1
|
Cheng M, Xin Q, Ma S, Ge M, Wang F, Yan X, Jiang B. Advances in the Theranostics of Oesophageal Squamous Carcinoma. ADVANCED THERAPEUTICS 2023; 6. [DOI: 10.1002/adtp.202200251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Indexed: 01/04/2025]
Abstract
AbstractOesophageal squamous carcinoma (ESCC) is one of the most lethal human malignancies, and it is a more aggressive form of oesophageal cancer (EC) that comprises over 90% of all EC cases in China compared with oesophageal adenocarcinoma (EAC). The high mortality of ESCC is attributed to the late‐stage diagnosis, chemoradiotherapy resistance, and lack of appropriate therapeutic targets and corresponding therapeutic formulations. Recently, emerging clinical and translational investigations have involved genome analyses, diagnostic biomarkers, and targeted therapy for ESCC, and these studies provide a new horizon for improving the clinical outcomes of patients with ESCC. Here, the latest research advances in the theranostics of ESCC are reviewed and the unique features of ESCC (including differences from EAC, genomic alterations, and microbe infections), tissue and circulating biomarkers, chemoradiotherapy resistance, clinical targeted therapy for ESCC, identification of novel therapeutic targets, and designation of nanotherapeutic systems for ESCC are particularly focused on. Finally, the perspectives for future clinical and translational theranostic research of ESCC are discussed and the obstacles that must be overcome in ESCC theranostics are described.
Collapse
Affiliation(s)
- Miaomiao Cheng
- Nanozyme Medical Center School of Basic Medical Sciences Zhengzhou University Zhengzhou 450001 China
| | - Qi Xin
- Nanozyme Medical Center School of Basic Medical Sciences Zhengzhou University Zhengzhou 450001 China
| | - Saiyu Ma
- Nanozyme Medical Center School of Basic Medical Sciences Zhengzhou University Zhengzhou 450001 China
| | - Mengyue Ge
- Nanozyme Medical Center School of Basic Medical Sciences Zhengzhou University Zhengzhou 450001 China
| | - Feng Wang
- Oncology Department The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450000 China
| | - Xiyun Yan
- Nanozyme Medical Center School of Basic Medical Sciences Zhengzhou University Zhengzhou 450001 China
- State Key Laboratory of Esophageal Cancer Prevention &Treatment Zhengzhou Henan 450001 China
- CAS Engineering Laboratory for Nanozyme Key Laboratory of Protein and Peptide Pharmaceuticals Institute of Biophysics Chinese Academy of Sciences Beijing 100101 China
| | - Bing Jiang
- Nanozyme Medical Center School of Basic Medical Sciences Zhengzhou University Zhengzhou 450001 China
- State Key Laboratory of Esophageal Cancer Prevention &Treatment Zhengzhou Henan 450001 China
| |
Collapse
|
2
|
Săsăran MO, Bănescu C. Role of salivary miRNAs in the diagnosis of gastrointestinal disorders: a mini-review of available evidence. Front Genet 2023; 14:1228482. [PMID: 37456668 PMCID: PMC10346860 DOI: 10.3389/fgene.2023.1228482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
MiRNAs are short, non-coding RNA molecules, which are involved in the regulation of gene expression and which play an important role in various biological processes, including inflammation and cell cycle regulation. The possibility of detecting their extracellular expression, within body fluids, represented the main background for their potential use as non-invasive biomarkers of various diseases. Salivary miRNAs particularly gained interest recently due to the facile collection of stimulated/unstimulated saliva and their stability among healthy subjects. Furthermore, miRNAs seem to represent biomarker candidates of gastrointestinal disorders, with miRNA-based therapeutics showing great potential in those conditions. This review aimed to highlight available evidence on the role of salivary miRNAs in different gastrointestinal conditions. Most salivary-based miRNA studies available in the literature that focused on pathologies of the gastrointestinal tract have so far been conducted on pancreatic cancer patients and delivered reliable results. A few studies also showed the diagnostic utility of salivary miRNAs in conditions such as esophagitis, esophageal cancer, colorectal cancer, or inflammatory bowel disease. Moreover, several authors showed that salivary miRNAs may confidently be used as biomarkers of gastric cancer, but the use of salivary miRNA candidates in gastric inflammation and pre-malignant lesions, essential stages of Correa's cascade, is still put into question. On the other hand, besides miRNAs, other salivary omics have shown biomarker potential in gastro-intestinal conditions. The limited available data suggest that salivary miRNAs may represent reliable biomarker candidates for gastrointestinal conditions. However, their diagnostic potential requires validation through future research, performed on larger cohorts.
Collapse
Affiliation(s)
- Maria Oana Săsăran
- Department of Pediatrics 3, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, Târgu Mureș, Romania
| | - Claudia Bănescu
- Genetics Department, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Targu Mures, Romania
| |
Collapse
|
3
|
Mohammadi E, Aliarab A, Babaei G, Habibi NK, Jafari SM, Mir SM, Memar MY. MicroRNAs in esophageal squamous cell carcinoma: Application in prognosis, diagnosis, and drug delivery. Pathol Res Pract 2022; 240:154196. [PMID: 36356334 DOI: 10.1016/j.prp.2022.154196] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022]
Abstract
MicroRNAs (miRNAs) play a vital role in various cell biology processes, including cancer formation. These small non-coding RNAs could function as diagnostic and prognostic markers. They may involve esophageal squamous cell carcinoma (ESCC) and distinctive miRNA expression profiles; they are also known as therapeutic targets in human diseases. Therefore, in this study, the function of miRNAs was reviewed regarding the prognosis and diagnosis of ESCC. The changes in miRNAs before and after cancer therapy and the effects of miRNAs on chemo-susceptibility patterns were also investigated. MiRNA delivery systems in ESCC were also highlighted, providing a perspective on how these systems can improve miRNA efficiency.
Collapse
Affiliation(s)
- Elahe Mohammadi
- Department of Nutrition, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | - Azadeh Aliarab
- Department of Clinical Biochemistry, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Ghader Babaei
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Nasim Kouhi Habibi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Seyyed Mehdi Jafari
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Seyed Mostafa Mir
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Kahng DH, Kim GH, Park SJ, Kim S, Lee MW, Lee BE, I H. MicroRNA Expression in Plasma of Esophageal Squamous Cell Carcinoma Patients. J Korean Med Sci 2022; 37:e197. [PMID: 35726148 PMCID: PMC9247724 DOI: 10.3346/jkms.2022.37.e197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/16/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Patients with esophageal squamous cell carcinoma (ESCC) have a poor prognosis and there are no effective clinical biomarkers. Recently, stable microRNAs detected in the blood have been suggested as potential biomarkers in various cancers. Therefore, we investigated whether plasma microRNAs could be feasible biomarkers for ESCC. METHODS Peripheral blood samples were obtained from 16 healthy volunteers and 66 ESCC patients before treatment between May 2016 and April 2021. Plasma miR-18b, miR-21, miR-31, and miR-375 expression levels were measured using reverse transcription-quantitative polymerase chain reaction. RESULTS Compared with those in healthy controls, the expression levels of plasma miR-21 were significantly higher (P = 0.022) and those of plasma miR-31 and miR-375 were significantly lower in ESCC patients (both P < 0.001). Plasma miR-18b expression levels increased in ESCC patients, but the difference was not significant (P = 0.164). The sensitivities and specificities of miR-21, miR-31, and miR-375 for differentiating ESCC patients from healthy controls were 87.5% and 61.9%, 87.5% and 98.4%, and 87.5% and 100%, respectively. There was no difference in expression levels of plasma miR-21, miR-31, and miR-375 according to clinicopathological characteristics of sex, age, tumor size and location, histologic grade, and tumor-node-metastasis stage. CONCLUSION Our study demonstrated that plasma miR-21, miR-31, and miR-375 could be potential biomarkers for the diagnosis of ESCC. Particularly, plasma miR-31 and miR-375 showed high sensitivity and specificity for differentiating ESCC patients from healthy controls.
Collapse
Affiliation(s)
- Dong Hwahn Kahng
- Department of Internal Medicine, Pusan National University College of Medicine, Busan, Korea
| | - Gwang Ha Kim
- Department of Internal Medicine, Pusan National University College of Medicine, Busan, Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea.
| | - Su Jin Park
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Sora Kim
- Department of Convergence Medical Sciences, Pusan National University Graduate School of Medicine, Yangsan, Korea
| | - Moon Won Lee
- Department of Internal Medicine, Pusan National University College of Medicine, Busan, Korea
| | - Bong Eun Lee
- Department of Internal Medicine, Pusan National University College of Medicine, Busan, Korea
| | - Hoseok I
- Department of Thoracic Surgery, Pusan National University College of Medicine, Busan, Korea
| |
Collapse
|
5
|
Ji BY, Pan LR, Zhou JR, You ZH, Peng SL. SMMDA: Predicting miRNA-Disease Associations by Incorporating Multiple Similarity Profiles and a Novel Disease Representation. BIOLOGY 2022; 11:biology11050777. [PMID: 35625505 PMCID: PMC9138858 DOI: 10.3390/biology11050777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 12/24/2022]
Abstract
Simple Summary Predicting possible associations between miRNAs and diseases would provide new perspectives on disease diagnosis, pathogenesis, and gene therapy. In this work, considering the limited accessibility, high time consumption and high cost in traditional biological researches, we presented a novel computational method called SMMDA by incorporating multiple similarity profiles and a novel disease rep-resentation to accelerate the identification of potential miRNA-disease associations. SMMDA was intended to be useful for the prediction of associations between miRNAs and diseases, and to be effective for prevention, diagnosis, treatment and prognosis of Human diseases. Abstract Increasing evidence has suggested that microRNAs (miRNAs) are significant in research on human diseases. Predicting possible associations between miRNAs and diseases would provide new perspectives on disease diagnosis, pathogenesis, and gene therapy. However, considering the intrinsic time-consuming and expensive cost of traditional Vitro studies, there is an urgent need for a computational approach that would allow researchers to identify potential associations between miRNAs and diseases for further research. In this paper, we presented a novel computational method called SMMDA to predict potential miRNA-disease associations. In particular, SMMDA first utilized a new disease representation method (MeSHHeading2vec) based on the network embedding algorithm and then fused it with Gaussian interaction profile kernel similarity information of miRNAs and diseases, disease semantic similarity, and miRNA functional similarity. Secondly, SMMDA utilized a deep auto-coder network to transform the original features further to achieve a better feature representation. Finally, the ensemble learning model, XGBoost, was used as the underlying training and prediction method for SMMDA. In the results, SMMDA acquired a mean accuracy of 86.68% with a standard deviation of 0.42% and a mean AUC of 94.07% with a standard deviation of 0.23%, outperforming many previous works. Moreover, we also compared the predictive ability of SMMDA with different classifiers and different feature descriptors. In the case studies of three common Human diseases, the top 50 candidate miRNAs have 47 (esophageal neoplasms), 48 (breast neoplasms), and 48 (colon neoplasms) are successfully verified by two other databases. The experimental results proved that SMMDA has a reliable prediction ability in predicting potential miRNA-disease associations. Therefore, it is anticipated that SMMDA could be an effective tool for biomedical researchers.
Collapse
Affiliation(s)
- Bo-Ya Ji
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410200, China; (B.-Y.J.); (L.-R.P.)
| | - Liang-Rui Pan
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410200, China; (B.-Y.J.); (L.-R.P.)
| | - Ji-Ren Zhou
- College of Computer Science, Northwestern Polytechnic University, Xi’an 710072, China;
| | - Zhu-Hong You
- College of Computer Science, Northwestern Polytechnic University, Xi’an 710072, China;
- Correspondence: (Z.-H.Y.); (S.-L.P.)
| | - Shao-Liang Peng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410200, China; (B.-Y.J.); (L.-R.P.)
- Correspondence: (Z.-H.Y.); (S.-L.P.)
| |
Collapse
|
6
|
Cui D, Cheung ALM. Roles of microRNAs in tumorigenesis and metastasis of esophageal squamous cell carcinoma. World J Clin Oncol 2021; 12:609-622. [PMID: 34513596 PMCID: PMC8394161 DOI: 10.5306/wjco.v12.i8.609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/11/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the major subtype of esophageal cancer that is prevalent in Eastern Asia. Despite recent advances in therapy, the outcome of ESCC patients is still dismal. MicroRNAs (miRNAs) are non-coding RNAs which can negatively modulate gene expression at the post-transcriptional level. The involvement and roles of miRNAs have become one of the hot topics of cancer research in recent years. In ESCC, genetic variations within miRNA coding genes were found to have distinct epidemiological significance in different populations. Dysregulated expression of several miRNAs was reported to be associated with therapeutic response. Functionally, miRNAs can act either in an oncogenic or a tumor-suppressive manner during tumorigenesis of ESCC by interrupting signaling pathways associated with cell proliferation, metabolism, cancer stemness, and resistance to chemo- or radiotherapy. Moreover, miRNAs modulate metastasis of ESCC by targeting genes that regulate cytoskeleton dynamics, extracellular matrix remodeling, epithelial-mesenchymal transition, and tumor microenvironment. Most importantly, mounting evidence suggests that inhibiting oncogenic miRNAs or restoring the loss of tumor-suppressive miRNAs has therapeutic potential in the treatment of ESCC. Here, we review and discuss recent studies on the significance, biological functions, and therapeutic potential of miRNAs in tumorigenesis and metastasis of ESCC.
Collapse
Affiliation(s)
- Di Cui
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong 999077, China
| | - Annie LM Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
7
|
Liu X, Wu W, Zhang S, Tan W, Qiu Y, Liao K, Yang K. Effect of miR-630 expression on esophageal cancer cell invasion and migration. J Clin Lab Anal 2021; 35:e23815. [PMID: 34018619 PMCID: PMC8183945 DOI: 10.1002/jcla.23815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
Background Esophageal cancer (EC) is a common malignancy of the digestive tract, with high incidence. The objective of this study was to investigate the effect of miR‐630 expression on esophageal cancer (EC) cell invasion and migration. Methods The study group comprised 58 EC patients admitted to our hospital from April 2014 to 2016, and the control group comprised 60 healthy people visiting the hospital during the same period. miR‐630 levels in the peripheral blood of the two groups were compared, and the diagnostic value of miR‐630 for EC was analyzed. EC cell lines were used to evaluate the influence of miR‐630 expression on EC cell invasion and migration. Results miR‐630 expression was low in EC (p < 0.050). A receiver operating characteristic curve analysis showed that miR‐630 expression had a good diagnostic value for EC (p < 0.050) and was associated with disease course, pathological stage, differentiation degree, tumor metastasis, and patient prognosis and survival (p < 0.05). The ROC curve analysis showed that when cutoff value was 5.38, the diagnostic sensitivity and specificity of miR‐630 for EC were 73.33% and 76.67%, respectively; area under the ROC curve was 0.778 (95%CI 0.695–0.861). Transfection of miR‐630 into EC cells indicated that miR‐630 overexpression can reduce EC cell invasion and migration (p < 0.05). miR‐630 expression is low in EC and has good diagnostic value for EC. Conclusion miR‐630 overexpression can reduce EC cell invasion and migration, showing a possible key role of miR‐630 in EC diagnosis and treatment in the future.
Collapse
Affiliation(s)
- Xi Liu
- The First Hospital Affiliated to AMU, Chongqing, China
| | - Wei Wu
- The First Hospital Affiliated to AMU, Chongqing, China
| | - Shixin Zhang
- The First Hospital Affiliated to AMU, Chongqing, China
| | - Wenfeng Tan
- The First Hospital Affiliated to AMU, Chongqing, China
| | - Yang Qiu
- The First Hospital Affiliated to AMU, Chongqing, China
| | - Kelong Liao
- The First Hospital Affiliated to AMU, Chongqing, China
| | - Kang Yang
- The First Hospital Affiliated to AMU, Chongqing, China
| |
Collapse
|
8
|
Wang Y, Fang Q, Tian L, Yuan Z, Tian L, Zhou Z. Expression and Regulatory Network Analysis of MiR-139-3p, a New Potential Serum Biomarker for Esophageal Squamous Cell Carcinoma Based on Bioinformatics Analysis. Technol Cancer Res Treat 2020; 19:1533033820920967. [PMID: 32356485 PMCID: PMC7225788 DOI: 10.1177/1533033820920967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: In recent studies, microRNAs have been demonstrated as stable detectable biomarkers in blood for cancer. In addition, computer-aided biomarker discovery has now become an attractive paradigm for precision diagnosis. Methods: In this study, we identified and evaluated miR-139-3p as a biomarker for screening of esophageal squamous cell carcinoma using the Cancer Genome Atlas and Gene Expression Omnibus database analyses. We identified possible miR-139-3p target genes through the predicted database and esophageal squamous cell carcinoma upregulated genes from the Cancer Genome Atlas and Gene. Bioinformatics analysis was performed to determine key miR-139-3p targets and pathways associated with esophageal carcinoma. Finally, the expression and expected significance of hub genes were evaluated via the Genotype-Tissue Expression project. Results: MiR-139-3p was significantly downregulated in patients with esophageal squamous cell carcinoma/esophageal carcinoma. In GSE 122497, the area under the curve-receiver operating characteristic value, sensitivity, and specificity for serum miR-139-3p were 0.754, 67.49%, and 80.00%, respectively. The pattern specification process, skeletal system development, and regionalization process were the most enriched interactions in esophageal carcinoma. In addition, Epstein-Barr virus infection, human T-cell leukemia virus 1 infection, and human cytomegalovirus infection were identified as crucial pathways. Six hub genes (CD1A, FCGR2A, ANPEP, CD1B, membrane metalloendopeptidase, and TWIST1) were found, and FCGR2A and membrane metalloendopeptidase were further confirmed by genotype-tissue expression. High expression of membrane metalloendopeptidase correlated with a better overall survival but not with disease-free survival of patients with esophageal carcinoma. Conclusions: MiR-139-3p was identified as a candidate biomarker for predicting esophageal squamous cell carcinoma based on network analysis. MiR-139-3p acted as a tumor suppressor by targeting membrane metalloendopeptidase in esophageal carcinoma, and low expression of membrane metalloendopeptidase may indicate a better prognosis of patients with esophageal carcinoma.
Collapse
Affiliation(s)
- Yonghong Wang
- Department of Clinical Laboratory, Chongqing Qianjiang Central Hospital, Qianjiang District, Chongqing, People's Republic of China
| | - Qimei Fang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Laboratory Medicine, Sun Yat-Sen Memorial Hospital, Guangzhou, People's Republic of China
| | - Liru Tian
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Zhongzhen Yuan
- Department of Pharmacy, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, People's Republic of China
| | - Lizhen Tian
- Department of Clinical Laboratory, Guangzhou Drug Administration Hospital, Guangdong, People's Republic of China
| | - Zhongli Zhou
- Department of Respiratory Medicine, Chongqing Qianjiang Central Hospital, Chongqing, People's Republic of China
| |
Collapse
|
9
|
The YTH Domain Family of N6-Methyladenosine "Readers" in the Diagnosis and Prognosis of Colonic Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9502560. [PMID: 32596399 PMCID: PMC7277069 DOI: 10.1155/2020/9502560] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 01/03/2023]
Abstract
To profile the landscape of methylation N6 adenosine (m6A) RNA regulators in colonic adenocarcinoma (COAD) and to explore potential diagnostic and prognostic biomarkers, we assessed the differential expression patterns of m6A RNA methylation regulators between 418 COAD patients and 41 controls based on profiling from The Cancer Genome Atlas (TCGA) database. We plotted the receiver operating characteristic (ROC) curves and calculated the area under the curve (AUC) values to estimate the discrimination ability. The relationship between the expression of m6A RNA methylation regulators and clinicopathological characteristics was explored. Kaplan-Meier plotter, log-rank test, and Cox regression were used and a nomogram was created to explore the prognostic significance of m6A-related genes in overall survival at the mRNA level. Pathway analysis was performed by gene set enrichment analysis (GSEA) using TCGA dataset, and a coexpression network was built based on the STRING database. We observed that YTHDF1, METTL3, and KIAA1429 were significantly upregulated, while YTHDF3, YTHDC2, METTL14, and ALKBH5 were significantly downregulated in COAD samples compared to normal samples. YTHDF1 had the highest diagnostic value. Low expression of YTHDF3 predicted a poor survival rate in COAD patients. YTHDC2 was related to sex and showed a downward trend as clinical stage increased. Our results indicate that the YT521-B homology (YTH) domain family (“readers”), especially YTHDF1, YTHDF3, and YTHDC2, might play a significant role in the detection, progression, and prognosis of COAD, indicating that they are promising cancer biomarkers.
Collapse
|
10
|
Zhu X, Wang X, Zhao H, Pei T, Kuang L, Wang L. BHCMDA: A New Biased Heat Conduction Based Method for Potential MiRNA-Disease Association Prediction. Front Genet 2020; 11:384. [PMID: 32425979 PMCID: PMC7212362 DOI: 10.3389/fgene.2020.00384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/27/2020] [Indexed: 01/04/2023] Open
Abstract
Recent studies have indicated that microRNAs (miRNAs) are closely related to sundry human sophisticated diseases. According to the surmise that functionally similar miRNAs are more likely associated with phenotypically similar diseases, researchers have proposed a variety of valid computational models through integrating known miRNA-disease associations, disease semantic similarity, miRNA functional similarity, and Gaussian interaction profile kernel similarity to discover the potential miRNA-disease relationships in biomedical researches. Taking account of the limitations of previous computational models, a new computational model based on biased heat conduction for MiRNA-Disease Association prediction (BHCMDA) was proposed in this paper, which can achieve the AUC of 0.8890 in LOOCV (Leave-One-Out Cross Validation) and the mean AUC of 0.9060, 0.8931 under the framework of twofold cross validation, fivefold cross validation, respectively. In addition, BHCMDA was further implemented to the case studies of three vital human cancers, and simulation results illustrated that there were 88% (Esophageal Neoplasms), 92% (Colonic Neoplasms) and 92% (Lymphoma) out of top 50 predicted miRNAs having been confirmed by experimental literatures, separately, which demonstrated the good performance of BHCMDA as well. Thence, BHCMDA would be a useful calculative resource for potential miRNA-disease association prediction.
Collapse
Affiliation(s)
- Xianyou Zhu
- College of Computer Science and Technology, Hengyang Normal University, Hengyang, China
| | - Xuzai Wang
- Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, China
| | - Haochen Zhao
- Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, China
| | - Tingrui Pei
- Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, China
| | - Linai Kuang
- College of Computer Science and Technology, Hengyang Normal University, Hengyang, China.,Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, China
| | - Lei Wang
- Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, China.,College of Computer Engineering & Applied Mathematics, Changsha University, Changsha, China
| |
Collapse
|
11
|
Chu LY, Peng YH, Weng XF, Xie JJ, Xu YW. Blood-based biomarkers for early detection of esophageal squamous cell carcinoma. World J Gastroenterol 2020; 26:1708-1725. [PMID: 32351288 PMCID: PMC7183865 DOI: 10.3748/wjg.v26.i15.1708] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/13/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a common malignant tumor of the digestive system worldwide, especially in China. Due to the lack of effective early detection methods, ESCC patients often present at an advanced stage at the time of diagnosis, which seriously affects the prognosis of patients. At present, early detection of ESCC mainly depends on invasive and expensive endoscopy and histopathological biopsy. Therefore, there is an unmet need for a non-invasive method to detect ESCC in the early stages. With the emergence of a large class of non-invasive diagnostic tools, serum tumor markers have attracted much attention because of their potential for detection of early tumors. Therefore, the identification of serum tumor markers for early detection of ESCC is undoubtedly one of the most effective ways to achieve early diagnosis and treatment of ESCC. This article reviews the recent advances in the discovery of blood-based ESCC biomarkers, and discusses the origins, clinical applications, and technical challenges of clinical validation of various types of biomarkers.
Collapse
Affiliation(s)
- Ling-Yu Chu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yu-Hui Peng
- Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
- Precision Medicine Research Center, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Xue-Fen Weng
- Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
- Precision Medicine Research Center, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Jian-Jun Xie
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong Province, China
- Precision Medicine Research Center, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yi-Wei Xu
- Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
- Precision Medicine Research Center, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
12
|
He R, Wang J, Ye K, Du J, Chen J, Liu W. Reduced miR-203 predicts metastasis and poor survival in esophageal carcinoma. Aging (Albany NY) 2019; 11:12114-12130. [PMID: 31844033 PMCID: PMC6949080 DOI: 10.18632/aging.102543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/19/2019] [Indexed: 12/27/2022]
Abstract
We analyzed data from two non-coding RNA profiling arrays made available by the Gene Expression Omnibus (GEO) and found 17 miRNAs with remarkable differential expression between malignant and normal esophageal tissue. Correlation analysis between expression of these 17 miRNAs and patients’ clinicopathological characteristics showed that miR-203 was down-regulated in esophageal carcinoma (EC) tissues and was significantly associated with lymph node metastasis and poor overall survival. Overexpression of miR-203 significantly attenuated cellular proliferation, migration and invasion by EC cells in culture. Additionally, gene expression profiles and bioinformatics analysis revealed KIF5C to be a direct target of miR-203, and KIF5C overexpression partially counteracted the tumor inhibitory effects of miR-203 on EC cells. We also observed that miR-203, reduced KIFC5 protein levels, promoted cytoplasmic accumulation of Axin2, and reversed the invasive phenotype of EC cells. Taken together, these data demonstrate that miR-203 is a tumor suppressor in EC cells and its expression level could potentially be used as a prognostic indicator for EC patient outcomes.
Collapse
Affiliation(s)
- Rongqi He
- First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, P.R. China
| | - Jintian Wang
- Department of Oncology Surgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, P.R. China
| | - Kai Ye
- Department of Oncology Surgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, P.R. China
| | - Jiabin Du
- Department of Oncology Surgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, P.R. China
| | - Junxing Chen
- Department of Oncology Surgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, P.R. China
| | - Weinan Liu
- Department of Oncology Surgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, P.R. China
| |
Collapse
|
13
|
Guan NN, Wang CC, Zhang L, Huang L, Li JQ, Piao X. In silico prediction of potential miRNA-disease association using an integrative bioinformatics approach based on kernel fusion. J Cell Mol Med 2019; 24:573-587. [PMID: 31747722 PMCID: PMC6933403 DOI: 10.1111/jcmm.14765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/13/2019] [Accepted: 09/20/2019] [Indexed: 12/18/2022] Open
Abstract
Accumulating experimental evidence has demonstrated that microRNAs (miRNAs) have a huge impact on numerous critical biological processes and they are associated with different complex human diseases. Nevertheless, the task to predict potential miRNAs related to diseases remains difficult. In this paper, we developed a Kernel Fusion-based Regularized Least Squares for MiRNA-Disease Association prediction model (KFRLSMDA), which applied kernel fusion technique to fuse similarity matrices and then utilized regularized least squares to predict potential miRNA-disease associations. To prove the effectiveness of KFRLSMDA, we adopted leave-one-out cross-validation (LOOCV) and 5-fold cross-validation and then compared KFRLSMDA with 10 previous computational models (MaxFlow, MiRAI, MIDP, RKNNMDA, MCMDA, HGIMDA, RLSMDA, HDMP, WBSMDA and RWRMDA). Outperforming other models, KFRLSMDA achieved AUCs of 0.9246 in global LOOCV, 0.8243 in local LOOCV and average AUC of 0.9175 ± 0.0008 in 5-fold cross-validation. In addition, respectively, 96%, 100% and 90% of the top 50 potential miRNAs for breast neoplasms, colon neoplasms and oesophageal neoplasms were confirmed by experimental discoveries. We also predicted potential miRNAs related to hepatocellular cancer by removing all known related miRNAs of this cancer and 98% of the top 50 potential miRNAs were verified. Furthermore, we predicted potential miRNAs related to lymphoma using the data set in the old version of the HMDD database and 80% of the top 50 potential miRNAs were confirmed. Therefore, it can be concluded that KFRLSMDA has reliable prediction performance.
Collapse
Affiliation(s)
- Na-Na Guan
- College of Big Data Statistics, Guizhou University of Finance and Economics, Guiyang, China.,College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Chun-Chun Wang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Li Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Li Huang
- Academy of Arts and Design, Tsinghua University, Beijing, China.,The Future Laboratory, Tsinghua University, Beijing, China
| | - Jian-Qiang Li
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Xue Piao
- School of Medical Informatics, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
14
|
Li CY, Zhang WW, Xiang JL, Wang XH, Li J, Wang JL. Identification of microRNAs as novel biomarkers for esophageal squamous cell carcinoma: a study based on The Cancer Genome Atlas (TCGA) and bioinformatics. Chin Med J (Engl) 2019; 132:2213-2222. [PMID: 31490264 PMCID: PMC6797152 DOI: 10.1097/cm9.0000000000000427] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) have played important roles in the regulation of gene expression in many cancers, but their roles in esophageal squamous cell carcinoma (ESCC) are still unclear. The aim of this study was to determine the potential ESCC-specific key miRNAs from a large sample dataset in The Cancer Genome Atlas (TCGA). METHODS Integrative bioinformatics analysis was used to identify key ESCC-specific miRNAs related to the ESCC patients' tumor histological grade and lymphatic metastasis from TCGA. Next, these key miRNA potential gene regulatory functions and relationships with ESCC patients' clinical characteristics and overall survival were analyzed. Finally, three key miRNAs were selected randomly and quantificational real-time polymerase chain reaction (qRT-PCR) was used to validate in 51 newly diagnosed ESCC patients' tissues samples (collected from Nov. 2017 to Feb. 2019, in Wuwei, China) whether the bioinformatics analyses results were reliable and valid. Two-tailed Student's t test, Pearson Chi-squared test and Kaplan-Meier survival analysis were used in this study. RESULTS Thirty-five ESCC-specific miRNAs from TCGA database were investigated (fold-change > 2.0, P < 0.05), and 28 participated in the miRNAs-mRNAs co-expression network construction, while 17 were related with ESCC patients' tumor histological grade, TNM stage, and lymphatic metastasis (P < 0.05). Meanwhile, six miRNAs (including miR-200b-3p, miR-31-5p, miR-15b-5p, miR-141-3p, miR-135b-5p, and miR-195-5p) were correlated with overall survival of ESCC patients (log-rank, P < 0.05). MiR-135b-5p, miR-15b-5p, and miR-195-5p were selected for verification of the expression levels in 51 ESCC patients' tissue samples by using qRT-PCR. We found that the fold-changes between qRT-PCR and TCGA were completely consistent. The results also suggested that miR-135b-5p, miR-15b-5p, and miR-195-5p were significantly correlated with tumor differentiation degrees (P < 0.05), miR-195-5p was significantly correlated with tumor TNM stage (P < 0.05), and miR-135b-5p was significantly correlated with lymph-node metastasis (P < 0.05). MiR-135b-5p, miR-15b-5p, and miR-195-5p expression levels, ESCC patient clinical features association analysis results and the aforementioned TCGA bioinformatics analyses were similar. CONCLUSION This study identified key ESCC-related miRNAs. The key miRNAs are worthy of further investigation as potential novel biomarkers for diagnosis, classification, and prognosis of ESCC.
Collapse
Affiliation(s)
- Cheng-Yun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Wen-Wen Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ji-Lian Xiang
- Department of Gastroenterology, Third People's Hospital of Gansu Province, Lanzhou, Gansu 730000, China
| | - Xing-Hua Wang
- Department of Gastrointestinal Surgery, Gansu Wuwei Tumor Hospital, Wuwei, Gansu 733000, China
| | - Jin Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jun-Ling Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
15
|
Integrating random walk and binary regression to identify novel miRNA-disease association. BMC Bioinformatics 2019; 20:59. [PMID: 30691413 PMCID: PMC6350368 DOI: 10.1186/s12859-019-2640-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/18/2019] [Indexed: 02/07/2023] Open
Abstract
Background In the last few decades, cumulative experimental researches have witnessed and verified the important roles of microRNAs (miRNAs) in the development of human complex diseases. Benefitting from the rapid growth both in the availability of miRNA-related data and the development of various analysis methodologies, up until recently, some computational models have been developed to predict human disease related miRNAs, efficiently and quickly. Results In this work, we proposed a computational model of Random Walk and Binary Regression-based MiRNA-Disease Association prediction (RWBRMDA). RWBRMDA extracted features for each miRNA from random walk with restart on the integrated miRNA similarity network for binary logistic regression to predict potential miRNA-disease associations. RWBRMDA obtained AUC of 0.8076 in the leave-one-out cross validation. Additionally, we carried out three different patterns of case studies on four human complex diseases. Specifically, Esophageal cancer and Prostate cancer were conducted as one kind of case study based on known miRNA-disease associations in HMDD v2.0 database. Out of the top 50 predicted miRNAs, 94 and 90% were respectively confirmed by recent experimental reports. To simulate new disease without known related miRNAs, the information of known Breast cancer related miRNAs was removed. As a result, 98% of the top 50 predicted miRNAs for Breast cancer were confirmed. Lymphoma, the verified ratio of which was 88%, was used to assess the prediction robustness of RWBRMDA based on the association records in HMDD v1.0 database. Conclusions We anticipated that RWBRMDA could benefit the future experimental investigations about the relation between human disease and miRNAs by generating promising and testable top-ranked miRNAs, and significantly reducing the effort and cost of identification works. Electronic supplementary material The online version of this article (10.1186/s12859-019-2640-9) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Xie B, Lin J, Sui K, Huang Z, Chen Z, Hang W. Differential diagnosis of multielements in cancerous and non-cancerous esophageal tissues. Talanta 2018; 196:585-591. [PMID: 30683409 DOI: 10.1016/j.talanta.2018.12.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/05/2018] [Accepted: 12/21/2018] [Indexed: 12/31/2022]
Abstract
It is known that variations in the concentrations of certain elements in humans may be an indication of cancers. In this work, a method for the quantitative analysis of 22 elements in non-tumor and esophageal squamous cell carcinoma (ESCC) tissues from the same individual is reported. Based on the optimized platform combined with multivariate analysis, diagnostic models of ESCC were established using principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), showing excellent classification of cancerous and non-cancerous group by metallomic profiling. Elemental concentrations of 10 elements (Mn, Se, Cu, Ti, Mg, Fe, Co, Zn, Sr, Ca) showed significant difference (p < 0.001) in tumor and non-tumor tissues, in which Mn, Se, Cu and Ti are the top 4 elements of statistical significance and a shift towards higher concentration levels has also been observed in the tumor samples. These results confirm the considerable potential of elemental studies for biomedical purposes. To our knowledge, previous studies on elemental concentration in esophageal cancer were performed in serum or plasma levels; and this is the first study to evaluate the association of tissue elemental concentrations with ESCC.
Collapse
Affiliation(s)
- Binbin Xie
- Department of Chemistry and the MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, Fujian, China
| | - Jianqing Lin
- Department of Surgical Oncology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, China
| | - Ke Sui
- Department of Chemistry and the MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, Fujian, China
| | - Zhijun Huang
- Department of Surgical Oncology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, China
| | - Zhiyao Chen
- Department of Surgical Oncology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, China.
| | - Wei Hang
- Department of Chemistry and the MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, Fujian, China.
| |
Collapse
|
17
|
Niu YW, Liu H, Wang GH, Yan GY. Maximal entropy random walk on heterogenous network for MIRNA-disease Association prediction. Math Biosci 2018; 306:1-9. [PMID: 30336146 DOI: 10.1016/j.mbs.2018.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/08/2018] [Accepted: 10/13/2018] [Indexed: 12/24/2022]
Abstract
The last few decades have verified the vital roles of microRNAs in the development of human diseases and witnessed the increasing interest in the prediction of potential disease-miRNA associations. Owning to the open access of many miRNA-related databases, up until recently, kinds of feasible in silico models have been proposed. In this work, we developed a computational model of Maximal Entropy Random Walk on heterogenous network for MiRNA-disease Association prediction (MERWMDA). MERWMDA integrated known disease-miRNA association, pair-wise functional relation of miRNAs and pair-wise semantic relation of diseases into a heterogenous network comprised of disease and miRNA nodes full of information. As a kind of widely-applied biased walk process with more randomness, MERW was then implemented on the heterogenous network to reveal potential disease-miRNA associations. Cross validation was further performed to evaluate the performance of MERWMDA. As a result, MERWMDA obtained AUCs of 0.8966 and 0.8491 respectively in the aspect of global and local leave-one-out cross validation. What' more, three different case study strategies on four human complex diseases were conducted to comprehensively assess the quality of the model. Specifically, one kind of case study on Esophageal cancer and Prostate cancer were conducted based on HMDD v2.0 database. 94% and 88% out of the top 50 ranked miRNAs were confirmed by recent literature, respectively. To simulate new disease without known related miRNAs, Lung cancer (confirmed ratio 94%) associated miRNAs were removed for case study. Lymphoma (verified ratio 88%) was adopted to assess the prediction robustness of MERWMDA based on HMDD v1.0 database. We anticipated that MERWMDA could offer valuable candidates for in vitro biomedical experiments in future.
Collapse
Affiliation(s)
- Ya-Wei Niu
- School of Mathematics, Shandong University, Jinan 250100, China
| | - Hua Liu
- School of Mathematics, Shandong University, Jinan 250100, China
| | - Guang-Hui Wang
- School of Mathematics, Shandong University, Jinan 250100, China.
| | - Gui-Ying Yan
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
18
|
Yao C, Liu HN, Wu H, Chen YJ, Li Y, Fang Y, Shen XZ, Liu TT. Diagnostic and Prognostic Value of Circulating MicroRNAs for Esophageal Squamous Cell Carcinoma: a Systematic Review and Meta-analysis. J Cancer 2018; 9:2876-2884. [PMID: 30123356 PMCID: PMC6096380 DOI: 10.7150/jca.25351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 06/11/2018] [Indexed: 01/08/2023] Open
Abstract
Background and Aim: MicroRNAs, dysregulated in the circulation of esophageal squamous cell carcinoma (ESCC) patient, have been assumed to be with great potential in the diagnosis and prognosis of esophageal cancer. We aimed to review previous articles on ESCC. Methods: A search of electronic databases was performed before Nov 12, 2017. We summarized the identification of microRNA imbalance in the blood of ESCC compared with the healthy controls, with the objective to evaluate the efficiency of microRNAs in diagnosing and forecasting ESCC. Results: A total of 35 studies investigating plasma or serum microRNAs were included in the meta-analysis. Based on the consequences of the quality assessment of each study, the articles involved were appropriate for quantitative synthesis. For diagnostic meta-analysis. The overall pooled sensitivity, specificity, and area under the curve of circulating microRNA is 0.794 (95% CI: 0.765 - 0.820), 0.779 (95%CI: 0.746 - 0.808), 0.86 (95%CI: 0.82 - 0.88). The diagnostic value of each microRNA was calculated respectively. For prognostic meta-analysis, the overall pooled hazard ratios of higher microRNA expression in circulation was 1.34 (95% CI: 1.14-1.58), which could significantly predict poorer survival in ESCC. Conclusions: Circulating microRNAs distinguish patients with ESCC from healthy controls with high sensitivity and specificity, compared to other invasive currently used screening methods. Simultaneously, there was prognostic value for the prognosis of ESCC.
Collapse
Affiliation(s)
- Can Yao
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Hai-Ning Liu
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Hao Wu
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Yan-Jie Chen
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Yu Li
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Ying Fang
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Xi-Zhong Shen
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, China.,Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Tao-Tao Liu
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, China
| |
Collapse
|
19
|
Zhang L, Dong B, Ren P, Ye H, Shi J, Qin J, Wang K, Wang P, Zhang J. Circulating plasma microRNAs in the detection of esophageal squamous cell carcinoma. Oncol Lett 2018; 16:3303-3318. [PMID: 30127929 DOI: 10.3892/ol.2018.8995] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 11/02/2017] [Indexed: 12/13/2022] Open
Abstract
Circulating microRNAs (miRNAs/miRs) have been reported as diagnostic biomarkers for esophageal cancer (EC) diagnosis. However, contrasting results have been achieved in different studies. In the present study, a meta-analysis was performed, based on the systematic search of PubMed and Web of Science, to evaluate the diagnostic value of circulating miRNAs in the peripheral blood in EC. The top 5 most-studied miRNAs were selected for confirmation by reverse transcription quantitative-polymerase chain reaction using the blood plasma of 125 patients with esophageal squamous cell carcinoma (ESCC) and 125 healthy individuals from Henan, China. A total of 45 studies from 22 articles, regarding 33 miRNAs were considered in the meta-analysis. The pooled sensitivity and specificity were both 0.79 (95% confidence interval, 0.76-0.82 for both). Among the 5 miRNAs considered (miR-21, miR-223, miR-375, miR-25 and miR-100), miR-21 and miR-223 were significantly overexpressed whereas miR-375 expression was reduced in patients with ESCC compared with healthy individuals (all P<0.001). The areas under the curves (AUCs) were 0.80, 0.73, and 0.69 for miR-21, miR-223, and miR-375, respectively. The AUCs increased when discriminating between patients with early ESCC in stage 0-I and the non-invasive carcinoma stage Tis-T1 stage from controls. Thus, it was concluded that plasma miR-21, miR-223 and miR-375 may serve as non-invasive diagnostic biomarkers in patients with ESCC, especially early ESCC in stages 0-I and Tis-T1.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Bing Dong
- Department of Molecular Pathology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450008, P.R. China
| | - Pengfei Ren
- Department of Molecular Pathology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450008, P.R. China
| | - Hua Ye
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Jianxiang Shi
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Jiejie Qin
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Kaijuan Wang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Peng Wang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Jianying Zhang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China.,Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
20
|
Hou X, Wen J, Ren Z, Zhang G. Non-coding RNAs: new biomarkers and therapeutic targets for esophageal cancer. Oncotarget 2018; 8:43571-43578. [PMID: 28388588 PMCID: PMC5522170 DOI: 10.18632/oncotarget.16721] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/27/2017] [Indexed: 02/07/2023] Open
Abstract
Esophageal cancer is one of the most common gastrointestinal malignant diseases and there is still no effective treatment. The incidence of esophageal cancer in the world is relatively high and on the increase year by year. Thus, the elaboration on the carcinogenesis of esophageal cancer and the identification of new biomarkers and therapeutic targets is quite beneficial to optimizing the current therapeutic regimen for treating such deadly disease. More and more evidence has shown that non-coding RNAs play an important role in the development and progression of multiple human cancers, including esophageal cancer. microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two functional kinds of non-coding RNAs that have been well investigated. They exert tumor suppressive or promoting effect by specifically regulating the expression of certain downstream target genes, which is tumor specific. It is also proved that miRNAs and lncRNAs level in tissue and plasma from esophageal cancer patients are closely correlated with the survival and disease progression, which could be used as a prognostic factor and therapeutic target for esophageal cancer.
Collapse
Affiliation(s)
- Xiaobin Hou
- Department of Thoracic Surgery, PLA General Hospital, Beijing, China
| | - Jiaxin Wen
- Department of Thoracic Surgery, PLA General Hospital, Beijing, China
| | - Zhipeng Ren
- Department of Thoracic Surgery, PLA General Hospital, Beijing, China
| | | |
Collapse
|
21
|
Identification of molecular targets for esophageal carcinoma diagnosis using miRNA-seq and RNA-seq data from The Cancer Genome Atlas: a study of 187 cases. Oncotarget 2018; 8:35681-35699. [PMID: 28415685 PMCID: PMC5482608 DOI: 10.18632/oncotarget.16051] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/28/2017] [Indexed: 12/14/2022] Open
Abstract
Esophageal carcinoma (ESCA) is one of the most common malignancies worldwide, and its pathogenesis is complex. In this study, we identified differentially expressed miRNAs (DEMs) and genes (DEGs) of ESCA from The Cancer Genome Atlas (TCGA) database. The diagnostic values of DEMs were determined by receiver operating characteristic (ROC) analyses and validated based on data from Gene Expression Omnibus (GEO). The top five DEMs with the best diagnostic values were selected, and their potential targets were predicted by various in silico methods. These target genes were then identified among the DEGs from TCGA. Furthermore, the overlapping genes were subjected to protein-protein interaction (PPI) analysis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The miRNA-transcription factor (TF) regulatory relations were determined using CircuitsDB and TransmiR. Finally, the regulatory networks of miRNA-TF and miRNA-gene were constructed and analyzed. A total of 136 DEMs and 3541 DEGs were identified in ESCA. The top five DEMs with the highest area under the receiver operating characteristic curve (AUC) values were miRNA-93 (0.953), miRNA-21 (0.928), miRNA-4746 (0.915), miRNA-196a-1 (0.906) and miRNA-196a-2 (0.906). The combined AUC of these five DEMs was 0.985. The KEGG analysis with 349 overlapping genes showed that the calcium signaling pathway and the neuroactive ligand-receptor interaction were the most relevant pathways. The regulatory networks of miRNA-TF and miRNA-gene, including 38 miRNA-TF and 560 miRNA-gene pairs, were successfully established. Our findings may provide new insights into the molecular mechanisms of ESCA pathogenesis. Future research will aim to explore the role of novel miRNAs in the pathogenesis and improve the early diagnosis of ESCA.
Collapse
|
22
|
A six-microRNA signature in plasma was identified as a potential biomarker in diagnosis of esophageal squamous cell carcinoma. Oncotarget 2018; 8:34468-34480. [PMID: 28380431 PMCID: PMC5470983 DOI: 10.18632/oncotarget.16519] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/15/2017] [Indexed: 12/22/2022] Open
Abstract
The differential expression of microRNAs (miRNAs) in plasma of esophageal squamous cell carcinoma (ESCC) patients may serve as a diagnostic biomarker. A four-stage study was conducted to identify plasma miRNAs with potential in detecting ESCC. Exiqon panels (2 ESCC pools vs. 1 normal control (NC) pool) were applied in the screening phase to obtain miRNA profiles. The identified miRNAs were further evaluated through training (36 ESCC VS. 42 NCs) and testing stages (101 ESCC VS. 113 NCs) with qRT-PCR assays. A six-miRNA signature including up-regulated miR-106a, miR-18a, miR-20b, miR-486-5p, miR-584 and down-regulated miR-223-3p in ESCC was identified. The signature could accurately discriminate ESCC patients from NCs with areas under the receiver operating characteristic curve of 0.935, 0.959 and 0.966 for the training, testing and the additional validation stage (41 ESCC VS. 50 NCs), respectively. MiR-106a and miR-584 were significantly up-regulated in tumor tissues with qRT-PCR assays. And miR-584 was also up-regulated in ESCC tissues from TCGA database. In addition, exosomal miR-223-3p and miR-584 were consistently dysregulated with those in plasma and could also act as biomarkers in diagnosis of ESCC. In conclusion, we identified a six-miRNA signature in plasma which could act as a non-invasive biomarker in detection of ESCC.
Collapse
|
23
|
Chen X, Yan CC, Zhang X, You ZH, Huang YA, Yan GY. HGIMDA: Heterogeneous graph inference for miRNA-disease association prediction. Oncotarget 2018; 7:65257-65269. [PMID: 27533456 PMCID: PMC5323153 DOI: 10.18632/oncotarget.11251] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/28/2016] [Indexed: 12/20/2022] Open
Abstract
Recently, microRNAs (miRNAs) have drawn more and more attentions because accumulating experimental studies have indicated miRNA could play critical roles in multiple biological processes as well as the development and progression of human complex diseases. Using the huge number of known heterogeneous biological datasets to predict potential associations between miRNAs and diseases is an important topic in the field of biology, medicine, and bioinformatics. In this study, considering the limitations in the previous computational methods, we developed the computational model of Heterogeneous Graph Inference for MiRNA-Disease Association prediction (HGIMDA) to uncover potential miRNA-disease associations by integrating miRNA functional similarity, disease semantic similarity, Gaussian interaction profile kernel similarity, and experimentally verified miRNA-disease associations into a heterogeneous graph. HGIMDA obtained AUCs of 0.8781 and 0.8077 based on global and local leave-one-out cross validation, respectively. Furthermore, HGIMDA was applied to three important human cancers for performance evaluation. As a result, 90% (Colon Neoplasms), 88% (Esophageal Neoplasms) and 88% (Kidney Neoplasms) of top 50 predicted miRNAs are confirmed by recent experiment reports. Furthermore, HGIMDA could be effectively applied to new diseases and new miRNAs without any known associations, which overcome the important limitations of many previous computational models.
Collapse
Affiliation(s)
- Xing Chen
- School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou, China
| | | | - Xu Zhang
- School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai, China
| | - Zhu-Hong You
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China
| | - Yu-An Huang
- Department of Computing, Hong Kong Polytechnic University, Hong Kong, China
| | - Gui-Ying Yan
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Fu L, Peng Q. A deep ensemble model to predict miRNA-disease association. Sci Rep 2017; 7:14482. [PMID: 29101378 PMCID: PMC5670180 DOI: 10.1038/s41598-017-15235-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/23/2017] [Indexed: 02/08/2023] Open
Abstract
Cumulative evidence from biological experiments has confirmed that microRNAs (miRNAs) are related to many types of human diseases through different biological processes. It is anticipated that precise miRNA-disease association prediction could not only help infer potential disease-related miRNA but also boost human diagnosis and disease prevention. Considering the limitations of previous computational models, a more effective computational model needs to be implemented to predict miRNA-disease associations. In this work, we first constructed a human miRNA-miRNA similarity network utilizing miRNA-miRNA functional similarity data and heterogeneous miRNA Gaussian interaction profile kernel similarities based on the assumption that similar miRNAs with similar functions tend to be associated with similar diseases, and vice versa. Then, we constructed disease-disease similarity using disease semantic information and heterogeneous disease-related interaction data. We proposed a deep ensemble model called DeepMDA that extracts high-level features from similarity information using stacked autoencoders and then predicts miRNA-disease associations by adopting a 3-layer neural network. In addition to five-fold cross-validation, we also proposed another cross-validation method to evaluate the performance of the model. The results show that the proposed model is superior to previous methods with high robustness.
Collapse
Affiliation(s)
- Laiyi Fu
- Systems Engineering Institute, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shannxi, 710049, China
| | - Qinke Peng
- Systems Engineering Institute, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shannxi, 710049, China.
| |
Collapse
|
25
|
Meta-analysis of microRNAs as potential biomarkers for detecting esophageal carcinoma in Asian populations. Int J Biol Markers 2017; 32:e375-e383. [PMID: 28862713 DOI: 10.5301/ijbm.5000296] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND: An Increasing number of studies in the literature have shown that microRNAs (miRNAs) can be used as early diagnostic markers for esophageal carcinoma (EC), but their conclusions remain controversial. Hence, we performed this meta-analysis to evaluate the diagnostic accuracy of using miRNAs in EC and to provide an experimental basis for early diagnosis of the disease. METHODS: This meta-analysis included 39 Asian studies from 18 articles, which covered 3,708 EC patients and 2,689 healthy controls. We used a bivariate random-effects model, the chi-square test and the I² test to assess sensitivity and heterogeneity. RESULTS: Pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio and diagnostic odds ratio of miRNAs for diagnosis of EC in Asians reached 0.798, 0.785, 3.705, 0.257 and 14.391, respectively. Additionally, the area under the summary receiver operating characteristic curve was 0.86. Subgroup analysis based on research country (China vs. Japan), sample types (plasma vs. serum) and miRNAs (single vs. multiple; singly reported miRNAs vs. repeatedly reported miRNAs) showed no significant difference in accuracy of diagnosis for each subgroup. CONCLUSIONS: MiRNAs can distinguish EC patients from healthy controls. Blood-based miRNAs have better diagnostic value in detecting EC than saliva-based miRNAs, whereas both serum and plasma are recommended for clinical specimens for miRNA detection.
Collapse
|
26
|
Meng X, Jin-Cheng G, Jue Z, Quan-Fu M, Bin Y, Xu-Feng W. Protein-coding genes, long non-coding RNAs combined with microRNAs as a novel clinical multi-dimension transcriptome signature to predict prognosis in ovarian cancer. Oncotarget 2017; 8:72847-72859. [PMID: 29069830 PMCID: PMC5641173 DOI: 10.18632/oncotarget.20457] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 07/11/2017] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer is prevalent in women which is usually diagnosed at an advanced stage with a high mortality rate. The aim of this study is to investigate protein-coding gene, long non-coding RNA, and microRNA associated with the prognosis of patients with ovarian serous carcinoma by mining data from TCGA (The Cancer Genome Atlas) public database. The clinical data of ovarian serous carcinoma patients was downloaded from TCGA database in September, 2016. The mean age and survival time of 407 patients with ovarian serous carcinoma were 59.71 ± 11.54 years and 32.98 ± 26.66 months. Cox's proportional hazards regression analysis was conducted to analyze genes that were significantly associated with the survival of ovarian serous carcinoma patients in the training group. Using the random survival forest algorithm, Kaplan-Meier and ROC analysis, we kept prognostic genes to construct the multi-dimensional transcriptome signature with max area under ROC curve (AUC) (0.69 in the training group and 0.62 in the test group). The selected signature composed by VAT1L, CALR, LINC01456, RP11-484L8.1, MIR196A1 and MIR148A, separated the training group patients into high-risk or low-risk subgroup with significantly different survival time (median survival: 35.3 months vs. 64.9 months, P < 0.001). The signature was validated in the test group showing similar prognostic values (median survival: 41.6 months in high-risk vs. 57.4 months in low-risk group, P=0.018). Chi-square test and multivariable Cox regression analysis showed that the signature was an independent prognostic factor for patients with ovarian serous carcinoma. Finally, we validated the expression of the genes experimentally.
Collapse
Affiliation(s)
- Xu Meng
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Guo Jin-Cheng
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
| | - Zhang Jue
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Ma Quan-Fu
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Yan Bin
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Wu Xu-Feng
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| |
Collapse
|