. Yttrium-90 images were acquired with a dual-head gamma camera, equipped with parallel hole collimators and 90Y vial for different energy windows ranging from 56 to 232 keV. Image quality parameters (sensitivity, %FOV, and S/B) were examined for the energy window and collimator combinations. It is concluded that the optimal SPECT imaging was achieved using FBP Method with a HEGP collimator and the energy window of 90-110 keV.
Collapse
Affiliation(s)
- Caner İnce
- Department of Medical Physics, Institute of Health Sciences, Dokuz Eylül University, 35340, İnciraltı, İzmir, Turkey
| | - Özlem Karadeniz
- Department of Medical Physics, Institute of Health Sciences, Dokuz Eylül University, 35340, İnciraltı, İzmir, Turkey; Department of Physics, Faculty of Sciences, Dokuz Eylül University, 35390, Tınaztepe, İzmir, Turkey.
| | - Türkan Ertay
- Department of Medical Physics, Institute of Health Sciences, Dokuz Eylül University, 35340, İnciraltı, İzmir, Turkey; Department of Nuclear Medicine, Faculty of Medicine, Dokuz Eylül University, 35340, İnciraltı, İzmir, Turkey
| | - Hatice Durak
- Department of Medical Physics, Institute of Health Sciences, Dokuz Eylül University, 35340, İnciraltı, İzmir, Turkey; Department of Nuclear Medicine, Faculty of Medicine, Dokuz Eylül University, 35340, İnciraltı, İzmir, Turkey
| |
Collapse
|
25
|
St James S, Bednarz B, Benedict S, Buchsbaum JC, Dewaraja Y, Frey E, Hobbs R, Grudzinski J, Roncali E, Sgouros G, Capala J, Xiao Y. Current Status of Radiopharmaceutical Therapy. Int J Radiat Oncol Biol Phys 2020; 109:891-901. [PMID: 32805300 DOI: 10.1016/j.ijrobp.2020.08.035] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/06/2020] [Indexed: 02/02/2023]
Abstract
In radiopharmaceutical therapy (RPT), a radionuclide is systemically or locally delivered with the goal of targeting and delivering radiation to cancer cells while minimizing radiation exposure to untargeted cells. Examples of current RPTs include thyroid ablation with the administration of 131I, treatment of liver cancer with 90Y microspheres, the treatment of bony metastases with 223Ra, and the treatment of neuroendocrine tumors with 177Lu-DOTATATE. New RPTs are being developed where radionuclides are incorporated into systemic targeted therapies. To assure that RPT is appropriately implemented, advances in targeting need to be matched with advances in quantitative imaging and dosimetry methods. Currently, radiopharmaceutical therapy is administered by intravenous or locoregional injection, and the treatment planning has typically been implemented like chemotherapy, where the activity administered is either fixed or based on a patient's body weight or body surface area. RPT pharmacokinetics are measurable by quantitative imaging and are known to vary across patients, both in tumors and normal tissues. Therefore, fixed or weight-based activity prescriptions are not currently optimized to deliver a cytotoxic dose to targets while remaining within the tolerance dose of organs at risk. Methods that provide dose estimates to individual patients rather than to reference geometries are needed to assess and adjust the injected RPT dose. Accurate doses to targets and organs at risk will benefit the individual patients and decrease uncertainties in clinical trials. Imaging can be used to measure activity distribution in vivo, and this information can be used to determine patient-specific treatment plans where the dose to the targets and organs at risk can be calculated. The development and adoption of imaging-based dosimetry methods is particularly beneficial in early clinical trials. In this work we discuss dosimetric accuracy needs in modern radiation oncology, uncertainties in the dosimetry in RPT, and best approaches for imaging and dosimetry of internal radionuclide therapy.
Collapse
Affiliation(s)
- Sara St James
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California.
| | - Bryan Bednarz
- Department of Medical Physics and Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Stanley Benedict
- Department of Radiation Oncology, University of California Davis, Sacramento, California
| | - Jeffrey C Buchsbaum
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Yuni Dewaraja
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Eric Frey
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland
| | - Robert Hobbs
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland
| | | | - Emilie Roncali
- Department of Radiation Oncology, University of California Davis, Sacramento, California
| | - George Sgouros
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland
| | - Jacek Capala
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Ying Xiao
- Hospital of the University of Pennsylvania
| |
Collapse
|
26
|
Nakanishi K, Yamamoto S. Monte Carlo simulation of the bremsstrahlung X-rays emitted from H-3 and C-14 for the in-vivo imaging of small animals. Appl Radiat Isot 2020; 160:109136. [PMID: 32351228 DOI: 10.1016/j.apradiso.2020.109136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 01/22/2020] [Accepted: 03/17/2020] [Indexed: 01/31/2023]
Abstract
For the imaging using low energy pure beta-emitting radionuclides, autoradiography is used by slicing the subjects because the range of beta particles is short and thought to be impossible to detect beta particles from outside the subjects. Contrary to this scientific consensus, we recently found that the distributions of C-14 could be measured by detecting the bremsstrahlung X-rays emitted from the solution of C-14 and may also be applicable to lower energy pure beta-emitting radionuclide, H-3. Although the detection of bremsstrahlung X-rays emitted from H-3 and C-14 may be a possible method for in-vivo imaging of small animals, the absorption of the bremsstrahlung X-rays in the subjects are significant because the energy of bremsstrahlung X-rays is relatively low. In addition, the generations of bremsstrahlung X-rays are lower for low energy beta particles. They may make the in-vivo imaging of these beta radionuclides difficult. To clarify these points for the in-vivo imaging of bremsstrahlung X-rays emitted from H-3 and C-14, we used Monte Carlo simulation to calculate the numbers of counts and the energy spectra of the bremsstrahlung X-rays emitted from H-3 and C-14 in water. The simulation results showed that the fraction of detected bremsstrahlung X-rays by a 4 cm × 4 cm detector in all emitted beta particles was 3.5 × 10-6 at 0.1 mm from the source. Thus, with a 10 M Bq of H-3, we will detect ~35 cps at 0.1 mm from the source so in-vivo imaging at surface area will be possible. For C-14, the fraction of detected bremsstrahlung X-rays by the detector without and with collimator were 7.0 × 10-5 and 1.1 × 10-6 at 10 mm from the source, respectively. Thus, with a 10 M Bq of C-14, we will detect ~700 cps and ~11 cps at 10 mm from the source without and with collimator, respectively. The count rate without collimator is easy to form an image in a short time using a low energy X-ray detector. With collimator, in-vivo imaging of distribution of C-14 will be possible. We conclude that in-vivo imaging of small animals by detecting the bremsstrahlung X-rays emitted from H-3 and C-14 is possible and promising for a new molecular imaging technology.
Collapse
Affiliation(s)
- Kouhei Nakanishi
- Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Radiology, Akita Hospital, Chiryu, Japan.
| | - Seiichi Yamamoto
- Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
27
|
Chun SY, Nguyen MP, Phan TQ, Kim H, Fessler JA, Dewaraja YK. Algorithms and Analyses for Joint Spectral Image Reconstruction in Y-90 Bremsstrahlung SPECT. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:1369-1379. [PMID: 31647425 PMCID: PMC7263381 DOI: 10.1109/tmi.2019.2949068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Quantitative yttrium-90 (Y-90) SPECT imaging is challenging due to the nature of Y-90, an almost pure beta emitter that is associated with a continuous spectrum of bremsstrahlung photons that have a relatively low yield. This paper proposes joint spectral reconstruction (JSR), a novel bremsstrahlung SPECT reconstruction method that uses multiple narrow acquisition windows with accurate multi-band forward modeling to cover a wide range of the energy spectrum. Theoretical analyses using Fisher information and Monte-Carlo (MC) simulation with a digital phantom show that the proposed JSR model with multiple acquisition windows has better performance in terms of covariance (precision) than previous methods using multi-band forward modeling with a single acquisition window, or using a single-band forward modeling with a single acquisition window. We also propose an energy-window subset (ES) algorithm for JSR to achieve fast empirical convergence and maximum-likelihood based initialization for all reconstruction methods to improve quantification accuracy in early iterations. For both MC simulation with a digital phantom and experimental study with a physical multi-sphere phantom, our proposed JSR-ES, a fast algorithm for JSR with ES, yielded higher recovery coefficients (RCs) on hot spheres over all iterations and sphere sizes than all the other evaluated methods, due to fast empirical convergence. In experimental study, for the smallest hot sphere (diameter 1.6cm), at the 20th iteration the increase in RCs with JSR-ES was 66 and 31% compared with single wide and narrow band forward models, respectively. JSR-ES also yielded lower residual count error (RCE) on a cold sphere over all iterations than other methods for MC simulation with known scatter, but led to greater RCE compared with single narrow band forward model at higher iterations for experimental study when using estimated scatter.
Collapse
|
28
|
Kunnen B, Dietze MMA, Braat AJAT, Lam MGEH, Viergever MA, de Jong HWAM. Feasibility of imaging 90 Y microspheres at diagnostic activity levels for hepatic radioembolization treatment planning. Med Phys 2020; 47:1105-1114. [PMID: 31855282 PMCID: PMC7078991 DOI: 10.1002/mp.13974] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/28/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022] Open
Abstract
Purpose Prior to 90Y hepatic radioembolization, a dosage of 99mTc‐macroaggregated albumin (99mTc‐MAA) is administered to simulate the distribution of the 90Y‐loaded microspheres. This pretreatment procedure enables lung shunt estimation, detection of potential extrahepatic depositions, and estimation of the intrahepatic dose distribution. However, the predictive accuracy of the MAA particle distribution is often limited. Ideally, 90Y microspheres would also be used for the pretreatment procedure. Based on previous research, the pretreatment activity should be limited to the estimated safety threshold of 100 MBq, making imaging challenging. The purpose of this study was to evaluate the quality of intra‐ and extrahepatic imaging of 90Y‐based pretreatment positron emission tomography/computed tomography (PET/CT) and quantitative single photon emission computed tomography (SPECT)/CT scans, by means of phantom experiments and a patient study. Methods An anthropomorphic phantom with three extrahepatic depositions was filled with 90Y chloride to simulate a lung shunt fraction (LSF) of 5.3% and a tumor to nontumor ratio (T/N) of 7.9. PET /CT (Siemens Biograph mCT) and Bremsstrahlung SPECT/CT (Siemens Symbia T16) images were acquired at activities ranging from 1999 MBq down to 24 MBq, representing post‐ and pretreatment activities. PET/CT images were reconstructed with the clinical protocol and SPECT/CT images were reconstructed with a quantitative Monte Carlo‐based reconstruction protocol. Estimated LSF, T/N, contrast to noise ratio of all extrahepatic depositions, and liver parenchymal and tumor dose were compared with the phantom ground truth. A clinically reconstructed SPECT/CT of 150 MBq 99mTc represented the current clinical standard. In addition, a 90Y pretreatment scan was simulated for a patient by acquiring posttreatment PET/CT and SPECT/CT data with shortened acquisition times. Results At an activity of 100 MBq 90Y, PET/CT overestimated LSF [+10 percentage point (pp)], underestimated liver parenchymal dose (−3 Gy/GBq), and could not detect the extrahepatic depositions. SPECT/CT more accurately estimated LSF (−0.7 pp), parenchymal dose (−0.3 Gy/GBq) and could detect all three extrahepatic depositions. 99mTc SPECT/CT showed similar accuracy as 90Y SPECT/CT (LSF: +0.2 pp, parenchymal dose: +0.4 Gy/GBq, all extrahepatic depositions visible), although the noise level in the liver compartment was considerably lower for 99mTc SPECT/CT compared to 90Y SPECT/CT. The patient’s SPECT/CT simulating a pretreatment 90Y procedure accurately represented the posttreatment 90Y microsphere distribution. Conclusions Quantitative SPECT/CT of 100 MBq 90Y could accurately estimate LSF, T/N, parenchymal and tumor dose, and visualize extrahepatic depositions.
Collapse
Affiliation(s)
- Britt Kunnen
- Department of Radiology and Nuclear Medicine, UMC Utrecht, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands.,Image Sciences Institute, UMC Utrecht & University Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Martijn M A Dietze
- Department of Radiology and Nuclear Medicine, UMC Utrecht, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands.,Image Sciences Institute, UMC Utrecht & University Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Arthur J A T Braat
- Department of Radiology and Nuclear Medicine, UMC Utrecht, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Marnix G E H Lam
- Department of Radiology and Nuclear Medicine, UMC Utrecht, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Max A Viergever
- Image Sciences Institute, UMC Utrecht & University Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Hugo W A M de Jong
- Department of Radiology and Nuclear Medicine, UMC Utrecht, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands
| |
Collapse
|
29
|
A guide to 90Y radioembolization and its dosimetry. Phys Med 2019; 68:132-145. [DOI: 10.1016/j.ejmp.2019.09.236] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 01/14/2023] Open
|
30
|
Effect of ME Collimator Characteristic, Energy Window Width, and Reconstruction Algorithm Selection on Imaging Performance of Yttrium-90: Simulation Study. Nucl Med Mol Imaging 2019; 53:414-422. [DOI: 10.1007/s13139-019-00619-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/24/2019] [Accepted: 10/17/2019] [Indexed: 10/25/2022] Open
|
31
|
|
32
|
Li Y, O'Reilly S, Plyku D, Treves ST, Fahey F, Du Y, Cao X, Sexton-Stallone B, Brown J, Sgouros G, Bolch WE, Frey EC. Current pediatric administered activity guidelines for 99m Tc-DMSA SPECT based on patient weight do not provide the same task-based image quality. Med Phys 2019; 46:4847-4856. [PMID: 31448427 DOI: 10.1002/mp.13787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 11/11/2022] Open
Abstract
PURPOSE In the current clinical practice, administered activity (AA) for pediatric molecular imaging is often based on the North American expert consensus guidelines or the European Association of Nuclear Medicine dosage card, both of which were developed based on the best clinical practice. These guidelines were not formulated using a rigorous evaluation of diagnostic image quality (IQ) relative to AA. In the guidelines, AA is determined by a weight-based scaling of the adult AA, along with minimum and maximum AA constraints. In this study, we use task-based IQ assessment methods to rigorously evaluate the efficacy of weight-based scaling in equalizing IQ using a population of pediatric patients of different ages and body weights. METHODS A previously developed projection image database was used. We measured task-based IQ, with respect to the detection of a renal functional defect at six different AA levels (AA relative to the AA obtained from the guidelines). IQ was assessed using an anthropomorphic model observer. Receiver-operating characteristics (ROC) analysis was applied; the area under the ROC curve (AUC) served as a figure-of-merit for task performance. In addition, we investigated patient girth (circumference) as a potential improved predictor of the IQ. RESULTS The data demonstrate a monotonic and modestly saturating increase in AUC with increasing AA, indicating that defect detectability was limited by quantum noise and the effects of object variability were modest over the range of AA levels studied. The AA for a given value of the AUC increased with increasing age. The AUC vs AA plots for all the patient ages indicate that, for the current guidelines, the newborn and 10- and 15-yr phantoms had similar IQ for the same AA suggested by the North American expert consensus guidelines, but the 5- and 1-yr phantoms had lower IQ. The results also showed that girth has a stronger correlation with the needed AA to provide a constant AUC for 99m Tc-DMSA renal SPECT. CONCLUSIONS The results suggest that (a) weight-based scaling is not sufficient to equalize task-based IQ for patients of different weights in pediatric 99m Tc-DMSA renal SPECT; and (b) patient girth should be considered instead of weight in developing new administration guidelines for pediatric patients.
Collapse
Affiliation(s)
- Ye Li
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.,The Russell H Morgan Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Shannon O'Reilly
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Donika Plyku
- The Russell H Morgan Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - S Ted Treves
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Frederic Fahey
- Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA.,Department of Radiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Yong Du
- The Russell H Morgan Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Xinhua Cao
- Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA.,Department of Radiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | | | - Justin Brown
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - George Sgouros
- The Russell H Morgan Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA.,School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Wesley E Bolch
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Eric C Frey
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.,The Russell H Morgan Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA.,School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, 21287, USA
| |
Collapse
|
33
|
Bouzekraoui Y, Bentayeb F, Asmi H, Bonutti F. Comparison of Image Quality of Different Radionuclides Technetium-99m, Samarium-153, and Iodine-123. Indian J Nucl Med 2019; 34:201-204. [PMID: 31293298 PMCID: PMC6593946 DOI: 10.4103/ijnm.ijnm_42_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Introduction: The choice of the radionuclide has a key role in nuclear medicine which appearing the lowest scatter fraction. In addition, the presence of penetrated and scattered photons from collimator in single-photon emission computed tomography images degrades resolution and contrast. Thus, image quality depends on sensitivity and resolution of the collimator–detector system. The goal of this study was to compare the image quality that can be achieved by three radionuclides: technetium-99 m (Tc-99 m), iodine-123 (I-123), and samarium-153 (Sm-153). Materials and Methods: Tc-99 m and Sm-153 were imaged with low-energy high resolution (LEHR) collimator, while I-123 was imaged with medium-energy (ME) collimator. We modeled the Siemens Symbia Medical system using Monte Carlo simulation code SIMIND. The imaging characteristics of each radionuclide were investigated by simulated data: point spread function, sensitivity (Cps/MBq) and geometric, penetration and scattering distribution. Results: Tc-99 m and Sm-153 give best and results with LEHR collimator for spatial resolution (full width at half maximum [FWHM] = 3.19 mm; full width at tenth maximum [FWTM] = 6.73 mm) and (FWHM = 3.22 mm; FWTM = 7.39 mm), respectively. Whereas, I-123 provided with ME collimator a lower resolution (FWHM = 4.89 mm; FWTM = 9.89 mm). The sensitivity recorded by Tc-99 m, Sm-153, and I-153 were (31.21 Cps/MBq), (10.16 Cps/MBq), and (51.22 Cps/MBq), respectively. Conclusion: Tc-99 m and Sm-153 give the best and generally similar imaging properties with LEHR. For I-123, the ME collimator helps lowering the influence of high-energy gamma rays.
Collapse
Affiliation(s)
- Youssef Bouzekraoui
- Department of Physics, LPHE, Modeling and Simulations, Faculty of Science, Mohammed V University, Rabat, Morocco
| | - Farida Bentayeb
- Department of Physics, LPHE, Modeling and Simulations, Faculty of Science, Mohammed V University, Rabat, Morocco
| | - Hicham Asmi
- Department of Physics, LPHE, Modeling and Simulations, Faculty of Science, Mohammed V University, Rabat, Morocco
| | - Faustino Bonutti
- Department of Medical Physics, Academic Hospital of Udine, Udine, Italy
| |
Collapse
|
34
|
Nguyen MP, Goorden MC, Kamphuis C, Beekman FJ. Evaluation of pinhole collimator materials for micron-resolution ex vivo SPECT. ACTA ACUST UNITED AC 2019; 64:105017. [DOI: 10.1088/1361-6560/ab1618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Effects of collimator on imaging performance of Yttrium-90 Bremsstrahlung photons: Monte Carlo simulation. NUCLEAR ENGINEERING AND TECHNOLOGY 2019. [DOI: 10.1016/j.net.2018.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Debebe SA, Adjouadi M, Gulec SA, Franquiz J, McGoron AJ. 90 Y SPECT/CT quantitative study and comparison of uptake with pretreatment 99 m Tc-MAA SPECT/CT in radiomicrosphere therapy. J Appl Clin Med Phys 2019; 20:30-42. [PMID: 30628156 PMCID: PMC6371018 DOI: 10.1002/acm2.12512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/27/2018] [Accepted: 11/18/2018] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION Yttrium-90 (90 Y) microsphere post-treatment imaging reflects the true distribution characteristics of microspheres in the tumor and liver compartments. However, due to its decay spectra profile lacking a pronounced photopeak, the bremsstrahlung imaging for 90 Y has inherent limitations. The absorbed dose calculations for 90 Y microspheres radiomicrosphere therapy (RMT) sustain a limitation due to the poor quality of 90 Y imaging. The aim of this study was to develop quantitative methods to improve the post-treatment 90 Y bremsstrahlung single photon emission tomography (SPECT)/computed tomography (CT) image analysis for dosimetric purposes and to perform a quantitative comparison with the 99m Tc-MAA SPECT/CT images, which is used for theranostics purposes for liver and tumor dosimetry. METHODS Pre and post-treatment SPECT/CT data of patients who underwent RMT for primary or metastatic liver cancer were acquired. A Jasczak phantom with eight spherical inserts of various sizes was used to obtain optimal iteration number for the contrast recovery algorithm for improving 90 Y bremsstrahlung SPECT/CT images. Comparison of uptake on 99m Tc-MAA and 90 Y microsphere SPECT/CT images was assessed using tumor to healthy liver ratios (TLRs). The voxel dosimetry technique was used to estimate absorbed doses. Absorbed doses within the tumor and healthy part of the liver were also investigated for correlation with administered activity. RESULTS Improvement in CNR and contrast recovery coefficients on patient and phantom 90 Y bremsstrahlung SPECT/CT images respectively were achieved. The 99m Tc-MAA and 90 Y microspheres SPECT/CT images showed significant uptake correlation (r = 0.9, P = 0.05) with mean TLR of 9.4 ± 9.2 and 5.0 ± 2.2, respectively. The correlation between the administered activity and tumor absorbed dose was weak (r = 0.5, P > 0.05), however, healthy liver absorbed dose increased with administered activity (r = 0.8, P = 0.0). CONCLUSIONS This study demonstrated correlation in mean TLR between 99m Tc-MAA and 90 Y microsphere SPECT/CT.
Collapse
Affiliation(s)
- Senait Aknaw Debebe
- Department of Biomedical EngineeringFlorida International UniversityMiamiFLUSA
| | - Malek Adjouadi
- Department of Electrical and Computer EngineeringFlorida International UniversityMiamiFLUSA
| | - Seza A. Gulec
- Herbert Wertheim College of MedicineFlorida International UniversityMiamiFLUSA
| | | | - Anthony J. McGoron
- Department of Biomedical EngineeringFlorida International UniversityMiamiFLUSA
| |
Collapse
|
37
|
Abstract
Dosimetry for yttrium-90 radioembolization continues to generate interest and controversy, as multiple approaches have been used effectively. Traditionally, simple formulas primarily based on patients' body weight or perfused liver volume were used. Over the past several years, dosimetry refinements have led to marked improvements in this therapy from both a safety and efficacy standpoint. Technetium-99m macroaggregated albumin single photon emission computed tomography (SPECT) optimizes pretreatment dosimetry to ensure delivery of a therapeutic radiation dose to the tumor while minimizing nontarget radiation to healthy hepatic tissue. Post-treatment yttrium-90 PET utilizing the inherent internal pair production of yttrium-90 accurately calculates the absorbed dose to tumors and to the normal hepatic parenchyma, which correlates with patient outcomes. As dosimetric calculations become more complex, quantitative imaging with Tc-99m SPECT and Y-90 PET may set the new standard for radioembolization dosimetry.
Collapse
Affiliation(s)
- Bashir A Tafti
- Section of Interventional Radiology, Department of Radiology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA
| | - Siddharth A Padia
- Section of Interventional Radiology, Department of Radiology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA.
| |
Collapse
|
38
|
Bouzekraoui Y, Bentayeb F, Asmi H, Bonutti F. Energy Window and Contrast Optimization for Single-photon Emission Computed Tomography Bremsstrahlung Imaging with Yttrium-90. Indian J Nucl Med 2019; 34:125-128. [PMID: 31040523 PMCID: PMC6481209 DOI: 10.4103/ijnm.ijnm_150_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Purpose In yttrium-90 (Y-90) single-photon emission computed tomography (SPECT) imaging, the choice of the acquisition energy window is not trivial, due to the continuous and broad energy distribution of the bremsstrahlung photons. In this work, we investigate the effects of the energy windows on the image contrast to noise ratio (CNR), in order to select the optimal energy window for Y-90 imaging. Materials and Methods We used the Monte Carlo SIMIND code to simulate the Jaszczak phantom which consists of the six hot spheres filled with Y-90 and ranging from 9.5 to 31.8 mm in diameter. Siemens Symbia gamma camera fitted with a high-energy collimator was simulated. To evaluate the effect of the energy windows on the image contrast, five narrow and large energy windows were assessed. Results The optimal energy window obtained for Y-90 bremsstrahlung SPECT imaging was 120-150 keV. Furthermore, the results obtained for CNR indicate that the high detection is only for the three large spheres. Conclusion The optimization of energy window in Y-90 bremsstrahlung has the potential to improve the image quality.
Collapse
Affiliation(s)
- Youssef Bouzekraoui
- Department of Physics, LPHE, Modeling and Simulations, Faculty of Science, Mohammed V University, Rabat, Morocco
| | - Farida Bentayeb
- Department of Physics, LPHE, Modeling and Simulations, Faculty of Science, Mohammed V University, Rabat, Morocco
| | - Hicham Asmi
- Department of Physics, LPHE, Modeling and Simulations, Faculty of Science, Mohammed V University, Rabat, Morocco
| | - Faustino Bonutti
- Department of Medical Physics, Academic Hospital of Udine, Udine, Italy
| |
Collapse
|
39
|
Gustafsson J, Brolin G, Ljungberg M. Monte Carlo-based SPECT reconstruction within the SIMIND framework. Phys Med Biol 2018; 63:245012. [PMID: 30523946 DOI: 10.1088/1361-6560/aaf0f1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This paper presents the development and validation of a Monte Carlo-based singe photon emission computed tomography reconstruction program for parallel-hole collimation contained within the SIMIND Monte Carlo framework. The Monte Carlo code is used as an accurate forward-projector and is combined with a simplified back-projector to perform iterative tomographic reconstruction using the Maximum Likelihood Expectation Maximization and Ordered Subsets Expectation Maximization algorithms, together forming a program called SIMREC. The Monte Carlo simulation transforms the estimated source distribution directly from activity to counts in its projections. Hence, the reconstructed image is expressed in activity without reference to an external calibration. The program is tested using phantom measurements of spheres filled with 99mTc, 177Lu and 131I placed in air and centrally and peripherally in a water-filled elliptical phantom. The feasibility of applying the reconstruction to patients is also demonstrated for a range of radiopharmaceuticals. The deviation in total activity in the spheres ranged between -4.1% and 6.2% compared with the activity determined when preparing the phantom. The SIMREC program was found to be accurate with respect to activity estimation and to reconstruct visually acceptable images within a few hours when applied to patient examples.
Collapse
Affiliation(s)
- Johan Gustafsson
- Department of Medical Radiation Physics, Lund University, Lund, Sweden. Author to whom any correspondence should be addressed
| | | | | |
Collapse
|
40
|
Esquinas PL, Shinto A, Kamaleshwaran KK, Joseph J, Celler A. Biodistribution, pharmacokinetics, and organ-level dosimetry for 188Re-AHDD-Lipiodol radioembolization based on quantitative post-treatment SPECT/CT scans. EJNMMI Phys 2018; 5:30. [PMID: 30523435 PMCID: PMC6283804 DOI: 10.1186/s40658-018-0227-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 08/08/2018] [Indexed: 12/25/2022] Open
Abstract
Background Rhenium-188-labelled-Lipiodol radioembolization is a safe and cost-effective treatment for primary liver cancer. In order to determine correlations between treatment doses and patient response to therapy, accurate patient-specific dosimetry is required. Up to date, the reported dosimetry of 188Re-Lipiodol has been based on whole-body (WB) planar imaging only, which has limited quantitative accuracy. The aim of the present study is to determine the in vivo pharmacokinetics, bio-distribution, and organ-level dosimetry of 188Re-AHDD-Lipiodol radioembolization using a combination of post-treatment planar and quantitative SPECT/CT images. Furthermore, based on the analysis of the pharmacokinetic data, a practical and relatively simple imaging and dosimetry method that could be implemented in clinics for 188Re-AHDD-Lipiodol radioembolization is proposed. Thirteen patients with histologically proven hepatocellular carcinoma underwent 188Re-AHDD-Lipiodol radioembolization. A series of 2–3 WB planar images and one SPECT/CT scan were acquired over 48 h after the treatment. The time-integrated activity coefficients (TIACs, also known as residence-times) and absorbed doses of tumors and organs at risk (OARs) were determined using a hybrid WB/SPECT imaging method. Results Whole-body imaging showed that 188Re-AHDD-Lipiodol accumulated mostly in the tumor and liver tissue but a non-negligible amount of the pharmaceutical was also observed in the stomach, lungs, salivary glands, spleen, kidneys, and urinary bladder. On average, the measured effective half-life of 188Re-AHDD-Lipiodol was 12.5 ± 1.9 h in tumor. The effective half-life in the liver and lungs (the two organs at risk) was 12.6 ± 1.7 h and 12.0 ± 1.9 h, respectively. The presence of 188Re in other organs was probably due to the chemical separation and subsequent release of the free radionuclide from Lipiodol. The average doses per injected activity in the tumor, liver, and lungs were 23.5 ± 40.8 mGy/MBq, 2.12 ± 1.78 mGy/MBq, and 0.11 ± 0.05 mGy/MBq, respectively. The proposed imaging and dosimetry method, consisting of a single SPECT/CT for activity determination followed by 188Re-AHDD-Lipiodol clearance with the liver effective half-life of 12.6 h, resulted in TIACs estimates (and hence, doses) mostly within ± 20% from the reference TIACs (estimated using three WB images and one SPECT/CT). Conclusions The large inter-patient variability of the absorbed doses in tumors and normal tissue in 188Re-HDD-Lipiodol radioembolization patients emphasizes the importance of patient-specific dosimetry calculations based on quantitative post-treatment SPECT/CT imaging. Electronic supplementary material The online version of this article (10.1186/s40658-018-0227-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pedro L Esquinas
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada. .,Medical Imaging Research Group, Vancouver, British Columbia, Canada.
| | - Ajit Shinto
- Department of Nuclear Medicine, Kovai Medical Center and Hospital, Coimbatore, Tamil Nadu, India
| | | | - Jephy Joseph
- Department of Nuclear Medicine, Kovai Medical Center and Hospital, Coimbatore, Tamil Nadu, India
| | - Anna Celler
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada.,Medical Imaging Research Group, Vancouver, British Columbia, Canada
| |
Collapse
|
41
|
Bastiaannet R, Kappadath SC, Kunnen B, Braat AJAT, Lam MGEH, de Jong HWAM. The physics of radioembolization. EJNMMI Phys 2018; 5:22. [PMID: 30386924 PMCID: PMC6212377 DOI: 10.1186/s40658-018-0221-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 06/19/2018] [Indexed: 12/11/2022] Open
Abstract
Radioembolization is an established treatment for chemoresistant and unresectable liver cancers. Currently, treatment planning is often based on semi-empirical methods, which yield acceptable toxicity profiles and have enabled the large-scale application in a palliative setting. However, recently, five large randomized controlled trials using resin microspheres failed to demonstrate a significant improvement in either progression-free survival or overall survival in both hepatocellular carcinoma and metastatic colorectal cancer. One reason for this might be that the activity prescription methods used in these studies are suboptimal for many patients.In this review, the current dosimetric methods and their caveats are evaluated. Furthermore, the current state-of-the-art of image-guided dosimetry and advanced radiobiological modeling is reviewed from a physics' perspective. The current literature is explored for the observation of robust dose-response relationships followed by an overview of recent advancements in quantitative image reconstruction in relation to image-guided dosimetry.This review is concluded with a discussion on areas where further research is necessary in order to arrive at a personalized treatment method that provides optimal tumor control and is clinically feasible.
Collapse
Affiliation(s)
- Remco Bastiaannet
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Room E01.132, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - S. Cheenu Kappadath
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1155 Pressler St, Unit 1352, Houston, TX 77030 USA
| | - Britt Kunnen
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Room E01.132, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Arthur J. A. T. Braat
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Room E01.132, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Marnix G. E. H. Lam
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Room E01.132, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Hugo W. A. M. de Jong
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Room E01.132, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
42
|
Ljungberg M, Sjogreen Gleisner K. 3-D Image-Based Dosimetry in Radionuclide Therapy. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2018. [DOI: 10.1109/trpms.2018.2860563] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Kappadath SC, Mikell J, Balagopal A, Baladandayuthapani V, Kaseb A, Mahvash A. Hepatocellular Carcinoma Tumor Dose Response After 90Y-radioembolization With Glass Microspheres Using 90Y-SPECT/CT-Based Voxel Dosimetry. Int J Radiat Oncol Biol Phys 2018; 102:451-461. [DOI: 10.1016/j.ijrobp.2018.05.062] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 05/16/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022]
|
44
|
Allred JD, Niedbala J, Mikell JK, Owen D, Frey KA, Dewaraja YK. The value of 99mTc-MAA SPECT/CT for lung shunt estimation in 90Y radioembolization: a phantom and patient study. EJNMMI Res 2018; 8:50. [PMID: 29904808 PMCID: PMC6003896 DOI: 10.1186/s13550-018-0402-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/31/2018] [Indexed: 12/17/2022] Open
Abstract
Background A major toxicity concern in radioembolization therapy of hepatic malignancies is radiation-induced pneumonitis and sclerosis due to hepatopulmonary shunting of 90Y microspheres. Currently, 99mTc macroaggregated albumin (99mTc-MAA) imaging is used to estimate the lung shunt fraction (LSF) prior to treatment. The aim of this study was to evaluate the accuracy/precision of LSF estimated from 99mTc planar and SPECT/CT phantom imaging, and within this context, to compare the corresponding LSF and lung-absorbed dose values from 99mTc-MAA patient studies. Additionally, LSFs from pre- and post-therapy imaging were compared. Results A liver/lung torso phantom filled with 99mTc to achieve three lung shunt values was scanned by planar and SPECT/CT imaging with repeat acquisitions to assess accuracy and precision. To facilitate processing of patient data, a workflow that relies on SPECT and CT-based auto-contouring to define liver and lung volumes for the LSF calculation was implemented. Planar imaging-based LSF estimates for 40 patients, obtained from their medical records, were retrospectively compared with SPECT/CT imaging-based calculations with attenuation and scatter correction. Additionally, in a subset of 20 patients, the pre-therapy estimates were compared with 90Y PET/CT-based measurements. In the phantom study, improved accuracy in LSF estimation was achieved using SPECT/CT with attenuation and scatter correction (within 13% of the true value) compared with planar imaging (up to 44% overestimation). The results in patients showed a similar trend with planar imaging significantly overestimating LSF compared to SPECT/CT. There was no correlation between lung shunt estimates and the delay between 99mTc-MAA administration and scanning, but off-target extra hepatic uptake tended to be more likely in patients with a longer delay. The mean lung absorbed dose predictions for the 28 patients who underwent therapy was 9.3 Gy (range 1.3–29.4) for planar imaging and 3.2 Gy (range 0.4–13.4) for SPECT/CT. For the patients with post-therapy imaging, the mean LSF from 90Y PET/CT was 1.0%, (range 0.3–2.8). This value was not significantly different from the mean LSF estimate from 99mTc-MAA SPECT/CT (mean 1.0%, range 0.4–1.6; p = 0.968), but was significantly lower than the mean LSF estimate based on planar imaging (mean 4.1%, range 1.2–15.0; p = 0.0002). Conclusions The improved accuracy demonstrated by the phantom study, agreement with 90Y PET/CT in patient studies, and the practicality of using auto-contouring for liver/lung definition suggests that 99mTc-MAA SPECT/CT with scatter and attenuation corrections should be used for lung shunt estimation prior to radioembolization.
Collapse
Affiliation(s)
- Jonathan D Allred
- Radiotherapy Physics, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Jeremy Niedbala
- Department of Radiology, University of Michigan, 1301 Catherine, 2276 Med Sci I/SPC 5610, Ann Arbor, MI, 48109, USA
| | - Justin K Mikell
- Department of Radiation Oncology, University of Michigan, Ann Arbor, USA
| | - Dawn Owen
- Department of Radiation Oncology, University of Michigan, Ann Arbor, USA
| | - Kirk A Frey
- Department of Radiology, University of Michigan, 1301 Catherine, 2276 Med Sci I/SPC 5610, Ann Arbor, MI, 48109, USA
| | - Yuni K Dewaraja
- Department of Radiology, University of Michigan, 1301 Catherine, 2276 Med Sci I/SPC 5610, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
45
|
Lim H, Fessler JA, Wilderman SJ, Brooks AF, Dewaraja YK. Y-90 SPECT ML image reconstruction with a new model for tissue-dependent bremsstrahlung production using CT information: a proof-of-concept study. Phys Med Biol 2018; 63:115001. [PMID: 29714716 PMCID: PMC6112241 DOI: 10.1088/1361-6560/aac1ad] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
While the yield of positrons used in Y-90 PET is independent of tissue media, Y-90 SPECT imaging is complicated by the tissue dependence of bremsstrahlung photon generation. The probability of bremsstrahlung production is proportional to the square of the atomic number of the medium. Hence, the same amount of activity in different tissue regions of the body will produce different numbers of bremsstrahlung photons. Existing reconstruction methods disregard this tissue-dependency, potentially impacting both qualitative and quantitative imaging of heterogeneous regions of the body such as bone with marrow cavities. In this proof-of-concept study, we propose a new maximum-likelihood method that incorporates bremsstrahlung generation probabilities into the system matrix, enabling images of the desired Y-90 distribution to be reconstructed instead of the 'bremsstrahlung distribution' that is obtained with existing methods. The tissue-dependent probabilities are generated by Monte Carlo simulation while bone volume fractions for each SPECT voxel are obtained from co-registered CT. First, we demonstrate the tissue dependency in a SPECT/CT imaging experiment with Y-90 in bone equivalent solution and water. Visually, the proposed reconstruction approach better matched the true image and the Y-90 PET image than the standard bremsstrahlung reconstruction approach. An XCAT phantom simulation including bone and marrow regions also demonstrated better agreement with the true image using the proposed reconstruction method. Quantitatively, compared with the standard reconstruction, the new method improved estimation of the liquid bone:water activity concentration ratio by 40% in the SPECT measurement and the cortical bone:marrow activity concentration ratio by 58% in the XCAT simulation.
Collapse
Affiliation(s)
- Hongki Lim
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, United States of America
| | | | | | | | | |
Collapse
|
46
|
Kurilova I, Beets-Tan RGH, Ulaner GA, Boas FE, Petre EN, Yarmohammadi H, Ziv E, Deipolyi AR, Brody LA, Gonen M, Sofocleous CT. 90Y Resin Microspheres Radioembolization for Colon Cancer Liver Metastases Using Full-Strength Contrast Material. Cardiovasc Intervent Radiol 2018; 41:1419-1427. [PMID: 29766239 DOI: 10.1007/s00270-018-1985-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/07/2018] [Indexed: 01/22/2023]
Abstract
OBJECTIVES To assess safety and efficacy of 90Y resin microspheres administration using undiluted non-ionic contrast material (UDCM) {100% Omnipaque-300 (Iohexol)} in both the "B" and "D" lines. MATERIALS AND METHODS We reviewed all colorectal cancer liver metastases patients treated with 90Y resin microspheres radioembolization (RAE) from 2009 to 2017. As of April 2013, two experienced operators started using UDCM (study group) instead of standard sandwich infusion (control group). Occurrence of myelosuppression (leukopenia, neutropenia, erythrocytopenia or/and thrombocytopenia), stasis, nontarget delivery (NTD), median fluoroscopy radiation dose (FRD), median infusion time (IT), liver progression-free (LPFS) and overall survivals (OS) was evaluated. Complications within 6 months post-RAE were reported according to CTCAE v3.0 criteria. RESULTS Study and control groups comprised 23(28%) and 58(72%) patients, respectively. Median follow-up was 9.1 months. There was no statistically significant difference in myelosuppression incidence within 6 months post-RAE between groups. Median FRD and IT for study and control groups were 44.6 vs. 97.35 Gy/cm2 (p = 0.048) and 31 vs. 39 min (p = 0.006), respectively. A 38% lower stasis incidence in study group was not significant (p = 0.34). NTD occurred in 1/27(4%) study vs. 5/73(7%) control group procedures (p = 1). Grade 1-2 and grade 3-4 toxicities between study and control group patients were 36%(8/22) vs. 45%(26/58), p = 0.61 and 9%(2/22) vs. 16%(9/58), p = 0.72, respectively. There was no difference in LPFS and OS between groups. CONCLUSION Administration of 90Y resin microspheres using UDCM in both lines is safe and effective, resulting in lower fluoroscopy radiation dose and shorter infusion time, without evidence of myelosuppression or increased stasis incidence.
Collapse
Affiliation(s)
- I Kurilova
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - R G H Beets-Tan
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - G A Ulaner
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - F E Boas
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - E N Petre
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - H Yarmohammadi
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - E Ziv
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - A R Deipolyi
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - L A Brody
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - M Gonen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Constantinos T Sofocleous
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
47
|
Hemmingsson J, Högberg J, Mölne J, Svensson J, Gjertsson P, Rizell M, Henrikson O, Bernhardt P. Autoradiography and biopsy measurements of a resected hepatocellular carcinoma treated with 90 yttrium radioembolization demonstrate large absorbed dose heterogeneities. Adv Radiat Oncol 2018; 3:439-446. [PMID: 30202811 PMCID: PMC6128031 DOI: 10.1016/j.adro.2018.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/29/2018] [Accepted: 04/18/2018] [Indexed: 01/29/2023] Open
Abstract
Purpose Radioembolization is an alternative palliative treatment for hepatocellular carcinoma. Here, we examine the uptake differences between tumor tissue phenotypes and present a cross-section of the absorbed dose throughout a liver tissue specimen. Methods and materials A patient with hepatocellular carcinoma was treated with 90Y radioembolization followed by liver tissue resection. Gamma camera images and autoradiographs were collected and biopsy tissue samples were analyzed using a gamma well counter and light microscopy. Results An analysis of 25 punched biopsy tissue samples identified 4 tissue regions: Normal tissue, viable tumor tissue with and without infarcted areas, and tumor areas with postnecrotic scar tissue. Autoradiography and biopsy tissue sample measurements showed large dose differences between viable and postnecrotic tumor tissue (159 Gy vs 23 Gy). Conclusions Radioembolization of 90 yttrium with resin microspheres produces heterogeneous-absorbed dose distributions in the treatment of unifocal hepatic malignancies that could not be accurately determined with current gamma camera imaging techniques.
Collapse
Affiliation(s)
- Jens Hemmingsson
- Department of Radiation Physics, The Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jonas Högberg
- Department of Medical Physics, Linköping University Hospital, Linköping, Sweden
| | - Johan Mölne
- Department of Pathology, The Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Johanna Svensson
- Department of Oncology, The Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Peter Gjertsson
- Department of Clinical Physiology, The Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Magnus Rizell
- Department of Surgery, The Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Olof Henrikson
- Department of Radiology, The Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Peter Bernhardt
- Department of Radiation Physics, The Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
48
|
Walrand S, Hesse M, Jamar F, Lhommel R. The origin and reduction of spurious extrahepatic counts observed in 90Y non-TOF PET imaging post radioembolization. Phys Med Biol 2018. [PMID: 29513273 DOI: 10.1088/1361-6560/aab4e9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Our literature survey revealed a physical effect unknown to the nuclear medicine community, i.e. internal bremsstrahlung emission, and also the existence of long energy resolution tails in crystal scintillation. None of these effects has ever been modelled in PET Monte Carlo (MC) simulations. This study investigates whether these two effects could be at the origin of two unexplained observations in 90Y imaging by PET: the increasing tails in the radial profile of true coincidences, and the presence of spurious extrahepatic counts post radioembolization in non-TOF PET and their absence in TOF PET. These spurious extrahepatic counts hamper the microsphere delivery check in liver radioembolization. An acquisition of a 32P vial was performed on a GSO PET system. This is the ideal setup to study the impact of bremsstrahlung x-rays on the true coincidence rate when no positron emission and no crystal radioactivity are present. A MC simulation of the acquisition was performed using Gate-Geant4. MC simulations of non-TOF PET and TOF-PET imaging of a synthetic 90Y human liver radioembolization phantom were also performed. Internal bremsstrahlung and long energy resolution tails inclusion in MC simulations quantitatively predict the increasing tails in the radial profile. In addition, internal bremsstrahlung explains the discrepancy previously observed in bremsstrahlung SPECT between the measure of the 90Y bremsstrahlung spectrum and its simulation with Gate-Geant4. However the spurious extrahepatic counts in non-TOF PET mainly result from the failure of conventional random correction methods in such low count rate studies and poor robustness versus emission-transmission inconsistency. A novel proposed random correction method succeeds in cleaning the spurious extrahepatic counts in non-TOF PET. Two physical effects not considered up to now in nuclear medicine were identified to be at the origin of the unusual 90Y true coincidences radial profile. TOF reconstruction removing of the spurious extrahepatic counts was theoretically explained by a better robustness against emission-transmission inconsistency. A novel random correction method was proposed to overcome the issue in non-TOF PET. Further studies are needed to assess the novel random correction method robustness.
Collapse
|
49
|
Porter CA, Bradley KM, Hippeläinen ET, Walker MD, McGowan DR. Phantom and clinical evaluation of the effect of full Monte Carlo collimator modelling in post-SIRT yttrium-90 Bremsstrahlung SPECT imaging. EJNMMI Res 2018; 8:7. [PMID: 29356993 PMCID: PMC5778088 DOI: 10.1186/s13550-018-0361-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/10/2018] [Indexed: 01/06/2023] Open
Abstract
Background Post-therapy SPECT/CT imaging of 90Y microspheres delivered to hepatic malignancies is difficult, owing to the continuous, high-energy Bremsstrahlung spectrum emitted by 90Y. This study aimed to evaluate the utility of a commercially available software package (HybridRecon, Hermes Medical Solutions AB) which incorporates full Monte Carlo collimator modelling. Analysis of image quality was performed on both phantom and clinical images in order to ultimately provide a recommendation of an optimum reconstruction for post-therapy 90Y microsphere SPECT/CT imaging. A 3D-printed anthropomorphic liver phantom was filled with 90Y with a sphere-to-background ratio of 4:1 and imaged on a GE Discovery 670 SPECT/CT camera. Datasets were reconstructed using ordered-subsets expectation maximization (OSEM) 1–7 iterations in order to identify the optimal OSEM reconstruction (5 iterations, 15 subsets). Quantitative analysis was subsequently carried out on phantom datasets obtained using four reconstruction algorithms: the default OSEM protocol (2 iterations, 10 subsets) and the optimised OSEM protocol, both with and without full Monte Carlo collimator modelling. The quantitative metrics contrast recovery (CR) and background variability (BV) were calculated. The four algorithms were then used to retrospectively reconstruct 10 selective internal radiation therapy (SIRT) patient datasets which were subsequently blind scored for image quality by a consultant radiologist. Results The optimised OSEM reconstruction (5 iterations, 15 subsets with full MC collimator modelling) increased the CR by 42% (p < 0.001) compared to the default OSEM protocol (2 iterations, 10 subsets). The use of full Monte Carlo collimator modelling was shown to further improve CR by 14% (30 mm sphere, CR = 90%, p < 0.05). The consultant radiologist had a significant preference for the optimised OSEM over the default OSEM protocol (p < 0.001), with the optimised OSEM being the favoured reconstruction in every one of the 10 clinical cases presented. Conclusions OSEM (5 iterations, 15 subsets) with full Monte Carlo collimator modelling is quantitatively the optimal image reconstruction for post-SIRT 90Y Bremsstrahlung SPECT/CT imaging. The use of full Monte Carlo collimator modelling for correction of image-degrading effects significantly increases contrast recovery without degrading clinical image quality.
Collapse
Affiliation(s)
- Charlotte A Porter
- Radiation Physics and Protection, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK.
| | - Kevin M Bradley
- Department of Radiology, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Eero T Hippeläinen
- HUS Medical Imaging Centre, Clinical Physiology and Nuclear Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Matthew D Walker
- Radiation Physics and Protection, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK
| | - Daniel R McGowan
- Radiation Physics and Protection, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK.,Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, UK
| |
Collapse
|
50
|
Balagopal A, Kappadath SC. Characterization of 90 Y-SPECT/CT self-calibration approaches on the quantification of voxel-level absorbed doses following 90 Y-microsphere selective internal radiation therapy. Med Phys 2017; 45:875-883. [PMID: 29172243 DOI: 10.1002/mp.12695] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 09/27/2017] [Accepted: 11/19/2017] [Indexed: 11/09/2022] Open
Abstract
PURPOSE 90 Y-microsphere selective internal radiation therapy (90 Y-SIRT or 90 Y-radioembolization) is used in the management of unresectable liver tumors. 90 Y-SIRT presents a unique situation where the total 90 Y activity inside the liver can be determined with high accuracy (> 95%). 90 Y bremsstrahlung single-photon emission computed tomography (SPECT)/computed tomography (CT) can be self-calibrated to provide quantitative images that facilitate voxel-level absorbed dose calculations. We investigated the effects of different approaches for 90 Y-SPECT self-calibration on the quantification of absorbed doses following 90 Y-SIRT. METHODS 90 Y bremsstrahlung SPECT/CT images of 31 patients with hepatocellular carcinoma, collected following 90 Y-SIRT, were analyzed, yielding 48 tumor and 31 normal liver contours. We validated the accuracy of absorbed doses calculated by a commercial software against those calculated using Monte Carlo-based radiation transport. The software package was used to analyze the following definitions of SPECT volume of interest used for 90 Y-SPECT self-calibration: (a) SPECT field-of-view (FOV), (b) chest-abdomen contour, (c) total liver contour, (d) total liver contour expanded by 5 mm, and (e) total liver contour contracted by 5 mm. Linear correlation and Bland-Altman analysis were performed for tumor and normal liver tissue absorbed dose volume histogram metrics between the five different approaches for 90 Y-SPECT self-calibration. RESULTS The mean dose calculated using the commercial software was within 3% of Monte Carlo for tumors and normal liver tissues. The tumor mean dose calculated using the chest-abdomen calibration was within 2% of that calculated using the SPECT FOV, whereas the doses calculated using the total liver contour, expanded total liver contour, and contracted total liver contour were within 68%, 47%, and 107%, respectively, of doses calculated using the SPECT FOV. The normal liver tissue mean dose calculated using the chest-abdomen contour was within 1.3% of that calculated using the SPECT FOV, whereas the doses calculated using the total liver contour, expanded total liver contour, and contracted total liver contour were within 73%, 50%, and 114%, respectively, of doses calculated using the SPECT FOV. CONCLUSIONS The mean error of < 3% for commercial software can be considered clinically acceptable for 90 Y-SIRT dosimetry. Absorbed dose quantification using 90 Y-SPECT self-calibration with the chest-abdomen contour was equivalent to that calculated using the SPECT FOV, but self-calibration with the total liver contour yielded substantially higher (~70%) dose values. The large biases revealed by our study suggest that consistent absorbed dose calculation approaches are essential when comparing 90 Y-SIRT dosimetry between different clinical studies.
Collapse
Affiliation(s)
- Anjali Balagopal
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - S Cheenu Kappadath
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|