1
|
Dimeji IY, Abass KS, Audu NM, Ayodeji AS. L-Arginine and immune modulation: A pharmacological perspective on inflammation and autoimmune disorders. Eur J Pharmacol 2025; 997:177615. [PMID: 40216179 DOI: 10.1016/j.ejphar.2025.177615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/01/2025] [Accepted: 04/08/2025] [Indexed: 04/22/2025]
Abstract
L- Arginine (2-Amino-5-guanidinovaleric acid, L-Arg) is a semi-essential amino acid that is mainly produced within the urea cycle. It acts as a key precursor in the synthesis of proteins, urea, creatine, prolamines (including putrescine, spermine, and spermidine), proline, and nitric oxide (NO). WhenL-Arg is metabolized, it produces NO, glutamate, and prolamines, which all play important regulatory roles in various physiological functions. In addition to its metabolic roles,L-Arg significantly influences immune responses, especially in the context of inflammation and autoimmune diseases. It affects the activity of immune cells by modulating T-cell function, the polarization of macrophages, and the release of cytokines. Importantly,L-Arg plays a dual role in immune regulation, functioning as both an immunostimulatory and immunosuppressive agent depending on the specific cellular and biochemical environments. This review examines the immunopharmacological mechanisms of L-Arg, emphasizing its involvement in inflammatory responses and its potential therapeutic uses in autoimmune conditions like rheumatoid arthritis, multiple sclerosis, and inflammatory bowel disease. By influencing the pathways of nitric oxide synthase (NOS) and arginase (ARG), L-Arg helps maintain immune balance and contributes to the pathophysiology of diseases. Gaining a better understanding of the pharmacological effects of L-Arg on immune regulation could yield new perspectives on targeted treatments for immune-related diseases. Exploring its impact on immune signaling and metabolic pathways may result in novel therapeutic approaches for chronic inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Igbayilola Yusuff Dimeji
- Department of Human Physiology, College of Medicine and Health Sciences, Baze University, Nigeria.
| | - Kasim Sakran Abass
- Department of Physiology, Biochemistry, and Pharmacology, College of Veterinary Medicine, University of Kirkuk, Kirkuk 36001, Iraq
| | - Ngabea Murtala Audu
- Department of Medicine Maitama District Hospital/ College of Medicine Baze University, Abuja, Nigeria
| | - Adekola Saheed Ayodeji
- Department of Chemical Pathology, Medical Laboratory Science Program, Faculty of Nursing and Allied Health Sciences, University of Abuja, Abuja, Nigeria.
| |
Collapse
|
2
|
Guo M, Cui S, Liu X, Feng J, Li M, Dong Z, Wu J, Cai G, Chen X, Li Q. Association of thrombomodulin with the severity of chronic kidney disease: a cross-sectional study. BMC Nephrol 2025; 26:268. [PMID: 40448261 DOI: 10.1186/s12882-025-04200-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 05/20/2025] [Indexed: 06/02/2025] Open
Abstract
BACKGROUND Inflammatory disorders and endothelial dysfunction are prevalent in patients with chronic kidney disease (CKD). Thrombomodulin (TM) possesses both anticoagulant and anti-inflammatory properties. This study aimed to investigate the association between TM levels and the severity of CKD. METHODS This cross-sectional study included two cohorts of patients with CKD from the General Hospital of the Chinese People's Liberation Army. Patients with CKD were categorized into high and low TM groups based on the upper plasma TM reference value. The laboratory indices of patients were compared. Simultaneously, a correlation analysis was performed to identify the association between the TM and each parameter. Patients were categorized into two groups based on eGFR: preserved renal function (eGFR ≥ 60 mL/min/1.73 m²) and significantly impaired renal function (eGFR < 60 mL/min/1.73 m²). Logistic regression analysis and receiver operating characteristic (ROC) curves were used for analysis. RESULTS A total of 33 patients with CKD were included in the discovery cohort, and 150 were included in the validation cohort. In the discovery cohort, creatinine (P = 0.0028) and urea nitrogen (P = 0.0011) were significantly higher in the high TM group compared to the low TM group, whereas eGFR (P = 0.0005) was lower. In the validation cohort, high TM group exhibited significantly higher creatinine (P < 0.001), urea nitrogen (P < 0.001), and 24-hour proteinuria levels (P < 0.001) compared to the low TM group, while eGFR (P < 0.001) was lower. Merging the discovery and validation cohorts revealed significant positive correlations between TM and IL-2, TNF-α, vWF (Act), vWF (Ag), serum creatinine, urea nitrogen, and 24-hour proteinuria, while eGFR was negatively correlated with TM (P < 0.001). After adjusting for confounders, TM (adjusted odds ratio = 1.31; 95% CI: 1.10-1.57; P = 0.003) was independently and significantly correlated with CKD severity. Using a TM threshold of > 14.55 TU/ml derived from ROC analysis for severity stratification, the AUC was 0.7739 (95% CI: 0.71-0.84) in differentiating CKD severity stages. CONCLUSION Serum TM levels demonstrated a significant correlation with CKD severity, suggesting its potential as a biomarker with clinical utility for CKD staging. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Ming Guo
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Medical Devices and Integrated Traditional Chinese and Western Drug Development for Severe Kidney Diseases, Beijing Key Laboratory of Digital Intelligent TCM for the Prevention and Treatment of Pan-vascular Diseases, Key Disciplines of National Administration of Traditional Chinese Medicine (zyyzdxk-2023310), Beijing, 100853, China
| | - Shaoyuan Cui
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Medical Devices and Integrated Traditional Chinese and Western Drug Development for Severe Kidney Diseases, Beijing Key Laboratory of Digital Intelligent TCM for the Prevention and Treatment of Pan-vascular Diseases, Key Disciplines of National Administration of Traditional Chinese Medicine (zyyzdxk-2023310), Beijing, 100853, China
| | - Xiaoxiao Liu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Medical Devices and Integrated Traditional Chinese and Western Drug Development for Severe Kidney Diseases, Beijing Key Laboratory of Digital Intelligent TCM for the Prevention and Treatment of Pan-vascular Diseases, Key Disciplines of National Administration of Traditional Chinese Medicine (zyyzdxk-2023310), Beijing, 100853, China
| | - Jingyi Feng
- School of Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Mengfei Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Medical Devices and Integrated Traditional Chinese and Western Drug Development for Severe Kidney Diseases, Beijing Key Laboratory of Digital Intelligent TCM for the Prevention and Treatment of Pan-vascular Diseases, Key Disciplines of National Administration of Traditional Chinese Medicine (zyyzdxk-2023310), Beijing, 100853, China
| | - Zheyi Dong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Medical Devices and Integrated Traditional Chinese and Western Drug Development for Severe Kidney Diseases, Beijing Key Laboratory of Digital Intelligent TCM for the Prevention and Treatment of Pan-vascular Diseases, Key Disciplines of National Administration of Traditional Chinese Medicine (zyyzdxk-2023310), Beijing, 100853, China
| | - Jie Wu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Medical Devices and Integrated Traditional Chinese and Western Drug Development for Severe Kidney Diseases, Beijing Key Laboratory of Digital Intelligent TCM for the Prevention and Treatment of Pan-vascular Diseases, Key Disciplines of National Administration of Traditional Chinese Medicine (zyyzdxk-2023310), Beijing, 100853, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Medical Devices and Integrated Traditional Chinese and Western Drug Development for Severe Kidney Diseases, Beijing Key Laboratory of Digital Intelligent TCM for the Prevention and Treatment of Pan-vascular Diseases, Key Disciplines of National Administration of Traditional Chinese Medicine (zyyzdxk-2023310), Beijing, 100853, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Medical Devices and Integrated Traditional Chinese and Western Drug Development for Severe Kidney Diseases, Beijing Key Laboratory of Digital Intelligent TCM for the Prevention and Treatment of Pan-vascular Diseases, Key Disciplines of National Administration of Traditional Chinese Medicine (zyyzdxk-2023310), Beijing, 100853, China.
| | - Qinggang Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Medical Devices and Integrated Traditional Chinese and Western Drug Development for Severe Kidney Diseases, Beijing Key Laboratory of Digital Intelligent TCM for the Prevention and Treatment of Pan-vascular Diseases, Key Disciplines of National Administration of Traditional Chinese Medicine (zyyzdxk-2023310), Beijing, 100853, China.
| |
Collapse
|
3
|
Kruger A, Joffe D, Lloyd-Jones G, Khan MA, Šalamon Š, Laubscher GJ, Putrino D, Kell DB, Pretorius E. Vascular Pathogenesis in Acute and Long COVID: Current Insights and Therapeutic Outlook. Semin Thromb Hemost 2025; 51:256-271. [PMID: 39348850 PMCID: PMC11906225 DOI: 10.1055/s-0044-1790603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Long coronavirus disease 2019 (COVID-19)-a postacute consequence of severe acute respiratory syndrome coronavirus 2 infection-manifests with a broad spectrum of relapsing and remitting or persistent symptoms as well as varied levels of organ damage, which may be asymptomatic or present as acute events such as heart attacks or strokes and recurrent infections, hinting at complex underlying pathogenic mechanisms. Central to these symptoms is vascular dysfunction rooted in thrombotic endothelialitis. We review the scientific evidence that widespread endothelial dysfunction (ED) leads to chronic symptomatology. We briefly examine the molecular pathways contributing to endothelial pathology and provide a detailed analysis of how these cellular processes underpin the clinical picture. Noninvasive diagnostic techniques, such as flow-mediated dilation and peripheral arterial tonometry, are evaluated for their utility in identifying ED. We then explore mechanistic, cellular-targeted therapeutic interventions for their potential in treating ED. Overall, we emphasize the critical role of cellular health in managing Long COVID and highlight the need for early intervention to prevent long-term vascular and cellular dysfunction.
Collapse
Affiliation(s)
- Arneaux Kruger
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - David Joffe
- Respiratory and Sleep Medicine, Royal North Shore Hospital, Sydney, Australia
- World Health Network, Cambridge, Massachusetts
| | - Graham Lloyd-Jones
- Department of Radiology, Salisbury District Hospital, Salisbury NHS Foundation Trust, United Kingdom
| | - Muhammed Asad Khan
- World Health Network, Cambridge, Massachusetts
- Directorate of Respiratory Medicine, Manchester University Hospitals, Wythenshawe Hospital, Manchester, United Kingdom
| | | | | | - David Putrino
- Respiratory and Sleep Medicine, Royal North Shore Hospital, Sydney, Australia
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York
| | - Douglas B. Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- World Health Network, Cambridge, Massachusetts
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
4
|
Loboda D, Golba KS, Gurowiec P, Bredelytė A, Razbadauskas A, Sarecka-Hujar B. Variability in Arterial Stiffness and Vascular Endothelial Function After COVID-19 During 1.5 Years of Follow-Up-Systematic Review and Meta-Analysis. Life (Basel) 2025; 15:520. [PMID: 40283075 PMCID: PMC12028431 DOI: 10.3390/life15040520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/29/2025] Open
Abstract
Increasing long-term observations suggest that coronavirus disease 2019 (COVID-19) vasculopathy may persist even 1.5 years after the acute phase, potentially accelerating the development of atherosclerotic cardiovascular diseases. This study systematically reviewed the variability of brachial flow-mediated dilation (FMD) and carotid-femoral pulse wave velocity (cfPWV) from the acute phase of COVID-19 through 16 months of follow-up (F/U). Databases including PubMed, Web of Science, MEDLINE, and Embase were screened for a meta-analysis without language or date restrictions (PROSPERO reference CRD42025642888, last search conducted on 1 February 2025). The quality of the included studies was assessed using the Newcastle-Ottawa Quality Scale. We considered all studies (interventional pre-post studies, prospective observational studies, prospective randomized, and non-randomized trials) that assessed FMD or cfPWV in adults (aged ≥ 18 years) with or after laboratory-confirmed COVID-19 compared with non-COVID-19 controls or that assessed changes in these parameters during the F/U. Twenty-one studies reported differences in FMD, and 18 studies examined cfPWV between COVID-19 patients and control groups during various stages: acute/subacute COVID-19 (≤30 days from disease onset), early (>30-90 days), mid-term (>90-180 days), late (>180-270 days), and very late (>270 days) post-COVID-19 recovery. Six studies assessed variability in FMD, while nine did so for cfPWV during the F/U. Data from 14 FMD studies (627 cases and 694 controls) and 15 cfPWV studies (578 cases and 703 controls) were included in our meta-analysis. FMD showed a significant decrease compared to controls during the acute/subacute phase (standardized mean difference [SMD]= -2.02, p < 0.001), with partial improvements noted from the acute/subacute phase to early recovery (SMD = 0.95, p < 0.001) and from early to mid-term recovery (SMD = 0.92, p = 0.006). Normalization compared to controls was observed in late recovery (SMD = 0.12, p = 0.69). In contrast, cfPWV values, which were higher than controls in the acute/subacute phase (SMD = 1.27, p < 0.001), remained elevated throughout the F/U, with no significant changes except for a decrease from mid-term to very late recovery (SMD= -0.39, p < 0.001). In the very late recovery, cfPWV values remained higher than those of controls (SMD = 0.45, p = 0.010). In the manuscript, we discuss how various factors, including the severity of acute COVID-19, the persistence of long-term COVID-19 syndrome, and the patient's initial vascular age, depending on metrics age and cardiovascular risk factors, influenced the time and degree of FMD and cfPWV improvement.
Collapse
Affiliation(s)
- Danuta Loboda
- Department of Electrocardiology and Heart Failure, Medical University of Silesia in Katowice, 40-635 Katowice, Poland; (K.S.G.); (P.G.)
| | - Krzysztof S. Golba
- Department of Electrocardiology and Heart Failure, Medical University of Silesia in Katowice, 40-635 Katowice, Poland; (K.S.G.); (P.G.)
| | - Piotr Gurowiec
- Department of Electrocardiology and Heart Failure, Medical University of Silesia in Katowice, 40-635 Katowice, Poland; (K.S.G.); (P.G.)
| | - Aelita Bredelytė
- Faculty of Health Sciences, Klaipėda University, LT-92294 Klaipeda, Lithuania; (A.B.); (A.R.)
| | - Artūras Razbadauskas
- Faculty of Health Sciences, Klaipėda University, LT-92294 Klaipeda, Lithuania; (A.B.); (A.R.)
- Chemotherapy Unit, Department of Oncology, Klaipeda University Hospital, LT-92288 Klaipeda, Lithuania
| | - Beata Sarecka-Hujar
- Department of Basic Biomedical Science, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland;
| |
Collapse
|
5
|
Wang Y, Yang Z, Zheng X, Liang X, Wu L, Wu C, Dai J, Cao Y, Li M, Zhou F. Cerebral blood flow alterations and host genetic association in individuals with long COVID: A transcriptomic-neuroimaging study. J Cereb Blood Flow Metab 2025; 45:431-442. [PMID: 39177056 PMCID: PMC11572096 DOI: 10.1177/0271678x241277621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/03/2024] [Accepted: 08/03/2024] [Indexed: 08/24/2024]
Abstract
Neuroimaging studies have indicated that altered cerebral blood flow (CBF) was associated with the long-term symptoms of postacute sequelae of SARS-CoV-2 infection (PASC), also known as "long COVID". COVID-19 and long COVID were found to be strongly associated with host gene expression. Nevertheless, the relationships between altered CBF, clinical symptoms, and gene expression in the central nervous system (CNS) remain unclear in individuals with long COVID. This study aimed to explore the genetic mechanisms of CBF abnormalities in individuals with long COVID by transcriptomic-neuroimaging spatial association. Lower CBF in the left frontal-temporal gyrus was associated with higher fatigue and worse cognition in individuals with long COVID. This CBF pattern was spatially associated with the expression of 2,178 genes, which were enriched in the molecular functions and biological pathways of COVID-19. Our study suggested that lower CBF is associated with persistent clinical symptoms in long COVID individuals, possibly as a consequence of the complex interactions among multiple COVID-19-related genes, which contributes to our understanding of the impact of adverse CNS outcomes and the trajectory of development to long COVID.
Collapse
Affiliation(s)
- Yao Wang
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, China
| | - Ziwei Yang
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, China
| | - Xiumei Zheng
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, China
| | - Xiao Liang
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, China
| | - Lin Wu
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, China
| | - Chengsi Wu
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | | | - Yuan Cao
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, China
| |
Collapse
|
6
|
Zhang H, Yang P, Gu X, Sun Y, Zhang R, Zhang D, Zhang J, Wang Y, Ma C, Liu M, Ma J, Li A, Wang Y, Ma X, Cui X, Wang Y, Liu Z, Wang W, Zheng Z, Li Y, Wu J, Wang Q, Cao B. Health outcomes one year after Omicron infection among 12,789 adults: a community-based cross-sectional study. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2025; 56:101507. [PMID: 40226780 PMCID: PMC11992576 DOI: 10.1016/j.lanwpc.2025.101507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/19/2024] [Accepted: 02/14/2025] [Indexed: 04/15/2025]
Abstract
Background Characterizing the paradigm and impact of long COVID is crucial for addressing this worldwide health challenge. This study aimed to investigate the prevalence of long COVID one year after primary Omicron infection and characterize differences in long-term health consequence between participants with persistent long COVID and those who fully recovered. Methods This a community-based cross-sectional study conducted from December 2023 to March 2024 at the China-Japan Friendship Hospital and 16 administrative districts in Beijing. 12,789 participants infected with Omicron between December 2022 and January 2023 were recruited through stratified multistage random sampling and included in the final analysis. Of them, 376 participants with persistent long COVID and 229 without long COVID were matched for further physical examinations. The primary outcome was the prevalence of long COVID one year after infection. Secondary outcomes included muscle strength, exercise capacity, health-related quality of life (HRQoL), mental health, work status, laboratory tests, and examinations. Findings Among 12,789 participants (media [IQR] age, 48.4 [37.3 to 61.4] years; 7817 females [61.1%]), 995 of them (7.8%) experienced long COVID within one year, with 651 (5.1%) having persistent symptoms. Fatigue (598/995 [60.1%]) and post-exertional malaise (367/995 [36.9%]) were the most common symptoms. Brain fog had the lowest resolution proportion as 4.2% within one year. The odds of long COVID increased with reinfections (odds ratios for one reinfection 2.592 [95% CI: 2.188 to 3.061]; two or more: 6.171 [3.227 to 11.557]; all p < 0.001). Participants with persistent long COVID had markedly lower muscle strength (upper-limb: 26.9 ± 12.4 vs. 29.1 ± 14.5 Kg; lower-limb: 40.0 [27.0 to 62.0] vs. 43.0 [28.0 to 59.0] s), worse exercise capacity and poorer HRQoL, and meaningful difference in laboratory tests results compared to those without long COVID. They also exhibited significantly higher proportions of abnormal lung function (FEV1 %pred<80%: 13.0% vs. 2.0%; DLco %pred<80%: 32.7% vs. 19.9%) and lung imaging abnormalities (23.5% vs. 13.6%). Interpretation The considerable health burden of long COVID and the progression of neurological symptoms following Omicron infection warrant close monitoring. Utilizing professional questionnaires and developing reliable diagnostic tools are necessary for improving diagnosis and treatment of long COVID. Funding This work was supported by Beijing Research Center for Respiratory Infectious Diseases (BJRID2024-012), Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences (2022-I2M-CoV19-005/CIFMS 2021-I2M-1-048), the National Natural Science Foundation of China (82241056/82200114/82200009), the New Cornerstone Science Foundation.
Collapse
Affiliation(s)
- Hui Zhang
- National Center for Respiratory Medicine, Beijing, PR China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, PR China
- National Clinical Research Center for Respiratory Diseases, Beijing, PR China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, PR China
| | - Peng Yang
- Beijing Key Laboratory of Surveillance, Early Warning and Pathogen Research on Emerging Infectious Diseases, Beijing Center for Disease Prevention and Control, Beijing, PR China
- Beijing Research Center for Respiratory Infectious Diseases, Beijing, PR China
- School of Public Health, Capital Medical University, Beijing, PR China
| | - Xiaoying Gu
- National Center for Respiratory Medicine, Beijing, PR China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, PR China
- National Clinical Research Center for Respiratory Diseases, Beijing, PR China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
- Department of Clinical Research and Data Management, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, PR China
| | - Ying Sun
- Beijing Key Laboratory of Surveillance, Early Warning and Pathogen Research on Emerging Infectious Diseases, Beijing Center for Disease Prevention and Control, Beijing, PR China
- Beijing Research Center for Respiratory Infectious Diseases, Beijing, PR China
- School of Public Health, Capital Medical University, Beijing, PR China
| | - Rongling Zhang
- National Center for Respiratory Medicine, Beijing, PR China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, PR China
- National Clinical Research Center for Respiratory Diseases, Beijing, PR China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, PR China
- Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
| | - Daitao Zhang
- Beijing Key Laboratory of Surveillance, Early Warning and Pathogen Research on Emerging Infectious Diseases, Beijing Center for Disease Prevention and Control, Beijing, PR China
- Beijing Research Center for Respiratory Infectious Diseases, Beijing, PR China
- School of Public Health, Capital Medical University, Beijing, PR China
| | - Jiaojiao Zhang
- Beijing Key Laboratory of Surveillance, Early Warning and Pathogen Research on Emerging Infectious Diseases, Beijing Center for Disease Prevention and Control, Beijing, PR China
- Beijing Research Center for Respiratory Infectious Diseases, Beijing, PR China
- School of Public Health, Capital Medical University, Beijing, PR China
| | - Yeming Wang
- National Center for Respiratory Medicine, Beijing, PR China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, PR China
- National Clinical Research Center for Respiratory Diseases, Beijing, PR China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, PR China
| | - Chunna Ma
- Beijing Key Laboratory of Surveillance, Early Warning and Pathogen Research on Emerging Infectious Diseases, Beijing Center for Disease Prevention and Control, Beijing, PR China
- Beijing Research Center for Respiratory Infectious Diseases, Beijing, PR China
- School of Public Health, Capital Medical University, Beijing, PR China
| | - Min Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, PR China
| | - Jiaxin Ma
- Beijing Key Laboratory of Surveillance, Early Warning and Pathogen Research on Emerging Infectious Diseases, Beijing Center for Disease Prevention and Control, Beijing, PR China
- Beijing Research Center for Respiratory Infectious Diseases, Beijing, PR China
- School of Public Health, Capital Medical University, Beijing, PR China
| | - Aili Li
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, PR China
| | - Yingying Wang
- Beijing Key Laboratory of Surveillance, Early Warning and Pathogen Research on Emerging Infectious Diseases, Beijing Center for Disease Prevention and Control, Beijing, PR China
- Beijing Research Center for Respiratory Infectious Diseases, Beijing, PR China
- School of Public Health, Capital Medical University, Beijing, PR China
| | - Xiao Ma
- Health Examination Center, China-Japan Friendship Hospital, Beijing, PR China
| | - Xiaojing Cui
- National Center for Respiratory Medicine, Beijing, PR China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, PR China
- National Clinical Research Center for Respiratory Diseases, Beijing, PR China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, PR China
| | - Yimin Wang
- National Center for Respiratory Medicine, Beijing, PR China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, PR China
- National Clinical Research Center for Respiratory Diseases, Beijing, PR China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, PR China
- Department of Pulmonary and Critical Care Medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, PR China
| | - Zhibo Liu
- National Center for Respiratory Medicine, Beijing, PR China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, PR China
- National Clinical Research Center for Respiratory Diseases, Beijing, PR China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, PR China
| | - Wei Wang
- Department of Outpatients, China-Japan Friendship Hospital, Beijing, PR China
| | - Zhi Zheng
- Nursing Department, China-Japan Friendship Hospital, Beijing, PR China
| | - Yong Li
- National Center for Respiratory Medicine, Beijing, PR China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, PR China
- National Clinical Research Center for Respiratory Diseases, Beijing, PR China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, PR China
| | - Jin Wu
- Health Examination Center, China-Japan Friendship Hospital, Beijing, PR China
| | - Quanyi Wang
- Beijing Key Laboratory of Surveillance, Early Warning and Pathogen Research on Emerging Infectious Diseases, Beijing Center for Disease Prevention and Control, Beijing, PR China
- Beijing Research Center for Respiratory Infectious Diseases, Beijing, PR China
- School of Public Health, Capital Medical University, Beijing, PR China
| | - Bin Cao
- National Center for Respiratory Medicine, Beijing, PR China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, PR China
- National Clinical Research Center for Respiratory Diseases, Beijing, PR China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, PR China
- Beijing Key Laboratory of Surveillance, Early Warning and Pathogen Research on Emerging Infectious Diseases, Beijing Center for Disease Prevention and Control, Beijing, PR China
- Beijing Research Center for Respiratory Infectious Diseases, Beijing, PR China
- Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
- Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, PR China
| |
Collapse
|
7
|
Ribeiro GJS, Pinto ADA, Souza GC, Moriguchi EH. Association between pre-existing cardiovascular risk factors and post-acute sequelae of COVID-19 in older adults. An Sist Sanit Navar 2025; 48:e1103. [PMID: 39949251 PMCID: PMC11925477 DOI: 10.23938/assn.1103] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 11/05/2024] [Accepted: 12/03/2024] [Indexed: 03/22/2025]
Abstract
BACKGROUND The long-term health impacts of COVID-19, including post-acute sequelae of SARS-CoV-2, remain insufficiently explored, especially concerning pre-existing cardiovascular risk factors in older adults. This study examines the association between these risk factors and post-acute sequelae of SARS-CoV-2 in this population. METHODS A retrospective study of Brazilian adults aged = 60 years assessed the persistence of post-acute sequelae of SARS-CoV-2 three months after infection in 2020. Cardiovascular risk factors (obesity, smoking, high blood pressure, diabetes mellitus, hypercholesterolemia, and chronic kidney disease) were analyzed in relation to sequelae and adjusting for sociodemographic variables. Data were obtained from the Department of Epidemiological Surveillance in Roraima, Brazil. RESULTS Of the 1,322 participants (55% female; mean age 70.4 years, SD = 7.87), 61.7% (95% CI: 59.1-63.9) reported at least one post-acute sequelae of SARS-CoV-2 at the three-month follow-up. The likelihood of post-acute sequelae of SARS-CoV-2 was significantly higher in participants with diabetes mellitus (OR = 4.39; 95% CI: 3.42-5.66), tobacco use (OR = 3.93; 95% CI: 2.47-6.23), hypertension (OR = 3.62; 95% CI: 2.73-4.78), or hypercholesterolemia (OR = 3.58; 95% CI: 2.80-4.59). Chronic kidney disease (OR = 2.28; 95% CI: 1.59-3.25) and obesity (OR = 1.83; 95% CI: 1.28-2.61) were less strongly associated. CONCLUSIONS Pre-existing cardiovascular risk factors are linked to a higher likelihood of long-term COVID-19 sequelae in adults aged = 60 years old. Preventing and managing these factors are crucial for reducing the long-term effects of COVID-19, particularly during a pandemic.
Collapse
Affiliation(s)
| | | | - Gabriela Corrêa Souza
- Federal University of Rio Grande do Sul. School of Medicine. Department of Nutrition and Graduate Program in Food.
| | - Emilio Hideyuki Moriguchi
- Federal University of Rio Grande do Sul. School of Medicine. Graduate Program in Cardiology and Cardiovascular Sciences. Porto Alegre. Brazil .
| |
Collapse
|
8
|
Smadja DM, Abreu MM. Hyperthermia and targeting heat shock proteins: innovative approaches for neurodegenerative disorders and Long COVID. Front Neurosci 2025; 19:1475376. [PMID: 39967803 PMCID: PMC11832498 DOI: 10.3389/fnins.2025.1475376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 01/03/2025] [Indexed: 02/20/2025] Open
Abstract
Neurodegenerative diseases (NDs) and Long COVID represent critical and growing global health challenges, characterized by complex pathophysiological mechanisms including neuronal deterioration, protein misfolding, and persistent neuroinflammation. The emergence of innovative therapeutic approaches, such as whole-body hyperthermia (WBH), offers promising potential to modulate underlying pathophysiological mechanisms in NDs and related conditions like Long COVID. WBH, particularly in fever-range, enhances mitochondrial function, induces heat shock proteins (HSPs), and modulates neuroinflammation-benefits that pharmacological treatments often struggle to replicate. HSPs such as HSP70 and HSP90 play pivotal roles in protein folding, aggregation prevention, and cellular protection, directly targeting pathological processes seen in NDs like Alzheimer's, Parkinson's, and Huntington's disease. Preliminary findings also suggest WBH's potential to alleviate neurological symptoms in Long COVID, where persistent neuroinflammation and serotonin dysregulation are prominent. Despite the absence of robust clinical trials, the therapeutic implications of WBH extend to immune modulation and the restoration of disrupted physiological pathways. However, the dual nature of hyperthermia's effects-balancing pro-inflammatory and anti-inflammatory responses-emphasizes the need for dose-controlled applications and stringent patient monitoring to minimize risks in vulnerable populations. While WBH shows potential interest, significant challenges remain. These include individual variability in response, limited accessibility to advanced hyperthermia technologies, and the need for standardized clinical protocols. Future research must focus on targeted clinical trials, biomarker identification, and personalized treatment strategies to optimize WBH's efficacy in NDs and Long COVID. The integration of WBH into therapeutic paradigms could mark a transformative step in addressing these complex conditions.
Collapse
Affiliation(s)
- David M. Smadja
- Paris Cité University, INSERM, Paris Cardiovascular Research Centre, Team Endotheliopathy and Hemostasis Disorders, Paris, France
- Hematology Department, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris-Centre Université Paris Cité (APHP-CUP), Paris, France
| | - M. Marc Abreu
- BTT Medical Institute, Aventura, FL, United States
- BTT Engineering Department, Aventura, FL, United States
| |
Collapse
|
9
|
Gáspár Z, Szabó BG, Ceglédi A, Lakatos B. Human herpesvirus reactivation and its potential role in the pathogenesis of post-acute sequelae of SARS-CoV-2 infection. GeroScience 2025; 47:167-187. [PMID: 39207648 PMCID: PMC11872864 DOI: 10.1007/s11357-024-01323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
The emergence of SARS-CoV-2 has precipitated a global pandemic with substantial long-term health implications, including the condition known as post-acute sequelae of SARS-CoV-2 infection (PASC), commonly referred to as Long COVID. PASC is marked by persistent symptoms such as fatigue, neurological issues, and autonomic dysfunction that persist for months beyond the acute phase of COVID-19. This review examines the potential role of herpesvirus reactivation, specifically Epstein-Barr virus (EBV) and cytomegalovirus (CMV), in the pathogenesis of PASC. Elevated antibody titers and specific T cell responses suggest recent herpesvirus reactivation in some PASC patients, although viremia is not consistently detected. SARS-CoV-2 exhibits endothelial trophism, directly affecting the vascular endothelium and contributing to microvascular pathologies. These pathologies are significant in PASC, where microvascular dysfunction may underlie various chronic symptoms. Similarly, herpesviruses like CMV also exhibit endothelial trophism, which may exacerbate endothelial damage when reactivated. Evidence suggests that EBV and CMV reactivation could indirectly contribute to the immune dysregulation, immunosenescence, and autoimmune responses observed in PASC. Additionally, EBV may play a role in the genesis of neurological symptoms through creating mitochondrial dysfunction, though direct confirmation remains elusive. The reviewed evidence suggests that while herpesviruses may not play a direct role in the pathogenesis of PASC, their potential indirect effects, especially in the context of endothelial involvement, warrant further investigation.
Collapse
Affiliation(s)
- Zsófia Gáspár
- School of PhD Studies, Semmelweis University, Üllői Street 26, 1085, Budapest, Hungary
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Albert Flórián Street 5-7, 1097, Budapest, Hungary
| | - Bálint Gergely Szabó
- School of PhD Studies, Semmelweis University, Üllői Street 26, 1085, Budapest, Hungary.
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Albert Flórián Street 5-7, 1097, Budapest, Hungary.
- Departmental Group of Infectious Diseases, Department of Internal Medicine and Haematology, Semmelweis University, Albert Flórián Street 5-7, 1097, Budapest, Hungary.
| | - Andrea Ceglédi
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Albert Flórián Street 5-7, 1097, Budapest, Hungary
| | - Botond Lakatos
- School of PhD Studies, Semmelweis University, Üllői Street 26, 1085, Budapest, Hungary
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Albert Flórián Street 5-7, 1097, Budapest, Hungary
- Departmental Group of Infectious Diseases, Department of Internal Medicine and Haematology, Semmelweis University, Albert Flórián Street 5-7, 1097, Budapest, Hungary
| |
Collapse
|
10
|
Fekete M, Lehoczki A, Szappanos Á, Toth A, Mahdi M, Sótonyi P, Benyó Z, Yabluchanskiy A, Tarantini S, Ungvari Z. Cerebromicrovascular mechanisms contributing to long COVID: implications for neurocognitive health. GeroScience 2025; 47:745-779. [PMID: 39777702 PMCID: PMC11872997 DOI: 10.1007/s11357-024-01487-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Long COVID (also known as post-acute sequelae of SARS-CoV-2 infection [PASC] or post-COVID syndrome) is characterized by persistent symptoms that extend beyond the acute phase of SARS-CoV-2 infection, affecting approximately 10% to over 30% of those infected. It presents a significant clinical challenge, notably due to pronounced neurocognitive symptoms such as brain fog. The mechanisms underlying these effects are multifactorial, with mounting evidence pointing to a central role of cerebromicrovascular dysfunction. This review investigates key pathophysiological mechanisms contributing to cerebrovascular dysfunction in long COVID and their impacts on brain health. We discuss how endothelial tropism of SARS-CoV-2 and direct vascular infection trigger endothelial dysfunction, impaired neurovascular coupling, and blood-brain barrier disruption, resulting in compromised cerebral perfusion. Furthermore, the infection appears to induce mitochondrial dysfunction, enhancing oxidative stress and inflammation within cerebral endothelial cells. Autoantibody formation following infection also potentially exacerbates neurovascular injury, contributing to chronic vascular inflammation and ongoing blood-brain barrier compromise. These factors collectively contribute to the emergence of white matter hyperintensities, promote amyloid pathology, and may accelerate neurodegenerative processes, including Alzheimer's disease. This review also emphasizes the critical role of advanced imaging techniques in assessing cerebromicrovascular health and the need for targeted interventions to address these cerebrovascular complications. A deeper understanding of the cerebrovascular mechanisms of long COVID is essential to advance targeted treatments and mitigate its long-term neurocognitive consequences.
Collapse
Affiliation(s)
- Monika Fekete
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Andrea Lehoczki
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary.
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary.
| | - Ágnes Szappanos
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Department of Rheumatology and Clinical Immunology, Semmelweis University, Budapest, Hungary
| | - Attila Toth
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- Research Centre for Molecular Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Mohamed Mahdi
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, University of Debrecen, 4032, Debrecen, Hungary
- Infectology Clinic, University of Debrecen Clinical Centre, 4031, Debrecen, Hungary
| | - Péter Sótonyi
- Department of Vascular and Endovascular Surgery, Heart and Vascular Centre, Semmelweis University, 1122, Budapest, Hungary
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, 1094, Budapest, Hungary
- Cerebrovascular and Neurocognitive Disorders Research Group, HUN-REN , Semmelweis University, 1094, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
11
|
Fekete M, Liotta EM, Molnar T, Fülöp GA, Lehoczki A. The role of atrial fibrillation in vascular cognitive impairment and dementia: epidemiology, pathophysiology, and preventive strategies. GeroScience 2025; 47:287-300. [PMID: 39138793 PMCID: PMC11872872 DOI: 10.1007/s11357-024-01290-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
The aging population in Europe faces a substantial burden from dementia, with vascular cognitive impairment and dementia (VCID) being a preventable cause. Atrial fibrillation (AF), a common cardiac arrhythmia, increases the risk of VCID through mechanisms such as thromboembolism, cerebral hypoperfusion, and inflammation. This review explores the epidemiology, pathophysiology, and preventive strategies for AF-related VCID. Epidemiological data indicate that AF prevalence rises with age, affecting up to 12% of individuals over 80. Neuroimaging studies reveal chronic brain changes in AF patients, including strokes, lacunar strokes, white matter hyperintensities (WMHs), and cerebral microbleeds (CMHs), while cognitive assessments show impairments in memory, executive function, and attention. The COVID-19 pandemic has exacerbated the underdiagnosis of AF, leading to an increase in undiagnosed strokes and cognitive impairment. Many elderly individuals did not seek medical care due to fear of exposure, resulting in delayed diagnoses. Additionally, reduced family supervision during the pandemic contributed to missed opportunities for early detection of AF and related complications. Emerging evidence suggests that long COVID may also elevate the risk of AF, further complicating the management of this condition. This review underscores the importance of early detection and comprehensive management of AF to mitigate cognitive decline. Preventive measures, including public awareness campaigns, patient education, and the use of smart devices for early detection, are crucial. Anticoagulation therapy, rate and rhythm control, and addressing comorbid conditions are essential therapeutic strategies. Recognizing and addressing the cardiovascular and cognitive impacts of AF, especially in the context of the COVID-19 pandemic, is essential for advancing public health.
Collapse
Affiliation(s)
- Mónika Fekete
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
| | - Eric M Liotta
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Tihamer Molnar
- Department of Anaesthesiology and Intensive Care, Medical School, University of Pecs, Pecs, Hungary
| | - Gábor A Fülöp
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Andrea Lehoczki
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary.
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
12
|
Reina-Couto M, Alves D, Silva-Pereira C, Pereira-Terra P, Martins S, Bessa J, Teixeira-Santos L, Pinho D, Morato M, Dias CC, Sarmento A, Tavares M, Guimarães JT, Roncon-Albuquerque R, Paiva JA, Albino-Teixeira A, Sousa T. Endocan as a marker of endotheliitis in COVID-19 patients: modulation by veno-venous extracorporeal membrane oxygenation, arterial hypertension and previous treatment with renin-angiotensin-aldosterone system inhibitors. Inflamm Res 2025; 74:26. [PMID: 39862311 PMCID: PMC11762693 DOI: 10.1007/s00011-024-01964-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 10/30/2024] [Accepted: 12/16/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND AND AIMS Endocan has been scarcely explored in COVID-19, especially regarding its modulation by veno-venous extracorporeal membrane oxygenation (VV-ECMO), hypertension or previous renin-angiotensin-aldosterone system (RAAS) inhibitors treatment. We compared endocan and other endotheliitis markers in hospitalized COVID-19 patients and assessed their modulation by VV-ECMO, hypertension and previous RAAS inhibitors treatment. MATERIAL AND METHODS Serum endocan, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and E-selectin were measured in "severe" (n = 27), "critically ill" (n = 17) and "critically ill on VV-ECMO" (n = 17) COVID-19 patients at admission, days 3-4, 5-8 and weekly thereafter, and in controls (n = 23) at a single time point. RESULTS Admission endocan and VCAM-1 were increased in all patients, but "critically ill on VV-ECMO" patients had higher endocan and E-Selectin. Endocan remained elevated throughout hospitalization in all groups. "Severe" and "critically ill" hypertensive patients or previously treated with RAAS inhibitors had higher endocan and/or VCAM-1, but in VV-ECMO patients the raised endocan values seemed unrelated with these factors. Among all COVID-19 hypertensive patients, those with previous RAAS inhibitors treatment had higher endocan. CONCLUSIONS In our study, endocan stands out as the best marker of endotheliitis in hospitalized COVID-19 patients, being upregulated by VV-ECMO support, hypertension and previous RAAS inhibitor treatment.
Collapse
Affiliation(s)
- Marta Reina-Couto
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Rua Dr. Plácido da Costa, S/N, Edifício Poente, Piso 3, 4200-450, Porto, Portugal.
- Centro de Investigação Farmacológica e Inovação Medicamentosa da Universidade do Porto (MEDInUP), Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.
- Serviço de Medicina Intensiva, Centro Hospitalar e Universitário São João (CHUSJ), Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.
- Serviço de Farmacologia Clínica, CHUSJ, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.
| | - David Alves
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Rua Dr. Plácido da Costa, S/N, Edifício Poente, Piso 3, 4200-450, Porto, Portugal
| | - Carolina Silva-Pereira
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Rua Dr. Plácido da Costa, S/N, Edifício Poente, Piso 3, 4200-450, Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa da Universidade do Porto (MEDInUP), Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Patrícia Pereira-Terra
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Rua Dr. Plácido da Costa, S/N, Edifício Poente, Piso 3, 4200-450, Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa da Universidade do Porto (MEDInUP), Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Sandra Martins
- Serviço de Patologia Clínica, CHUSJ, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - João Bessa
- Serviço de Nefrologia, Centro Hospitalar Universitário de Santo António, Largo Prof. Abel Salazar, 4099-001, Porto, Portugal
| | - Luísa Teixeira-Santos
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Rua Dr. Plácido da Costa, S/N, Edifício Poente, Piso 3, 4200-450, Porto, Portugal
- iNOVA4Health, NOVA Medical School| Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria 130, 1169-056, Lisboa, Portugal
| | - Dora Pinho
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Rua Dr. Plácido da Costa, S/N, Edifício Poente, Piso 3, 4200-450, Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa da Universidade do Porto (MEDInUP), Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Manuela Morato
- Departamento de Ciências do Medicamento, Laboratório de Farmacologia, Faculdade de Farmácia da Universidade do Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313, Porto, Portugal
- LAQV/REQUIMTE, Faculdade de Farmácia da Universidade do Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313, Porto, Portugal
| | - Cláudia Camila Dias
- Departamento de Medicina da Comunidade, Informação e Decisão em Saúde, FMUP, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- CINTESIS-Centro de Investigação em Tecnologias e Serviços de Saúde, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - António Sarmento
- Serviço de Doenças Infecciosas, CHUSJ, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- Departamento de Medicina, FMUP, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Margarida Tavares
- Serviço de Doenças Infecciosas, CHUSJ, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- Unidade de Investigação em Epidemiologia (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, Rua das Taipas 135, 4050-600, Porto, Portugal
| | - João T Guimarães
- Serviço de Patologia Clínica, CHUSJ, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- Unidade de Investigação em Epidemiologia (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, Rua das Taipas 135, 4050-600, Porto, Portugal
- Departamento de Biomedicina- Unidade de Bioquímica, FMUP, Rua Dr. Plácido da Costa, S/N, Edifício Poente, Piso 2, 4200-450, Porto, Portugal
| | - Roberto Roncon-Albuquerque
- Serviço de Medicina Intensiva, Centro Hospitalar e Universitário São João (CHUSJ), Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- Departamento de Cirurgia e Fisiologia, FMUP, Rua Dr. Plácido da Costa, S/N, Piso 6, 4200-450, Porto, Portugal
| | - José-Artur Paiva
- Serviço de Medicina Intensiva, Centro Hospitalar e Universitário São João (CHUSJ), Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- Departamento de Medicina, FMUP, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - António Albino-Teixeira
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Rua Dr. Plácido da Costa, S/N, Edifício Poente, Piso 3, 4200-450, Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa da Universidade do Porto (MEDInUP), Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Teresa Sousa
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Rua Dr. Plácido da Costa, S/N, Edifício Poente, Piso 3, 4200-450, Porto, Portugal.
- Centro de Investigação Farmacológica e Inovação Medicamentosa da Universidade do Porto (MEDInUP), Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.
| |
Collapse
|
13
|
Muys M, Demulder A, Besse-Hammer T, Ghorra N, Rozen L. Exploring Hypercoagulability in Post-COVID Syndrome (PCS): An Attempt at Unraveling the Endothelial Dysfunction. J Clin Med 2025; 14:789. [PMID: 39941459 PMCID: PMC11818657 DOI: 10.3390/jcm14030789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Background: The lingering effects of SARS-CoV-2 infection, collectively known as post-COVID syndrome (PCS), affect a significant proportion of recovered patients, manifesting as persistent symptoms like fatigue, cognitive dysfunction, and exercise intolerance. Increasing evidence suggests that endothelial dysfunction and coagulation abnormalities play a central role in PCS pathophysiology. This study investigates hypercoagulability and endothelial dysfunction in PCS through thrombin generation and the von Willebrand factor (VWF)/ADAMTS13 axis. Methods: Plasma samples from 97 PCS patients recruited since October 2020 by the clinical research unit of the Brugmann University Hospital were analyzed. A thrombin generation test was performed on a St-Genesia® analyzer (Stago) using the Thromboscreen kit; VWF antigen was determined on a CS-2500 analyzer (Siemens); and ADAMTS-13 activity was determined using an ELISA kit (Technozym®) on an ElX808 plate reader. Results: Thrombin generation testing revealed elevated thrombin production in PCS patients, particularly when thrombomodulin was included. Although most PCS patients showed normalized VWF/ADAMTS13 ratios, 11.3% exhibited elevated ratios (≥1.5), associated with advanced age. Conclusions: Patients with PCS show a consistent pattern of prolonged thrombo-inflammatory dysregulation, highlighted by elevated in vitro thrombin generation and the persistence of abnormal VWF/ADAMTS-13 ratios in a subset of patients.
Collapse
Affiliation(s)
- Maxim Muys
- Laboratory of Hematology, CHU Brugmann, Université Libre de Bruxelles (ULB), 1020 Brussels, Belgium; (A.D.); (L.R.)
| | - Anne Demulder
- Laboratory of Hematology, CHU Brugmann, Université Libre de Bruxelles (ULB), 1020 Brussels, Belgium; (A.D.); (L.R.)
| | - Tatiana Besse-Hammer
- Clinical Research Unit, CHU Brugmann, Université Libre de Bruxelles (ULB), 1020 Brussels, Belgium;
| | - Nathalie Ghorra
- Laboratory of Immunology, CHU Brugmann, Université Libre de Bruxelles (ULB), 1020 Brussels, Belgium;
| | - Laurence Rozen
- Laboratory of Hematology, CHU Brugmann, Université Libre de Bruxelles (ULB), 1020 Brussels, Belgium; (A.D.); (L.R.)
| |
Collapse
|
14
|
Honchar O, Ashcheulova T, Chumachenko T, Chumachenko D. Early prediction of long COVID-19 syndrome persistence at 12 months after hospitalisation: a prospective observational study from Ukraine. BMJ Open 2025; 15:e084311. [PMID: 39762090 PMCID: PMC11748775 DOI: 10.1136/bmjopen-2024-084311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 12/09/2024] [Indexed: 01/23/2025] Open
Abstract
OBJECTIVE To identify the early predictors of a self-reported persistence of long COVID syndrome (LCS) at 12 months after hospitalisation and to propose the prognostic model of its development. DESIGN A combined cross-sectional and prospective observational study. SETTING A tertiary care hospital. PARTICIPANTS 221 patients hospitalised for COVID-19 who have undergone comprehensive clinical, sonographic and survey-based evaluation predischarge and at 1 month with subsequent 12-month follow-up. The final cohort included 166 patients who had completed the final visit at 12 months. MAIN OUTCOME MEASURE A self-reported persistence of LCS at 12 months after discharge. RESULTS Self-reported LCS was detected in 76% of participants at 3 months and in 43% at 12 months after discharge. Patients who reported incomplete recovery at 1 year were characterised by a higher burden of comorbidities (Charlson index of 0.69±0.96 vs 0.31±0.51, p=0.001) and residual pulmonary consolidations (1.56±1.78 vs 0.98±1.56, p=0.034), worse blood pressure (BP) control (systolic BP of 138.1±16.2 vs 132.2±15.8 mm Hg, p=0.041), renal (estimated glomerular filtration rate of 59.5±14.7 vs 69.8±20.7 mL/min/1.73 m2, p=0.007) and endothelial function (flow-mediated dilation of the brachial artery of 10.4±5.4 vs 12.4±5.6%, p=0.048), higher in-hospital levels of liver enzymes (alanine aminotransferase (ALT) of 76.3±60.8 vs 46.3±25.3 IU/L, p=0.002) and erythrocyte sedimentation rate (ESR) (34.3±12.1 vs 28.3±12.6 mm/h, p=0.008), slightly higher indices of ventricular longitudinal function (left ventricular (LV) global longitudinal strain (GLS) of 18.0±2.4 vs 17.0±2.3%, p=0011) and higher levels of Hospital Anxiety and Depression Scale anxiety (7.3±4.2 vs 5.6±3.8, p=0.011) and depression scores (6.4±3.9 vs 4.9±4.3, p=0.022) and EFTER-COVID study physical symptoms score (12.3±3.8 vs 9.2±4.2, p<0.001). At 1 month postdischarge, the persisting differences included marginally higher LV GLS, mitral E/e' ratio and significantly higher levels of both resting and exertional physical symptoms versus patients who reported complete recovery. Logistic regression and machine learning-based binary classification models have been developed to predict the persistence of LCS symptoms at 12 months after discharge. CONCLUSIONS Compared with post-COVID-19 patients who have completely recovered by 12 months after hospital discharge, those who have subsequently developed 'very long' COVID were characterised by a variety of more pronounced residual predischarge abnormalities that had mostly subsided by 1 month, except for steady differences in the physical symptoms levels. A simple artificial neural networks-based binary classification model using peak ESR, creatinine, ALT and weight loss during the acute phase, predischarge 6-minute walk distance and complex survey-based symptoms assessment as inputs has shown a 92% accuracy with an area under receiver-operator characteristic curve 0.931 in prediction of LCS symptoms persistence at 12 months.
Collapse
Affiliation(s)
- Oleksii Honchar
- Department of Propedeutics of Internal Medicine, Nursing and Bioethics, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Tetiana Ashcheulova
- Department of Propedeutics of Internal Medicine, Nursing and Bioethics, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Tetyana Chumachenko
- Department of Epidemiology, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Dmytro Chumachenko
- Department of Mathematical Modelling and Artificial Intelligence, National Aerospace University Kharkiv Aviation Institute, Kharkiv, Ukraine
| |
Collapse
|
15
|
Brambilla M, Fumoso F, Conti M, Becchetti A, Bozzi S, Mencarini T, Agostoni P, Mancini ME, Cosentino N, Bonomi A, Nallio K, Galotta A, Pengo M, Tortorici E, Bosco M, Cernigliaro F, Pinna C, Andreini D, Camera M. Low-Grade Inflammation in Long COVID Syndrome Sustains a Persistent Platelet Activation Associated With Lung Impairment. JACC Basic Transl Sci 2025; 10:20-39. [PMID: 39958473 PMCID: PMC11830264 DOI: 10.1016/j.jacbts.2024.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 02/18/2025]
Abstract
In the present study, we provide evidence on the potential mechanisms involved in the residual pulmonary impairment described in long COVID syndrome. Data highlight that lung damage is significantly associated with a proinflammatory platelet phenotype, characterized mainly by the formation of platelet-leukocyte aggregates. In ex vivo experiments, long COVID plasma reproduces the platelet activation observed in vivo and highlights low-grade inflammation as a potential underpinning mechanism, exploiting a synergistic activity between C-reactive protein and subthreshold concentrations of interleukin-6. The platelet-activated phenotype is blunted by anti-inflammatory and antiplatelet drugs, suggesting a potential therapeutic option in this clinical setting.
Collapse
Affiliation(s)
| | | | - Maria Conti
- Centro Cardiologico Monzino IRCCS, Milan, Italy
| | | | - Silvia Bozzi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Tatiana Mencarini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Clinical Sciences and Community Medicine, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | | | | | | | | - Chistian Pinna
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Daniele Andreini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
- Division of University Cardiology, IRCCS Ospedale Galeazzi Sant’Ambrogio, Milan, Italy
| | - Marina Camera
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
16
|
Gonzalez-Ochoa AJ, Szolnoky G, Hernandez-Ibarra AG, Fareed J. Treatment with Sulodexide Downregulates Biomarkers for Endothelial Dysfunction in Convalescent COVID-19 Patients. Clin Appl Thromb Hemost 2025; 31:10760296241297647. [PMID: 39763448 PMCID: PMC11705351 DOI: 10.1177/10760296241297647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 01/11/2025] Open
Abstract
INTRODUCTION Persistent elevation of biomarkers associated with endothelial dysfunction in convalescent COVID-19 patients has been linked to an increased risk of long-term cardiovascular complications, including long COVID syndrome. Sulodexide, known for its vascular endothelial affinity, has demonstrated pleiotropic protective properties. This study aims to evaluate the impact of sulodexide on serum levels of endothelial dysfunction biomarkers in patients during the convalescent phase of COVID-19. METHODS We conducted a double-blind, single-center, randomized, placebo-controlled trial in Mexico, comparing sulodexide (250 LRU orally, twice daily) with placebo over 8 weeks in adult patients during early COVID-19 convalescence. Differences in serum biomarkers between the groups were analyzed using repeated measures and post hoc tests, with Thrombomodulin (TM) as the primary endpoint. RESULTS Among 206 analyzed patients (103 in each group), at week 8, the sulodexide group exhibited significantly lower mean levels of Thrombomodulin (TM) (25.2 ± 7.9 ng/mL vs 29.9 ± 14.7 ng/mL, P = .03), von Willebrand Factor (vWF) (232 ± 131 U/dL vs 266 ± 122 U/dL, P = .02) and Interleukin-6 (IL-6) (12.5 ± 13.2 pg/mL vs 16.2 ± 16.5 pg/mL, P = .03) compared to the placebo group. D-dimer and C reactive protein (CRP) in the sulodexide group were also lowered. No significant differences were observed for P-selectin, fibrinogen, VCAM-1, or ICAM-1 levels. CONCLUSIONS Patients in the convalescent phase of COVID-19 who received sulodexide for eight weeks showed a reduction in TM, vWF, D-dimer, CRP, and IL-6 serum levels compared to placebo. These findings suggest a potential protective effect of sulodexide against thromboinflammation and endothelial damage.
Collapse
Affiliation(s)
- Alejandro J Gonzalez-Ochoa
- Vascular Surgery Department, Centro Médico del Noroeste, San Luis Rio Colorado, Sonora, México
- Vascular and Endovascular Surgery department, CLINEDEM, San Luis Rio Colorado, Sonora, México
| | - Gyozo Szolnoky
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | | | - Jawed Fareed
- Hemostasis and Thrombosis Research Laboratories, Loyola University Medical Center, Maywood, Illinois, USA
| |
Collapse
|
17
|
Adilović M, Hromić-Jahjefendić A, Mahmutović L, Šutković J, Rubio-Casillas A, Redwan EM, Uversky VN. Intrinsic Factors Behind the Long-COVID: V. Immunometabolic Disorders. J Cell Biochem 2025; 126:e30683. [PMID: 39639607 DOI: 10.1002/jcb.30683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/02/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
The complex link between COVID-19 and immunometabolic diseases demonstrates the important interaction between metabolic dysfunction and immunological response during viral infections. Severe COVID-19, defined by a hyperinflammatory state, is greatly impacted by underlying chronic illnesses aggravating the cytokine storm caused by increased levels of Pro-inflammatory cytokines. Metabolic reprogramming, including increased glycolysis and altered mitochondrial function, promotes viral replication and stimulates inflammatory cytokine production, contributing to illness severity. Mitochondrial metabolism abnormalities, strongly linked to various systemic illnesses, worsen metabolic dysfunction during and after the pandemic, increasing cardiovascular consequences. Long COVID-19, defined by chronic inflammation and immune dysregulation, poses continuous problems, highlighting the need for comprehensive therapy solutions that address both immunological and metabolic aspects. Understanding these relationships shows promise for effectively managing COVID-19 and its long-term repercussions, which is the focus of this review paper.
Collapse
Affiliation(s)
- Muhamed Adilović
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Lejla Mahmutović
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Jasmin Šutković
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan, Mexico
- Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, Mexico
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria, Egypt
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
18
|
Dieter RS, Kempaiah P, Dieter EG, Alcazar A, Tafur A, Gerotziafas G, Gonzalez Ochoa A, Abdesselem S, Biller J, Kipshidze N, Vandreden P, Guerrini M, Dieter RA, Durvasula R, Singh M, Fareed J. Cardiovascular Symposium on Perspectives in Long COVID. Clin Appl Thromb Hemost 2025; 31:10760296251319963. [PMID: 39943820 PMCID: PMC11822813 DOI: 10.1177/10760296251319963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/09/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Significant progress has been made in treating Coronavirus disease (COVID) - an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). An ominous turn in the pandemic is the evolving public health crisis emanating from persistent SARS-CoV-2 infection and its associated long-term impact. Long COVID or post-COVID syndrome describes protean symptoms that persist at least 3 months after the onset of acute illness and last for at least 2 months in individuals with a history of confirmed SARS-CoV-2 infection. Long COVID has become a public health concern. Millions of infected individuals are now facing chronic multi-organ failures, including neuropsychiatric, cardiovascular, pulmonary, and kidney complications. In general, the cause of long COVID syndrome is unclear but factors such as prolonged activation of immune responses, and viral persistence triggering transcription dysregulation of genes associated with normal thrombotic disease may play a role in cardiovascular complications. Although inflammatory biomarkers are reported in other disorders, it remains unclear whether similar biomarkers are associated with cardiovascular manifestations following COVID. Medications such as sulodexide directed at glycocalyx and coagulation have demonstrated benefits for long COVID in smaller studies. Here, we describe the outcomes of the symposium on the underlying cardiovascular mechanisms of the long COVID.
Collapse
Affiliation(s)
- Robert S. Dieter
- Loyola University Stritch School of Medicine, Maywood, USA
- VA Hines, IL, USA
| | - Prakasha Kempaiah
- Loyola University Stritch School of Medicine, Maywood, USA
- Loyola University Chicago, Maywood, IL, USA
| | | | | | - Alfonso Tafur
- Endeavor Health, University of Chicago, Pritzker School of Medicine, Chicago, IL, USA
| | - Grigoris Gerotziafas
- Sorbonne University, INSERM UMR_S_938, Saint-Antoine Research Center (CRSA), Team “Cancer, Vessels, Biology and Therapeutics” (CaVITE), Group “Cancer – Angiogenesis – Thrombosis”, University Institute of Cancerology (UIC), Saint Antoine University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
- Thrombosis and Haemostasis Center, Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | | | - Jose Biller
- Loyola University Stritch School of Medicine, Maywood, USA
| | | | - Patrick Vandreden
- Sorbonne University, INSERM UMR_S_938, Saint-Antoine Research Center (CRSA), Team “Cancer, Vessels, Biology and Therapeutics” (CaVITE), Group “Cancer – Angiogenesis – Thrombosis”, University Institute of Cancerology (UIC), Saint Antoine University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
- Department of Clinical Research, Diagnostica Stago, Gennevilliers, France
| | - Marco Guerrini
- Istituto di Ricerche Chimiche e Biochimiche G-Ronzoni – NMR Center, Milano, Italy
| | | | | | - Meharvan Singh
- Loyola University Stritch School of Medicine, Maywood, USA
- Loyola University Chicago, Maywood, IL, USA
| | - Jawed Fareed
- Loyola University Stritch School of Medicine, Maywood, USA
- Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
19
|
Narayanan SN, Padiyath S, Chandrababu K, Raj L, P S BC, Ninan GA, Sivadasan A, Jacobs AR, Li YW, Bhaskar A. Neurological, psychological, psychosocial complications of long-COVID and their management. Neurol Sci 2025; 46:1-23. [PMID: 39516425 PMCID: PMC11698801 DOI: 10.1007/s10072-024-07854-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Since it first appeared, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has had a significant and lasting negative impact on the health and economies of millions of individuals all over the globe. At the level of individual health too, many patients are not recovering fully and experiencing a long-term condition now commonly termed 'long-COVID'. Long-COVID is a collection of symptoms which must last more than 12 weeks following initial COVID infection, and which cannot be adequately explained by alternate diagnoses. The neurological and psychosocial impact of long-COVID is itself now a global health crisis and therefore preventing, diagnosing, and managing these patients is of paramount importance. This review focuses primarily on: neurological functioning deficits; mental health impacts; long-term mood problems; and associated psychosocial issues, among patients suffering from long-COVID with an eye towards the neurological basis of these symptoms. A concise account of the clinical relevance of the neurological and psychosocial impacts of long-COVID, the effects on long-term morbidity, and varied approaches in managing patients with significant chronic neurological symptoms and conditions was extracted from the literature, analysed and reported. A comprehensive account of plausible pathophysiological mechanisms involved in the development of long-COVID, its management, and future research needs have been discussed.
Collapse
Affiliation(s)
- Sareesh Naduvil Narayanan
- Department of Physiology, School of Medicine and Dentistry, AUC-UK Track, University of Central Lancashire, Preston, UK.
| | - Sreeshma Padiyath
- Department of Microbiology, School of Medicine and Dentistry, AUC-UK Track, University of Central Lancashire, Preston, UK
| | - Krishnapriya Chandrababu
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology (CUSAT), Kochi, India
| | - Lima Raj
- Department of Psychology, Sree Sankaracharya University of Sanskrit, Kalady, India
| | - Baby Chakrapani P S
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology (CUSAT), Kochi, India
- Centre for Excellence in Neurodegeneration and Brain Health (CENABH), Cochin University of Science and Technology (CUSAT), Kochi, India
| | | | - Ajith Sivadasan
- Department of Neurology, Christian Medical College (CMC), Vellore, India
| | - Alexander Ryan Jacobs
- School of Medicine and Dentistry, AUC-UK Track, University of Central Lancashire, Preston, UK
| | - Yan Wa Li
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Anand Bhaskar
- Department of Physiology, Christian Medical College (CMC), Vellore, India
| |
Collapse
|
20
|
Smadja DM, Günther S, Cavagna P, Renaud B, Salmon D, Hermann B, Ranque B, Lemogne C, Diehl JL, Philippe A. Circulating endothelial cells: a key biomarker of persistent fatigue after hospitalization for COVID-19. Angiogenesis 2024; 28:8. [PMID: 39704834 DOI: 10.1007/s10456-024-09959-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/06/2024] [Indexed: 12/21/2024]
Affiliation(s)
- David M Smadja
- Innovative Therapies in Hemostasis, Paris Cité University, INSERM, Paris, 75006, France.
- Hematology Department, AP-HP, Georges Pompidou European Hospital, 56 rue Leblanc, Paris, 75015, France.
| | - Sven Günther
- Innovative Therapies in Hemostasis, Paris Cité University, INSERM, Paris, 75006, France
- Unité d'Explorations Fonctionnelles Respiratoires et du Sommeil, AP-HP, Georges Pompidou European Hospital, Paris, F-75015, France
| | - Pauline Cavagna
- Pitié-Salpêtrière Hospital, Pharmacy Department, AP-HP, Paris, France
- Paris Cité University, INSERM U970, Paris Cardiovascular Research Centre (PARCC), 56 rue Leblanc, Paris, 75015, France
| | - Bertrand Renaud
- Unité d'Explorations Fonctionnelles Respiratoires et du Sommeil, AP-HP, Georges Pompidou European Hospital, Paris, F-75015, France
| | - Dominique Salmon
- Hôtel-Dieu Hospital, Infectious Diseases and Immunology Department, AP-HP, Paris, 75004, France
| | - Bertrand Hermann
- Innovative Therapies in Hemostasis, Paris Cité University, INSERM, Paris, 75006, France
- Medical Intensive Care Department, AP-HP, Georges Pompidou European Hospital, Paris, 75015, France
| | - Brigitte Ranque
- Internal Medicine Department, AP-HP, Georges Pompidou European Hospital, Paris, 75015, France
- Paris Cité University and Sorbonne Paris Nord University, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), Paris, 75004, France
| | - Cédric Lemogne
- Paris Cité University and Sorbonne Paris Nord University, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), Paris, 75004, France
- Adult Psychiatry Department, AP-HP, Hôtel-Dieu Hospital, Paris, 75004, France
| | - Jean-Luc Diehl
- Innovative Therapies in Hemostasis, Paris Cité University, INSERM, Paris, 75006, France
- Medical Intensive Care Department, AP-HP, Georges Pompidou European Hospital, Paris, 75015, France
| | - Aurélien Philippe
- Innovative Therapies in Hemostasis, Paris Cité University, INSERM, Paris, 75006, France
- Hematology Department, AP-HP, Georges Pompidou European Hospital, 56 rue Leblanc, Paris, 75015, France
| |
Collapse
|
21
|
Loutsidi NE, Politou M, Vlahakos V, Korakakis D, Kassi T, Nika A, Pouliakis A, Eleftheriou K, Balis E, Pappas AG, Kalomenidis I. Hypercoagulable Rotational Thromboelastometry During Hospital Stay Is Associated with Post-Discharge DLco Impairment in Patients with COVID-19-Related Pneumonia. Viruses 2024; 16:1916. [PMID: 39772223 PMCID: PMC11680182 DOI: 10.3390/v16121916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Hypercoagulation is central to the pathogenesis of acute and post-acute COVID-19. This prospective observational study explored whether rotational thromboelastometry (ROTEM), a method that unveils coagulation status, predicts outcomes of hospitalized patients with COVID-19 pneumonia. We investigated 62 patients using ROTEM that was conducted at enrollment, clinical deterioration, discharge and follow-up visits 1 and 3 months post-discharge. A hypercoagulable ROTEM was more common at clinical deterioration than at enrollment and the levels of hypercoagulable ROTEM indices correlated with the clinical severity score. Hypercoagulable ROTEM at enrollment was not associated with in-hospital death. Patients with hypercoagulable ROTEM at enrollment, discharge and 1 month post-discharge had an increased risk of persistent symptoms 1 and 3 months after discharge. Patients with hypercoagulable ROTEM at enrollment, discharge, and 1 month after discharge were more likely to have lung diffusion capacity (DLco) impairment 3 months after discharge. High levels of hypercoagulable ROTEM indices were associated with the increased risk of persistent symptoms at later stages of the disease. In a multivariate analysis, (i) hypercoagulable ROTEM at discharge and female gender were linked to the presence of symptoms at one month post-discharge, (ii) hypercoagulable ROTEM at one month after discharge was linked to the presence of symptoms at three months post-discharge, (iii) hypercoagulable ROTEM at enrollment and at discharge and female gender were linked to the presence of impaired DLco at three months post-discharge. Excessive coagulation may contribute to long-COVID pathogenesis and ROTEM findings during hospitalization may predict post-acute-COVID-19 sequelae in patients with COVID-19-related pneumonia.
Collapse
Affiliation(s)
- Natasa-Eleni Loutsidi
- Haematology-Lymphomas Department and Bone Marrow Transplant Unit, “Evangelismos” General Hospital, 10676 Athens, Greece
| | - Marianna Politou
- Hematology Laboratory-Blood Bank, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (M.P.); (D.K.); (T.K.); (A.N.)
| | - Vassilios Vlahakos
- 1st Department of Critical Care and Pulmonary Medicine, School of Medicine, National and Kapodistrian University of Athens, “Evangelismos” General Hospital, 10676 Athens, Greece; (V.V.); (K.E.); (A.G.P.); (I.K.)
| | - Dimitrios Korakakis
- Hematology Laboratory-Blood Bank, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (M.P.); (D.K.); (T.K.); (A.N.)
| | - Theodora Kassi
- Hematology Laboratory-Blood Bank, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (M.P.); (D.K.); (T.K.); (A.N.)
| | - Asimina Nika
- Hematology Laboratory-Blood Bank, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (M.P.); (D.K.); (T.K.); (A.N.)
| | - Abraham Pouliakis
- 2nd Department of Pathology, National and Kapodistrian University of Athens, “ATTIKON” University Hospital, 12462 Chaidari, Greece;
| | - Konstantinos Eleftheriou
- 1st Department of Critical Care and Pulmonary Medicine, School of Medicine, National and Kapodistrian University of Athens, “Evangelismos” General Hospital, 10676 Athens, Greece; (V.V.); (K.E.); (A.G.P.); (I.K.)
| | - Evangelos Balis
- Department of Pulmonary Medicine, “Evangelismos” Hospital, 10676 Athens, Greece;
| | - Apostolos G. Pappas
- 1st Department of Critical Care and Pulmonary Medicine, School of Medicine, National and Kapodistrian University of Athens, “Evangelismos” General Hospital, 10676 Athens, Greece; (V.V.); (K.E.); (A.G.P.); (I.K.)
| | - Ioannis Kalomenidis
- 1st Department of Critical Care and Pulmonary Medicine, School of Medicine, National and Kapodistrian University of Athens, “Evangelismos” General Hospital, 10676 Athens, Greece; (V.V.); (K.E.); (A.G.P.); (I.K.)
| |
Collapse
|
22
|
Haljan G, Lee T, McCarthy A, Cowan J, Tsang J, Lelouche F, Turgeon AF, Archambault P, Lamontagne F, Fowler R, Yoon J, Daley P, Cheng MP, Vinh DC, Lee TC, Tran KC, Winston BW, Kong HJ, Boyd JH, Walley KR, McGeer A, Maslove DM, Marshall JC, Singer J, Jain F, Russell JA. Complex Thrombo-Inflammatory Responses versus Outcomes of Non-COVID-19 Community-Acquired Pneumonia and COVID-19. J Innate Immun 2024; 16:529-552. [PMID: 39626643 PMCID: PMC11614459 DOI: 10.1159/000542420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 10/15/2024] [Indexed: 12/08/2024] Open
Abstract
INTRODUCTION The thrombo-inflammatory response and outcomes of community-acquired pneumonia (CAP) due to various organisms (non-COVID-19 CAP) versus CAP due to a single virus, SARS-CoV-2 (i.e., COVID-19) may differ. METHODS Adults hospitalized with non-COVID-19 CAP (December 1, 2021-June 15, 2023) or COVID-19 (March 2, 2020-June 15, 2023) in Canada. We compared non-COVID-19 CAP and COVID-19 baseline, thrombo-inflammatory response, and mortality. We measured plasma cytokine and coagulation factor levels in a sample of patients, did hierarchical clustering, and compared cytokine and coagulation factor levels. RESULTS In 2,485 patients (non-COVID-19 CAP, n = 719; COVID-19 patients, n = 2,157), non-COVID-19 CAP patients had significantly lower 28-day mortality (CAP vs. COVID-19 waves 1 and 2; 10% vs. 18% and 16%, respectively), intensive care unit admission (CAP vs. all waves; 15% vs. 39%, 37%, 33%, and 24%, respectively), invasive ventilation (CAP vs. waves 1, 2, and 3 patients; 11% vs. 25%, 20%, and 16%), vasopressor use (CAP 12% vs. 23%, 21%, and 18%), and renal replacement therapy use (CAP 3% vs. Omicron 7%). Complexity of hierarchical clustering aligned directly with mortality: COVID-19 wave 1 and 2 patients had six clusters at admission and higher mortality than non-COVID-19 CAP and Omicron that had three clusters at admission. Pooling all COVID-19 waves increased complexity with seven clusters on admission. CONCLUSION Complex thrombo-inflammatory responses aligned with mortality of CAP. At a fundamental level, the human thrombo-inflammatory response to a brand new virus was "confused" whereas humans had eons of time to develop a more concise efficient thrombo-inflammatory host response to CAP.
Collapse
Affiliation(s)
- Greg Haljan
- Department of Medicine, Surrey Memorial Hospital, Surrey, BC, Canada
| | - Terry Lee
- Centre for Advancing Health Outcomes St. Paul’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Anne McCarthy
- The Ottawa Hospital, Ottawa Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Juthaporn Cowan
- The Ottawa Hospital, Ottawa Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Jennifer Tsang
- Niagara Health Knowledge Institute, Niagara Health, St. Catharines, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Francois Lelouche
- Department of Medicine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Alexis F. Turgeon
- CHU de Québec-Université Laval Research Center, Population Health and Optimal Health Practices Unit, Trauma-Emergency-Critical Care Medicine, Québec, QC, Canada
- Department of Anesthesiology and Critical Care Medicine, Division of Critical Care Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Patrick Archambault
- Department of Family Medicine and Emergency Medicine, Université Laval, Québec, QC, Canada
- VITAM – Centre de recherche en santé durable, Université Laval, Québec, QC, Canada
| | | | - Robert Fowler
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | | | - Peter Daley
- Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Matthew P. Cheng
- Division of Infectious Diseases, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Donald C. Vinh
- Division of Infectious Diseases, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Todd C. Lee
- Division of Infectious Diseases, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Karen C. Tran
- Division of General Internal Medicine, Department of Medicine, Vancouver General Hospital, Vancouver, BC, Canada
| | - Brent W. Winston
- Departments of Critical Care Medicine, Medicine and Biochemistry and Molecular Biology, Foothills Medical Centre, Calgary, AB, Canada
| | - Hyejin Julia Kong
- Centre for Heart Lung Innovation, St. Paul’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - John H. Boyd
- Centre for Heart Lung Innovation, St. Paul’s Hospital, University of British Columbia, Vancouver, BC, Canada
- Division of Critical Care Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Keith R. Walley
- Centre for Heart Lung Innovation, St. Paul’s Hospital, University of British Columbia, Vancouver, BC, Canada
- Division of Critical Care Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Allison McGeer
- Mt. Sinai Hospital, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| | - David M. Maslove
- Department of Critical Care, Kingston General Hospital, Queen’s University, Kingston, ON, Canada
| | - John C. Marshall
- Department of Surgery, St. Michael’s Hospital, Toronto, ON, Canada
| | - Joel Singer
- Centre for Advancing Health Outcomes St. Paul’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Fagun Jain
- Black Tusk Research Group, Vancouver, BC, Canada
| | - James A. Russell
- Centre for Heart Lung Innovation, St. Paul’s Hospital, University of British Columbia, Vancouver, BC, Canada
- Division of Critical Care Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
23
|
Nerli TF, Selvakumar J, Cvejic E, Heier I, Pedersen M, Johnsen TL, Wyller VBB. Brief Outpatient Rehabilitation Program for Post-COVID-19 Condition: A Randomized Clinical Trial. JAMA Netw Open 2024; 7:e2450744. [PMID: 39699896 DOI: 10.1001/jamanetworkopen.2024.50744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
Importance Post-COVID-19 condition (PCC) is emerging as a common and debilitating condition with few treatment options. Objective To assess the effectiveness of a brief outpatient rehabilitation program based on a cognitive and behavioral approach for patients with PCC. Design, Setting, and Participants Patients with mild to moderate PCC were randomized 1:1 to an established transdiagnostic rehabilitation program or care as usual at a single referral center recruiting from the region of the South-Eastern Norway Regional Health Authority. Participants were followed up after treatment completion and 12 months after enrollment using participant-reported outcome measures. Data were collected from February 22, 2022, until April 15, 2024. Intention-to-treat analysis was performed. Intervention The program consisted of 2 to 8 outpatient encounters with approximately 2 to 6 weeks between each encounter. The intervention was theoretically grounded in the cognitive activation theory of stress, and physicians and physiotherapists were trained in cognitive and behavioral approaches with targeted negative stimuli and response outcome expectancies being particularly important. Main Outcomes and Measures Participant-reported physical function assessed by the Short-Form Health Survey 36 Physical Function Subscale (SF-36-PFS) served as the primary outcome. Secondary outcome measures were the remaining subscales of the SF-36, return to work self-efficacy and symptom scores on fatigue, postexertional malaise, breathlessness, cognitive difficulties, sleep problems, anxiety and depression symptoms, and smell and taste abnormalities. Safety measures included primary health care contacts; hospital admissions; initiation of pharmacologic and/or nonpharmacologic therapy; occurrence of novel disease, illness, or other health problems; worsening of selected key symptoms; working abilities; and thoughts of suicide. Results A total of 473 patients with mild to moderate PCC were assessed for eligibility (n = 364 physician referred; n = 109 self-referred); 314 were included (225 females [72%]; mean [SD] age, 43 [12] years) and 231 completed the primary end point evaluation. The SF-36-PFS scores improved statistically and clinically significantly in the intervention group (score difference between groups, 9.2; 95% CI, 4.3-14.2; P < .001; Cohen d = 0.43; intention-to-treat analysis). The effect was sustained over time. Most secondary and safety measures favored the intervention. Conclusions and Relevance In this randomized clinical trial, a brief outpatient rehabilitation program with a cognitive and behavioral approach in patients with PCC was effective and safe. This trial adds to the evidence supporting such interventions in routine clinical care. Future research should investigate which elements of this approach are the most effective and identify subgroups for which the current treatment is most relevant. Trial Registration ClinicalTrials.gov Identifier: NCT05196451.
Collapse
Affiliation(s)
- Tom Farmen Nerli
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital, Lørenskog, Norway
- Division of Physical Medicine and Rehabilitation, Vestfold Hospital Trust, Tønsberg, Norway
| | - Joel Selvakumar
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Erin Cvejic
- Sydney Health Literacy Lab, Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia
| | - Ingar Heier
- Division of Physical Medicine and Rehabilitation, Vestfold Hospital Trust, Tønsberg, Norway
| | - Maria Pedersen
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Pediatric and Adolescent Medicine, Oslo University Hospital, Rikshospitalet, Norway
| | - Tone Langjordet Johnsen
- Department of Health, Social and Welfare Studies, University of South-Eastern Norway, Horten, Norway
| | - Vegard Bruun Bratholm Wyller
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
24
|
Kuchler T, Hausinger R, Braunisch MC, Günthner R, Wicklein R, Knier B, Bleidißel N, Maier M, Ribero A, Lech M, Adorjan K, Stubbe H, Kotilar K, Heemann U, Schmaderer C. All eyes on PCS: analysis of the retinal microvasculature in patients with post-COVID syndrome-study protocol of a 1 year prospective case-control study. Eur Arch Psychiatry Clin Neurosci 2024; 274:1847-1856. [PMID: 38041762 PMCID: PMC11579198 DOI: 10.1007/s00406-023-01724-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/04/2023] [Indexed: 12/03/2023]
Abstract
Since widespread vaccination against COVID-19, the development of effective antiviral drugs, and the decreasing number of patients with COVID-19 in intensive care, the risk from SARS-CoV-2 infection appears less threatening. However, studies show that a significant number of patients suffer from long-term sequelae, even months after SARS-CoV-2 infection. The so-called post-COVID syndrome (PCS) often presents a diagnostic and treatment challenge for physicians. This study protocol describes the "All Eyes on PCS" study, which aims to investigate the retinal microvasculature in PCS patients and COVID-19-recovered patients to provide new insights into the pathophysiology of PCS. "All Eyes on PCS" is a prospective, case-control study with the primary objective of detecting endothelial dysfunction (ED) in patients with PCS. Therefore, we intend to recruit patients with PCS, fully SARS-CoV-2-infection-recovered (CR) participants, and SARS-CoV-2-infection-naïve (CN) participants. Baseline measurements will include: (1) patient-specific characteristics, (2) biochemistry, (3) retinal vessel analysis (RVA), (4) survey questionnaires as patient-reported outcomes measurements (PROMs), (5) optical coherence tomography (OCT), OCT angiography (OCTA), and adaptive optics (AO), (6) blood pressure recordings, (7) handgrip strength test. After 6 months, baseline measurements will be repeated in the PCS cohort, and after 1 year, a telephone query will be conducted to assess residual symptoms and treatment needs. The aim of this study is to gain insight into the pathophysiology of PCS and to provide an objective biomarker for diagnosis and treatment, while also creating a comprehensive clinical database of PCS patients.ClinicalTrials.gov Identifier: NCT05635552; Date: 2.12.2022.
Collapse
Affiliation(s)
- Timon Kuchler
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Renate Hausinger
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Matthias C Braunisch
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Roman Günthner
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Rebecca Wicklein
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Benjamin Knier
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Nathalie Bleidißel
- Department of Ophthalmology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Matthias Maier
- Department of Ophthalmology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Andrea Ribero
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
- Medizinische Klinik und Poliklinik IV, LMU University Hospital Munich, Ziemssenstraße 5, 80336, Munich, Germany
| | - Maciej Lech
- Medizinische Klinik und Poliklinik IV, LMU University Hospital Munich, Ziemssenstraße 5, 80336, Munich, Germany
| | - Kristina Adorjan
- Department of Psychiatry and Psychotherapy, LMU University Hospital Munich, Nußbaumstraße 7, 80336, Munich, Germany
| | - Hans Stubbe
- Medizinische Klinik und Poliklinik II, LMU University Hospital Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Konstantin Kotilar
- Aachen University of Applied Sciences, Heinrich-Mussmann-Str. 1, 52428, Jülich, Germany
| | - Uwe Heemann
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Christoph Schmaderer
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| |
Collapse
|
25
|
Russell SJ, Parker K, Lehoczki A, Lieberman D, Partha IS, Scott SJ, Phillips LR, Fain MJ, Nikolich JŽ. Post-acute sequelae of SARS-CoV-2 infection (Long COVID) in older adults. GeroScience 2024; 46:6563-6581. [PMID: 38874693 PMCID: PMC11493926 DOI: 10.1007/s11357-024-01227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/26/2024] [Indexed: 06/15/2024] Open
Abstract
Long COVID, also known as PASC (post-acute sequelae of SARS-CoV-2), is a complex infection-associated chronic condition affecting tens of millions of people worldwide. Many aspects of this condition are incompletely understood. Among them is how this condition may manifest itself in older adults and how it might impact the older population. Here, we briefly review the current understanding of PASC in the adult population and examine what is known on its features with aging. Finally, we outline the major gaps and areas for research most germane to older adults.
Collapse
Affiliation(s)
- Samantha J Russell
- Division of General Internal Medicine, Geriatrics, and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center of Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Banner University Medicine-Tucson, Tucson, AZ, USA
| | - Karen Parker
- Division of General Internal Medicine, Geriatrics, and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center of Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Banner University Medicine-Tucson, Tucson, AZ, USA
| | - Andrea Lehoczki
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Department of Haematology and Stem Cell Transplantation, National Institute for Haematology and Infectious Diseases, South Pest Central Hospital, 1097, Budapest, Hungary
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - David Lieberman
- Division of General Internal Medicine, Geriatrics, and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center of Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Banner University Medicine-Tucson, Tucson, AZ, USA
| | - Indu S Partha
- Division of General Internal Medicine, Geriatrics, and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Banner University Medicine-Tucson, Tucson, AZ, USA
| | - Serena J Scott
- Division of General Internal Medicine, Geriatrics, and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center of Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Banner University Medicine-Tucson, Tucson, AZ, USA
| | - Linda R Phillips
- Division of General Internal Medicine, Geriatrics, and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center of Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- College of Nursing, University of Arizona, Tucson, AZ, USA
| | - Mindy J Fain
- Division of General Internal Medicine, Geriatrics, and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA.
- Arizona Center of Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA.
- Banner University Medicine-Tucson, Tucson, AZ, USA.
- College of Nursing, University of Arizona, Tucson, AZ, USA.
| | - Janko Ž Nikolich
- Arizona Center of Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA.
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA.
- The Aegis Consortium for Pandemic-Free Future, University of Arizona Health Sciences, Tucson, AZ, USA.
| |
Collapse
|
26
|
Moulias A, Koros R, Papageorgiou A, Katechis S, Patrinos P, Trigka-Vasilakopoulou A, Papageorgiou A, Papaioannou O, Akinosoglou K, Leventopoulos G, Tsigkas G, Tzouvelekis A, Davlouros P. Assessment of Endothelial Function in Patients with COVID-19 Using Peripheral Arterial Tonometry. Life (Basel) 2024; 14:1512. [PMID: 39598310 PMCID: PMC11595729 DOI: 10.3390/life14111512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
There is increasing evidence that COVID-19 induces endothelial dysfunction that may precede thrombotic and cardiovascular complications. The aim of this study is to evaluate endothelial function using peripheral arterial tonometry (EndoPAT). The primary endpoint is the hyperemic vascular response index (LnRHI) at two months post-discharge. Secondary endpoints include the LnRHI during hospitalization and at six-month follow-up, the proportion of patients with endothelial dysfunction (LnRHI ≤ 0.51), and the incidence of thrombotic events, cardiovascular complications, and mortality during the follow-up period. The study included 23 COVID-19 patients and 22 COVID-19-negative, matched controls. The patients exhibited a significant reduction in the LnRHI at two months post-discharge compared to the controls (median = 0.55 [IQR: 0.49-0.68] vs. median = 0.70 [IQR: 0.62-0.83]; p = 0.012). The difference in the LnRHI between patients and controls was evident from hospitalization and persisted at two and six months without significant temporal changes. The proportion of COVID-19 patients with endothelial dysfunction (LnRHI ≤ 0.51) was 61% during hospitalization and 55% at six months. There was no significant difference in thrombotic or cardiovascular events, nor in mortality. This study demonstrates that COVID-19 adversely affects endothelial function, as evidenced by a reduction in the hyperemic vascular response index, and endothelial dysfunction may also persist.
Collapse
Affiliation(s)
- Athanasios Moulias
- Department of Cardiology, General University Hospital of Patras, 26504 Patras, Greece; (A.M.); (R.K.); (P.P.); (A.T.-V.); (A.P.); (G.L.); (G.T.); (P.D.)
| | - Rafail Koros
- Department of Cardiology, General University Hospital of Patras, 26504 Patras, Greece; (A.M.); (R.K.); (P.P.); (A.T.-V.); (A.P.); (G.L.); (G.T.); (P.D.)
| | - Angeliki Papageorgiou
- Department of Cardiology, General University Hospital of Patras, 26504 Patras, Greece; (A.M.); (R.K.); (P.P.); (A.T.-V.); (A.P.); (G.L.); (G.T.); (P.D.)
- Department of Inherited and Rare Cardiovascular Diseases, Onassis Cardiac Surgery Center, 17674 Athens, Greece
| | - Spyridon Katechis
- Department of Rheumatology, General Hospital of Asklipieio Voulas, 16673 Athens, Greece;
| | - Panagiotis Patrinos
- Department of Cardiology, General University Hospital of Patras, 26504 Patras, Greece; (A.M.); (R.K.); (P.P.); (A.T.-V.); (A.P.); (G.L.); (G.T.); (P.D.)
| | - Aikaterini Trigka-Vasilakopoulou
- Department of Cardiology, General University Hospital of Patras, 26504 Patras, Greece; (A.M.); (R.K.); (P.P.); (A.T.-V.); (A.P.); (G.L.); (G.T.); (P.D.)
| | - Athanasios Papageorgiou
- Department of Cardiology, General University Hospital of Patras, 26504 Patras, Greece; (A.M.); (R.K.); (P.P.); (A.T.-V.); (A.P.); (G.L.); (G.T.); (P.D.)
| | - Ourania Papaioannou
- Department of Pneumonology, General University Hospital of Patras, 26504 Patras, Greece; (O.P.); (A.T.)
| | - Karolina Akinosoglou
- Department of Internal Medicine, General University Hospital of Patras, 26504 Patras, Greece;
| | - Georgios Leventopoulos
- Department of Cardiology, General University Hospital of Patras, 26504 Patras, Greece; (A.M.); (R.K.); (P.P.); (A.T.-V.); (A.P.); (G.L.); (G.T.); (P.D.)
| | - Grigorios Tsigkas
- Department of Cardiology, General University Hospital of Patras, 26504 Patras, Greece; (A.M.); (R.K.); (P.P.); (A.T.-V.); (A.P.); (G.L.); (G.T.); (P.D.)
| | - Argyrios Tzouvelekis
- Department of Pneumonology, General University Hospital of Patras, 26504 Patras, Greece; (O.P.); (A.T.)
| | - Periklis Davlouros
- Department of Cardiology, General University Hospital of Patras, 26504 Patras, Greece; (A.M.); (R.K.); (P.P.); (A.T.-V.); (A.P.); (G.L.); (G.T.); (P.D.)
| |
Collapse
|
27
|
Lai S, Min S. Perioperative cardiovascular risk and preventions of patients with post-COVID-19 condition. Heliyon 2024; 10:e39345. [PMID: 39640715 PMCID: PMC11620228 DOI: 10.1016/j.heliyon.2024.e39345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 12/07/2024] Open
Abstract
COVID-19 infectious is still a widely prevalent disease today. Although most patients with COVID-19 infection are mild. Some patients still develop to post-COVID-19 conditions, significantly increasing the perioperative cardiovascular risks. To better assess and prevent the perioperative cardiovascular risks of patients with COVID-19 infection, the safety and effectiveness of clinical practice can be improved through comprehensive measures, such as medical history collection, detection of symptoms and signs, application of auxiliary examinations, selection of scales and related rehabilitation treatment.
Collapse
Affiliation(s)
- Sixu Lai
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, China
| | - Su Min
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, China
| |
Collapse
|
28
|
Liu Y, Lou X. The Bidirectional Association Between Metabolic Syndrome and Long-COVID-19. Diabetes Metab Syndr Obes 2024; 17:3697-3710. [PMID: 39398386 PMCID: PMC11471063 DOI: 10.2147/dmso.s484733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/22/2024] [Indexed: 10/15/2024] Open
Abstract
Background The rapid global spread of a new coronavirus disease known as COVID-19 has led to a significant increase in mortality rates, resulting in an unprecedented worldwide pandemic. Methods The impact of COVID-19, particularly its long-term effects, has also had a profound effect on the health and well-being of individuals.Metabolic syndrome increases the risk of heart and brain diseases, presenting a significant danger to human well-being. Purpose The prognosis of long COVID and the progression of metabolic syndrome interact with each other, but there is currently a lack of systematic reports.In this paper, the pathogenesis, related treatment and prognosis of long COVID and metabolic syndrome are systematically reviewed.
Collapse
Affiliation(s)
- Yanfen Liu
- Department of Endocrinology at Zhejiang University School of Medicine, Jinhua Hospital, Jinhua, People’s Republic of China
| | - Xueyong Lou
- Department of Endocrinology at Zhejiang University School of Medicine, Jinhua Hospital, Jinhua, People’s Republic of China
| |
Collapse
|
29
|
Peluso MJ, Deeks SG. Mechanisms of long COVID and the path toward therapeutics. Cell 2024; 187:5500-5529. [PMID: 39326415 PMCID: PMC11455603 DOI: 10.1016/j.cell.2024.07.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 09/28/2024]
Abstract
Long COVID, a type of post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (PASC) defined by medically unexplained symptoms following infection with SARS-CoV-2, is a newly recognized infection-associated chronic condition that causes disability in some people. Substantial progress has been made in defining its epidemiology, biology, and pathophysiology. However, there is no cure for the tens of millions of people believed to be experiencing long COVID, and industry engagement in developing therapeutics has been limited. Here, we review the current state of knowledge regarding the biology and pathophysiology of long COVID, focusing on how the proposed mechanisms explain the physiology of the syndrome and how they provide a rationale for the implementation of a broad experimental medicine and clinical trials agenda. Progress toward preventing and curing long COVID and other infection-associated chronic conditions will require deep and sustained investment by funders and industry.
Collapse
Affiliation(s)
- Michael J Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA.
| | - Steven G Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
30
|
Guo M, Shang S, Li M, Cai G, Li P, Chen X, Li Q. Understanding autoimmune response after SARS-CoV-2 infection and the pathogenesis/mechanisms of long COVID. MEDICAL REVIEW (2021) 2024; 4:367-383. [PMID: 39444797 PMCID: PMC11495526 DOI: 10.1515/mr-2024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/04/2024] [Indexed: 10/25/2024]
Abstract
COVID-19 posed a major challenge to the healthcare system and resources worldwide. The popularization of vaccines and the adoption of numerous prevention and control measures enabled the gradual end of the COVID-19 pandemic. However, successive occurrence of autoimmune diseases in patients with COVID-19 cannot be overlooked. Long COVID has been the major focus of research due to the long duration of different symptoms and the variety of systems involved. Autoimmunity may play a crucial role in the pathogenesis of long COVID. Here, we reviewed several autoimmune disorders occurring after COVID-19 infection and the pathogenesis of long COVID.
Collapse
Affiliation(s)
- Ming Guo
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Shunlai Shang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| | - Mengfei Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Ping Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
- Haihe Laboratory of CellEcosystem, China
| | - Qinggang Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| |
Collapse
|
31
|
Aliani C, Rossi E, Soliński M, Francia P, Lanatà A, Buchner T, Bocchi L. Genetic Algorithms for Feature Selection in the Classification of COVID-19 Patients. Bioengineering (Basel) 2024; 11:952. [PMID: 39329694 PMCID: PMC11428777 DOI: 10.3390/bioengineering11090952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2) infection can cause feared consequences, such as affecting microcirculatory activity. The combined use of HRV analysis, genetic algorithms, and machine learning classifiers can be helpful in better understanding the characteristics of microcirculation that are mainly affected by COVID-19 infection. METHODS This study aimed to verify the presence of microcirculation alterations in patients with COVID-19 infection, performing Heart Rate Variability (HRV) parameters analysis extracted from PhotoPlethysmoGraphy (PPG) signals. The dataset included 97 subjects divided into two groups: healthy (50 subjects) and patients affected by mild-severity COVID-19 (47 subjects). A total of 26 parameters were extracted by the HRV analysis and were investigated using genetic algorithms with three different subject selection methods and five different machine learning classifiers. RESULTS Three parameters: meanRR, alpha1, and sd2/sd1 were considered significant, combining the results obtained by the genetic algorithm. Finally, machine learning classifications were performed by training classifiers with only those three features. The best result was achieved by the binary Decision Tree classifier, achieving accuracy of 82%, specificity (or precision) of 86%, and sensitivity of 79%. CONCLUSIONS The study's results highlight the ability to use HRV parameters extraction from PPG signals, combined with genetic algorithms and machine learning classifiers, to determine which features are most helpful in discriminating between healthy and mild-severity COVID-19-affected subjects.
Collapse
Affiliation(s)
- Cosimo Aliani
- Department of Information Engineering, University of Florence, 50139 Florence, Italy; (E.R.); (P.F.); (A.L.); (L.B.)
| | - Eva Rossi
- Department of Information Engineering, University of Florence, 50139 Florence, Italy; (E.R.); (P.F.); (A.L.); (L.B.)
| | - Mateusz Soliński
- School of Biomedical Engineering Imaging Sciences, Faculty of Life Sciences Medicine, King’s College London, London WC2R 2LS, UK;
- Engineering Department, Faculty of Natural, Mathematical & Engineering Sciences, King’s College London, London WC2R 2LS, UK
| | - Piergiorgio Francia
- Department of Information Engineering, University of Florence, 50139 Florence, Italy; (E.R.); (P.F.); (A.L.); (L.B.)
| | - Antonio Lanatà
- Department of Information Engineering, University of Florence, 50139 Florence, Italy; (E.R.); (P.F.); (A.L.); (L.B.)
| | - Teodor Buchner
- Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland;
| | - Leonardo Bocchi
- Department of Information Engineering, University of Florence, 50139 Florence, Italy; (E.R.); (P.F.); (A.L.); (L.B.)
| |
Collapse
|
32
|
Atiq F, O’Donnell JS. Novel functions for von Willebrand factor. Blood 2024; 144:1247-1256. [PMID: 38728426 PMCID: PMC11561537 DOI: 10.1182/blood.2023021915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/20/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
ABSTRACT For many years, it has been known that von Willebrand factor (VWF) interacts with factor VIII, collagen, and platelets. In addition, the key roles played by VWF in regulating normal hemostasis have been well defined. However, accumulating recent evidence has shown that VWF can interact with a diverse array of other novel ligands. To date, over 60 different binding partners have been described, with interactions mapped to specific VWF domains in some cases. Although the biological significance of these VWF-binding interactions has not been fully elucidated, recent studies have identified some of these novel ligands as regulators of various aspects of VWF biology, including biosynthesis, proteolysis, and clearance. Conversely, VWF binding has been shown to directly affect the functional properties for some of its ligands. In keeping with those observations, exciting new roles for VWF in regulating a series of nonhemostatic biological functions have also emerged. These include inflammation, wound healing, angiogenesis, and bone metabolism. Finally, recent evidence supports the hypothesis that the nonhemostatic functions of VWF directly contribute to pathogenic mechanisms in a variety of diverse diseases including sepsis, malaria, sickle cell disease, and liver disease. In this manuscript, we review the accumulating data regarding novel ligand interactions for VWF and critically assess how these interactions may affect cellular biology. In addition, we consider the evidence that nonhemostatic VWF functions may contribute to the pathogenesis of human diseases beyond thrombosis and bleeding.
Collapse
Affiliation(s)
- Ferdows Atiq
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - James S. O’Donnell
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- National Coagulation Centre, St James’s Hospital, Dublin, Ireland
| |
Collapse
|
33
|
Li B, Bai J, Xiong Y, Guo D, Fu B, Deng G, Wu H. Understanding the mechanisms and treatments of long COVID to address future public health risks. Life Sci 2024; 353:122938. [PMID: 39084516 DOI: 10.1016/j.lfs.2024.122938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/20/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
The 2019 coronavirus disease (COVID-19), triggered by the severe acute respiratory syndrome coronavirus (SARS-CoV-2), has seen numerous individuals undergo and recover from it, drawing extensive attention to their health conditions. Extensive studies indicate that even after surpassing the acute phase of infection, patients continue to experience persistent symptoms such as fatigue, pain, depression, weakening, and anosmia. COVID-19 appears not to have concluded but rather to persist long-term in certain individuals, termed as "long COVID." This represents a heterogeneous ailment involving multiple organ systems, with a perceived complex and still elusive pathogenesis. Among patients with long COVID, observations reveal immune dysregulation, coagulation impairments, and microbial dysbiosis, considered potential mechanisms explaining sustained adverse outcomes post COVID-19. Based on the multifactorial nature, varied symptoms, and heterogeneity of long COVID, we have summarized several categories of current therapeutic approaches. Furthermore, the symptoms of long COVID resemble those of other viral illnesses, suggesting that existing knowledge may offer novel insights into long-term COVID implications. Here, we provide an overview of existing literature associated with long COVID and summarize potential mechanisms, treatment modalities, and other analogous conditions. Lastly, we underscore the inadequacies in long COVID treatment approaches and emphasize the significance of conducting further research and clinical trials.
Collapse
Affiliation(s)
- Bohao Li
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Junlu Bai
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yan Xiong
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Dong Guo
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Beibei Fu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Guohong Deng
- Department of Infectious Diseases, First Affiliated Hospital, Army Medical University, Chongqing, China.
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
34
|
Smith DR, Lim ST, Murphy SJX, Hickey FB, Offiah C, Murphy SM, Collins DR, Coughlan T, O'Neill D, Egan B, O'Donnell JS, O'Sullivan JM, McCabe DJH. von Willebrand factor antigen, von Willebrand factor propeptide and ADAMTS13 activity in TIA or ischaemic stroke patients changing antiplatelet therapy. J Neurol Sci 2024; 463:123118. [PMID: 39024743 DOI: 10.1016/j.jns.2024.123118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/10/2024] [Accepted: 06/28/2024] [Indexed: 07/20/2024]
Abstract
Data are limited on the impact of commencing antiplatelet therapy on von Willebrand Factor Antigen (VWF:Ag) or von Willebrand Factor propeptide (VWFpp) levels and ADAMTS13 activity, and their relationship with platelet reactivity following TIA/ischaemic stroke. In this pilot, observational study, VWF:Ag and VWFpp levels and ADAMTS13 activity were quantified in 48 patients ≤4 weeks of TIA/ischaemic stroke (baseline), and 14 days (14d) and 90 days (90d) after commencing aspirin, clopidogrel or aspirin+dipyridamole. Platelet reactivity was assessed at moderately-high shear stress (PFA-100® Collagen-Epinephrine / Collagen-ADP / INNOVANCE PFA P2Y assays), and low shear stress (VerifyNow® Aspirin / P2Y12, and Multiplate® Aspirin / ADP assays). VWF:Ag levels decreased and VWFpp/VWF:Ag ratio increased between baseline and 14d and 90d in the overall population (P ≤ 0.03). In the clopidogrel subgroup, VWF:Ag levels decreased and VWFpp/VWF:Ag ratio increased between baseline and 14d and 90d (P ≤ 0.01), with an increase in ADAMTS13 activity between baseline vs. 90d (P ≤ 0.03). In the aspirin+dipyridamole subgroup, there was an inverse relationship between VWF:Ag and VWFpp levels with both PFA-100 C-ADP and INNOVANCE PFA P2Y closure times (CTs) at baseline (P ≤ 0.02), with PFA-100 C-ADP, INNOVANCE PFA P2Y and C-EPI CTs at 14d (P ≤ 0.05), and between VWF:Ag levels and PFA-100 INNOVANCE PFA P2Y CTs at 90d (P = 0.03). There was a positive relationship between ADAMTS13 activity and PFA-100 C-ADP CTs at baseline (R2 = 0.254; P = 0.04). Commencing/altering antiplatelet therapy, mainly attributed to commencing clopidogrel in this study, was associated with decreasing endothelial activation following TIA/ischaemic stroke. These data enhance our understanding of the impact of VWF:Ag and VWFpp especially on ex-vivo platelet reactivity status at high shear stress after TIA/ischaemic stroke.
Collapse
Affiliation(s)
- D R Smith
- Vascular Neurology Research Foundation, c/o Department of Neurology, Tallaght University Hospital (TUH) / The Adelaide and Meath Hospital, Dublin, incorporating the National Children's Hospital (AMNCH), Dublin, Ireland; Department of Neurology, TUH / AMNCH, Dublin, Ireland; Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland
| | - S T Lim
- Department of Neurology, TUH / AMNCH, Dublin, Ireland; Stroke Service, TUH / AMNCH, Dublin, Ireland; Department of Clinical and Movement Neurosciences, Royal Free Campus, UCL Queen Square Institute of Neurology, London, UK; Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland
| | - S J X Murphy
- Department of Neurology, TUH / AMNCH, Dublin, Ireland; Stroke Service, TUH / AMNCH, Dublin, Ireland; Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland
| | - F B Hickey
- Trinity Centre for Health Sciences, Dept. of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland
| | - C Offiah
- Department of Neurology, TUH / AMNCH, Dublin, Ireland; Stroke Service, TUH / AMNCH, Dublin, Ireland; Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland
| | - S M Murphy
- Department of Neurology, TUH / AMNCH, Dublin, Ireland; Stroke Service, TUH / AMNCH, Dublin, Ireland; Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland
| | - D R Collins
- Department of Age-Related Health Care, TUH / AMNCH, Dublin, Ireland; Stroke Service, TUH / AMNCH, Dublin, Ireland
| | - T Coughlan
- Department of Age-Related Health Care, TUH / AMNCH, Dublin, Ireland; Stroke Service, TUH / AMNCH, Dublin, Ireland
| | - D O'Neill
- Department of Age-Related Health Care, TUH / AMNCH, Dublin, Ireland; Stroke Service, TUH / AMNCH, Dublin, Ireland
| | - B Egan
- Department of Vascular Surgery, TUH / AMNCH, Dublin, Ireland
| | - J S O'Donnell
- National Coagulation Centre, St James's Hospital, Dublin, Ireland; Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - J M O'Sullivan
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - D J H McCabe
- Vascular Neurology Research Foundation, c/o Department of Neurology, Tallaght University Hospital (TUH) / The Adelaide and Meath Hospital, Dublin, incorporating the National Children's Hospital (AMNCH), Dublin, Ireland; Department of Neurology, TUH / AMNCH, Dublin, Ireland; Stroke Service, TUH / AMNCH, Dublin, Ireland; Department of Clinical and Movement Neurosciences, Royal Free Campus, UCL Queen Square Institute of Neurology, London, UK; Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland.
| |
Collapse
|
35
|
Yanai H, Adachi H, Hakoshima M, Katsuyama H, Sako A. The Significance of Endothelial Dysfunction in Long COVID-19 for the Possible Future Pandemic of Chronic Kidney Disease and Cardiovascular Disease. Biomolecules 2024; 14:965. [PMID: 39199353 PMCID: PMC11352301 DOI: 10.3390/biom14080965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Various symptoms have been reported to persist beyond the acute phase of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which is referred to as long coronavirus disease 19 (long COVID-19). Over 65 million individuals suffer from long COVID-19. However, the causes of long COVID-19 are largely unknown. Since long COVID-19 symptoms are observed throughout the body, vascular endothelial dysfunction is a strong candidate explaining the induction of long COVID-19. The angiotensin-converting enzyme 2 (ACE2), the entry receptor for SARS-CoV-2, is ubiquitously expressed in endothelial cells. We previously found that the risk factors for atherosclerotic cardiovascular disease (ASCVD) and a history of ASCVD raise the risk of severe COVID-19, suggesting a contribution of pre-existing endothelial dysfunction to severe COVID-19. Here, we show a significant association of endothelial dysfunction with the development of long COVID-19 and show that biomarkers for endothelial dysfunction in patients with long COVID-19 are also crucial players in the development of ASCVD. We consider the influence of long COVID-19 on the development of chronic kidney disease (CKD) and ASCVD. Future assessments of the outcomes of long COVID-19 in patients resulting from therapeutic interventions that improve endothelial function may imply the significance of endothelial dysfunction in the development of long COVID-19.
Collapse
Affiliation(s)
- Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan; (H.A.); (M.H.); (H.K.)
| | - Hiroki Adachi
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan; (H.A.); (M.H.); (H.K.)
| | - Mariko Hakoshima
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan; (H.A.); (M.H.); (H.K.)
| | - Hisayuki Katsuyama
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan; (H.A.); (M.H.); (H.K.)
| | - Akahito Sako
- Department of General Medicine, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan;
| |
Collapse
|
36
|
Shafqat A, Masters MC, Tripathi U, Tchkonia T, Kirkland JL, Hashmi SK. Long COVID as a disease of accelerated biological aging: An opportunity to translate geroscience interventions. Ageing Res Rev 2024; 99:102400. [PMID: 38945306 DOI: 10.1016/j.arr.2024.102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
It has been four years since long COVID-the protracted consequences that survivors of COVID-19 face-was first described. Yet, this entity continues to devastate the quality of life of an increasing number of COVID-19 survivors without any approved therapy and a paucity of clinical trials addressing its biological root causes. Notably, many of the symptoms of long COVID are typically seen with advancing age. Leveraging this similarity, we posit that Geroscience-which aims to target the biological drivers of aging to prevent age-associated conditions as a group-could offer promising therapeutic avenues for long COVID. Bearing this in mind, this review presents a translational framework for studying long COVID as a state of effectively accelerated biological aging, identifying research gaps and offering recommendations for future preclinical and clinical studies.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Mary Clare Masters
- Division of Infectious Diseases, Northwestern University, Chicago, IL, USA
| | - Utkarsh Tripathi
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Shahrukh K Hashmi
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA; Research and Innovation Center, Department of Health, Abu Dhabi, UAE; College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
37
|
Yada N, Zhang Q, Bignotti A, Ye Z, Zheng XL. ADAMTS13 or Caplacizumab Reduces the Accumulation of Neutrophil Extracellular Traps and Thrombus in Whole Blood of COVID-19 Patients under Flow. Thromb Haemost 2024; 124:725-738. [PMID: 38272066 PMCID: PMC11260255 DOI: 10.1055/a-2253-9359] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
BACKGROUND Neutrophil NETosis and neutrophil extracellular traps (NETs) play a critical role in pathogenesis of coronavirus disease 2019 (COVID-19)-associated thrombosis. However, the extents and reserve of NETosis, and potential of thrombus formation under shear in whole blood of patients with COVID-19 are not fully elucidated. Neither has the role of recombinant ADAMTS13 or caplacizumab on the accumulation of NETs and thrombus in COVID-19 patients' whole blood under shear been investigated. METHODS Flow cytometry and microfluidic assay, as well as immunoassays, were employed for the study. RESULTS We demonstrated that the percentage of H3Cit + MPO+ neutrophils, indicative of NETosis, was dramatically increased in patients with severe but not critical COVID-19 compared with that in asymptomatic or mild disease controls. Upon stimulation with poly [I:C], a double strain DNA mimicking viral infection, or bacterial shigatoxin-2, the percentage of H3Cit + MPO+ neutrophils was not significantly increased in the whole blood of severe and critical COVID-19 patients compared with that of asymptomatic controls, suggesting the reduction in NETosis reserve in these patients. Microfluidic assay demonstrated that the accumulation of NETs and thrombus was significantly enhanced in the whole blood of severe/critical COVID-19 patients compared with that of asymptomatic controls. Like DNase I, recombinant ADAMTS13 or caplacizumab dramatically reduced the NETs accumulation and thrombus formation under arterial shear. CONCLUSION Significantly increased neutrophil NETosis, reduced NETosis reserve, and enhanced thrombus formation under arterial shear may play a crucial role in the pathogenesis of COVID-19-associated coagulopathy. Recombinant ADAMTS13 or caplacizumab may be explored for the treatment of COVID-19-associated thrombosis.
Collapse
Affiliation(s)
- Noritaka Yada
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kanas City, Kansas, United States
| | - Quan Zhang
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kanas City, Kansas, United States
| | - Antonia Bignotti
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kanas City, Kansas, United States
| | - Zhan Ye
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kanas City, Kansas, United States
| | - X. Long Zheng
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kanas City, Kansas, United States
- Institute of Reproductive Medicine and Developmental Sciences, The University of Kansas Medical Center, Kanas City, Kansas, United States
| |
Collapse
|
38
|
Poyatos P, Luque N, Sabater G, Eizaguirre S, Bonnin M, Orriols R, Tura-Ceide O. Endothelial dysfunction and cardiovascular risk in post-COVID-19 patients after 6- and 12-months SARS-CoV-2 infection. Infection 2024; 52:1269-1285. [PMID: 38324145 PMCID: PMC11289012 DOI: 10.1007/s15010-024-02173-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/01/2024] [Indexed: 02/08/2024]
Abstract
INTRODUCTION SARS-CoV-2 infection causes severe endothelial damage, an essential step for cardiovascular complications. Endothelial-colony forming cells (ECFCs) act as a biomarker of vascular damage but their role in SARS-CoV-2 remain unclear. The aim of this study was to assess whether the number of ECFCs and angiogenic biomarkers remained altered after 6 and 12-months post-infection and whether this imbalance correlated with the presence of long-COVID syndrome and other biological parameters measured. METHODS Seventy-two patients were recruited at different time-points after overcoming COVID-19 and thirty-one healthy controls. All subjects were matched for age, gender, BMI, and comorbidities. ECFCs were obtained from peripheral blood and cultured with specific conditions. RESULTS The results confirm the presence of a long-term sequela in post-COVID-19 patients, with an abnormal increase in ECFC production compared to controls (82.8% vs. 48.4%, P < 0.01) that is maintained up to 6-months (87.0% vs. 48.4%, P < 0.01) and 12-months post-infection (85.0% vs. 48.4%, P < 0.01). Interestingly, post-COVID-19 patients showed a significant downregulation of angiogenesis-related proteins compared to controls indicating a clear endothelial injury. Troponin, NT-proBNP and ferritin levels, markers of cardiovascular risk and inflammation, remained elevated up to 12-months post-infection. Patients with lower numbers of ECFC exhibited higher levels of inflammatory markers, such as ferritin, suggesting that ECFCs may play a protective role. Additionally, long-COVID syndrome was associated with higher ferritin levels and with female gender. CONCLUSIONS These findings highlight the presence of vascular sequela that last up to 6- and 12-months post-infection and point out the need for preventive measures and patient follow-up.
Collapse
Affiliation(s)
- Paula Poyatos
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
- Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
| | - Neus Luque
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
| | - Gladis Sabater
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
- Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
| | - Saioa Eizaguirre
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
- Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
| | - Marc Bonnin
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
- Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
| | - Ramon Orriols
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain.
- Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain.
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain.
| | - Olga Tura-Ceide
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain.
- Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain.
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain.
- Department of Pulmonary Medicine, Servei de Pneumologia, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Villarroel, 170, 08036, Barcelona, Spain.
| |
Collapse
|
39
|
Chidambaram V, Kumar A, Sadaf MI, Lu E, Al’Aref SJ, Tarun T, Galiatsatos P, Gulati M, Blumenthal RS, Leucker TM, Karakousis PC, Mehta JL. COVID-19 in the Initiation and Progression of Atherosclerosis: Pathophysiology During and Beyond the Acute Phase. JACC. ADVANCES 2024; 3:101107. [PMID: 39113913 PMCID: PMC11304887 DOI: 10.1016/j.jacadv.2024.101107] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/24/2024] [Accepted: 06/01/2024] [Indexed: 08/10/2024]
Abstract
The incidence of atherosclerotic cardiovascular disease is increasing globally, especially in low- and middle-income countries, despite significant efforts to reduce traditional risk factors. Premature subclinical atherosclerosis has been documented in association with several viral infections. The magnitude of the recent COVID-19 pandemic has highlighted the need to understand the association between SARS-CoV-2 and atherosclerosis. This review examines various pathophysiological mechanisms, including endothelial dysfunction, platelet activation, and inflammatory and immune hyperactivation triggered by SARS-CoV-2 infection, with specific attention on their roles in initiating and promoting the progression of atherosclerotic lesions. Additionally, it addresses the various pathogenic mechanisms by which COVID-19 in the post-acute phase may contribute to the development of vascular disease. Understanding the overlap of these syndromes may enable novel therapeutic strategies. We further explore the need for guidelines for closer follow-up for the often-overlooked evidence of atherosclerotic cardiovascular disease among patients with recent COVID-19, particularly those with cardiometabolic risk factors.
Collapse
Affiliation(s)
- Vignesh Chidambaram
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Amudha Kumar
- Division of Cardiology, Department of Medicine, Loyola University Medical Center, Maywood, Illinois, USA
| | - Murrium I. Sadaf
- Division of Cardiovascular Medicine, Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Emily Lu
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Subhi J. Al’Aref
- Division of Cardiovascular Medicine, Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Tushar Tarun
- Division of Cardiovascular Medicine, Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Panagis Galiatsatos
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Martha Gulati
- Barbra Streisand Women's Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Roger S. Blumenthal
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thorsten M. Leucker
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Petros C. Karakousis
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jawahar L. Mehta
- Division of Cardiovascular Medicine, Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Division of Cardiovascular Medicine, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA
| |
Collapse
|
40
|
Kattainen S, Pitkänen H, Reijula J, Hästbacka J. Complete blood count, coagulation biomarkers, and lung function 6 months after critical COVID-19. Acta Anaesthesiol Scand 2024; 68:940-948. [PMID: 38723274 DOI: 10.1111/aas.14437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/11/2024] [Accepted: 04/21/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Understanding the recovery of post-COVID-19 organ dysfunction is essential. We evaluated coagulation 6 months post-COVID-19, examining its recovery and association with lung function. METHODS Patients treated for COVID-19 at intensive care units between 3/2020 and 1/2021 were analyzed for complete blood count (CBC) and coagulation biomarkers (prothrombin time activity (%) (PT%), activated partial thromboplastin time (APTT), fibrinogen, coagulation factor VIII (FVIII), antithrombin (AT), and D-dimer) during the 6 months post-hospitalization. Results were compared with acute phase values and correlated with pulmonary function tests (PFT), including forced vital capacity (FVC) and hemoglobin-corrected diffusing capacity percentage of predicted (DLCOc%), recorded 6 months post-hospitalization. We examined the association between coagulation biomarkers and DLCOc% using linear regression with age, sex, and invasive mechanical ventilation (IMV) duration, and FVIII (correlated with DLCOc%) as covariates. RESULTS Most CBCs and coagulation biomarkers had median values within the normal range. However, only 21% (15/70) of patients achieved full normalization of all biomarkers. Compared to acute COVID-19, hemoglobin, PT%, and AT increased, while leukocytes, fibrinogen, FVIII, and D-dimer decreased. Despite decreased levels, FVIII remained elevated in 46% (31/68), leukocytes in 26% (18/70), and D-dimer in 27% (18/67) at 6 months. A weak negative correlation (r = -0.37, p = .036) was found between DLCOc% and FVIII. Multivariable analysis revealed a weak, independent association between DLCOc% and FVIII. Excluding patients with anticoagulation therapy, FVIII no longer correlated with DLCOc%, while AT showed a moderate correlation with DLCOc%. CONCLUSION Only a few patients had normal CBC and coagulation biomarker values 6 months after critical COVID-19. A weak negative correlation between DLCOc% and FVIII suggests that deranged coagulation activity may be associated with reduced diffusing capacity.
Collapse
Affiliation(s)
- Salla Kattainen
- Division of Intensive Care, Department of Perioperative and Intensive Care Medicine, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
| | - Hanna Pitkänen
- Division of Intensive Care, Department of Perioperative and Intensive Care Medicine, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
| | - Jere Reijula
- Department of Pulmonology, Heart and Lung Center, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
| | - Johanna Hästbacka
- Department of Anaesthesia and Intensive Care, Tampere University Hospital, University of Tampere, Tampere, Finland
| |
Collapse
|
41
|
Bellucci M, Bozzano FM, Castellano C, Pesce G, Beronio A, Farshchi AH, Limongelli A, Uccelli A, Benedetti L, De Maria A. Post-SARS-CoV-2 infection and post-vaccine-related neurological complications share clinical features and the same positivity to anti-ACE2 antibodies. Front Immunol 2024; 15:1398028. [PMID: 39148725 PMCID: PMC11324485 DOI: 10.3389/fimmu.2024.1398028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Introduction A potential overlap in symptoms between post-acute COVID-19 syndrome and post-COVID-19 vaccination syndrome has been noted. We report a paired description of patients presenting with similar manifestations involving the central (CNS) or peripheral nervous system (PNS) following SARS-CoV-2 infection or vaccination, suggesting that both may have triggered similar immune-mediated neurological disorders in the presence of anti-idiotype antibodies directed against the ACE2 protein. Patients and methods Four patients exhibited overlapping neurological manifestations following SARS-CoV-2 infection or vaccination: radiculitis, Guillain-Barré syndrome, and MRI-negative myelitis, respectively, sharing positivity for anti-ACE2 antibodies. Autoantibodies against AQP-4, MOG, GlyR, GAD, and amphiphysin, onconeural antibodies for CNS syndromes, and anti-ganglioside antibodies for PNS syndromes tested negative in all patients. Discussion Anti-idiotype antibodies against ACE2 have been detected in patients who recovered from COVID-19 infection, and it has been hypothesized that such antibodies may mediate adverse events following SARS-CoV-2 infection or vaccination, resulting in the activation of the immune system against cells expressing ACE2, such as neurons. Our data reveal clinically overlapping syndromes triggered by SARS-CoV-2 infection or vaccination, sharing positivity for anti-ACE2 antibodies. Their presence, in the absence of other classic autoimmune markers of CNS or PNS involvement, suggests that they might play an active role in the context of an aberrant immune response. Conclusion Anti-idiotype antibodies directed against ACE2 may be triggered by both SARS-CoV-2 infection and vaccination, possibly contributing to neurological autoimmune manifestations. Their pathogenic role, however, remains to be demonstrated in large-scale, more structured studies.
Collapse
Affiliation(s)
- Margherita Bellucci
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genoa, Italy
| | - Federica Maria Bozzano
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Ospedale Policlinico San Martino, Genova, Italy
| | - Chiara Castellano
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genoa, Italy
| | - Giampaola Pesce
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Ospedale Policlinico San Martino, Genova, Italy
| | | | | | | | - Antonio Uccelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genoa, Italy
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Ospedale Policlinico San Martino, Genova, Italy
| | - Luana Benedetti
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Ospedale Policlinico San Martino, Genova, Italy
| | - Andrea De Maria
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Ospedale Policlinico San Martino, Genova, Italy
- Department of Health Sciences (DISSAL), University of Genova, Genoa, Italy
| |
Collapse
|
42
|
Chung YS, Lam CY, Tan PH, Tsang HF, Wong SCC. Comprehensive Review of COVID-19: Epidemiology, Pathogenesis, Advancement in Diagnostic and Detection Techniques, and Post-Pandemic Treatment Strategies. Int J Mol Sci 2024; 25:8155. [PMID: 39125722 PMCID: PMC11312261 DOI: 10.3390/ijms25158155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
At present, COVID-19 remains a public health concern due to the ongoing evolution of SARS-CoV-2 and its prevalence in particular countries. This paper provides an updated overview of the epidemiology and pathogenesis of COVID-19, with a focus on the emergence of SARS-CoV-2 variants and the phenomenon known as 'long COVID'. Meanwhile, diagnostic and detection advances will be mentioned. Though many inventions have been made to combat the COVID-19 pandemic, some outstanding ones include multiplex RT-PCR, which can be used for accurate diagnosis of SARS-CoV-2 infection. ELISA-based antigen tests also appear to be potential diagnostic tools to be available in the future. This paper also discusses current treatments, vaccination strategies, as well as emerging cell-based therapies for SARS-CoV-2 infection. The ongoing evolution of SARS-CoV-2 underscores the necessity for us to continuously update scientific understanding and treatments for it.
Collapse
Affiliation(s)
| | | | | | | | - Sze-Chuen Cesar Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; (Y.-S.C.); (C.-Y.L.); (P.-H.T.); (H.-F.T.)
| |
Collapse
|
43
|
Mo CC, Richardson E, Calabretta E, Corrado F, Kocoglu MH, Baron RM, Connors JM, Iacobelli M, Wei LJ, Rapoport AP, Díaz-Ricart M, Moraleda JM, Carlo-Stella C, Richardson PG. Endothelial injury and dysfunction with emerging immunotherapies in multiple myeloma, the impact of COVID-19, and endothelial protection with a focus on the evolving role of defibrotide. Blood Rev 2024; 66:101218. [PMID: 38852017 DOI: 10.1016/j.blre.2024.101218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Patients with multiple myeloma (MM) were among the groups impacted more severely by the COVID-19 pandemic, with higher rates of severe disease and COVID-19-related mortality. MM and COVID-19, plus post-acute sequelae of SARS-CoV-2 infection, are associated with endothelial dysfunction and injury, with overlapping inflammatory pathways and coagulopathies. Existing treatment options for MM, notably high-dose therapy with autologous stem cell transplantation and novel chimeric antigen receptor (CAR) T-cell therapies and bispecific T-cell engaging antibodies, are also associated with endothelial cell injury and mechanism-related toxicities. These pathologies include cytokine release syndrome (CRS) and neurotoxicity that may be exacerbated by underlying endotheliopathies. In the context of these overlapping risks, prophylaxis and treatment approaches mitigating the inflammatory and pro-coagulant effects of endothelial injury are important considerations for patient management, including cytokine receptor antagonists, thromboprophylaxis with low-molecular-weight heparin and direct oral anticoagulants, and direct endothelial protection with defibrotide in the appropriate clinical settings.
Collapse
Affiliation(s)
- Clifton C Mo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA
| | - Edward Richardson
- Department of Medicine, Warren Alpert Medical School at Brown University, Providence, RI, USA
| | - Eleonora Calabretta
- Department of Biomedical Sciences, Humanitas University, and IRCCS Humanitas Research Hospital, Milan, Italy; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Francesco Corrado
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA; Department of Biomedical Sciences, Humanitas University, and IRCCS Humanitas Research Hospital, Milan, Italy; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Mehmet H Kocoglu
- Department of Medicine, University of Maryland School of Medicine, and Transplant and Cellular Therapy Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Rebecca M Baron
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Lee-Jen Wei
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Aaron P Rapoport
- Department of Medicine, University of Maryland School of Medicine, and Transplant and Cellular Therapy Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Maribel Díaz-Ricart
- Hematopathology, Pathology Department, CDB, Hospital Clinic, and IDIBAPS, Barcelona, Spain, and Barcelona Endothelium Team, Barcelona, Spain
| | - José M Moraleda
- Department of Medicine, Faculty of Medicine, Institute of Biomedical Research (IMIB-Pascual Parrilla), University of Murcia, Murcia, Spain
| | - Carmelo Carlo-Stella
- Department of Biomedical Sciences, Humanitas University, and IRCCS Humanitas Research Hospital, Milan, Italy
| | - Paul G Richardson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
44
|
Biasetti L, Zervogiannis N, Shaw K, Trewhitt H, Serpell L, Bailey D, Wright E, Hall CN. Risk factors for severe COVID-19 disease increase SARS-CoV-2 infectivity of endothelial cells and pericytes. Open Biol 2024; 14:230349. [PMID: 38862017 DOI: 10.1098/rsob.230349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/15/2024] [Indexed: 06/13/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) was initially considered a primarily respiratory disease but is now known to affect other organs including the heart and brain. A major route by which COVID-19 impacts different organs is via the vascular system. We studied the impact of apolipoprotein E (APOE) genotype and inflammation on vascular infectivity by pseudo-typed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viruses in mouse and human cultured endothelial cells and pericytes. Possessing the APOE4 allele or having existing systemic inflammation is known to enhance the severity of COVID-19. Using targeted replacement human APOE3 and APOE4 mice and inflammation induced by bacterial lipopolysaccharide (LPS), we investigated infection by SARS-CoV-2. Here, we show that infectivity was higher in murine cerebrovascular pericytes compared to endothelial cells and higher in cultures expressing APOE4. Furthermore, increasing the inflammatory state of the cells by prior incubation with LPS increased infectivity into human and mouse pericytes and human endothelial cells. Our findings provide insights into the mechanisms underlying severe COVID-19 infection, highlighting how risk factors such as APOE4 genotype and prior inflammation may exacerbate disease severity by augmenting the virus's ability to infect vascular cells.
Collapse
Affiliation(s)
- Luca Biasetti
- Sussex Neuroscience, School of Psychology, University of Sussex , East Sussex BN1 9QG, UK
| | - Nikos Zervogiannis
- Sussex Neuroscience, School of Psychology, University of Sussex , East Sussex BN1 9QG, UK
| | - Kira Shaw
- Sussex Neuroscience, School of Psychology, University of Sussex , East Sussex BN1 9QG, UK
| | - Harry Trewhitt
- Sussex Neuroscience, School of Psychology, University of Sussex , East Sussex BN1 9QG, UK
| | - Louise Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex , East Sussex BN1 9QG, UK
| | | | - Edward Wright
- Viral Pseudotype Unit, School of Life Sciences, University of Sussex , , East Sussex BN1 9QG, UK
| | - Catherine N Hall
- Sussex Neuroscience, School of Psychology, University of Sussex , East Sussex BN1 9QG, UK
| |
Collapse
|
45
|
Abstract
Soon after the outbreak of coronavirus disease 2019 (COVID-19), unexplained sustained fatigue, cognitive disturbance, and muscle ache/weakness were reported in patients who had recovered from acute COVID-19 infection. This abnormal condition has been recognized as "long COVID (postacute sequelae of COVID-19 [PASC])" with a prevalence estimated to be from 10 to 20% of convalescent patients. Although the pathophysiology of PASC has been studied, the exact mechanism remains obscure. Microclots in circulation can represent one of the possible causes of PASC. Although hypercoagulability and thrombosis are critical mechanisms of acute COVID-19, recent studies have reported that thromboinflammation continues in some patients, even after the virus has cleared. Viral spike proteins and RNA can be detected months after patients have recovered, findings that may be responsible for persistent thromboinflammation and the development of microclots. Despite this theory, long-term results of anticoagulation, antiplatelet therapy, and vascular endothelial protection are inconsistent, and could not always show beneficial treatment effects. In summary, PASC reflects a heterogeneous condition, and microclots cannot explain all the presenting symptoms. After clarification of the pathomechanisms of each symptom, a symptom- or biomarker-based stratified approach should be considered for future studies.
Collapse
Affiliation(s)
- Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jean M Connors
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jerrold H Levy
- Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
46
|
Riou M, Coste F, Meyer A, Enache I, Talha S, Charloux A, Reboul C, Geny B. Mechanisms of Pulmonary Vasculopathy in Acute and Long-Term COVID-19: A Review. Int J Mol Sci 2024; 25:4941. [PMID: 38732160 PMCID: PMC11084496 DOI: 10.3390/ijms25094941] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Despite the end of the pandemic, coronavirus disease 2019 (COVID-19) remains a major public health concern. The first waves of the virus led to a better understanding of its pathogenesis, highlighting the fact that there is a specific pulmonary vascular disorder. Indeed, COVID-19 may predispose patients to thrombotic disease in both venous and arterial circulation, and many cases of severe acute pulmonary embolism have been reported. The demonstrated presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within the endothelial cells suggests that direct viral effects, in addition to indirect effects of perivascular inflammation and coagulopathy, may contribute to pulmonary vasculopathy in COVID-19. In this review, we discuss the pathological mechanisms leading to pulmonary vascular damage during acute infection, which appear to be mainly related to thromboembolic events, an impaired coagulation cascade, micro- and macrovascular thrombosis, endotheliitis and hypoxic pulmonary vasoconstriction. As many patients develop post-COVID symptoms, including dyspnea, we also discuss the hypothesis of pulmonary vascular damage and pulmonary hypertension as a sequela of the infection, which may be involved in the pathophysiology of long COVID.
Collapse
Affiliation(s)
- Marianne Riou
- Translational Medicine Federation of Strasbourg (FMTS), University of Strasbourg, CRBS, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg, France; (M.R.); (A.M.); (I.E.); (S.T.); (A.C.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’hôpital, 67091 Strasbourg, France
| | - Florence Coste
- EA4278, Laboratoire de Pharm-Ecologie Cardiovasculaire, UFR Sciences Technologies Santé, Pôle Sport et Recherche, 74 rue Louis Pasteur, 84000 Avignon, France; (F.C.); (C.R.)
| | - Alain Meyer
- Translational Medicine Federation of Strasbourg (FMTS), University of Strasbourg, CRBS, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg, France; (M.R.); (A.M.); (I.E.); (S.T.); (A.C.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’hôpital, 67091 Strasbourg, France
| | - Irina Enache
- Translational Medicine Federation of Strasbourg (FMTS), University of Strasbourg, CRBS, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg, France; (M.R.); (A.M.); (I.E.); (S.T.); (A.C.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’hôpital, 67091 Strasbourg, France
| | - Samy Talha
- Translational Medicine Federation of Strasbourg (FMTS), University of Strasbourg, CRBS, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg, France; (M.R.); (A.M.); (I.E.); (S.T.); (A.C.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’hôpital, 67091 Strasbourg, France
| | - Anne Charloux
- Translational Medicine Federation of Strasbourg (FMTS), University of Strasbourg, CRBS, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg, France; (M.R.); (A.M.); (I.E.); (S.T.); (A.C.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’hôpital, 67091 Strasbourg, France
| | - Cyril Reboul
- EA4278, Laboratoire de Pharm-Ecologie Cardiovasculaire, UFR Sciences Technologies Santé, Pôle Sport et Recherche, 74 rue Louis Pasteur, 84000 Avignon, France; (F.C.); (C.R.)
| | - Bernard Geny
- Translational Medicine Federation of Strasbourg (FMTS), University of Strasbourg, CRBS, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg, France; (M.R.); (A.M.); (I.E.); (S.T.); (A.C.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’hôpital, 67091 Strasbourg, France
| |
Collapse
|
47
|
Gómez-Moyano E, Pavón-Morón J, Rodríguez-Capitán J, Bardán-Rebollar D, Ramos-Carrera T, Villalobos-Sánchez A, Pérez de Pedro I, Ruiz-García FJ, Mora-Robles J, López-Sampalo A, Pérez-Velasco MA, Bernal-López MR, Gómez-Huelgas R, Jiménez-Navarro M, Romero-Cuevas M, Costa F, Trenas A, Pérez-Belmonte LM. The Role of Heparin in Postural Orthostatic Tachycardia Syndrome and Other Post-Acute Sequelae of COVID-19. J Clin Med 2024; 13:2405. [PMID: 38673677 PMCID: PMC11050777 DOI: 10.3390/jcm13082405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
The therapeutic management and short-term consequences of the coronavirus disease 2019 (COVID-19) are well known. However, COVID-19 post-acute sequelae are less known and represent a public health problem worldwide. Patients with COVID-19 who present post-acute sequelae may display immune dysregulation, a procoagulant state, and persistent microvascular endotheliopathy that could trigger microvascular thrombosis. These elements have also been implicated in the physiopathology of postural orthostatic tachycardia syndrome, a frequent sequela in post-COVID-19 patients. These mechanisms, directly associated with post-acute sequelae, might determine the thrombotic consequences of COVID-19 and the need for early anticoagulation therapy. In this context, heparin has several potential benefits, including immunomodulatory, anticoagulant, antiviral, pro-endothelial, and vascular effects, that could be helpful in the treatment of COVID-19 post-acute sequelae. In this article, we review the evidence surrounding the post-acute sequelae of COVID-19 and the potential benefits of the use of heparin, with a special focus on the treatment of postural orthostatic tachycardia syndrome.
Collapse
Affiliation(s)
- Elisabeth Gómez-Moyano
- Servicio de Dermatología, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
| | - Javier Pavón-Morón
- Servicio de Cardiología, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; (J.P.-M.); (M.J.-N.); (M.R.-C.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), IBIMA-Plataforma BIONAND, Universidad de Málaga (UMA), 29010 Málaga, Spain;
| | - Jorge Rodríguez-Capitán
- Servicio de Cardiología, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; (J.P.-M.); (M.J.-N.); (M.R.-C.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), IBIMA-Plataforma BIONAND, Universidad de Málaga (UMA), 29010 Málaga, Spain;
| | | | | | - Aurora Villalobos-Sánchez
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain (I.P.d.P.); (A.L.-S.); (M.-R.B.-L.); (R.G.-H.)
| | - Iván Pérez de Pedro
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain (I.P.d.P.); (A.L.-S.); (M.-R.B.-L.); (R.G.-H.)
| | | | - Javier Mora-Robles
- Servicio de Cardiología, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Almudena López-Sampalo
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain (I.P.d.P.); (A.L.-S.); (M.-R.B.-L.); (R.G.-H.)
| | - Miguel A. Pérez-Velasco
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain (I.P.d.P.); (A.L.-S.); (M.-R.B.-L.); (R.G.-H.)
| | - Maria-Rosa Bernal-López
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain (I.P.d.P.); (A.L.-S.); (M.-R.B.-L.); (R.G.-H.)
- Centro de Investigación en Red Fisiopatología de la Obesidad y la Nutrtición (CIBERObn), IBIMA-Plataforma BIONAND, Universidad de Málaga (UMA), 29010 Málaga, Spain
| | - Ricardo Gómez-Huelgas
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain (I.P.d.P.); (A.L.-S.); (M.-R.B.-L.); (R.G.-H.)
- Centro de Investigación en Red Fisiopatología de la Obesidad y la Nutrtición (CIBERObn), IBIMA-Plataforma BIONAND, Universidad de Málaga (UMA), 29010 Málaga, Spain
| | - Manuel Jiménez-Navarro
- Servicio de Cardiología, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; (J.P.-M.); (M.J.-N.); (M.R.-C.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), IBIMA-Plataforma BIONAND, Universidad de Málaga (UMA), 29010 Málaga, Spain;
| | - Miguel Romero-Cuevas
- Servicio de Cardiología, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; (J.P.-M.); (M.J.-N.); (M.R.-C.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), IBIMA-Plataforma BIONAND, Universidad de Málaga (UMA), 29010 Málaga, Spain;
| | - Francesco Costa
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, A.O.U. Policlinic ‘G. Martino’, Via C. Valeria 1, 98165 Messina, Italy;
| | - Alicia Trenas
- Servicio de Medicina Interna, Área Sanitaria Norte de Málaga, Hospital de Antequera, 29200 Antequera, Spain;
| | - Luis M. Pérez-Belmonte
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), IBIMA-Plataforma BIONAND, Universidad de Málaga (UMA), 29010 Málaga, Spain;
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain (I.P.d.P.); (A.L.-S.); (M.-R.B.-L.); (R.G.-H.)
- Servicio de Medicina Interna, Hospital Helicópteros Sanitarios, 29660 Marbella, Spain
| |
Collapse
|
48
|
Diar Bakerly N, Smith N, Darbyshire JL, Kwon J, Bullock E, Baley S, Sivan M, Delaney B. Pathophysiological Mechanisms in Long COVID: A Mixed Method Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:473. [PMID: 38673384 PMCID: PMC11050596 DOI: 10.3390/ijerph21040473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
INTRODUCTION Long COVID (LC) is a global public health crisis affecting more than 70 million people. There is emerging evidence of different pathophysiological mechanisms driving the wide array of symptoms in LC. Understanding the relationships between mechanisms and symptoms helps in guiding clinical management and identifying potential treatment targets. METHODS This was a mixed-methods systematic review with two stages: Stage one (Review 1) included only existing systematic reviews (meta-review) and Stage two (Review 2) was a review of all primary studies. The search strategy involved Medline, Embase, Emcare, and CINAHL databases to identify studies that described symptoms and pathophysiological mechanisms with statistical analysis and/or discussion of plausible causal relationships between mechanisms and symptoms. Only studies that included a control arm for comparison were included. Studies were assessed for quality using the National Heart, Lung, and Blood Institute quality assessment tools. RESULTS 19 systematic reviews were included in Review 1 and 46 primary studies in Review 2. Overall, the quality of reporting across the studies included in this second review was moderate to poor. The pathophysiological mechanisms with strong evidence were immune system dysregulation, cerebral hypoperfusion, and impaired gas transfer in the lungs. Other mechanisms with moderate to weak evidence were endothelial damage and hypercoagulation, mast cell activation, and auto-immunity to vascular receptors. CONCLUSIONS LC is a complex condition affecting multiple organs with diverse clinical presentations (or traits) underpinned by multiple pathophysiological mechanisms. A 'treatable trait' approach may help identify certain groups and target specific interventions. Future research must include understanding the response to intervention based on these mechanism-based traits.
Collapse
Affiliation(s)
- Nawar Diar Bakerly
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M15 6BH, UK
- Northern Care Alliance NHS Foundation Trust, Salford M6 8HD, UK;
| | - Nikki Smith
- Locomotion Study Patient Advisory Group, Leeds Institute of Rheumatic and Musculoskeletal Medicine, Level D, Martin Wing, Leeds General Infirmary, Leeds LS1 3EX, UK;
| | - Julie L. Darbyshire
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford OX2 6GG, UK; (J.L.D.); (J.K.)
| | - Joseph Kwon
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford OX2 6GG, UK; (J.L.D.); (J.K.)
| | - Emily Bullock
- Northern Care Alliance NHS Foundation Trust, Salford M6 8HD, UK;
| | - Sareeta Baley
- Birmingham Community Healthcare NHS Trust, Birmingham B7 4BN, UK;
| | - Manoj Sivan
- Rehabilitation Medicine, University of Leeds, Leeds Teaching Hospitals and Leeds Community Healthcare NHS Trusts, Leeds LS11 0DL, UK;
| | - Brendan Delaney
- Medical Informatics and Decision Making, Imperial College, London SW7 2AZ, UK;
| |
Collapse
|
49
|
Greenstein YY, Hubel K, Froess J, Wisniewski SR, Venugopal V, Lai YH, Berger JS, Chang SY, Colovos C, Shah F, Kornblith LZ, Lawler PR, Gaddh M, Guerrero RM, Nkemdirim W, Lopes RD, Reynolds HR, Amigo JS, Wahid L, Zahra A, Goligher EC, Zarychanski R, Leifer E, Huang DT, Neal MD, Hochman JS, Cushman M, Gong MN. Symptoms and Impaired Quality of Life After COVID-19 Hospitalization: Effect of Therapeutic Heparin in Non-ICU Patients in the Accelerating COVID-19 Therapeutic Interventions and Vaccines 4 Acute Trial: Effect on 3-Month Symptoms and Quality of Life. Chest 2024; 165:785-799. [PMID: 37979717 PMCID: PMC11026170 DOI: 10.1016/j.chest.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/06/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND Therapeutic-dose heparin decreased days requiring organ support in noncritically ill patients hospitalized for COVID-19, but its impact on persistent symptoms or quality of life (QOL) is unclear. RESEARCH QUESTION In the Accelerating COVID-19 Therapeutic Interventions and Vaccines 4 ACUTE (ACTIV-4a) trial, was randomization of patients hospitalized for COVID-19 illness to therapeutic-dose vs prophylactic heparin associated with fewer symptoms and better QOL at 90 days? STUDY DESIGN AND METHODS This was an open-label randomized controlled trial at 34 hospitals in the United States and Spain. A total of 727 noncritically ill patients hospitalized for COVID-19 from September 2020 to June 2021 were randomized to therapeutic-dose vs prophylactic heparin. Only patients with 90-day data on symptoms and QOL were analyzed. We ascertained symptoms and QOL by the EQ-5D-5L at 90-day follow-up in a preplanned analysis for the ACTIV-4a trial. Individual domains assessed by the EQ-5D-5L included mobility, self-care, usual activities, pain/discomfort, and anxiety/depression. Univariate and multivariate analyses were performed. RESULTS Among 571 patients, 288 (50.4%) reported at least one symptom. Among 410 patients, 148 (36.1%) reported moderate to severe impairment in one or more domains of the EQ-5D-5L. The presence of 90-day symptoms was associated with moderate-severe impairment in the EQ-5D-5L domains of mobility (adjusted OR [aOR], 2.37; 95% CI, 1.22-4.59), usual activities (aOR, 3.66; 95% CI, 1.75-7.65), pain (aOR, 2.43; 95% CI, 1.43-4.12), and anxiety (aOR, 4.32; 95% CI, 2.06-9.02), compared with patients reporting no symptoms There were no differences in symptoms or in the overall EQ-5D-5L index score between treatment groups. Therapeutic-dose heparin was associated with less moderate-severe impairment in all physical functioning domains (mobility, self-care, usual activities) but was independently significant only in the self-care domain (aOR, 0.32; 95% CI, 0.11-0.96). INTERPRETATION In a randomized controlled trial of hospitalized noncritically ill patients with COVID-19, therapeutic-dose heparin was associated with less severe impairment in the self-care domain of EQ-5D-5L. However, this type of impairment was uncommon, affecting 23 individuals. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov; No.: NCT04505774; URL: www. CLINICALTRIALS gov.
Collapse
Affiliation(s)
| | | | - Joshua Froess
- University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA
| | | | - Vidya Venugopal
- University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA
| | - Yu-Hsuan Lai
- University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA
| | | | - Steven Y Chang
- David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Christos Colovos
- University of Vermont Larner College of Medicine, Burlington, VT
| | - Faraaz Shah
- University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | - Patrick R Lawler
- Peter Munk Cardiac Centre, Toronto General Hospital, Toronto, ON, Canada; McGill University Health Centre, Montreal, QC, Canada
| | - Manila Gaddh
- Emory University School of Medicine, Atlanta, GA
| | | | | | | | | | | | - Lana Wahid
- Duke University School of Medicine, Durham, NC
| | | | | | | | - Eric Leifer
- National Heart, Lung, and Blood Institute, Bethesda, MD
| | - David T Huang
- University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Matthew D Neal
- University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | - Mary Cushman
- University of Vermont Larner College of Medicine, Burlington, VT
| | | |
Collapse
|
50
|
Violi F, Harenberg J, Pignatelli P, Cammisotto V. COVID-19 and Long-COVID Thrombosis: From Clinical and Basic Science to Therapeutics. Thromb Haemost 2024; 124:286-296. [PMID: 37967846 DOI: 10.1055/s-0043-1776713] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Coronavirus infectious disease-19 (COVID-19) is a pandemic characterized by serious lung disease and thrombotic events in the venous and circulation trees, which represent a harmful clinical sign of poor outcome. Thrombotic events are more frequent in patients with severe disease requiring intensive care units and are associated with platelet and clotting activation. However, after resolution of acute infection, patients may still have clinical sequelae, the so-called long-COVID-19, including thrombotic events again in the venous and arterial circulation. The mechanisms accounting for thrombosis in acute and long COVID-19 have not been fully clarified; interactions of COVID-19 with angiotensin converting enzyme 2 or toll-like receptor family or infection-induced cytokine storm have been suggested to be implicated in endothelial cells, leucocytes, and platelets to elicit clotting activation in acute as well in chronic phase of the disease. In acute COVID-19, prophylactic or full doses of anticoagulants exert beneficial effects even if the dosage choice is still under investigation; however, a residual risk still remains suggesting a need for a more appropriate therapeutic approach. In long COVID-19 preliminary data provided useful information in terms of antiplatelet treatment but definition of candidates for thrombotic prophylaxis is still undefined.
Collapse
Affiliation(s)
- Francesco Violi
- Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
- Mediterranea Cardiocentro, Via Orazio, Naples, Italy
| | - Job Harenberg
- Medical Faculty Mannheim, Ruprecht-karls University Heidelberg, Heidelberg, Germany
| | - Pasquale Pignatelli
- Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
- Mediterranea Cardiocentro, Via Orazio, Naples, Italy
| | - Vittoria Cammisotto
- Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|