1
|
Huang YL, Sun C, Wang Y, Cheng J, Wang SW, Wei L, Lu XY, Cheng R, Wang M, Fan JG, Dong Y. Ultrasound-guided attenuation parameter for identifying metabolic dysfunction-associated steatotic liver disease: a prospective study. Ultrasonography 2025; 44:134-144. [PMID: 39935289 PMCID: PMC11938800 DOI: 10.14366/usg.24204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 02/13/2025] Open
Abstract
PURPOSE This study assessed the performance of the ultrasound-guided attenuation parameter (UGAP) in diagnosing and grading hepatic steatosis in patients with metabolic dysfunctionassociated steatotic liver disease (MASLD). Magnetic resonance imaging proton density fat fraction (MRI-PDFF) served as the reference standard. METHODS Patients with hepatic steatosis were enrolled in this prospective study and underwent UGAP measurements. MRI-PDFF values of ≥5%, ≥15%, and ≥25% were used as references for the diagnosis of steatosis grades ≥S1, ≥S2, and S3, respectively. Spearman correlation coefficients and area under the receiver operating characteristic curves (AUCs) were calculated. RESULTS Between July 2023 and June 2024, the study included 88 patients (median age, 40 years; interquartile range [IQR], 36 to 46 years), of whom 54.5% (48/88) were men and 45.5% (40/88) were women. Steatosis grades exhibited the following distribution: 22.7% (20/88) had S0, 50.0% (44/88) had S1, 21.6% (19/88) had S2, and 5.7% (5/88) had S3. The success rate for UGAP measurements was 100%. The median UGAP value was 0.74 dB/cm/MHz (IQR, 0.65 to 0.82 dB/ cm/MHz), and UGAP values were positively correlated with MRI-PDFF (r=0.77, P<0.001). The AUCs of UGAP for the diagnoses of ≥S1, ≥S2, and S3 steatosis were 0.91, 0.90, and 0.88, respectively. In the subgroup analysis, 98.4% (60/61) of patients had valid controlled attenuation parameter (CAP) values. UGAP measurements were positively correlated with CAP values (r=0.65, P<0.001). CONCLUSION Using MRI-PDFF as the reference standard, UGAP demonstrates good diagnostic performance in the detection and grading of hepatic steatosis in patients with MASLD.
Collapse
Affiliation(s)
- Yun-Lin Huang
- Department of Ultrasound, Zhongshan Hospital Fudan University, Shanghai, China
| | - Chao Sun
- Center for Fatty Liver Disease, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Ying Wang
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juan Cheng
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shi-Wen Wang
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wei
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiu-Yun Lu
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Cheng
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Wang
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Gao Fan
- Center for Fatty Liver Disease, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Yi Dong
- Department of Ultrasound, Zhongshan Hospital Fudan University, Shanghai, China
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Byenfeldt M, Kihlberg J, Nasr P, Grönlund C, Lindam A, Bartholomä WC, Lundberg P, Ekstedt M. Altered probe pressure and body position increase diagnostic accuracy for men and women in detecting hepatic steatosis using quantitative ultrasound. Eur Radiol 2024; 34:5989-5999. [PMID: 38459346 PMCID: PMC11364715 DOI: 10.1007/s00330-024-10655-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/14/2023] [Accepted: 01/16/2024] [Indexed: 03/10/2024]
Abstract
OBJECTIVES To evaluate the diagnostic performance of ultrasound guided attenuation parameter (UGAP) for evaluating liver fat content with different probe forces and body positions, in relation to sex, and compared with proton density fat fraction (PDFF). METHODS We prospectively enrolled a metabolic dysfunction-associated steatotic liver disease (MASLD) cohort that underwent UGAP and PDFF in the autumn of 2022. Mean UGAP values were obtained in supine and 30° left decubitus body position with normal 4 N and increased 30 N probe force. The diagnostic performance was evaluated by the area under the receiver operating characteristic curve (AUC). RESULTS Among 60 individuals (mean age 52.9 years, SD 12.9; 30 men), we found the best diagnostic performance with increased probe force in 30° left decubitus position (AUC 0.90; 95% CI 0.82-0.98) with a cut-off of 0.58 dB/cm/MHz. For men, the best performance was in supine (AUC 0.91; 95% CI 0.81-1.00) with a cut-off of 0.60 dB/cm/MHz, and for women, 30° left decubitus position (AUC 0.93; 95% CI 0.83-1.00), with a cut-off 0.56 dB/cm/MHz, and increased 30 N probe force for both genders. No difference was in the mean UGAP value when altering body position. UGAP showed good to excellent intra-reproducibility (Intra-class correlation 0.872; 95% CI 0.794-0.921). CONCLUSION UGAP provides excellent diagnostic performance to detect liver fat content in metabolic dysfunction-associated steatotic liver diseases, with good to excellent intra-reproducibility. Regardless of sex, the highest diagnostic accuracy is achieved with increased probe force with men in supine and women in 30° left decubitus position, yielding different cut-offs. CLINICAL RELEVANCE STATEMENT The ultrasound method ultrasound-guided attenuation parameter shows excellent diagnostic accuracy and performs with good to excellent reproducibility. There is a possibility to alter body position and increase probe pressure, and different performances for men and women should be considered for the highest accuracy. KEY POINTS • There is a possibility to alter body position when performing the ultrasound method ultrasound-guided attenuation parameter. • Increase probe pressure for the highest accuracy. • Different performances for men and women should be considered.
Collapse
Affiliation(s)
- Marie Byenfeldt
- Department of Radiology in Östersund, Östersund, Sweden.
- Department of Radiation Science, Umeå University, Umeå, Sweden.
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden.
| | - Johan Kihlberg
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
- Department of Radiology in Linköping, Linköping, Sweden
| | - Patrik Nasr
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | | | - Anna Lindam
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Wolf C Bartholomä
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
- Department of Radiology in Linköping, Linköping, Sweden
| | - Peter Lundberg
- Department of Radiation Physics, Linköping University, Linköping, Sweden
- Department of Medical and Health Science in Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
| | - Mattias Ekstedt
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
3
|
Kumada T, Toyoda H, Ogawa S, Gotoh T, Suzuki Y, Imajo K, Sugimoto K, Kakegawa T, Kuroda H, Yasui Y, Tamaki N, Kurosaki M, Izumi N, Akita T, Tanaka J, Nakajima A. Advanced fibrosis leads to overestimation of steatosis with quantitative ultrasound in individuals without hepatic steatosis. Ultrasonography 2024; 43:121-131. [PMID: 38316132 PMCID: PMC10915114 DOI: 10.14366/usg.23194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 02/07/2024] Open
Abstract
PURPOSE The effect of hepatic fibrosis stage on quantitative ultrasound based on the attenuation coefficient (AC) for liver lipid quantification is controversial. The objective of this study was to determine how the degree of fibrosis assessed by magnetic resonance (MR) elastography affects AC based on the ultrasound-guided attenuation parameter according to the grade of hepatic steatosis, using magnetic resonance imaging (MRI)-derived proton density fat fraction (MRIderived PDFF) as the reference standard. METHODS Between February 2020 and April 2021, 982 patients with chronic liver disease who underwent AC and MRI-derived PDFF measurement as well as MR elastography were enrolled. Multiple regression was used to investigate whether AC was affected by the degree of liver stiffness. RESULTS AC increased as liver stiffness progressed in 344 patients without hepatic steatosis (P=0.009). In multivariable analysis, AC was positively correlated with skin-capsule distance (P<0.001), MR elastography value (P=0.037), and MRI-derived PDFF (P<0.001) in patients without hepatic steatosis. In 52 of 982 patients (5%), the correlation between AC and MRIderived PDFF fell outside the 95% confidence interval for the regression line slope. Patients with MRI-derived PDFF lower than their AC (n=36) had higher fibrosis-4 scores, albumin-bilirubin scores, and MR elastography values than patients with MRI-derived PDFF greater than their AC (n=16; P=0.018, P=0.001, and P=0.011, respectively). CONCLUSION AC is affected by liver fibrosis (MR elastography value ≥6.7 kPa) only in patients without hepatic steatosis (MRI-derived PDFF <5.2%). These values should be interpreted with caution in patients with advanced liver fibrosis.
Collapse
Affiliation(s)
- Takashi Kumada
- Department of Nursing, Faculty of Nursing, Gifu Kyoritsu University, Ogaki, Japan
| | - Hidenori Toyoda
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Sadanobu Ogawa
- Department of Imaging Diagnosis, Ogaki Municipal Hospital, Ogaki, Japan
| | - Tatsuya Gotoh
- Department of Imaging Diagnosis, Ogaki Municipal Hospital, Ogaki, Japan
| | - Yasuaki Suzuki
- Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan
| | - Kento Imajo
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Gastroenterology, Shin-yurigaoka General Hospital, Kawasaki, Japan
| | - Katsutoshi Sugimoto
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | - Tatsuya Kakegawa
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | - Hidekatsu Kuroda
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Morioka, Japan
| | - Yutaka Yasui
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino-shi, Japan
| | - Nobuharu Tamaki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino-shi, Japan
| | - Masayuki Kurosaki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino-shi, Japan
| | - Namiki Izumi
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino-shi, Japan
| | - Tomoyuki Akita
- Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Junko Tanaka
- Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
4
|
Zhang X, Luo L, Liu H, Liang S, Xu E. Reliability and stability of ultrasound-guided attenuation parameter in evaluating hepatic steatosis. J Ultrasound 2024; 27:145-152. [PMID: 38281291 PMCID: PMC10908761 DOI: 10.1007/s40477-023-00856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/03/2023] [Indexed: 01/30/2024] Open
Abstract
PURPOSE This study aimed to explore the reliability and stability of ultrasound-guided attenuation parameter (UGAP) values obtained by two measuring methods and different measuring times. METHODS Patients who underwent liver UGAP examinations in our hospital from September 2022 to December 2022 were retrospectively analyzed. The clinical data and UGAP measurements results were collected. Two different measuring methods: static single-frame multi-point measuring and dynamic multi-frame single-point measuring, were performed for each patient, and 10 UGAP values of each measuring method were recorded. The medians of the UGAP values of the 1st-3rd, 1st-5th, 1st-7th and 1st-10th by each measuring method were taken as the final UGAP values of measuring 3, 5, 7 and 10 times. The UGAP values obtained by the two different measuring methods and different measuring times (3, 5, 7 or 10 times) were compared. RESULTS 206 patients were included in this study. There was no statistical difference between UGAP values measured by static single-frame multi-point measuring and dynamic multi-frame single-point measuring (P = 0.689, P = 0.270, P = 0.298, P = 0.091), regardless of measuring times (3, 5, 7, 10 times). No significant difference between the UGAP values obtained by 3, 5, 7 and 10 measurements was found (P = 0.554, P = 0.916). CONCLUSION The UGAP values obtained by the two different measuring methods and different measuring times (3, 5, 7 and 10 times) are stable and reliable. Additionally, 3 times of UGAP measurements might be enough for each patient in clinical practice.
Collapse
Affiliation(s)
- Xiaodan Zhang
- Department of Medical Ultrasonics, The Eighth Affiliated Hospital of Sun Yat-sen University, No. 3025, Shennanzhong Road, Shenzhen, 518033, China
| | - Liping Luo
- Department of Medical Ultrasonics, The Eighth Affiliated Hospital of Sun Yat-sen University, No. 3025, Shennanzhong Road, Shenzhen, 518033, China
| | - Huahui Liu
- Department of Medical Ultrasonics, The Eighth Affiliated Hospital of Sun Yat-sen University, No. 3025, Shennanzhong Road, Shenzhen, 518033, China
| | - Shuang Liang
- Department of Medical Ultrasonics, The Eighth Affiliated Hospital of Sun Yat-sen University, No. 3025, Shennanzhong Road, Shenzhen, 518033, China
| | - Erjiao Xu
- Department of Medical Ultrasonics, The Eighth Affiliated Hospital of Sun Yat-sen University, No. 3025, Shennanzhong Road, Shenzhen, 518033, China.
| |
Collapse
|
5
|
Ferraioli G, Barr RG. Noninvasive assessment of liver steatosis with ultrasound techniques. MULTIPARAMETRIC ULTRASOUND FOR THE ASSESSMENT OF DIFFUSE LIVER DISEASE 2024:177-198. [DOI: 10.1016/b978-0-323-87479-3.00020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Collin R, Magnin B, Gaillard C, Nicolas C, Abergel A, Buchard B. Prospective study comparing hepatic steatosis assessment by magnetic resonance imaging and four ultrasound methods in 105 successive patients. World J Gastroenterol 2023; 29:3548-3560. [PMID: 37389233 PMCID: PMC10303516 DOI: 10.3748/wjg.v29.i22.3548] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/04/2023] [Accepted: 05/12/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is becoming a major health problem, resulting in hepatic, metabolic and cardio-vascular morbidity.
AIM To evaluate new ultrasonographic tools to detect and measure hepatic steatosis.
METHODS We prospectively included 105 patients referred to our liver unit for NAFLD suspicion or follow-up. They underwent ultrasonographic measurement of liver sound speed estimation (SSE) and attenuation coefficient (AC) using Aixplorer MACH 30 (Supersonic Imagine, France), continuous controlled attenuation parameter (cCAP) using Fibroscan (Echosens, France) and standard liver ultrasound with hepato-renal index (HRI) calculation. Hepatic steatosis was then classified according to magnetic resonance imaging proton density fat fraction (PDFF). Receiver operating curve (ROC) analysis was performed to evaluate the diagnostic performance in the diagnosis of steatosis.
RESULTS Most patients were overweight or obese (90%) and had metabolic syndrome (70%). One third suffered from diabetes. Steatosis was identified in 85 patients (81%) according to PDFF. Twenty-one patients (20%) had advanced liver disease. SSE, AC, cCAP and HRI correlated with PDFF, with respective Spearman correlation coefficient of -0.39, 0.42, 0.54 and 0.59 (P < 0.01). Area under the receiver operating characteristic curve (AUROC) for detection of steatosis with HRI was 0.91 (0.83-0.99), with the best cut-off value being 1.3 (Se = 83%, Sp = 98%). The optimal cCAP threshold of 275 dB/m, corresponding to the recent EASL-suggested threshold, had a sensitivity of 72% and a specificity of 80%. Corresponding AUROC was 0.79 (0.66-0.92). The diagnostic accuracy of cCAP was more reliable when standard deviation was < 15 dB/m with an AUC of 0.91 (0.83-0.98). An AC threshold of 0.42 dB/cm/MHz had an AUROC was 0.82 (0.70-0.93). SSE performed moderately with an AUROC of 0.73 (0.62-0.84).
CONCLUSION Among all ultrasonographic tools evaluated in this study, including new-generation tools such as cCAP and SSE, HRI had the best performance. It is also the simplest and most available method as most ultrasound scans are equipped with this module.
Collapse
Affiliation(s)
- Remi Collin
- Gastroenterology and Endoscopy Unit, Dupuytren University Hospital, Limoges 87000, France
- Department of Hepatology and Gastroenterology, Clermont-Ferrand University Hospital, Clermont-Ferrand 63000, France
| | - Benoit Magnin
- Department of Radiology, Clermont-Ferrand University Hospital, Clermont-Ferrand 63000, France
| | - Constance Gaillard
- Department of Radiology, Clermont-Ferrand University Hospital, Clermont-Ferrand 63000, France
| | - Carine Nicolas
- Department of Hepatology and Gastroenterology, Clermont-Ferrand University Hospital, Clermont-Ferrand 63000, France
| | - Armand Abergel
- Department of Hepatology and Gastroenterology, Clermont-Ferrand University Hospital, Clermont-Ferrand 63000, France
| | - Benjamin Buchard
- Department of Hepatology and Gastroenterology, Clermont-Ferrand University Hospital, Clermont-Ferrand 63000, France
| |
Collapse
|
7
|
Zeng KY, Bao WYG, Wang YH, Liao M, Yang J, Huang JY, Lu Q. Non-invasive evaluation of liver steatosis with imaging modalities: New techniques and applications. World J Gastroenterol 2023; 29:2534-2550. [PMID: 37213404 PMCID: PMC10198053 DOI: 10.3748/wjg.v29.i17.2534] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/26/2023] [Accepted: 04/11/2023] [Indexed: 05/23/2023] Open
Abstract
In the world, nonalcoholic fatty liver disease (NAFLD) accounts for majority of diffuse hepatic diseases. Notably, substantial liver fat accumulation can trigger and accelerate hepatic fibrosis, thus contributing to disease progression. Moreover, the presence of NAFLD not only puts adverse influences for liver but is also associated with an increased risk of type 2 diabetes and cardiovascular diseases. Therefore, early detection and quantified measurement of hepatic fat content are of great importance. Liver biopsy is currently the most accurate method for the evaluation of hepatic steatosis. However, liver biopsy has several limitations, namely, its invasiveness, sampling error, high cost and moderate intraobserver and interobserver reproducibility. Recently, various quantitative imaging techniques have been developed for the diagnosis and quantified measurement of hepatic fat content, including ultrasound- or magnetic resonance-based methods. These quantitative imaging techniques can provide objective continuous metrics associated with liver fat content and be recorded for comparison when patients receive check-ups to evaluate changes in liver fat content, which is useful for longitudinal follow-up. In this review, we introduce several imaging techniques and describe their diagnostic performance for the diagnosis and quantified measurement of hepatic fat content.
Collapse
Affiliation(s)
- Ke-Yu Zeng
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Wu-Yong-Ga Bao
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yun-Han Wang
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Min Liao
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jie Yang
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jia-Yan Huang
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Qiang Lu
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
8
|
Nogami A, Iwaki M, Kobayashi T, Honda Y, Ogawa Y, Imajo K, Higurashi T, Hosono K, Kirikoshi H, Saito S, Nakajima A, Yoneda M. Real-world assessment of SmartExam, a novel FibroScan computational method: A retrospective single-center cohort study. J Gastroenterol Hepatol 2023; 38:321-329. [PMID: 36436879 DOI: 10.1111/jgh.16076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/23/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND AIM SmartExam is a novel computational method compatible with FibroScan that uses a software called SmartDepth and continuous controlled attenuation parameter measurements to evaluate liver fibrosis and steatosis. This retrospective study compared the diagnostic accuracy of conventional and SmartExam-equipped FibroScan for liver stiffness measurement (LSM). METHODS The liver stiffness and the associated controlled attenuation parameters of 167 patients were measured using conventional and SmartExam-Equipped FibroScan as well as reference methods like magnetic resonance elastography (MRE) and magnetic resonance imaging-based proton density fat fraction (MRI-PDFF) measurements to assess its diagnostic performance. M or XL probes were selected based on the probe-to-liver capsule distance for all FibroScan examinations. RESULTS The liver stiffness and controlled attenuation parameter (CAP) correlation coefficients calculated from conventional and SmartExam-equipped FibroScan were 0.97 and 0.82, respectively. Using MRE/MRI-PDFF as a reference and the DeLong test for analysis, LSM and the area under the receiver operating characteristic curve for CAP measured by conventional and SmartExam-equipped FibroScan showed no significant difference. However, the SmartExam-equipped FibroScan measurement (33.6 s) took 1.4 times longer than conventional FibroScan (23.2 s). CONCLUSIONS SmartExam has a high diagnostic performance comparable with that of conventional FibroScan. Because the results of the conventional and SmartExam-equipped FibroScan were strongly correlated, it can be considered useful for assessing the fibrosis stage and steatosis grade of the liver in clinical practice, with less variability but little longer measurement time compared with the conventional FibroScan.
Collapse
Affiliation(s)
- Asako Nogami
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Michihiro Iwaki
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takashi Kobayashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yasushi Honda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuji Ogawa
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Gastroenterology, National Hospital Organization Yokohama Medical Center, Yokohama, Japan
| | - Kento Imajo
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Gastroenterology and Endoscopy, Shinyurigaoka General Hospital, Kawasaki, Japan
| | - Takuma Higurashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kunihiro Hosono
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiroyuki Kirikoshi
- Department of Clinical Laboratory, Yokohama City University School of Medicine Graduate School of Medicine, Yokohama, Japan
| | - Satoru Saito
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
9
|
Yuri M, Nishimura T, Tada T, Yoshida M, Fujiwara A, Kawata S, Yoshihara K, Yoshioka R, Ota S, Nakano R, Yuri Y, Takashima T, Aizawa N, Ikeda N, Shiomi H, Ide YH, Enomoto H, Yasuhiro F, Yano H, Iijima H. Diagnosis of hepatic steatosis based on ultrasound attenuation imaging is not influenced by liver fibrosis. Hepatol Res 2022; 52:1009-1019. [PMID: 36018852 DOI: 10.1111/hepr.13831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/11/2022] [Accepted: 08/18/2022] [Indexed: 12/13/2022]
Abstract
AIM Recently, a new technique using attenuation imaging (ATI) was developed to diagnose hepatic steatosis. The aim of this study was to investigate whether ATI for the evaluation of hepatic steatosis is influenced by liver fibrosis. METHODS A total of 328 patients with chronic liver disease were enrolled to study the associations between histological hepatic steatosis or liver fibrosis and ATI findings. The interaction between liver fibrosis and ATI was also analyzed. RESULTS Median ATI values according to steatosis grade and fibrosis stage increased in line with the progression of liver steatosis (p < 0.001) and fibrosis (p < 0.05). However, in each steatosis grade, ATI values according to fibrosis stage were not significantly increased. In multiple regression analyses for assessment of the effect of their interaction, the p values for fibrosis stage, steatosis grade, and fibrosis stage × steatosis grade were 0.096, <0.001, and 0.077, respectively. Variance inflation factor values for fibrosis stage, steatosis grade, and fibrosis stage × steatosis grade were 1.079, 1.094, and 1.074, respectively. CONCLUSION Attenuation imaging values are not influenced by liver fibrosis.
Collapse
Affiliation(s)
- Minako Yuri
- Department of Gastroenterology and Hepatology, Hyogo Medical University, Nishinomiya, Japan
| | - Takashi Nishimura
- Department of Gastroenterology and Hepatology, Hyogo Medical University, Nishinomiya, Japan.,Ultrasound Imaging Center, Hyogo Medical University, Nishinomiya, Japan
| | - Toshifumi Tada
- Department of Internal Medicine, Japanese Red Cross Society Himeji Hospital, Himeji, Japan
| | - Masahiro Yoshida
- Ultrasound Imaging Center, Hyogo Medical University, Nishinomiya, Japan
| | - Aoi Fujiwara
- Department of Gastroenterology and Hepatology, Hyogo Medical University, Nishinomiya, Japan
| | - Shoki Kawata
- Department of Gastroenterology and Hepatology, Hyogo Medical University, Nishinomiya, Japan
| | - Kohei Yoshihara
- Department of Gastroenterology and Hepatology, Hyogo Medical University, Nishinomiya, Japan
| | - Ryota Yoshioka
- Department of Gastroenterology and Hepatology, Hyogo Medical University, Nishinomiya, Japan
| | - Shogo Ota
- Department of Gastroenterology and Hepatology, Hyogo Medical University, Nishinomiya, Japan
| | - Ryota Nakano
- Department of Gastroenterology and Hepatology, Hyogo Medical University, Nishinomiya, Japan
| | - Yukihisa Yuri
- Department of Gastroenterology and Hepatology, Hyogo Medical University, Nishinomiya, Japan
| | - Tomoyuki Takashima
- Department of Gastroenterology and Hepatology, Hyogo Medical University, Nishinomiya, Japan
| | - Nobuhiro Aizawa
- Department of Gastroenterology and Hepatology, Hyogo Medical University, Nishinomiya, Japan
| | - Naoto Ikeda
- Department of Gastroenterology and Hepatology, Hyogo Medical University, Nishinomiya, Japan
| | - Hideyuki Shiomi
- Department of Gastroenterology and Hepatology, Hyogo Medical University, Nishinomiya, Japan
| | - Yoshi-Hiro Ide
- Department of Pathology, Hyogo Medical University, Nishinomiya, Japan
| | - Hirayuki Enomoto
- Department of Gastroenterology and Hepatology, Hyogo Medical University, Nishinomiya, Japan
| | | | - Hirohisa Yano
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Hiroko Iijima
- Department of Gastroenterology and Hepatology, Hyogo Medical University, Nishinomiya, Japan.,Ultrasound Imaging Center, Hyogo Medical University, Nishinomiya, Japan
| |
Collapse
|
10
|
Hari A. Ultrasound-Based Diagnostic Methods: Possible Use in Fatty Liver Disease Area. Diagnostics (Basel) 2022; 12:diagnostics12112822. [PMID: 36428882 PMCID: PMC9689357 DOI: 10.3390/diagnostics12112822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Liver steatosis is a chronic liver disease that is becoming one of the most important global health problems, due to its direct connection with metabolic syndrome, its significant impact on patients' socioeconomic status and frailty, and the occurrence of advanced chronic liver disease. In recent years, there has been rapid technological progress in the ultrasound-based diagnostics field that can help us to quantitatively assess liver steatosis, including continuous attenuation parameters in A and B ultrasound modes, backscatter coefficients (e.g., speed of sound) and ultrasound envelope statistic parametric imaging. The methods used in this field are widely available, have favorable time and financial profiles, and are well accepted by patients. Less is known about their reliability in defining the presence and degree of liver steatosis. Numerous study reports have shown the methods' favorable negative and positive predictive values in comparison with reference investigations (liver biopsy and MRI). Important research has also evaluated the role of these methods in diagnosing and monitoring non-alcoholic fatty liver disease (NAFLD). Since NAFLD is becoming the dominant global cause of liver cirrhosis, and due to the close but complex interplay of liver steatosis with the coexistence of liver fibrosis, knowledge regarding NAFLD's influence on the progression of liver fibrosis is of crucial importance. Study findings, therefore, indicate the possibility of using these same diagnostic methods to evaluate the impact of NAFLD on the patient's liver fibrosis progression risk, metabolic risk factors, cardiovascular complications, and the occurrence of hepatocellular carcinoma. The mentioned areas are particularly important in light of the fact that most of the known chronic liver disease etiologies are increasingly intertwined with the simultaneous presence of NAFLD.
Collapse
Affiliation(s)
- Andrej Hari
- Oddelek za Bolezni Prebavil, Splošna Bolnišnica Celje, Oblakova Cesta 3, 3000 Celje, Slovenia
| |
Collapse
|
11
|
Imajo K, Toyoda H, Yasuda S, Suzuki Y, Sugimoto K, Kuroda H, Akita T, Tanaka J, Yasui Y, Tamaki N, Kurosaki M, Izumi N, Nakajima A, Kumada T. Utility of Ultrasound-Guided Attenuation Parameter for Grading Steatosis With Reference to MRI-PDFF in a Large Cohort. Clin Gastroenterol Hepatol 2022; 20:2533-2541.e7. [PMID: 34768008 DOI: 10.1016/j.cgh.2021.11.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Ultrasound-guided attenuation parameter (UGAP) is recently developed for noninvasive evaluation of steatosis. However, reports on its usefulness in clinical practice are limited. This prospective multicenter study analyzed the diagnostic accuracy of grading steatosis with reference to magnetic resonance imaging-based proton density fat fraction (MRI-PDFF), a noninvasive method with high accuracy, in a large cohort. METHODS Altogether, 1010 patients with chronic liver disease who underwent MRI-PDFF and UGAP were recruited and prospectively enrolled from 6 Japanese liver centers. Linearity was evaluated using intraclass correlation coefficients between MRI-PDFF and UGAP values. Bias, defined as the mean difference between MRI-PDFF and UGAP values, was assessed by Bland-Altman analysis. UGAP cutoffs for pairwise MRI-PDFF-based steatosis grade were determined using area under the receiver-operating characteristic curve (AUROC) analyses. RESULTS UGAP values were shown to be normally distributed. However, because PDFF values were not normally distributed, they were log-transformed (MRI-logPDFF). UGAP values significantly correlated with MRI-logPDFF (intraclass correlation coefficient = 0.768). Additionally, Bland-Altman analysis showed good agreement between MRI-logPDFF and UGAP with a mean bias of 0.0002% and a narrow range of agreement (95% confidence interval [CI], -0.015 to 0.015). The AUROCs for distinguishing steatosis grade ≥1 (MRI-PDFF ≥5.2%), ≥2 (MRI-PDFF ≥11.3%), and 3 (MRI-PDFF ≥17.1%) were 0.910 (95% CI, 0.891-0.928), 0.912 (95% CI, 0.894-0.929), and 0.894 (95% CI, 0.873-0.916), respectively. CONCLUSIONS UGAP has excellent diagnostic accuracy for grading steatosis with reference to MRI-PDFF. Additionally, UGAP has good linearity and negligible bias, suggesting that UGAP has excellent technical performance characteristics that can be widely used in clinical trials and patient care. (UMIN Clinical Trials Registry, Number: UMIN000041196).
Collapse
Affiliation(s)
- Kento Imajo
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan.
| | - Hidenori Toyoda
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Satoshi Yasuda
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Yasuaki Suzuki
- Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan
| | - Katsutoshi Sugimoto
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | - Hidekatsu Kuroda
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Yahaba, Japan
| | - Tomoyuki Akita
- Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Junko Tanaka
- Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yutaka Yasui
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan
| | - Nobuharu Tamaki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan
| | - Masayuki Kurosaki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan
| | - Namiki Izumi
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takashi Kumada
- Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan
| |
Collapse
|
12
|
Kumada T, Toyoda H, Yasuda S, Ogawa S, Gotoh T, Ito T, Tada T, Tanaka J. Liver Stiffness Measurements by 2D Shear-Wave Elastography: Effect of Steatosis on Fibrosis Evaluation. AJR Am J Roentgenol 2022; 219:604-612. [PMID: 35506556 DOI: 10.2214/ajr.22.27656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND. Hepatic steatosis has been found not to affect liver stiffness measurements (LSM) from MR elastography (MRE). However, the effect of steatosis on LSM from 2D shear-wave elastography (SWE) remains controversial. OBJECTIVE. The purpose of this study was to evaluate the effect of hepatic steatosis on the diagnostic performance of LSM from 2D SWE (LSM2D SWE) for evaluation of liver fibrosis with LSM from MRE (LSMMRE) as the reference standard. METHODS. This retrospective study included 888 patients (442 women, 446 men; median age, 67 years) with chronic liver disease who underwent LSM by both 2D SWE and MRE within a 3-month window. Steatosis was also assessed on ultrasound examinations by ultrasound-guided attenuation parameter (UGAP) and on MRI examinations by proton density fat fraction (PDFF). Fibrosis stages and steatosis grades were classified according to previously established thresholds. The effect of steatosis on LSM2D SWE was evaluated by Kruskal-Wallis tests with post hoc tests and ROC analysis. RESULTS. LSM2D SWE were significantly higher in patients with severe steatosis than those without steatosis by MRI PDFF among patients with F0 fibrosis (5.5 kPa [IQR, 4.7-6.0 kPa] vs 4.7 kPa [IQR, 4.2-5.5 kPa], p = .009) and F1 fibrosis (6.3 kPa [IQR, 6.0-7.2 kPa] vs 5.9 kPa [IQR, 5.0-6.6 kPa], p = .009). LSM2D SWE were significantly higher in patients with severe steatosis than those without steatosis by UGAP among patients with F1 fibrosis (6.6 kPa [IQR, 5.9-7.3 kPa] vs 5.9 kPa [IQR, 5.1-6.5 kPa], p = .008). Otherwise, LSM2D SWE did not vary significantly across steatosis grades at a given fibrosis stage (all p > .05). Sensitivity and specificity for ≥ F1 fibrosis were 63.8% and 91.5% in patients without versus 60.4% and 80.9% in patients with severe steatosis by MRI PDFF and were 62.4% and 91.5% in patients without versus 72.1% and 78.3% in patients with severe steatosis by UGAP. CONCLUSION. Severe hepatic steatosis may result in overestimation of LSM2D SWE in patients without or with mild steatosis, reducing the specificity of liver fibrosis detection. CLINICAL IMPACT. Assessment of UGAP at 2D SWE may help identify patients in whom LSM2D SWE should be assessed with caution. In patients with no or mild steatosis by 2D SWE and severe steatosis by UGAP, MRE helps provide a more reliable measure of liver fibrosis.
Collapse
Affiliation(s)
- Takashi Kumada
- Department of Nursing, Faculty of Nursing, Gifu Kyoritsu University, 5-50, Kitagata-cho, Ogaki, 503-8550, Japan
| | - Hidenori Toyoda
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Satoshi Yasuda
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Sadanobu Ogawa
- Department of Imaging Diagnosis, Ogaki Municipal Hospital, Ogaki, Japan
| | - Tatsuya Gotoh
- Department of Imaging Diagnosis, Ogaki Municipal Hospital, Ogaki, Japan
| | - Takanori Ito
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshifumi Tada
- Department of Internal Medicine, Japanese Red Cross Himeji Hospital, Himeji, Japan
| | - Junko Tanaka
- Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
13
|
Bozic D, Podrug K, Mikolasevic I, Grgurevic I. Ultrasound Methods for the Assessment of Liver Steatosis: A Critical Appraisal. Diagnostics (Basel) 2022; 12:2287. [PMID: 36291976 PMCID: PMC9600709 DOI: 10.3390/diagnostics12102287] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 08/10/2023] Open
Abstract
The prevalence of the non-alcoholic fatty liver disease has reached major proportions, being estimated to affect one-quarter of the global population. The reference techniques, which include liver biopsy and the magnetic resonance imaging proton density fat fraction, have objective practical and financial limitations to their routine use in the detection and quantification of liver steatosis. Therefore, there has been a rising necessity for the development of new inexpensive, widely applicable and reliable non-invasive diagnostic tools. The controlled attenuation parameter has been considered the point-of-care technique for the assessment of liver steatosis for a long period of time. Recently, many ultrasound (US) system manufacturers have developed proprietary software solutions for the quantification of liver steatosis. Some of these methods have already been extensively tested with very good performance results reported, while others are still under evaluation. This manuscript reviews the currently available US-based methods for diagnosing and grading liver steatosis, including their classification and performance results, with an appraisal of the importance of this armamentarium in daily clinical practice.
Collapse
Affiliation(s)
- Dorotea Bozic
- Department of Gastroenterology and Hepatology, University Hospital Center Split, Spinčićeva 1, 21 000 Split, Croatia
| | - Kristian Podrug
- Department of Gastroenterology and Hepatology, University Hospital Center Split, Spinčićeva 1, 21 000 Split, Croatia
| | - Ivana Mikolasevic
- Department of Gastroenterology and Hepatology, University Hospital Center Rijeka, Krešimirova 42, 51 000 Rijeka, Croatia
| | - Ivica Grgurevic
- Department of Gastroenterology, Hepatology and Clinical Nutrition, University Hospital Dubrava, Avenija Gojka Šuška 6, 10 000 Zagreb, Croatia
- School of Medicine, University of Zagreb, Šalata 2, 10 000 Zagreb, Croatia
| |
Collapse
|
14
|
Guan X, Chen YC, Xu HX. New horizon of ultrasound for screening and surveillance of non-alcoholic fatty liver disease spectrum. Eur J Radiol 2022; 154:110450. [PMID: 35917757 DOI: 10.1016/j.ejrad.2022.110450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 12/07/2022]
|
15
|
Kumada T, Ogawa S, Goto T, Toyoda H, Yasuda S, Ito T, Yasuda E, Akita T, Tanaka J. Intra-individual Comparisons of the Ultrasound-Guided Attenuation Parameter and the Magnetic Resonance Imaging-Based Proton Density Fat Fraction Using Bias and Precision Statistics. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1537-1546. [PMID: 35613974 DOI: 10.1016/j.ultrasmedbio.2022.03.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 06/15/2023]
Abstract
Ultrasound-based techniques using the attenuation coefficient, including the ultrasound-guided attenuation parameter (UGAP), have been developed for the quantification of hepatic steatosis. The magnetic resonance imaging-based proton density fat fraction (MRI-PDFF) is considered to be more accurate than liver biopsy for liver fat quantification. The aim of this study was to perform intra-individual comparisons of UGAP and MRI-PDFF for determining hepatic steatosis grade. The study enrolled 309 patients who underwent UGAP and MRI-PDFF measurements. Bland-Altman analysis was conducted after transforming MRI-PDFF values to a normal distribution and converted to a common set of units using linear regression analysis for differing scales. The expected limits of agreement (LOA) was defined as the square root of the sum of the squares of UGAP and MRI-PDFF precision. A Bland-Altman plot revealed that the bias and upper and lower LOAs (ULOA and LLOA) were -0.0047, 0.1160 and -0.1255, respectively. The percentage difference indicated that the mean, ULOA and LLOA were -1.1434%, 18.1723% and -20.4590%, respectively. The calculated expected LOA was 18.5449%, and 283 of 309 patients (91.6%) had a percentage difference within 18.5449%. Bland-Altman analysis revealed that UGAP and MRI-PDFF were interchangeable within a clinically acceptable range.
Collapse
Affiliation(s)
- Takashi Kumada
- Department of Nursing, Faculty of Nursing, Gifu Kyoritsu University, Ogaki, Gifu, Japan.
| | - Sadanobu Ogawa
- Department of Imaging Diagnosis, Ogaki Municipal Hospital, Ogaki, Gifu, Japan
| | - Tatsuya Goto
- Department of Imaging Diagnosis, Ogaki Municipal Hospital, Ogaki, Gifu, Japan
| | - Hidenori Toyoda
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Gifu, Japan
| | - Satoshi Yasuda
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Gifu, Japan
| | - Takanori Ito
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Eisuke Yasuda
- Department of Radiological Technology, Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Tomoyuki Akita
- Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Junko Tanaka
- Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
16
|
Cassinotto C, Jacq T, Anselme S, Ursic-Bedoya J, Blanc P, Faure S, Belgour A, Guiu B. Diagnostic Performance of Attenuation to Stage Liver Steatosis with MRI Proton Density Fat Fraction as Reference: A Prospective Comparison of Three US Machines. Radiology 2022; 305:353-361. [PMID: 35819322 DOI: 10.1148/radiol.212846] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background US tools to quantify liver fat content have recently been made clinically available by different vendors, but comparative data on their accuracy are lacking. Purpose To compare the diagnostic performances of the attenuation parameters of US machines from three different manufacturers (vendors 1, 2, and 3) in participants who underwent liver fat quantification with the MRI-derived proton density fat fraction (PDFF). Materials and Methods From July 2020 to June 2021, consecutive participants with chronic liver disease were enrolled in this prospective single-center study and underwent MRI PDFF quantification (reference standard) and US on the same day. US was performed with two different machines from among three vendors assessed. Areas under the receiver operating characteristic curve (AUCs) for the staging of liver steatosis (MRI PDFF: ≥5.5% for grade ≥S1 and ≥15.5% for grade ≥S2) were calculated in test and validation samples and then compared between vendors in the study sample. Results A total of 534 participants (mean age, 60 years ± 13 [SD]; 320 men) were evaluated. Failure of measurements occurred in less than 1% of participants for all vendors. Correlation coefficients with the MRI PDFF were 0.71, 0.73, and 0.54 for the attenuation coefficients of vendors 1, 2, and 3, respectively. In the test sample, AUCs for diagnosis of steatosis grade S1 and higher and grade S2 and higher were 0.89 and 0.93 for vendor 1 attenuation, 0.88 and 0.92 for vendor 2 attenuation, and 0.79 and 0.79 for vendor 3 attenuation, respectively. In the validation sample, a threshold value of 0.65 for vendor 1 and 0.66 for vendor 2 yielded sensitivity of 77% and 84% and specificity of 78% and 85%, respectively, for diagnosis of grade S1 and higher. Vendor 2 attenuation had greater AUCs than vendor 3 attenuation (P = .001 and P = .003) for diagnosis of grade S1 and higher and grade S2 and higher, respectively, and vender 2 had greater AUCs for attenuation than vendor 1 for diagnosis of grade S2 and higher (P = .04). For all vendors, attenuation was not associated with liver stiffness (correlation coefficients <0.05). Conclusion To stage liver steatosis, attenuation coefficient accuracy varied among US devices across vendors when using MRI proton density fat fraction quantification as the reference standard, with some demonstrating excellent diagnostic performance and similar cutoff values. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Dubinsky in this issue.
Collapse
Affiliation(s)
- Christophe Cassinotto
- From the Departments of Diagnostic and Interventional Radiology (C.C., T.J., S.A., A.B., B.G.), Hepatology A (J.U.B., S.F.), and Hepatology B (P.B.), Saint-Eloi Hospital, University Hospital of Montpellier, 80 Avenue Augustin Fliche, 34090 Montpellier, France; and Institut Desbrest d'Epidémiologie et de Santé Publique, IDESP UMR UA11 INSERM, Montpellier University, Montpellier, France (C.C., B.G.)
| | - Tony Jacq
- From the Departments of Diagnostic and Interventional Radiology (C.C., T.J., S.A., A.B., B.G.), Hepatology A (J.U.B., S.F.), and Hepatology B (P.B.), Saint-Eloi Hospital, University Hospital of Montpellier, 80 Avenue Augustin Fliche, 34090 Montpellier, France; and Institut Desbrest d'Epidémiologie et de Santé Publique, IDESP UMR UA11 INSERM, Montpellier University, Montpellier, France (C.C., B.G.)
| | - Sophie Anselme
- From the Departments of Diagnostic and Interventional Radiology (C.C., T.J., S.A., A.B., B.G.), Hepatology A (J.U.B., S.F.), and Hepatology B (P.B.), Saint-Eloi Hospital, University Hospital of Montpellier, 80 Avenue Augustin Fliche, 34090 Montpellier, France; and Institut Desbrest d'Epidémiologie et de Santé Publique, IDESP UMR UA11 INSERM, Montpellier University, Montpellier, France (C.C., B.G.)
| | - José Ursic-Bedoya
- From the Departments of Diagnostic and Interventional Radiology (C.C., T.J., S.A., A.B., B.G.), Hepatology A (J.U.B., S.F.), and Hepatology B (P.B.), Saint-Eloi Hospital, University Hospital of Montpellier, 80 Avenue Augustin Fliche, 34090 Montpellier, France; and Institut Desbrest d'Epidémiologie et de Santé Publique, IDESP UMR UA11 INSERM, Montpellier University, Montpellier, France (C.C., B.G.)
| | - Pierre Blanc
- From the Departments of Diagnostic and Interventional Radiology (C.C., T.J., S.A., A.B., B.G.), Hepatology A (J.U.B., S.F.), and Hepatology B (P.B.), Saint-Eloi Hospital, University Hospital of Montpellier, 80 Avenue Augustin Fliche, 34090 Montpellier, France; and Institut Desbrest d'Epidémiologie et de Santé Publique, IDESP UMR UA11 INSERM, Montpellier University, Montpellier, France (C.C., B.G.)
| | - Stéphanie Faure
- From the Departments of Diagnostic and Interventional Radiology (C.C., T.J., S.A., A.B., B.G.), Hepatology A (J.U.B., S.F.), and Hepatology B (P.B.), Saint-Eloi Hospital, University Hospital of Montpellier, 80 Avenue Augustin Fliche, 34090 Montpellier, France; and Institut Desbrest d'Epidémiologie et de Santé Publique, IDESP UMR UA11 INSERM, Montpellier University, Montpellier, France (C.C., B.G.)
| | - Ali Belgour
- From the Departments of Diagnostic and Interventional Radiology (C.C., T.J., S.A., A.B., B.G.), Hepatology A (J.U.B., S.F.), and Hepatology B (P.B.), Saint-Eloi Hospital, University Hospital of Montpellier, 80 Avenue Augustin Fliche, 34090 Montpellier, France; and Institut Desbrest d'Epidémiologie et de Santé Publique, IDESP UMR UA11 INSERM, Montpellier University, Montpellier, France (C.C., B.G.)
| | - Boris Guiu
- From the Departments of Diagnostic and Interventional Radiology (C.C., T.J., S.A., A.B., B.G.), Hepatology A (J.U.B., S.F.), and Hepatology B (P.B.), Saint-Eloi Hospital, University Hospital of Montpellier, 80 Avenue Augustin Fliche, 34090 Montpellier, France; and Institut Desbrest d'Epidémiologie et de Santé Publique, IDESP UMR UA11 INSERM, Montpellier University, Montpellier, France (C.C., B.G.)
| |
Collapse
|
17
|
Yoon H, Kim J, Lim HJ, Kamiyama N, Oguri T, Koh H, Lee MJ. Attenuation Coefficient Measurement Using a High-Frequency (2-9 MHz) Convex Transducer for Children Including Fatty Liver. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1070-1077. [PMID: 35296397 DOI: 10.1016/j.ultrasmedbio.2022.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/14/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
We evaluated the measurement feasibility and diagnostic ability of an ultrasound-guided attenuation parameter (UGAP) using a high-frequency convex transducer in children. This retrospective study included all consecutive children who underwent abdomen ultrasonography from July to December 2020. Attenuation coefficients (ACs) of the liver were measured using both 1- to 6-MHz (AC1-6) and 2- to 9-MHz (AC2-9) probes of the LOGIQ E10 system (GE Healthcare). t-Tests and Pearson's or partial correlation analyses were performed, and AC cutoff values for diagnosing fatty liver were obtained from receiver operating characteristic curve analyses. Finally, 118 patients (M:F = 83:35, mean age: 10.2 ± 4.1 y) were evaluated, and the measurement success rate was 98.3% (116/118) for AC2-9. AC1-6 was available in children with a liver depth greater than 9 cm. The ratio of interquartile range to median of the AC2-9 was lower than that of the AC1-6 (4.3 vs. 8.5, p < 0.001). In the normal group (n = 41), the AC2-9 values were not associated with age, sex or body mass index. For the evaluation of steatosis, the AC2-9 values exhibited a positive correlation with the MR fat fraction (coefficient = 0.498, p < 0.001). The cutoff value of 0.699 dB/cm/MHz had 90.2% sensitivity and 100% specificity for diagnosing fatty liver. In conclusion, measurements of ACs using a high-frequency convex transducer are feasible even in small children, with lower measurement variability. The AC2-9 values also had good diagnostic performance for pediatric fatty liver.
Collapse
Affiliation(s)
- Haesung Yoon
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea; Severance Pediatric Liver Disease Research Group, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jisoo Kim
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea; Severance Pediatric Liver Disease Research Group, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Ji Lim
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea; Severance Pediatric Liver Disease Research Group, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | | | - Takuma Oguri
- Ultrasound General Imaging, GE Healthcare, Hino, Tokyo, Japan
| | - Hong Koh
- Severance Pediatric Liver Disease Research Group, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea; Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Mi-Jung Lee
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea; Severance Pediatric Liver Disease Research Group, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
18
|
Ormachea J, Parker KJ. A Preliminary Study of Liver Fat Quantification Using Reported Ultrasound Speed of Sound and Attenuation Parameters. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:675-684. [PMID: 35039191 DOI: 10.1016/j.ultrasmedbio.2021.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
The quantification of liver fat as a diagnostic assessment of steatosis remains an important priority for non-invasive imaging systems. We derive a framework in which the unknown fat volume percentage can be estimated from a pair of ultrasound measurements. The precise estimation of ultrasound speed of sound and attenuation within the liver is found to be sufficient for estimating fat volume assuming a classic model of the properties of a composite elastic material. In this model, steatosis is represented as a random dispersion of spherical fat vacuoles with acoustic properties similar to those of edible oils. Using values of speed of sound and attenuation from the literature in which normal and steatotic livers were studied near 3.5 MHz, we describe agreement of the new estimation method with independent measures of fat. This framework holds the potential for translation to clinical scanners with which the two ultrasound measurements can be made and used for improved quantitative assessment of steatosis.
Collapse
Affiliation(s)
- Juvenal Ormachea
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York, USA
| | - Kevin J Parker
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York, USA.
| |
Collapse
|
19
|
Reproducibility of ultrasound-guided attenuation parameter (UGAP) to the noninvasive evaluation of hepatic steatosis. Sci Rep 2022; 12:2876. [PMID: 35190618 PMCID: PMC8861045 DOI: 10.1038/s41598-022-06879-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/08/2022] [Indexed: 01/21/2023] Open
Abstract
The aim of this study was to identify the applicability of an ultrasound-guided attenuation parameter (UGAP) for the noninvasive assessment of hepatic steatosis in clinical practice and to compare its correlation with B-mode ultrasound (US). From May to July 2021, 63 subjects with different body mass index (BMI) grades were included in the prospective study. All of them performed UGAP measurements, under different breathing manipulations, positions, diet statuses, and operators. After that, the UGAP values were compared with the visual grades of hepatic steatosis on B-mode US using a 4-point scale method. The intraclass correlation (ICC) of the UGAP values between the two radiologists was 0.862 (p < 0.001), and the ICCs of the UGAP values on the same day and different days by radiologist A were 0.899 (p < 0.001) and 0.910 (p < 0.001), respectively. There were no significant differences in UGAP values under different breathing manipulations (p > 0.05), positions (p > 0.05), or diet statuses (p = 0.300). The UGAP values in the fasting (supine position, segment V, 1) condition among the lean (BMI < 24 kg/m2), overweight (24 kg/m2 ≤ BMI < 28 kg/m2) and obese groups (BMI ≥ 28 kg/m2) were 0.60 ± 0.12, 0.66 ± 0.14, and 0.71 ± 0.11 dB/cm/MHz, respectively, with a significant difference (p = 0.006). The correlation coefficients (Rho) between the UGAP values and the visual grades of hepatic steatosis by the two reviewers were 0.845 (p < 0.001) and 0.850 (p < 0.001), corresponding to a strong relationship. Steatosis grades by reviewer 1 (p = 0.036) and reviewer 2 (p = 0.003) were significant factors determining the UGAP values according to the multivariate linear regression analysis. UGAP demonstrated excellent intraobserver and interobserver reproducibility in the assessment of hepatic steatosis. UGAP may be a promising tool in clinical practice to predict hepatic steatosis.
Collapse
|
20
|
Ferraioli G, Kumar V, Ozturk A, Nam K, de Korte CL, Barr RG. US Attenuation for Liver Fat Quantification: An AIUM-RSNA QIBA Pulse-Echo Quantitative Ultrasound Initiative. Radiology 2022; 302:495-506. [PMID: 35076304 DOI: 10.1148/radiol.210736] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, with an estimated prevalence of up to 30% in the general population and higher in people with type 2 diabetes. The assessment of liver fat content is essential to help identify patients with or who are at risk for NAFLD and to follow their disease over time. The American Institute of Ultrasound in Medicine-RSNA Quantitative Imaging Biomarkers Alliance Pulse-Echo Quantitative Ultrasound Initiative was formed to help develop and standardize acquisition protocols and to better understand confounding factors of US-based fat quantification. The three quantitative US parameters explored by the initiative are attenuation, backscatter coefficient, and speed of sound. The purpose of this review is to present the current state of attenuation imaging for fat quantification and to provide expert opinion on examination performance and interpretation. US attenuation methods that need further study are outlined.
Collapse
Affiliation(s)
- Giovanna Ferraioli
- From the Medical School University of Pavia, Viale Brambilla, Pavia, Italy (G.F.); Center for Ultrasound Research & Translation, Department of Radiology, Massachusetts General Hospital, Boston, Mass (V.K., A.O.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa (K.N.); Medical UltraSound Imaging Center, Radboud University Medical Center, Nijmegen, the Netherlands (C.L.d.K.); Technical Medical (TechMed) Center, University of Twente, Enschede, the Netherlands (C.L.d.K.); Department of Radiology, Northeastern Ohio Medical University, Rootstown, Ohio (R.G.B.); and Southwoods Imaging, 7623 Market St, Youngstown, OH 44512 (R.G.B.)
| | - Viksit Kumar
- From the Medical School University of Pavia, Viale Brambilla, Pavia, Italy (G.F.); Center for Ultrasound Research & Translation, Department of Radiology, Massachusetts General Hospital, Boston, Mass (V.K., A.O.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa (K.N.); Medical UltraSound Imaging Center, Radboud University Medical Center, Nijmegen, the Netherlands (C.L.d.K.); Technical Medical (TechMed) Center, University of Twente, Enschede, the Netherlands (C.L.d.K.); Department of Radiology, Northeastern Ohio Medical University, Rootstown, Ohio (R.G.B.); and Southwoods Imaging, 7623 Market St, Youngstown, OH 44512 (R.G.B.)
| | - Arinc Ozturk
- From the Medical School University of Pavia, Viale Brambilla, Pavia, Italy (G.F.); Center for Ultrasound Research & Translation, Department of Radiology, Massachusetts General Hospital, Boston, Mass (V.K., A.O.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa (K.N.); Medical UltraSound Imaging Center, Radboud University Medical Center, Nijmegen, the Netherlands (C.L.d.K.); Technical Medical (TechMed) Center, University of Twente, Enschede, the Netherlands (C.L.d.K.); Department of Radiology, Northeastern Ohio Medical University, Rootstown, Ohio (R.G.B.); and Southwoods Imaging, 7623 Market St, Youngstown, OH 44512 (R.G.B.)
| | - Kibo Nam
- From the Medical School University of Pavia, Viale Brambilla, Pavia, Italy (G.F.); Center for Ultrasound Research & Translation, Department of Radiology, Massachusetts General Hospital, Boston, Mass (V.K., A.O.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa (K.N.); Medical UltraSound Imaging Center, Radboud University Medical Center, Nijmegen, the Netherlands (C.L.d.K.); Technical Medical (TechMed) Center, University of Twente, Enschede, the Netherlands (C.L.d.K.); Department of Radiology, Northeastern Ohio Medical University, Rootstown, Ohio (R.G.B.); and Southwoods Imaging, 7623 Market St, Youngstown, OH 44512 (R.G.B.)
| | - Chris L de Korte
- From the Medical School University of Pavia, Viale Brambilla, Pavia, Italy (G.F.); Center for Ultrasound Research & Translation, Department of Radiology, Massachusetts General Hospital, Boston, Mass (V.K., A.O.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa (K.N.); Medical UltraSound Imaging Center, Radboud University Medical Center, Nijmegen, the Netherlands (C.L.d.K.); Technical Medical (TechMed) Center, University of Twente, Enschede, the Netherlands (C.L.d.K.); Department of Radiology, Northeastern Ohio Medical University, Rootstown, Ohio (R.G.B.); and Southwoods Imaging, 7623 Market St, Youngstown, OH 44512 (R.G.B.)
| | - Richard G Barr
- From the Medical School University of Pavia, Viale Brambilla, Pavia, Italy (G.F.); Center for Ultrasound Research & Translation, Department of Radiology, Massachusetts General Hospital, Boston, Mass (V.K., A.O.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa (K.N.); Medical UltraSound Imaging Center, Radboud University Medical Center, Nijmegen, the Netherlands (C.L.d.K.); Technical Medical (TechMed) Center, University of Twente, Enschede, the Netherlands (C.L.d.K.); Department of Radiology, Northeastern Ohio Medical University, Rootstown, Ohio (R.G.B.); and Southwoods Imaging, 7623 Market St, Youngstown, OH 44512 (R.G.B.)
| |
Collapse
|
21
|
Park J, Lee JM, Lee G, Jeon SK, Joo I. Quantitative Evaluation of Hepatic Steatosis Using Advanced Imaging Techniques: Focusing on New Quantitative Ultrasound Techniques. Korean J Radiol 2022; 23:13-29. [PMID: 34983091 PMCID: PMC8743150 DOI: 10.3348/kjr.2021.0112] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/26/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease, characterized by excessive accumulation of fat in the liver, is the most common chronic liver disease worldwide. The current standard for the detection of hepatic steatosis is liver biopsy; however, it is limited by invasiveness and sampling errors. Accordingly, MR spectroscopy and proton density fat fraction obtained with MRI have been accepted as non-invasive modalities for quantifying hepatic steatosis. Recently, various quantitative ultrasonography techniques have been developed and validated for the quantification of hepatic steatosis. These techniques measure various acoustic parameters, including attenuation coefficient, backscatter coefficient and speckle statistics, speed of sound, and shear wave elastography metrics. In this article, we introduce several representative quantitative ultrasonography techniques and their diagnostic value for the detection of hepatic steatosis.
Collapse
Affiliation(s)
- Junghoan Park
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea.
| | - Gunwoo Lee
- Ultrasound R&D 2 Group, Health & Medical Equipment Business, Samsung Electronics Co., Ltd., Seoul, Korea
| | - Sun Kyung Jeon
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Ijin Joo
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
22
|
Ferraioli G, Berzigotti A, Barr RG, Choi BI, Cui XW, Dong Y, Gilja OH, Lee JY, Lee DH, Moriyasu F, Piscaglia F, Sugimoto K, Wong GLH, Wong VWS, Dietrich CF. Quantification of Liver Fat Content with Ultrasound: A WFUMB Position Paper. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2803-2820. [PMID: 34284932 DOI: 10.1016/j.ultrasmedbio.2021.06.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/19/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
New ultrasound methods that can be used to quantitatively assess liver fat content have recently been developed. These quantitative ultrasound (QUS) methods are based on the analysis of radiofrequency echoes detected by the transducer, allowing calculation of parameters for quantifying the fat in the liver. In this position paper, after a section dedicated to the importance of quantifying liver steatosis in patients with non-alcoholic fatty liver disease and another section dedicated to the assessment of liver fat with magnetic resonance, the current clinical studies performed using QUS are summarized. These new methods include spectral-based techniques and techniques based on envelope statistics. The spectral-based techniques that have been used in clinical studies are those estimating the attenuation coefficient and those estimating the backscatter coefficient. Clinical studies that have used tools based on the envelope statistics of the backscattered ultrasound are those performed by using the acoustic structure quantification or other parameters derived from it, such as the normalized local variance, and that performed by estimating the speed of sound. Experts' opinions are reported.
Collapse
Affiliation(s)
- Giovanna Ferraioli
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, Medical School University of Pavia, Pavia, Italy
| | - Annalisa Berzigotti
- Hepatology Dept., University Clinic for Visceral Surgery and Medicine, Inselspital, University Hospital of Bern, University of Bern, Switzerland
| | - Richard G Barr
- Department of Radiology, Northeastern Ohio Medical University, Rootstown, Ohio, USA
| | - Byung I Choi
- Department of Radiology, Chung-Ang University Hospital, Seoul, Korea
| | - Xin Wu Cui
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Dong
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Odd Helge Gilja
- National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, and Department of Clinical Medicine, University of Bergen, Norway
| | - Jae Young Lee
- Departments of Health and Science and Technology and Medical Device Management and Research, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Korea
| | - Dong Ho Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Fuminori Moriyasu
- Department of Gastroenterology and Hepatology, International University of Health and Welfare, Sanno Hospital, Tokyo, Japan
| | - Fabio Piscaglia
- Unit of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, Department of Medical and Surgical Sciences, University of Bologna S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Katsutoshi Sugimoto
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Japan
| | - Grace Lai-Hung Wong
- Medical Data Analytic Centre and Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, China
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Christoph F Dietrich
- Department Allgemeine Innere Medizin (DAIM), Kliniken Hirslanden Beau Site, Salem und Permancence, Bern, Switzerland.
| |
Collapse
|
23
|
Cloutier G, Destrempes F, Yu F, Tang A. Quantitative ultrasound imaging of soft biological tissues: a primer for radiologists and medical physicists. Insights Imaging 2021; 12:127. [PMID: 34499249 PMCID: PMC8429541 DOI: 10.1186/s13244-021-01071-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/07/2021] [Indexed: 12/26/2022] Open
Abstract
Quantitative ultrasound (QUS) aims at quantifying interactions between ultrasound and biological tissues. QUS techniques extract fundamental physical properties of tissues based on interactions between ultrasound waves and tissue microstructure. These techniques provide quantitative information on sub-resolution properties that are not visible on grayscale (B-mode) imaging. Quantitative data may be represented either as a global measurement or as parametric maps overlaid on B-mode images. Recently, major ultrasound manufacturers have released speed of sound, attenuation, and backscatter packages for tissue characterization and imaging. Established and emerging clinical applications are currently limited and include liver fibrosis staging, liver steatosis grading, and breast cancer characterization. On the other hand, most biological tissues have been studied using experimental QUS methods, and quantitative datasets are available in the literature. This educational review addresses the general topic of biological soft tissue characterization using QUS, with a focus on disseminating technical concepts for clinicians and specialized QUS materials for medical physicists. Advanced but simplified technical descriptions are also provided in separate subsections identified as such. To understand QUS methods, this article reviews types of ultrasound waves, basic concepts of ultrasound wave propagation, ultrasound image formation, point spread function, constructive and destructive wave interferences, radiofrequency data processing, and a summary of different imaging modes. For each major QUS technique, topics include: concept, illustrations, clinical examples, pitfalls, and future directions.
Collapse
Affiliation(s)
- Guy Cloutier
- Laboratory of Biorheology and Medical Ultrasonics, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 St-Denis, Montréal, Québec, H2X 0A9, Canada.
- Department of Radiology, Radio-oncology, and Nuclear Medicine, Université de Montréal, Montréal, Québec, Canada.
- Institute of Biomedical Engineering, Université de Montréal, Montréal, Québec, Canada.
| | - François Destrempes
- Laboratory of Biorheology and Medical Ultrasonics, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 St-Denis, Montréal, Québec, H2X 0A9, Canada
| | - François Yu
- Department of Radiology, Radio-oncology, and Nuclear Medicine, Université de Montréal, Montréal, Québec, Canada
- Institute of Biomedical Engineering, Université de Montréal, Montréal, Québec, Canada
- Microbubble Theranostics Laboratory, CRCHUM, Montréal, Québec, Canada
| | - An Tang
- Department of Radiology, Radio-oncology, and Nuclear Medicine, Université de Montréal, Montréal, Québec, Canada
- Department of Radiology, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
- Laboratory of Medical Image Analysis, Montréal, CRCHUM, Canada
| |
Collapse
|
24
|
Kondo R, Kusano H, Mihara Y, Kage M, Akiba J, Yano H. Pathological findings of liver steatosis that is difficult to evaluate with ultrasound. J Med Ultrason (2001) 2021; 48:515-522. [PMID: 34453650 DOI: 10.1007/s10396-021-01126-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/09/2021] [Indexed: 12/17/2022]
Abstract
Although new ultrasound (US) methods able to quantitatively assess liver fat content have been recently developed, B-mode US is still the major method for detecting liver steatosis during medical checkups. However, some pathological cases yield false-positive or false-negative liver steatosis results using B-mode US. In addition, histologically, the degree of fat deposits and the size of fat droplets in the liver can affect the sensitivity and specificity of the diagnosis of liver steatosis using B-mode US. As B-mode US evaluation of fatty liver relies on operator expertise, the operator should be aware that there are some cases of liver steatosis that are difficult to evaluate with B-mode US. Here, we describe the pathological findings of liver steatosis that is difficult to evaluate with US.
Collapse
Affiliation(s)
- Reiichiro Kondo
- Department of Pathology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Hironori Kusano
- Department of Pathology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Yutaro Mihara
- Department of Pathology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Masayoshi Kage
- Department of Medical Engineering, Junshin Gakuen University, 1-1-1 Chikushigaoka, Minami-ku, Fukuoka, 815-8510, Japan
| | - Jun Akiba
- Department of Diagnostic Pathology, Kurume University Hospital, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Hirohisa Yano
- Department of Pathology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan.
| |
Collapse
|
25
|
Diagnostic accuracy of ultrasound-guided attenuation parameter as a noninvasive test for steatosis in non-alcoholic fatty liver disease. J Med Ultrason (2001) 2021; 48:471-480. [PMID: 34415481 DOI: 10.1007/s10396-021-01123-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
The purpose of this study was to evaluate the diagnostic accuracy of the ultrasound-guided attenuation parameter (UGAP) using the LOGEQ E10 for hepatic steatosis in non-alcoholic fatty liver disease (NAFLD) patients and directly compare UGAP with attenuation imaging (ATI) and controlled attenuation parameter (CAP). We prospectively analyzed 105 consecutive patients with NAFLD who underwent UGAP, ATI, CAP, and liver biopsy on the same day between October 2019 and April 2021. The diagnostic ability of the UGAP-determined attenuation coefficient (AC) was evaluated using receiver operating characteristic (ROC) curve analysis, and its correlation with ATI-determined AC values or CAP values was investigated. The success rate of UGAP was 100%. The median IQR/med obtained by UGAP was 4.0%, which was lower than that of ATI and CAP (P < 0.0001). The median ACs obtained by UGAP for grades S0 (control), S1, S2, and S3 were 0.590, 0.670, 0.750, and 0.845 dB/cm/MHz, respectively, demonstrating a stepwise increase with increasing hepatic steatosis severity (P < 0.0001). The areas under the ROC curve of UGAP for identifying ≥ S1, ≥ S2, and S3 were 0.890, 0.906, and 0.912, respectively, which were significantly better than the results obtained with CAP for identifying S3. Furthermore, the correlation coefficient between UGAP-AC and ATI-AC values was 0.803 (P < 0.0001), indicating a strong relationship. Our results indicate that UGAP has high diagnostic accuracy for detecting and grading hepatic steatosis in patients with NAFLD.
Collapse
|
26
|
Tamaki N, Kurosaki M, Yasui Y, Tsuchiya K, Izumi N. Attenuation coefficient (ATT) measurement for liver fat quantification in chronic liver disease. J Med Ultrason (2001) 2021; 48:481-487. [PMID: 34165645 DOI: 10.1007/s10396-021-01103-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
Liver fat is one of the main clinical features in chronic liver disease, and the number of fatty liver patients is increasing as the prevalence of obesity and metabolic syndrome increases globally. Noninvasive and quantitative assessment of liver fat content was made possible by recent technological advances. Attenuation coefficient (ATT) measurement is a noninvasive and quantitative liver fat measurement method used in clinical practice. The ATT value is significantly associated with histological steatosis grade. The diagnostic accuracy of ATT for histological steatosis grade is equivalent to controlled attenuation parameter (CAP), and ATT has a lower measurement failure rate than CAP because ATT can be measured on a B-mode image with the exact location of the region of interest. Furthermore, ATT measurement has high interobserver reproducibility. Since ATT measurement and other ultrasound-based modalities for liver fat quantification are easy to perform and inexpensive, these modalities are suitable for point-of-care and screening. Although emerging data suggest that quantitative liver fat content and its changes over time may be associated with disease progression in nonalcoholic fatty liver disease, the association between ATT and disease progression has not been evaluated yet. Therefore, further investigation and validation studies are necessary to strengthen the clinical significance of ATT measurement in chronic liver disease.
Collapse
Affiliation(s)
- Nobuharu Tamaki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, 1-26-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8610, Japan
| | - Masayuki Kurosaki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, 1-26-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8610, Japan
| | - Yutaka Yasui
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, 1-26-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8610, Japan
| | - Kaoru Tsuchiya
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, 1-26-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8610, Japan
| | - Namiki Izumi
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, 1-26-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8610, Japan.
| |
Collapse
|
27
|
Jeon SK, Lee JM, Joo I, Park SJ. Quantitative Ultrasound Radiofrequency Data Analysis for the Assessment of Hepatic Steatosis in Nonalcoholic Fatty Liver Disease Using Magnetic Resonance Imaging Proton Density Fat Fraction as the Reference Standard. Korean J Radiol 2021; 22:1077-1086. [PMID: 33739636 PMCID: PMC8236371 DOI: 10.3348/kjr.2020.1262] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 12/28/2022] Open
Abstract
Objective To investigate the diagnostic performance of quantitative ultrasound (US) parameters for the assessment of hepatic steatosis in patients with nonalcoholic fatty liver disease (NAFLD) using magnetic resonance imaging proton density fat fraction (MRI-PDFF) as the reference standard. Materials and Methods In this single-center prospective study, 120 patients with clinically suspected NAFLD were enrolled between March 2019 and January 2020. The participants underwent US examination for radiofrequency (RF) data acquisition and chemical shift-encoded liver MRI for PDFF measurement. Using the RF data analysis, the attenuation coefficient (AC) based on tissue attenuation imaging (TAI) (AC-TAI) and scatter-distribution coefficient (SC) based on tissue scatter-distribution imaging (TSI) (SC-TSI) were measured. The correlations between the quantitative US parameters (AC and SC) and MRI-PDFF were evaluated using Pearson correlation coefficients. The diagnostic performance of AC-TAI and SC-TSI for detecting hepatic fat contents of ≥ 5% (MRI-PDFF ≥ 5%) and ≥ 10% (MRI-PDFF ≥ 10%) were assessed using receiver operating characteristic (ROC) analysis. The significant clinical or imaging factors associated with AC and SC were analyzed using linear regression analysis. Results The participants were classified based on MRI-PDFF: < 5% (n = 38), 5–10% (n = 23), and ≥ 10% (n = 59). AC-TAI and SC-TSI were significantly correlated with MRI-PDFF (r = 0.659 and 0.727, p < 0.001 for both). For detecting hepatic fat contents of ≥ 5% and ≥ 10%, the areas under the ROC curves of AC-TAI were 0.861 (95% confidence interval [CI]: 0.786–0.918) and 0.835 (95% CI: 0.757–0.897), and those of SC-TSI were 0.964 (95% CI: 0.913–0.989) and 0.935 (95% CI: 0.875–0.972), respectively. Multivariable linear regression analysis showed that MRI-PDFF was an independent determinant of AC-TAI and SC-TSI. Conclusion AC-TAI and SC-TSI derived from quantitative US RF data analysis yielded a good correlation with MRI-PDFF and provided good performance for detecting hepatic steatosis and assessing its severity in NAFLD.
Collapse
Affiliation(s)
- Sun Kyung Jeon
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea.
| | - Ijin Joo
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sae Jin Park
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.,Department Radiology, SMG-SNU Boramae Medical Center, Seoul, Korea
| |
Collapse
|
28
|
Tada T, Kumada T, Toyoda H, Nakamura S, Shibata Y, Yasuda S, Watanuki Y, Tsujii K, Fukuda N, Fujioka M, Takeshima K, Niwa F, Ogawa S, Hashinokuchi S, Kataoka S, Ichikawa H, Iijima H. Attenuation imaging based on ultrasound technology for assessment of hepatic steatosis: A comparison with magnetic resonance imaging-determined proton density fat fraction. Hepatol Res 2020; 50:1319-1327. [PMID: 32876367 DOI: 10.1111/hepr.13563] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/02/2020] [Accepted: 08/16/2020] [Indexed: 02/06/2023]
Abstract
AIM A new method has recently been developed for diagnosing hepatic steatosis based on attenuation measurement using ultrasound. We investigated the ability of attenuation imaging (ATI) to detect steatosis that was identified by proton density fat fraction (PDFF) on magnetic resonance imaging (MRI) in patients with chronic liver disease. METHODS A total of 119 patients with chronic liver disease (non-B, non-C) were analyzed. The relationship between ATI values and steatosis grades determined by PDFF was evaluated. Additionally, the diagnostic ability of ATI was evaluated using receiver operating characteristic curve analysis, and the correlation between ATI values and PDFF values was determined. RESULTS The ATI values of steatosis grades 0, 1, 2, and 3 were 0.55, 0.61, 0.74, and 0.84 dB/cm/MHz, respectively (P < 0.001). There was a statistically significant trend of higher ATI values with higher steatosis grades (P < 0.001). The correlation coefficient (r) between PDFF values and ATI values was 0.70 (95% confidence interval [CI] 0.59-0.78; P < 0.001), corresponding to a strong relationship. The diagnostic ability of ATI for steatosis grades ≥1, ≥2, and 3, as determined by PDFF, were 0.81 (95% CI 0.73-0.89), 0.87 (95% CI 0.79-0.96), and 0.94 (95% CI 0.89-0.98), respectively. The r between PDFF values and ATI values was 0.49 (95% CI 0.31-0.63; P < 0.001) for patients with mild or no steatosis (grade ≤1), and 0.75 (95% CI 0.57-0.86; P < 0.001) for obese patients (body mass index ≥25 kg/m2 ). CONCLUSION ATI values had an excellent diagnostic ability to detect hepatic steatosis.
Collapse
Affiliation(s)
- Toshifumi Tada
- Department of Internal Medicine, Himeji Red Cross Hospital, Himeji, Hyogo, Japan
| | - Takashi Kumada
- Faculty of Nursing, Gifu Kyoritsu University, Ogaki, Gifu, Japan
| | - Hidenori Toyoda
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Gifu, Japan
| | - Shinichiro Nakamura
- Department of Internal Medicine, Himeji Red Cross Hospital, Himeji, Hyogo, Japan
| | - Yusuke Shibata
- Department of Internal Medicine, Himeji Red Cross Hospital, Himeji, Hyogo, Japan
| | - Satoshi Yasuda
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Gifu, Japan
| | - Yutaka Watanuki
- Department of Clinical Laboratory, Himeji Red Cross Hospital, Himeji, Hyogo, Japan
| | - Kazuyuki Tsujii
- Department of Clinical Laboratory, Himeji Red Cross Hospital, Himeji, Hyogo, Japan
| | - Naoya Fukuda
- Department of Radiology Engineering, Himeji Red Cross Hospital, Himeji, Hyogo, Japan
| | - Mamoru Fujioka
- Department of Radiology Engineering, Himeji Red Cross Hospital, Himeji, Hyogo, Japan
| | - Kenji Takeshima
- Department of Clinical Research, Ogaki Municipal Hospital, Ogaki, Gifu, Japan
| | - Fumihiko Niwa
- Department of Clinical Research, Ogaki Municipal Hospital, Ogaki, Gifu, Japan
| | - Sadanobu Ogawa
- Department of Clinical Research, Ogaki Municipal Hospital, Ogaki, Gifu, Japan
| | | | - Saki Kataoka
- Department of Clinical Research, Ogaki Municipal Hospital, Ogaki, Gifu, Japan
| | - Hironori Ichikawa
- Department of Clinical Research, Ogaki Municipal Hospital, Ogaki, Gifu, Japan
| | - Hiroko Iijima
- Ultrasound Imaging Center, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| |
Collapse
|
29
|
Yoneda M, Honda Y, Nogami A, Imajo K, Nakajima A. Advances in ultrasound elastography for nonalcoholic fatty liver disease. J Med Ultrason (2001) 2020; 47:521-533. [PMID: 32748075 DOI: 10.1007/s10396-020-01040-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022]
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) has increased rapidly worldwide, making NAFLD/NASH an important global health problem from both a medical and socioeconomic standpoint. NAFLD is also regarded as a liver component of metabolic syndrome and is reported to be associated with the risk factors for metabolic syndrome. It has been suggested that NAFLD/NASH be recognized both as a liver-specific disease and as an early mediator of systemic diseases. Liver biopsy is recommended as the gold standard method for the diagnosis of NASH and for the staging of liver fibrosis in patients with NAFLD. However, because of its high cost, high risk, and high weightage as a healthcare resource, invasive liver biopsy is a poorly suited diagnostic test for such a highly prevalent condition. Therefore, the development of reliable noninvasive methods for the assessment of liver fibrosis has been sought to estimate the risk of progression of NASH to cirrhosis, estimate the risk of cardiovascular events, aid in the surveillance for HCC, and guide therapy in patients with NAFLD/NASH. In this review, we highlight the principles and recent advances in ultrasound elastography techniques (Real-time Tissue Elastography®, vibration-controlled transient elastography, point shear wave elastography, and two-dimensional shear wave elastography) used to evaluate the liver fibrosis stage and steatosis grade in patients with NAFLD.
Collapse
Affiliation(s)
- Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Hospital, 3-9 Fukuura, Kanazawaku, 3-9 Fukuura, Kanazawaku, Yokohama, 236-0004, Japan
| | - Yasushi Honda
- Department of Gastroenterology and Hepatology, Yokohama City University Hospital, 3-9 Fukuura, Kanazawaku, 3-9 Fukuura, Kanazawaku, Yokohama, 236-0004, Japan
| | - Asako Nogami
- Department of Gastroenterology and Hepatology, Yokohama City University Hospital, 3-9 Fukuura, Kanazawaku, 3-9 Fukuura, Kanazawaku, Yokohama, 236-0004, Japan
| | - Kento Imajo
- Department of Gastroenterology and Hepatology, Yokohama City University Hospital, 3-9 Fukuura, Kanazawaku, 3-9 Fukuura, Kanazawaku, Yokohama, 236-0004, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Hospital, 3-9 Fukuura, Kanazawaku, 3-9 Fukuura, Kanazawaku, Yokohama, 236-0004, Japan.
| |
Collapse
|
30
|
Jeon SK, Joo I, Kim SY, Jang JK, Park J, Park HS, Lee ES, Lee JM. Quantitative ultrasound radiofrequency data analysis for the assessment of hepatic steatosis using the controlled attenuation parameter as a reference standard. Ultrasonography 2020; 40:136-146. [PMID: 32654442 PMCID: PMC7758108 DOI: 10.14366/usg.20042] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/09/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose This study was aimed to investigate the value of quantitative ultrasound (US) parameters from radiofrequency (RF) data analysis for assessing hepatic steatosis, using controlled attenuation parameter (CAP)-based steatosis grades as the reference standard. Methods We analyzed 243 participants with both B-mode liver US with RF data acquisition and CAP measurements. On B-mode US images, hepatic steatosis was visually scored (0/1/2/3, none/mild/moderate/severe), and the hepatorenal index (HRI) was calculated. From the RF data analysis, the tissue scatter-distribution imaging parameter (TSI-p) and tissue attenuation imaging parameter (TAI-p) of the liver parenchyma were measured. US parameters were correlated with CAP-based steatosis grades (S0/1/2/3, none/mild/moderate/severe) and their diagnostic performance was evaluated using receiver operating characteristic (ROC) curve analysis. Multivariate linear regression analysis was performed to identify determinants of TSI-p and TAI-p. Results Participants were classified as having S0 (n=152), S1 (n=54), S2 (n=14), and S3 (n=23) on CAP measurements. TSI-p and TAI-p were significantly correlated with steatosis grades (ρ =0.593 and ρ=-0.617, P<0.001 for both). For predicting ≥S1, ≥S2, and S3, the areas under the ROC curves (AUCs) of TSI-p were 0.827/0.914/0.917; TAI-p, 0.844/0.914/0.909; visual scores, 0.659/0.778/0.794; and HRI, 0.629/0.751/0.759, respectively. TSI-p and TAI-p had significantly higher AUCs than did visual scores or HRI for ≥S1 or ≥S2 (P≤0.003). In the multivariate analysis, the transient elastography-based fibrosis grade (P=0.034) and steatosis grade (P<0.001) were independent determinants of TSI-p, while steatosis grade (P<0.001) was an independent determinant of TAI-p. Conclusion TSI-p and TAI-p derived from US RF data may be useful for detecting hepatic steatosis and assessing its severity.
Collapse
Affiliation(s)
- Sun Kyung Jeon
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ijin Joo
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - So Yeon Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jong Keon Jang
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Juil Park
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hee Sun Park
- Department of Radiology, Konkuk University School of Medicine, Seoul, Korea
| | - Eun Sun Lee
- Department of Radiology, ChungAng University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|