1
|
Chen Y, Li X, Sun X, Kou Y, Ma X, Song L, Zhang H, Xie F, Song Z, Yuan C, Huang S, Wu Y. Joint transcriptomics and metabolomics unveil the protective mechanism of tamarind seed polysaccharide against antibiotic-induced intestinal barrier damage. Int J Biol Macromol 2025; 305:140999. [PMID: 39952497 DOI: 10.1016/j.ijbiomac.2025.140999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/13/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Intestinal barrier damage is frequently caused by antibiotic therapy, potentially leading to bacterial translocation and toxin leakage, which triggers inflammation and increases the risk of various diseases. In this study, Tamarind seed polysaccharides (TSP) with different molecular weights were administered to mice during the recovery phase from clindamycin-induced intestinal barrier damage. The results indicated that TSP restored the shortened colon length, reduced the enlarged cecum index, and decreased the elevated level of inflammatory infiltration. Biochemical testing revealed that TSP decreased the levels of intestinal permeability biomarkers and inflammatory factors that were elevated by clindamycin treatment. Transcriptomics and non-targeted metabolomics analyses respectively uncovered changes in colon gene expression and fecal metabolites. The joint analysis of these omics data identified critical pathways, including arachidonic acid metabolism, retinol metabolism, and steroid hormone biosynthesis. These findings suggest that TSP could be a promising dietary supplement for protecting the intestinal barrier and alleviating inflammation.
Collapse
Affiliation(s)
- Yinan Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xujiao Li
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality & Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xianbao Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuxing Kou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuan Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lihua Song
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Fan Xie
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zibo Song
- Yunnan Maoduoli Group Food Co., Ltd., Yuxi 653100, China; Yunnan Special Favor Biotechnology Co., Ltd., Yuxi 653100, China
| | - Chunmei Yuan
- Yunnan Maoduoli Group Food Co., Ltd., Yuxi 653100, China; Yunnan Special Favor Biotechnology Co., Ltd., Yuxi 653100, China
| | - Siyan Huang
- Yunnan Maoduoli Group Food Co., Ltd., Yuxi 653100, China; Yunnan Special Favor Biotechnology Co., Ltd., Yuxi 653100, China
| | - Yan Wu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Liu Y, Li X, Guo Z, Li G, He L, Liu H, Cai S, Huo T. Diammonium glycyrrhizinate alleviates iron overload-induced liver injury in mice via regulating the gut-liver axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156216. [PMID: 39547094 DOI: 10.1016/j.phymed.2024.156216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/19/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Evidence indicates a close association between iron overload (IO) and the pathogenesis of chronic liver diseases, highlighting the potential for interventions targeted at IO to impede or decelerate the progression of chronic liver diseases. Diammonium glycyrrhizinate (DG), the medicinal form of glycyrrhizic acid, a principal constituent of licorice, has been clinically employed as a hepatoprotective agent; however, its protective effect against IO-induced liver injury and underlying molecular mechanisms remain elusive. PURPOSE The aim of the present study is to investigate the hepatoprotective effect of DG against IO-induced liver injury with a focus on the gut-liver axis. STUDY DESIGN AND METHODS Animal models of IO-induced liver injury and DG treatment have been established in vivo. Iron deposition, liver injury, intestinal barrier damage, and liver inflammation were assessed in mice treated with iron dextran or DG. The microbiome composition in feces was analyzed using 16S rRNA full-length sequencing. Bile acids (BAs) profiles in feces were detected by UPLC-Q-TOF-MS technique, and the expression levels of receptors, enzymes or transporters involved in BAs metabolism were also determined. RESULTS DG partially reduced the iron deposition and the levels of ferrous ion in the livers of mice with IO, thereby mitigating oxidative damage. DG also improved gut microbiota dysbiosis, repaired intestinal barrier damage, inhibited endotoxin translocation to the liver, and subsequently suppressed TLR4/NF-κB/NLRP3 pathway-mediated liver inflammation caused by IO. Moreover, DG modulated BAs metabolism disorder in IO mice, reducing the accumulation of BAs in the liver. CONCLUSION DG alleviates IO-induced liver injury in mice by regulating the gut-liver axis. This study provides novel insights into the underlying mechanisms through which DG ameliorates liver injury caused by IO.
Collapse
Affiliation(s)
- Yu Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning, China, 110122
| | - Xiaohong Li
- The First Affiliated Hospital of China Medical University, Shenyang, 110001, PR China
| | - Ziwei Guo
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning, China, 110122
| | - Guangyan Li
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning, China, 110122
| | - Lu He
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning, China, 110122
| | - Huan Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning, China, 110122
| | - Shuang Cai
- The First Affiliated Hospital of China Medical University, Shenyang, 110001, PR China.
| | - Taoguang Huo
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China, 110122; Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning, China, 110122.
| |
Collapse
|
3
|
Morovic P, Gonzalez Moreno M, Trampuz A, Karbysheva S. In vitro evaluation of microbial D- and L-lactate production as biomarkers of infection. Front Microbiol 2024; 15:1406350. [PMID: 39176282 PMCID: PMC11340499 DOI: 10.3389/fmicb.2024.1406350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Mammalian cells produce and metabolize almost exclusively L-lactate, bacterial species have the capacity to produce both D-lactate and L-lactate. The aim of this study was to evaluate the intrinsic production of D- and L-lactate in the most common pathogenic microorganisms causing septic arthritis (SA) and periprosthetic joint infection (PJI) as a potential biomarker for the diagnosis of infection. Following microorganisms were grown according to ATCC culture guides and tested for production of D- and L-lactate: Staphylococcus aureus (ATCC 43300), Staphylococcus epidermidis (ATCC 35984), Enterococcus faecalis (ATCC 19433), Streptococcus pyogenes (ATCC 19615), Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), Cutibacterium acnes (ATCC 11827), and Candida albicans (ATCC 90028). Pathogens were inoculated in 8 ml of appropriate liquid media and incubated as planktonic or biofilm form in either aerobic, anaerobic or CO2 atmosphere up to 312 h. D- and L-lactate measurements were performed at different time points: 0, 6, 9, 12 and 24 h, then once per day for slow-growing pathogens. Samples were serially diluted and plated for colony counting. Liquid culture media without microorganisms served as a negative control. Production of D-lactate was observed in all tested microorganisms, whereas no L-lactate was detected in E. coli, P. aeruginosa, and C. albicans. Maximal concentration of D-lactate was produced by S. aureus (10.99 mmol/L), followed by E. coli (1.22 mmol/L), and S. epidermidis (0.48 mmol/L). Maximal L-lactate concentration was observed in S. pyogenes (10.12 mmol/L), followed by S. aureus (9.71 mmol/L), E. faecalis (2.64 mmol/L), and S. epidermidis (2.50 mmol/L). S. epidermidis bacterial biofilm produced significantly higher amount of D- and L-lactate compared to planktonic form (p = 0.015 and p = 0.002, respectively). Our study has demonstrated that the most common pathogenic microorganisms causing SA and PJI have the capability to generate measurable amounts of D-lactate in both planktonic and biofilm form, highlighting the practical value of this biomarker as an indicator for bacterial and fungal infections. In contrast to D-lactate, the absence of L-lactate production in certain tested bacteria, as well as in fungi, suggests that L-lactate is not eligible as a biomarker for diagnosing microbial infections.
Collapse
Affiliation(s)
| | | | | | - Svetlana Karbysheva
- Center for Musculoskeletal Surgery (CMSC), Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
4
|
Stefan A, Mucchi A, Hochkoeppler A. The catalytic action of human d-lactate dehydrogenase is severely inhibited by oxalate and is impaired by mutations triggering d-lactate acidosis. Arch Biochem Biophys 2024; 754:109932. [PMID: 38373542 DOI: 10.1016/j.abb.2024.109932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
d-lactate dehydrogenases are known to be expressed by prokaryotes and by eukaryotic invertebrates, and over the years the functional and structural features of some bacterial representatives of this enzyme ensemble have been investigated quite in detail. Remarkably, a human gene coding for a putative d-lactate dehydrogenase (DLDH) was identified and characterized, disclosing the occurrence of alternative splicing of its primary transcript. This translates into the expression of two human DLDH (hDLDH) isoforms, the molecular mass of which is expected to differ by 2.7 kDa. However, no information on these two hDLDH isoforms is available at the protein level. Here we report on the catalytic action of these enzymes, along with a first analysis of their structural features. In particular, we show that hDLDH is strictly stereospecific, with the larger isoform (hDLDH-1) featuring higher activity at the expense of d-lactate when compared to its smaller counterpart (hDLDH-2). Furthermore, we found that hDLDH is strongly inhibited by oxalate, as indicated by a Ki equal to 1.2 μM for this dicarboxylic acid. Structurally speaking, hDLDH-1 and hDLDH-2 were determined, by means of gel filtration and dynamic light scattering experiments, to be a hexamer and a tetramer, respectively. Moreover, in agreement with previous studies performed with human mitochondria, we identified FAD as the cofactor of hDLDH, and we report here a model of FAD binding by the human d-lactate dehydrogenase. Interestingly, the mutations W323C and T412 M negatively affect the activity of hDLDH, most likely by impairing the enzyme electron-acceptor site.
Collapse
Affiliation(s)
- Alessandra Stefan
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy; CSGI, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, FI, Italy
| | - Alberto Mucchi
- Department of Industrial Chemistry "Toso Montanari", Viale Risorgimento 4, 40136, Bologna, Italy
| | - Alejandro Hochkoeppler
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy; CSGI, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, FI, Italy.
| |
Collapse
|
5
|
Tan K, Bian Z, Liang H, Hu W, Xia M, Han S, Chen B. Enzymolytic soybean meal-impact on growth performance, nutrient digestibility, antioxidative capacity, and intestinal health of weaned piglets. Front Vet Sci 2024; 11:1381823. [PMID: 38585301 PMCID: PMC10995376 DOI: 10.3389/fvets.2024.1381823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Enzymolytic soybean meal (ESBM) enriches free amino acids and small peptides, while mitigating anti-nutritional factors. Substituting soybean meal with ESBM enhances animal performance, though optimal piglet dietary supplementation levels vary. The present study aimed to assess the impact of ESBM on the growth performance, nutrient digestibility, antioxidative capacity and intestinal health of weaned piglets. A total of 120 piglets (initial body weight, 7.0 ± 0.4 kg) were randomly allocated into 4 dietary groups, each comprising 5 replicates with 6 piglets per replicate. The control group received the basal diet, while the experimental groups were fed diets containing 2, 4% or 8% ESBM as a replacement for soybean meal over 28 days. Compared with the control group, piglets supplemented with 4% ESBM exhibited a significant increase (p < 0.05) in average daily gain and the apparent total tract digestibility of dry matter, ether extract and gross energy (p < 0.05), alongside a notable decrease (p < 0.05) in diarrhea incidence. Fed ESBM linearly increased (p < 0.05) the villus height in the ileum of piglets. The levels of superoxide dismutase and total antioxidant capacity in serum of piglets increased (p < 0.05) in the 2 and 4% ESBM groups, while diamine oxidase content decreased (p < 0.05) in the 4 and 8% ESBM group. ESBM inclusion also upregulated (p < 0.05) the expression of superoxide dismutase 1 (SOD-1), Catalase (CAT) and claudin-1 mRNA. In terms of cecal fermentation characteristics, ESBM supplementation resulted in a increase (p < 0.05) in valerate content and a linear rise (p < 0.05) in propionate, butyrate, and total short-chain fatty acids levels, accompanied by a decrease (p < 0.05) in the concentrations of tryptamine and NH3 in cecal digesta. ESBM had no discernible effect on cecal microbial composition. In summary, substitution of soybean meal with ESBM effectively improved the growth performance of piglets by enhancing nutrient digestibility, antioxidant capacity, intestinal barrier and cecal microbial fermentation characteristics, with the optimal replacement level identified at 4%.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuaijuan Han
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Baojiang Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
6
|
Ma M, Zheng Z, Zeng Z, Li J, Ye X, Kang W. Perioperative Enteral Immunonutrition Support for the Immune Function and Intestinal Mucosal Barrier in Gastric Cancer Patients Undergoing Gastrectomy: A Prospective Randomized Controlled Study. Nutrients 2023; 15:4566. [PMID: 37960219 PMCID: PMC10647624 DOI: 10.3390/nu15214566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/12/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
OBJECTIVE The impact of perioperative immunonutrition on patients undergoing radical gastrectomy remains undetermined. This study aimed to assess the influence of enteral immunonutrition support on postoperative immune function and intestinal mucosal barrier function following radical gastrectomy, contrasting findings with a control group to furnish evidence for perioperative enteral nutrition support. METHODS In this prospective randomized trial, 65 patients who underwent radical gastrectomy between June 2022 and June 2023 were included. Participants were allocated to either the study group (receiving enteral immunonutrition) or the control group (not receiving enteral immunonutrition). We compared postoperative rehabilitation and complications between the groups, analyzed the intestinal mucosal barrier function markers on the 3rd and 7th postoperative days, and delved deeper into peripheral blood cell immunity, inflammation, and nutritional indicators. RESULTS The cohort consisted of 30 patients in the study group and 35 in the control group, with no significant differences in demographic attributes between the two groups. On the 3rd postoperative day, the diamine oxidase, D-lactic acid, and endotoxin levels in the study group were significantly lower than those in the control group (p = 0.029, p = 0.044, and p = 0.010, respectively). By the 7th postoperative day, these levels continued to be significantly diminished in the study group (p = 0.013, p = 0.033, and p = 0.004, respectively). The times to first flatus (p = 0.012) and first bowel movement (p = 0.012) were significantly shorter in the study group. Moreover, postoperative complications in the study group were fewer than in the control group (p = 0.039). On the 7th postoperative day, the study group had lower peripheral white blood cell (WBC) levels (p = 0.020) and neutrophil-lymphocyte ratios (NLR) (p = 0.031), but displayed elevated albumin levels (p = 0.006). One month post-surgery, the CD4+T and CD8+T counts were significantly greater in the study group (p = 0.003 and p = 0.012, respectively). Correlation analyses indicated that NLR and complications were associated with endotoxin levels. CONCLUSION Administering perioperative enteral immunonutrition enhances postoperative immune and intestinal mucosal barrier functions in patients undergoing radical gastrectomy. This effect leads to diminished inflammatory responses, a decreased rate of postoperative complications, and accelerated patient recovery.
Collapse
Affiliation(s)
| | | | | | | | | | - Weiming Kang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China; (M.M.); (Z.Z.); (Z.Z.); (J.L.); (X.Y.)
| |
Collapse
|
7
|
Li L, Wu L, Jiang T, Liang T, Yang L, Li Y, Gao H, Zhang J, Xie X, Wu Q. Lactiplantibacillus plantarum 124 Modulates Sleep Deprivation-Associated Markers of Intestinal Barrier Dysfunction in Mice in Conjunction with the Regulation of Gut Microbiota. Nutrients 2023; 15:4002. [PMID: 37764783 PMCID: PMC10538203 DOI: 10.3390/nu15184002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Intestinal diseases caused by sleep deprivation (SD) are severe public health threats worldwide. However, whether or not probiotics attenuate the intestinal damage associated with SD remains unclear. In this study, we used antibiotic pretreatment and fecal microbiota transplantation to investigate the protective role of Lactiplantibacillus plantarum (L. plantarum) 124 against SD-related intestinal barrier damage in C57BL/6 mice. Compared with those of a normal sleeping mouse, we observed that intestinal antioxidant capacity and anti-inflammatory cytokine levels were decreased, while pro-inflammatory cytokines were increased in sleep deprivation mice with an increasing duration of sleep deprivation. This resulted in decreased tight junction protein expression and increased intestinal barrier permeability. In contrast, intragastric administration with L. plantarum 124 reversed SD-associated intestinal oxidative stress, inflammation, colonic barrier damage, and the dysbiosis of the microbiota in the colon. In addition, L. plantarum 124 restored gut microbiota homeostasis via restoring abundance, including that of Dubosiella, Faecalibaculum, Bacillus, Lachnoclostridium, and Bifidobacterium. Further studies showed that gut microbiota mediated SD-associated intestinal damage and the treatment L. plantarum 124 in SD-associated colonic barrier damage. L. plantarum 124 is a potential candidate for alleviating SD-associated intestinal barrier damage. Overall, L. plantarum 124 consumption attenuates intestinal oxidative stress, inflammation, and intestinal barrier damage in SD-associated mice via the modulation of gut microbes.
Collapse
Affiliation(s)
- Longyan Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Lei Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Tong Jiang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Tingting Liang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Lingshuang Yang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - He Gao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
8
|
Sun LM, Yu B, Luo YH, Zheng P, Huang Z, Yu J, Mao X, Yan H, Luo J, He J. Effect of small peptide chelated iron on growth performance, immunity and intestinal health in weaned pigs. Porcine Health Manag 2023; 9:32. [PMID: 37420289 DOI: 10.1186/s40813-023-00327-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Small peptide chelated iron (SPCI), a novel iron supplementation in pig diets, owns growth-enhancing characteristics. Although a number of researches have been performed, there is no clear-cut evidence to show the exact relationship between the dose and effects of small peptide chelated minerals. Therefore, we investigated the effect of dietary supplementation of SPCI at different doses in the growth performance, immunity, and intestinal health in weaned pigs. METHODS Thirty weaned pigs were randomly assigned into five groups and feed with basal diet or the basal diet containing 50, 75, 100, or 125 mg/kg Fe as SPCI diets. The experiment lasted for 21 d and on day 22, blood samples were collected 1 h later. The tissue and intestinal mucosa samples were collected following. RESULTS Our results showed that the feed to gain ratio (F:G) decreased with different levels of SPCI addition (P < 0.05). The average daily gain (ADG) (P < 0.05) and digestibility of crude protein (P < 0.01) decreased with 125 mg/kg SPCI addition. With dietary different levels of SPCI addition, the serum concentrations of ferritin (quadratic, P < 0.001), transferrin (quadratic, P < 0.001), iron content in liver (quadratic, P < 0.05), gallbladder (quadratic, P < 0.01) and fecal (quadratic, P < 0.01) increased quadraticly. While the iron content in tibia (P < 0.01) increased by 100 mg/kg SPCI supplementation. Dietary 75 mg/kg SPCI addition increased the serum insulin-like growth factor I (IGF-I) (P < 0.01) and SPCI (75 ~ 100 mg/kg) addition also increased the serum content of IgA (P < 0.01). The serum concentrations of IgG (quadratic, P < 0.05) and IgM (quadratic, P < 0.01) increased quadraticly by different levels of SPCI supplementation. Moreover, different levels of SPCI supplementation decreased the serum concentration of D-lactic acid (P < 0.01). The serum glutathione peroxidase (GSH-Px) (P < 0.01) elevated but the malondialdehyde (MDA) (P < 0.05) decreased by 100 mg/kg SPCI addition. Interestingly, SPCI supplementation at 75 ~ 100 mg/kg improved the intestinal morphology and barrier function, as suggested by enhanced villus height (P < 0.01) and villus height/crypt depth (V/C) (P < 0.01) in duodenum, as well as jejunum epithelium tight-junction protein ZO-1 (P < 0.01). Moreover, SPCI supplementation at 75 ~ 100 mg/kg increased the activity of duodenal lactase (P < 0.01), jejunal sucrase (P < 0.01) and ileal maltase (P < 0.01). Importantly, the expression levels of divalent metal transporter-1(DMT1) decreased with different levels of SPCI addition (P < 0.01). In addition, dietary SPCI supplementation at 75 mg/kg elevated the expression levels of critical functional genes such as peptide transporter-1(PePT1) (P = 0.06) and zinc transporter 1 (ZnT1) (P < 0.01) in ileum. The expression levels of sodium/glucose co-transporter-1 (SGLT1) in ileum (quadratic, P < 0.05) increased quadraticly by different levels of SPCI addition and amino acid transporter-1 (CAT1) in jejunum(P < 0.05) also increased by 100 mg/kg SPCI addition. CONCLUSIONS Dietary SPCI supplementation at 75 ~ 100 mg/kg improved growth performance by elevated immunity and intestinal health.
Collapse
Affiliation(s)
- Limei M Sun
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, 611130, Sichuan Province, P. R. China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, 611130, Sichuan Province, P. R. China
| | - Yuheng H Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, 611130, Sichuan Province, P. R. China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, 611130, Sichuan Province, P. R. China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, 611130, Sichuan Province, P. R. China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, 611130, Sichuan Province, P. R. China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, 611130, Sichuan Province, P. R. China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, 611130, Sichuan Province, P. R. China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, 611130, Sichuan Province, P. R. China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, P. R. China.
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, 611130, Sichuan Province, P. R. China.
| |
Collapse
|
9
|
Liu J, Luo Y, Kong X, Yu B, Zheng P, Huang Z, Mao X, Yu J, Luo J, Yan H, He J. Influences of wheat bran fiber on growth performance, nutrient digestibility, and intestinal epithelium functions in Xiangcun pigs. Heliyon 2023; 9:e17699. [PMID: 37449141 PMCID: PMC10336591 DOI: 10.1016/j.heliyon.2023.e17699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
Dietary fiber (DF) has long been looked as an essential "nutrients" both for animals and humans as it can promote the intestinal tract development and modulate the intestinal epithelium functions and the gut microbiota. This study was conducted to investigate the influences of wheat bran fiber (WBF) on growth performance and intestinal epithelium functions in Xiangcun pigs. Twenty Xiangcun pigs with 60 days of age were divided to two groups and exposed to a basal diet (BD) or BD containing 4.3% wheat bran fiber (WFD). WFD improved the average daily gain (ADG) and feed-to-gain ratio (F:G) (p < 0.01). Moreover, WFD lowered the serum triglyceride (TC), d-lactate, and malonicdialdehyde (MDA) concentrations, but significantly improved the glutathione (GSH) activity and total antioxidant capacity (T-AOC) (p < 0.05). Interestingly, WFD observably improved the villus height (VH) and the villus height to crypt depth ratio (V/C) in the small intestine (p < 0.05). The jejunal sucrase and ileal maltase activities were higher in the WFD group (p < 0.05). WFD markedly elevated the tight junction protein ZO-1 and claudin-1 expression levels in the jejunum and ileum (p < 0.05). The sodium/glucose co-transporter 1 (SGLT1), glucose transporter 2 (GLUT2), and fatty acid transport proteins 4 (FATP-4) expression levels in jejunum and ileum were also elevated under WFD (p < 0.05). WFD decreased the IL-6 impression level in the duodenum and ileum, but significantly increased the IL-10 expression levels in jejunum and ileum (p < 0.05). Moreover, WFD reduced the abundance of E. coli, but elevated the abundances of beneficial microorganisms (e.g. Lactobacillus and Bacillus) and the production microbial metabolites (e.g. propionic acid and butyrate acid) in the cecum (p < 0.05).
Collapse
Affiliation(s)
- Jiahao Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, PR China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu, 611130, PR China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, PR China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu, 611130, PR China
| | - Xiangfeng Kong
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 611130 410125, PR China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, PR China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu, 611130, PR China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, PR China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu, 611130, PR China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, PR China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu, 611130, PR China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, PR China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu, 611130, PR China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, PR China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu, 611130, PR China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, PR China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu, 611130, PR China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, PR China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu, 611130, PR China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, PR China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu, 611130, PR China
| |
Collapse
|
10
|
Mustafa Y, Leese HS. Fabrication of a Lactate-Specific Molecularly Imprinted Polymer toward Disease Detection. ACS OMEGA 2023; 8:8732-8742. [PMID: 36910990 PMCID: PMC9996612 DOI: 10.1021/acsomega.2c08127] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
The development of sensitive and selective robust sensor materials for targeted biomarker detection aims to contribute to self-health monitoring and management. Molecularly imprinted polymeric (MIP) materials can perform as biomimetic recognition elements via tailored routes of synthesis for specific target analyte extraction and/or detection. In this work, a sensitive- and selective-lactate MIP has been developed utilizing methacrylic acid and ethylene glycol dimethacrylate as the functional monomer and cross-linker, respectively. The sensitivity of the as-synthesized imprinted species was evaluated by determining the target analyte retention, imprinting factor, and selectivity adsorption of up to 63.5%, 6.86, and 0.82, respectively. MIP selectivity elucidated the imprinting mechanism between the functional monomers and target analyte lactate, further experimentally evidenced by using structurally competitive analytes malic acid and sodium 2-hydroxybutyrate, where retentions of 22.6 and 25.2%, respectively, were observed. Understanding the specific intermolecular mechanisms of both the template analyte and structural interferents with the MIP enables experimentalists to make informed decisions regarding monomer-target and porogen selections and possible sites of interaction for improved molecular imprinting. This imprinting system highlights the potential to be further developed into artificial receptor sensor materials for the detection of disease.
Collapse
Affiliation(s)
- Yasemin
L. Mustafa
- Materials
for Health Lab, Department of Chemical Engineering, University of Bath, Bath BA2 7AY, U.K.
- Centre
for Biosensors, Bioelectronics and Biodevices, University of Bath, Bath BA2 7AY, U.K.
| | - Hannah S. Leese
- Materials
for Health Lab, Department of Chemical Engineering, University of Bath, Bath BA2 7AY, U.K.
- Centre
for Biosensors, Bioelectronics and Biodevices, University of Bath, Bath BA2 7AY, U.K.
| |
Collapse
|
11
|
Ludwig EK, Hobbs KJ, McKinney-Aguirre CA, Gonzalez LM. Biomarkers of Intestinal Injury in Colic. Animals (Basel) 2023; 13:227. [PMID: 36670767 PMCID: PMC9854801 DOI: 10.3390/ani13020227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Biomarkers are typically proteins, enzymes, or other molecular changes that are elevated or decreased in body fluids during the course of inflammation or disease. Biomarkers pose an extremely attractive tool for establishing diagnoses and prognoses of equine gastrointestinal colic, one of the most prevalent causes of morbidity and mortality in horses. This topic has received increasing attention because early diagnosis of some forms of severe colic, such as intestinal ischemia, would create opportunities for rapid interventions that would likely improve case outcomes. This review explores biomarkers currently used in equine medicine for colic, including acute phase proteins, proinflammatory cytokines, markers of endotoxemia, and tissue injury metabolites. To date, no single biomarker has been identified that is perfectly sensitive and specific for intestinal ischemia; however, L-lactate has been proven to be a very functional and highly utilized diagnostic tool. However, further exploration of other biomarkers discussed in this review may provide the key to accelerated identification, intervention, and better outcomes for horses suffering from severe colic.
Collapse
Affiliation(s)
| | | | | | - Liara M. Gonzalez
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC 27606, USA
| |
Collapse
|
12
|
Elevated serum levels of diamine oxidase, D-lactate and lipopolysaccharides are associated with metabolic-associated fatty liver disease. Eur J Gastroenterol Hepatol 2023; 35:94-101. [PMID: 36468573 PMCID: PMC9719837 DOI: 10.1097/meg.0000000000002456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND Studies have suggested an association between metabolic-associated fatty liver disease (MAFLD) and intestinal barrier function. The present study aims to investigate the association between MAFLD and intestinal barrier impairment in humans and identify potential risk factors for MAFLD. METHODS A total of 491 patients were retrospectively enrolled in this study. The serum levels of diamine oxidase, D-lactate and lipopolysaccharide were measured to evaluate intestinal barrier integrity in patients with and without MAFLD. Binary logistic regression and correlational analyses were conducted to verify the association between MAFLD and serum levels of intestinal barrier biomarkers. RESULTS We enrolled 294 patients with MAFLD and 197 patients without MAFLD in this study. Patients with MAFLD had higher serum levels of diamine oxidase, D-lactate and lipopolysaccharide (P < 0.001) than those without MAFLD. Multivariate logistic regression analyses showed that BMI [odds ratio (OR) 1.324; P < 0.001], triglycerides (OR 2.649; P = 0.002), nonesterified fatty acids (OR 1.002; P = 0.011), diamine oxidase (OR 1.149; P = 0.011) and D-lactate (OR 1.221; P < 0.001) were independent risk factors for MAFLD. Additionally, serum levels of diamine oxidase and D-lactate increase as liver steatosis became more severe. MAFLD patients with ≥2 metabolic abnormalities had higher serum levels of lipopolysaccharide (P = 0.034). CONCLUSIONS MAFLD is associated with intestinal barrier impairment. Diamine oxidase and D-lactate are potential predictors of MAFLD, and their serum levels are related to liver steatosis. Intestinal barrier impairment is related to metabolic disorders in patients with MAFLD.
Collapse
|
13
|
Ouyang J, Yan J, Zhou X, Isnard S, Harypursat V, Cui H, Routy JP, Chen Y. Relevance of biomarkers indicating gut damage and microbial translocation in people living with HIV. Front Immunol 2023; 14:1173956. [PMID: 37153621 PMCID: PMC10160480 DOI: 10.3389/fimmu.2023.1173956] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
The intestinal barrier has the daunting task of allowing nutrient absorption while limiting the entry of microbial products into the systemic circulation. HIV infection disrupts the intestinal barrier and increases intestinal permeability, leading to microbial product translocation. Convergent evidence has shown that gut damage and an enhanced level of microbial translocation contribute to the enhanced immune activation, the risk of non-AIDS comorbidity, and mortality in people living with HIV (PLWH). Gut biopsy procedures are invasive, and are not appropriate or feasible in large populations, even though they are the gold standard for intestinal barrier investigation. Thus, validated biomarkers that measure the degree of intestinal barrier damage and microbial translocation are needed in PLWH. Hematological biomarkers represent an objective indication of specific medical conditions and/or their severity, and should be able to be measured accurately and reproducibly via easily available and standardized blood tests. Several plasma biomarkers of intestinal damage, i.e., intestinal fatty acid-binding protein (I-FABP), zonulin, and regenerating islet-derived protein-3α (REG3α), and biomarkers of microbial translocation, such as lipopolysaccharide (LPS) and (1,3)-β-D-Glucan (BDG) have been used as markers of risk for developing non-AIDS comorbidities in cross sectional analyses and clinical trials, including those aiming at repair of gut damage. In this review, we critically discuss the value of different biomarkers for the estimation of gut permeability levels, paving the way towards developing validated diagnostic and therapeutic strategies to repair gut epithelial damage and to improve overall disease outcomes in PLWH.
Collapse
Affiliation(s)
- Jing Ouyang
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Jiangyu Yan
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Xin Zhou
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Stéphane Isnard
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada
- Canadian HIV Trials Network, Canadian Institutes for Health Research, Vancouver, BC, Canada
| | - Vijay Harypursat
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada
- Division of Hematology, McGill University Health Centre, Montréal, QC, Canada
- *Correspondence: Jean-Pierre Routy, ; Yaokai Chen,
| | - Yaokai Chen
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
- *Correspondence: Jean-Pierre Routy, ; Yaokai Chen,
| |
Collapse
|
14
|
The effect of a high-protein and high-carbohydrate diet on the content of D-lactate in the blood plasma and intestines of a model organism – rainbow trout. ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.5-2.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
D-lactic acid stereoisomer (D-lactate) is produced by the intestinal microflora and can enter the bloodstream and cause in some cases a condition of acute D-lactic acidemia known as short gut syndrome. The level of D-lactate in blood and in the contents of the intestine is considered as a promising marker of the development of inflammation associated with microflora disorders, as well as with the development of a bacterial infection, while the mechanism of its entry into the blood of vertebrates from the intestine has not been studied in detail.The aim of the study. To investigate the relationship between the level of D-lactate in blood and in the intestine, taking into account the permeability of the intestinal epithelium.Materials and methods. As a model object of the study, we used juvenile rainbow trout O. mykiss. For 54 days, they were high-carbohydrate or high-protein fed. Since different types of bacteria prefer different substrates, it was expected that at the end of the experiment, the composition of the intestinal microflora would be significantly different in fish fed with different diets. The content of D-lactate in blood plasma in vitro was assessed by the Larsen method with modifications; intestinal permeability was assessed by the intensity of fluorescence of the FITС-Dextran stain in the blood of fish. The analysis of the metagenome of samples of the contents and epithelium of the fore and hind intestine was carried out. The hematological profile was partially characterized using blood smears taken immediately after fish blood sampling. By the means of a different diet, it was possible to obtain two groups of fish that differ significantly in the permeability of the intestinal epithelium and in the content of D-lactate in the intestine. At the same time, despite the differences between the experimental groups in the content of D-lactate in the intestine and in intestinal permeability, no significant differences in D-lactate level in blood were found between them. Analysis of the composition of the intestinal microbiome by metabarcoding for the 16S rRNA gene revealed the absence of lactobacilli in the production of D-lactate in fish.Results. It was shown that the mechanism of accumulation of D-lactate in the blood plasma in fish is less associated with increased intestinal permeability or hyperproduction of this metabolite by the intestinal microflora and is more associated with the utilization of D-lactate in the body. In the experiment, it was not possible to achieve a significant change in the species composition of the intestinal microflora of trout under the influence of a highcarbohydrate diet for 54 days compared to fish that received high-protein diet. Some tendencies towards changes in the composition of the microflora were found in the contents of the hindgut, and perhaps with a longer exposure, these changes could reach a statistically significant level.
Collapse
|
15
|
Crosstalk between Resveratrol and Gut Barrier: A Review. Int J Mol Sci 2022; 23:ijms232315279. [PMID: 36499603 PMCID: PMC9739931 DOI: 10.3390/ijms232315279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/08/2022] Open
Abstract
The plant-based nutraceuticals are receiving increasing interest in recent time. The high attraction to the phytochemicals is associated with their anti-inflammatory and antioxidant activities, which can lead to reduced risk of the development of cardiovascular and other non-communicable diseases. One of the most disseminated groups of plant bioactives are phenolic compounds. It was recently hypothesized that phenolic compounds can have the ability to improve the functioning of the gut barrier. The available studies showed that one of the polyphenols, resveratrol, has great potential to improve the integrity of the gut barrier. Very promising results have been obtained with in vitro and animal models. Still, more clinical trials must be performed to evaluate the effect of resveratrol on the gut barrier, especially in individuals with increased intestinal permeability. Moreover, the interplay between phenolic compounds, intestinal microbiota and gut barrier should be carefully evaluated in the future. Therefore, this review offers an overview of the current knowledge about the interaction between polyphenols with a special emphasis on resveratrol and the gut barrier, summarizes the available methods to evaluate the intestinal permeability, discusses the current research gaps and proposes the directions for future studies in this research area.
Collapse
|
16
|
Li J, Xia Y, Xu H, Xiong R, Zhao Y, Li P, Yang T, Huang Q, Shan F. Activation of brain lactate receptor GPR81 aggravates exercise-induced central fatigue. Am J Physiol Regul Integr Comp Physiol 2022; 323:R822-R831. [PMID: 36189986 DOI: 10.1152/ajpregu.00094.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 11/22/2022]
Abstract
Exercise-induced fatigue is a complex physiological phenomenon and is greatly influenced by central mechanisms in brain. As one of the most abundant circulating carbon metabolites, l-lactate in brain has been considered to be an important supplementary fuel during exercise; however, whether it plays a signaling role in fatigue remains largely obscure. In this study, our results initially revealed that brain l-lactate levels were increased after an exhaustive swimming session in several brain regions including motor cortex, hippocampus, and cerebellum. Then, we examined the specific role of brain lactate receptor, also known as hydroxycarboxylic acid receptor 1 (GPR81), in exercise-induced fatigue. We found that intracerebroventricular injection of either d-lactate (an enantiomer that could mediate activation of GPR81 as l-lactate) or a potent GPR81 agonist 3-chloro-5-hydroxybenzoic acid (CHBA), significantly decreased the swimming time to fatigue. After being subjected to the same weight-loaded swimming for 30 min, no obvious changes of blood lactate levels, gastrocnemius pAMPK/AMPK ratio, and glycogen contents were observed between intracerebroventricular CHBA-injected mice and vehicle-treated ones, which suggested a comparable degree of peripheral fatigue. Meanwhile, there were higher extracellular γ-aminobutyric acid (GABA) levels and lower extracellular glutamate levels and glutamate/GABA ratio in motor cortex of the intracerebroventricular CHBA-injected mice than that of vehicle-treated ones, indicating a greater extent of central fatigue in CHBA-injected mice than that in vehicle animals. Collectively, our results suggested that an increased level of brain l-lactate acts as a signaling molecule via activating GPR81, which in turn exacerbates central fatigue during exercise.
Collapse
Affiliation(s)
- Junxia Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Traumatic Shock and Transfusion, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yiming Xia
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Army Occupational Disease, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Honghao Xu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Army Occupational Disease, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
- Department of Medicine, Hubei Minzu University, Enshi, China
| | - Renping Xiong
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Army Occupational Disease, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yan Zhao
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Army Occupational Disease, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Ping Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Army Occupational Disease, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Tian Yang
- Department of Cold Environmental Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Qingyuan Huang
- Department of Cold Environmental Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Fabo Shan
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Army Occupational Disease, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
17
|
Hernández-Solis A, Güemes-González AM, Ruiz-Gómez X, Álvarez-Maldonado P, Castañeda-Casimiro J, Flores-López A, Ramírez-Guerra MA, Muñoz-Miranda O, Madera-Sandoval RL, Arriaga-Pizano LA, Nieto-Patlán A, Estrada-Parra S, Pérez-Tapia SM, Serafín-López J, Chacón-Salinas R, Escobar-Gutiérrez A, Soria-Castro R, Ruiz-Sánchez BP, Wong-Baeza I. IL-6, IL-10, sFas, granulysin and indicators of intestinal permeability as early biomarkers for a fatal outcome in COVID-19. Immunobiology 2022; 227:152288. [PMID: 36209721 PMCID: PMC9527226 DOI: 10.1016/j.imbio.2022.152288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/12/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022]
Abstract
The clinical presentation of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), ranges between mild respiratory symptoms and a severe disease that shares many of the features of sepsis. Sepsis is a deregulated response to infection that causes life-threatening organ failure. During sepsis, the intestinal epithelial cells are affected, causing an increase in intestinal permeability and allowing microbial translocation from the intestine to the circulation, which exacerbates the inflammatory response. Here we studied patients with moderate, severe and critical COVID-19 by measuring a panel of molecules representative of the innate and adaptive immune responses to SARS-CoV-2, which also reflect the presence of systemic inflammation and the state of the intestinal barrier. We found that non-surviving COVID-19 patients had higher levels of low-affinity anti-RBD IgA antibodies than surviving patients, which may be a response to increased microbial translocation. We identified sFas and granulysin, in addition to IL-6 and IL-10, as possible early biomarkers with high sensitivity (>73 %) and specificity (>51 %) to discriminate between surviving and non-surviving COVID-19 patients. Finally, we found that the microbial metabolite d-lactate and the tight junction regulator zonulin were increased in the serum of patients with severe COVID-19 and in COVID-19 patients with secondary infections, suggesting that increased intestinal permeability may be a source of secondary infections in these patients. COVID-19 patients with secondary infections had higher disease severity and mortality than patients without these infections, indicating that intestinal permeability markers could provide complementary information to the serum cytokines for the early identification of COVID-19 patients with a high risk of a fatal outcome.
Collapse
Affiliation(s)
- Alejandro Hernández-Solis
- Servicio de Neumología, Hospital General de México "Dr. Eduardo Liceaga", Secretaría de Salud, Mexico City, Mexico; Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Azmavet M Güemes-González
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Ximena Ruiz-Gómez
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Pablo Álvarez-Maldonado
- Servicio de Neumología, Hospital General de México "Dr. Eduardo Liceaga", Secretaría de Salud, Mexico City, Mexico
| | - Jessica Castañeda-Casimiro
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico; Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Argelia Flores-López
- Servicio de Neumología, Hospital General de México "Dr. Eduardo Liceaga", Secretaría de Salud, Mexico City, Mexico
| | - Martha Alicia Ramírez-Guerra
- Servicio de Neumología, Hospital General de México "Dr. Eduardo Liceaga", Secretaría de Salud, Mexico City, Mexico
| | - Omar Muñoz-Miranda
- Servicio de Neumología, Hospital General de México "Dr. Eduardo Liceaga", Secretaría de Salud, Mexico City, Mexico
| | - Ruth L Madera-Sandoval
- Unidad de Investigación Médica en Inmunoquímica, Centro Medico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Lourdes A Arriaga-Pizano
- Unidad de Investigación Médica en Inmunoquímica, Centro Medico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Alejandro Nieto-Patlán
- Departamento de Genética, Hospital Infantil de México Federico Gómez, Mexico City, Mexico; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Center for Human Immunobiology, Department of Allergy, Immunology and Rheumatology, Houston, TX, USA.
| | - Sergio Estrada-Parra
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Sonia Mayra Pérez-Tapia
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico; Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Mexico City, Mexico; Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (l+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT. Mexico City, Mexico
| | - Jeanet Serafín-López
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rommel Chacón-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Alejandro Escobar-Gutiérrez
- Coordinación de Investigaciones Inmunológicas, Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE), Secretaria de Salud, Mexico City, Mexico
| | - Rodolfo Soria-Castro
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Bibiana Patricia Ruiz-Sánchez
- Facultad de Medicina. Universidad Westhill, Mexico City, Mexico; Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Isabel Wong-Baeza
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.
| |
Collapse
|
18
|
Wang GY, Shang D, Zhang GX, Song HY, Jiang N, Liu HH, Chen HL. Qingyi decoction attenuates intestinal epithelial cell injury via the calcineurin/nuclear factor of activated T-cells pathway. World J Gastroenterol 2022; 28:3825-3837. [PMID: 36157544 PMCID: PMC9367229 DOI: 10.3748/wjg.v28.i29.3825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/15/2021] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Recent studies have demonstrated that dysfunction of the intestinal barrier is a significant contributing factor to the development of severe acute pancreatitis (SAP). A stable intestinal mucosa barrier functions as a major anatomic and functional barrier, owing to the balance between intestinal epithelial cell (IEC) proliferation and apoptosis. There is some evidence that calcium overload may trigger IEC apoptosis and that calcineurin (CaN)/nuclear factor of activated T-cells (NFAT) signaling might play an important role in calcium-mediated apoptosis.
AIM To investigate the potential mechanisms underlying the therapeutic effect of Qingyi decoction (QYD) in SAP.
METHODS A rat model of SAP was created via retrograde infusion of sodium deoxycholate. Serum levels of amylase, tumor necrosis factor (TNF-α), interleukin (IL)-6, D-lactic acid, and diamine oxidase (DAO); histological changes; and apoptosis of IECs were examined in rats with or without QYD treatment. The expression of the two subunits of CaN and NFAT in intestinal tissue was measured via quantitative real-time polymerase chain reaction and western blotting. For in vitro studies, Caco-2 cells were treated with lipopolysaccharide (LPS) and QYD serum, and then cell viability and intracellular calcium levels were detected.
RESULTS Retrograde infusion of sodium deoxycholate increased the severity of pancreatic and intestinal pathology and the levels of serum amylase, TNF-α, and IL-6. Both the indicators of intestinal mucosa damage (D-lactic acid and DAO) and the levels of IEC apoptosis were elevated in the SAP group. QYD treatment reduced the serum levels of amylase, TNF-α, IL-6, D-lactic acid, and DAO and attenuated the histological findings. IEC apoptosis associated with SAP was ameliorated under QYD treatment. In addition, the protein expression levels of the two subunits of CaN were remarkably elevated in the SAP group, and the NFATc3 gene was significantly upregulated at both the transcript and protein levels in the SAP group compared with the control group. QYD significantly restrained CaN and NFATc3 gene expression in the intestine, which was upregulated in the SAP group. Furthermore, QYD serum significantly decreased the LPS-induced elevation in intracellular free Ca2+ levels and inhibited cell death.
CONCLUSION QYD can exert protective effects against intestinal mucosa damage caused by SAP and the protective effects are mediated, at least partially, by restraining IEC apoptosis via the CaN/NFATc3 pathway.
Collapse
Affiliation(s)
- Guan-Yu Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Institute of Integrative Medicine of Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Dong Shang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Institute of Integrative Medicine of Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Gui-Xin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Institute of Integrative Medicine of Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Hui-Yi Song
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| | - Nan Jiang
- Institute of Integrative Medicine of Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Huan-Huan Liu
- Institute of Integrative Medicine of Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Hai-Long Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Institute of Integrative Medicine of Dalian Medical University, Dalian 116044, Liaoning Province, China
| |
Collapse
|
19
|
Zhang X, Zhang X, Luo H, Shu R, Guo L, Zhou J, Tan B, Guo X, Wang Y, Tian Y. Platelet-To-Lymphocyte and Neutrophil-To-Lymphocyte Ratios Predict Intestinal Injury in Male Heroin Addicts. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2195330. [PMID: 35880090 PMCID: PMC9308521 DOI: 10.1155/2022/2195330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 11/24/2022]
Abstract
Objective To explore the potential link between gut damage and proinflammatory cytokines in heroin-dependent patients. Methods We retrospectively analyzed and compared partial blood counts and biomarkers of intestinal injury and their potential correlations in 38 male heroin abuse patients and 29 healthy male participants. In addition, we compared and assessed proinflammatory cytokines and immune cells in 10 heroin abuse patients and 10 healthy participants. Results Neutrophil counts, platelets/lymphocytes (PLR), neutrophils/lymphocytes (NLR), gut injury biomarkers, and proinflammatory cytokines, CD19+B in patients compared with healthy subjects' cells increased significantly. The number of lymphocytes, CD3 CD4 T cells, and CD3 CD8 T cells decreased in patients compared to healthy individuals. When distinguishing between heroin addicts and healthy people, ROC/AUC analysis showed that a cutoff of 142.42 for PLR and 2.18 for NLR yielded a sensitivity of 65% and 85% and a specificity of 96.5% and 89.7%, respectively (p = 0.001, p < 0.001). For predicting intestinal injury, ROC/AUC analysis showed that a cutoff of 135.7 for PLR and 0.15 for NLR yielded a sensitivity of 52% and 60% and a specificity of 82% and 86.4%, respectively (p = 0.003, p = 0.009). Male heroin addicts are subject to intestinal injury and present with increased proinflammatory cytokine levels. Conclusion NLR and PLR are possible indirect biomarkers for heroin dependence based on intestinal injury.
Collapse
Affiliation(s)
- Xinfeng Zhang
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, China Kunming, Yunnan 650032
| | - Xiaoli Zhang
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, China Kunming, Yunnan 650032
| | - Huayou Luo
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, China Kunming, Yunnan 650032
| | - Ruo Shu
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, China Kunming, Yunnan 650032
| | - Li Guo
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, China Kunming, Yunnan 650032
| | - Jinghong Zhou
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, China Kunming, Yunnan 650032
| | - Bowen Tan
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, China Kunming, Yunnan 650032
| | - Xiao Guo
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, China Kunming, Yunnan 650032
| | - Yuhan Wang
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, China Kunming, Yunnan 650032
| | - Yan Tian
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, China Kunming, Yunnan 650032
| |
Collapse
|
20
|
Chen X, Zhang Y, Wang H, Liu L, Li W, Xie P. The regulatory effects of lactic acid on neuropsychiatric disorders. DISCOVER MENTAL HEALTH 2022; 2:8. [PMID: 37861858 PMCID: PMC10501010 DOI: 10.1007/s44192-022-00011-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/04/2022] [Indexed: 10/21/2023]
Abstract
Lactic acid is produced mainly in astrocytes in the brain and serves as a substance that supplies energy to neurons. In recent years, numerous studies identified the potential effects of lactic acid on the central nervous system and demonstrated its role in regulating brain function as an energy metabolism substrate or cellular signaling molecule. Both deficiency and accumulation of lactic acid cause neurological dysfunction, which further lead to the development of neuropsychiatric disorders, such as Major depressive disorder, Schizophrenia, Alzheimer's disease, and Multiple sclerosis. Although an association between lactic acid and neuropsychiatric disorders was reported in previous research, the underlying pathogenic mechanisms remain unclear. Therefore, an in-depth understanding of the molecular mechanisms by which lactic acid regulates brain function is of significance for the early diagnosis and prevention of neuropsychiatric disorders. In this review, we summarize evidence that is focused on the potential mechanisms of lactic acid as a signaling molecule involved in the pathogenesis of neuropsychiatric disorders and propose a new mechanism by which lactic acid regulates brain function and disease through the microbiota-gut-brain axis to offer new insight into the prevention and treatment of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Xueyi Chen
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yangdong Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
| | - Lanxiang Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China
| | - Wenwen Li
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
21
|
Kolpen M, Dalby Sørensen C, Faurholt-Jepsen D, Hertz FB, Jensen PØ, Bestle MH. Endotracheal lactate reflects lower respiratory tract infections and inflammation in intubated patients. APMIS 2022; 130:507-514. [PMID: 35349738 DOI: 10.1111/apm.13224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 11/29/2022]
Abstract
The aim of this study was to assess L-lactate and D-lactate in endotracheal aspirate from intubated patients hospitalized at the intensive care unit and explore their use as diagnostic biomarkers for inflammation and lower respiratory tract infections (LRTI). Tracheal aspirates from 91 intubated patients were obtained at time of intubation and sent for microbiological analyses, neutrophil count, and colorimetric lactate measurements. We compared the concentration of lactate from patients with microbiological verified LRTI or clinical/radiological suspicion of LRTI with a control group. In addition, associations between inflammation and the lactate isomers were examined by correlating L-lactate and D-lactate with sputum neutrophils and clinical assessments. The concentration of L-lactate was increased in aspirates with verified or suspected LRTI (p < 0.001) relative to the control group at Day 0. Connections between L-lactate and inflammation were indicated by the correlation between neutrophils and L-lactate (p < 0.001). We found no increase in sputum D-lactate from patients with verified or suspected LRTI relative to the control group and D-lactate was not correlated with neutrophils. L-lactate was found to be a potential indicator for inflammation and LRTI at the time of intubation. An association was found between neutrophil count and L-lactate. Interestingly, the increase of L-lactate in the control group after intubation may suggest that intubation challenges the host response by inflicting tissue damage or by introducing infectious microbes.
Collapse
Affiliation(s)
- Mette Kolpen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Christian Dalby Sørensen
- Department of Anesthesiology and Intensive Care, Nordsjaellands Hospital, Copenhagen University Hospital, Hillerød, Denmark
| | - Daniel Faurholt-Jepsen
- Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Peter Østrup Jensen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health Sciences University of Copenhagen, Copenhagen, Denmark
| | - Morten Heiberg Bestle
- Department of Anesthesiology and Intensive Care, Nordsjaellands Hospital, Copenhagen University Hospital, Hillerød, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Chen Y, Wang H, Chen X, Ma H, Zheng J, Cao L. Serum D-lactate, a novel serological biomarker, is promising for the diagnosis of periprosthetic joint infection. BMC Musculoskelet Disord 2022; 23:292. [PMID: 35346149 PMCID: PMC8962196 DOI: 10.1186/s12891-022-05199-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/01/2022] [Indexed: 11/10/2022] Open
Abstract
Background Although many markers are used for diagnosis of periprosthetic joint infection (PJI), serological screening and diagnosis for PJI are still challenging. We evaluated the performance of serum D-lactate and compared it with ESR, coagulation-related biomarkers and synovial D-lactate for the diagnosis of PJI. Methods Consecutive patients with preoperative blood and intraoperative joint aspiration of a prosthetic hip or knee joint before revision arthroplasty were prospectively included. The diagnosis of PJI was based on the criteria of the Musculoskeletal Infection Society, and the diagnostic values of markers were estimated based on receiver operating characteristic (ROC) curves by maximizing sensitivity and specificity using optimal cutoff values. Results Of 52 patients, 26 (50%) were diagnosed with PJI, and 26 (50%) were diagnosed with aseptic failure. ROC curves showed that serum D-lactate, fibrinogen (FIB) and ESR had equal areas under the curve (AUCs) of 0.80, followed by D-dimer and fibrin degradation product, which had AUCs of 0.67 and 0.69, respectively. Serum D-lactate had the highest sensitivity of 88.46% at the optimal threshold of 1.14 mmol/L, followed by FIB and ESR, with sensitivities of 80.77% and 73.08%, respectively, while there were no significant differences in specificity (73.08%, 73.08% and 76.92%, respectively). Conclusion Serum D-lactate showed similar performance to FIB and ESR for diagnosis of PJI. The advantages of serum D-lactate are pathogen-specific, highly sensitive, minimally invasive and rapidly available making serum D-lactate useful as a point-of-care screening test for PJI.
Collapse
Affiliation(s)
- Yanyang Chen
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, No.137 South Li Yu Shan Road, Urumqi, 830054, Xinjiang, China
| | - Huhu Wang
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, No.137 South Li Yu Shan Road, Urumqi, 830054, Xinjiang, China
| | - Xiyao Chen
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, No.137 South Li Yu Shan Road, Urumqi, 830054, Xinjiang, China
| | - Hairong Ma
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, No.137 South Li Yu Shan Road, Urumqi, 830054, Xinjiang, China
| | - Jingjie Zheng
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, No.137 South Li Yu Shan Road, Urumqi, 830054, Xinjiang, China
| | - Li Cao
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, No.137 South Li Yu Shan Road, Urumqi, 830054, Xinjiang, China.
| |
Collapse
|
23
|
Yang Y, Zheng X, Wang Y, Tan X, Zou H, Feng S, Zhang H, Zhang Z, He J, Cui B, Zhang X, Wu Z, Dong M, Cheng W, Tao S, Wei H. Human Fecal Microbiota Transplantation Reduces the Susceptibility to Dextran Sulfate Sodium-Induced Germ-Free Mouse Colitis. Front Immunol 2022; 13:836542. [PMID: 35237276 PMCID: PMC8882623 DOI: 10.3389/fimmu.2022.836542] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
In clinical practice, fecal microbiota transplantation (FMT) has been used to treat inflammatory bowel disease (IBD), and has shown certain effects. However, the selection of FMT donors and the mechanism underlying the effect of FMT intervention in IBD require further exploration. In this study, dextran sodium sulfate (DSS)-induced colitis mice were used to determine the differences in the protection of colitis symptoms, inflammation, and intestinal barrier, by FMT from two donors. Intriguingly, pre-administration of healthy bacterial fluid significantly relieved the symptoms of colitis compared to the ulcerative colitis (UC) bacteria. In addition, healthy donor (HD) bacteria significantly reduced the levels of inflammatory markers Myeloperoxidase (MPO) and Eosinophil peroxidase (EPO), and various pro-inflammatory factors, in colitis mice, and increased the secretion of the anti-inflammatory factor IL-10. Metagenomic sequencing indicated higher species diversity and higher abundance of anti-inflammatory bacteria in the HD intervention group, including Alistipes putredinis, Akkermansia muciniphila, Bifidobacterium adolescentis, short-chain fatty acids (SCFAs)-producing bacterium Christensenella minuta, and secondary bile acids (SBAs)-producing bacterium Clostridium leptum. In the UC intervention group, the SCFA-producing bacterium Bacteroides stercoris, IBD-related bacterium Ruminococcus gnavus, Enterococcus faecalis, and the conditional pathogen Bacteroides caccae, were more abundant. Metabolomics analysis showed that the two types of FMT significantly modulated the metabolism of DSS-induced mice. Moreover, compared with the UC intervention group, indoleacetic acid and unsaturated fatty acids (DHA, DPA, and EPA) with anti-inflammatory effects were significantly enriched in the HD intervention group. In summary, these results indicate that FMT can alleviate the symptoms of colitis, and the effect of HD intervention is better than that of UC intervention. This study offers new insights into the mechanisms of FMT clinical intervention in IBD.
Collapse
Affiliation(s)
- Yapeng Yang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaojiao Zheng
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yuqing Wang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiang Tan
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huicong Zou
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shuaifei Feng
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hang Zhang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zeyue Zhang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jinhui He
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bota Cui
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xueying Zhang
- Intestinal Microenvironment Treatment Center, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Zhifeng Wu
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Miaomiao Dong
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei Cheng
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shiyu Tao
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Shiyu Tao, ; Hong Wei,
| | - Hong Wei
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Shiyu Tao, ; Hong Wei,
| |
Collapse
|
24
|
Huo J, Wu Z, Sun W, Wang Z, Wu J, Huang M, Wang B, Sun B. Protective Effects of Natural Polysaccharides on Intestinal Barrier Injury: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:711-735. [PMID: 35078319 DOI: 10.1021/acs.jafc.1c05966] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Owing to their minimal side effects and effective protection from oxidative stress, inflammation, and malignant growth, natural polysaccharides (NPs) are a potential adjuvant therapy for several diseases caused by intestinal barrier injury (IBI). More studies are accumulating on the protective effects of NPs with respect to IBI, but the underlying mechanisms remain unclear. Thus, this review aims to represent current studies that investigate the protective effects of NPs on IBI by directly maintaining intestinal epithelial barrier integrity (inhibiting oxidative stress, regulating inflammatory cytokine expression, and increasing tight junction protein expression) and indirectly regulating intestinal immunity and microbiota. Furthermore, the mechanisms underlying IBI development are briefly introduced, and the structure-activity relationships of polysaccharides with intestinal barrier protection effects are discussed. Potential developments and challenges associated with NPs exhibiting protective effects against IBI have also been highlighted to guide the application of NPs in the treatment of intestinal diseases caused by IBI.
Collapse
Affiliation(s)
- Jiaying Huo
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Ziyan Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Zhenhua Wang
- Center for Mitochondria and Healthy Aging, College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Jihong Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Mingquan Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Bowen Wang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Baoguo Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| |
Collapse
|
25
|
Sahin GK, Gulen M, Acehan S, Firat BT, Isikber C, Kaya A, Segmen MS, Simsek Y, Sozutek A, Satar S. Do biomarkers have predictive value in the treatment modality of the patients diagnosed with bowel obstruction? Rev Assoc Med Bras (1992) 2021; 68:67-72. [PMID: 34909965 DOI: 10.1590/1806-9282.20210771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES This study aimed to investigate the ability of the biomarkers to predict the surgery treatment and mortality in patients above 18 years of age who were hospitalized with the diagnosis of bowel obstruction from the emergency department. METHODS This is a 2-year retrospective study. The patients' demographic data, laboratory parameters on admission to emergency department, treatment modalities, and the length of hospital stay were recorded. Patients were divided into two groups: conservative and surgical treatment. Statistical analysis was performed to investigate the value of biomarkers in predicting mortality and the need for surgery. Data were analyzed using IBM SPSS version 22. RESULTS A total of 179 patients were included in this study. Of these, 105 (58.7%) patients were treated conservative and 74 (41.3%) were treated operatively. The elevated procalcitonin (PCT) level, C-reactive protein, blood urea nitrogen-to-albumin ratio, and lactate-to-albumin ratio were significantly correlated with surgical treatment, length of hospital stay, and mortality. procalcitonin threshold value of 0.13 ng/mL was able to predict the need for surgical treatment, with a sensitivity of 79% and a specificity of 70.3%. Procalcitonin threshold value of 0.65 ng/mL was able to predict the mortality rate of the patients, with a sensitivity of 92.9% and a specificity of 78.1%. CONCLUSIONS Biomarkers, especially procalcitonin, may be useful in bowel obstruction treatment management and may predict mortality.
Collapse
Affiliation(s)
- Gonca Koksaldi Sahin
- Adana City Training and Research Hospital, Department of Emergency Medicine - Adana, Turkey
| | - Muge Gulen
- Adana City Training and Research Hospital, Department of Emergency Medicine - Adana, Turkey
| | - Selen Acehan
- Adana City Training and Research Hospital, Department of Emergency Medicine - Adana, Turkey
| | - Basak Toptas Firat
- Adana City Training and Research Hospital, Department of Emergency Medicine - Adana, Turkey
| | - Cem Isikber
- Adana City Training and Research Hospital, Department of Emergency Medicine - Adana, Turkey
| | - Adem Kaya
- Adana City Training and Research Hospital, Department of Emergency Medicine - Adana, Turkey
| | - Mustafa Sencer Segmen
- Adana City Training and Research Hospital, Department of Emergency Medicine - Adana, Turkey
| | - Yeliz Simsek
- Adana City Training and Research Hospital, Department of Emergency Medicine - Adana, Turkey
| | - Alper Sozutek
- Adana City Training and Research Hospital, Department of General Surgery - Adana, Turkey
| | - Salim Satar
- Adana City Training and Research Hospital, Department of Emergency Medicine - Adana, Turkey
| |
Collapse
|
26
|
Yoon HY, Moon SJ, Song JW. Lung Tissue Microbiome Is Associated With Clinical Outcomes of Idiopathic Pulmonary Fibrosis. Front Med (Lausanne) 2021; 8:744523. [PMID: 34733866 PMCID: PMC8559550 DOI: 10.3389/fmed.2021.744523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
Background: Several studies using bronchoalveolar lavage fluid (BALF) reported that lung microbial communities were associated with the development and clinical outcome of idiopathic pulmonary fibrosis (IPF). However, the microbial communities in IPF lung tissues are not well known. This study is aimed to investigate bacterial microbial communities in lung tissues and determine their impact on the clinical outcomes of patients with IPF. Methods: Genomic DNA extracted from lung tissues of patients with IPF (n = 20; 10 non-survivors) and age- and sex-matched controls (n = 20) was amplified using fusion primers targeting the V3 and V4 regions of the 16S RNA genes with indexing barcodes. Results: Mean age of IPF subjects was 63.3 yr, and 65% were male. Alpha diversity indices did not significantly differ between IPF patients and controls, or between IPF non-survivors and survivors. The relative abundance of Lactobacillus, Paracoccus, and Akkermansia was increased, whereas that of Caulobacter, Azonexus, and Undibacterium decreased in patients with IPF compared with that in the controls. A decreased relative abundance of Pelomonas (odds ratio [OR], 0.352, p = 0.027) and Azonexus (OR, 0.013, p = 0.046) was associated with a diagnosis of IPF in the multivariable logistic analysis adjusted by age and gender. Multivariable Cox analysis adjusted for age and forced vital capacity (FVC) revealed that higher relative abundance of Streptococcus (hazard ratio [HR], 1.993, p = 0.044), Sphingomonas (HR, 57.590, p = 0.024), and Clostridium (HR, 37.189, p = 0.038) was independently associated with IPF mortality. The relative abundance of Curvibacter (r = 0.590) and Thioprofundum (r = 0.373) was correlated positively, whereas that of Anoxybacillus (r = -0.509) and Enterococcus (r = -0.593) was correlated inversely with FVC. In addition, the relative abundance of the Aquabacterium (r = 0.616) and Peptoniphilus (r = 0.606) genera was positively correlated, whereas that of the Fusobacterium (r = -0.464) and Phycicoccus (r = -0.495) genera was inversely correlated with distance during the 6-min walking test. Conclusions: The composition of the microbiome in lung tissues differed between patients with IPF and controls and was associated with the diagnosis, mortality, and disease severity of IPF.
Collapse
Affiliation(s)
- Hee-Young Yoon
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Su-Jin Moon
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jin Woo Song
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
27
|
Liu L, Chen D, Yu B, Yin H, Huang Z, Luo Y, Zheng P, Mao X, Yu J, Luo J, Yan H, He J. Fructooligosaccharides improve growth performance and intestinal epithelium function in weaned pigs exposed to enterotoxigenic Escherichia coli. Food Funct 2021; 11:9599-9612. [PMID: 33151222 DOI: 10.1039/d0fo01998d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To explore the protective effect of Fructooligosaccharides (FOS) against Enterotoxigenic Escherichia coli (ETEC)-induced inflammation and intestinal injury, twenty-four weaned pigs were randomly assigned into three groups: (1) non-challenge (CON, fed with basal diet), (2) ETEC-challenge (ECON, fed with basal diet), and (3) ETEC challenge + FOS treatment (EFOS, fed with basal diet plus 2.5 g kg-1 FOS). On day 19, the CON group was orally infused with sterilized culture while pigs in the ECON group and EFOS group were orally infused with ETEC (2.5 × 1011 colony-forming units). After 3 days, pigs were slaughtered for sample collection. We showed that ETEC challenge significantly reduced average daily gain (ADG); however, FOS improved the ADG (P < 0.05), apparent digestibility of crude protein (CP), gross energy (GE), and ash and reduced the diarrhea incidence (P < 0.05). FOS reduced plasma concentrations of IL-1β and TNF-α and down-regulated (P < 0.05) the mRNA expression of IL-6 and TNF-α in the jejunum and ileum as well as IL-1β and TNF-α in the duodenum. The concentrations of plasma immunoglobulin A (IgA), immunoglobulin M (IgM) and secreted IgA (SIgA) in the jejunum (P < 0.05) were elevated. Interestingly, FOS elevated the villus height in the duodenum, and elevated the ratio of villus height to crypt depth in the duodenum and ileum in the EFOS group pigs (P < 0.05). Moreover, FOS increased lactase activity in the duodenum and ileum (P < 0.05). The activities of sucrase and alkaline phosphatase (AKP) were higher in the EFOS group than in the ECON group (P < 0.05). Importantly, FOS up-regulated the expressions of critical genes in intestinal epithelium function such as zonula occludens-1 (ZO-1), L-type amino acid transporter-1 (LAT1), and cationic amino acid transporter-1 (CAT1) in the duodenum and the expressions of ZO-1 and glucose transporter-2 (GLUT2) in the jejunum (P < 0.05). FOS also up-regulated the expressions of occludin, fatty acid transporter-4 (FATP4), sodium glucose transport protein 1 (SGLT1), and GLUT2 in the ileum (P < 0.05). FOS significantly increased the concentrations of acetic acid, propionic acid and butyric acid in the cecal digesta. Additionally, FOS reduced the populations of Escherichia coli, but elevated the populations of Bacillus and Bifidobacterium in the caecal digesta (P < 0.05). These results suggested that FOS could improve the growth performance and intestinal health in weaned pigs upon ETEC challenge, which was associated with suppressed inflammatory responses and improved intestinal epithelium functions and microbiota.
Collapse
Affiliation(s)
- Lei Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, P. R. China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Dormont L, Mulatier M, Carrasco D, Cohuet A. Mosquito Attractants. J Chem Ecol 2021; 47:351-393. [PMID: 33725235 DOI: 10.1007/s10886-021-01261-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/18/2021] [Accepted: 03/02/2021] [Indexed: 01/01/2023]
Abstract
Vector control and personal protection against anthropophilic mosquitoes mainly rely on the use of insecticides and repellents. The search for mosquito-attractive semiochemicals has been the subject of intense studies for decades, and new compounds or odor blends are regularly proposed as lures for odor-baited traps. We present a comprehensive and up-to-date review of all the studies that have evaluated the attractiveness of volatiles to mosquitoes, including individual chemical compounds, synthetic blends of compounds, or natural host or plant odors. A total of 388 studies were analysed, and our survey highlights the existence of 105 attractants (77 volatile compounds, 17 organism odors, and 11 synthetic blends) that have been proved effective in attracting one or several mosquito species. The exhaustive list of these attractants is presented in various tables, while the most common mosquito attractants - for which effective attractiveness has been demonstrated in numerous studies - are discussed throughout the text. The increasing knowledge on compounds attractive to mosquitoes may now serve as the basis for complementary vector control strategies, such as those involving lure-and-kill traps, or the development of mass trapping. This review also points out the necessity of further improving the search for new volatile attractants, such as new compound blends in specific ratios, considering that mosquito attraction to odors may vary over the life of the mosquito or among species. Finally, the use of mosquito attractants will undoubtedly have an increasingly important role to play in future integrated vector management programs.
Collapse
Affiliation(s)
- Laurent Dormont
- CEFE, Univ Paul Valéry Montpellier 3, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France.
| | - Margaux Mulatier
- Institut Pasteur de Guadeloupe, Laboratoire d'étude sur le contrôle des vecteurs (LeCOV), Lieu-Dit Morne Jolivièrex, 97139, Les Abymes, Guadeloupe, France
| | - David Carrasco
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| | - Anna Cohuet
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| |
Collapse
|
29
|
Jiang Y, Fan L. The effect of Poria cocos ethanol extract on the intestinal barrier function and intestinal microbiota in mice with breast cancer. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113456. [PMID: 33039631 DOI: 10.1016/j.jep.2020.113456] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/14/2020] [Accepted: 10/03/2020] [Indexed: 05/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Poria cocos Wolf has been used in traditional East-Asian medicine for centuries to effectively treat various gastrointestinal disorders such as diarrhea for its tonic, anti-fungal and anti-bacterial activities. Previous studies have revealed that the tumor development would induce intestinal microbiota dysbiosis and intestinal barrier dysfunction to the patients with breast cancer. AIM OF STUDY To investigate the effect and the mechanism of ethanol extract of Poria cocos (PC) on intestinal barrier function and intestinal microbiota in the mice with breast cancer. MATERIALS AND METHODS Thirty-six female BALB/c mice were randomly divided into four groups (the normal control, model, PC and positive control group). Intestinal histopathological was evaluated by H&E staining. The difference of the intestinal microbiota in each group was studied by 16S rDNA high-throughput sequencing. The level of plasma endotoxin, D -lactic acid (D-LA) and diamine oxidase (DAO) were measured by ELISA. The putrescine content in serum and urine were detected by HPLC. Expression of the tight junction (TJ) proteins, phosphorylated p38 MAPK and ERK1/2 were determined by western blotting. RESULTS Our results showed that tumor development prominently induced the intestinal damage and microbiome dysbiosis in mice. PC prominently remit such histologic damage through enhancing the expression of TJ proteins and decreasing the levels of DAO, D-LA and endotoxin via upregulating the expression of phosphorylated ERK1/2 and p38 MAPK. Furthermore, PC increased the diversity of the intestinal microbiota and strikingly changed the structure and composition of the gut microbiota in the mice by increasing the beneficial bacteria Lactobacillus, Bifidobacterium, and decreasing the sulfate-reducing bacteria Desulfovibrio and inflammatory associated bacteria Mucispirillum, S24-7 and Staphylococcus. Moreover, PICRUSt analysis and the putrescine detection might indicate that PC might be involved in the putrescine metabolism in the mice. Correlation analysis indicated that Prevotella, Rikenellaceae and Bacteroidetes were significantly correlated with Claudin-8 and p38-MAPK expression (p < 0.05). CONCLUSION PC could improve the dysbacteriosis and repair the intestinal barrier function in the mice with breast cancer. This study provide more data to support the application of PC in breast cancer treatment.
Collapse
Affiliation(s)
- Yu Jiang
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
30
|
Doush WM, Elzein JA, Musaad AM, Abdelaziz MS, Osman MO. Wael's surgical treatment of intestinal gangrene due to congenital internal hernia: A case report and review of literature. Clin Case Rep 2020; 8:1708-1713. [PMID: 32983482 PMCID: PMC7495821 DOI: 10.1002/ccr3.2951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/06/2020] [Accepted: 04/29/2020] [Indexed: 11/29/2022] Open
Abstract
A high clinical sense of the surgeon is mandatory in unstable deteriorating patients. Usually, a definitive diagnosis through an urgent laparotomy for repair of transmesenteric hernia and resection of gangrenous bowel leads to a successful outcome.
Collapse
Affiliation(s)
- Wael Mohialddin Doush
- Department of Gastroenterological SurgeryFaculty of Medicine and Health SciencesIbn Sina Specialized HospitalOmdurman Islamic UniversityKhartoumSudan
| | | | - Abdlmagid M. Musaad
- Department of SurgeryFaculty of Medicine and Health SciencesOmdurman Islamic UniversityKhartoumSudan
| | - Muataz S. Abdelaziz
- Department of SurgeryFaculty of Medicine and Health SciencesOmdurman Islamic UniversityKhartoumSudan
| | | |
Collapse
|
31
|
Adachi T, Kitazumi Y, Shirai O, Kano K. Development Perspective of Bioelectrocatalysis-Based Biosensors. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4826. [PMID: 32858975 PMCID: PMC7506675 DOI: 10.3390/s20174826] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 01/08/2023]
Abstract
Bioelectrocatalysis provides the intrinsic catalytic functions of redox enzymes to nonspecific electrode reactions and is the most important and basic concept for electrochemical biosensors. This review starts by describing fundamental characteristics of bioelectrocatalytic reactions in mediated and direct electron transfer types from a theoretical viewpoint and summarizes amperometric biosensors based on multi-enzymatic cascades and for multianalyte detection. The review also introduces prospective aspects of two new concepts of biosensors: mass-transfer-controlled (pseudo)steady-state amperometry at microelectrodes with enhanced enzymatic activity without calibration curves and potentiometric coulometry at enzyme/mediator-immobilized biosensors for absolute determination.
Collapse
|
32
|
Impaired intestinal barrier in patients with obstructive sleep apnea. Sleep Breath 2020; 25:749-756. [PMID: 32845474 DOI: 10.1007/s11325-020-02178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/15/2020] [Accepted: 08/21/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is often associated with multisystem damage. The gut is a pivotal organ that initiates the pathophysiological processes of multisystem diseases. Intermittent hypoxia resulting from OSA may impair the intestinal barrier prior to the induction of systemic inflammation. We hypothesize that the intestinal barrier markers D-lactic acid (D-LA) and intestinal fatty acid-binding protein (I-FABP) levels would be higher in patients with OSA. METHODS Consecutive snoring and nonsnoring adults were included in this study and were grouped based on their apnea-hypopnea index (AHI) scores: the control group (AHI < 5) and the OSA group (AHI ≥ 5). Plasma D-LA and I-FABP levels were measured using colorimetry and ELISA, respectively. Other parameters, such as fasting levels of lipids, routine blood tests, and glucose were also assessed. RESULTS Of 76 participants, patients in the OSA group accounted for 73% (55/76). Plasma D-LA and I-FABP levels were significantly higher in patients with OSA [7.90 (7.42) (IQR) vs. 0.88 (2.79) (IQR) mmol/L, p < 0.001 and 1851.99 ± 754.23 (SD) vs. 1131.98 ± 383.38 pg/mL, p < 0.001, respectively]. Increased glucose, triglycerides (TGs), leukocytes, neutrophils, and monocytes but decreased high density lipoprotein (HDL) were also found in patients with OSA. It was also observed that the increase in D-LA and I-FABP exhibited the strongest positive association with AHI (r = 0.443, p < 0.001; r = 0.645, p < 0.001), followed by the lowest SaO2 (p ≤ 0.001), BMI (p ≤ 0.017), glucose (p ≤ 0.011), and TGs (p ≤ 0.025). Moreover, multivariate regression analysis showed that D-LA (B = 0.823, p < 0.001) and I-FABP (B = 0.002, p = 0.017) were independently associated with OSA. CONCLUSIONS The systemic expression of D-LA and I-FABP is dramatically higher in OSA patients, suggesting that hypoxia resulting from OSA might have the capacity to impair the intestinal barrier prior to the induction of multisystem dysfunction.
Collapse
|
33
|
Selenium-Enriched Yeast Alleviates Oxidative Stress-Induced Intestinal Mucosa Disruption in Weaned Pigs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5490743. [PMID: 32256952 PMCID: PMC7106930 DOI: 10.1155/2020/5490743] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
To explore the effect of selenium-enriched yeast (SeY) on intestinal barrier functions in weaned pigs upon oxidative stress, a 2 × 2 factorial design was utilized and thirty-two pigs were randomly assigned into four groups. Pigs with or without exposure to oxidative stress (diquat challenge) were fed with a basal diet or a SeY-containing diet. The trial lasted for 21 days, and result showed that SeY supplementation attenuated body-weight reduction and significantly decreased the serum concentrations of diamine oxidase (DAO) and D-lactic acid in pigs upon diquat challenge (P < 0.05). Diquat challenge decreased the villus height and the ratio of villus height to crypt depth (V/C) in the jejunum and ileum (P < 0.05). However, SeY supplementation not only elevated the villus height and the ratio of V/C (P < 0.05) but also improved the distribution and abundance of tight-junction protein ZO-1 in the jejunum epithelium. Interestingly, SeY supplementation acutely decreased the total apoptosis rate of intestinal epithelial cells in pigs upon diquat challenge (P < 0.05). Moreover, SeY elevated the content of antioxidant molecules such as glutathione peroxidase (GSH-Px) and catalase (CAT) but significantly decreased the content of malondialdehyde (MDA) in the intestinal mucosa (P < 0.05). Importantly, SeY elevated the expression levels of critical functional genes such as the nuclear factor erythroid-2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), sodium/glucose cotransporter 1 (SGLT1), and B-cell lymphoma-2 (BCL-2) in the intestinal mucosa upon diquat challenge (P < 0.05). Moreover, the expression of caspase-3 was downregulated by SeY in the duodenum and jejunum mucosa (P < 0.05). These results indicated that SeY attenuated oxidative stress-induced intestinal mucosa disruption, which was associated with elevated mucosal antioxidative capacity and improved intestinal barrier functions.
Collapse
|
34
|
Alinaghi M, Nguyen DN, Sangild PT, Bertram HC. Direct Implementation of Intestinal Permeability Test in NMR Metabolomics for Simultaneous Biomarker Discovery-A Feasibility Study in a Preterm Piglet Model. Metabolites 2020; 10:metabo10010022. [PMID: 31906404 PMCID: PMC7022985 DOI: 10.3390/metabo10010022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/22/2019] [Accepted: 12/29/2019] [Indexed: 12/17/2022] Open
Abstract
Measurement of intestinal permeability (IP) is often used in the examination of inflammatory gastrointestinal disorders. IP can be assessed by measurement of urinary recovery of ingested non-metabolizable lactulose (L) and mannitol (M). The present study aimed to examine how measurements of IP can be integrated in a NMR-based metabolomics approach for a simultaneous quantification of L/M ratio and biomarker exploration. For this purpose, plasma and urine samples were collected from five-day-old preterm piglets (n = 20) with gastrointestinal disorders (subjected to intra-amniotic lipopolysaccharide (LPS, 1 mg/fetus)) after they had been administrated a 5% lactulose and 5% mannitol solution (15 mL/kg). The collected plasma and urine samples were analyzed by 1H NMR-based metabolomics. Urine L/M ratio measured by 1H NMR spectroscopy showed high correlation with the standard measurement of the urinary recoveries by enzymatic assays (r = 0.93, p < 0.05). Partial least squares (PLS) regressions and correlation analyses between L/M ratio and NMR metabolomics data revealed that L/M ratio was positively correlated with plasma lactate, acetate and succinate levels and negatively correlated with urinary hippuric acid and glycine. In conclusion, the present study demonstrated that NMR metabolomics enables simultaneous IP testing and discovery of biomarkers associated with an impaired intestinal permeability.
Collapse
Affiliation(s)
- Masoumeh Alinaghi
- Department of Food Science, Aarhus University, Kirstinebjergvej 10, 5792 Aarslev, Denmark;
| | - Duc Ninh Nguyen
- Section for Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlaegevej 68, 1860 Frederiksberg C, Denmark; (D.N.N.); (P.T.S.)
| | - Per Torp Sangild
- Section for Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlaegevej 68, 1860 Frederiksberg C, Denmark; (D.N.N.); (P.T.S.)
| | - Hanne Christine Bertram
- Department of Food Science, Aarhus University, Kirstinebjergvej 10, 5792 Aarslev, Denmark;
- Correspondence:
| |
Collapse
|
35
|
Naik P, Singh S, Dave VP, Ali MH, Kumar A, Joseph J. Vitreous D-Lactate Levels as a Biomarker in the Diagnosis of Presumed Infectious Culture Negative Endophthalmitis. Curr Eye Res 2019; 45:184-189. [PMID: 31466487 DOI: 10.1080/02713683.2019.1662057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Purpose: Microbiological investigations of vitreous fluid have often failed to detect the causative agent in infectious endophthalmitis resulting in a clinical dilemma. D-Lactate is a byproduct of bacterial metabolism, and its accumulation in sterile body fluids indicates bacterial infection. The aim of the study was to evaluate the measurement of vitreous fluid D-lactate for the diagnosis of infectious endophthalmitis and to define an optimal D-lactate concentration for the differentiation from non-infectious samples.Methods: Vitreous samples of 41 patients clinically diagnosed as endophthalmitis and 20 patients with non-infectious disorders, as controls, between October 2018 and February 2019 were included in the study. D-lactate levels were determined by a D-lactate colorimetric assay kit (MAK058 Sigma-Aldrich) and the receiver operating characteristic curves (ROC) of D-lactate were calculated. The clinical finding of D-lactate production in bacterial endophthalmitis was also verified in a mouse model of bacterial endophthalmitis.Results: Of the 41 patients included in the infectious group, 25 had culture-positive infections of which 13/25 were gram-positive organisms and 12/25 grew gram-negative bacilli. Based on the ROC curve, the sensitivity of D-lactate was found to be 80% and specificity 100% and a cut-off value of above 47.06 ng/µl for D-lactate was defined as positive or true infectious in vitreous samples for diagnosis of endophthalmitis. In-vivo, a mouse model of bacterial endophthalmitis showed the significant production of D-lactate levels in retina and vitreous. Interestingly the levels were elevated in Gram-negative infections compared to Gram-positive bacterial endophthalmitis.Conclusion: Our clinical and in-vivo mouse model data showed that vitreous fluid D-lactate could be used as a bacterial-specific biomarker in the diagnosis of most infectious endophthalmitis and could be implemented for the evaluation of treatment success.
Collapse
Affiliation(s)
- Poonam Naik
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, India
| | - Sukhvinder Singh
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, Michigan, USA
| | - Vivek Pravin Dave
- Smt. Kannuri Santhamma Centre for Vitreoretinal Diseases, L V Prasad Eye Institute, Hyderabad, India.,Centre for Clinical Epidemiology and Biostatistics, L. V. Prasad Eye Institute, Hyderabad, India
| | - Mohammad Hasnat Ali
- Smt. Kannuri Santhamma Centre for Vitreoretinal Diseases, L V Prasad Eye Institute, Hyderabad, India
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, Michigan, USA
| | - Joveeta Joseph
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
36
|
Memet O, Zhang L, Shen J. Serological biomarkers for acute mesenteric ischemia. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:394. [PMID: 31555708 DOI: 10.21037/atm.2019.07.51] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acute mesenteric ischemia (AMI) defines a complex of conditions characterized by an interruption of the splanchnic circulation, leading to insufficient oxygen delivery or utilization to fill the metabolic needs of the visceral organs. Early diagnosis and immediate therapy are the cornerstones of early ischemia to reach a successful outcome and are necessary to reduce the high mortality. Although there is still lack of specific biomarkers to assist the diagnosis of AMI in clinical practice, there are several biomarkers with high specificity, may become a potential tools in early diagnosis of AMI, including intestinal fatty acid binding protein (I-FABP), a-glutathione S-transferase (a-GST), D-dimer, L- and D-lactate, citrulline, ischemia modified albumin, procalcitonin (PCT). However, they use in clinical limited duo to the many studies about these makers finished with small patient populations, and heterogeneous among these populations. This review describes the etiology of AMI, the current most studied promising biomarkers, the current research situation and future of biomarker research.
Collapse
Affiliation(s)
- Obulkasim Memet
- Center of Emergency & Intensive Care Unit, Medical Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Lin Zhang
- Center of Emergency & Intensive Care Unit, Medical Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Jie Shen
- Center of Emergency & Intensive Care Unit, Medical Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai 201508, China
| |
Collapse
|
37
|
Li H, Xu M, Zhu J. Headspace Gas Monitoring of Gut Microbiota Using Targeted and Globally Optimized Targeted Secondary Electrospray Ionization Mass Spectrometry. Anal Chem 2018; 91:854-863. [DOI: 10.1021/acs.analchem.8b03517] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Haorong Li
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States
| | - Mengyang Xu
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States
| | - Jiangjiang Zhu
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States
| |
Collapse
|
38
|
Ding X, Lin S, Weng H, Liang J. Separation and determination of the enantiomers of lactic acid and 2-hydroxyglutaric acid by chiral derivatization combined with gas chromatography and mass spectrometry. J Sep Sci 2018; 41:2576-2584. [DOI: 10.1002/jssc.201701555] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Xuemei Ding
- Department of Pharmaceutical Analysis, School of Pharmacy; Fudan University; Shanghai P. R. China
| | - Shuhai Lin
- Department of Biochemistry and Molecular Cell Biology, School of Medicine; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Hongbo Weng
- Department of Pharmacology, School of Pharmacy; Fudan University; Shanghai P. R. China
| | - Jianying Liang
- Department of Pharmaceutical Analysis, School of Pharmacy; Fudan University; Shanghai P. R. China
| |
Collapse
|
39
|
Ma Y, Li R, Liu Y, Liu M, Liang H. Protective Effect of Aplysin Supplementation on Intestinal Permeability and Microbiota in Rats Treated with Ethanol and Iron. Nutrients 2018; 10:nu10060681. [PMID: 29861488 PMCID: PMC6024731 DOI: 10.3390/nu10060681] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 02/07/2023] Open
Abstract
Aplysin, a kind of phytochemicals or phytonutrients, is purified from red alga Laurencia tristicha. The present study aims to investigate the influence of aplysin on changes of intestinal permeability and microbiota induced by excessive ethanol and iron. Thirty male rats were randomly divided into three groups (10/group): control group (normal saline); ethanol + iron group as EI treated with ethanol (8–12 mL/kg/day) and iron (1000 mg/kg) in diet; EI supplemented with aplysin (150 mg/kg/day) group as AEI; the trial lasts for 12 weeks. The result showed that levels of plasma endotoxin, fatty acid-binding protein 2, D-lactic acid, diamine oxidase were increased in rats in the EI group; and significantly decreased by 14%, 17%, 26%, 16%, respectively (p < 0.05) in the AEI group after the 12-week aplysin treatment. Moreover, in the AEI group the amount of Escherichia coli and Bacteroides fragilis were higher, while the amount of Lactobacillus, Bifidobacterium and Clostridium were lower than those in the EI group. The expressions of iron transporters divalent-metal transporter 1(DMT1) and ferroportin 1(FPN1) were significantly upregulated in the EI group compared to those in the control group. In conclusion, aplysin could effectively improve intestinal permeability and intestinal flora disorder induced with excessive ethanol and iron.
Collapse
Affiliation(s)
- Yan Ma
- Department of Human Nutrition, College of Public Health, Qingdao University, 38 Dengzhou Road, Qingdao 266021, China.
| | - Ruiying Li
- Department of Human Nutrition, College of Public Health, Qingdao University, 38 Dengzhou Road, Qingdao 266021, China.
| | - Ying Liu
- Basic Medical College, Qingdao University of Medicine, 308 Ningxia Road, Qingdao 266071, China.
| | - Man Liu
- Department of Human Nutrition, College of Public Health, Qingdao University, 38 Dengzhou Road, Qingdao 266021, China.
| | - Hui Liang
- Department of Human Nutrition, College of Public Health, Qingdao University, 38 Dengzhou Road, Qingdao 266021, China.
| |
Collapse
|
40
|
Yu HT, Ding XL, Li N, Zhang XY, Zeng XF, Wang S, Liu HB, Wang YM, Jia HM, Qiao SY. Dietary supplemented antimicrobial peptide microcin J25 improves the growth performance, apparent total tract digestibility, fecal microbiota, and intestinal barrier function of weaned pigs. J Anim Sci 2018; 95:5064-5076. [PMID: 29293710 DOI: 10.2527/jas2017.1494] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Microcin J25 (MccJ25) is an antimicrobial peptide produced by a fecal strain of Escherichia coli containing 21 AA. This study was performed primarily to evaluate the effects of MccJ25 as a potential substitute for antibiotics (AB) on growth performance, nutrient digestibility, fecal microbiota, and intestinal barrier function in weaned pigs. In the present study, 180 weaned pigs (7.98 ± 0.29 kg initial BW) were randomly assigned to 1 of 5 treatments, including a basal diet (CON) and CON supplemented with AB (20 mg/kg colistin sulfate; ABD) or 0.5, 1.0, and 2.0 mg/kg MccJ25. On d 0 to 14, dietary supplementation with MccJ25 and ABD had positive effects on ADG, ADFI, diarrhea incidence, and G:F ( < 0.05). Pigs fed the 2.0 mg/kg MccJ25 diet had greater ADG ( < 0.05) and marginally greater G:F ( < 0.10) compared with pigs fed the ABD diet. Compared with the CON diet, the 2.0 mg/kg MccJ25 diet sharply improved ( < 0.05) ADG and G:F and decreased ( < 0.05) diarrhea incidence (d 15 to 28 and d 0 to 28). Apparent digestibility of nutrients in pigs fed 1.0 and 2.0 mg/kg MccJ25 was improved ( < 0.05) compared with that of pigs fed CON and ABD. The serum cytokines IL-6 and IL-1β and tumor necrosis factor-α levels in pigs fed MccJ25 were greater than in pigs fed CON ( < 0.05). Additionally, the IL-10 concentration in pigs fed MccJ25 was sharply increased ( < 0.05) compared with that of pigs fed CON. Pigs fed 1.0 and 2.0 mg/kg MccJ25 diets had remarkably decreased lactate, diamine oxidase, and endotoxin concentrations and fecal numbers ( < 0.05) and improved fecal and numbers ( < 0.05). Compared with the ABD diet, the diet containing 2.0 mg/kg MccJ25 did not increase lactate, diamine oxidase, and endotoxin (d 14) concentrations ( < 0.05) or decrease the and (d 28) numbers ( < 0.05). The diets containing 1.0 and 2.0 mg/kg MccJ25 and ABD (d 28) improved lactate concentration and short-chain fatty acid concentrations, including acetate, propionate, and butyrate, in feces ( < 0.05). Moreover, the pigs fed 2.0 mg/kg MccJ25 had greater lactate, butyrate (d 14), and propionate concentrations than the pigs fed the ABD diet ( < 0.05). In conclusion, dietary supplemented MccJ25 effectively improved performance, attenuated diarrhea and systematic inflammation, enhanced intestinal barrier function, and improved fecal microbiota composition of weaned pigs. Therefore, MccJ25 could be a potential effective alternative to AB for weaned pigs.
Collapse
|
41
|
Abstract
Increased levels of L-lactate were found in secretions of the maxillary sinus in experimental sinusitis in rabbits. Analysis of certain epithelial metabolic enzymes in purulent sinusitis reveals an increased lactate dehydrogenase (LDH) activity in glands and epithelium. However, histochemically we could not find any decrease in oxidative enzyme capacity of the mucosal epithelium indicating an inadequate oxygen supply. In acute pneumococcal sinusitis, bacteria seem to resume a resting phase after a few days, and the lactate accumulation characteristic of the anaerobic milieu of the secretion appears to be mainly of leukocyte origin.
Collapse
Affiliation(s)
- Pontus Stierna
- Departments of Otorhinolaryngology, Karolinska Institute, Huddinge Hospital, S-141 86 Huddinge, Sweden
| | - Karin Söderlund
- Clinical Chemistry II, Karolinska Institute, Huddinge Hospital, S-141 86 Huddinge, Sweden
| | - Bengt Carlsöö
- Departments of Otorhinolaryngology, Karolinska Institute, Huddinge Hospital, S-141 86 Huddinge, Sweden
| |
Collapse
|
42
|
Stierna P, Söderlund K. D- and L-Lactic Acid in Chronic Sinusitis as a Marker of Leukocyte and Bacterial Metabolism. ACTA ACUST UNITED AC 2018. [DOI: 10.2500/105065890782009370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The anaerobic environment in purulent sinusitis is reflected by the accumulation of lactic acid in the secretion. L-Lactic acid originates mainly from leukocytes and the D-form is exclusively produced by growing bacteria. In this study the latter was used as a marker of bacterial metabolism. Secretion was aspirated from 24 patients with either purulent or nonpurulent chronic sinusitis and frozen in liquid nitrogen. Samples were assayed for both isomers of lactic acid by an enzymatic method. In chronic purulent and nonpurulent sinusitis L-lactic acid concentration was 16.3 and 1.1 mmol/kg w/w, respectively. D-Lactic acid was only detected in two purulent and three nonpurulent secretions and in small concentrations (0.7 and 0.3 mmol/kg w.w., respectively). This indicates that the increased lactate concentration in purulent sinusitis is of leukocytic origin and that the bacteria in chronic sinusitis are metabolically inactive, and thus in a stationary growth phase.
Collapse
Affiliation(s)
- Pontus Stierna
- Departments of Otorhinolaryngology, Karolinska Institute, Huddinge Hospital, S-141 86 Huddinge, Sweden
| | - Karin Söderlund
- Departments of Clinical Chemistry II, Karolinska Institute, Huddinge Hospital, S-141 86 Huddinge, Sweden
| |
Collapse
|
43
|
Tian P, Li B, He C, Song W, Hou A, Tian S, Meng X, Li K, Shan Y. Antidiabetic (type 2) effects of Lactobacillus G15 and Q14 in rats through regulation of intestinal permeability and microbiota. Food Funct 2018; 7:3789-3797. [PMID: 27713957 DOI: 10.1039/c6fo00831c] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The antidiabetic effects of Lactobacillus. paracasei subsp. paracasei G15 and Lactobacillus. casei Q14 in high fat diet and streptozotocin-induced type 2 diabetic (T2D) rats were evaluated in this study. The strains were separated from Chinese traditional fermented dairy food. Administration of G15 and Q14 for 6 weeks significantly improved the glucose tolerance and reduced the HbA1c levels in T2D rats. The probiotic treatment reduced the intestinal mucosal permeability and improved the epithelial barrier function through modification of the gut microbiota, which in turn lowered circulating LPS and inflammation cytokines, including IL-1β and IL-8, and eventually alleviated the inflammatory status and islet β-cell dysfunction. Combination of Q14 and metformin reversed the thymic atrophy and both G15 and Q14 lowered the circulating IL-6 level, indicating the immune-modulating potential of the strains. Lactobacillus. paracasei subsp. paracasei G15 and Lactobacillus. casei Q14 provide an insight into the biotherapy application of traditional fermented foods and their functional ingredients in the treatment of diabetes.
Collapse
Affiliation(s)
- Peijun Tian
- School of Food Science and Engineering, Harbin Institute of Technology, No. 73 Huanghe Road, Harbin 150000, China.
| | - Baolong Li
- Center of Safety and Evaluation of Drugs, Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Harbin 150000, China
| | - Canxia He
- School of Food Science and Engineering, Harbin Institute of Technology, No. 73 Huanghe Road, Harbin 150000, China.
| | - Wei Song
- School of Food Science and Engineering, Harbin Institute of Technology, No. 73 Huanghe Road, Harbin 150000, China.
| | - Aiju Hou
- School of Food Science and Engineering, Harbin Institute of Technology, No. 73 Huanghe Road, Harbin 150000, China.
| | - Sicong Tian
- School of Food Science and Engineering, Harbin Institute of Technology, No. 73 Huanghe Road, Harbin 150000, China.
| | - Xinyu Meng
- Center of Safety and Evaluation of Drugs, Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Harbin 150000, China
| | - Kaikai Li
- School of Food Science and Engineering, Harbin Institute of Technology, No. 73 Huanghe Road, Harbin 150000, China.
| | - Yujuan Shan
- School of Food Science and Engineering, Harbin Institute of Technology, No. 73 Huanghe Road, Harbin 150000, China.
| |
Collapse
|
44
|
Zou X, Ji J, Wang J, Qu H, Shu DM, Guo FY, Luo CL. Dextran sulphate sodium (DSS) causes intestinal histopathology and inflammatory changes consistent with increased gut leakiness in chickens. Br Poult Sci 2018; 59:166-172. [PMID: 29262695 DOI: 10.1080/00071668.2017.1418498] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
1. The clinical severity, histological changes, indicators of gut leakiness and inflammatory cytokine profiles were studied in chickens with dextran sulphate sodium (DSS)-induced intestinal inflammation. 2. The experimental groups (1.25%, 1.5% and 2.5% DSS) showed clinical signs, such as loose stools and weight loss, which increased with additional treatment days and, as expected, the effects of DSS-induced intestinal inflammation were time and dose-dependent. 3. After 10 d, histological manifestations were evident, including goblet cell depletion, mucus layer loss, significantly shorter villi and a thinner total ileal mucosa. 4. The d(-)-lactate value, which was used as a gut leakiness indicator, was significantly increased in the 2.5% DSS group. 5. Expression of the inflammatory cytokines interleukin-1Beta, tumour necrosis factor alpha and interleukin-10 in the serum significantly increased with DSS treatment. 6. This study indicates that the experimental intestinal inflammation induced by DSS is an ideal model to study the pathogenic mechanisms of intestinal inflammation in chickens and to test the efficacy of therapies.
Collapse
Affiliation(s)
- X Zou
- a Institute of Animal Science, Guangdong Academy of Agricultural Sciences , State Key Laboratory of Livestock and Poultry Breeding , Guangzhou , China
| | - J Ji
- a Institute of Animal Science, Guangdong Academy of Agricultural Sciences , State Key Laboratory of Livestock and Poultry Breeding , Guangzhou , China
| | - J Wang
- a Institute of Animal Science, Guangdong Academy of Agricultural Sciences , State Key Laboratory of Livestock and Poultry Breeding , Guangzhou , China
| | - H Qu
- a Institute of Animal Science, Guangdong Academy of Agricultural Sciences , State Key Laboratory of Livestock and Poultry Breeding , Guangzhou , China
| | - D M Shu
- a Institute of Animal Science, Guangdong Academy of Agricultural Sciences , State Key Laboratory of Livestock and Poultry Breeding , Guangzhou , China
| | - F Y Guo
- a Institute of Animal Science, Guangdong Academy of Agricultural Sciences , State Key Laboratory of Livestock and Poultry Breeding , Guangzhou , China
| | - C L Luo
- a Institute of Animal Science, Guangdong Academy of Agricultural Sciences , State Key Laboratory of Livestock and Poultry Breeding , Guangzhou , China
| |
Collapse
|
45
|
Ji J, Gu Z, Li H, Su L, Liu Z. Cryptdin-2 predicts intestinal injury during heatstroke in mice. Int J Mol Med 2017; 41:137-146. [PMID: 29115396 PMCID: PMC5746321 DOI: 10.3892/ijmm.2017.3229] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 10/27/2017] [Indexed: 12/15/2022] Open
Abstract
Intestinal injury-induced bacterial translocation and endotoxemia are important in the pathophysiological process of heatstroke. However, the underlying mechanism remains to be fully elucidated. Previous studies using 2D-gel electrophoresis found that defensin-related cryptdin-2 (Cry-2), an intestinal α-defensin, is upregulated in intestinal tissues during heatstroke in mice, and that treatment with ulinastatin, a multivalent enzyme inhibitor, reduced heat-induced acute lung injury. To investigate the association between Cry-2 and heat stress (HS)-induced intestinal injury and the probable protective role of ulinastatin, the present study examined the intestinal expression of Cry-2 via histopathologic analysis and reverse transcription-quantitative polymerase chain reaction analysis in mice with heatstroke. The heat-stressed mice were exposed to different core temperatures and cooling treatments, and intestinal pathological changes and Chiu scores were determined. Chemical markers of intestinal injury, serum and intestinal concentrations of diamine oxidase (DAO) and D-lactic acid (D-Lac), and serum and intestinal concentrations of Cry-2 were also determined. Correlations were analyzed using Spearman's correlation analysis. It was found that HS upregulated the expression of Cry-2, and the serum and intestinal concentrations of Cry-2 were correlated with the severity of HS-induced intestinal damage, indicated by pathology scores and concentrations of DAO and D-lac. Ulinastatin protected the intestines from HS-induced injury and downregulated the expression of Cry-2, which was also correlated with the extent of intestinal injury. Therefore, ulinastatin administration may be beneficial for patients with heatstroke, and Cry-2 may be a novel predictor of HS-induced intestinal injury.
Collapse
Affiliation(s)
- Jingjing Ji
- Department of Critical Care Medicine, General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Zhengtao Gu
- Key Laboratory of Hot Zone Trauma Care and Tissue Repair of PLA, General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Hui Li
- Key Laboratory of Hot Zone Trauma Care and Tissue Repair of PLA, General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Lei Su
- Department of Critical Care Medicine, General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Zhifeng Liu
- Department of Critical Care Medicine, General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| |
Collapse
|
46
|
Treskes N, Persoon AM, van Zanten ARH. Diagnostic accuracy of novel serological biomarkers to detect acute mesenteric ischemia: a systematic review and meta-analysis. Intern Emerg Med 2017; 12:821-836. [PMID: 28478489 PMCID: PMC5559578 DOI: 10.1007/s11739-017-1668-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/19/2017] [Indexed: 12/17/2022]
Abstract
Laparotomy remains the gold standard for diagnosis of acute mesenteric ischemia (AMI), but is often unhelpful or too late due to non-specific clinical and radiological signs. This systematic review and meta-analysis aims to evaluate the diagnostic accuracy of the novel serological biomarkers intestinal fatty acid-binding protein (I-FABP), α-glutathione S-transferase (α-GST), D-lactate, ischemia modified albumin (IMA), and citrulline to detect AMI. A systematic search of electronic databases was performed to identify all published diagnostic accuracy studies on I-FABP, α-GST, D-lactate, IMA, and citrulline. Articles were selected based on pre-defined inclusion and exclusion criteria. Risk of bias and applicability were assessed. Two-by-two contingency tables were constructed to calculate accuracy standards. Summary estimates were computed using random-effects models. The search yielded 1925 papers, 21 were included in the final analysis. Pooled sensitivity and specificity for investigated biomarkers were: I-FABP (Uden); 79.0 (95% CI 66.5-88.5) and 91.3 (87.0-94.6), I-FABP (Osaka); 75.0 (67.9-81.2) and 79.2 (76.2-82.0), D-lactate; 71.7 (58.6-82.5) and 74.2 (69.0-79.0), α-GST; 67.8 (54.2-79.5) and 84.2 (75.3-90.9), IMA; 94.7 (74.0-99.9) and 86.4 (65.1-97.1), respectively. One study investigated accuracy standards for citrulline: sensitivity 39% and specificity 100%. The novel serological biomarkers I-FABP, α-GST, IMA, and citrulline may offer improved diagnostic accuracy of acute mesenteric ischemia; however, further research is required to specify threshold values and accuracy standards for different aetiological forms.
Collapse
Affiliation(s)
- Nikki Treskes
- Department of Intensive Care Medicine, Gelderse Vallei Hospital, Willy Brandtlaan 10, 6716 RP Ede, The Netherlands
| | - Alexandra M. Persoon
- Department of Surgery, St. Antonius Hospital, Koekoekslaan 1, 3435 CM Nieuwegein, The Netherlands
| | - Arthur R. H. van Zanten
- Department of Intensive Care Medicine, Gelderse Vallei Hospital, Willy Brandtlaan 10, 6716 RP Ede, The Netherlands
| |
Collapse
|
47
|
Robinson CS, Singer ER, Piviani M, Rubio-Martinez LM. Are serum amyloid A or D-lactate useful to diagnose synovial contamination or sepsis in horses? Vet Rec 2017; 181:425. [PMID: 28765498 PMCID: PMC5738594 DOI: 10.1136/vr.104386] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/16/2017] [Accepted: 06/22/2017] [Indexed: 11/04/2022]
Abstract
Synovial sepsis in horses is life threatening and accurate diagnosis allowing prompt treatment is warranted. This study assessed the diagnostic value of serum amyloid A (SAA) and D-lactate in blood and synovial fluid (SF) as diagnostic markers of synovial sepsis in horses and correlated them with total nucleated cell count (TNCC), percentage of neutrophils (%N) and total protein (TP) in SF. Blood and SF SAA and D-lactate concentrations were determined in a case–control observational study including 112 horses (38 with synovial contamination or sepsis (SCS), 66 with non-septic intra-synovial pathology (NSISP) and 8 controls). Blood and SF SAA were significantly higher in SCS than in NSISP and control horses. SAA values were similar in NSISP and control horses. SF SAA was moderately correlated with synovial TNCC, TP and blood SAA. Blood and SF SAA were 82.4 per cent and 80 per cent sensitive and 88.9 per cent and 73 per cent specific for diagnosis of SCS, with cut-off values of 60.7 and 1.14 µg/ml, respectively. Blood and SF D-lactate concentrations were not significantly different between groups. This study shows that blood and SF SAA concentrations can aid to distinguish SCS from non-septic synovial pathology; however, D-lactate was not useful.
Collapse
Affiliation(s)
- Claire S Robinson
- Department of Equine Clinical Science, Institute of Veterinary Science, University of Liverpool, Wirral, UK
| | - Ellen R Singer
- Department of Equine Clinical Science, Institute of Veterinary Science, University of Liverpool, Wirral, UK
| | - Martina Piviani
- Department of Small Animal Clinical Science, Institute of Veterinary Science, University of Liverpool, Wirral, UK
| | - Luis M Rubio-Martinez
- Department of Equine Clinical Science, Institute of Veterinary Science, University of Liverpool, Wirral, UK
| |
Collapse
|
48
|
Seheult J, Fitzpatrick G, Boran G. Lactic acidosis: an update. Clin Chem Lab Med 2017; 55:322-333. [PMID: 27522622 DOI: 10.1515/cclm-2016-0438] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/10/2016] [Indexed: 02/05/2023]
Abstract
Lactate is one of the most crucial intermediates in carbohydrate and nonessential amino acid metabolism. The complexity of cellular interactions and metabolism means that lactate can be considered a waste product for one cell but a useful substrate for another. The presence of elevated lactate levels in critically ill patients has important implications for morbidity and mortality. In this review, we provide a brief outline of the metabolism of lactate, the pathophysiology of lactic acidosis, the clinical significance of D-lactate, the role of lactate measurement in acutely ill patients, the methods used to measure lactate in blood or plasma and some of the methodological issues related to interferences in these assays, especially in the case of ethylene glycol poisoning.
Collapse
|
49
|
Bohn J, Yüksel-Dadak A, Dröge S, König H. Isolation of lactic acid-forming bacteria from biogas plants. J Biotechnol 2016; 244:4-15. [PMID: 28011128 DOI: 10.1016/j.jbiotec.2016.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/14/2016] [Accepted: 12/19/2016] [Indexed: 01/12/2023]
Abstract
Direct molecular approaches provide hints that lactic acid bacteria play an important role in the degradation process of organic material to methanogenetic substrates in biogas plants. However, their diversity in biogas fermenter samples has not been analyzed in detail yet. For that reason, five different biogas fermenters, which were fed mainly with maize silage and manure from cattle or pigs, were examined for the occurrence of lactic acid-forming bacteria. A total of 197 lactic acid-forming bacterial strains were isolated, which we assigned to 21 species, belonging to the genera Bacillus, Clostridium, Lactobacillus, Pediococcus, Streptococcus and Pseudoramibacter-related. A qualitative multiplex system and a real-time quantitative PCR could be developed for most isolates, realized by the selection of specific primers. Their role in biogas plants was discussed on the basis of the quantitative results and on physiological data of the isolates.
Collapse
Affiliation(s)
- Jelena Bohn
- Institute of Microbiology and Wine Research (IMW), Johannes Gutenberg-Universität of Mainz, Johann-Joachim-Becherweg 15, 55099 Mainz, Germany.
| | - Aytül Yüksel-Dadak
- Institute of Microbiology and Wine Research (IMW), Johannes Gutenberg-Universität of Mainz, Johann-Joachim-Becherweg 15, 55099 Mainz, Germany
| | - Stefan Dröge
- Test and Research Institute Pirmasens (PFI), Marie-Curie-Straße 19, 66953 Pirmasens, Germany
| | - Helmut König
- Institute of Microbiology and Wine Research (IMW), Johannes Gutenberg-Universität of Mainz, Johann-Joachim-Becherweg 15, 55099 Mainz, Germany
| |
Collapse
|
50
|
Chen CM, Chen SM, Chien PJ, Yu HY. Development of an enzymatic assay system of D-lactate using D-lactate dehydrogenase and a UV-LED fluorescent spectrometer. J Pharm Biomed Anal 2015; 116:150-5. [PMID: 26265307 DOI: 10.1016/j.jpba.2015.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 07/14/2015] [Accepted: 07/21/2015] [Indexed: 12/22/2022]
Abstract
In this study, we aimed to develop a new enzymatic assay system of d-lactate with good precision, accuracy, and sensitivity for the determination of D-lactate concentrations in rat serum. D-Lactate dehydrogenase (D-LDH) was utilized to catalyze D-lactate and NAD(+) to pyruvate and NADH, respectively. The generated NADH was excited by using a 340-nm UV-light-emitting diode (LED), and the fluorescence at 491 nm was detected to determine the concentration of D-lactate in rat serum. The optics, consisting of the sample cuvette, were set on three-dimensional stages to receive the most intensive fluorescence signal into the spectrometer. The optimal conditions of the D-LDH reaction were pH 8.5 and 25 °C for 90 min. The results showed that the new D-lactate assay system had good linearity (R(2)=0.9964) in the calibration range from 5 to 150 μM. Intra-day and inter-day accuracies were in the range of 103.96-109.09% and 102.84-104.59%, respectively, and the intra-day and inter-day precision was 4.28-6.82% and 4.04-12.40%, respectively. Finally, serum D-lactate concentrations determined by the proposed enzymatic assay system were compared with those obtained by a conventional HPLC method. The newly developed D-lactate assay system could detect 10-15 samples in 90 min, whereas the HPLC method could detect only one sample over the same time period.
Collapse
Affiliation(s)
- Chien-Ming Chen
- Department of Electro-Optical Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 106, Taiwan.
| | - Shih-Ming Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, No. 250, Wuxing St., Taipei 11031, Taiwan
| | - Po-Jen Chien
- School of Pharmacy, College of Pharmacy, Taipei Medical University, No. 250, Wuxing St., Taipei 11031, Taiwan
| | - Han-Yin Yu
- Department of Electro-Optical Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 106, Taiwan
| |
Collapse
|