1
|
Zhou Y, Xu M, Umer MJ, Wang R, Xiao Y, Zheng Z, Huai D, Li S, Lu Q, Hong Y, Chen X, Liu H. Chemical profile changes in Peanut seeds infected with aspergillus flavus via widely targeted metabolomics. Food Chem 2025; 471:142750. [PMID: 39788021 DOI: 10.1016/j.foodchem.2024.142750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/22/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
Peanut seeds are enriched with protein and fatty acids, making them susceptible to infection by Aspergillus flavus (A. flavus). The infected seeds are harmful to human health due to the aflatoxin contamination. Despite ongoing research, a comprehensive understanding of the metabolite variations in peanut seeds during A. flavus infection remains elusive. In this study, we established a detailed endogenous chemical profile consisting of 1462 metabolites in shelled peanut seeds, identified 895 and 671 differentially expressed metabolites (DEMs) on the 3rd and 6th days post-infection by A. flavus, respectively. Among these, 425 DEMs were common to both profiles, with the majority of co-expressed DEMs displaying an up-regulated expression pattern in response to A. flavus infection. Further metabolites interaction analysis indicated that phenolic acids significantly correlated with A. flavus infection. Specifically, five metabolites classified as phenolic acids demonstrated the ability to repress A. flavus growth in vitro. The anti-infection properties of peanut phenolic acids were confirmed by their higher content in resistant peanut varieties. Overall, our study elucidates the chemical profile of endogenous metabolite variations in A. flavus infected peanut seeds, demonstrating that elevated phenolic acid content can be employed as a biomarker for identifying peanut varieties resistant to A. flavus infection.
Collapse
Affiliation(s)
- Yueni Zhou
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangzhou, Guangdong Province 510640, China
| | - Mengyun Xu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong Province 510642, China
| | - Muhammad J Umer
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangzhou, Guangdong Province 510640, China
| | - Runfeng Wang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangzhou, Guangdong Province 510640, China
| | - Yuan Xiao
- School of Public Health, Wannan Medical College, Wuhu, Anhui Province 241002, China
| | - Zihao Zheng
- Department of Agronomy, Iowa State University, Ames, IA 50011-1051, USA
| | - Dongxin Huai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei Province 430062, China
| | - Shaoxiong Li
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangzhou, Guangdong Province 510640, China
| | - Qing Lu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangzhou, Guangdong Province 510640, China
| | - Yanbin Hong
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangzhou, Guangdong Province 510640, China
| | - Xiaoping Chen
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangzhou, Guangdong Province 510640, China
| | - Hao Liu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangzhou, Guangdong Province 510640, China.
| |
Collapse
|
2
|
Zhao Q, Pan Y, Zhang D, Zhou X, Sun L, Xu Z, Zhang Y. The active ingredient β-sitosterol in Ganoderma regulates CHRM2-mediated aerobic glycolysis to induce apoptosis of lung adenocarcinoma cells. Genes Genet Syst 2025; 100:n/a. [PMID: 39537174 DOI: 10.1266/ggs.24-00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
β-sitosterol is a natural plant steroidal compound with anti-cancer properties against various tumors. This work explored the inhibitory effect of β-sitosterol on the progression of lung adenocarcinoma (LUAD) and further analyzed its targets. We applied network pharmacology to obtain the components and targets of Ganoderma spore powder. The biological functions of β-sitosterol and CHRM2 were studied using the homograft mouse model and a series of in vitro experiments involving quantitative reverse transcription polymerase chain reaction, western blot, CCK-8, flow cytometry, immunohistochemistry and immunofluorescence. The regulatory influence of β-sitosterol on the glycolysis pathway was validated by measuring glucose consumption and lactate production, as well as the extracellular acidification rate and oxygen consumption rate. We found that CHRM2 binds directly to β-sitosterol. In vitro, CHRM2 overexpression repressed the apoptosis rate and expression of apoptosis-related proteins in LUAD cells, and promoted glycolysis, while the addition of lonidamine attenuated the apoptosis-inhibiting effect conferred by CHRM2 overexpression. Furthermore, β-sitosterol hindered glycolysis as well as the growth of tumors in vitro and in vivo. CHRM2 overexpression reversed the effect of β-sitosterol on the biological behavior of LUAD cells. Our results emphasize that CHRM2 is a direct target of β-sitosterol in LUAD cells. β-sitosterol can repress the glycolysis pathway, exerting an anti-tumor effect. These findings provide new support for the use of β-sitosterol as a therapeutic agent for LUAD.
Collapse
Affiliation(s)
- Qiong Zhao
- Department of Thoracic Oncology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College
| | - Yuting Pan
- Department of Thoracic Oncology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College
| | - Danjia Zhang
- Department of Traditional Chinese Medicine, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College
| | - Xiaolian Zhou
- Department of Thoracic Oncology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College
| | - Liangyun Sun
- Department of Thoracic Oncology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College
| | - Zihan Xu
- MPA, Cornell University, Brooks School
| | | |
Collapse
|
3
|
Huo P, Li Z, Jin S, Wang S, Luo Y, Zhu L, Jin Z. Mechanism of β‑sitosterol in treating keloids: Network pharmacology, molecular docking and experimental verification. Mol Med Rep 2025; 31:95. [PMID: 39981895 PMCID: PMC11868730 DOI: 10.3892/mmr.2025.13460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
β‑sitosterol (SIT) has anti‑inflammatory, anti‑tumor and anti‑fibrotic effects. However, the precise mechanisms underlying its efficacy in keloid treatment remain elusive. The present study aimed to elucidate the therapeutic effect of SIT on keloids. The active components of Fructus arctii, target molecules of these components and disease‑associated target molecules were identified and retrieved from various databases. Molecular docking was employed to evaluate the binding affinity of the active compounds for key targets. Cell viability and proliferation were evaluated via CCK‑8 and EdU assays, while cell migration capacity was assessed via wound healing assays and cell migration and invasion abilities were determined via Transwell assays. A rescue study involving YS‑49 was conducted. Western blot analysis was performed to assess the expression levels of proteins associated with EMT and proteins involved in the PI3K/AKT signaling pathway. A subcutaneous keloid fibroproliferative model was established in nude mice and immunohistochemical staining was performed on tissue sections. By intersecting the keloid targets, 29 targets were identified, with 10 core targets revealed by protein-protein interaction analysis. Molecular docking revealed a robust binding affinity between SIT and PTEN. In addition to inhibiting cell viability, invasion and migration, SIT significantly decreased the levels of phosphorylated (p‑)PI3K and p‑AKT, downregulated the protein expression of Vimentin and Snail proteins and increased the protein expression of Zonula Occludens‑1 and E‑cadherin. YS‑49 reversed the inhibitory effect of SIT on keloid in SIT‑treated cells. In vivo experiments demonstrated that SIT suppressed the growth of a keloid model in nude mice and increased PTEN expression. The present study provided the first evidence that SIT inhibits keloid proliferation, migration and invasion by modulating the PTEN/PI3K/AKT signaling pathway, suggesting its potential as a novel therapeutic approach for keloid treatment.
Collapse
Affiliation(s)
- Pingping Huo
- Keloid Research Center, Department of Dermatology, Yanbian University Hospital, Yanji, Jilin 133000, P.R. China
- Department of Medicine, Yanbian University Medical College, Yanji, Jilin 133000, P.R. China
- Department of Medical Cosmetology, Yanbian University Hospital, Yanji, Jilin 133000, P.R. China
| | - Zhouna Li
- Department of Medical Cosmetology, Yanbian University Hospital, Yanji, Jilin 133000, P.R. China
| | - Shan Jin
- Keloid Research Center, Department of Dermatology, Yanbian University Hospital, Yanji, Jilin 133000, P.R. China
| | - Sujie Wang
- Keloid Research Center, Department of Dermatology, Yanbian University Hospital, Yanji, Jilin 133000, P.R. China
- Department of Medicine, Yanbian University Medical College, Yanji, Jilin 133000, P.R. China
| | - Yinli Luo
- Keloid Research Center, Department of Dermatology, Yanbian University Hospital, Yanji, Jilin 133000, P.R. China
- Department of Medicine, Yanbian University Medical College, Yanji, Jilin 133000, P.R. China
| | - Lianhua Zhu
- Department of Medicine, Yanbian University Medical College, Yanji, Jilin 133000, P.R. China
- Department of Dermatology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong 511518, P.R. China
| | - Zhehu Jin
- Keloid Research Center, Department of Dermatology, Yanbian University Hospital, Yanji, Jilin 133000, P.R. China
- Department of Medicine, Yanbian University Medical College, Yanji, Jilin 133000, P.R. China
- Department of Medical Cosmetology, Yanbian University Hospital, Yanji, Jilin 133000, P.R. China
| |
Collapse
|
4
|
Zhao L, Song Q, Zheng C, Sun W, Chen Y. TWIST1 Regulates FOXM1/β-Catenin to Promote the Growth, Migration, and Invasion of Ovarian Cancer Cells by Activating MFAP2. J Biochem Mol Toxicol 2025; 39:e70140. [PMID: 39829397 DOI: 10.1002/jbt.70140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/25/2024] [Accepted: 01/04/2025] [Indexed: 01/22/2025]
Abstract
TWIST1 is aberrantly expressed in ovarian cancer (OC). MFAP2 is a downstream target of TWIST1, and we previously found MFAP2 facilitated OC development by activating FOXM1/β-catenin. We planned to investigate the mechanisms of TWIST1 in OC. GEPIA (a database for gene expression analysis) and UALCAN (a database containing comprehensive cancer transcriptome and clinical patient data) investigated TWIST1's connection to MFAP2 and patient survival in ovarian serous cystadenocarcinoma (OV). Human OC cells (A2780 and CAOV3) were transfected with si-TWIST1, oe-TWIST1, oe-MFAP2, or si-TWIST1 + oe-MFAP2. Cellular apoptosis, viability, migration, and invasion were detected. TWIST1, MFAP2, FOXM1, and β-catenin protein expressions were tested. Dual-luciferase and ChIP-qPCR validated the correlation between MFAP2 and TWIST1. Moreover, OC mice were established by injecting OC cells subcutaneously. The pathology, apoptosis, as well as Ki67, TWIST1, MFAP2, FOXM1, and β-catenin protein levels of tumors were assessed. TWIST1 expression positively correlated with MFAP2 expression, but negatively related to patients' survival in OV. TWIST1 overexpression promoted malignant behaviors, and increased MFAP2, FOXM1, and β-catenin protein levels for OC cells. TWIST1 knockdown exhibited the opposite trend. In vivo, TWIST1 knockdown disrupted tissue structure, induced apoptosis, decreased Ki67, TWIST1, MFAP2, FOXM1, and β-catenin protein levels in tumor. Interestingly, MFAP2 overexpression reversed the effects of TWIST1 knockdown in vitro and in vivo. Additionally, dual-luciferase and ChIP-qPCR confirmed MFAP2 was a downstream target for TWIST1 in OC. TWIST1 regulated FOXM1/β-catenin to promote the growth, migration, and invasion of OC cells by activating MFAP2, indicating that targeting TWIST1 may be effective for treating OC.
Collapse
Affiliation(s)
- Lingqin Zhao
- Department of Gynecologic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Qian Song
- Department of Gynecologic Oncology, Taizhou Cancer Hospital, Wenling, Zhejiang, China
| | - Chao Zheng
- Department of Oncology, Taizhou Cancer Hospital, Wenling, Zhejiang, China
| | - Wei Sun
- Department of Gynecologic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yaqing Chen
- Department of Gynecologic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Li S, Wang B, Deng J, Li H, Wu Y, Fang Y, Chen Y, Yan B. A Randomized, Double-Blind, Placebo-Controlled Trial Protocol Using the Fuzhengxiaoliu Patch for the Management of Primary Liver Cancer Pain. J Pain Res 2025; 18:33-42. [PMID: 39802415 PMCID: PMC11721491 DOI: 10.2147/jpr.s500305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025] Open
Abstract
Objective Chronic pain strongly affects the quality of life of patients with liver cancer pain. Safe and effective management of cancer-related pain is a worldwide challenge. Traditional Chinese medicine (TCM) has rich clinical experience in the treatment of cancer pain. The Fuzhengxiaoliu patch (FZXLP) is a compound TCM with the effects of detoxification and pain relief and has shown great efficacy in the treatment of patients with liver cancer, but high-quality clinical research that provides research-based evidence is lacking. We designed a randomized, double-blind, placebo-controlled trial to explore and evaluate the efficacy of FZXLP for the treatment of liver cancer pain. Methods This is a prospective, randomized, double-blind, placebo-controlled trial. The trial will enrol 72 participants with primary liver cancer with cancer pain (damp-heat stagnation and toxin and blood stasis syndrome). The primary objective is to measure the reduction in pain using FZXLP in combination with tegafur, gimeracil and oteracil potassium capsule (S-1) compared to the placebo group with S-1. Pain will be measured by the number of opioids used, Chinese versions of the numerical rating scale (NRS), pain relief rate and number of breakthrough cases of cancer pain (BTcP). The secondary objectives include response evaluation criteria in solid tumors (RECIST), tumor markers, TCM syndrome scores, weight, functional assessment of cancer therapy-hepatobiliary (FACT-Hep) questionnaire scores, and self-rating anxiety scale scores. Adverse events (AEs) will be recorded throughout the study. Discussion This study integrated TCM with clinical research to assess the efficacy and safety of the addition of FZXLP in the treatment of primary liver cancer pain. Trial registration Chinese clinical trial registry, ChiCTR2300076951, Registered on October 25, 2023. https://www.chictr.org.cn/showproj.html?proj=209608.
Collapse
Affiliation(s)
- Siman Li
- School of Clinical Medicine, Chengdu University of TCM, Chengdu, Sichuan, People’s Republic of China
| | - Binding Wang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu, Sichuan, People’s Republic of China
| | - Jiayao Deng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Haiyan Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Yong Wu
- Chengdu Zhongxiang Pharmaceutical Technology Co., Ltd., Chengdu, Sichuan, People’s Republic of China
| | - Yu Fang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Yu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Bohua Yan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
6
|
Liang Y, Xie Y, Dang Z, Li M, Yu L, Wang X, Wang P, Yang Z. Yiqi Liangxue Jiedu Prescription Inhibited the Canonical Wnt Pathway to Prevent Hepatocellular Precancerous Lesions. J Hepatocell Carcinoma 2024; 11:2293-2308. [PMID: 39582813 PMCID: PMC11585997 DOI: 10.2147/jhc.s485257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024] Open
Abstract
Purpose Yiqi Liangxue Jiedu prescription (YLJP), a Chinese medicine that is commonly used to prevent liver cancer and is authorized by a national patent (patent No. ZL202110889980.5) has a therapeutic effect on precancerous lesions; however, the underlying mechanism remains unclear. This study is aimed at determining the clinical therapeutic efficacy of YLJP in patients with precancerous liver lesions and to explore and validate its possible effector mechanism. Patients and Methods The 1-year incidence of hepatocellular carcinoma (HCC) was retrospectively analyzed in 241 patients with cirrhosis complicated by abnormal alpha-fetoprotein precancer. Network pharmacological analysis, molecular docking, and molecular dynamics simulation were used to explore the key targets and compounds of YLJP in treating HCC. Immunohistochemical methods were used to detect the expression of key proteins in tumor and cirrhotic tissues. Finally, the mechanism underlying the effects of YLJP was verified in rats with precancerous lesions. Results The 1-year incidence of HCC was lower in the YLJP group than in the Western medicine group. The Wnt pathway protein, CTNNB1, is a key target of YLJP in preventing and treating HCC, and the canonical Wnt pathway is the key signaling pathway and is overexpressed in human liver tumors. In vivo experiments showed that YLJP significantly inhibited the canonical Wnt pathway and reduced the abnormal differentiation of hepatic oval cells. The binding of CTNNB1 to oleanolic acid, stigmasterol, and beta-sitosterol was found to be stable, indicating the action of these compounds in treating HCC. Conclusion YLJP reduces the 1-year incidence of HCC, with its mechanism likely due to oleanolic acid, beta-sitosterol, and stigmasterol inhibition of the CTNNB1 activation of the β-catenin protein, which in turn regulates the Wnt signaling pathway and prevents the abnormal differentiation of hepatic oval cells into cancer cells, thus delaying the occurrence and progression of the disease.
Collapse
Affiliation(s)
- Yuling Liang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yuqing Xie
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Zhibo Dang
- Ethics Committee Office, Henan Province Hospital of TCM, Henan, People’s Republic of China
| | - Mengge Li
- Department of Hepatobiliary Spleen and Stomach, Henan Province Hospital of TCM, Henan, People’s Republic of China
| | - Lihua Yu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xinhui Wang
- Beijing Children’s Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Peng Wang
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Zhiyun Yang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
7
|
Kathuria I, Singla B. Anti-tumor efficacy of Calculus bovis: Suppressing liver cancer by targeting tumor-associated macrophages. World J Gastroenterol 2024; 30:4249-4253. [PMID: 39493325 PMCID: PMC11525873 DOI: 10.3748/wjg.v30.i38.4249] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
Despite significant advances in our understanding of the molecular pathogenesis of liver cancer and the availability of novel pharmacotherapies, liver cancer remains the fourth leading cause of cancer-related mortality worldwide. Tumor relapse, resistance to current anti-cancer drugs, metastasis, and organ toxicity are the major challenges that prevent considerable improvements in patient survival and quality of life. Calculus bovis (CB), an ancient Chinese medicinal drug, has been used to treat various pathologies, including stroke, convulsion, epilepsy, pain, and cancer. In this editorial, we discuss the research findings recently published by Huang et al on the therapeutic effects of CB in inhibiting the development of liver cancer. Utilizing the comprehensive transcriptomic analyses, in vitro experiments, and in vivo studies, the authors demonstrated that CB treatment inhibits the tumor-promoting M2 phenotype of tumor-associated macrophages via downregulating Wnt pathway. While multiple studies have been performed to explore the molecular mechanisms regulated by CB, this study uniquely shows its role in modulating the M2 phenotype of macrophages present within the tumor microenvironment. This study opens new avenues of future investigations aimed at investigating this drug's efficacy in various mouse models including the effects of combination therapy, and against drug-resistant tumors.
Collapse
Affiliation(s)
- Ishita Kathuria
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38103, United States
| | - Bhupesh Singla
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38103, United States
| |
Collapse
|
8
|
Huang Z, Meng FY, Lu LZ, Guo QQ, Lv CJ, Tan NH, Deng Z, Chen JY, Zhang ZS, Zou B, Long HP, Zhou Q, Tian S, Mei S, Tian XF. Calculus bovis inhibits M2 tumor-associated macrophage polarization via Wnt/β-catenin pathway modulation to suppress liver cancer. World J Gastroenterol 2024; 30:3511-3533. [PMID: 39156500 PMCID: PMC11326087 DOI: 10.3748/wjg.v30.i29.3511] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/05/2024] [Accepted: 07/05/2024] [Indexed: 07/29/2024] Open
Abstract
BACKGROUND Calculus bovis (CB), used in traditional Chinese medicine, exhibits anti-tumor effects in various cancer models. It also constitutes an integral component of a compound formulation known as Pien Tze Huang, which is indicated for the treatment of liver cancer. However, its impact on the liver cancer tumor microenvironment, particularly on tumor-associated macrophages (TAMs), is not well understood.
AIM To elucidate the anti-liver cancer effect of CB by inhibiting M2-TAM polarization via Wnt/β-catenin pathway modulation.
METHODS This study identified the active components of CB using UPLC-Q-TOF-MS, evaluated its anti-neoplastic effects in a nude mouse model, and elucidated the underlying mechanisms via network pharmacology, transcriptomics, and molecular docking. In vitro assays were used to investigate the effects of CB-containing serum on HepG2 cells and M2-TAMs, and Wnt pathway modulation was validated by real-time reverse transcriptase-polymerase chain reaction and Western blot analysis.
RESULTS This study identified 22 active components in CB, 11 of which were detected in the bloodstream. Preclinical investigations have demonstrated the ability of CB to effectively inhibit liver tumor growth. An integrated approach employing network pharmacology, transcriptomics, and molecular docking implicated the Wnt signaling pathway as a target of the antineoplastic activity of CB by suppressing M2-TAM polarization. In vitro and in vivo experiments further confirmed that CB significantly hinders M2-TAM polarization and suppresses Wnt/β-catenin pathway activation. The inhibitory effect of CB on M2-TAMs was reversed when treated with the Wnt agonist SKL2001, confirming its pathway specificity.
CONCLUSION This study demonstrated that CB mediates inhibition of M2-TAM polarization through the Wnt/β-catenin pathway, contributing to the suppression of liver cancer growth.
Collapse
Affiliation(s)
- Zhen Huang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Fan-Ying Meng
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha 410007, Hunan Province, China
| | - Lin-Zhu Lu
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Qian-Qian Guo
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Chang-Jun Lv
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Nian-Hua Tan
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Department of Hepatology, Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, China
| | - Zhe Deng
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Jun-Yi Chen
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Zi-Shu Zhang
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha 410007, Hunan Province, China
| | - Bo Zou
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha 410007, Hunan Province, China
| | - Hong-Ping Long
- The First Hospital of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, China
| | - Qing Zhou
- The First Hospital of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, China
| | - Sha Tian
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Si Mei
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Faculty of Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Xue-Fei Tian
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| |
Collapse
|
9
|
Chen Y, Yang Y, Wang N, Liu R, Wu Q, Pei H, Li W. β-Sitosterol suppresses hepatocellular carcinoma growth and metastasis via FOXM1-regulated Wnt/β-catenin pathway. J Cell Mol Med 2024; 28:e18072. [PMID: 38063438 PMCID: PMC10844700 DOI: 10.1111/jcmm.18072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 02/08/2024] Open
Abstract
β-Sitosterol is a natural compound with demonstrated anti-cancer properties against various cancers. However, its effects on hepatocellular carcinoma (HCC) and the underlying mechanisms are not well understood. This study aims to investigate the impact of β-sitosterol on HCC. In this study, we investigated the effects of β-sitosterol on HCC tumour growth and metastasis using a xenograft mouse model and a range of molecular analyses, including bioinformatics, real-time PCR, western blotting, lentivirus transfection, CCK8, scratch and transwell assays. The results found that β-sitosterol significantly inhibits HepG2 cell proliferation, migration and invasion both in vitro and in vivo. Bioinformatics analysis identifies forkhead box M1 (FOXM1) as a potential target for β-sitosterol in HCC treatment. FOXM1 is upregulated in HCC tissues and cell lines, correlating with poor prognosis in patients. β-Sitosterol downregulates FOXM1 expression in vitro and in vivo. FOXM1 overexpression mitigates β-sitosterol's inhibitory effects on HepG2 cells. Additionally, β-sitosterol suppresses epithelial-mesenchymal transition (EMT) in HepG2 cells, while FOXM1 overexpression promotes EMT. Mechanistically, β-sitosterol inhibits Wnt/β-catenin signalling by downregulating FOXM1, regulating target gene transcription related to HepG2 cell proliferation and metastasis. β-Sitosterol shows promising potential as a therapeutic candidate for inhibiting HCC growth and metastasis through FOXM1 downregulation and Wnt/β-catenin signalling inhibition.
Collapse
Affiliation(s)
- Yuankun Chen
- Department of Infectious and Tropical DiseasesThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
- Key Laboratory of Tropical Translational Medicine of Ministry of HealthHainan Medical UniversityHaikouHainanChina
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Yijun Yang
- Department of Infectious and Tropical DiseasesThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
- Key Laboratory of Tropical Translational Medicine of Ministry of HealthHainan Medical UniversityHaikouHainanChina
| | - Nengyi Wang
- Department of Infectious and Tropical DiseasesThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
- Key Laboratory of Tropical Translational Medicine of Ministry of HealthHainan Medical UniversityHaikouHainanChina
| | - Rui Liu
- Department of Infectious and Tropical DiseasesThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
- Key Laboratory of Tropical Translational Medicine of Ministry of HealthHainan Medical UniversityHaikouHainanChina
| | - Qiuping Wu
- Department of Infectious and Tropical DiseasesThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
- Key Laboratory of Tropical Translational Medicine of Ministry of HealthHainan Medical UniversityHaikouHainanChina
| | - Hua Pei
- Department of Infectious and Tropical DiseasesThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
- Key Laboratory of Tropical Translational Medicine of Ministry of HealthHainan Medical UniversityHaikouHainanChina
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Wenting Li
- Department of Infectious and Tropical DiseasesThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
- Key Laboratory of Tropical Translational Medicine of Ministry of HealthHainan Medical UniversityHaikouHainanChina
- Department of Infectious DiseasesThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| |
Collapse
|
10
|
Wang L, Ni B, Wang J, Zhou J, Wang J, Jiang J, Sui Y, Tian Y, Gao F, Lyu Y. Research Progress of Scutellaria baicalensis in the Treatment of Gastrointestinal Cancer. Integr Cancer Ther 2024; 23:15347354241302049. [PMID: 39610320 PMCID: PMC11605761 DOI: 10.1177/15347354241302049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024] Open
Abstract
Gastrointestinal (GI) cancer stands as one of the most prevalent forms of cancer globally, presenting a substantial medical and economic burden on cancer treatment. Despite advancements in therapies, it continues to exhibit the second highest mortality rate, primarily attributed to drug resistance and post-treatment side effects. There is an urgent need for novel therapeutic approaches to tackle this persistent challenge. Scutellaria baicalensis, widely used in Traditional Chinese Medicine (TCM), holds a profound pharmaceutical legacy. Modern pharmacological studies have unveiled its anticancer, antioxidant, and immune-enhancing properties. S. baicalensis contains hundreds of active ingredients, with flavonoids, polysaccharides, phenylethanoid glycosides, terpenoids, and sterols being the principal components. These constituents contribute to the treatment of GI cancer by inducing apoptosis in tumor cells, arresting the cell cycle, inhibiting tumor proliferation and metastasis, regulating the tumor microenvironment, modulating epigenetics, and reversing drug resistance. Furthermore, the utilization of modern drug delivery technologies can enhance the bioavailability and therapeutic efficacy of TCM. The treatment of GI cancer with S. baicalensis is characterized by its multi-component, multi-target, and multi-pathway advantages, and S. baicalensis has a broad prospect of becoming a clinical adjuvant or even the main therapy for GI cancer.
Collapse
Affiliation(s)
- Lankang Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Baoyi Ni
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jia Wang
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Jilai Zhou
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Junyi Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiakang Jiang
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yutong Sui
- Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Yaoyao Tian
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Feng Gao
- Mudanjiang Hospital of Chinese Medicine, Mudanjiang, China
| | - Yufeng Lyu
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|