1
|
Saaybi SR, Shiau H, Lee G, Orandi BJ, Gutierrez Sanchez LH. Treatment of rapid recurrence of severe steatosis with combined glucagon-like peptide-1 agonist and growth hormone therapy in a pediatric patient transplanted for metabolic dysfunction-associated steatohepatitis cirrhosis in the setting of hypopituitarism. Am J Transplant 2025; 25:1123-1126. [PMID: 39793899 DOI: 10.1016/j.ajt.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/30/2024] [Accepted: 01/04/2025] [Indexed: 01/13/2025]
Abstract
The association between hypopituitarism and metabolic dysfunction-associated steatotic liver disease is increasingly recognized, although data about therapies targeting recurrence posttransplant is limited. An 8-year-old with hypopituitarism-associated metabolic dysfunction-associated steatotic liver disease underwent a liver transplant due to rapid progression of metabolic dysfunction-associated steatohepatitis. Hepatosteatosis recurred within weeks. Her therapeutic plan included a glucagon-like peptide-1 agonist and growth hormone replacement. Her transaminases normalized in 2.5 months, and her macrosteatosis significantly improved on the 1-year surveillance biopsy. This case highlights one of the youngest reported children with hypopituitarism to have undergone transplantation for rapidly progressing metabolic dysfunction-associated steatohepatitis and its recurrence post-operatively. We observed that steatosis improved with growth hormone replacement and glucagon-like peptide-1 agonist therapy. If started early, this combination could help delay recurrence of steatosis post-transplantation. Further research is needed to determine long-term effects and establish protocols.
Collapse
Affiliation(s)
- Stephanie R Saaybi
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| | - Henry Shiau
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Goo Lee
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Babak John Orandi
- Department of Surgery, New York University, New York, New York, USA; Department of Medicine, New York University, New York, New York, USA
| | - Luz Helena Gutierrez Sanchez
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
2
|
Taguchi T, Ito S, Fujishima R, Shimizu N, Hagiwara W, Matoba K, Hirose M, Hayashi A, Takano K, Miyatsuka T. Hypertriglyceridemia and younger age are associated with effectiveness of growth hormone therapy on hepatic steatosis. Endocr J 2025; 72:355-364. [PMID: 39779222 PMCID: PMC11997265 DOI: 10.1507/endocrj.ej24-0481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/16/2024] [Indexed: 01/11/2025] Open
Abstract
Adult growth hormone deficiency (AGHD) is often accompanied with metabolic dysfunction-associated steatotic liver disease (MASLD). Although some studies reported that MASLD is ameliorated by growth hormone replacement therapy (GHRT), the characteristics of AGHD that are associated with an improvement of hepatic steatosis by GHRT remain unknown. We aimed to investigate whether GHRT affects hepatic lipid accumulation as well as biochemical parameters, and investigated the association between these parameters (UMIN000044989). Thirty people with AGHD were recruited, and assigned to either the GHRT group or the non-GHRT group. Serum laboratory data were analyzed before and after GHRT. Hepatic lipid content was evaluated using magnetic resonance imaging-proton density fat fraction (MRI-PDFF). Correlations between MRI-PDFF and other clinical parameters were investigated. Twenty-nine people completed this study (19 in the GHRT group and 10 in the non-GHRT group). In the GHRT group, significant decreases in MRI-PDFF and serum levels of aspartate aminotransferase, alanine aminotransferase, and γ-glutamyl transpeptidase were observed after the treatment. The decrease in MRI-PDFF levels after GHRT significantly correlated with initial MRI-PDFF, triglyceride (TG), lactate dehydrogenase, and ALT levels, and age. Multiple regression analysis demonstrated that younger age and high serum TG levels were independent predictors of a decrease in MRI-PDFF levels. GHRT in people with AGHD significantly reduced lipid accumulation in the liver on MRI, and improved serum liver parameters. Age and serum TG levels were found to be associated with the effectiveness of GHRT.
Collapse
Affiliation(s)
- Tomomi Taguchi
- Department of Diabetes, Endocrinology and Metabolism, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Shiori Ito
- Department of Diabetes, Endocrinology and Metabolism, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Rei Fujishima
- Department of Diabetes, Endocrinology and Metabolism, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Naoya Shimizu
- Department of Diabetes, Endocrinology and Metabolism, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Wataru Hagiwara
- Department of Diabetes, Endocrinology and Metabolism, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Kenta Matoba
- Department of Diabetes, Endocrinology and Metabolism, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Masatoshi Hirose
- Department of Diabetes, Endocrinology and Metabolism, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Akinori Hayashi
- Department of Diabetes, Endocrinology and Metabolism, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Koji Takano
- Department of Diabetes, Endocrinology and Metabolism, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Takeshi Miyatsuka
- Department of Diabetes, Endocrinology and Metabolism, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| |
Collapse
|
3
|
Marginean CM, Pirscoveanu D, Cazacu SM, Popescu MS, Marginean IC, Iacob GA, Popescu M. Non-Alcoholic Fatty Liver Disease, Awareness of a Diagnostic Challenge—A Clinician’s Perspective. GASTROENTEROLOGY INSIGHTS 2024; 15:1028-1053. [DOI: 10.3390/gastroent15040071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the main cause of chronic liver disease globally. NAFLD is a complex pathology, considered to be the hepatic expression of metabolic syndrome (MetS). It is supposed to become the main indication for liver transplantation in the coming years and is estimated to affect 57.5–74.0% of obese people, 22.5% of children and 52.8% of obese children, with 50% of individuals with type 2 diabetes being diagnosed with NAFLD. Recent research has proved that an increase in adipose tissue insulin resistance index is an important marker of liver injury in patients with NAFLD. Despite being the main underlying cause of incidental liver damage and a growing worldwide health problem, NAFLD is mostly under-appreciated. Currently, NAFLD is considered a multifactorial disease, with various factors contributing to its pathogenesis, associated with insulin resistance and diabetes mellitus, but also with cardiovascular, kidney and endocrine disorders (polycystic ovary syndrome, hypothyroidism, growth hormone deficiency). Hepatitis B and hepatitis C, sleep apnea, inflammatory bowel diseases, cystic fibrosis, viral infections, autoimmune liver diseases and malnutrition are some other conditions in which NAFLD can be found. The aim of this review is to emphasize that, from the clinician’s perspective, NAFLD is an actual and valuable key diagnosis factor for multiple conditions; thus, efforts need to be made in order to increase recognition of the disease and its consequences. Although there is no global consensus, physicians should consider screening people who are at risk of NAFLD. A large dissemination of current concepts on NAFLD and an extensive collaboration between physicians, such as gastroenterologists, internists, cardiologists, diabetologists, nutritionists and endocrinologists, is equally needed to ensure we have the knowledge and resources to address this public health challenge.
Collapse
Affiliation(s)
- Cristina Maria Marginean
- Internal Medicine Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Denisa Pirscoveanu
- Neurology Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Sergiu Marian Cazacu
- Research Center of Gastroenterology and Hepatology, Gastroenterology Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Marian Sorin Popescu
- Internal Medicine Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | | | - George Alexandru Iacob
- Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Mihaela Popescu
- Endocrinology Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
4
|
Lonardo A, Weiskirchen R. From Hypothalamic Obesity to Metabolic Dysfunction-Associated Steatotic Liver Disease: Physiology Meets the Clinics via Metabolomics. Metabolites 2024; 14:408. [PMID: 39195504 PMCID: PMC11356647 DOI: 10.3390/metabo14080408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Metabolic health is tightly regulated by neuro-hormonal control, and systemic metabolic dysfunction may arise from altered function of the hypothalamic-anterior pituitary axis (HAPA). Ancient experimental observations of hypothalamic obesity (HO) and liver cirrhosis occurring among animals subjected to hypothalamic injury can now be explained using the more recent concepts of lipotoxicity and metabolic dysfunction-associated steatotic liver disease (MASLD). Lipotoxicity, the range of abnormalities resulting from the harmful effects of fatty acids accumulated in organs outside of adipose tissue, is the common pathogenic factor underlying closely related conditions like hypothalamic syndrome, HO, and MASLD. The hormonal deficits and the array of metabolic and metabolomic disturbances that occur in cases of HO are discussed, along with the cellular and molecular mechanisms that lead, within the MASLD spectrum, from uncomplicated steatotic liver disease to steatohepatitis and cirrhosis. Emphasis is placed on knowledge gaps and how they can be addressed through novel studies. Future investigations should adopt precision medicine approaches by precisely defining the hormonal imbalances and metabolic dysfunctions involved in each individual patient with HO, thus paving the way for tailored management of MASLD that develops in the context of altered HAPA.
Collapse
Affiliation(s)
- Amedeo Lonardo
- Department of Internal Medicine, Azienda Ospedaliero-Universitaria of Modena (-2023), 41126 Modena, Italy
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH), University Hospital Aachen, D-52074 Aachen, Germany;
| |
Collapse
|
5
|
Liu Z, Zhao W, Cao C, Wang Y, Xiao L, Wang X, Jin C, Xiao J. Pituitary stalk interruption syndrome and liver cirrhosis associated with diabetes and an inactivating KCNJ11 gene mutation: a case report and literature review. Front Endocrinol (Lausanne) 2023; 14:1297146. [PMID: 38152125 PMCID: PMC10751576 DOI: 10.3389/fendo.2023.1297146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023] Open
Abstract
Background Pituitary stalk interruption syndrome (PSIS) is a congenital disease commonly found in patients with combined pituitary hormone deficiency (CPHD). Most PSIS patients manifest growth retardation and delayed puberty. We report a rare case of PSIS with tall stature, liver cirrhosis and diabetes, possibly caused by an inactivating KCNJ11 gene mutation. Case presentation A 37-year-old female patient initially presented with liver cirrhosis and diabetes, without any secondary sexual characteristics. Endocrine investigation indicated CPHD. Small anterior pituitary, invisible pituitary stalk and no eutopic posterior lobe hypersignal in the sella turcica viewed in magnetic resonance imaging (MRI) confirmed the diagnosis of PSIS. Despite receiving no growth hormone or sex hormone therapy, she reached a final height of 186 cm. Liver histopathology revealed nonalcoholic fatty cirrhosis. Genetic testing identified a heterozygous p.Arg301Cys mutation in the KCNJ11 gene. Conclusion This is a rare case of PSIS with liver cirrhosis and diabetes associated with an inactivating KCNJ11 gene mutation. It's supposed that early hyperinsulinism caused by the KCNJ11 gene mutation, as well as delayed epiphyseal closure due to estrogen deficiency, contributed to the patient's exceptionally tall stature. Untreated growth hormone deficiency (GHD) resulted in increased visceral fat, leading to nonalcoholic fatty liver disease (NAFLD) and cirrhosis. The decline in β cell function with age, combined with NAFLD, may have played a role in the development of diabetes.
Collapse
|
6
|
Takahashi Y. Nonalcoholic fatty liver disease and adult growth hormone deficiency: An under-recognized association? Best Pract Res Clin Endocrinol Metab 2023; 37:101816. [PMID: 37643935 DOI: 10.1016/j.beem.2023.101816] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Growth hormone (GH) plays an essential role not only in promoting growth in children, but also in many important metabolic processes in adults. One of the major metabolic functions of GH is its stimulatory effects on the liver in generating approximately 80% of circulating insulin-like growth factor 1 (IGF-1). Adult growth hormone deficiency (GHD) is an established clinical entity defined as a defect in endogenous GH secretion that is frequently associated with central obesity, loss of muscle mass, decreased bone mass, and impaired quality of life. Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are conditions that are often under-recognized in adults with GHD, and accordingly some studies have shown that GH and IGF-1 levels are decreased in patients with NAFLD. Furthermore, it has been reported that it can progress to end-stage liver cirrhosis in some adults and children with GHD. Due to their underlying mechanisms of action, GH and IGF-1 can act on hepatocytes, macrophages, and hepatic stellate cells to mitigate progression to steatosis and fibrosis. It is, thus, important to recognize NAFLD/NASH as important complications in adult and childhood GHD. Therefore, careful and thorough evaluation of NAFLD/NASH in adults with GHD and the consideration for GH replacement therapy is crucial in these patients, together with management of other metabolic risk factors, such as obesity and dyslipidemia. This review will focus on recent reports on the role of GH and IGF-1 in the liver and its clinical significance in the regulation of hepatic function.
Collapse
Affiliation(s)
- Yutaka Takahashi
- Department of Diabetes and Endocrinology, Nara Medical University, Japan.
| |
Collapse
|
7
|
Dichtel LE, Corey KE, Haines MS, Chicote ML, Lee H, Kimball A, Colling C, Simon TG, Long MT, Husseini J, Bredella MA, Miller KK. Growth Hormone Administration Improves Nonalcoholic Fatty Liver Disease in Overweight/Obesity: A Randomized Trial. J Clin Endocrinol Metab 2023; 108:e1542-e1550. [PMID: 37379033 PMCID: PMC10655511 DOI: 10.1210/clinem/dgad375] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/05/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
CONTEXT Overweight and obesity are associated with relative growth hormone (GH) deficiency, which has been implicated in the development of nonalcoholic fatty liver disease (NAFLD). NAFLD is a progressive disease without effective treatments. OBJECTIVE We hypothesized that GH administration would reduce hepatic steatosis in individuals with overweight/obesity and NAFLD. METHODS In this 6-month randomized, double-blind, placebo-controlled trial of low-dose GH administration, 53 adults aged 18 to 65 years with BMI ≥25 kg/m2 and NAFLD without diabetes were randomized to daily subcutaneous GH or placebo, targeting insulin-like growth factor 1 (IGF-1) to the upper normal quartile. The primary endpoint was intrahepatic lipid content (IHL) by proton magnetic resonance spectroscopy (1H-MRS) assessed before treatment and at 6 months. RESULTS Subjects were randomly assigned to a treatment group (27 GH; 26 placebo), with 41 completers (20 GH and 21 placebo) at 6 months. Reduction in absolute % IHL by 1H-MRS was significantly greater in the GH vs placebo group (mean ± SD: -5.2 ± 10.5% vs 3.8 ± 6.9%; P = .009), resulting in a net mean treatment effect of -8.9% (95% CI, -14.5 to -3.3%). All side effects were similar between groups, except for non-clinically significant lower extremity edema, which was more frequent in the GH vs placebo group (21% vs 0%, P = .02). There were no study discontinuations due to worsening of glycemic status, and there were no significant differences in change in glycemic measures or insulin resistance between the GH and placebo groups. CONCLUSION GH administration reduces hepatic steatosis in adults with overweight/obesity and NAFLD without worsening glycemic measures. The GH/IGF-1 axis may lead to future therapeutic targets for NAFLD.
Collapse
Affiliation(s)
- Laura E Dichtel
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | - Kathleen E Corey
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | - Melanie S Haines
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | - Mark L Chicote
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hang Lee
- Biostatistics Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | - Allison Kimball
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | - Caitlin Colling
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | - Tracey G Simon
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | - Michelle T Long
- Section of Gastroenterology, Boston Medical Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jad Husseini
- Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | - Miriam A Bredella
- Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | - Karen K Miller
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
8
|
Khan MQ, Hassan S, Lizaola-Mayo BC, Bhat M, Watt KD. Navigating the "specific etiology" steatohepatitis category: Evaluation and management of nonalcoholic/nonmetabolic dysfunction-associated steatohepatitis. Hepatology 2023:01515467-990000000-00637. [PMID: 37939197 DOI: 10.1097/hep.0000000000000674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023]
Affiliation(s)
- Mohammad Qasim Khan
- Department of Internal Medicine, Division of Gastroenterology, University of Western Ontario, London, Ontario, Canada
| | - Sara Hassan
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Mayo Clinic, Rochester, Minnesota, USA
| | - Blanca C Lizaola-Mayo
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Phoenix, Arizona, USA
| | - Mamatha Bhat
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Toronto, Toronto, Ontario, Canada
| | - Kymberly D Watt
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
9
|
Arlien-Søborg MC, Madsen MA, Dal J, Krusenstjerna-Hafstrøm T, Ringgaard S, Skou N, Høgild M, Jørgensen JOL. Ectopic lipid deposition and insulin resistance in patients with GH disorders before and after treatment. Eur J Endocrinol 2023; 188:6984866. [PMID: 36651164 DOI: 10.1093/ejendo/lvac014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Insulin resistance is associated with ectopic lipid deposition. Growth hormone (GH) status also modulates ectopic lipid accumulation, but how this associates with insulin resistance in patients with GH disorders is not well established. DESIGN AND METHODS Twenty-one patients diagnosed with acromegaly and 12 patients with adult GH deficiency (GHD) were studied at diagnosis and after treatment. A reference group of 12 subjects was included. Each study day comprised assessment of body composition with dual-energy X-ray absorptiometry, ectopic lipid deposition in the liver by MR spectroscopy, and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR). RESULTS Disease control of acromegaly decreased lean body mass (LBM) (P < .000) and increased the percentage of total body fat (TBF) (P < .000). GH replacement increased LBM in the GHD patients (P = .007) and decreased the percentage of TBF (P = .010). The intrahepatic lipid (IHL) content increased after disease control in acromegaly (P = .004), whereas IHL did not change significantly after GH replacement in GHD (P = .34). Insulin resistance (HOMA-IR) improved after disease control of acromegaly (P < .000) and remained unaltered after GH replacement in the GHD patients (P = .829). CONCLUSIONS GH status is a significant modulator of body composition and insulin sensitivity.GH excess reduces total fat mass and intrahepatic lipid content together with induction of insulin resistance.The data support the notion that GH-induced insulin resistance is unassociated with hepatic lipid accumulation.
Collapse
Affiliation(s)
- Mai C Arlien-Søborg
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Medical Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Alle Madsen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Jakob Dal
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| | | | - Steffen Ringgaard
- Department of Clinical Medicine, The MR Research Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Nickolaj Skou
- Department of Radiology, Aarhus University Hospital, Aarhus, Denmark
| | - Morten Høgild
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Medical Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Otto Lunde Jørgensen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Medical Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
10
|
Hwang YA, Lee HW, Ahn SH, Lee EJ, Ku CR, Kim SU. Positive association between nonalcoholic fatty liver disease and growth hormone deficiency in patients with nonfunctioning pituitary adenoma. Front Endocrinol (Lausanne) 2023; 13:1057769. [PMID: 36699040 PMCID: PMC9868829 DOI: 10.3389/fendo.2022.1057769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/01/2022] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE Non-alcoholic fatty liver disease (NAFLD) is characterized by growth hormone deficiency (GHd). We investigated the association between NAFLD and GHd in patients with nonfunctioning pituitary adenomas (NFPA). DESIGN AND METHODS We recruited patients with NFPA who underwent transsphenoidal adenectomy between January 2005 and December 2018. Pituitary function was determined by the insulin tolerance test, thyroid hormone assay, and gonadal hormone levels. NAFLD was defined as a hepatic steatosis index greater than 36. RESULTS Among 278 patients (mean age, 44.2 years; 58.6% [n=163] female), 103 (37.0%) had GHd, 139 (50.0%) had hypogonadism, and 75 (27.0%) had NAFLD. The prevalence of NAFLD was significantly higher in patients with GHd than in those without (36.9% vs. 21.1%, p=0.01). Even after adjusting for age, total cholesterol level, gonadal function, and prolactin level, patients with GHd had approximately two-fold higher prevalence of NALFD than those without GHd (adjusted odds ratio [OR]=1.85, 95% confidence interval [CI]=1.05-3.28, p=0.03). Among female patients, the prevalence of NALFD was significantly higher in those with GHd than in those without (adjusted OR=2.39, 95% CI=1.03-5.55, p=0.04); whereas, among male patients, the prevalence of NAFLD was statistically similar between those with and without GHd (p>0.05). In addition, gonadal function did not affect the prevalence of NAFLD in patients with NFPA (29.3% with eugonadism vs. 47.8% with hypogonadism, p=0.14). CONCLUSION Among patients with NFPA, the prevalence of NAFLD was two-fold higher in patients with GHd than that in those without GHd. Thus, screening for NAFLD might be required in NFPA patients with GHd.
Collapse
Affiliation(s)
- Yoon-a Hwang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Pituitary Tumor Center, Severance Hospital, Seoul, Republic of Korea
| | - Hye Won Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Republic of Korea
| | - Sang Hoon Ahn
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Republic of Korea
| | - Eun Jig Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Pituitary Tumor Center, Severance Hospital, Seoul, Republic of Korea
| | - Cheol Ryong Ku
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Pituitary Tumor Center, Severance Hospital, Seoul, Republic of Korea
| | - Seung Up Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Republic of Korea
| |
Collapse
|
11
|
Baumgartner C, Krššák M, Vila G, Krebs M, Wolf P. Ectopic lipid metabolism in anterior pituitary dysfunction. Front Endocrinol (Lausanne) 2023; 14:1075776. [PMID: 36860364 PMCID: PMC9968795 DOI: 10.3389/fendo.2023.1075776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Over the past decades, adapted lifestyle and dietary habits in industrialized countries have led to a progress of obesity and associated metabolic disorders. Concomitant insulin resistance and derangements in lipid metabolism foster the deposition of excess lipids in organs and tissues with limited capacity of physiologic lipid storage. In organs pivotal for systemic metabolic homeostasis, this ectopic lipid content disturbs metabolic action, thereby promotes the progression of metabolic disease, and inherits a risk for cardiometabolic complications. Pituitary hormone syndromes are commonly associated with metabolic diseases. However, the impact on subcutaneous, visceral, and ectopic fat stores between disorders and their underlying hormonal axes is rather different, and the underlying pathophysiological pathways remain largely unknown. Pituitary disorders might influence ectopic lipid deposition indirectly by modulating lipid metabolism and insulin sensitivity, but also directly by organ specific hormonal effects on energy metabolism. In this review, we aim to I) provide information about the impact of pituitary disorders on ectopic fat stores, II) and to present up-to-date knowledge on potential pathophysiological mechanisms of hormone action in ectopic lipid metabolism.
Collapse
|
12
|
Arefhosseini S, Ebrahimi-Mameghani M, Najafipour F, Tutunchi H. Non-alcoholic fatty liver disease across endocrinopathies: Interaction with sex hormones. Front Endocrinol (Lausanne) 2022; 13:1032361. [PMID: 36419770 PMCID: PMC9676462 DOI: 10.3389/fendo.2022.1032361] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as the most frequent chronic liver disease globally. NAFLD is strongly associated with metabolic syndrome and it has been recently suggested that to rename NAFLD as metabolic dysfunction-associated fatty liver disease (MAFLD). NAFLD has been studied in different endocrine axes and accumulating body of clinical and experimental studies have suggested that NAFLD is associated with polycystic ovarian syndrome (PCOS), hypopituitarism, growth hormone deficiency (GHD), hypogonadism and other endocrine disorders. In fact, endocrine dysfunction may be considered as the major contributor for the development, progression, and severity of NAFLD. In the present comprehensive review, we discussed the epidemiological and clinical evidence on the epidemiology, pathophysiology, and management of NAFLD in endocrine disorders, with an emphasis on the effects of sex-specific hormones/conditions as well as molecular basis of NAFLD development in these endocrine diseases.
Collapse
Affiliation(s)
- Sara Arefhosseini
- Student Research Committee, Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrangiz Ebrahimi-Mameghani
- Nutrition Research Center, Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzad Najafipour
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Helda Tutunchi
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Huang Q, Xu H, Wang X, Mao J, Yu B, Zhu Y, Zhang R, Sun B, Zhang J, Ji W, Ma W, Nie M, Wu X. Relationship between growth hormone deficiency and nonalcoholic fatty liver disease in patients with pituitary stalk interruption syndrome. Clin Endocrinol (Oxf) 2022; 97:612-621. [PMID: 35384023 DOI: 10.1111/cen.14732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Pituitary stalk interruption syndrome (PSIS), characterized by thinning or disappearance of the pituitary stalk, hypoplasia of the anterior pituitary, and an ectopic posterior pituitary, can lead to congenital combined pituitary hormone deficiency. There is a high prevalence of various metabolic disorders, including nonalcoholic fatty liver disease (NAFLD), in this population. OBJECTIVE To investigate the characteristics of NAFLD in Chinese adult patients with PSIS and its association with growth hormone deficiency. DESIGN Retrospective cross-sectional study in a tertiary referral center of China. PATIENTS Adult patients with PSIS diagnosed, followed up between September 2019 and August 2021, were consecutively enrolled. MEASUREMENTS Abdominal ultrasonography images were evaluated and noninvasive fibrosis scores were determined to assess the severity of NAFLD. Anthropometric, clinical, and biochemical parameters were compared between patients with and without NAFLD. Logistic regression was performed to assess the independent effects of insulin-like growth factor-1 (IGF-1) on NAFLD. RESULTS A total of 93 patients (77 men, 16 women, mean age: 29.6 ± 7.1 years) were included. The prevalence of NAFLD and advanced fibrosis/cirrhosis was 50.5% and 4.3%, respectively. Insufficient hormone therapy and prominent metabolic disorders, including central obesity, dyslipidemia, insulin resistance, and metabolic syndrome, were more common in the NAFLD (+) group. After adjusting for multiple variables, IGF-1 <-2 standard deviation score (SDS) was found to be associated with an increased prevalence of NAFLD (odds ratio [OR]: 4.92, 95% confidence interval [CI]: 1.21-24.55, p = .035). Per 1 SDS increase in IGF-1 was associated with a 27% lower risk of NAFLD (OR: 0.73, 95% CI: 0.52-0.97, p = .042). CONCLUSION NAFLD is a frequent comorbidity among Chinese adult patients with PSIS and is strongly associated with lower IGF-1 levels. Timely and appropriate hormone replacement, particularly growth hormone may contribute to decreasing the risk of NAFLD in these patients.
Collapse
Affiliation(s)
- Qibin Huang
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission of the People's Republic of China, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongli Xu
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Wang
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission of the People's Republic of China, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangfeng Mao
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission of the People's Republic of China, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bingqing Yu
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission of the People's Republic of China, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiyi Zhu
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission of the People's Republic of China, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission of the People's Republic of China, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bang Sun
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission of the People's Republic of China, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junyi Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission of the People's Republic of China, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wen Ji
- Department of Endocrinology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wanlu Ma
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing, China
| | - Min Nie
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission of the People's Republic of China, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xueyan Wu
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission of the People's Republic of China, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Doycheva I, Erickson D, Watt KD. Growth hormone deficiency and NAFLD: An overlooked and underrecognized link. Hepatol Commun 2022; 6:2227-2237. [PMID: 35765700 PMCID: PMC9426379 DOI: 10.1002/hep4.1953] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/07/2022] [Accepted: 03/13/2022] [Indexed: 11/17/2022] Open
Abstract
Growth hormone and its mediator insulin‐like growth factor‐1 exert their effect on different organs and control various physiologic metabolic processes. Adult growth hormone deficiency (AGHD) presents with one or more components of metabolic syndrome and can be associated with nonalcoholic fatty liver disease (NAFLD). AGHD is present in spectrum of hypothalamic/pituitary disorders as well as cranial radiation of brain tumors and often remains underdiagnosed or untreated due to its nonspecific symptoms, relatively difficult diagnosis in some clinical scenarios, and various barriers to treatment. NAFLD usually develops soon after diagnosis of AGHD and might progress rapidly to nonalcoholic steatohepatitis (NASH) with advanced fibrosis, eventually requiring liver transplantation. A timely initiation of growth hormone replacement therapy might be important, although studies so far have demonstrated controversial results on NAFLD, primarily due to small sample size and different diagnostic methods of NAFLD. Increased awareness of the association between AGHD and NAFLD would facilitate early diagnosis of NAFLD and NASH if present. Therefore, a multidisciplinary approach involving hepatology and endocrinology should become a standard of care for these patients.
Collapse
Affiliation(s)
- Iliana Doycheva
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago, Chicago, Illinois, USA
| | - Dana Erickson
- Division of Endocrinology, Metabolism and Nutrition, Mayo Clinic, Rochester, Minnesota, USA
| | - Kymberly D Watt
- Gastroenterology and Hepatology Department, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
15
|
Dichtel LE, Cordoba-Chacon J, Kineman RD. Growth Hormone and Insulin-Like Growth Factor 1 Regulation of Nonalcoholic Fatty Liver Disease. J Clin Endocrinol Metab 2022; 107:1812-1824. [PMID: 35172328 PMCID: PMC9202731 DOI: 10.1210/clinem/dgac088] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 11/19/2022]
Abstract
Patients with obesity have a high prevalence of nonalcoholic fatty liver disease (NAFLD), representing a spectrum of simple steatosis to nonalcoholic steatohepatitis (NASH), without and with fibrosis. Understanding the etiology of NAFLD is clinically relevant since NAFLD is an independent risk factor for diabetes and cardiovascular disease. In addition, NASH predisposes patients to the development of cirrhosis and hepatocellular carcinoma, and NASH cirrhosis represents the fastest growing indication for liver transplantation in the United States. It is appreciated that multiple factors are involved in the development and progression of NAFLD. Growth hormone (GH) and insulin-like growth factor 1 (IGF1) regulate metabolic, immune, and hepatic stellate cell function, and alterations in the production and function of GH is associated with obesity and NAFLD/NASH. Therefore, this review will focus on the potential role of GH and IGF1 in the regulation of hepatic steatosis, inflammation, and fibrosis.
Collapse
Affiliation(s)
- Laura E Dichtel
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jose Cordoba-Chacon
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | - Rhonda D Kineman
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
- Jesse Brown VA Medical Center, Research and Development Division, Chicago, IL, USA
| |
Collapse
|
16
|
Kang SJ, Kwon A, Jung MK, Chae HW, Kim S, Koh H, Shin HJ, Kim HS. High Prevalence of Nonalcoholic Fatty Liver Disease Among Adolescents and Young Adults With Hypopituitarism due to Growth Hormone Deficiency. Endocr Pract 2021; 27:1149-1155. [PMID: 34126247 DOI: 10.1016/j.eprac.2021.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/12/2021] [Accepted: 06/07/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To investigate the prevalence of nonalcoholic fatty liver disease (NAFLD) in adolescents and young adults with hypopituitarism and to examine the associations of growth hormone (GH) deficiency with the occurrence of NAFLD. METHODS A cross-sectional study for the determination of NAFLD prevalence included 76 patients with childhood-onset hypopituitarism and 74 controls matched by age and body mass index (BMI). We investigated the prevalence of NAFLD in adolescent and young adult patients with hypopituitarism as well as the age- and BMI-matched controls. Among patients with hypopituitarism, anthropometric, clinical, and biochemical assessments using transient elastography and magnetic resonance imaging were performed. Logistic regression was used to identify the factors associated with NAFLD. RESULTS The adolescents and young adults with hypopituitarism exhibited higher prevalence of NAFLD than the age- and BMI-matched controls. Among patients with hypopituitarism, obesity and obesity-related metabolic derangements were significantly associated with liver steatosis and fibrosis, whereas lower insulin-like growth factor (IGF)-I standard deviation score (SDS) and IGF-I/IGF-binding protein 3 molar ratios were associated with steatosis. In regression analyses adjusted for BMI SDS, steatosis was found to be associated with a lower IGF-I SDS and IGF-I/IGF-binding protein 3 molar ratios, whereas liver fibrosis was found to be associated with a lower IGF-I SDS. CONCLUSION Our results suggest that GH deficiency contributes to the occurrence of NAFLD, along with obesity and obesity-related metabolic changes. Because NAFLD occurs early in patients with hypopituitarism, the surveillance, weight control, and timely replacement of deficit hormones, including GH, are essential.
Collapse
Affiliation(s)
- Seok Jin Kang
- Department of Pediatrics, Keimyung University Dongsan Hospital, Daegu, Korea
| | - Ahreum Kwon
- Department of Pediatrics, Division of Pediatric Endocrinology, Severance Children's Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Mo Kyung Jung
- Department of Pediatrics, Division of Pediatric Endocrinology, Severance Children's Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Wook Chae
- Department of Pediatrics, Division of Pediatric Endocrinology, Severance Children's Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Kim
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hong Koh
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Joo Shin
- Department of Radiology and Research Institute of Radiological Science, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ho-Seong Kim
- Department of Pediatrics, Division of Pediatric Endocrinology, Severance Children's Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
17
|
Wu ZY, Li YL, Chang B. Pituitary stalk interruption syndrome and liver changes: From clinical features to mechanisms. World J Gastroenterol 2020; 26:6909-6922. [PMID: 33311939 PMCID: PMC7701950 DOI: 10.3748/wjg.v26.i44.6909] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/14/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
Pituitary stalk interruption syndrome (PSIS) is a rare congenital abnormality characterized by thinning or disappearance of the pituitary stalk, hypoplasia of the anterior pituitary and an ectopic posterior pituitary. Although the etiology of PSIS is still unclear, gene changes and perinatal adverse events such as breech delivery may play important roles in the pathogenesis of PSIS. PSIS can cause multiple hormone deficiencies, such as growth hormone, which then cause a series of changes in the human body. On the one hand, hormone changes affect growth and development, and on the other hand, they could affect human metabolism and subsequently the liver resulting in nonalcoholic fatty liver disease (NAFLD). Under the synergistic effect of multiple mechanisms, the progression of NAFLD caused by PSIS is faster than that due to other causes. Therefore, in addition to early identification of PSIS, timely hormone replacement therapy and monitoring of relevant hormone levels, clinicians should routinely assess the liver function while managing PSIS.
Collapse
Affiliation(s)
- Ze-Yu Wu
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Yi-Ling Li
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Bing Chang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
18
|
Yuen KCJ, Biller BMK, Radovick S, Carmichael JD, Jasim S, Pantalone KM, Hoffman AR. AMERICAN ASSOCIATION OF CLINICAL ENDOCRINOLOGISTS AND AMERICAN COLLEGE OF ENDOCRINOLOGY GUIDELINES FOR MANAGEMENT OF GROWTH HORMONE DEFICIENCY IN ADULTS AND PATIENTS TRANSITIONING FROM PEDIATRIC TO ADULT CARE. Endocr Pract 2019; 25:1191-1232. [PMID: 31760824 DOI: 10.4158/gl-2019-0405] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective: The development of these guidelines is sponsored by the American Association of Clinical Endocrinologists (AACE) Board of Directors and American College of Endocrinology (ACE) Board of Trustees and adheres with published AACE protocols for the standardized production of clinical practice guidelines (CPG). Methods: Recommendations are based on diligent reviews of clinical evidence with transparent incorporation of subjective factors, according to established AACE/ACE guidelines for guidelines protocols. Results: The Executive Summary of this 2019 updated guideline contains 58 numbered recommendations: 12 are Grade A (21%), 19 are Grade B (33%), 21 are Grade C (36%), and 6 are Grade D (10%). These detailed, evidence-based recommendations allow for nuance-based clinical decision-making that addresses multiple aspects of real-world care of patients. The evidence base presented in the subsequent Appendix provides relevant supporting information for the Executive Summary recommendations. This update contains 357 citations of which 51 (14%) are evidence level (EL) 1 (strong), 168 (47%) are EL 2 (intermediate), 61 (17%) are EL 3 (weak), and 77 (22%) are EL 4 (no clinical evidence). Conclusion: This CPG is a practical tool that practicing endocrinologists and regulatory bodies can refer to regarding the identification, diagnosis, and treatment of adults and patients transitioning from pediatric to adult-care services with growth hormone deficiency (GHD). It provides guidelines on assessment, screening, diagnostic testing, and treatment recommendations for a range of individuals with various causes of adult GHD. The recommendations emphasize the importance of considering testing patients with a reasonable level of clinical suspicion of GHD using appropriate growth hormone (GH) cut-points for various GH-stimulation tests to accurately diagnose adult GHD, and to exercise caution interpreting serum GH and insulin-like growth factor-1 (IGF-1) levels, as various GH and IGF-1 assays are used to support treatment decisions. The intention to treat often requires sound clinical judgment and careful assessment of the benefits and risks specific to each individual patient. Unapproved uses of GH, long-term safety, and the current status of long-acting GH preparations are also discussed in this document. LAY ABSTRACT This updated guideline provides evidence-based recommendations regarding the identification, screening, assessment, diagnosis, and treatment for a range of individuals with various causes of adult growth-hormone deficiency (GHD) and patients with childhood-onset GHD transitioning to adult care. The update summarizes the most current knowledge about the accuracy of available GH-stimulation tests, safety of recombinant human GH (rhGH) replacement, unapproved uses of rhGH related to sports and aging, and new developments such as long-acting GH preparations that use a variety of technologies to prolong GH action. Recommendations offer a framework for physicians to manage patients with GHD effectively during transition to adult care and adulthood. Establishing a correct diagnosis is essential before consideration of replacement therapy with rhGH. Since the diagnosis of GHD in adults can be challenging, GH-stimulation tests are recommended based on individual patient circumstances and use of appropriate GH cut-points. Available GH-stimulation tests are discussed regarding variability, accuracy, reproducibility, safety, and contraindications, among other factors. The regimen for starting and maintaining rhGH treatment now uses individualized dose adjustments, which has improved effectiveness and reduced reported side effects, dependent on age, gender, body mass index, and various other individual characteristics. With careful dosing of rhGH replacement, many features of adult GHD are reversible and side effects of therapy can be minimized. Scientific studies have consistently shown rhGH therapy to be beneficial for adults with GHD, including improvements in body composition and quality of life, and have demonstrated the safety of short- and long-term rhGH replacement. Abbreviations: AACE = American Association of Clinical Endocrinologists; ACE = American College of Endocrinology; AHSG = alpha-2-HS-glycoprotein; AO-GHD = adult-onset growth hormone deficiency; ARG = arginine; BEL = best evidence level; BMD = bone mineral density; BMI = body mass index; CI = confidence interval; CO-GHD = childhood-onset growth hormone deficiency; CPG = clinical practice guideline; CRP = C-reactive protein; DM = diabetes mellitus; DXA = dual-energy X-ray absorptiometry; EL = evidence level; FDA = Food and Drug Administration; FD-GST = fixed-dose glucagon stimulation test; GeNeSIS = Genetics and Neuroendocrinology of Short Stature International Study; GH = growth hormone; GHD = growth hormone deficiency; GHRH = growth hormone-releasing hormone; GST = glucagon stimulation test; HDL = high-density lipoprotein; HypoCCS = Hypopituitary Control and Complications Study; IGF-1 = insulin-like growth factor-1; IGFBP = insulin-like growth factor-binding protein; IGHD = isolated growth hormone deficiency; ITT = insulin tolerance test; KIMS = Kabi International Metabolic Surveillance; LAGH = long-acting growth hormone; LDL = low-density lipoprotein; LIF = leukemia inhibitory factor; MPHD = multiple pituitary hormone deficiencies; MRI = magnetic resonance imaging; P-III-NP = procollagen type-III amino-terminal pro-peptide; PHD = pituitary hormone deficiencies; QoL = quality of life; rhGH = recombinant human growth hormone; ROC = receiver operating characteristic; RR = relative risk; SAH = subarachnoid hemorrhage; SDS = standard deviation score; SIR = standardized incidence ratio; SN = secondary neoplasms; T3 = triiodothyronine; TBI = traumatic brain injury; VDBP = vitamin D-binding protein; WADA = World Anti-Doping Agency; WB-GST = weight-based glucagon stimulation test.
Collapse
|
19
|
Lonardo A, Mantovani A, Lugari S, Targher G. NAFLD in Some Common Endocrine Diseases: Prevalence, Pathophysiology, and Principles of Diagnosis and Management. Int J Mol Sci 2019; 20:2841. [PMID: 31212642 PMCID: PMC6600657 DOI: 10.3390/ijms20112841] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023] Open
Abstract
Secondary nonalcoholic fatty liver disease (NAFLD) defines those complex pathophysiological and clinical consequences that ensue when the liver becomes an ectopic site of lipid storage owing to reasons other than its mutual association with the metabolic syndrome. Disorders affecting gonadal hormones, thyroid hormones, or growth hormones (GH) may cause secondary forms of NAFLD, which exhibit specific pathophysiologic features and, in theory, the possibility to receive an effective treatment. Here, we critically discuss epidemiological and pathophysiological features, as well as principles of diagnosis and management of some common endocrine diseases, such as polycystic ovary syndrome (PCOS), hypothyroidism, hypogonadism, and GH deficiency. Collectively, these forms of NAFLD secondary to specific endocrine derangements may be envisaged as a naturally occurring disease model of NAFLD in humans. Improved understanding of such endocrine secondary forms of NAFLD promises to disclose novel clinical associations and innovative therapeutic approaches, which may potentially be applied also to selected cases of primary NAFLD.
Collapse
Affiliation(s)
- Amedeo Lonardo
- Operating Unit Internal Medicine-Ospedale Civile di Baggiovara-AOU, 41125 Modena, Italy.
| | - Alessandro Mantovani
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, 37126 Verona, Italy.
| | - Simonetta Lugari
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, 37126 Verona, Italy.
| |
Collapse
|
20
|
Carvalho-Furtado ACL, Carvalho-Louro DM, Regattieri NAT, Rodrigues MP, Montenegro MLRN, Ferro AM, Pirangi PS, Naves LA. Transient Elastography and Controlled Attenuation Parameter (CAP) in the Assessment of Liver Steatosis in Severe Adult Growth Hormone Deficiency. Front Endocrinol (Lausanne) 2019; 10:364. [PMID: 31275240 PMCID: PMC6593042 DOI: 10.3389/fendo.2019.00364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/22/2019] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is common in patients with growth hormone deficiency (GHD). Some noninvasive techniques have been used to quantify liver fat, such as the controlled attenuation parameter (CAP). Objective: To evaluate CAP as a tool to identify liver steatosis and its relationship with different clinical and biochemical metabolic parameters in a group of patients with severe adult growth hormone deficiency (AGHD), and to compare the evolution of metabolic profiles after 6 months of human growth hormone (rhGH) replacement therapy in a subgroup of patients. Methods: Cross-sectional observational study at baseline of naive rhGH multiple pituitary hormonal deficiency (MPHD) hypopituitarism patients. A 6-month intervention clinical trial in a selected group of a non-randomized, non-controlled cohort was also applied. Results: Liver stiffness measurement (LSM) was normal in severe AGHD patients. CAP evaluation showed steatosis in 36.3% of baseline patients (8/22), associated with higher BMI, waist circumference, insulin, and alanine aminotransferase (ALT) levels. According to steatosis degree by CAP, child-onset growth hormone deficiency (CO-GHD) was graded as 68.75% (11/16) S0, 12.5% (2/16) S1, and 18.75% (3/16) S3, whereas AO-GHD was graded as 50% (3/6) S0, 16.66% (1/6) S2, and 33.33% S3. After 6 months of hrGH replacement, CAP measurements did not change significantly, neither on group without hepatic steatosis at baseline (194.4 ± 24.3 vs. 215.4 ± 51.3; p = 0.267) nor on the group with hepatic steatosis (297.2 ± 32.3 vs. 276.4 ± 27.8; p = 0.082). A significant improvement of body composition was observed only in the first group. Conclusions: We have demonstrated the importance of CAP as a non-invasive tool in the liver steatosis identification on hypopituitary patients. This method may be an important indicator of the severity of metabolic disorders in MPHD patients. In our study, no liver health modification in LSM at baseline or after 6 months of rhGH replacement was found. Longer studies can help to establish the potential repercussions of growth hormone replacement therapy on liver steatosis.
Collapse
|
21
|
Guarnotta V, Mineo MI, Radellini S, Pizzolanti G, Giordano C. Dual-release hydrocortisone improves hepatic steatosis in patients with secondary adrenal insufficiency: a real-life study. Ther Adv Endocrinol Metab 2019; 10:2042018819871169. [PMID: 31489172 PMCID: PMC6713956 DOI: 10.1177/2042018819871169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Conventional glucocorticoid treatment has a significant impact on liver in patients with adrenal insufficiency. Dual-release hydrocortisone (DR-HC) provides physiological cortisol exposure, leading to an improvement in anthropometric and metabolic parameters. We aimed to evaluate the effects of 12-month DR-HC treatment on the hepatic steatosis index (HSI), a validated surrogate index of hepatic steatosis, in patients with secondary adrenal insufficiency (SAI). METHODS A total of 45 patients with hypopituitarism, 22 with hypogonadism, hypothyroidism, ACTH, and GH deficiencies, and 23 with hypogonadism, hypothyroidism, and ACTH deficiency, on replacement therapy for all the pituitary deficiencies, were switched from conventional hydrocortisone to DR-HC. At baseline and after 12 months, glucose and insulin levels, surrogate estimates of insulin sensitivity, and hepatic steatosis were evaluated through ultrasonography and HSI. RESULTS At diagnosis, ultrasonography documented steatosis in 31 patients (68.8%) while 33 (73.3%) showed high HSI. Hydrocortisone (HC) dose (β = 1.231, p = 0.010), insulin resistance index (HOMA-IR) (β = 1.431, p = 0.002), and insulin sensitivity index (ISI)-Matsuda (β = -1.389, p = 0.034) were predictors of HSI at baseline. After 12 months of DR-HC, a significant decrease in body mass index (BMI) (p = 0.008), waist circumference (WC) (p = 0.010), fasting insulin (p = 0.041), HOMA-IR (p = 0.047), HSI (p < 0.001) and number of patients with HSI ⩾36 (p = 0.003), and a significant increase in sodium (p < 0.001) and ISI-Matsuda (p = 0.031) were observed. HOMA-IR (β = 1.431, p = 0.002) and ISI-Matsuda (β = -9.489, p < 0.001) were identified as independent predictors of HSI at 12 months. CONCLUSIONS In adults with SAI, DR-HC is associated with an improvement in HSI, regardless of the dose used, mainly related to an improvement in insulin sensitivity.
Collapse
Affiliation(s)
- Valentina Guarnotta
- Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro” (PROMISE), Sezione di Malattie Endocrine, del Ricambio e della Nutrizione, Università di Palermo, Sicilia, Italy
| | - Mariagrazia Irene Mineo
- Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro” (PROMISE), Sezione di Malattie Endocrine, del Ricambio e della Nutrizione, Università di Palermo, Sicilia, Italy
| | - Stefano Radellini
- Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro” (PROMISE), Sezione di Malattie Endocrine, del Ricambio e della Nutrizione, Università di Palermo, Sicilia, Italy
| | - Giuseppe Pizzolanti
- Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro” (PROMISE), Sezione di Malattie Endocrine, del Ricambio e della Nutrizione, Università di Palermo, Sicilia, Italy
| | | |
Collapse
|
22
|
Takahashi Y. The Role of Growth Hormone and Insulin-Like Growth Factor-I in the Liver. Int J Mol Sci 2017; 18:ijms18071447. [PMID: 28678199 PMCID: PMC5535938 DOI: 10.3390/ijms18071447] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 12/17/2022] Open
Abstract
Adult growth hormone deficiency (GHD) is characterized by metabolic abnormalities associated with visceral obesity, impaired quality of life, and increased mortality. Patients with adult GHD show increased prevalence of non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH), and growth hormone (GH) replacement therapy has been shown to improve these conditions. It has also been demonstrated that a decrease in the GH insulin-like growth factor-I (IGF-I) axis is closely associated with the progression of general NAFLD, suggesting a physiological role of these hormones for the maintenance of the liver. NASH histologically demonstrates inflammation, necrosis, and fibrosis, in addition to steatosis (and is a serious disease because it can progress to liver cirrhosis and hepatocellular carcinoma in a subset of cases). While fibrosis determines the prognosis of the patient, efficacious treatment for fibrosis is crucial; however, it has not yet been established. Recent studies have clarified the essential roles of GH and IGF-I in the liver. GH profoundly reduces visceral fat, which plays an important role in the development of NAFLD. Furthermore, GH directly reduces lipogenesis in the hepatocytes. IGF-I induces cellular senescence and inactivates hepatic stellate cells, therefore ameliorating fibrosis. IGF-I treatment has been shown to improve animal models of NASH and cirrhosis, suggesting potential clinical applications of IGF-I in these conditions. In this review, I will focus on the important roles of GH and IGF-I in the liver, their underlying mechanisms, and their potential therapeutic applications.
Collapse
Affiliation(s)
- Yutaka Takahashi
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| |
Collapse
|