1
|
Tavares DF, Mano JF, Oliveira MB. Advances in abiotic tissue-based biomaterials: A focus on decellularization and devitalization techniques. Mater Today Bio 2025; 32:101735. [PMID: 40275948 PMCID: PMC12020859 DOI: 10.1016/j.mtbio.2025.101735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/14/2025] [Accepted: 04/05/2025] [Indexed: 04/26/2025] Open
Abstract
This Review explores the growing and diversifying field of tissue-derived abiotic constructs for tissue engineering applications, with main focus on decellularization and devitalization techniques and principles. Acellular fractions derived from biological tissues, such as the extracellular matrix (ECM), have long been considered a valuable approach for the generation of numerous scaffolds and more complex constructs. The removal of the cellular content has been considered essential to prevent the development of adverse immunological reactions. Nevertheless, the discovery of promising features of certain cellular components has sparked interest in the use of inactivated or devitalized cellular fractions for several applications, particularly in regenerative medicine and inflammation control. Devitalization has been described for several clinical applications, but remains poorly explored in terms of in vitro constructs compared to decellularization methods currently available. In this review, we present and critically evaluate a spectrum of approaches for the decellularization of whole-organs and in vitro constructs, and the most prevalent devitalization techniques, with a discussion on their implications on scaffolds composition, structure, and potentially therapeutic properties. Processing methodologies to achieve optimal cell-based abiotic materials and approaches for their effective characterization are described and discussed. The application of these materials in healthcare, with most focus on regenerative approaches and including examples of commercially available products, is also addressed.
Collapse
Affiliation(s)
- Diana F. Tavares
- Department of Chemistry, CICECO – Aveiro Institute of Materials. University of Aveiro., Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - João F. Mano
- Department of Chemistry, CICECO – Aveiro Institute of Materials. University of Aveiro., Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Mariana B. Oliveira
- Department of Chemistry, CICECO – Aveiro Institute of Materials. University of Aveiro., Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
2
|
Melo-Narvaez MC, Gölitz F, Jain E, Gote-Schniering J, Stoleriu MG, Bertrams W, Schmeck B, Yildirim AÖ, Rauen U, Wille T, Lehmann M. Cold storage of human precision-cut lung slices in TiProtec preserves cellular composition and transcriptional responses and enables on-demand mechanistic studies. Respir Res 2025; 26:57. [PMID: 39962456 PMCID: PMC11834602 DOI: 10.1186/s12931-025-03132-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/31/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Human precision-cut lung slices (hPCLS) are a unique platform for functional, mechanistic, and drug discovery studies in the field of respiratory research. However, tissue availability, generation, and cultivation time represent important challenges for their usage. Therefore, the present study evaluated the efficacy of a specifically designed tissue preservation solution, TiProtec, complete or in absence (-) of iron chelators, for long-term cold storage of hPCLS. METHODS hPCLS were generated from peritumor control tissues and stored in DMEM/F-12, TiProtec, or TiProtec (-) for up to 28 days. Viability, metabolic activity, and tissue structure were determined. Moreover, bulk-RNA sequencing was used to study transcriptional changes, regulated signaling pathways, and cellular composition after cold storage. Induction of cold storage-associated senescence was determined by transcriptomics and immunofluorescence (IF). Finally, cold-stored hPCLS were exposed to a fibrotic cocktail and early fibrotic changes were assessed by RT-qPCR and IF. RESULTS Here, we found that TiProtec preserves the viability, metabolic activity, transcriptional profile, as well as cellular composition of hPCLS for up to 14 days. Cold storage did not significantly induce cellular senescence in hPCLS. Moreover, TiProtec downregulated pathways associated with cell death, inflammation, and hypoxia while activating pathways protective against oxidative stress. Cold-stored hPCLS remained responsive to fibrotic stimuli and upregulated extracellular matrix-related genes such as fibronectin and collagen 1 as well as alpha-smooth muscle actin, a marker for myofibroblasts. CONCLUSIONS Optimized long-term cold storage of hPCLS preserves their viability, metabolic activity, transcriptional profile, and cellular composition for up to 14 days, specifically in TiProtec. Finally, our study demonstrated that cold-stored hPCLS can be used for on-demand mechanistic studies relevant for respiratory research.
Collapse
Affiliation(s)
- M Camila Melo-Narvaez
- Comprehensive Pneumology Center with the CPC-M bioArchive and Institute of Lung Health and Immunity, Helmholtz Center Munich, German Center for Lung Research (DZL), Munich, Germany
- Institute for Lung Research, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Fee Gölitz
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Eshita Jain
- Comprehensive Pneumology Center with the CPC-M bioArchive and Institute of Lung Health and Immunity, Helmholtz Center Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Janine Gote-Schniering
- Department of Rheumatology and Immunology, Department of Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Mircea Gabriel Stoleriu
- Comprehensive Pneumology Center with the CPC-M bioArchive and Institute of Lung Health and Immunity, Helmholtz Center Munich, German Center for Lung Research (DZL), Munich, Germany
- Division for Thoracic Surgery Munich, Ludwig-Maximilians-University of Munich (LMU) and Asklepios Lung Clinic Munich-Gauting, Gauting, Germany
| | - Wilhelm Bertrams
- Institute for Lung Research, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
- Core Facility Flow Cytometry - Bacterial Vesicles, Philipps-University Marburg, Marburg, Germany
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Marburg, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
- Center for Synthetic Microbiology (Synmikro), Philipps-University Marburg, Marburg, Germany
- Member of the German Center of Infectious Disease Research, Marburg, Germany
- Institute for Lung Health (ILH), German Center for Lung Research (DZL), Giessen, Germany
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center with the CPC-M bioArchive and Institute of Lung Health and Immunity, Helmholtz Center Munich, German Center for Lung Research (DZL), Munich, Germany
- Institute of Experimental Pneumology (IEP), Ludwig-Maximilians University of Munich (LMU), Munich, Germany
| | - Ursula Rauen
- Institute of Physiological Chemistry, University Hospital Essen, Essen, Germany
| | - Timo Wille
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany.
- Department of CBRN Medical Defense, Bundeswehr Medical Academy, Munich, Germany.
| | - Mareike Lehmann
- Comprehensive Pneumology Center with the CPC-M bioArchive and Institute of Lung Health and Immunity, Helmholtz Center Munich, German Center for Lung Research (DZL), Munich, Germany.
- Institute for Lung Research, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany.
- Institute for Lung Health (ILH), German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
3
|
Li H, Kanamori Y, Moroishi T. Cell attachment defines sensitivity to cold stress via the Hippo pathway. Biochem Biophys Res Commun 2024; 730:150373. [PMID: 38996785 DOI: 10.1016/j.bbrc.2024.150373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Although cells are frequently maintained at cold temperatures during experiments, the effects of cold stress on cell viability and subsequent cellular conditions remain elusive. In this study, we investigated the effects of cold stress on cancer cells under various culture conditions. We showed that cold stress induces ferroptosis, a form of cell death characterized by lipid peroxidation, in sensitive cancer cell lines. High cell density and serum starvation activate the Hippo pathway and suppress cold-induced cell death. Genetic deletion of Hippo pathway components enhances cold stress susceptibility. Furthermore, the cell attachment status influences the response to cold stress, with suspended cells showing greater resistance and faster recovery than attached cells. This study highlights the importance of cellular conditions and the Hippo pathway in the handling and storage of cancer cells at cold temperatures, thereby offering insights into experimental and clinical contexts.
Collapse
Affiliation(s)
- Hao Li
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Yohei Kanamori
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Toshiro Moroishi
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan; Center for Metabolic Regulation of Healthy Aging, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan.
| |
Collapse
|
4
|
Chen H, Ellis BW, Dinicu AT, Mojoudi M, Wilks BT, Tessier SN, Toner M, Uygun K, Uygun BE. Polyethylene glycol and caspase inhibitor emricasan alleviate cold injury in primary rat hepatocytes. Cryobiology 2024; 116:104926. [PMID: 38880369 PMCID: PMC11374468 DOI: 10.1016/j.cryobiol.2024.104926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
Current methods of storing explanted donor livers at 4 °C in University of Wisconsin (UW) solution result in loss of graft function and ultimately lead to less-than-ideal outcomes post transplantation. Our lab has previously shown that supplementing UW solution with 35-kilodalton polyethylene glycol (PEG) has membrane stabilizing effects for cold stored primary rat hepatocytes in suspension. Expanding on past studies, we here investigate if PEG has the same beneficial effects in an adherent primary rat hepatocyte cold storage model. In addition, we investigated the extent of cold-induced apoptosis through treating cold-stored hepatocytes with pan caspase inhibitor emricasan. In parallel to storage at the current cold storage standard of 4 °C, we investigated the effects of lowering the storage temperature to -4 °C, at which the storage solution remains ice-free due to the supercooling phenomenon. We show the addition of 5 % PEG to the storage medium significantly reduced the release of lactate dehydrogenase (LDH) in plated rat hepatocytes and a combinatorial treatment with emricasan maintains hepatocyte viability and morphology following recovery from cold storage. These results show that cold-stored hepatocytes undergo multiple mechanisms of cold-induced injury and that PEG and emricasan treatment in combination with supercooling may improve cell and organ preservation.
Collapse
Affiliation(s)
- Huyun Chen
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Children's Boston, Boston, MA, USA
| | - Bradley W Ellis
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Children's Boston, Boston, MA, USA
| | - Antonia T Dinicu
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Children's Boston, Boston, MA, USA
| | - Mohammadreza Mojoudi
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Children's Boston, Boston, MA, USA
| | - Benjamin T Wilks
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Children's Boston, Boston, MA, USA
| | - Shannon N Tessier
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Children's Boston, Boston, MA, USA
| | - Mehmet Toner
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Children's Boston, Boston, MA, USA
| | - Korkut Uygun
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Children's Boston, Boston, MA, USA
| | - Basak E Uygun
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Children's Boston, Boston, MA, USA.
| |
Collapse
|
5
|
Gokaltun A, Asik E, Byrne D, Yarmush ML, Usta OB. Supercooled preservation of cultured primary rat hepatocyte monolayers. Front Bioeng Biotechnol 2024; 12:1429412. [PMID: 39076209 PMCID: PMC11284110 DOI: 10.3389/fbioe.2024.1429412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/27/2024] [Indexed: 07/31/2024] Open
Abstract
Supercooled preservation (SCP) is a technology that involves cooling a substance below its freezing point without initiating ice crystal formation. It is a promising alternative to prolong the preservation time of cells, tissues, engineered tissue products, and organs compared to the current practices of hypothermic storage. Two-dimensional (2D) engineered tissues are extensively used in in vitro research for drug screening and development and investigation of disease progression. Despite their widespread application, there is a lack of research on the SCP of 2D-engineered tissues. In this study, we presented the effects of SCP at -2 and -6°C on primary rat hepatocyte (PRH) monolayers for the first time and compared cell viability and functionality with cold storage (CS, + 4°C). We preserved PRH monolayers in two different commercially available solutions: Hypothermosol-FRS (HTS-FRS) and the University of Wisconsin (UW) with and without supplements (i.e., polyethylene glycol (PEG) and 3-O-Methyl-Α-D-Glucopyranose (3-OMG)). Our findings revealed that UW with and without supplements were inadequate for the short-term preservation of PRH monolayers for both SCP and CS with high viability, functionality, and monolayer integrity. The combination of supplements (PEG and 3-OMG) in the HTS-FRS solution outperformed the other groups and yielded the highest viability and functional capacity. Notably, PRH monolayers exhibited superior viability and functionality when stored at -2°C through SCP for up to 3 days compared to CS. Overall, our results demonstrated that SCP is a feasible approach to improving the short-term preservation of PRH monolayers and enables readily available 2D-engineered tissues to advance in vitro research. Furthermore, our findings provide insights into preservation outcomes across various biological levels, from cells to tissues and organs, contributing to the advancement of bioengineering and biotechnology.
Collapse
Affiliation(s)
- Aslihan Gokaltun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Hospitals for Children, Boston, MA, United States
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, United States
- Department of Chemical Engineering, Hacettepe University, Ankara, Türkiye
| | - Eda Asik
- Shriners Hospitals for Children, Boston, MA, United States
- Department of Bioengineering, Hacettepe University, Ankara, Türkiye
| | - Delaney Byrne
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Hospitals for Children, Boston, MA, United States
| | - Martin L. Yarmush
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Hospitals for Children, Boston, MA, United States
- Department of Biomedical Engineering, Rutgers University, Newark, NJ, United States
| | - O. Berk Usta
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Hospitals for Children, Boston, MA, United States
| |
Collapse
|
6
|
Freitas-Ribeiro S, Moreira H, da Silva LP, Noro J, Sampaio-Marques B, Ludovico P, Jarnalo M, Horta R, Marques AP, Reis RL, Pirraco RP. Prevascularized spongy-like hydrogels maintain their angiogenic potential after prolonged hypothermic storage. Bioact Mater 2024; 37:253-268. [PMID: 38585489 PMCID: PMC10997873 DOI: 10.1016/j.bioactmat.2024.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/07/2024] [Accepted: 02/29/2024] [Indexed: 04/09/2024] Open
Abstract
The chronic shortage of organs and tissues for transplantation represents a dramatic burden on healthcare systems worldwide. Tissue engineering offers a potential solution to address these shortages, but several challenges remain, with prevascularization being a critical factor for in vivo survival and integration of tissue engineering products. Concurrently, a different challenge hindering the clinical implementation of such products, regards their efficient preservation from the fabrication site to the bedside. Hypothermia has emerged as a potential solution for this issue due to its milder effects on biologic systems in comparison with other cold preservation methodologies. Its impact on prevascularization, however, has not been well studied. In this work, 3D prevascularized constructs were fabricated using adipose-derived stromal vascular fraction cells and preserved at 4 °C using Hypothermosol or basal culture media (α-MEM). Hypothermosol efficiently preserved the structural and cellular integrity of prevascular networks as compared to constructs before preservation. In contrast, the use of α-MEM led to a clear reduction in prevascular structures, with concurrent induction of high levels of apoptosis and autophagy at the cellular level. In vivo evaluation using a chorioallantoic membrane model demonstrated that, in opposition to α-MEM, Hypothermosol preservation retained the angiogenic potential of constructs before preservation by recruiting a similar number of blood vessels from the host and presenting similar integration with host tissue. These results emphasize the need of studying the impact of preservation techniques on key properties of tissue engineering constructs such as prevascularization, in order to validate and streamline their clinical application.
Collapse
Affiliation(s)
- Sara Freitas-Ribeiro
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Helena Moreira
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Lucília P. da Silva
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jennifer Noro
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Belém Sampaio-Marques
- ICVS/3B's–PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - Paula Ludovico
- ICVS/3B's–PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - Mariana Jarnalo
- Department of Plastic and Reconstructive Surgery, and Burn Unity, Centro Hospitalar de São João, Porto, Portugal
- Faculty of Medicine - University of Porto, Portugal
| | - Ricardo Horta
- Department of Plastic and Reconstructive Surgery, and Burn Unity, Centro Hospitalar de São João, Porto, Portugal
- Faculty of Medicine - University of Porto, Portugal
| | - Alexandra P. Marques
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rogério P. Pirraco
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
7
|
Chen H, Ellis BW, Dinicu AT, Mojoudi M, Wilks BT, Tessier SN, Toner M, Uygun K, Uygun BE. Polyethylene Glycol and Caspase Inhibitor Emricasan Alleviates Cold Injury in Primary Rat Hepatocytes. RESEARCH SQUARE 2023:rs.3.rs-3669876. [PMID: 38076969 PMCID: PMC10705698 DOI: 10.21203/rs.3.rs-3669876/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Current methods of storing explanted donor livers at 4°C in University of Wisconsin (UW) solution result in loss of graft function and ultimately leads to less-than-ideal outcomes post transplantation. Our lab has previously shown that supplementing UW solution with 35-kilodalton polyethylene glycol (PEG) has membrane stabilizing effects for cold stored primary rat hepatocytes in suspension. Expanding on past studies, we here investigate if PEG has the same beneficial effects in an adherent primary rat hepatocyte cold storage model. In addition, we investigated the extent of cold-induced apoptosis through treating cold-stored hepatocytes with pan caspase inhibitor emricasan. In parallel to storage at the current cold storage standard of 4°C, we investigated the effects of lowering the storage temperature to -4°C, at which the storage solution remains ice-free due to the supercooling phenomenon. We show the addition of 5% PEG to the storage medium significantly reduced the release of lactate dehydrogenase (LDH) in plated rat hepatocytes and a combinatorial treatment with emricasan maintains hepatocyte viability and morphology following recovery from cold storage. These results show that cold-stored hepatocytes undergo multiple mechanisms of cold-induced injury and that PEG and emricasan treatment in combination with supercooling may improve cell and organ preservation.
Collapse
Affiliation(s)
- Huyun Chen
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital
| | - Bradley W Ellis
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital
| | - Antonia T Dinicu
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital
| | - Mohammadreza Mojoudi
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital
| | - Benjamin T Wilks
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital
| | - Shannon N Tessier
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital
| | - Mehmet Toner
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital
| | - Korkut Uygun
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital
| | - Basak E Uygun
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital
| |
Collapse
|
8
|
Zhao J, Li J, Wei D, Gao F, Yang X, Yue B, Xiong D, Liu M, Xu H, Hu C, Chen J. Liproxstatin-1 Alleviates Lung Transplantation-induced Cold Ischemia-Reperfusion Injury by Inhibiting Ferroptosis. Transplantation 2023; 107:2190-2202. [PMID: 37202851 DOI: 10.1097/tp.0000000000004638] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
BACKGROUND Primary graft dysfunction, which is directly related to cold ischemia-reperfusion (CI/R) injury, is a major obstacle in lung transplantation (LTx). Ferroptosis, a novel mode of cell death elicited by iron-dependent lipid peroxidation, has been implicated in ischemic events. This study aimed to investigate the role of ferroptosis in LTx-CI/R injury and the effectiveness of liproxstatin-1 (Lip-1), a ferroptosis inhibitor, in alleviating LTx-CI/R injury. METHODS LTx-CI/R-induced signal pathway alterations, tissue injury, cell death, inflammatory responses, and ferroptotic features were examined in human lung biopsies, the human bronchial epithelial (BEAS-2B) cells, and the mouse LTx-CI/R model (24-h CI/4-h R). The therapeutic efficacy of Lip-1 was explored and validated both in vitro and in vivo. RESULTS In human lung tissues, LTx-CI/R activated ferroptosis-related signaling pathway, increased the tissue iron content and lipid peroxidation accumulation, and altered key protein (GPX4, COX2, Nrf2, and SLC7A11) expression and mitochondrial morphology. In BEAS-2B cells, the hallmarks of ferroptosis were significantly evidenced at the setting of both CI and CI/R compared with the control, and the effect of adding Lip-1 only during CI was much better than that of only during reperfusion by Cell Counting Kit-8. Furthermore, Lip-1 administration during CI markedly relieved LTx-CI/R injury in mice, as indicated by significant improvement in lung pathological changes, pulmonary function, inflammation, and ferroptosis. CONCLUSIONS This study revealed the existence of ferroptosis in the pathophysiology of LTx-CI/R injury. Using Lip-1 to inhibit ferroptosis during CI could ameliorate LTx-CI/R injury, suggesting that Lip-1 administration might be proposed as a new strategy for organ preservation.
Collapse
Affiliation(s)
- Jin Zhao
- Wuxi Lung Transplant Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Jiawei Li
- Department of Intensive Care Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Dong Wei
- Wuxi Lung Transplant Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Fei Gao
- Department of Emergency, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Xiucheng Yang
- Wuxi Lung Transplant Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Bingqing Yue
- Department of Lung Transplantation, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Dian Xiong
- Wuxi Lung Transplant Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Mingzhao Liu
- Wuxi Lung Transplant Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Hongyang Xu
- Department of Intensive Care Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Chunxiao Hu
- Department of Anesthesiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Jingyu Chen
- Wuxi Lung Transplant Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
- Department of Lung Transplantation, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Liu S, Tian F, Qi D, Qi H, Wang Y, Xu S, Zhao K. Physiological, metabolomic, and transcriptomic reveal metabolic pathway alterations in Gymnocypris przewalskii due to cold exposure. BMC Genomics 2023; 24:545. [PMID: 37710165 PMCID: PMC10500822 DOI: 10.1186/s12864-023-09587-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Teleost fish have evolved various adaptations that allow them to tolerate cold water conditions. However, the underlying mechanism of this adaptation is poorly understood in Tibetan Plateau fish. RNA-seq combined with liquid chromatography‒mass spectrometry (LC‒MS/MS) metabolomics was used to investigate the physiological responses of a Tibetan Plateau-specific teleost, Gymnocypris przewalskii, under cold conditions. The 8-month G. przewalskii juvenile fish were exposed to cold (4 ℃, cold acclimation, CA) and warm (17 ℃, normal temperature, NT) temperature water for 15 days. Then, the transcript profiles of eight tissues, including the brain, gill, heart, intestine, hepatopancreas, kidney, muscle, and skin, were evaluated by transcriptome sequencing. The metabolites of the intestine, hepatopancreas, and muscle were identified by LC‒MS/MS. A total of 5,745 differentially expressed genes (DEGs) were obtained in the CA group. The key DEGs were annotated using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis. The DEGs from the eight tissues were significantly enriched in spliceosome pathways, indicating that activated alternative splicing is a critical biological process that occurs in the tissues to help fish cope with cold stress. Additionally, 82, 97, and 66 differentially expressed metabolites were identified in the intestine, hepatopancreas, and muscle, respectively. Glutathione metabolism was the only overlapping significant pathway between the transcriptome and metabolome analyses in these three tissues, indicating that an activated antioxidative process was triggered during cold stress. In combination with the multitissue transcriptome and metabolome, we established a physiology-gene‒metabolite interaction network related to energy metabolism during cold stress and found that gluconeogenesis and long-chain fatty acid metabolism played critical roles in glucose homeostasis and energy supply.
Collapse
Affiliation(s)
- Sijia Liu
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810008, Qinghai, China
| | - Fei Tian
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810008, Qinghai, China
| | - Delin Qi
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| | - Hongfang Qi
- Qinghai Provincial Key Laboratory of Breeding and Protection of Gymnocypris Przewalskii, Qinghai Naked Carp Rescue Center, Xining, Qinghai, China
| | - Yang Wang
- Qinghai Provincial Key Laboratory of Breeding and Protection of Gymnocypris Przewalskii, Qinghai Naked Carp Rescue Center, Xining, Qinghai, China
| | - Shixiao Xu
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810008, Qinghai, China.
| | - Kai Zhao
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810008, Qinghai, China.
| |
Collapse
|
10
|
Ogurlu B, Pamplona CC, Van Tricht IM, Hamelink TL, Lantinga VA, Leuvenink HG, Moers C, Pool MB. Prolonged Controlled Oxygenated Rewarming Improves Immediate Tubular Function and Energetic Recovery of Porcine Kidneys During Normothermic Machine Perfusion. Transplantation 2023; 107:639-647. [PMID: 36525548 PMCID: PMC9946163 DOI: 10.1097/tp.0000000000004427] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/11/2022] [Accepted: 09/29/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Normothermic machine perfusion (NMP) is typically performed after a period of hypothermic preservation, which exposes the kidney to an abrupt increase in temperature and intravascular pressure. The resultant rewarming injury could be alleviated by gradual rewarming using controlled oxygenated rewarming (COR). This study aimed to establish which rewarming rate during COR results in the best protective effect on renal rewarming injury during subsequent NMP. METHODS Twenty-eight viable porcine kidneys (n = 7/group) were obtained from a slaughterhouse. After these kidneys had sustained 30 min of warm ischemia and 24 h of oxygenated HMP, they were either rewarmed abruptly from 4-8 °C to 37 °C by directly initiating NMP or gradually throughout 30, 60, or 120 min of COR (rate of increase in kidney temperature of 4.46%/min, 2.20%/min, or 1.10%/min) before NMP. RESULTS Kidneys that were rewarmed during the course of 120 min (COR-120) had significantly lower fractional excretion of sodium and glucose at the start of NMP compared with rewarming durations of 30 min (COR-30) and 60 min (COR-60). Although COR-120 kidneys showed superior immediate tubular function at the start of normothermic perfusion, this difference disappeared during NMP. Furthermore, energetic recovery was significantly improved in COR-30 and COR-120 kidneys compared with abruptly rewarmed and COR-60 kidneys. CONCLUSIONS This study suggests that a rewarming rate of 1.10%/min during COR-120 could result in superior immediate tubular function and energetic recovery during NMP. Therefore, it may provide the best protective effect against rewarming injury.
Collapse
Affiliation(s)
- Baran Ogurlu
- Department of Surgery – Organ Donation and Transplantation, University Medical Center Groningen, Groningen, The Netherlands
| | - Carolina C. Pamplona
- Department of Surgery – Organ Donation and Transplantation, University Medical Center Groningen, Groningen, The Netherlands
| | - Isa M. Van Tricht
- Department of Surgery – Organ Donation and Transplantation, University Medical Center Groningen, Groningen, The Netherlands
| | - Tim L. Hamelink
- Department of Surgery – Organ Donation and Transplantation, University Medical Center Groningen, Groningen, The Netherlands
| | - Veerle A. Lantinga
- Department of Surgery – Organ Donation and Transplantation, University Medical Center Groningen, Groningen, The Netherlands
| | - Henri G.D. Leuvenink
- Department of Surgery – Organ Donation and Transplantation, University Medical Center Groningen, Groningen, The Netherlands
| | - Cyril Moers
- Department of Surgery – Organ Donation and Transplantation, University Medical Center Groningen, Groningen, The Netherlands
| | - Merel B.F. Pool
- Department of Surgery – Organ Donation and Transplantation, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
11
|
Thanuja MY, Ranganath SH, Srinivas SP. Role of Oxidative Stress in the Disruption of the Endothelial Apical Junctional Complex During Corneal Cold Storage. J Ocul Pharmacol Ther 2022; 38:664-681. [PMID: 36255463 DOI: 10.1089/jop.2022.0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Purpose: To characterize the impact of corneal cold storage (CS) on the endothelial apical junctional complex (AJC). Methods: Porcine corneas were held in CS (4°C; 1-7 days) with Cornisol™ preservation medium supplemented with epothilone B (EpoB; microtubule stabilizer; 100 nM), SB-203580 (p38 mitogen-activated protein [MAP] kinase inhibitor; 20 μM), or antioxidants (quercetin, 100 μM; vitamin E, 1 mM; deferoxamine, an iron chelator, 10 mM). After CS termination, the damage to endothelial AJC was characterized by imaging perijunctional actomyosin ring (PAMR) and zonula occludens (ZO-1). The effects of EpoB and SB-203580 were characterized by imaging microtubules. The loss in the barrier function was assessed in cultured cells grown on biotin-coated gelatin by permeability to fluorescein isothiocyanate (FITC)-avidin. The accumulation of reactive oxygen species (ROS), altered mitochondrial membrane potential (MMP), lipid peroxidation, and lactate dehydrogenase (LDH) release were also determined in response to CS. Results: CS led to the loss of microtubules, destruction of PAMR, and breakdown of ZO-1 in the endothelium. The severity of damage increased when CS was prolonged. Although rewarming of the tissue increased the damage, the effect was marginal. CS also induced accumulation of ROS, alteration in MMP, lipid peroxidation, enhanced LDH release, and increased permeability to FITC-avidin. These changes were opposed by EpoB, SB-203580, and antioxidants. Conclusion: Corneal CS destroys AJC of the endothelium, leading to loss of its barrier function. The effects were surmounted by microtubule stabilization, p38 MAP kinase inhibition, and antioxidants. Thus, there is potential for reformulation of the preservation medium to maintain the health of the donor corneal endothelium before transplantation.
Collapse
Affiliation(s)
- M Y Thanuja
- Bio-INvENT Lab, Department of Chemical Engineering, Siddaganga Institute of Technology, Tumakuru, India
| | - Sudhir H Ranganath
- Bio-INvENT Lab, Department of Chemical Engineering, Siddaganga Institute of Technology, Tumakuru, India
| | | |
Collapse
|
12
|
Quiring L, Caponi L, Schwan D, Rech A, Rauen U. Recovery from cold-induced mitochondrial fission in endothelial cells requires reconditioning temperatures of ≥ 25◦C. FRONTIERS IN TRANSPLANTATION 2022; 1:1044551. [PMID: 38994396 PMCID: PMC11235264 DOI: 10.3389/frtra.2022.1044551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/19/2022] [Indexed: 07/13/2024]
Abstract
Mitochondrial integrity and function constitute a prerequisite for cellular function and repair processes. We have previously shown that mitochondria of different cell types exhibit pronounced fragmentation under hypothermic conditions. This fission, accompanied by a decline of cellular ATP content, showed reversibility at 37◦C. However, it is unclear whether other temperatures as currently discussed for reconditioning of organs allow this reconstitution of mitochondria. Therefore, we here study in a model of cultured porcine aortic endothelial cells how different rewarming temperatures affect mitochondrial re-fusion and function. After 48 h cold incubation of endothelial cells in Krebs-Henseleit buffer with glucose (5 mM) and deferoxamine (1 mM) at 4◦C pronounced mitochondrial fission was observed. Following 2 h rewarming in cell culture medium, marked fission was still present after rewarming at 10◦ or 15◦C. At 21◦C some re-fusion was visible, which became more marked at 25◦C. Networks of tubular mitochondria similar to control cells only re-appeared at 37◦C. ATP content decreased at 4◦C from 3.6 ± 0.4 to 1.6 ± 0.4 nmol/106 cells and decreased even further when rewarming cells to 10◦ and 15◦C. Values after rewarming at 21◦C were similar to the values before rewarming while ATP gradually increased at higher rewarming temperatures. Metabolic activity dropped to 5 ± 11% of control values during 4◦C incubation and recovered with increasing temperatures to 36 ± 10% at 25◦C and 78 ± 17% at 37◦C. Integrity of monolayers, largely disturbed at 4◦C (large gaps between endothelial cells; cell injury ≤ 1%), showed partial recovery from 15◦C upwards, complete recovery at 37◦C. Endothelial repair processes (scratch assay) at 25◦C were clearly inferior to those at 37◦C. These data suggest that reconditioning temperatures below 21◦C are not optimal with regard to reconstitution of mitochondrial integrity and function. For this goal, temperatures of at least 25◦C appear required, with 30◦C being superior and 37◦C yielding the best results.
Collapse
Affiliation(s)
- Leonard Quiring
- Klinische Forschergruppe 117, Universitätsklinikum Essen, Essen, Germany
| | - Luisa Caponi
- Institut für Physiologische Chemie, Universitätsklinikum Essen, Essen, Germany
| | - Dhanusha Schwan
- Klinische Forschergruppe 117, Universitätsklinikum Essen, Essen, Germany
| | - Anja Rech
- Klinische Forschergruppe 117, Universitätsklinikum Essen, Essen, Germany
| | - Ursula Rauen
- Klinische Forschergruppe 117, Universitätsklinikum Essen, Essen, Germany
- Institut für Physiologische Chemie, Universitätsklinikum Essen, Essen, Germany
| |
Collapse
|
13
|
Eser N, Cicek M, Yoldas A, Demir M, Deresoy FA. Caffeic acid phenethyl ester ameliorates imidacloprid-induced acute toxicity in the rat cerebral cortex. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:103980. [PMID: 36191819 DOI: 10.1016/j.etap.2022.103980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/13/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to investigate the role of caffeic acid phenethyl ester (CAPE), a compound found in propolis, on imidacloprid (IMI), a nicotinic acetylcholine receptor agonist that causes cerebral toxicity. 60 adult rats were randomly divided into five groups: control, IMI (100 mg/kg), and IMI+CAPE (1, 5, 10 mg/kg). Cerebral cortex tissue was examined histopathologically, biochemically, spectrophotometrically and immunohistochemically. The results showed that IMI caused toxicity in the cerebral cortex. However, CAPE (5 and 10 mg/kg) attenuated the deteriorated histopathological score and normalized the apoptotic markers (Bax and Caspase-3). Additionally, CAPE dose-dependently normalized the levels of TNF-α, dopamin, GFAP and NGF, and at the highest dose (10 mg/kg) also normalized the balance of oxidative parameters (MDA, SOD, CAT, and GSH). In conclusion, the antioxidant, anti-inflammatory, and anti-apoptotic effects of CAPE may be a promising treatment for acute IMI-induced cerebral cortex toxicity.
Collapse
Affiliation(s)
- Nadire Eser
- Department of Pharmacology, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey.
| | - Mustafa Cicek
- Department of Medical Biology, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Atila Yoldas
- Department of Anatomy, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Mehmet Demir
- Department of Anatomy, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Faik Alev Deresoy
- Department of Pathology, Faculty of Medicine, Gaziosmanpasa University, Tokat, Turkey
| |
Collapse
|
14
|
Pretzsch E, Nieß H, Khaled NB, Bösch F, Guba M, Werner J, Angele M, Chaudry IH. Molecular Mechanisms of Ischaemia-Reperfusion Injury and Regeneration in the Liver-Shock and Surgery-Associated Changes. Int J Mol Sci 2022; 23:12942. [PMID: 36361725 PMCID: PMC9657004 DOI: 10.3390/ijms232112942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 09/01/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (IRI) represents a major challenge during liver surgery, liver preservation for transplantation, and can cause hemorrhagic shock with severe hypoxemia and trauma. The reduction of blood supply with a concomitant deficit in oxygen delivery initiates various molecular mechanisms involving the innate and adaptive immune response, alterations in gene transcription, induction of cell death programs, and changes in metabolic state and vascular function. Hepatic IRI is a major cause of morbidity and mortality, and is associated with an increased risk for tumor growth and recurrence after oncologic surgery for primary and secondary hepatobiliary malignancies. Therapeutic strategies to prevent or treat hepatic IRI have been investigated in animal models but, for the most part, have failed to provide a protective effect in a clinical setting. This review focuses on the molecular mechanisms underlying hepatic IRI and regeneration, as well as its clinical implications. A better understanding of this complex and highly dynamic process may allow for the development of innovative therapeutic approaches and optimize patient outcomes.
Collapse
Affiliation(s)
- Elise Pretzsch
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Hanno Nieß
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Najib Ben Khaled
- Department of Medicine II, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Florian Bösch
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Markus Guba
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Martin Angele
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Irshad H. Chaudry
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
15
|
Gulevskyy OK, Moisieieva NM, Gorina OL, Sidorenko OS. Preincubation of L929 Line Fibroblasts with Synthetic Leu-Enkephalin TYR-D-ALA-GLY-PHE-LEU-ARG Preserves Their Proliferative Potential under Cold Stress. CYTOL GENET+ 2022. [DOI: 10.3103/s0095452722040053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Bochimoto H, Ishihara Y, Mohd Zin NK, Iwata H, Kondoh D, Obara H, Matsuno N. Ultrastructural changes in porcine liver sinusoidal endothelial cells of machine perfused liver donated after cardiac death. World J Gastroenterol 2022; 28:2100-2111. [PMID: 35664031 PMCID: PMC9134135 DOI: 10.3748/wjg.v28.i19.2100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/17/2021] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The machine perfusion (MP) preservation including hypothermic MP (HMP) and midthermic MP (MMP) has been considered as a promising strategy to preserve the functions of liver donated after cardiac death. The importance of understanding liver sinusoidal endothelial cells (LSEC) damage in regulating liver injury during MP has been emphasized. However, the ultrastructural changes in the LSEC and sinusoids around them after MP are unclear.
AIM To investigate the ultrastructural changes in the LSEC and sinusoids around them after MP.
METHODS Porcine liver grafts undergo a warm ischemia time of 60 minutes perfused for 4 h with modified University of Wisconsin gluconate solution. Group A grafts were preserved with HMP at 8 °C constantly for 4 h. Group B grafts were preserved with a rewarming solution at 22 °C by MMP for 4 h. Then the ultrastructural changes in the LSEC and sinusoids in Group A and B were comparatively analyzed by using osmium-maceration scanning electron microscopy with complementary transmission electron microscopy methods.
RESULTS An analysis of the LSEC after warm ischemia revealed that mitochondria with condensed-shaped cristae, abnormal vesicles, reduction of ribosomes and the endoplasmic reticulum (ER) surround the mitochondria appeared. The MP subsequent after warm ischemia alleviate the abnormal vesicles and reduction of ribosomes in LSEC, which indicated the reduction of the ER damage. However, MMP could restore the tubular mitochondrial cristae, while after HMP the condensed and narrow mitochondrial cristae remained. In addition, the volume of the sinusoidal space in the liver grafts after MMP were restored, which indicated a lower risk of pressure injury than HMP.
CONCLUSION MMP alleviates the ER damage of LSEC by warm ischemia, additionally restore the metabolism of LSEC via the normalization of mitochondria and prevent the share stress damage of liver grafts.
Collapse
Affiliation(s)
- Hiroki Bochimoto
- Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku 105-8461, Tokyo, Japan
- Department of Transplantation Technology and Therapeutic Development, Asahikawa Medical University, Asahikawa 078-8510, Hokkaido, Japan
| | - Yo Ishihara
- Department of Transplantation Technology and Therapeutic Development, Asahikawa Medical University, Asahikawa 078-8510, Hokkaido, Japan
| | - Nur Khatijah Mohd Zin
- Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku 105-8461, Tokyo, Japan
| | - Hiroyoshi Iwata
- Department of Surgery, Asahikawa Medical University, Asahikawa 078-8510, Hokkaido, Japan
| | - Daisuke Kondoh
- Laboratory of Veterinary Anatomy, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| | - Hiromichi Obara
- Department of Transplantation Technology and Therapeutic Development, Asahikawa Medical University, Asahikawa 078-8510, Hokkaido, Japan
- Department of Mechanical Engineering, Tokyo Metropolitan University, Hachioji 192-0397, Tokyo, Japan
| | - Naoto Matsuno
- Department of Transplantation Technology and Therapeutic Development, Asahikawa Medical University, Asahikawa 078-8510, Hokkaido, Japan
- Department of Surgery, Asahikawa Medical University, Asahikawa 078-8510, Hokkaido, Japan
| |
Collapse
|
17
|
Quiring L, Walter B, Lohaus N, Schwan D, Rech A, Dlugos A, Rauen U. Characterisation of cold-induced mitochondrial fission in porcine aortic endothelial cells. Mol Med 2022; 28:13. [PMID: 35100966 PMCID: PMC8802553 DOI: 10.1186/s10020-021-00430-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/27/2021] [Indexed: 12/21/2022] Open
Abstract
Background Previously, we observed that hypothermia, widely used for organ preservation, elicits mitochondrial fission in different cell types. However, temperature dependence, mechanisms and consequences of this cold-induced mitochondrial fission are unknown. Therefore, we here study cold-induced mitochondrial fission in endothelial cells, a cell type generally displaying a high sensitivity to cold-induced injury. Methods Porcine aortic endothelial cells were incubated at 4–25 °C in modified Krebs–Henseleit buffer (plus glucose to provide substrate and deferoxamine to prevent iron-dependent hypothermic injury). Results Cold-induced mitochondrial fission occurred as early as after 3 h at 4 °C and at temperatures below 21 °C, and was more marked after longer cold incubation periods. It was accompanied by the formation of unusual mitochondrial morphologies such as donuts, blobs, and lassos. Under all conditions, re-fusion was observed after rewarming. Cellular ATP content dropped to 33% after 48 h incubation at 4 °C, recovering after rewarming. Drp1 protein levels showed no significant change during cold incubation, but increased phosphorylation at both phosphorylation sites, activating S616 and inactivating S637. Drp1 receptor protein levels were unchanged. Instead of increased mitochondrial accumulation of Drp1 decreased mitochondrial localization was observed during hypothermia. Moreover, the well-known Drp1 inhibitor Mdivi-1 showed only partial protection against cold-induced mitochondrial fission. The inner membrane fusion-mediating protein Opa1 showed a late shift from the long to the fusion-incompetent short isoform during prolonged cold incubation. Oma1 cleavage was not observed. Conclusions Cold-induced mitochondrial fission appears to occur over almost the whole temperature range relevant for organ preservation. Unusual morphologies appear to be related to fission/auto-fusion. Fission appears to be associated with lower mitochondrial function/ATP decline, mechanistically unusual, and after cold incubation in physiological solutions reversible at 37 °C. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00430-z.
Collapse
|
18
|
Tolouee M, Hendriks KDW, Lie FF, Gartzke LP, Goris M, Hoogstra-Berends F, Bergink S, Henning RH. Cooling of Cells and Organs Confers Extensive DNA Strand Breaks Through Oxidative Stress and ATP Depletion. Cell Transplant 2022; 31:9636897221108705. [PMID: 35808831 PMCID: PMC9272479 DOI: 10.1177/09636897221108705] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cooling at 4°C is routinely used to lower metabolism and preserve cell and tissue integrity in laboratory and clinical settings, including organ transplantation. However, cooling and rewarming produce cell damage, attributed primarily to a burst of reactive oxygen species (ROS) upon rewarming. While DNA represents a highly vulnerable target of ROS, it is unknown whether cooling and/or rewarming produces DNA damage. Here, we show that cooling alone suffices to produce extensive DNA damage in cultured primary cells and cell lines, including double-strand breaks (DSBs), as shown by comet assay and pulsed-field gel electrophoresis. Cooling-induced DSB formation is time- and temperature-dependent and coincides with an excess production of ROS, rather than a decrease in ATP levels. Immunohistochemistry confirmed that DNA damage activates the DNA damage response marked by the formation of nuclear foci of proteins involved in DSB repair, γ-H2Ax, and 53BP1. Subsequent rewarming for 24 h fails to recover ATP levels and only marginally lowers DSB amounts and nuclear foci. Precluding ROS formation by dopamine and the hydroxychromanol, Sul-121, dose-dependently reduces DSBs. Finally, a standard clinical kidney transplant procedure, using cold static storage in UW preservation solution up to 24 h in porcine kidney, lowered ATP, increased ROS, and produced increasing amounts of DSBs with recruitment of 53BP1. Given that DNA repair is erroneous by nature, cooling-inflicted DNA damage may affect cell survival, proliferation, and genomic stability, significantly impacting cellular and organ function, with relevance in stem cell and transplantation procedures.
Collapse
Affiliation(s)
- Marziyeh Tolouee
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Koen D W Hendriks
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Fia Fia Lie
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Pharmacology, Medical Faculty, Universitas Tarumanagara, Jakarta, Indonesia
| | - Lucas P Gartzke
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Maaike Goris
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Femke Hoogstra-Berends
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Steven Bergink
- Department of Biomedical Sciences of Cells and Systems (BSCS), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Robert H Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
19
|
Tigges J, Eggerbauer F, Worek F, Thiermann H, Rauen U, Wille T. Optimization of long-term cold storage of rat precision-cut lung slices with a tissue preservation solution. Am J Physiol Lung Cell Mol Physiol 2021; 321:L1023-L1035. [PMID: 34643087 DOI: 10.1152/ajplung.00076.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Precision-cut lung slices (PCLS) are used as ex vivo model of the lung to fill the gap between in vitro and in vivo experiments. To allow optimal utilization of PCLS, possibilities to prolong slice viability via cold storage using optimized storage solutions were evaluated. Rat PCLS were cold stored in DMEM/F-12 or two different preservation solutions for up to 28 days at 4°C. After rewarming in DMEM/F-12, metabolic activity, live/dead staining, and mitochondrial membrane potential was assessed to analyze overall tissue viability. Single-cell suspensions were prepared and proportions of CD45+, EpCAM+, CD31+, and CD90+ cells were analyzed. As functional parameters, TNF-α expression was analyzed to detect inflammatory activity and bronchoconstriction was evaluated after acetylcholine stimulus. After 14 days of cold storage, viability and mitochondrial membrane potential were significantly better preserved after storage in solution 1 (potassium chloride rich) and solution 2 (potassium- and lactobionate-rich analog) compared with DMEM/F-12. Analysis of cell populations revealed efficient preservation of EpCAM+, CD31+, and CD90+ cells. Proportion of CD45+ cells decreased during cold storage but was better preserved by both modified solutions than by DMEM/F-12. PCLS stored in solution 1 responded substantially longer to inflammatory stimulation than those stored in DMEM/F-12 or solution 2. Analysis of bronchoconstriction revealed total loss of function after 14 days of storage in DMEM/F-12 but, in contrast, a good response in PCLS stored in the optimized solutions. An improved base solution with a high potassium chloride concentration optimizes cold storage of PCLS and allows shipment between laboratories and stockpiling of tissue samples.
Collapse
Affiliation(s)
- Jonas Tigges
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Florian Eggerbauer
- Walther Straub Institute of Pharmacology and Toxicology, Munich, Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Ursula Rauen
- Institute of Physiological Chemistry, University Hospital, Essen, Germany
| | - Timo Wille
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| |
Collapse
|
20
|
Hoyer DP, Benkö T, Gallinat A, Lefering R, Kaths M, Kribben A, Korth J, Rauen U, Treckmann JW, Paul A. HTK-N as a new preservation solution for human kidney preservation: Results of a pilot randomized controlled clinical phase II trial in living donor transplantation. Clin Transplant 2021; 36:e14543. [PMID: 34813125 DOI: 10.1111/ctr.14543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/29/2021] [Accepted: 11/15/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND HTK-N was developed based on the traditional HTK preservation solution, resulting in stronger protection against reactive oxygen species as well as better tolerance to hypothermia and ischemia. Aim of the present study was to compare HTK-N to HTK in clinical kidney transplantation demonstrating safety and non-inferiority. METHODS We performed a randomized controlled single blinded clinical phase II trial in patients undergoing living donor kidney transplantation. After retroperitoneoscopic nephrectomy kidneys were either perfused and stored with classical HTK solution or the new HTK-N solution. Primary endpoint was the glomerular filtration rate (eGFR according to CKD EPI) 3 months after transplantation. Secondary endpoints included graft and patient survival beside others. RESULTS The study included 42 patients, of which 22 were randomized in the HTK-N group and 20 in the HTK group. The primary end point showed a mean eGFR of 55.4 ± 14.0 ml/min/1.73 m2 in the HTK group compared to a GFR of 57.2 ± 16.7 ml/min/m2 in the HTK-N group (P = .72). Regarding secondary endpoints, there were no apparent differences. Posttransplant graft and patient survival was 100%. CONCLUSION This study is the first clinical application of HTK-N for kidney preservation and demonstrates non-inferiority compared to HTK in the setting of living donor kidney transplantation.
Collapse
Affiliation(s)
- Dieter P Hoyer
- General, Visceral, and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Tamas Benkö
- General, Visceral, and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Anja Gallinat
- General, Visceral, and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Rolf Lefering
- Institute of Research in Operative Medicine, University Witten, Herdecke, Germany
| | - Moritz Kaths
- General, Visceral, and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Andreas Kribben
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Johannes Korth
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ursula Rauen
- Institute of Physiological Chemistry, University Hospital Essen, Essen, Germany
| | - Juergen W Treckmann
- General, Visceral, and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Andreas Paul
- General, Visceral, and Transplantation Surgery, University Hospital Essen, Essen, Germany
| |
Collapse
|
21
|
Tveita T, Sieck GC. Physiological Impact of Hypothermia: The Good, the Bad and the Ugly. Physiology (Bethesda) 2021; 37:69-87. [PMID: 34632808 DOI: 10.1152/physiol.00025.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Hypothermia is defined as a core body temperature of < 35°C, and as body temperature is reduced the impact on physiological processes can be beneficial or detrimental. The beneficial effect of hypothermia enables circulation of cooled experimental animals to be interrupted for 1-2 h without creating harmful effects, while tolerance of circulation arrest in normothermia is between 4 and 5 min. This striking difference has attracted so many investigators, experimental as well as clinical, to this field, and this discovery was fundamental for introducing therapeutic hypothermia in modern clinical medicine in the 1950's. Together with the introduction of cardiopulmonary bypass, therapeutic hypothermia has been the cornerstone in the development of modern cardiac surgery. Therapeutic hypothermia also has an undisputed role as a protective agent in organ transplantation and as a therapeutic adjuvant for cerebral protection in neonatal encephalopathy. However, the introduction of therapeutic hypothermia for organ protection during neurosurgical procedures or as a scavenger after brain and spinal trauma has been less successful. In general, the best neuroprotection seems to be obtained by avoiding hyperthermia in injured patients. Accidental hypothermia occurs when endogenous temperature control mechanisms are incapable of maintaining core body temperature within physiologic limits and core temperature becomes dependent on ambient temperature. During hypothermia spontaneous circulation is considerably reduced and with deep and/or prolonged cooling, circulatory failure may occur, which may limit safe survival of the cooled patient. Challenges that limit safe rewarming of accidental hypothermia patients include cardiac arrhythmias, uncontrolled bleeding, and "rewarming shock".
Collapse
Affiliation(s)
- Torkjel Tveita
- Anesthesia and Critical Care Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway.,Division of Surgical Medicine and Intensive Care, University Hospital of North Norway, Tromsø, Norway
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
22
|
Guo HJ, Wang LJ, Wang C, Guo DZ, Xu BH, Guo XQ, Li H. Identification of an Apis cerana zinc finger protein 41 gene and its involvement in the oxidative stress response. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21830. [PMID: 34288081 DOI: 10.1002/arch.21830] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Zinc finger proteins (ZFPs) are a class of transcription factors that contain zinc finger domains and play important roles in growth, aging, and responses to abiotic and biotic stresses. These proteins activate or inhibit gene transcription by binding to single-stranded DNA or RNA and through RNA/DNA bidirectional binding and protein-protein interactions. However, few studies have focused on the oxidation resistance functions of ZFPs in insects, particularly Apis cerana. In the current study, we identified a ZFP41 gene from A. cerana, AcZFP41, and verified its function in oxidative stress responses. Real-time quantitative polymerase chain reaction showed that the transcription level of AcZFP41 was upregulated to different degrees during exposure to oxidative stress, including that induced by extreme temperature, UV radiation, or pesticides. In addition, the silencing of AcZFP41 led to changes in the expression patterns of some known antioxidant genes. Moreover, the activities of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), and glutathione S-transferase (GST) in AcZFP41-silenced honeybees were higher than those in a control group. In summary, the data indicate that AcZFP41 is involved in the oxidative stress response. The results provide a theoretical basis for further studies of zinc finger proteins and improve our understanding of the antioxidant mechanisms of honeybees.
Collapse
Affiliation(s)
- Hui-Juan Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Li-Jun Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - De-Zheng Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Bao-Hua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Xing-Qi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Han Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
23
|
Hepatic resistance to cold ferroptosis in a mammalian hibernator Syrian hamster depends on effective storage of diet-derived α-tocopherol. Commun Biol 2021; 4:796. [PMID: 34172811 PMCID: PMC8233303 DOI: 10.1038/s42003-021-02297-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
Mammalian hibernators endure severe and prolonged hypothermia that is lethal to non-hibernators, including humans and mice. The mechanisms responsible for the cold resistance remain poorly understood. Here, we found that hepatocytes from a mammalian hibernator, the Syrian hamster, exhibited remarkable resistance to prolonged cold culture, whereas murine hepatocytes underwent cold-induced cell death that fulfills the hallmarks of ferroptosis such as necrotic morphology, lipid peroxidation and prevention by an iron chelator. Unexpectedly, hepatocytes from Syrian hamsters exerted resistance to cold- and drug-induced ferroptosis in a diet-dependent manner, with the aid of their superior ability to retain dietary α-tocopherol (αT), a vitamin E analog, in the liver and blood compared with those of mice. The liver phospholipid composition is less susceptible to peroxidation in Syrian hamsters than in mice. Altogether, the cold resistance of the hibernator’s liver is established by the ability to utilize αT effectively to prevent lipid peroxidation and ferroptosis. Daisuke Anegawa et al. investigated the mechanisms responsible for cold resistance in the Syrian hamster’s hepatocytes, which exhibited remarkable resistance to prolonged cold culture. Their results suggest that hepatocytes exhibit diet-dependent resistance to cold, which is linked to the retention of α-tocopherol in the liver.
Collapse
|
24
|
Guo D, Zhao G, Li G, Wang C, Wang H, Liu Z, Xu B, Guo X. Identification of a mitogen-activated protein kinase kinase (AccMKK4) from Apis cerana cerana and its involvement in various stress responses. INSECT MOLECULAR BIOLOGY 2021; 30:325-339. [PMID: 33538052 DOI: 10.1111/imb.12698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/03/2020] [Accepted: 01/25/2021] [Indexed: 05/19/2023]
Abstract
The mitogen-activated protein kinase (MAPK) cascade pathway is a ubiquitous signal transduction pathway in eukaryotes that regulates a variety of immune responses. This study accomplished the first isolation of an AccMKK4 gene from Apis cerana cerana and explored its function. Yeast two-hybrid experiments proved that AccMKK4 can interact with Accp38b, and the silencing of AccMKK4 in honeybees downregulated the expression level of Accp38b, which suggests that AccMKK4 might participate in the oxidative stress response through the p38 MAPK pathway. Tissue-specific expression levels of AccMKK4 analysis showed that AccMKK4 in the thorax, particularly muscle tissue, was higher than that in other tissues. The qRT-PCR results from different conditions demonstrated that AccMKK4 responds to various environmental stresses. After AccMKK4 silencing, the transcription level of some antioxidant genes and the activity of antioxidant-related enzymes are reduced, which indicated that AccMKK4 plays an important role in resistance against oxidative stress caused by external stimuli. In summary, our findings indicate that AccMKK4 probably plays an indispensable role in the response of honeybees to environmental stress and might aid for further research on the role of the MAPK cascade pathway in the antioxidant defence mechanisms of insects.
Collapse
Affiliation(s)
- D Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, PR China
| | - G Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, PR China
| | - G Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, PR China
| | - C Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, PR China
| | - H Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, PR China
| | - Z Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, PR China
| | - B Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, PR China
| | - X Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, PR China
| |
Collapse
|
25
|
von Horn C, Wilde B, Rauen U, Paul A, Minor T. Use of the new preservation solution Custodiol-MP for ex vivo reconditioning of kidney grafts. Artif Organs 2021; 45:1117-1123. [PMID: 33683761 DOI: 10.1111/aor.13951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/12/2020] [Accepted: 03/02/2021] [Indexed: 01/02/2023]
Abstract
Organ shortage and the increasing use of extended criteria donor grafts for transplantation drives efforts for more efficient organ preservation strategies from simple cold storage toward dynamic organ reconditioning. The choice of a suitable preservation solution is of high relevance in different organ preservation or reconditioning situations. Custodiol-MP is a new machine perfusion solution giving the opportunity to add colloids according to organ requirements. The present study aimed to compare new Custodiol-MP with clinically established Belzer MPS solution. Porcine kidneys were ischemically predamaged and cold stored for 20 hours. Ex vivo machine reconditioning was performed either with Custodiol-MP (n = 6) or with Belzer MPS solution (n = 6) for 90 minutes with controlled oxygenated rewarming up to 20°C. Kidney function was evaluated using an established ex vivo reperfusion model. In this experimental setting, differences between both types of perfusion solutions could not be observed. Machine perfusion with Custodiol-MP resulted in higher creatinine clearance (7.4 ± 8.6 mL/min vs. 2.8 ± 2.5 mL/min) and less TNC perfusate levels (0.22 ± 0.25 ng/mL vs. 0.09 ± 0.08 ng/mL), although differences did not reach significance. For short-term kidney perfusion Custodiol-MP is safe and applicable. Particularly, the unique feature of flexible colloid supplementation makes the solution attractive in specific experimental and clinical settings.
Collapse
Affiliation(s)
- Charlotte von Horn
- Department of Surgical Research, Clinic for General, Visceral and Transplantation Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Benjamin Wilde
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, University Duisburg-Essen, Essen, Germany
| | - Ursula Rauen
- Institut für Physiologische Chemie, Universitätsklinikum Essen, University Duisburg-Essen, Essen, Germany
| | - Andreas Paul
- Clinic for General, Visceral and Transplantation Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Thomas Minor
- Department of Surgical Research, Clinic for General, Visceral and Transplantation Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
26
|
A novel histidine-tryptophan-ketoglutarate formulation ameliorates intestinal injury in a cold storage and ex vivo warm oxygenated reperfusion model in rats. Biosci Rep 2021; 40:222289. [PMID: 32129456 DOI: 10.1042/bsr20191989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/03/2019] [Accepted: 03/04/2020] [Indexed: 12/12/2022] Open
Abstract
AIM The present study aims to evaluate protective effects of a novel histidine-tryptophan-ketoglutarate solution (HTK-N) and to investigate positive impacts of an additional luminal preservation route in cold storage-induced injury on rat small bowels. METHODS Male Lewis rats were utilized as donors of small bowel grafts. Vascular or vascular plus luminal preservation were conducted with HTK or HTK-N and grafts were stored at 4°C for 8 h followed by ex vivo warm oxygenated reperfusion with Krebs-Henseleit buffer for 30 min. Afterwards, intestinal tissue and portal vein effluent samples were collected for evaluation of morphological alterations, mucosal permeability and graft vitality. RESULTS The novel HTK-N decreased ultrastructural alterations but otherwise presented limited effect on protecting small bowel from ischemia-reperfusion injury in vascular route. However, the additional luminal preservation led to positive impacts on the integrity of intestinal mucosa and vitality of goblet cells. In addition, vascular plus luminal preservation route with HTK significantly protected the intestinal tissue from edema. CONCLUSION HTK-N protected the intestinal mucosal structure and graft vitality as a luminal preservation solution. Additional luminal preservation route in cold storage was shown to be promising.
Collapse
|
27
|
Zhang W, Wang H, Liu Z, Wang Y, Xu B. Identification of a new P450s gene ( AccCYP4AV1) and its roles in abiotic stress resistance in the Apis cerana cerana Fabricius. BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 111:57-65. [PMID: 33107419 DOI: 10.1017/s0007485320000644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cytochrome P450 monooxygenases (P450s) play significant roles in protecting organisms from abiotic stress damage. Here, we report the sequence and characterization of a P450s gene (AccCYP4AV1), isolated from Apis cerana cerana Fabricius. The open reading frame of AccCYP4AV1 is 1506 base pairs long and encodes a predicted protein of 501 amino acids and 57.84 kDa, with an isoelectric point of 8.67. Real-time quantitative polymerase chain reaction (RT-qPCR) analysis indicated that AccCYP4AV1 is more highly expressed in the midgut than in other tissues. In addition, the highest expression occurs in newly emerged adult workers, followed by the first instar of the larval stage. In addition, the expression of the AccCYP4AV1 was upregulated by low temperature (4 °C), ultraviolet radiation, hydrogen peroxide, paraquat, and dichlorvos treatments. In contrast, AccCYP4AV1 transcription was downregulated by other abiotic stress conditions: exposure to increased temperature (44 °C), deltamethrin, cadmium chloride, and mercury (II) chloride. Moreover, when AccCYP4AV1 was knocked-down by RNA interference, the results suggested that multiple antioxidant genes (AccsHSP22.6, AccSOD2, AccTpx1, and AccTpx4) were downregulated and antioxidant genes AccGSTO1 and AccTrx1 were upregulated. The activity levels of peroxidase and catalase were upregulated in the AccCYP4AV1-knocked-down samples, compared with those in the control groups. These findings suggest that the AccCYP4AV1 protein might be involved in the defense against abiotic stress damage.
Collapse
Affiliation(s)
- Weixing Zhang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| |
Collapse
|
28
|
Pflaum M, Merhej H, Peredo A, De A, Dipresa D, Wiegmann B, Wolkers W, Haverich A, Korossis S. Hypothermic preservation of endothelialized gas-exchange membranes. Artif Organs 2020; 44:e552-e565. [PMID: 32666514 DOI: 10.1111/aor.13776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/02/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022]
Abstract
Endothelialization of the blood contacting surfaces of blood-contacting medical devices, such as cardiovascular prostheses or biohybrid oxygenators, represents a plausible strategy for increasing their hemocompatibility. Nevertheless, isolation and expansion of autologous endothelial cells (ECs) usually requires multiple processing steps and time to obtain sufficient cell numbers. This excludes endothelialization from application in acute situations. Off-the-shelf availability of cell-seeded biohybrid devices could be potentially facilitated by hypothermic storage. In this study, the survival of cord-blood-derived endothelial colony forming cells (ECFCs) that were seeded onto polymethylpentene (PMP) gas-exchange membranes and stored for up to 2 weeks in different commercially available and commonly used preservation media was measured. While storage at 4°C in normal growth medium (EGM-2) for 3 days resulted in massive disruption of the ECFC monolayer and a significant decline in viability, ECFC monolayers preserved in Chillprotec could recover after up to 14 days with negligible effects on their integrity and viability. ECFC monolayers preserved in Celsior, HTS-FRS, or Rokepie medium showed a significant decrease in viability after 7 days or longer periods. These results demonstrated the feasibility of hypothermic preservation of ECFC monolayers on gas-exchange membranes for up to 2 weeks, with potential application on the preservation of pre-endothelialized oxygenators and further biohybrid cardiovascular devices.
Collapse
Affiliation(s)
- Michael Pflaum
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Hayan Merhej
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Hannover Medical School, Hannover, Germany.,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Ariana Peredo
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Adim De
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Daniele Dipresa
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Bettina Wiegmann
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Hannover Medical School, Hannover, Germany.,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany.,German Center for Lung Research, BREATH, Hannover Medical School, Hannover, Germany
| | - Willem Wolkers
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Hannover Medical School, Hannover, Germany.,Institute of Multiphase Processes, Faculty of Mechanical Engineering, Leibniz University Hannover, Hannover, Germany.,Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine, Hannover, Germany
| | - Axel Haverich
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Hannover Medical School, Hannover, Germany.,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany.,German Center for Lung Research, BREATH, Hannover Medical School, Hannover, Germany
| | - Sotirios Korossis
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Hannover Medical School, Hannover, Germany.,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany.,German Center for Lung Research, BREATH, Hannover Medical School, Hannover, Germany.,Cardiopulmonary Regenerative Engineering (CARE) Group, Centre for Biological Engineering (CBE), Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK
| |
Collapse
|
29
|
Karangwa SA, Lisman T, Porte RJ. Anticoagulant Management and Synthesis of Hemostatic Proteins during Machine Preservation of Livers for Transplantation. Semin Thromb Hemost 2020; 46:743-750. [DOI: 10.1055/s-0040-1715452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractLiver transplantation remains the only curative treatment for patients with end-stage liver disease. Despite a steadily increasing demand for suitable donor livers, the current pool of donor organs fails to meet this demand. To resolve this discrepancy, livers traditionally considered to be of suboptimal quality and function are increasingly utilized. These marginal livers, however, are less tolerant to the current standard cold preservation of donor organs. Therefore, alternative preservation methods have been sought and are progressively applied into clinical practice. Ex situ machine perfusion is a promising alternative preservation modality particularly for suboptimal donor livers as it provides the ability to resuscitate, recondition, and test the viability of an organ prior to transplantation. This review addresses the modalities of machine perfusion currently being applied, and particularly focuses on the hemostatic management employed during machine perfusion. We discuss the anticoagulant agents used, the variation in dosage, and administration, as well as the implications of perfusion for extended periods of time in terms of coagulation activation associated with production of coagulation factors during perfusion. Furthermore, in regard to viability testing of an organ prior to transplantation, we discuss the possibilities and limitations of utilizing the synthesis of liver-derived coagulation factors as potential viability markers.
Collapse
Affiliation(s)
- Shanice A. Karangwa
- Department of Surgery, Surgical Research Laboratory, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ton Lisman
- Department of Surgery, Surgical Research Laboratory, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Robert J. Porte
- Section of HPB Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
30
|
Shao B, Wang M, Chen A, Zhang C, Lin L, Zhang Z, Chen A. Protective effect of caffeic acid phenethyl ester against imidacloprid-induced hepatotoxicity by attenuating oxidative stress, endoplasmic reticulum stress, inflammation and apoptosis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 164:122-129. [PMID: 32284117 DOI: 10.1016/j.pestbp.2020.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 06/11/2023]
Abstract
Imidacloprid (IMI) is a widely used neonicotinoid pesticide in the world, its environmental and human health risk has particularly attracted the attention of researchers. Caffeic acid phenethyl ester (CAPE), an active polyphenol of propolis, has many pharmacological activities including free radical scavenger, anti-inflammatory, and anti-oxidant. In this study, protective effect of CAPE against IMI induced liver injury in mice was performed. Administration of 1 and 2.5 mg/kg CAPE markedly prevented serum AST and ALT increase in 5 mg/kg IMI-induced mice. CAPE significantly downregulated liver NO generation and lipid peroxidation, and upregulated glutathione, catalase, superoxide dismutase and glutathione peroxidase in a dose-dependent manner in liver of IMI-induced mice. Endoplasmic reticulum stress represented by the swelling of endoplasmic reticulum was observed by transmission electron microscope in IMI group. Pretreatment of 2.5 mg/kg CAPE significantly attenuated the endoplasmic reticulum stress induced by IMI in liver. Western blot analysis illustrated that pretreatment of CAPE downregulated the upregulation of TNF-α and IFN-γ induced by IMI in liver of mice. Moreover, the increase of positive apoptotic hepatocytes further suggested apoptosis might be involved in IMI-induced hepatotoxicity. Pretreatment of 1 and 2.5 mg/kg CAPE significantly decreased positive apoptotic hepatocytes, suggested that CAPE prevented apoptosis in liver of IMI-induced mice. In conclusion, CAPE prevented liver injury in IMI-induced mice via attenuation of oxidative stress, endoplasmic reticulum stress, inflammation and apoptosis. Our findings may have broad biological and environmental implications for future research on the therapeutic strategy to prevent liver injury induced by pesticides.
Collapse
Affiliation(s)
- Bo Shao
- Department of Public Health, Jining Medical University, Jining, Shandong 272067, PR China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Meixia Wang
- Department of pharmacy, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272067, PR China
| | - Anran Chen
- Department of Mental Health, Jining Medical University, Jining, Shandong 272067, PR China
| | - Chunzhi Zhang
- Department of Public Health, Jining Medical University, Jining, Shandong 272067, PR China
| | - Li Lin
- Department of Public Health, Jining Medical University, Jining, Shandong 272067, PR China
| | - Zhaoqiang Zhang
- Department of Public Health, Jining Medical University, Jining, Shandong 272067, PR China
| | - Anlan Chen
- Department of Public Health, Jining Medical University, Jining, Shandong 272067, PR China
| |
Collapse
|
31
|
Xikeranmu Z, Ma J, Liu X. Characterization of a Mn-SOD from the desert beetle Microdera punctipennis and its increased resistance to cold stress in E. coli cells. PeerJ 2020; 8:e8507. [PMID: 32095349 PMCID: PMC7025704 DOI: 10.7717/peerj.8507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/03/2020] [Indexed: 11/20/2022] Open
Abstract
Insects have developed a complex network of enzymatic antioxidant systems for handling reactive oxygen species (ROS) generated during stress. Superoxide dismutases (SODs) play a determinant role in balancing ROS in insect. However, studies devoted to SODs functions in insects under cold stress are limited. In the present study, we attempted to identify and characterize a mitochondrial manganese SOD (mMn-SOD) from the desert beetle Micordera punctipennis (denoted as MpmMn-SOD) and explore its protective effects on bacteria cells under cold stress. MpmMn-SOD is composed of 202 amino acids with conserved domains required for metal ions binding and enzyme activity. RT-qPCR experiments revealed that the expression of MpmMn-SOD was ubiquitous but tissue-specific and was induced by cold stress. An E. coli (BL21) system was applied to study the function of MpmMn-SOD. The MpmMn-SOD gene was cloned into the prokaryotic expression vector pET-32a to generate a recombinant plasmid pET-32a(MpmMn-SOD). After transformation of the plasmid into E. coli BL21, the fusion protein Trx-His-MpmMn-SOD was overexpressed and identified by SDS-PAGE and Western blotting. Antioxidant activity assay showed that the death zones of the transformed bacteria BL21 (pET32a-mMn-SOD) were smaller in diameter than the control bacteria BL21 (pET32a). Survival curves under -4 °C showed that BL21 (pET32a-mMn-SOD) had significant enhanced cold resistance compared to BL21 (pET32a). Its SOD activity under -4 °C had a significant negative correlation (r = - 0.995) with superoxide anion O2 •- content. Accordingly, under cold stress BL21 (pET32a-mMn-SOD) had lower electric conductivity and malondialdehyde (MDA) content than BL21 (pET32a). Taken together, our results showed that cold stress stimulated the expression of MpmMn-SOD in M. punctipennis. The E. coli cells that overexpress MpmMn-SOD increase their resistance to cold stress by scavenging ROS, and mitigate potential cell damage caused by ROS under cold conditions.
Collapse
Affiliation(s)
- Zilajiguli Xikeranmu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Ji Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xiaoning Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
32
|
Kniepeiss D, Houben P, Stiegler P, Berghold A, Riedl R, Kahn J, Schemmer P. A prospective, randomized, single-blind, multicentre, phase III study on organ preservation with Custodiol-N solution compared with Custodiol® solution in organ transplantation (kidney, liver and pancreas). Trials 2020; 21:62. [PMID: 31924234 PMCID: PMC6954515 DOI: 10.1186/s13063-019-3823-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 10/22/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Organ preservation before transplantation is still a challenge. Both the University of Wisconsin and Bretschneider's histidine-tryptophan-ketoglutarate (HTK; Custodiol®) solution are standard for liver, kidney and pancreas preservation. Organ preservation with both solutions is comparable; recently, however, Custodiol® solution has been modified to Custodiol-N according to the needs of today. Thus, our study was defined to study its effect in clinical transplantation. METHODS Patients undergoing kidney transplantation (n = 412) (including approximately 30 combined kidney-pancreas) or liver transplantation (n = 202) receive grafts that have been cold stored in either Custodiol® or Custodiol-N to demonstrate noninferiority of Custodiol-N regarding both graft function and graft injury after transplantation. DISCUSSION Preclinical data have clearly shown that Custodiol-N is superior to Custodiol® in cold static organ preservation via mechanisms including inhibition of hypoxic cell injury, cold-induced cell injury and avoidance of adverse effects during warm exposure to the solution. Further clinical safety data on Custodiol-N for cardioplegia are available. Thus, this study was designed to compare Custodiol® with Custodiol-N for the first time in a prospective, randomized, single-blinded, multicentre, phase III clinical transplantation trial. TRIAL REGISTRATION Eudra-CT, 2017-002198-20. Registered on 28 November 2018.
Collapse
Affiliation(s)
- Daniela Kniepeiss
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 29, 8036, Graz, Austria.,Transplant Center Graz (TCG), Medical University of Graz, Auenbruggerplatz 29, 8036, Graz, Austria
| | - Philipp Houben
- Department of General, Visceral and Transplant Surgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Philipp Stiegler
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 29, 8036, Graz, Austria.,Transplant Center Graz (TCG), Medical University of Graz, Auenbruggerplatz 29, 8036, Graz, Austria
| | - Andrea Berghold
- Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Graz, Austria
| | - Regina Riedl
- Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Graz, Austria
| | - Judith Kahn
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 29, 8036, Graz, Austria.,Transplant Center Graz (TCG), Medical University of Graz, Auenbruggerplatz 29, 8036, Graz, Austria
| | - Peter Schemmer
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 29, 8036, Graz, Austria. .,Transplant Center Graz (TCG), Medical University of Graz, Auenbruggerplatz 29, 8036, Graz, Austria.
| |
Collapse
|
33
|
Olbertz C, Pizanis N, Bäumker H, Becker S, Aigner C, Rauen U, Nolte I, Kamler M, Koch A. Effects of immediate versus delayed ex-vivo lung perfusion in a porcine cardiac arrest donation model. Int J Artif Organs 2019; 42:362-369. [PMID: 31238824 DOI: 10.1177/0391398819841618] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Ex-vivo lung perfusion is a promising tool to evaluate and recondition marginal donor lungs usually after a cold static preservation. The concept of continuous organ perfusion is supposed to reduce ischemic damage; however, the optimal perfusion protocol has not been established yet. The aim of this study was to compare immediate ex-vivo lung perfusion (I-EVLP) to delayed ex-vivo lung perfusion (D-EVLP) after a certain cold static preservation period on lung function in a large animal model. METHODS In a porcine model, lungs were procured after circulatory death and 60 min of no-touch warm ischemia. Lungs were preserved with single-flush cold low potassium dextran solution and prepared either for I-EVLP (n = 8) or stored cold for 9 h with subsequent D-EVLP (n = 8). Functional outcomes and morphology were compared during 4 h of ex-vivo lung perfusion, using STEEN SolutionTM as perfusion solution. RESULTS Pulmonary functional data, perfusate activities of lactate dehydrogenase, alkaline phosphatase, and products of lipid peroxidation did not differ significantly. There was a trend toward lower wet-dry ratio (I-EVLP: 13.4 ± 2.9; D-EVLP: 9.1 ± 2.5) and higher ΔpO2 in D-EVLP group (I-EVLP: 209 ± 51.6 mmHg; D-EVLP: 236.3 ± 47.3 mmHg). CONCLUSION In this donation-after-circulatory-death model, 9 h of cold static preservation followed by ex-vivo lung perfusion results in comparable pulmonary function to I-EVLP as indicated by oxygenation capacities and wet-dry ratio. Our findings indicate that prolonged cold static preservation prior to ex-vivo lung perfusion is as safe and effective as I-EVLP in the procurement of donor lungs.
Collapse
Affiliation(s)
- Carolin Olbertz
- 1 Thoracic Transplantation, Department of Thoracic and Cardiovascular Surgery, West German Heart Center, University Hospital Essen, Essen, Germany.,2 Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Nikolaus Pizanis
- 1 Thoracic Transplantation, Department of Thoracic and Cardiovascular Surgery, West German Heart Center, University Hospital Essen, Essen, Germany
| | - Hagen Bäumker
- 1 Thoracic Transplantation, Department of Thoracic and Cardiovascular Surgery, West German Heart Center, University Hospital Essen, Essen, Germany
| | - Simon Becker
- 1 Thoracic Transplantation, Department of Thoracic and Cardiovascular Surgery, West German Heart Center, University Hospital Essen, Essen, Germany
| | - Clemens Aigner
- 3 Department of Thoracic Surgery, University Hospital Essen, Essen, Germany
| | - Ursula Rauen
- 4 Institute of Physiological Chemistry, University Hospital Essen, Essen, Germany
| | - Ingo Nolte
- 2 Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Markus Kamler
- 1 Thoracic Transplantation, Department of Thoracic and Cardiovascular Surgery, West German Heart Center, University Hospital Essen, Essen, Germany
| | - Achim Koch
- 1 Thoracic Transplantation, Department of Thoracic and Cardiovascular Surgery, West German Heart Center, University Hospital Essen, Essen, Germany
| |
Collapse
|
34
|
Helfritz FA, Bojkova D, Wanders V, Kuklinski N, Westhaus S, von Horn C, Rauen U, Gallinat A, Baba HA, Skyschally A, Swoboda S, Kinast V, Steinmann E, Heusch G, Minor T, Meuleman P, Paul A, Ciesek S. Methylene Blue Treatment of Grafts During Cold Ischemia Time Reduces the Risk of Hepatitis C Virus Transmission. J Infect Dis 2019; 218:1711-1721. [PMID: 29939277 DOI: 10.1093/infdis/jiy386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/22/2018] [Indexed: 02/07/2023] Open
Abstract
Background Although organ shortage is a rising problem, organs from hepatitis C virus (HCV) ribonucleic acid (RNA)-positive donors are not routinely transplanted in HCV-negative individuals. Because HCV only infects hepatocytes, other organs such as kidneys are merely contaminated with HCV via the blood. In this study, we established a protocol to reduce HCV virions during the cold ischemic time. Methods Standard virological assays were used to investigate the effect of antivirals, including methylene blue (MB), in different preservation solutions. Kidneys from mini pigs were contaminated with Jc1 or HCV RNA-positive human serum. Afterwards, organs were flushed with MB. Hypothermic machine perfusion was used to optimize reduction of HCV. Results Three different antivirals were investigated for their ability to inactivate HCV in vitro. Only MB completely inactivated HCV in the presence of all perfusion solutions. Hepatitis C virus-contaminated kidneys from mini pigs were treated with MB and hypothermic machine perfusion without any negative effect on the graft. Human liver-uPA-SCID mice did not establish HCV infection after inoculation with flow through from these kidneys. Conclusions This proof-of-concept study is a first step to reduce transmission of infectious HCV particles in the transplant setting and might serve as a model for other relevant pathogens.
Collapse
Affiliation(s)
- Fabian A Helfritz
- General, Visceral and Transplantation Surgery, University Hospital Essen, University Duisburg-Essen, Germany
| | - Denisa Bojkova
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Verena Wanders
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Nina Kuklinski
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Sandra Westhaus
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Charlotte von Horn
- General, Visceral and Transplantation Surgery, University Hospital Essen, University Duisburg-Essen, Germany
| | - Ursula Rauen
- Institute of Physiological Chemistry, University Hospital Essen, University Duisburg-Essen, Germany
| | - Anja Gallinat
- General, Visceral and Transplantation Surgery, University Hospital Essen, University Duisburg-Essen, Germany
| | - Hideo A Baba
- Institute of Pathology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Andreas Skyschally
- Institute of Pathophysiology, West German Heart and Vascular Center, University Hospital Essen, University Duisburg-Essen, Germany
| | - Sandra Swoboda
- General, Visceral and Transplantation Surgery, University Hospital Essen, University Duisburg-Essen, Germany
| | - Volker Kinast
- Institute of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Eike Steinmann
- Institute of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research, Hannover, Germany.,Department of Molecular and Medical Virology, Ruhr-University Bochum, Germany
| | - Gerd Heusch
- Institute of Pathophysiology, West German Heart and Vascular Center, University Hospital Essen, University Duisburg-Essen, Germany
| | - Thomas Minor
- General, Visceral and Transplantation Surgery, University Hospital Essen, University Duisburg-Essen, Germany
| | - Philip Meuleman
- Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Belgium
| | - Andreas Paul
- General, Visceral and Transplantation Surgery, University Hospital Essen, University Duisburg-Essen, Germany
| | - Sandra Ciesek
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, Germany.,German Center for Infection Research (DZIF), External Partner Site Essen, Germany
| |
Collapse
|
35
|
Kubrova E, Qu W, Galvan ML, Paradise CR, Yang J, Dietz AB, Dudakovic A, Smith J, van Wijnen AJ. Hypothermia and nutrient deprivation alter viability of human adipose-derived mesenchymal stem cells. Gene 2019; 722:144058. [PMID: 31494240 DOI: 10.1016/j.gene.2019.144058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 08/17/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Adipose-derived mesenchymal stem cells (MSCs) are attractive biological agents in regenerative medicine. To optimize cell therapies, it is necessary to determine the most effective delivery method for MSCs. Therefore, we evaluated the biological properties of MSCs after exposure to various temperatures to define optimal storage conditions prior to therapeutic delivery of MSCs. DESIGN Prospective observational study. METHODS AND MATERIALS Adherent and non-adherent MSCs were incubated at multiple temperatures (i.e., 4, 23 and 37 °C) in Lactated Ringers (LR) solution lacking essential cell growth ingredients, or in culture media which is optimized for cell growth. Cells were assessed either after the temperature changes (4 h) or after recovery (24 h). Metabolic activity of MSCs, cell number and expression of representative mRNA biomarkers were evaluated to assess the biological effects of temperature. We monitored changes in mRNAs expression related to cytoprotective- or stress-related responses (e.g., FOS, JUN, ATF1, ATF4, EGR1, EGR2, MYC), proliferation (e.g., HIST2H4, CCNB2), and extracellular matrix production (ECM; e.g., COL3A1, COL1A1) by quantitative real time reverse-transcriptase polymerase chain reaction (RT-qPCR) analysis. RESULTS Our study demonstrates that storing MSCs in Lactated Ringers (LR) solution for 4 h decreases cell number and metabolic activity. The number of viable MSCs decreased significantly when cultured at physiological temperature (37 °C) and severe hypothermia (4 °C), while cells grown at ambient temperature (23 °C) exhibited the least detrimental effects. There were no appreciable biological differences in mRNA markers for proliferation or ECM deposition at any of the temperatures. However, biomarkers related to cytoprotective- or stress-responses were selectively elevated depending on temperature or media type (i.e., LR versus standard media). CONCLUSION The biological impact of nutrient-free media and temperature changes after 4 h exposure persists after a 24 h recovery period. Hence, storage temperature and media conditions should be optimized to improve effective dosing of MSCs.
Collapse
Affiliation(s)
- Eva Kubrova
- Department of Physical Medicine &Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Wenchun Qu
- Department of Physical Medicine &Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - M Lizeth Galvan
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Christopher R Paradise
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States of America; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States of America
| | - Juan Yang
- Department of Physical Medicine &Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Allan B Dietz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Jay Smith
- Department of Physical Medicine &Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
36
|
Hessheimer AJ, Riquelme F, Fundora-Suárez Y, García Pérez R, Fondevila C. Normothermic perfusion and outcomes after liver transplantation. Transplant Rev (Orlando) 2019; 33:200-208. [PMID: 31239189 DOI: 10.1016/j.trre.2019.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/04/2019] [Accepted: 06/09/2019] [Indexed: 01/04/2023]
Abstract
Ischemia has been a persistent and largely unavoidable element in solid organ transplantation, contributing to graft deterioration and adverse post-transplant outcomes. In liver transplantation, where available organs arise with greater frequency from marginal donors (i.e., ones that are older, obese, and/or declared dead following cardiac arrest through the donation after circulatory death process), there is increasing interest using dynamic perfusion strategies to limit, assess, and even reverse the adverse effects of ischemia in these grafts. Normothermic perfusion, in particular, is used to restore the flow of oxygen and other metabolic substrates at physiological temperatures. It may be used in liver transplantation both in situ following cardiac arrest in donation after circulatory death donors or during part or all of the ex situ preservation phase. This review article addresses issues relevant to use of normothermic perfusion strategies in liver transplantation, including technical and logistical aspects associated with establishing and maintaining normothermic perfusion in its different forms and clinical outcomes that have been reported to date.
Collapse
Affiliation(s)
- Amelia J Hessheimer
- Hepatopancreatobiliary Surgery & Transplantation, General & Digestive Surgery Service, Digestive & Metabolic Disease Institute (ICMDM), Hospital Clínic, CIBERehd, IDIBAPS, University of Barcelona, Spain.
| | - Francisco Riquelme
- Hepatopancreatobiliary Surgery & Transplantation, General & Digestive Surgery Service, Digestive & Metabolic Disease Institute (ICMDM), Hospital Clínic, CIBERehd, IDIBAPS, University of Barcelona, Spain
| | - Yiliam Fundora-Suárez
- Hepatopancreatobiliary Surgery & Transplantation, General & Digestive Surgery Service, Digestive & Metabolic Disease Institute (ICMDM), Hospital Clínic, CIBERehd, IDIBAPS, University of Barcelona, Spain
| | - Rocío García Pérez
- Hepatopancreatobiliary Surgery & Transplantation, General & Digestive Surgery Service, Digestive & Metabolic Disease Institute (ICMDM), Hospital Clínic, CIBERehd, IDIBAPS, University of Barcelona, Spain
| | - Constantino Fondevila
- Hepatopancreatobiliary Surgery & Transplantation, General & Digestive Surgery Service, Digestive & Metabolic Disease Institute (ICMDM), Hospital Clínic, CIBERehd, IDIBAPS, University of Barcelona, Spain
| |
Collapse
|
37
|
Chen K, Li X, Song G, Zhou T, Long Y, Li Q, Zhong S, Cui Z. Deficiency in the membrane protein Tmbim3a/Grinaa initiates cold-induced ER stress and cell death by activating an intrinsic apoptotic pathway in zebrafish. J Biol Chem 2019; 294:11445-11457. [PMID: 31171717 DOI: 10.1074/jbc.ra119.007813] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/31/2019] [Indexed: 12/27/2022] Open
Abstract
Most members of the family of proteins containing a transmembrane BAX inhibitor motif (TMBIM) have anti-apoptotic activity, but their in vivo functions and intracellular mechanisms remain obscure. Here, we report that zebrafish Tmbim3a/Grinaa functions in the prevention of cold-induced endoplasmic reticulum (ER) stress and apoptosis. Using a gene-trapping approach, we obtained a mutant zebrafish line in which the expression of the tmbim3a/grinaa gene is disrupted by a Tol2 transposon insertion. Homozygous tmbim3a/grinaa mutant larvae exhibited time-dependently increased mortality and apoptosis under cold exposure (at 16 °C). Mechanistically, using immunofluorescence, fluorescence-based assessments of intracellular/mitochondrial Ca2+ levels, mitochondrial membrane potential measurements, and Ca2+-ATPase assays, we found that cold exposure suppresses sarcoplasmic/ER Ca2+-ATPase (SERCA) activity and induces the unfolded protein response (UPR) and ER stress. We also found that the cold-induced ER stress is increased in homozygous tmbim3a/grinaa mutant embryos. The cold-stress hypersensitivity of the tmbim3a/grinaa mutants was tightly associated with disrupted intracellular Ca2+ homeostasis, followed by mitochondrial Ca2+ overload and cytochrome c release, leading to the activation of caspase 9- and caspase-3-mediated intrinsic apoptotic pathways. Treatment of zebrafish larvae with the intracellular Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetate-acetoxymethyl ester (BAPTA-AM) or with 2-aminoethoxydiphenyl borate (2-APB), an inhibitor of the calcium-releasing protein inositol 1,4,5-trisphosphate receptor (IP3R), alleviated cold-induced cell death. Together, these findings unveil a key role of Tmbim3a/Grinaa in relieving cold-induced ER stress and in protecting cells against caspase 9- and caspase 3-mediated apoptosis during zebrafish development.
Collapse
Affiliation(s)
- Kai Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei, Wuhan 430072, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xixi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei, Wuhan 430072, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guili Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei, Wuhan 430072, China
| | - Tong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei, Wuhan 430072, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Long
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei, Wuhan 430072, China
| | - Qing Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei, Wuhan 430072, China
| | - Shan Zhong
- Department of Genetics, Wuhan University, Wuhan, Hubei 430071, China
| | - Zongbin Cui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei, Wuhan 430072, China .,Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
38
|
O'Brien CE, Santos PT, Kulikowicz E, Reyes M, Koehler RC, Martin LJ, Lee JK. Hypoxia-Ischemia and Hypothermia Independently and Interactively Affect Neuronal Pathology in Neonatal Piglets with Short-Term Recovery. Dev Neurosci 2019; 41:17-33. [PMID: 31108487 DOI: 10.1159/000496602] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 01/06/2019] [Indexed: 12/25/2022] Open
Abstract
Therapeutic hypothermia is the standard of clinical care for moderate neonatal hypoxic-ischemic encephalopathy. We investigated the independent and interactive effects of hypoxia-ischemia (HI) and temperature on neuronal survival and injury in basal ganglia and cerebral cortex in neonatal piglets. Male piglets were randomized to receive HI injury or sham procedure followed by 29 h of normothermia, sustained hypothermia induced at 2 h, or hypothermia with rewarming during fentanyl-nitrous oxide anesthesia. Viable and injured neurons and apoptotic profiles were counted in the anterior putamen, posterior putamen, and motor cortex at 29 h after HI injury or sham procedure. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) identified genomic DNA fragmentation to confirm cell death. Though hypothermia after HI preserved viable neurons in the anterior and posterior putamen, hypothermia prevented neuronal injury in only the anterior putamen. Hypothermia initiated 2 h after injury did not protect against apoptotic cell death in either the putamen or motor cortex, and rewarming from hypothermia was associated with increased apoptosis in the motor cortex. In non-HI shams, sustained hypothermia during anesthesia was associated with neuronal injury and corresponding viable neuron loss in the anterior putamen and motor cortex. TUNEL confirmed increased neurodegeneration in the putamen of hypothermic shams. Anesthetized, normothermic shams did not show abnormal neuronal cytopathology in the putamen or motor cortex, thereby demonstrating minimal contribution of the anesthetic regimen to neuronal injury during normothermia. We conclude that the efficacy of hypothermic protection after HI is region specific and that hypothermia during anesthesia in the absence of HI may be associated with neuronal injury in the developing brain. Studies examining the potential interactions between hypothermia and anesthesia, as well as with longer durations of hypothermia, are needed.
Collapse
Affiliation(s)
- Caitlin E O'Brien
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA,
| | - Polan T Santos
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ewa Kulikowicz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Michael Reyes
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Lee J Martin
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA.,Pathobiology Graduate Training Program, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jennifer K Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA.,Pathobiology Graduate Training Program, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
39
|
Salama SA, Arab HH, Hassan MH, Al Robaian MM, Maghrabi IA. Cadmium-induced hepatocellular injury: Modulatory effects of γ-glutamyl cysteine on the biomarkers of inflammation, DNA damage, and apoptotic cell death. J Trace Elem Med Biol 2019; 52:74-82. [PMID: 30732903 DOI: 10.1016/j.jtemb.2018.12.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/10/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022]
Abstract
Cadmium is an extremely toxic pollutant that reaches human body through intake of the industrially polluted food and water as well as through cigarette smoking and exposure to polluted air. Cadmium accumulates in different body organs especially the liver. It induces tissue injury largely through inflammation and oxidative stress-based mechanisms. The aim of the current study was to investigate the ability of γ glutamyl cysteine (γGC) to protect against cadmium-induced hepatocellular injury employing Wistar rats as a mammalian model. The results of the current work indicated that γGC upregulated the level of the anti-inflammatory cytokine IL-10 and downregulated the levels of the pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) in the cadmium-exposed rats. In addition, γGC reduced the liver tissues cadmium content in the cadmium-treated rats, suppressed the cadmium-induced hepatocellular apoptosis and oxidative modifications of cellular DNA, lipids, and proteins. Additionally, γGC enhanced the antioxidant potential of the liver tissues in the cadmium-treated rats as evidenced by a remarkable increase in the activity of the antioxidant enzymes superoxide dismutase and glutathione peroxidase and significant increase in the levels of the total antioxidant capacity and reduced glutathione as well as a significant reduction in oxidized to reduced glutathione (GSSG/GSH) ratio. Moreover, it effectively improved liver cell integrity in the cadmium-treated rats as demonstrated by a significant reduction in the serum activity of the liver enzymes (ALT and AST) and amelioration of the cadmium-evoked histopathological alterations. Together, these findings underscore, for the first time, the alleviating effects of γGC against cadmium-induced hepatocellular injury that is potentially mediated through reduction of liver tissue cadmium content along with modulation of both hepatocellular redox status and inflammatory cytokines.
Collapse
Affiliation(s)
- Samir A Salama
- Division of Biochemistry, Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Taif, 21974, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt.
| | - Hany H Arab
- Division of Biochemistry, Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Taif, 21974, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Memy H Hassan
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, El-Madinah El-Munaworah, 30001, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azahr University, Cairo, 11751, Egypt
| | - Majed M Al Robaian
- Department of Pharmaceutics, College of Clinical Pharmacy, Taif University, Taif 21974, Saudi Arabia
| | - Ibrahim A Maghrabi
- Department of Clinical Pharmacy, College of Clinical Pharmacy, Taif University, Taif 21974, Saudi Arabia
| |
Collapse
|
40
|
Kitahata S, Tanaka Y, Hori K, Kime C, Sugita S, Ueda H, Takahashi M. Critical Functionality Effects from Storage Temperature on Human Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium Cell Suspensions. Sci Rep 2019; 9:2891. [PMID: 30814559 PMCID: PMC6393435 DOI: 10.1038/s41598-018-38065-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/14/2018] [Indexed: 12/22/2022] Open
Abstract
Human induced pluripotent stem cell (hiPSC)-derived retinal pigment epithelium (hiPSC-RPE) cells suspension have the potential for regenerative treatment. However, practical regenerative applications with hiPSC-RPE cells require the development of simple and cost-effective non-freezing preservation methods. We investigated the effect of non-freezing temperatures on suspended hiPSC-RPE cells in various conditions and analysed mechanisms of cell death, anoikis, Rho GTPases, hypoxia, microtubule destruction, and cell metabolism. Cells stored at 37 °C had the lowest viability due to hypoxia from high cell metabolism and cell deposits, and cells preserved at 4 °C were damaged via microtubule fragility. Cell suspensions at 16 °C were optimal with drastically reduced apoptosis and negligible necrosis. Moreover, surviving cells proliferated and secreted key proteins normally, compared to cells without preservation. hiPSC-RPE cell suspensions were optimally preserved at 16 °C. Temperatures above or below the optimal temperature decreased cell viability significantly yet differentially by mechanisms of cell death, cellular metabolism, microtubule destruction, and oxygen tension, all relevant to cell conditions. Surviving cells are expected to function as grafts where high cell death is often reported. This study provides new insight into various non-freezing temperature effects on hiPSC-RPE cells that are highly relevant to clinical applications and may improve cooperation between laboratories and hospitals.
Collapse
Affiliation(s)
- Shohei Kitahata
- Laboratory for Retinal Regeneration, Biosystems Dynamics Research, RIKEN, Kobe, 650-0047, Japan.,Application Biology and Regenerative Medicine, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Yuji Tanaka
- Laboratory for Retinal Regeneration, Biosystems Dynamics Research, RIKEN, Kobe, 650-0047, Japan. .,Division of Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, 409-3898, Japan.
| | - Kanji Hori
- Laboratory for Retinal Regeneration, Biosystems Dynamics Research, RIKEN, Kobe, 650-0047, Japan.,Department of Ophthalmology, Juntendo University School of Medicine, Tokyo, 113-8431, Japan
| | - Cody Kime
- Laboratory for Retinal Regeneration, Biosystems Dynamics Research, RIKEN, Kobe, 650-0047, Japan
| | - Sunao Sugita
- Laboratory for Retinal Regeneration, Biosystems Dynamics Research, RIKEN, Kobe, 650-0047, Japan.,Kobe City Eye Hospital Research Center, Kobe, 650-0047, Japan
| | - Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8521, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, Biosystems Dynamics Research, RIKEN, Kobe, 650-0047, Japan.,Kobe City Eye Hospital Research Center, Kobe, 650-0047, Japan
| |
Collapse
|
41
|
Thi Nguyen N, Hirata M, Tanihara F, Hirano T, Le QA, Nii M, Otoi T. Hypothermic storage of porcine zygotes in serum supplemented with chlorogenic acid. Reprod Domest Anim 2019; 54:750-755. [PMID: 30788874 DOI: 10.1111/rda.13417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/08/2019] [Indexed: 12/14/2022]
Abstract
The current study was conducted to investigate the effects of 100% foetal bovine serum (FBS) and 100% porcine follicular fluid (pFF) as a storage medium on the developmental competence of porcine zygotes stored at 25°C for 24 hr. Moreover, we evaluated the additive effects of chlorogenic acid (CGA) in the storage medium. When in vitro-produced zygotes were stored at 25°C for 24 hr in tubes containing either tissue culture medium (TCM) 199 supplemented with 1 mg/ml bovine serum albumin (BSA), 100% of FBS or 100% of pFF, the rate of blastocyst formation was significantly higher in 100% of FBS than in BSA-containing TCM 199. When the effects of CGA supplementation in 100% of FBS on the development of zygotes stored at 25°C for 24 hr was evaluated, more zygotes stored with 50 µM CGA developed to blastocysts compared with the other concentrations of CGA. When the formation date and quality of blastocysts derived from zygotes stored in 100% of FBS supplemented with 50 µM CGA were investigated, the highest ratio of blastocysts formation in the storage group appeared 1 day later than in the non-stored control group. However, a higher proportion of blastocysts with apoptotic nuclei was observed in the stored group as compared to the non-stored group. In conclusion, 100% of FBS is available for a short storage medium of porcine zygotes. The supplementation of 50 µM CGA into the storage medium improves the rates of blastocyst formation of zygotes after storage, but the quality of embryos from the stored zygotes remains to be improved.
Collapse
Affiliation(s)
- Nhien Thi Nguyen
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Maki Hirata
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Fuminori Tanihara
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Takayuki Hirano
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Quynh Anh Le
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Masahiro Nii
- Tokushima Prefectural Livestock Research Institute, Tokushima, Japan
| | - Takeshige Otoi
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| |
Collapse
|
42
|
Rampes S, Ma D. Hepatic ischemia-reperfusion injury in liver transplant setting: mechanisms and protective strategies. J Biomed Res 2019; 33:221-234. [PMID: 32383437 DOI: 10.7555/jbr.32.20180087] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatic ischemia-reperfusion injury is a major cause of liver transplant failure, and is of increasing significance due to increased use of expanded criteria livers for transplantation. This review summarizes the mechanisms and protective strategies for hepatic ischemia-reperfusion injury in the context of liver transplantation. Pharmacological therapies, the use of pre-and post-conditioning and machine perfusion are discussed as protective strategies. The use of machine perfusion offers significant potential in the reconditioning of liver grafts and the prevention of hepatic ischemia-reperfusion injury, and is an exciting and active area of research, which needs more study clinically.
Collapse
Affiliation(s)
- Sanketh Rampes
- Faculty of Life Sciences & Medicine, King's College London, London SE1 1U, UK
| | - Daqing Ma
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, UK
| |
Collapse
|
43
|
Pless-Petig G, Walter B, Bienholz A, Rauen U. Mitochondrial Impairment as a Key Factor for the Lack of Attachment after Cold Storage of Hepatocyte Suspensions. Cell Transplant 2018; 26:1855-1867. [PMID: 29390882 PMCID: PMC5802638 DOI: 10.1177/0963689717743254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Isolated primary hepatocytes, which are widely used for pharmacological and clinical purposes, usually undergo certain periods of cold storage in suspension during processing. While adherent hepatocytes were shown previously to suffer iron-dependent cell death during cold (4 °C) storage and early rewarming, we previously found little iron-dependent hepatocyte death in suspension but severely decreased attachment ability unless iron chelators were added. Here, we focus on the role of mitochondrial impairment in this nonattachment of hepatocyte suspensions. Rat hepatocyte suspensions were stored in a chloride-poor, glycine-containing cold storage solution with and without iron chelators at 4 °C. After 1 wk of cold storage in the basic cold storage solution, cell viability in suspension was unchanged, while cell attachment was decreased by >80%. In the stored cells, a loss of mitochondrial membrane potential (MMP), a decrease in adenosine triphosphate (ATP) content (2 ± 2 nmol/106 cells after cold storage, 5 ± 3 nmol/106 cells after rewarming vs. control 29 ± 6 nmol/106 cells), and a decrease in oxygen consumption (101 ± 59 pmol sec-1 per 106 cells after rewarming vs. control 232 ± 83 pmol sec-1 per 106 cells) were observed. Addition of iron chelators to the cold storage solution increased cell attachment to 53% ± 20% and protected against loss of MMP, and cells were able to partially regenerate ATP during rewarming (15 ± 10 nmol/106 cells). Increased attachment could also be achieved by addition of the inhibitor combination of mitochondrial permeability transition, trifluoperazine + fructose. Attached hepatocytes displayed normal MMP and mitochondrial morphology. Additional experiments with freshly isolated hepatocytes confirmed that impaired energy production-as elicited by an inhibitor of the respiratory chain, antimycin A-can decrease cell attachment without decreasing viability. Taken together, these results suggest that mitochondrial impairment with subsequent energy deficiency is a key factor for the lack of attachment of cold-stored hepatocyte suspensions.
Collapse
Affiliation(s)
- Gesine Pless-Petig
- 1 Institut für Physiologische Chemie, Universitätsklinikum Essen, Essen, Germany
| | - Björn Walter
- 1 Institut für Physiologische Chemie, Universitätsklinikum Essen, Essen, Germany
| | - Anja Bienholz
- 2 Klinik für Nephrologie, Universitätsklinikum Essen, Essen, Germany
| | - Ursula Rauen
- 1 Institut für Physiologische Chemie, Universitätsklinikum Essen, Essen, Germany
| |
Collapse
|
44
|
Zhang W, Chen W, Li Z, Ma L, Yu J, Wang H, Liu Z, Xu B. Identification and Characterization of Three New Cytochrome P450 Genes and the Use of RNA Interference to Evaluate Their Roles in Antioxidant Defense in Apis cerana cerana Fabricius. Front Physiol 2018; 9:1608. [PMID: 30498454 PMCID: PMC6250095 DOI: 10.3389/fphys.2018.01608] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/25/2018] [Indexed: 11/13/2022] Open
Abstract
Cytochrome P450s play critical roles in maintaining redox homeostasis and protecting organisms from the accumulation of toxic reactive oxygen species (ROS). The biochemical functions of the P450 family have essentially been associated with the metabolism of xenobiotics. Here, we sequenced and characterized three P450 genes, AccCYP314A1, AccCYP4AZ1, and AccCYP6AS5, from Apis cerana cerana Fabricius; these genes play a critical role in maintaining biodiversity. Quantitative PCR (qPCR) analysis indicated that the three genes were all predominantly expressed in the epidermis (EP), followed by the brain (BR) and midgut (MG). In addition, the highest expression levels were detected in the dark-eyed pupae and adult stages. The three genes were induced by temperature (4°C and 44°C), heavy metals (CdCl2 and HgCl2), pesticides (DDV, deltamethrin, and paraquat) and UV treatments. Furthermore, Western blot analysis indicated that the protein expression levels could be induced by some abiotic stressors, a result that complements the qPCR results. We analyzed the silencing of these three genes and found that silencing these genes enhanced the enzymatic activities of peroxidase (POD) and catalase (CAT). Additionally, we investigated the expression of other antioxidant genes and found that some were upregulated, while others were downregulated, suggesting that the upregulated genes may be involved in compensating for the silencing of AccCYP314A1, AccCYP4AZ1, and AccCYP6AS5. Our findings suggest that AccCYP314A1, AccCYP4AZ1, and AccCYP6AS5 may play very significant roles in the antioxidant defense against damage caused by ROS.
Collapse
Affiliation(s)
- Weixing Zhang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Wenfeng Chen
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Zhenfang Li
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Lanting Ma
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Jing Yu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
45
|
Zhang H, Dalisson B, Tran S, Barralet J. Preservation of Blood Vessels with an Oxygen Generating Composite. Adv Healthc Mater 2018; 7:e1701338. [PMID: 30277005 DOI: 10.1002/adhm.201701338] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 08/07/2018] [Indexed: 02/06/2023]
Abstract
Damage caused by oxygen deficiency (hypoxia) is one of the major factors limiting tissue and organ preservation time. Cooling tissues slows down metabolic rate of cells thereby prolonging tissue and organ survival sufficiently to allow transport and transplantation within a few hours. Although metabolism is slowed, cells and some enzymes continue to consume oxygen that can render cold stored tissues hypoxic. Here, an oxygen-generating composite (OGC) with sustained oxygen release is reported for ex vivo blood vessel preservation. Aorta segments are cultured under hypothermia for 25 days in vascular preservation media. The presence of OGC increases cell viability from 9 ± 6% to 96 ± 3% and retains 65 ± 8% of original KCl stimulated contractile force after 25 days compared with 25 ± 4% in controls. Culture for 7 days in nitrogen demonstrates proof-of-concept for normothermic blood vessel preservation, OGC increases the cell viability from 45 ± 15% to 78 ± 2%, and KCl stimulates contractile force from 49 ± 7% to 95 ± 8%, respectively. Oxygen release materials then may have a role in augmenting current preservation techniques.
Collapse
Affiliation(s)
- Huaifa Zhang
- Faculty of Dentistry; McGill University; Montreal QC H3A 1G1 Canada
| | | | - Simon Tran
- Faculty of Dentistry; McGill University; Montreal QC H3A 1G1 Canada
| | - Jake Barralet
- Faculty of Dentistry; McGill University; Montreal QC H3A 1G1 Canada
- Division of Orthopaedics; Department of Surgery; Faculty of Medicine; McGill University; Montreal QC H3A 1G1 Canada
| |
Collapse
|
46
|
Ruoß M, Häussling V, Schügner F, Olde Damink LHH, Lee SML, Ge L, Ehnert S, Nussler AK. A Standardized Collagen-Based Scaffold Improves Human Hepatocyte Shipment and Allows Metabolic Studies over 10 Days. Bioengineering (Basel) 2018; 5:E86. [PMID: 30332824 PMCID: PMC6316810 DOI: 10.3390/bioengineering5040086] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 02/06/2023] Open
Abstract
Due to pronounced species differences, hepatotoxicity of new drugs often cannot be detected in animal studies. Alternatively, human hepatocytes could be used, but there are some limitations. The cells are not always available on demand or in sufficient amounts, so far there has been only limited success to allow the transport of freshly isolated hepatocytes without massive loss of function or their cultivation for a long time. Since it is well accepted that the cultivation of hepatocytes in 3D is related to an improved function, we here tested the Optimaix-3D Scaffold from Matricel for the transport and cultivation of hepatocytes. After characterization of the scaffold, we shipped cells on the scaffold and/or cultivated them over 10 days. With the evaluation of hepatocyte functions such as urea production, albumin synthesis, and CYP activity, we showed that the metabolic activity of the cells on the scaffold remained nearly constant over the culture time whereas a significant decrease in metabolic activity occurred in 2D cultures. In addition, we demonstrated that significantly fewer cells were lost during transport. In summary, the collagen-based scaffold allows the transport and cultivation of hepatocytes without loss of function over 10 days.
Collapse
Affiliation(s)
- Marc Ruoß
- Department of Traumatology, Siegfried Weller Institute, Eberhard Karls University, 72076 Tübingen, Germany.
| | - Victor Häussling
- Department of Traumatology, Siegfried Weller Institute, Eberhard Karls University, 72076 Tübingen, Germany.
| | | | | | - Serene M L Lee
- Hepacult GmbH, 82152 Martinsried/Planegg, Germany.
- Biobank of the Department of General, Visceral and Transplantation Surgery, Hospital of the LMU, 81377 Munich, Germany.
| | - Liming Ge
- Hepacult GmbH, 82152 Martinsried/Planegg, Germany.
| | - Sabrina Ehnert
- Department of Traumatology, Siegfried Weller Institute, Eberhard Karls University, 72076 Tübingen, Germany.
| | - Andreas K Nussler
- Department of Traumatology, Siegfried Weller Institute, Eberhard Karls University, 72076 Tübingen, Germany.
| |
Collapse
|
47
|
Wang L, Wang C, Li H, Yang X, Wang Y, Guo X, Xu B. Isolation of
AccGalectin1
from
Apis cerana cerana
and its functions in development and adverse stress response. J Cell Biochem 2018; 120:671-684. [DOI: 10.1002/jcb.27424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/12/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Lijun Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University Taian Shandong China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University Taian Shandong China
| | - Han Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University Taian Shandong China
| | - Xinxin Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University Taian Shandong China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University Taian Shandong China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University Taian Shandong China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University Taian Shandong China
| |
Collapse
|
48
|
Pless-Petig G, Rauen U. Serum-Free Cryopreservation of Primary Rat Hepatocytes in a Modified Cold Storage Solution: Improvement of Cell Attachment and Function. Biopreserv Biobank 2018; 16:285-295. [DOI: 10.1089/bio.2018.0002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Gesine Pless-Petig
- Institut für Physiologische Chemie, Universitätsklinikum Essen, Essen, Germany
| | - Ursula Rauen
- Institut für Physiologische Chemie, Universitätsklinikum Essen, Essen, Germany
| |
Collapse
|
49
|
Fang F, Ni K, Shang J, Zhang X, Xiong C, Meng T. Expression of mitofusin 2 in human sperm and its relationship to sperm motility and cryoprotective potentials. Exp Biol Med (Maywood) 2018; 243:963-969. [PMID: 30058380 DOI: 10.1177/1535370218790919] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Mitofusin 2 is a kind of mitochondria membrane protein that has been implicated in maintenance of mitochondrial morphology and function. However, the expression and function of mitofusin 2 in human sperm are not well described at present. The aim of this study was to explore the location of mitofusin 2 in human sperm and to discover its relationship to human sperm functions like motility and cryoprotective potentials. Our result showed that mitofusin 2 is specifically localized in the 5-7 μm midpiece between the neck and main part of human sperm tail. The expression level of mitofusin 2 in human sperm was significantly different between the normozoospermia and asthenozoospermia groups ( P < 0.05); meanwhile, the sperm of the asthenozoospermia group had a lower mitochondrial membrane potential ( P < 0.05), but the results of TUNEL assay did not show significant difference between the two groups. Furthermore, we found that the expression level of mitofusin 2 in the freeze-resistant group (cryo-survival rate >40%) was significantly higher than that of the freeze-intolerant group (cryo-survival rate ≤40%) ( P < 0.05). These results demonstrate that the expression level of mitofusin 2 is related to motility and cryoprotective potentials of human sperm. Mitofusin 2 may play a crucial role in the function of human sperm, which needs further research to discover the mechanism. Impact statement The exact function of mitochondria in human sperm before and during fertilization process remains controversial. MFN2 is a kind of mitochondria membrane protein and participates in the regulation of mitochondrial morphology and function. In this study, we discover the relationship of MFN2 expression to human sperm motility and cryoprotective potentials. Our results suggest that MFN2 could be a new target for the mechanism research of asthenozoospermia. MFN2 may also serve as a protein marker predicting the ability of human sperm to sustain cryopreservation.
Collapse
Affiliation(s)
- Fang Fang
- 1 Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,2 Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke Ni
- 3 Department of Anesthesiology, Tongji Medical College, Huazhong University of Science and Technology, Tongji Hospital, Wuhan 430030, China
| | - Jin Shang
- 2 Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoke Zhang
- 2 Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chengliang Xiong
- 2 Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,4 Center of Reproductive Medicine, Wuhan Tongji Reproductive Medicine Hospital, Wuhan 430013, China
| | - Tianqing Meng
- 4 Center of Reproductive Medicine, Wuhan Tongji Reproductive Medicine Hospital, Wuhan 430013, China
| |
Collapse
|
50
|
Beckmann E, Kensah G, Neumann A, Benecke N, Martens A, Martin U, Gruh I, Haverich A. Prolonged myocardial protection during hypothermic storage: potential application for cardiac surgery and myocardial tissue engineering. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aab055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|