1
|
Liu X, Huang S, Gu X, Yang Z, Xiu J, Xu X, Cao Y, Wang J, Zhao Y, Peng M, Tian Z, Hua X, Wang HL, Huang C. Downregulation of the phosphatase PHLPP1 contributes to NNK-induced malignant transformation of human bronchial epithelial cells (HBECs). J Biol Chem 2025; 301:108221. [PMID: 39863100 DOI: 10.1016/j.jbc.2025.108221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 12/03/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Cigarette smoking (CS) is one of the greatest health concerns, which can cause lung cancer. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a tobacco-specific nitrosamine, has been well-documented for its carcinogenic activity in both epidemiological and laboratory studies. PH domain leucine-rich repeat protein phosphatase 1 (PHLPP1) and phosphatase and tensin homolog (PTEN) are two well-known phosphatase tumor suppressors that have been reported to be downregulated in human lung cancer tissues. However, the effect of NNK exposure on the expression of PHLPP1 and PTEN is unknown, and such effects may be early events leading to lung carcinogenesis. We explored this question in current studies and found that exposure of human bronchial epithelial BEP2D cells to NNK resulted in cell malignant transformation accompanied by a remarkable downregulation of PHLPP1 and PTEN. Such downregulation of PHLPP1 and PTEN was also consistently observed in vivo in Cigarette Smoking-exposed mouse lung tissues. Our studies further showed that overexpression of PHLPP1 or PTEN alleviated NNK-induced BEP2D cell transformation. Ectopic expression of PHLPP1 promoted PTEN protein expression, while PTEN overexpression did not affect PHLPP1 expression. Mechanistic studies showed that NNK was able to inhibit PP2A-C activity, which directly attenuated c-Jun phosphorylation at Ser63/73, and subsequently inhibited the PHLPP1 transcription and expression. Further, the downregulation of PHLPP1 led to a reduction of pten mRNA stability and expression through the HUR/Jun D/miR-613/NCL axis. Taken together, our studies advance the field of tobacco-induced lung cancer research by uncovering new mechanistic insights and identifying a novel molecular axis that could inform future therapeutic strategies. It also adds a new dimension by exploring the interaction between PHLPP1 and PTEN in the context of tobacco carcinogen exposure.
Collapse
Affiliation(s)
- Xuelei Liu
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shirui Huang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaozhen Gu
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| | - Ziyi Yang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiajun Xiu
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| | - Xiaodan Xu
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| | - Yaxin Cao
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| | - Jingjing Wang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| | - Yunping Zhao
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| | - Minggang Peng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongxian Tian
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaohui Hua
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| | - Hui-Li Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| | - Chuanshu Huang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China.
| |
Collapse
|
2
|
Burgon PG, Weldrick JJ, Talab OMSA, Nadeer M, Nomikos M, Megeney LA. Regulatory Mechanisms That Guide the Fetal to Postnatal Transition of Cardiomyocytes. Cells 2023; 12:2324. [PMID: 37759546 PMCID: PMC10528641 DOI: 10.3390/cells12182324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Heart disease remains a global leading cause of death and disability, necessitating a comprehensive understanding of the heart's development, repair, and dysfunction. This review surveys recent discoveries that explore the developmental transition of proliferative fetal cardiomyocytes into hypertrophic postnatal cardiomyocytes, a process yet to be well-defined. This transition is key to the heart's growth and has promising therapeutic potential, particularly for congenital or acquired heart damage, such as myocardial infarctions. Although significant progress has been made, much work is needed to unravel the complex interplay of signaling pathways that regulate cardiomyocyte proliferation and hypertrophy. This review provides a detailed perspective for future research directions aimed at the potential therapeutic harnessing of the perinatal heart transitions.
Collapse
Affiliation(s)
- Patrick G. Burgon
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Jonathan J. Weldrick
- Department of Medicine, Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (J.J.W.); (L.A.M.)
| | | | - Muhammad Nadeer
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (O.M.S.A.T.)
| | - Michail Nomikos
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (O.M.S.A.T.)
| | - Lynn A. Megeney
- Department of Medicine, Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (J.J.W.); (L.A.M.)
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
3
|
Gu SH, Chen CH, Chang CH, Lin PL. Expression of tyrosine phosphatases in relation to PTTH-stimulated ecdysteroidogenesis in prothoracic glands of the silkworm, Bombyx mori. Gen Comp Endocrinol 2023; 331:114165. [PMID: 36368438 DOI: 10.1016/j.ygcen.2022.114165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/19/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
Protein tyrosine phosphorylation is a reversible, dynamic process regulated by the activities of tyrosine kinases and tyrosine phosphatases. Although the involvement of tyrosine kinases in the prothoracicotropic hormone (PTTH)-stimulated ecdysteroidogenesis in insect prothoracic glands (PGs) has been documented, few studies have been conducted on the involvement of protein tyrosine phosphatases (PTPs) in PTTH-stimulated ecdysteroidogenesis. In the present study, we investigated the correlation between PTPs and PTTH-stimulated ecdysteroidogenesis in Bombyx mori PGs. Our results showed that the basal PTP enzymatic activities exhibited development-specific changes during the last larval instar and pupation stage, with high activities being detected during the later stages of the last larval instar. PTP enzymatic activity was stimulated by PTTH treatment both in vitro and in vivo. Pretreatment with phenylarsine oxide (PAO) and benzylphosphonic acid (BPA), two chemical inhibitors of tyrosine phosphatase, reduced PTTH-stimulated enzymatic activity. Determination of ecdysteroid secretion showed that treatment with PAO and BPA did not affect basal ecdysteroid secretion, but greatly inhibited PTTH-stimulated ecdysteroid secretion, indicating that PTTH-stimulated PTP activity is indeed involved in ecdysteroid secretion. PTTH-stimulated phosphorylation of the extracellular signal-regulated kinase (ERK) and 4E-binding protein (4E-BP) was partially inhibited by pretreatment with either PAO or BPA, indicating the potential link between PTPs and phosphorylation of ERK and 4E-BP. In addition, we also found that in vitro treatment with 20-hydroxyecdysone did not affect PTP enzymatic activity. We further investigated the expressions of two important PTPs (PTP 1B (PTP1B) and the phosphatase and tension homologue (PTEN)) in Bombyx PGs. Our immunoblotting analysis showed that B. mori PGs contained the proteins of PTP1B and PTEN, with PTP1B protein undergoing development-specific changes. Protein levels of PTP1B and PTEN were not affected by PTTH treatment. The gene expression levels of PTP1B and PTEN showed development-specific changes. From these results, we suggest that PTTH-regulated PTP signaling may crosstalk with ERK and target of rapamycin (TOR) signaling pathways and is a necessary component for stimulation of ecdysteroid secretion.
Collapse
Affiliation(s)
- Shi-Hong Gu
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC.
| | - Chien-Hung Chen
- Chung Hwa University of Medical Technology, 89 Wen-Hwa 1st Road, Jen-Te Township, Tainan County 717, Taiwan, ROC
| | - Chia-Hao Chang
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC
| | - Pei-Ling Lin
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC
| |
Collapse
|
4
|
Kluck GE, Qian AS, Sakarya EH, Quach H, Deng YD, Trigatti BL. Apolipoprotein A1 Protects Against Necrotic Core Development in Atherosclerotic Plaques: PDZK1-Dependent High-Density Lipoprotein Suppression of Necroptosis in Macrophages. Arterioscler Thromb Vasc Biol 2023; 43:45-63. [PMID: 36353992 PMCID: PMC9762725 DOI: 10.1161/atvbaha.122.318062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Atherosclerosis is a chronic disease affecting artery wall and a major contributor to cardiovascular diseases. Large necrotic cores increase risk of plaque rupture leading to thrombus formation. Necrotic cores are rich in debris from dead macrophages. Programmed necrosis (necroptosis) contributes to necrotic core formation. HDL (high-density lipoprotein) exerts direct atheroprotective effects on different cells within atherosclerotic plaques. Some of these depend on the SR-B1 (scavenger receptor class B type I) and the adapter protein PDZK1 (postsynaptic density protein/Drosophila disc-large protein/Zonula occludens protein containing 1). However, a role for HDL in protecting against necroptosis and necrotic core formation in atherosclerosis is not completely understood. METHODS Low-density lipoprotein receptor-deficient mice engineered to express different amounts of ApoA1 (apolipoprotein A1), or to lack PDZK1 were fed a high fat diet for 10 weeks. Atherosclerotic plaque areas, necrotic cores, and key necroptosis mediators, RIPK3 (receptor interacting protein kinase 3), and MLKL (mixed lineage kinase domain-like protein) were characterized. Cultured macrophages were treated with HDL to determine its effects, as well as the roles of SR-B1, PDZK1, and the PI3K (phosphoinositide 3-kinase) signaling pathway on necroptotic cell death. RESULTS Genetic overexpression reduced, and ApoA1 knockout increased necrotic core formation and RIPK3 and MLKL within atherosclerotic plaques. Macrophages were protected against necroptosis by HDL and this protection required SR-B1, PDZK1, and PI3K/Akt pathway. PDZK1 knockout increased atherosclerosis in LDLRKO mice, increasing necrotic cores and phospho-MLKL; both of which were reversed by restoring PDZK1 in BM-derived cells. CONCLUSIONS Our findings demonstrate that HDL in vitro and ApoA1, in vivo, protect against necroptosis in macrophages and necrotic core formation in atherosclerosis, suggesting a pathway that could be a target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- George E.G. Kluck
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, and Hamilton Health Sciences, Ontario, Canada
| | - Alexander S. Qian
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, and Hamilton Health Sciences, Ontario, Canada
| | - Emmanuel H. Sakarya
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, and Hamilton Health Sciences, Ontario, Canada
| | - Henry Quach
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, and Hamilton Health Sciences, Ontario, Canada
| | - Yak D. Deng
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, and Hamilton Health Sciences, Ontario, Canada
| | - Bernardo L. Trigatti
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, and Hamilton Health Sciences, Ontario, Canada
| |
Collapse
|
5
|
Ebrahimi N, Parkhideh S, Samizade S, Esfahani AN, Samsami S, Yazdani E, Adelian S, Chaleshtori SR, Shah-Amiri K, Ahmadi A, Aref AR. Crosstalk between lncRNAs in the apoptotic pathway and therapeutic targets in cancer. Cytokine Growth Factor Rev 2022; 65:61-74. [PMID: 35597701 DOI: 10.1016/j.cytogfr.2022.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/03/2022]
Abstract
The assertion that a significant portion of the mammalian genome has not been translated and that non-coding RNA accounts for over half of polyadenylate RNA have received much attention. In recent years, increasing evidence proposes non-coding RNAs (ncRNAs) as new regulators of various cellular processes, including cancer progression and nerve damage. Apoptosis is a type of programmed cell death critical for homeostasis and tissue development. Cancer cells often have inhibited apoptotic pathways. It has recently been demonstrated that up/down-regulation of various lncRNAs in certain types of tumors shapes cancer cells' response to apoptotic stimuli. This review discusses the most recent studies on lncRNAs and apoptosis in healthy and cancer cells. In addition, the role of lncRNAs as novel targets for cancer therapy is reviewed here. Finally, since it has been shown that lncRNA expression is associated with specific types of cancer, the potential for using lncRNAs as biomarkers is also discussed.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Iran
| | - Sahar Parkhideh
- Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Setare Samizade
- Department of Cellular and molecular, School of Biological Sciences, Islamic Azad University of Falavarjan, Iran
| | - Alireza Nasr Esfahani
- Department of Cellular and molecular, School of Biological Sciences, Islamic Azad University of Falavarjan, Iran
| | - Sahar Samsami
- Biotechnology department of Fasa University of medical science, Fasa, Iran
| | - Elnaz Yazdani
- Department of Biology, Faculty of Science, University Of Isfahan, Isfahan, Iran; Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Samaneh Adelian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Kamal Shah-Amiri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amirhossein Ahmadi
- Department of Biological Science and Technology, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr 75169, Iran.
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Chan DW, Lam WY, Chen F, Yung MMH, Chan YS, Chan WS, He F, Liu SS, Chan KKL, Li B, Ngan HYS. Genome-wide DNA methylome analysis identifies methylation signatures associated with survival and drug resistance of ovarian cancers. Clin Epigenetics 2021; 13:142. [PMID: 34294135 PMCID: PMC8296615 DOI: 10.1186/s13148-021-01130-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND In contrast to stable genetic events, epigenetic changes are highly plastic and play crucial roles in tumor evolution and development. Epithelial ovarian cancer (EOC) is a highly heterogeneous disease that is generally associated with poor prognosis and treatment failure. Profiling epigenome-wide DNA methylation status is therefore essential to better characterize the impact of epigenetic alterations on the heterogeneity of EOC. METHODS An epigenome-wide association study was conducted to evaluate global DNA methylation in a retrospective cohort of 80 mixed subtypes of primary ovarian cancers and 30 patients with high-grade serous ovarian carcinoma (HGSOC). Three demethylating agents, azacytidine, decitabine, and thioguanine, were tested their anti-cancer and anti-chemoresistant effects on HGSOC cells. RESULTS Global DNA hypermethylation was significantly associated with high-grade tumors, platinum resistance, and poor prognosis. We determined that 9313 differentially methylated probes (DMPs) were enriched in their relative gene regions of 4938 genes involved in small GTPases and were significantly correlated with the PI3K-AKT, MAPK, RAS, and WNT oncogenic pathways. On the other hand, global DNA hypermethylation was preferentially associated with recurrent HGSOC. A total of 2969 DMPs corresponding to 1471 genes were involved in olfactory transduction, and calcium and cAMP signaling. Co-treatment with demethylating agents showed significant growth retardation in ovarian cancer cells through differential inductions, such as cell apoptosis by azacytidine or G2/M cell cycle arrest by decitabine and thioguanine. Notably, azacytidine and decitabine, though not thioguanine, synergistically enhanced cisplatin-mediated cytotoxicity in HGSOC cells. CONCLUSIONS This study demonstrates the significant association of global hypermethylation with poor prognosis and drug resistance in high-grade EOC and highlights the potential of demethylating agents in cancer treatment.
Collapse
Affiliation(s)
- David W Chan
- Department of Obstetrics and Gynaecology, L747 Laboratory Block, LKS Faculty of Medicine, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, People's Republic of China.
| | - Wai-Yip Lam
- Lee's Pharmaceutical (HK) Ltd, 1/F Building 20E, Phase 3, Hong Kong Science Park, Shatin, Hong Kong, People's Republic of China
| | - Fushun Chen
- Department of Obstetrics and Gynaecology, L747 Laboratory Block, LKS Faculty of Medicine, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, People's Republic of China
| | - Mingo M H Yung
- Department of Obstetrics and Gynaecology, L747 Laboratory Block, LKS Faculty of Medicine, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, People's Republic of China
| | - Yau-Sang Chan
- Department of Obstetrics and Gynaecology, L747 Laboratory Block, LKS Faculty of Medicine, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, People's Republic of China
| | - Wai-Sun Chan
- Department of Obstetrics and Gynaecology, L747 Laboratory Block, LKS Faculty of Medicine, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, People's Republic of China
| | - Fangfang He
- Department of Obstetrics and Gynaecology, L747 Laboratory Block, LKS Faculty of Medicine, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, People's Republic of China
| | - Stephanie S Liu
- Department of Obstetrics and Gynaecology, L747 Laboratory Block, LKS Faculty of Medicine, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, People's Republic of China
| | - Karen K L Chan
- Department of Obstetrics and Gynaecology, L747 Laboratory Block, LKS Faculty of Medicine, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, People's Republic of China
| | - Benjamin Li
- Lee's Pharmaceutical (HK) Ltd, 1/F Building 20E, Phase 3, Hong Kong Science Park, Shatin, Hong Kong, People's Republic of China
| | - Hextan Y S Ngan
- Department of Obstetrics and Gynaecology, L747 Laboratory Block, LKS Faculty of Medicine, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, People's Republic of China. .,Department of Obstetrics and Gynaecology, 6/F Professorial Block, Queen Mary Hospital, Pokfulam, Hong Kong, People's Republic of China.
| |
Collapse
|
7
|
Gu SH, Chen CH, Lin PL. Expression of protein tyrosine phosphatases and Bombyx embryonic development. JOURNAL OF INSECT PHYSIOLOGY 2021; 130:104198. [PMID: 33549567 DOI: 10.1016/j.jinsphys.2021.104198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/25/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Protein phosphorylation is an integral component of signal transduction pathways within eukaryotic cells, and it is regulated by coordinated interactions between protein kinases and protein phosphatases. Our previous study demonstrated differential expressions of serine/threonine protein phosphatases (PP2A and calcineurin) between diapause and developing eggs in Bombyx mori. In the present study, we further investigated expression of protein tyrosine phosphatases (PTPs) in relation to the Bombyx embryonic development. An immunoblot analysis showed that eggs contained the proteins of the 51-kDa PTP 1B (PTP1B), the 55-kDa phosphatase and tensin homologue (PTEN), and the 70-kDa Src homology 2 (SH2) domain-containing phosphatase 2 (SHP2), which undergo differential changes between diapause and developing eggs. Protein level of PTP1B and PTEN in eggs whose diapause initiation was prevented by HCl gradually increased toward embryonic development. The protein level of SHP2 also showed a dramatic increase on days 7 and 8 after HCl treatment. However, protein levels of PTP1B, PTEN, and SHP2 in diapause eggs remained at low levels during the first 9 days after oviposition. These differential changing patterns in protein levels were further confirmed using both non-diapause eggs and eggs in which diapause had been terminated by chilling of diapausing eggs at 5 °C for 70 days and then were transferred to 25 °C. Direct determination of PTP enzymatic activities showed higher activities in developing eggs (HCl-treated eggs, non-diapause eggs, and chilled eggs) compared to those in diapause eggs. Examination of temporal changes in mRNA expression levels of PTP1B, PTEN, and SHP2 did not show significant differences between diapause eggs and HCl-treated eggs except high expression in SHP2 variant B during the later embryonic development in HCl-treated eggs. These results demonstrate that higher protein levels of PTP1B, PTEN, and SHP2 and increased tyrosine phosphatase enzymatic activities in developing eggs are likely related to embryonic development of B. mori.
Collapse
Affiliation(s)
- Shi-Hong Gu
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC.
| | - Chien-Hung Chen
- Chung Hwa University of Medical Technology, 89 Wen-Hwa 1st Road, Jen-Te Township, Tainan County 717, Taiwan, ROC
| | - Pei-Ling Lin
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC
| |
Collapse
|
8
|
Kim S, Lee JW, Park YS. The Application of Next-Generation Sequencing to Define Factors Related to Oral Cancer and Discover Novel Biomarkers. Life (Basel) 2020; 10:E228. [PMID: 33023080 PMCID: PMC7599837 DOI: 10.3390/life10100228] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
Despite the introduction of next-generation sequencing in the realm of DNA sequencing technology, it is not often used in the investigation of oral squamous cell carcinoma (OSCC). Oral cancer is one of the most frequently occurring malignancies in some parts of the world and has a high mortality rate. Patients with this malignancy are likely to have a poor prognosis and may suffer from severe facial deformity or mastication problems even after successful treatment. Therefore, a thorough understanding of this malignancy is essential to prevent and treat it. This review sought to highlight the contributions of next-generation sequencing (NGS) in unveiling the genetic alterations and differential expressions of miRNAs involved in OSCC progression. By applying an appropriate eligibility criterion, we selected relevant studies for review. Frequently identified mutations in genes such as TP53, NOTCH1, and PIK3CA are discussed. The findings of existing miRNAs (e.g., miR-21) as well as novel discoveries pertaining to OSCC are also covered. Lastly, we briefly mention the latest findings in targeted gene therapy and the potential use of miRNAs as biomarkers. Our goal is to encourage researchers to further adopt NGS in their studies and give an overview of the latest findings of OSCC treatment.
Collapse
Affiliation(s)
| | | | - Young-Seok Park
- Department of Oral Anatomy and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03968, Korea; (S.K.); (J.W.L.)
| |
Collapse
|
9
|
Advani D, Gupta R, Tripathi R, Sharma S, Ambasta RK, Kumar P. Protective role of anticancer drugs in neurodegenerative disorders: A drug repurposing approach. Neurochem Int 2020; 140:104841. [PMID: 32853752 DOI: 10.1016/j.neuint.2020.104841] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
The disease heterogeneity and little therapeutic progress in neurodegenerative diseases justify the need for novel and effective drug discovery approaches. Drug repurposing is an emerging approach that reinvigorates the classical drug discovery method by divulging new therapeutic uses of existing drugs. The common biological background and inverse tuning between cancer and neurodegeneration give weight to the conceptualization of repurposing of anticancer drugs as novel therapeutics. Many studies are available in the literature, which highlights the success story of anticancer drugs as repurposed therapeutics. Among them, kinase inhibitors, developed for various oncology indications evinced notable neuroprotective effects in neurodegenerative diseases. In this review, we shed light on the salient role of multiple protein kinases in neurodegenerative disorders. We also proposed a feasible explanation of the action of kinase inhibitors in neurodegenerative disorders with more attention towards neurodegenerative disorders. The problem of neurotoxicity associated with some anticancer drugs is also highlighted. Our review encourages further research to better encode the hidden potential of anticancer drugs with the aim of developing prospective repurposed drugs with no toxicity for neurodegenerative disorders.
Collapse
Affiliation(s)
- Dia Advani
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rohan Gupta
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rahul Tripathi
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Sudhanshu Sharma
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
10
|
AEBP1 is a Novel Oncogene: Mechanisms of Action and Signaling Pathways. JOURNAL OF ONCOLOGY 2020; 2020:8097872. [PMID: 32565808 PMCID: PMC7273425 DOI: 10.1155/2020/8097872] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/13/2020] [Indexed: 12/29/2022]
Abstract
Adipocyte enhancer-binding protein 1 (AEBP1) is a transcriptional repressor involved in the regulation of critical biological processes including adipogenesis, mammary gland development, inflammation, macrophage cholesterol homeostasis, and atherogenesis. Several years ago, we first reported the ability of AEBP1 to exert a positive control over the canonical NF-κB pathway. Indeed, AEBP1 positively regulates NF-κB activity via its direct interaction with IκBα, a key NF-κB inhibitor. AEBP1 overexpression results in uncontrollable activation of NF-κB, which may have severe pathogenic outcomes. Recently, the regulatory relationship between AEBP1 and NF-κB pathway has been of great interest to many researchers primarily due to the implication of NF-κB signaling in critical cellular processes such as inflammation and cancer. Since constitutive activation of NF-κB is widely implicated in carcinogenesis, AEBP1 overexpression is associated with tumor development and progression. Recent studies sought to explore the effects of the overexpression of AEBP1, as a potential oncogene, in different types of cancer. In this review, we analyze the effects of AEBP1 overexpression in a variety of malignancies (e.g., breast cancer, glioblastoma, bladder cancer, gastric cancer, colorectal cancer, ovarian cancer, and skin cancer), with a specific focus on the AEBP1-mediated control over the canonical NF-κB pathway. We also underscore the ability of AEBP1 to regulate crucial cancer-related events like cell proliferation and apoptosis in light of other key pathways (e.g., PI3K-Akt, sonic hedgehog (Shh), p53, parthanatos (PARP-1), and PTEN). Identifying AEBP1 as a potential biomarker for cancer prognosis may lead to a novel therapeutic target for the prevention and/or treatment of various types of cancer.
Collapse
|
11
|
Liu S, Jia J, Zhou H, Zhang C, Liu L, Liu J, Lu L, Li X, Kang Y, Lou Y, Cai Z, Ren Y, Kong X, Feng S. PTEN modulates neurites outgrowth and neuron apoptosis involving the PI3K/Akt/mTOR signaling pathway. Mol Med Rep 2019; 20:4059-4066. [PMID: 31702028 PMCID: PMC6797942 DOI: 10.3892/mmr.2019.10670] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 07/18/2019] [Indexed: 02/07/2023] Open
Abstract
The present study aimed to explore the role of the PTEN/Akt/mTOR signaling pathway in the neurite outgrowth and apoptosis of cortical neurons. Cortical neurons were seeded on or adjacent to chondroitin sulfate proteoglycans. The length, number and crossing behavior of the neurites were calculated. Immunohistochemical staining and TUNEL data were analyzed. Neurites treated with PTEN inhibitor exhibited significant enhancements in elongation, initiation and crossing abilities when they encountered chondroitin sulfate proteoglycans in vitro. These effects disappeared when the PTEN/Akt/mTOR signaling pathway was blocked. Neurons exhibited significant enhancements in survival ability following PTEN inhibition. The present study demonstrated that PTEN inhibition can promote axonal elongation and initiation in cerebral cortical neurons, as well as the ability to cross the chondroitin sulfate proteoglycan border. In addition, PTEN inhibition is useful for protecting the neuron from apoptosis. The PTEN/Akt/mTOR signaling pathway is an important signaling pathway.
Collapse
Affiliation(s)
- Shen Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jun Jia
- Department of Trauma Orthopedics, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Hengxing Zhou
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Chi Zhang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Lu Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jun Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Lu Lu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xueying Li
- Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Department of Immunology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Yi Kang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yongfu Lou
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zhiwei Cai
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yiming Ren
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xiaohong Kong
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
12
|
Yin H, Xiong G, Guo S, Xu C, Xu R, Guo P, Shu D. Delivery of Anti-miRNA for Triple-Negative Breast Cancer Therapy Using RNA Nanoparticles Targeting Stem Cell Marker CD133. Mol Ther 2019; 27:1252-1261. [PMID: 31085078 DOI: 10.1016/j.ymthe.2019.04.018] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 11/28/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive disease with a short median time from relapse to death. The increased aggressiveness, drug resistance, disease relapse, and metastasis are associated with the presence of stem cells within tumors. Several stem cell markers, such as CD24, CD44, CD133, ALDH1, and ABCG2, have been reported, but their roles in breast cancer tumorigenesis remain unclear. Herein, we apply RNA nanotechnology to deliver anti-microRNA (miRNA) for TNBC therapy. The thermodynamically and chemically stable three-way junction (3WJ) motif was utilized as the scaffold to carry an RNA aptamer binding to CD133 receptor and a locked nuclei acid (LNA) sequence for miRNA21 inhibition. Binding assays revealed the specific uptake of the nanoparticles to breast cancer stem cells (BCSCs) and TNBC cells. Functional assays showed that cancer cell migration was reduced, miR21 expression was inhibited, and downstream tumor suppressor PTEN and PDCD4 expressions were upregulated. In vitro and in vivo studies revealed that these therapeutic RNA nanoparticles did not induce cytokine secretion. Systemic injection of these RNA nanoparticles in animal trial demonstrated high specificity in TNBC tumor targeting and high efficacy for tumor growth inhibition. These results revealed the clinical translation potential of these RNA nanoparticles for TNBC therapy.
Collapse
Affiliation(s)
- Hongran Yin
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Gaofeng Xiong
- Department of Molecular and Biomedical Pharmacology, Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Sijin Guo
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Congcong Xu
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Ren Xu
- Department of Molecular and Biomedical Pharmacology, Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Dan Shu
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
13
|
Li J, Ho WY, Tsang JYS, Ni YB, Chan SK, Tse GM. Expression of biomarkers in the AKT pathway correlates with malignancy and recurrence in phyllodes tumours of the breast. Histopathology 2019; 74:567-577. [PMID: 30383904 DOI: 10.1111/his.13782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/29/2018] [Indexed: 01/16/2023]
Abstract
AIMS Phyllodes tumours (PTs) of the breast are uncommon fibroepithelial neoplasms with the potential to recur and metastasise. Apart from histological grading, the expression of biological markers and its relationship with tumour behaviour have been topics of interest. The phosphatidylinositol 3-kinase (PI3K)-AKT pathway regulates diverse biological functions, and is one of the most frequently deregulated pathways in cancers. Little is known of PI3K-AKT pathway alteration in PT. We aim to investigate the alterations in different component of AKT pathway in PTs. METHODS AND RESULTS This study investigated the expression of four biological markers involved in this pathway (PTEN, INPP4B, PI3KCA and pAKT) in 134 PTs by the use of immunohistochemistry. According to an immunoscore incorporating staining intensity and proportion, low epithelial INPP4B expression (P = 0.045) was associated with recurrence. A trend of association was found for low epithelial PTEN expression with recurrence (P = 0.090). Interestingly, low epithelial INPP4B expression was also associated recurred tumours (P = 0.043). Stromal PI3KCA expression (P = 0.016) and pAKT expression (P = 0.006) were found to be correlated with increased histological grade, but an opposite trend was seen for stromal INPP4B expression (P = 0.018). In addition, epithelial and stromal PTEN expression, PI3KCA expression and pAKT expression showed strong correlations with each other (P ≤ 0.001). CONCLUSIONS These findings indicate that alterations in AKT pathway activation may correlate with malignant transformation and recurrence in PT. Low epithelial INPP4B/PTEN expression is associated with shorter recurrence-free survival. These observations suggest that the pathway may play a crucial role in the biological behaviour and progression of PT, and assessing the expression of this pathway may be of value in diagnosis, grading, prognostication, and management.
Collapse
Affiliation(s)
- Joshua Li
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Wai-Yee Ho
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Julia Y S Tsang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Yun-Bi Ni
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Siu-Ki Chan
- Department of Pathology, Kwong Wah Hospital, Hong Kong, Hong Kong
| | - Gary M Tse
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
14
|
Yehia L, Ngeow J, Eng C. PTEN-opathies: from biological insights to evidence-based precision medicine. J Clin Invest 2019; 129:452-464. [PMID: 30614812 DOI: 10.1172/jci121277] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The tumor suppressor phosphatase and tensin homolog (PTEN) classically counteracts the PI3K/AKT/mTOR signaling cascade. Germline pathogenic PTEN mutations cause PTEN hamartoma tumor syndrome (PHTS), featuring various benign and malignant tumors, as well as neurodevelopmental disorders such as autism spectrum disorder. Germline and somatic mosaic mutations in genes encoding components of the PI3K/AKT/mTOR pathway downstream of PTEN predispose to syndromes with partially overlapping clinical features, termed the "PTEN-opathies." Experimental models of PTEN pathway disruption uncover the molecular and cellular processes influencing clinical phenotypic manifestations. Such insights not only teach us about biological mechanisms in states of health and disease, but also enable more accurate gene-informed cancer risk assessment, medical management, and targeted therapeutics. Hence, the PTEN-opathies serve as a prototype for bedside to bench, and back to the bedside, practice of evidence-based precision medicine.
Collapse
Affiliation(s)
- Lamis Yehia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Joanne Ngeow
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.,Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre, Singapore.,Oncology Academic Program, Duke-NUS Graduate Medical School, Singapore
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.,Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
15
|
Wang J, Xu W, He Y, Xia Q, Liu S. LncRNA MEG3 impacts proliferation, invasion, and migration of ovarian cancer cells through regulating PTEN. Inflamm Res 2018; 67:927-936. [PMID: 30310931 DOI: 10.1007/s00011-018-1186-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE AND DESIGN We investigated the expressions of lncRNA MEG3 and PTEN in ovarian cancer tissues and their effects on cell proliferation, cycle and apoptosis of ovarian cancer. METHODS Expression levels of MEG3 in ovarian cancer cell lines and normal ovarian cell lines were detected by qRT-PCR. Cell viability was detected by MTT assay. Cell apoptosis and cell cycle distribution were measured by flow cytometry. Cell invasion capability was tested by transwell assay. Cell migration capacity was tested by wound healing. The xenograft model was constructed to explore the effect of lncRNA MEG3 on ovarian cancer in vivo. RESULT Compared with normal ovarian cells, expression levels of MEG3 and PTEN were relatively lower in ovarian cancer cells. There was a positive correlation between the expression of PTEN and the expression of MEG3. Enhanced expression level of PTEN suppressed SKOV3 cell proliferation, increased cell apoptosis rate, and decreased cell invasion and migration. CONCLUSION LncRNA MEG3 and PTEN were down-regulated in ovarian cancer cells. LncRNA MEG3 regulated the downstream gene PTEN in ovarian cancer cells to prohibit cell proliferation, promote apoptosis and block cell cycle progression.
Collapse
Affiliation(s)
- Juelan Wang
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, Sichuan, China
| | - Wenqian Xu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, 400042, China
| | - Yangke He
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, Sichuan, China
| | - Qi Xia
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, Sichuan, China
| | - Siwei Liu
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, No. 32 West Section 2, First Ring Road, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
16
|
Neben CL, Lo M, Jura N, Klein OD. Feedback regulation of RTK signaling in development. Dev Biol 2017; 447:71-89. [PMID: 29079424 DOI: 10.1016/j.ydbio.2017.10.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023]
Abstract
Precise regulation of the amplitude and duration of receptor tyrosine kinase (RTK) signaling is critical for the execution of cellular programs and behaviors. Understanding these control mechanisms has important implications for the field of developmental biology, and in recent years, the question of how augmentation or attenuation of RTK signaling via feedback loops modulates development has become of increasing interest. RTK feedback regulation is also important for human disease research; for example, germline mutations in genes that encode RTK signaling pathway components cause numerous human congenital syndromes, and somatic alterations contribute to the pathogenesis of diseases such as cancers. In this review, we survey regulators of RTK signaling that tune receptor activity and intracellular transduction cascades, with a focus on the roles of these genes in the developing embryo. We detail the diverse inhibitory mechanisms utilized by negative feedback regulators that, when lost or perturbed, lead to aberrant increases in RTK signaling. We also discuss recent biochemical and genetic insights into positive regulators of RTK signaling and how these proteins function in tandem with negative regulators to guide embryonic development.
Collapse
Affiliation(s)
- Cynthia L Neben
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA
| | - Megan Lo
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco 94143, USA.
| |
Collapse
|
17
|
Mensah LB, Goberdhan DCI, Wilson C. mTORC1 signalling mediates PI3K-dependent large lipid droplet accumulation in Drosophila ovarian nurse cells. Biol Open 2017; 6:563-570. [PMID: 28302666 PMCID: PMC5450313 DOI: 10.1242/bio.022210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/15/2017] [Indexed: 01/15/2023] Open
Abstract
Insulin and insulin-like growth factor signalling (IIS), which is primarily mediated by the PI3-kinase (PI3K)/PTEN/Akt kinase signalling cassette, is a highly evolutionarily conserved pathway involved in co-ordinating growth, development, ageing and nutrient homeostasis with dietary intake. It controls transcriptional regulators, in addition to promoting signalling by mechanistic target of rapamycin (mTOR) complex 1 (mTORC1), which stimulates biosynthesis of proteins and other macromolecules, and drives organismal growth. Previous studies in nutrient-storing germline nurse cells of the Drosophila ovary showed that a cytoplasmic pool of activated phosphorylated Akt (pAkt) controlled by Pten, an antagonist of IIS, cell-autonomously regulates accumulation of large lipid droplets in these cells at late stages of oogenesis. Here, we show that the large lipid droplet phenotype induced by Pten mutation is strongly suppressed when mTor function is removed. Furthermore, nurse cells lacking either Tsc1 or Tsc2, which negatively regulate mTORC1 activity, also accumulate large lipid droplets via a mechanism involving Rheb, the downstream G-protein target of TSC2, which positively regulates mTORC1. We conclude that elevated IIS/mTORC1 signalling is both necessary and sufficient to induce large lipid droplet formation in late-stage nurse cells, suggesting roles for this pathway in aspects of lipid droplet biogenesis, in addition to control of lipid metabolism.
Collapse
Affiliation(s)
- Lawrence B Mensah
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford OX1 3QX, UK
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Deborah C I Goberdhan
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford OX1 3QX, UK
| | - Clive Wilson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford OX1 3QX, UK
| |
Collapse
|
18
|
Immunohistochemical analysis of PTEN, HER2/neu, and ki67 expression in patients with gastric cancer and their association with survival. ACTA ACUST UNITED AC 2017; 24:99-106. [PMID: 28262306 DOI: 10.1016/j.pathophys.2017.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 01/16/2023]
Abstract
BACKGROUND Considering the poor prognosis of patients with gastric cancer, molecular diagnostic and prognostic markers for this cancer should be established. The aims of our study were to assess the correlations between PTEN, HER2/neu, and Ki67 expressions and clinicopathological factors of gastric cancer patients in upper Egypt, as well as their influence on OS and DFS. PATIENTS AND METHODS In this descriptive-analytic study, 42 patients with gastric carcinoma treated by postioerative chemoradiation between 2004 and 2014. Pathological review was done. Immunohistochemical staining and evaluation were performed. RESULTS All the studied markers were significantly correlated with increased TNM stage. Her2/neu overexpression and positive Ki67 expression were significantly associated with histological grade. High percentage of positive Her2/neu and Ki67expression was found in gastric carcinoma tissue samples which lack PTEN expression. The one-year OS rate for the entire group (n=42) was 77.4%, whereas the DFS rate was 45%. Pathological T stage PTEN status significantly affected both OS (p=0.029 and 0.027 respectively) and DFS (p=0.006 and 0.012 respectively) rates. Multivariate Cox analyses showed that only pathological T stage was an independent prognostic factor affecting OS (P=0. 007, HR: 2.02; 95% CI: 1.2-3.38)and DFS(P<0.0001, HR: 2.69; 95% CI: 1.54-4.69). CONCLUSION All the studied molecular markers, was significantly correlated with pathological T stage that significantly affected both OS and DFS rates. These findings indicate that these markers have an important role in gastric cancer growth and dissemination so these markers can be used as a prognostic biomarker. In addition, therapies targeting Her2 and PTEN may help develop novel therapeutics for gastric cancer.
Collapse
|
19
|
Yamazaki K, Eng C, Kuznetsov SA, Reinisch J, Yamashita DD, Walker J, Cheung C, Robey PG, Yen SLK. Missense mutation in the PTEN promoter of a patient with hemifacial hyperplasia. BONEKEY REPORTS 2015; 4:654. [PMID: 26229595 DOI: 10.1038/bonekey.2015.21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 12/18/2014] [Indexed: 12/28/2022]
Abstract
The cellular mechanisms involved in the asymmetric facial overgrowth syndrome, hemifacial hyperplasia (HFH), are not well understood. This study was conducted to compare primary cell cultures from hyperplastic and normal HFH bone for cellular and molecular differences. Primary cultures developed from biopsies of a patient with isolated HFH showed a twofold difference in cell size and cell number between hyperplastic and normal bone. Microarray data suggested a 40% suppression of PTEN (phosphatase-tensin homolog) transcripts. Sequencing of the PTEN gene and promoter identified novel C/G missense mutation (position -1053) in the regulatory region of the PTEN promoter. Western blots of downstream pathway components showed an increase in PKBa/Akt1 phosphorylation and TOR (target of rapamcyin) signal. Sirolimus, an inhibitor of TOR, when added to overgrowth cells reversed the cell size, cell number and total protein differences between hyperplastic and normal cells. In cases of facial overgrowth, which involve PTEN/Akt/TOR dysregulation, sirolimus could be used for limiting cell overgrowth.
Collapse
Affiliation(s)
- Kiyomi Yamazaki
- Childrens Hospital Los Angeles , Los Angeles, CA, USA ; Center for Craniofacial Molecular Biology, University of Southern California , Los Angeles, CA, USA
| | - Charis Eng
- Clinical Cancer Genetics Program, Human Cancer Genetics Program, Comprehensive Cancer Center, Department of Internal Medicine, The Ohio State University , Columbus, OH, USA
| | - Sergei A Kuznetsov
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health , Bethesda, MD , USA
| | - John Reinisch
- Childrens Hospital Los Angeles , Los Angeles, CA, USA
| | | | - John Walker
- Childrens Hospital Los Angeles , Los Angeles, CA, USA
| | - Craig Cheung
- Center for Craniofacial Molecular Biology, University of Southern California , Los Angeles, CA, USA
| | - Pamela G Robey
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health , Bethesda, MD , USA
| | - Stephen L-K Yen
- Childrens Hospital Los Angeles , Los Angeles, CA, USA ; Center for Craniofacial Molecular Biology, University of Southern California , Los Angeles, CA, USA ; Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health , Bethesda, MD , USA
| |
Collapse
|
20
|
Zhou H, Li X, Wu Q, Li F, Fu Z, Liu C, Liang Z, Chu T, Wang T, Lu L, Ning G, Kong X, Feng S. shRNA against PTEN promotes neurite outgrowth of cortical neurons and functional recovery in spinal cord contusion rats. Regen Med 2014; 10:411-29. [PMID: 25495396 DOI: 10.2217/rme.14.88] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AIM To explore neurite growth/regeneration and spinal cord injury repair after PTEN silencing via lentivirus-mediated RNAi. MATERIALS & METHODS Cortical neurons were seeded on or adjacent to chondroitin sulfate proteoglycans. The length, number and crossing behavior of neurites were calculated. Lentivirus was locally injected into spinal cord contusion rats. The functional recovery and immunohistochemical staining were analyzed. RESULTS Neurites with PTEN silencing exhibited significant enhancements in elongation, initiation and crossing ability when they encountered chondroitin sulfate proteoglycans in vitro. In vivo PTEN silencing improved functional recovery significantly, and promoted axon and synapse formation, but not scar formation. CONCLUSIONS PTEN silencing may be promising for spinal cord injury repair.
Collapse
Affiliation(s)
- Hengxing Zhou
- 1Department of Orthopaedics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin 300052, PR China
| | | | - Qiang Wu
- 3Department of Orthopaedics, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No. 314 Anshanxi Road, Nankai District, Tianjin 300193, PR China
| | - Fuyuan Li
- 1Department of Orthopaedics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin 300052, PR China
| | | | - Chang Liu
- 4School of Medicine, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, PR China
| | - Zhipin Liang
- 4School of Medicine, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, PR China
| | - Tianci Chu
- 1Department of Orthopaedics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin 300052, PR China
| | - Tianyi Wang
- 1Department of Orthopaedics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin 300052, PR China
| | - Lu Lu
- 1Department of Orthopaedics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin 300052, PR China
| | - Guangzhi Ning
- 1Department of Orthopaedics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin 300052, PR China
| | - Xiaohong Kong
- 4School of Medicine, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, PR China
| | - Shiqing Feng
- 1Department of Orthopaedics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin 300052, PR China
| |
Collapse
|
21
|
Signaling by the engulfment receptor draper: a screen in Drosophila melanogaster implicates cytoskeletal regulators, Jun N-terminal Kinase, and Yorkie. Genetics 2014; 199:117-34. [PMID: 25395664 DOI: 10.1534/genetics.114.172544] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Draper, the Drosophila melanogaster homolog of the Ced-1 protein of Caenorhabditis elegans, is a cell-surface receptor required for the recognition and engulfment of apoptotic cells, glial clearance of axon fragments and dendritic pruning, and salivary gland autophagy. To further elucidate mechanisms of Draper signaling, we screened chromosomal deficiencies to identify loci that dominantly modify the phenotype of overexpression of Draper isoform II (suppressed differentiation of the posterior crossvein in the wing). We found evidence for 43 genetic modifiers of Draper II. Twenty-four of the 37 suppressor loci and 3 of the 6 enhancer loci were identified. An additional 5 suppressors and 2 enhancers were identified among mutations in functionally related genes. These studies reveal positive contributions to Drpr signaling for the Jun N-terminal Kinase pathway, supported by genetic interactions with hemipterous, basket, jun, and puckered, and for cytoskeleton regulation as indicated by genetic interactions with rac1, rac2, RhoA, myoblast city, Wiskcott-Aldrich syndrome protein, and the formin CG32138, and for yorkie and expanded. These findings indicate that Jun N-terminal Kinase activation and cytoskeletal remodeling collaborate in Draper signaling. Relationships between Draper signaling and Decapentaplegic signaling, insulin signaling, Salvador/Warts/Hippo signaling, apical-basal cell polarity, and cellular responses to mechanical forces are also discussed.
Collapse
|
22
|
Tarnawski AS, Ahluwalia A, Jones MK. Increased susceptibility of aging gastric mucosa to injury: The mechanisms and clinical implications. World J Gastroenterol 2014; 20:4467-4482. [PMID: 24782600 PMCID: PMC4000484 DOI: 10.3748/wjg.v20.i16.4467] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
This review updates the current views on aging gastric mucosa and the mechanisms of its increased susceptibility to injury. Experimental and clinical studies indicate that gastric mucosa of aging individuals-“aging gastropathy”-has prominent structural and functional abnormalities vs young gastric mucosa. Some of these abnormalities include a partial atrophy of gastric glands, impaired mucosal defense (reduced bicarbonate and prostaglandin generation, decreased sensory innervation), increased susceptibility to injury by a variety of damaging agents such as ethanol, aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs), impaired healing of injury and reduced therapeutic efficacy of ulcer-healing drugs. Detailed analysis of the above changes indicates that the following events occur in aging gastric mucosa: reduced mucosal blood flow and impaired oxygen delivery cause hypoxia, which leads to activation of the early growth response-1 (egr-1) transcription factor. Activation of egr-1, in turn, upregulates the dual specificity phosphatase, phosphatase and tensin homologue deleted on chromosome ten (PTEN) resulting in activation of pro-apoptotic caspase-3 and caspase-9 and reduced expression of the anti-apoptosis protein, survivin. The imbalance between pro- and anti-apoptosis mediators results in increased apoptosis and increased susceptibility to injury. This paradigm has human relevance since increased expression of PTEN and reduced expression of survivin were demonstrated in gastric mucosa of aging individuals. Other potential mechanisms operating in aging gastric mucosa include reduced telomerase activity, increase in replicative cellular senescence, and reduced expression of vascular endothelial growth factor and importin-α-a nuclear transport protein essential for transport of transcription factors to nucleus. Aging gastropathy is an important and clinically relevant issue because of: (1) an aging world population due to prolonged life span; (2) older patients have much greater risk of gastroduodenal ulcers and gastrointestinal complications (e.g., NSAIDs-induced gastric injury) than younger patients; and (3) increased susceptibility of aging gastric mucosa to injury can be potentially reduced or reversed pharmacologically.
Collapse
|
23
|
Nowak K, Seisenbacher G, Hafen E, Stocker H. Nutrient restriction enhances the proliferative potential of cells lacking the tumor suppressor PTEN in mitotic tissues. eLife 2013; 2:e00380. [PMID: 23853709 PMCID: PMC3707060 DOI: 10.7554/elife.00380] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 06/06/2013] [Indexed: 01/20/2023] Open
Abstract
How single cells in a mitotic tissue progressively acquire hallmarks of cancer is poorly understood. We exploited mitotic recombination in developing Drosophila imaginal tissues to analyze the behavior of cells devoid of the tumor suppressor PTEN, a negative regulator of PI3K signaling, under varying nutritional conditions. Cells lacking PTEN strongly overproliferated specifically in nutrient restricted larvae. Although the PTEN mutant cells were sensitive to starvation, they successfully competed with neighboring cells by autonomous and non-autonomous mechanisms distinct from cell competition. The overgrowth was strictly dependent on the activity of the downstream components Akt/PKB and TORC1, and a reduction in amino acid uptake by reducing the levels of the amino acid transporter Slimfast caused clones of PTEN mutant cells to collapse. Our findings demonstrate how limiting nutritional conditions impact on cells lacking the tumor suppressor PTEN to cause hyperplastic overgrowth. DOI:http://dx.doi.org/10.7554/eLife.00380.001 Mutations are permanent changes to a cell’s genome. If one or more mutations result in a cell proliferating in an unregulated manner, it is referred to as a cancer cell. The generation of cancer cells is a relatively common occurrence within organisms, but these rogue cells are generally recognized and destroyed by the organism’s immune system. However, when the immune system fails to identify and eliminate cancer cells, they can proliferate to form malignant, life-threatening tumors. Mutations in a gene called PTEN are often found within cells that develop into cancerous tumors. This gene is normally expressed as a protein that is involved in the regulation of cell division, preventing cells from growing and dividing too quickly. However, when the protein PTEN is absent or non-functional, cells experience enhanced growth, proliferation, and survival. Such cells are also thought to be resistant to nutrient restriction, but the mechanism responsible for this resistance is not well understood. Here, Nowak et al. investigate the behavior of cells lacking PTEN in a fly model under a variety of nutritional conditions. When the supply of nutrients is limited, cells lacking PTEN shift resources from cell growth to cell multiplication. This appears to allow PTEN-deficient cells to outcompete neighboring wild-type cells; Nowak et al. suggest these rapidly proliferating cells are capable of effectively hoarding nutrient stores, both in their immediate vicinity and organism-wide. Further studies that focus on changes in gene expression may be able to uncover the mechanism that allows PTEN-deficient cells to proliferate when nutrients are restricted. Moreover, by shedding light on a factor that has an important influence on tumor development, these results may have implications for cancer treatment strategies. DOI:http://dx.doi.org/10.7554/eLife.00380.002
Collapse
Affiliation(s)
- Katarzyna Nowak
- Institute of Molecular Systems Biology , ETH Zürich , Zürich , Switzerland
| | | | | | | |
Collapse
|
24
|
Abstract
Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a tumor suppressor gene deleted or mutated in many human cancers such as glioblastoma, spinal tumors, prostate, bladder, adrenals, thyroid, breast, endometrium, and colon cancers. They result from loss of heterozygosity (LOH) for the PTEN gene on chromosome 10q23. Previous studies reported that various drugs, chemicals, and foods can up-regulate PTEN mRNA and protein expression in different cell lines, and they may be useful in the future prevention and/or treatment of these cancers. PTEN has also been observed to have prognostic significance and is gradually being accepted as an independent prognostic factor. This will help in monitoring disease progression and/or recurrence, with a view to improving treatment outcomes and reducing the associated morbidity and mortality from these cancers. Neprilysin (NEP) is a zinc-dependent metallopeptidase that cleaves and inactivates some biologically active peptides thus switching off signal transduction at the cell surface. Decreased NEP expression in many cancers has been reported. NEP can form a complex with PTEN and enhance PTEN recruitment to the plasma membrane as well as stabilize its phosphatase activity. MicroRNA-21 (miR-21) post-transcriptionally down-regulates the expression of PTEN and stimulates growth and invasion in non-small cell lung cancer (NSCLC) (lung Ca), suggesting that this may be a potential therapeutic target in the future treatment of NSCLC. PTEN is a tumor suppressor gene associated with many human cancers. This has diagnostic, therapeutic, and prognostic significance in the management of many human cancers, and may be a target for new drug development in the future.
Collapse
Affiliation(s)
- Imran Haruna Abdulkareem
- Department of Trauma and Orthopaedics Surgery, Leeds University Teaching Hospitals, Leeds, LS9 7TF West Yorkshire, UK
| | | |
Collapse
|
25
|
Novel dual-color immunohistochemical methods for detecting ERG-PTEN and ERG-SPINK1 status in prostate carcinoma. Mod Pathol 2013; 26:835-48. [PMID: 23348902 PMCID: PMC3672354 DOI: 10.1038/modpathol.2012.234] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Identification of new molecular markers has led to the molecular classification of prostate cancer based on driving genetic lesions. The translation of these discoveries for clinical use necessitates the development of simple, reliable and rapid detection systems to screen patients for specific molecular aberrations. We developed two dual-color immunohistochemistry-based assays for the simultaneous assessment of ERG-PTEN and ERG-SPINK1 in prostate cancer. A total of 232 cases from 184 localized and 48 metastatic prostate cancers were evaluated for ERG-PTEN and 284 cases from 228 localized and 56 metastatic prostate cancers were evaluated for ERG-SPINK1. Of the 232 cases evaluated for ERG-PTEN, 81 (35%) ERG-positive and 77 (33%) PTEN-deleted cases were identified. Of the 81 ERG-positive cases, PTEN loss was confirmed in 35 (15%) cases by fluorescence in situ hybridization (FISH). PTEN status was concordant in 203 cases (sensitivity 90% and specificity 87%; P<0.0001) by both immunohistochemisty and FISH; however, immunohistochemisty could not distinguish between heterozygous and homozygous deletion status of PTEN. Of the 284 cases evaluated for ERG-SPINK1, 111 (39%) cases were positive for ERG. In the remaining 173 ERG-negative cases, SPINK1 was positive in 26 (9%) cases. SPINK1 expression was found to be mutually exclusive with ERG expression; however, we identified two cases, of which one showed concomitant expression of ERG and SPINK1 in the same tumor foci, and in the second case ERG and SPINK1 were seen in two independent foci of the same tumor nodule. Unlike the homogenous ERG staining in cancer tissues, heterogeneous SPINK1 staining was observed in the majority of the cases. Further studies are required to understand the molecular heterogeneity of cases with concomitant ERG-SPINK1 expression. Automated dual ERG-PTEN and ERG-SPINK1 immunohistochemisty assays are simple, reliable and portable across study sites for the simultaneous assessment of these proteins in prostate cancer.
Collapse
|
26
|
Zhu X, Qin X, Fei M, Hou W, Greshock J, Bachman KE, Kang J, Qin CY. Loss and reduced expression of PTEN correlate with advanced-stage gastric carcinoma. Exp Ther Med 2012; 5:57-64. [PMID: 23251242 PMCID: PMC3524019 DOI: 10.3892/etm.2012.749] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 09/14/2012] [Indexed: 12/14/2022] Open
Abstract
Phosphatase and tensin homolog (PTEN) is a tumor suppressor involved in multiple cell processes. To investigate the role of PTEN in the development of gastric carcinoma, we determined the expression pattern of PTEN in primary gastric carcinoma and in paired adjacent non-neoplastic tissue. We also determined the correlation of PTEN expression with clinicopathological characteristics and patient survival. Overall, 159 gastric carcinomas and 151 paired adjacent non-neoplastic tissues were used in the present study. PTEN expression was determined using tissue microarrays and immunohistochemistry. The clinical sensitivity and specificity of PTEN expression were calculated using receiver operator characteristic curves. Results showed that the loss of cytoplasmic PTEN was significantly more frequent in carcinoma tissue compared with adjacent non-neoplastic tissue (62 vs. 5%, respectively; P<0.0001). PTEN expression was markedly downregulated in carcinoma tissues compared with adjacent non-neoplastic tissues. The loss of cytoplasmic PTEN expression was positively correlated with histological stage (P=0.016). The loss of nuclear or total PTEN, and downregulation of total PTEN expression, was significantly different between American Joint Committee on Cancer tumors of stage I and stages II-IV. A low cytoplasmic or total PTEN expression showed high clinical sensitivity and specificity for gastric carcinoma. However, PTEN expression was not significantly associated with overall or 3-year survival rates. The findings of the present study indicated that PTEN expression may be a molecular diagnostic marker for gastric cancer. Thus, the loss or reduced expression of PTEN potentially correlate with advanced stages of gastric carcinoma.
Collapse
Affiliation(s)
- Xuehua Zhu
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Pal A, Barber TM, Van de Bunt M, Rudge SA, Zhang Q, Lachlan KL, Cooper NS, Linden H, Levy JC, Wakelam MJO, Walker L, Karpe F, Gloyn AL. PTEN mutations as a cause of constitutive insulin sensitivity and obesity. N Engl J Med 2012; 367:1002-11. [PMID: 22970944 PMCID: PMC4072504 DOI: 10.1056/nejmoa1113966] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Epidemiologic and genetic evidence links type 2 diabetes, obesity, and cancer. The tumor-suppressor phosphatase and tensin homologue (PTEN) has roles in both cellular growth and metabolic signaling. Germline PTEN mutations cause a cancer-predisposition syndrome, providing an opportunity to study the effect of PTEN haploinsufficiency in humans. METHODS We measured insulin sensitivity and beta-cell function in 15 PTEN mutation carriers and 15 matched controls. Insulin signaling was measured in muscle and adipose-tissue biopsy specimens from 5 mutation carriers and 5 well-matched controls. We also assessed the effect of PTEN haploinsufficiency on obesity by comparing anthropometric indexes between the 15 patients and 2097 controls from a population-based study of healthy adults. Body composition was evaluated by means of dual-emission x-ray absorptiometry and skinfold thickness. RESULTS Measures of insulin resistance were lower in the patients with a PTEN mutation than in controls (e.g., mean fasting plasma insulin level, 29 pmol per liter [range, 9 to 99] vs. 74 pmol per liter [range, 22 to 185]; P=0.001). This finding was confirmed with the use of hyperinsulinemic euglycemic clamping, showing a glucose infusion rate among carriers 2 times that among controls (P=0.009). The patients' insulin sensitivity could be explained by the presence of enhanced insulin signaling through the PI3K-AKT pathway, as evidenced by increased AKT phosphorylation. The PTEN mutation carriers were obese as compared with population-based controls (mean body-mass index [the weight in kilograms divided by the square of the height in meters], 32 [range, 23 to 42] vs. 26 [range, 15 to 48]; P<0.001). This increased body mass in the patients was due to augmented adiposity without corresponding changes in fat distribution. CONCLUSIONS PTEN haploinsufficiency is a monogenic cause of profound constitutive insulin sensitization that is apparently obesogenic. We demonstrate an apparently divergent effect of PTEN mutations: increased risks of obesity and cancer but a decreased risk of type 2 diabetes owing to enhanced insulin sensitivity. (Funded by the Wellcome Trust and others.).
Collapse
Affiliation(s)
- Aparna Pal
- Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lai KP, Yamashita S, Huang CK, Yeh S, Chang C. Loss of stromal androgen receptor leads to suppressed prostate tumourigenesis via modulation of pro-inflammatory cytokines/chemokines. EMBO Mol Med 2012; 4:791-807. [PMID: 22745041 PMCID: PMC3494077 DOI: 10.1002/emmm.201101140] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 03/05/2012] [Accepted: 04/05/2012] [Indexed: 12/12/2022] Open
Abstract
Stromal-epithelial interaction is crucial to mediate normal prostate and prostate cancer (PCa) development. The indispensable roles of mesenchymal/stromal androgen receptor (AR) for the prostate organogenesis have been demonstrated by using tissue recombination from wild-type and testicular feminized mice. However, the stromal AR functions in the tumour microenvironment and the underlying mechanisms governing the interactions between the epithelium and stroma are not completely understood. Here, we have established the first animal model with AR deletion in stromal fibromuscular cells (dARKO, AR knockout in fibroblasts and smooth muscle cells) in the Pten(+/-) mouse model that can spontaneously develop prostatic intraepithelial neoplasia (PIN). We found that loss of stromal fibromuscular AR led to suppression of PIN lesion development with alleviation of epithelium proliferation and tumour-promoting microenvironments, including extracellular matrix (ECM) remodelling, immune cell infiltration and neovasculature formation due, in part, to the modulation of pro-inflammatory cytokines/chemokines. Finally, targeting stromal fibromuscular AR with the AR degradation enhancer, ASC-J9®, resulted in the reduction of PIN development/progression, which might provide a new approach to suppress PIN development.
Collapse
Affiliation(s)
- Kuo-Pao Lai
- Departments of Pathology, Urology, and Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | | | |
Collapse
|
29
|
Huang YS, Chen YM, Liao PC, Lee YH, Gwo JC, Chen MC, Chang CF. Testosterone improves the transition of primary oocytes in artificial maturation eels (Anguilla japonica) by altering ovarian PTEN expression. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:777-787. [PMID: 21986810 DOI: 10.1007/s10695-011-9560-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 09/21/2011] [Indexed: 05/31/2023]
Abstract
In mammals, androgens appear to enhance the development of primary ovarian follicles, but PI3K (phosphoinositide 3-kinases) pathway is well recognized as one of the critical pathways in early follicular development. Roles of the PI3K were revealed by deletion of PTEN (phosphatase and tensin homolog on chromosome 10). PTEN is demonstrated to play an important role in the early stage of follicle development. In the Japanese eel, two forms of PTEN have been cloned, but what their functions on the development of early ovarian follicles are still not clear. The natural blockage and inducible of ovarian development was a benefit to address this question in the eel. Testosterone (T) shows to ameliorate the early ovarian development in the eel. The aims of this study were to elucidate the two forms of PTEN by cellular and physiological criteria and to study the effects of T on the ovarian PTEN production in the exogenous pituitary extracts-stimulated eel. Our results suggested that two forms of PTEN are existing in the Japanese eel, and eel ovarian development corresponded to the decrease in ovarian PTEN expression, vice versa. In addition, the supplement of T on eel early ovarian development can be attributed to its PTEN inhibitor role.
Collapse
Affiliation(s)
- Yung-Sen Huang
- Department of Life Science, National University of Kaohsiung, No. 700 Kaohsiung University Road, Nan Tzu Dist., Kaohsiung, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
30
|
Proton-assisted amino acid transporter PAT1 complexes with Rag GTPases and activates TORC1 on late endosomal and lysosomal membranes. PLoS One 2012; 7:e36616. [PMID: 22574197 PMCID: PMC3344915 DOI: 10.1371/journal.pone.0036616] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 04/03/2012] [Indexed: 01/19/2023] Open
Abstract
Mammalian Target of Rapamycin Complex 1 (mTORC1) is activated by growth factor-regulated phosphoinositide 3-kinase (PI3K)/Akt/Rheb signalling and extracellular amino acids (AAs) to promote growth and proliferation. These AAs induce translocation of mTOR to late endosomes and lysosomes (LELs), subsequent activation via mechanisms involving the presence of intralumenal AAs, and interaction between mTORC1 and a multiprotein assembly containing Rag GTPases and the heterotrimeric Ragulator complex. However, the mechanisms by which AAs control these different aspects of mTORC1 activation are not well understood. We have recently shown that intracellular Proton-assisted Amino acid Transporter 1 (PAT1)/SLC36A1 is an essential mediator of AA-dependent mTORC1 activation. Here we demonstrate in Human Embryonic Kidney (HEK-293) cells that PAT1 is primarily located on LELs, physically interacts with the Rag GTPases and is required for normal AA-dependent mTOR relocalisation. We also use the powerful in vivo genetic methodologies available in Drosophila to investigate the regulation of the PAT1/Rag/Ragulator complex. We show that GFP-tagged PATs reside at both the cell surface and LELs in vivo, mirroring PAT1 distribution in several normal mammalian cell types. Elevated PI3K/Akt/Rheb signalling increases intracellular levels of PATs and synergistically enhances PAT-induced growth via a mechanism requiring endocytosis. In light of the recent identification of the vacuolar H+-ATPase as another Rag-interacting component, we propose a model in which PATs function as part of an AA-sensing engine that drives mTORC1 activation from LEL compartments.
Collapse
|
31
|
Rohilla S, Jain N, Sharma R, Dhaulakhandi DB. Macrodystrophia lipomatosa involving multiple nerves. J Orthop Traumatol 2011; 13:41-5. [PMID: 21948052 PMCID: PMC3284677 DOI: 10.1007/s10195-011-0159-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 08/29/2011] [Indexed: 11/16/2022] Open
Abstract
Macrodystrophia lipomatosa (MDL), a rare congenital disorder, is considered by some to be a localized form of Proteus syndrome. The implication of the PTEN (phosphatase and tensin homolog deleted on chromosome 10) gene in both strengthens this belief. We present a case who had MDL in multiple nerve territories—all on the same side of the body—with hypertrophy of mainly fibroadipose tissue throughout their distribution, thus pointing to a form of localized hemihypertrophy; both hemihypertrophy and lipomatous tumors are components of Proteus syndrome.
Collapse
Affiliation(s)
- Seema Rohilla
- Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Sciences, Pt. B.D. Sharma University of Health Sciences, Rohtak, 124001 Haryana, India
| | | | | | | |
Collapse
|
32
|
Rodríguez-Escudero I, Oliver MD, Andrés-Pons A, Molina M, Cid VJ, Pulido R. A comprehensive functional analysis of PTEN mutations: implications in tumor- and autism-related syndromes. Hum Mol Genet 2011; 20:4132-42. [PMID: 21828076 DOI: 10.1093/hmg/ddr337] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The PTEN (phosphatase and tensin homolog) phosphatase is unique in mammals in terms of its tumor suppressor activity, exerted by dephosphorylation of the lipid second messenger PIP(3) (phosphatidylinositol 3,4,5-trisphosphate), which activates the phosphoinositide 3-kinase/Akt/mTOR (mammalian target of rapamycin) oncogenic pathway. Loss-of-function mutations in the PTEN gene are frequent in human cancer and in the germline of patients with PTEN hamartoma tumor-related syndromes (PHTSs). In addition, PTEN is mutated in patients with autism spectrum disorders (ASDs), although no functional information on these mutations is available. Here, we report a comprehensive in vivo functional analysis of human PTEN using a heterologous yeast reconstitution system. Ala-scanning mutagenesis at the catalytic loops of PTEN outlined the critical role of residues within the P-catalytic loop for PIP(3) phosphatase activity in vivo. PTEN mutations that mimic the P-catalytic loop of mammalian PTEN-like proteins (TPTE, TPIP, tensins and auxilins) affected PTEN function variably, whereas tumor- or PHTS-associated mutations targeting the PTEN P-loop produced complete loss of function. Conversely, Ala-substitutions, as well as tumor-related mutations at the WPD- and TI-catalytic loops, displayed partial activity in many cases. Interestingly, a tumor-related D92N mutation was partially active, supporting the notion that the PTEN Asp92 residue might not function as the catalytic general acid. The analysis of a panel of ASD-associated hereditary PTEN mutations revealed that most of them did not substantially abrogate PTEN activity in vivo, whereas most of PHTS-associated mutations did. Our findings reveal distinctive functional patterns among PTEN mutations found in tumors and in the germline of PHTS and ASD patients, which could be relevant for therapy.
Collapse
Affiliation(s)
- Isabel Rodríguez-Escudero
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto Ramón y Cajal de Investigaciones Sanitarias, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
33
|
Feng ZZ, Chen JW, Yang ZR, Lu GZ, Cai ZG. Expression of PTTG1 and PTEN in endometrial carcinoma: correlation with tumorigenesis and progression. Med Oncol 2010; 29:304-10. [DOI: 10.1007/s12032-010-9775-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Accepted: 12/04/2010] [Indexed: 11/29/2022]
|
34
|
Liu Y, Bankaitis VA. Phosphoinositide phosphatases in cell biology and disease. Prog Lipid Res 2010; 49:201-17. [PMID: 20043944 PMCID: PMC2873057 DOI: 10.1016/j.plipres.2009.12.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 12/03/2009] [Accepted: 12/03/2009] [Indexed: 01/10/2023]
Abstract
Phosphoinositides are essential signaling molecules linked to a diverse array of cellular processes in eukaryotic cells. The metabolic interconversions of these phospholipids are subject to exquisite spatial and temporal regulation executed by arrays of phosphatidylinositol (PtdIns) and phosphoinositide-metabolizing enzymes. These include PtdIns- and phosphoinositide-kinases that drive phosphoinositide synthesis, and phospholipases and phosphatases that regulate phosphoinositide degradation. In the past decade, phosphoinositide phosphatases have emerged as topics of particular interest. This interest is driven by the recent appreciation that these enzymes represent primary mechanisms for phosphoinositide degradation, and because of their ever-increasing connections with human diseases. Herein, we review the biochemical properties of six major phosphoinositide phosphatases, the functional involvements of these enzymes in regulating phosphoinositide metabolism, the pathologies that arise from functional derangements of individual phosphatases, and recent ideas concerning the involvements of phosphoinositide phosphatases in membrane traffic control.
Collapse
Affiliation(s)
- Yang Liu
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7090, USA
| | - Vytas A. Bankaitis
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7090, USA
| |
Collapse
|
35
|
Demou ZN. Gene expression profiles in 3D tumor analogs indicate compressive strain differentially enhances metastatic potential. Ann Biomed Eng 2010; 38:3509-20. [PMID: 20559731 DOI: 10.1007/s10439-010-0097-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 06/06/2010] [Indexed: 11/24/2022]
Abstract
Non-physiological mechanobiological stimuli typically occur in tumors and are considered to promote cancer spreading. Non-fluid related pressure (solid stress), which arises as tumors grow against adjacent tissues, is among the least studied endogenous stimuli due to challenges in replicating the in vivo environment. To this end, the novel devices well-pressor and the videomicroscopy-compatible optic-pressor were developed to exert precise compressive strain on cells in 3D gels in absence of other mechanical stimuli and soluble gradients. Glioblastoma (U87, HGL21) and breast cancer (MDA-MB-231) cells in 1% agarose hydrogels were exposed to 50% compressive strain for 3 h (0.25-0.05 kPa). Live imaging showed that cells elongate and deflect vertically to the load. This stimulation is shown for the first time to differentially regulate metastasis-associated genes. Furthermore, a group of differentially expressed genes was identified in all cell types, both by microarrays and confirmed by RT-PCR for select genes (caveolin-1, integrin-β1, Rac1), indicating shared response mechanisms. These genes are functionally linked and involved in decreasing cell-cell contact, increasing ECM degradation, and ultimately promoting invasion. Caveolin could orchestrate these responses while the uPA and PI3K/Akt systems could play major roles. Future work will focus on specific molecular partnerships under compression and their impact on cancer progression.
Collapse
Affiliation(s)
- Zoe N Demou
- Northwestern University, Chicago, IL 60614-431, USA.
| |
Collapse
|
36
|
Tarnawski AS, Pai R, Tanigawa T, Matysiak-Budnik T, Ahluwalia A. PTEN silencing reverses aging-related impairment of angiogenesis in microvascular endothelial cells. Biochem Biophys Res Commun 2010; 394:291-6. [PMID: 20193662 DOI: 10.1016/j.bbrc.2010.02.161] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 02/24/2010] [Indexed: 02/06/2023]
Abstract
Aging is associated with impaired angiogenesis (new blood vessels formation from the endothelial cells of pre-existing vessels) in a variety of tissues. The precise mechanisms of aging-related impairment of angiogenesis are not known. PTEN is a dual-specificity phosphatase that antagonizes in some cells the PI3K/Akt signaling pathway, important for cell survival, function and angiogenesis. PTEN's role in aging-related impairment of angiogenesis is not known. In this study, we investigated whether expression of PTEN in endothelial cells may play a mechanistic role in aging-related impairment of angiogenesis. We demonstrated that human microvascular endothelial cells (HMVEC) derived from aging individuals (Aged-HMVEC) have: (1) significantly increased PTEN mRNA and protein levels and (2) impaired in vitro angiogenesis vs. neonatal derived HMVEC (Neo-HMVEC), and that (3) downregulation of PTEN using specific siRNA restores angiogenesis in Aged-HMVEC to normal. This is the first demonstration of increased PTEN expression in human microvascular endothelial cells derived from aging tissues and that elevated PTEN is a major factor responsible for aging-related impairment of in vitro angiogenesis.
Collapse
Affiliation(s)
- Andrzej S Tarnawski
- Medical Service, VALBHS and Department of Medicine, University of California Irvine, Long Beach, CA 90822, USA.
| | | | | | | | | |
Collapse
|
37
|
Abstract
The stage of development between birth and weaning in mammals is a period of very rapid growth that is crucial for the long-term well-being of the animal. The rate of protein deposition in neonatal animals is very high because dietary protein is efficiently utilized to increase body protein mass. Our studies in neonatal pigs have shown that this high efficiency of protein deposition is largely due to the marked increase in protein synthesis after feeding, and this response is particularly profound in the skeletal muscle. The enhanced stimulation of muscle protein synthesis in neonates after feeding is independently mediated by the rise in insulin and amino acids and this response declines with age. Intracellular signaling components that respond to the postprandial rise in amino acids and insulin have been identified and their activation has been shown to be elevated in skeletal muscle of neonatal pigs after a meal and to decrease with development. The enhanced activation of these components in the amino acid and insulin signaling pathways in neonatal muscle contributes to the high rate of muscle protein synthesis and rapid gain in skeletal muscle mass in newborn pigs, which are essential determinants of efficient growth during development.
Collapse
|
38
|
Yang Y, Zhou F, Fang Z, Wang L, Li Z, Sun L, Wang C, Yao W, Cai X, Jin J, Zha X. Post-transcriptional and post-translational regulation of PTEN by transforming growth factor-beta1. J Cell Biochem 2009; 106:1102-12. [PMID: 19206163 DOI: 10.1002/jcb.22100] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PTEN is a critical tumor suppressor gene mutated frequently in various human cancers. Previous studies have showed that PTEN mRNA expression is down-regulated by TGF-beta1 in various cell lines. In present study, we have found that TGF-beta1 down-regulates PTEN mRNA and protein expression in a dose- and time-dependent manner in hepatocarcinoma cell line SMMC-7721. Based on the PTEN promoter dual-luciferase report assay, we have found that PTEN transcription is not affected by TGF-beta1. By using transcriptional inhibitor actinomycin D (Act D), the turnover rate of PTEN transcripts appeared to be accelerated during TGF-beta1 stimulation, which indicated that down-regulation of PTEN by TGF-beta1 was post-transcriptional. What interested us was that transfection of PTEN coding sequence increased TGF-beta1-induced degradation of PTEN mRNA, suggesting that PTEN coding region was account for TGF-beta1-mediated down-regulation of PTEN. In addition, TGF-beta1 down-regulated PTEN expression was blocked by the TbetaIR inhibitor SB431542 and the p38 inhibitor SB203580, suggesting Smad and p38 MAPK signal pathways played crucial roles in PTEN down-regulation via TGF-beta1 stimulation. In this study, we also found TGF-beta1 accelerated down-regulation of PTEN through the ubiquitin-proteasome pathway. Collectively, our data clearly demonstrated that TGF-beta1-mediated down-regulation of PTEN was post-transcriptional and post-translational, depending on its coding sequence, Smad and p38-MAPK signal pathways were involved in this down-regulation.
Collapse
Affiliation(s)
- Yong Yang
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Tu LC, Foltz G, Lin E, Hood L, Tian Q. Targeting stem cells-clinical implications for cancer therapy. Curr Stem Cell Res Ther 2009; 4:147-53. [PMID: 19442199 DOI: 10.2174/157488809788167373] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cancer stem cells (CSC), also called tumor initiating cells (TIC), are considered to be the origin of replicating malignant tumor cells in a variety of human cancers. Their presence in the tumor may herald malignancy potential, mediate resistance to conventional chemotherapy or radiotherapy, and confer poor survival outcomes. Thus, CSC may serve as critical cellular targets for treatment. The ability to therapeutically target CSC hinges upon identifying their unique cell surface markers and the underlying survival signaling pathways. While accumulating evidence suggests cell-surface antigens (such as CD44, CD133) as CSC markers for several tumor tissues, emerging clinical needs exist for the identification of new markers to completely separate CSC from normal stem cells. Recent studies have demonstrated the critical role of the tumor suppressor PTEN/PI3 kinase pathway in regulating TIC in leukemia, brain, and intestinal tissues. The successful eradication of tumors by therapies targeting CSC will require an in-depth understanding of the molecular mechanisms governing CSC self renewal, differentiation, and escape from conventional therapy. Here we review recent progress from brain tumor and intestinal stem cell research with a focus on the PTEN-Akt-Wnt pathway, and how the components of CSC pathways may serve as biomarkers for diagnosis, prognosis, and therapeutics.
Collapse
Affiliation(s)
- Lan Chun Tu
- Institute for Systems Biology, Seattle, WA 98103, USA
| | | | | | | | | |
Collapse
|
40
|
Zhang L, Reidy SP, Nicholson TE, Lee HJ, Majdalawieh A, Webber C, Stewart BR, Dolphin P, Ro HS. The role of AEBP1 in sex-specific diet-induced obesity. Mol Med 2009; 11:39-47. [PMID: 16307171 PMCID: PMC1449517 DOI: 10.2119/2005-00021.ro] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2005] [Accepted: 10/24/2005] [Indexed: 12/22/2022] Open
Abstract
Obesity is an important risk factor for heart disease, diabetes, and certain cancers, but the molecular basis for obesity is poorly understood. The transcriptional repressor AEBP1, which functions as a negative regulator of PTEN through a protein-protein interaction, is highly expressed in the stromal compartment of adipose tissues, including proliferative preadipocytes, and its expression is abolished in terminally differentiated, nonproliferative adipocytes. Here we show that transgenic overexpression of AEBP1 during adipogenesis coupled with a high-fat diet (HFD) resulted in massive obesity in female transgenic (AEBP1(TG)) mice via adipocyte hyperplasia. AEBP1 levels dynamically changed with aging, and HFD induced AEBP1 expression in females. Thus, HFD-fed AEBP1(TG) females display hyperinduction of AEBP1 and a marked reduction of PTEN level with concomitant hyperactivation of the survival signal in white adipose tissue. Our results suggest that AEBP1 plays a key functional role in in vivo modulation of adiposity via fat-cell proliferation and is involved in a sex-specific susceptibility to diet-induced obesity by the estrogen signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hyo-Sung Ro
- Address correspondence and reprint requests to Hyo-Sung Ro, Department of Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Tupper Medical Building, 1850 College Street, Halifax, NS, B3H 1X5 Canada. Phone: 902-494-2367; fax 902-494-1355; e-mail:
| |
Collapse
|
41
|
Boyd ZS, Wu QJ, O'Brien C, Spoerke J, Savage H, Fielder PJ, Amler L, Yan Y, Lackner MR. Proteomic analysis of breast cancer molecular subtypes and biomarkers of response to targeted kinase inhibitors using reverse-phase protein microarrays. Mol Cancer Ther 2008; 7:3695-706. [PMID: 19056674 DOI: 10.1158/1535-7163.mct-08-0810] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although breast cancer molecular subtypes have been extensively defined by means of gene expression profiling over the past decade, little is known, at the proteomic level, as to how signaling pathways are differentially activated and serve to control proliferation in different breast cancer subtypes. We used reverse-phase protein arrays to examine phosphorylation status of 100 proteins in a panel of 30 breast cancer cell lines and showed distinct pathway activation differences between different subtypes that are not obvious from previous gene expression studies. We also show that basal levels of phosphorylation of key signaling nodes may have diagnostic utility in predicting response to selective inhibitors of phosphatidylinositol 3-kinase and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase. Finally, we show that reverse-phase protein arrays allow the parallel analysis of multiple pharmacodynamic biomarkers of response to targeted kinase inhibitors and that inhibitors of epidermal growth factor receptor and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase result in compensatory up-regulation of the phosphatidylinositol 3-kinase/Akt signaling pathway.
Collapse
Affiliation(s)
- Zachary S Boyd
- Department of Development Oncology Diagnostics, Genentech, Inc., South San Francisco, California 94080, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Campeau PM, Foulkes WD, Tischkowitz MD. Hereditary breast cancer: new genetic developments, new therapeutic avenues. Hum Genet 2008; 124:31-42. [PMID: 18575892 DOI: 10.1007/s00439-008-0529-1] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 06/13/2008] [Indexed: 12/24/2022]
Abstract
Six genes confer a high risk for developing breast cancer (BRCA1/2, TP53, PTEN, STK11, CDH1). Both BRCA1 and BRCA2 have DNA repair functions, and BRCA1/2 deficient tumors are now being targeted by poly(ADP-ribose) polymerase inhibitors. Other genes conferring an increased risk for breast cancer include ATM, CHEK2, PALB2, BRIP1 and genome-wide association studies have identified lower penetrance alleles including FGFR2, a minor allele of which is associated with breast cancer. We review recent findings related to the function of some of these genes, and discuss how they can be targeted by various drugs. Gaining deeper insights in breast cancer susceptibility will improve our ability to identify those families at increased risk and permit the development of new and more specific therapeutic approaches.
Collapse
Affiliation(s)
- Philippe M Campeau
- Department of Medical Genetics, McGill University Health Centre, McGill University, Montreal, QC, Canada.
| | | | | |
Collapse
|
43
|
Mathieu C, Sii-Felice K, Fouchet P, Etienne O, Haton C, Mabondzo A, Boussin FD, Mouthon MA. Endothelial cell-derived bone morphogenetic proteins control proliferation of neural stem/progenitor cells. Mol Cell Neurosci 2008; 38:569-77. [PMID: 18583149 DOI: 10.1016/j.mcn.2008.05.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 04/29/2008] [Accepted: 05/07/2008] [Indexed: 01/29/2023] Open
Abstract
Neurogenesis persists in the adult brain subventricular zone where neural stem/progenitor cells (NSPCs) lie close to brain endothelial cells (BECs). We show in mouse that BECs produce bone morphogenetic proteins (BMPs). Coculture of embryonic and adult NSPCs with BECs activated the canonical BMP/Smad pathway and reduced their proliferation. We demonstrate that coculture with BECs in the presence of EGF and FGF2 induced a reversible cell cycle exit of NSPCs (LeX+) and an increase in the amount of GFAP/LeX-expressing progenitors thought to be stem cells. Levels of the phosphatidylinositol phosphatase PTEN were upregulated in NSPCs after coculture with BECs, or treatment with recombinant BMP4, with a concomitant reduction in Akt phosphorylation. Silencing Smad5 with siRNA or treatment with Noggin, a BMP antagonist, demonstrated that upregulation of PTEN in NSPCs required BMP/Smad signaling and that this pathway regulated cell cycle exit of NSPCs. Therefore, BECs may provide a feedback mechanism to control the proliferation of NSPCs.
Collapse
Affiliation(s)
- Céline Mathieu
- CEA, DSV, iRCM, SCSR, Laboratoire de Radiopathologie-IPSC, Fontenay-aux-Roses, France
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Xing Y, Li C, Hu L, Tiozzo C, Li M, Chai Y, Bellusci S, Anderson S, Minoo P. Mechanisms of TGFbeta inhibition of LUNG endodermal morphogenesis: the role of TbetaRII, Smads, Nkx2.1 and Pten. Dev Biol 2008; 320:340-50. [PMID: 18602626 DOI: 10.1016/j.ydbio.2008.04.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Revised: 04/23/2008] [Accepted: 04/30/2008] [Indexed: 11/26/2022]
Abstract
Transforming growth factor-beta is a multifunctional growth factor with roles in normal development and disease pathogenesis. One such role is in inhibition of lung branching morphogenesis, although the precise mechanism remains unknown. In an explant model, all three TGFbeta isoforms inhibited FGF10-induced morphogenesis of mesenchyme-free embryonic lung endoderm. Inhibition of budding by TGFbeta was partially abrogated in endodermal explants from Smad3(-/-) or conditional endodermal-specific Smad4(Delta/Delta) embryonic lungs. Endodermal explants from conditional TGFbeta receptor II knockout lungs were entirely refractive to TGFbeta-induced inhibition. Inhibition of morphogenesis was associated with dedifferentiation of endodermal cells as documented by a decrease in key transcriptional factor, NKX2.1 protein, and its downstream target, surfactant protein C (SpC). TGFbeta reduced the proliferation of wild-type endodermal cells within the explants as assessed by BrdU labeling. Gene expression analysis showed increased levels of mRNA for Pten, a key regulator of cell proliferation. Conditional, endodermal-specific deletion of Pten overcame TGFbeta's inhibitory effect on cell proliferation, but did not restore morphogenesis. Thus, the mechanisms by which TGFbeta inhibits FGF10-induced lung endodermal morphogenesis may entail both inhibition of cell proliferation, through increased Pten, as well as inhibition or interference with morphogenetic mediators such as Nkx2.1. Both of the latter are dependent on signaling through TbetaRII.
Collapse
Affiliation(s)
- Yiming Xing
- Department of Pediatrics, Division of Neonatology, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Newborn humans and animals grow at very rapid rates because they use the protein that they eat very efficiency to increase body protein mass. This high efficiency of protein deposition in neonates is largely due to their ability to markedly increase the amount of protein synthesized in their muscles when they eat. This enhanced stimulation of muscle protein synthesis after eating is mediated by the rise in the hormone, insulin, and the rise in amino acids, which are the building blocks of protein. Intracellular signaling components that respond to insulin and amino acids have been identified and these have been shown to be involved in the feeding-induced stimulation of protein synthesis in skeletal muscle of the neonate. The enhanced activation of these intracellular signaling components in neonatal muscle contributes to the high rate of muscle protein synthesis and rapid gain in skeletal muscle mass in newborns.
Collapse
|
46
|
|
47
|
Tesseraud S, Abbas M, Duchene S, Bigot K, Vaudin P, Dupont J. Mechanisms involved in the nutritional regulation of mRNA translation: features of the avian model. Nutr Res Rev 2007; 19:104-16. [DOI: 10.1079/nrr2006120] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract:Insulin and amino acids are key factors in regulating protein synthesis. The mechanisms of their action have been widely studied for several years. The insulin signal is mediated by the activation of intracellular kinases such as phosphatidylinositol–3'kinase and the mammalian target of rapamycin (mTOR), affecting the phosphorylation of some major effectors involved in the regulation of translation initiation, i.e. p70 S6 kinase (p70S6K) and the translational repressor eukaryotic initiation factor 4E binding protein (4E-BP1). The amino acid–induced signalling cascade also originates from mTOR and promotes p70S6K and 4E–BP1 activation. However, the mechanisms of regulation are complex and little understood, especiallyin vivo. Elucidating these mechanisms is important for both fundamental physiology and nutritional applications, i.e. better control of the use of nutrients and optimisation of dietary amino acid supplies in various physiological and physiopathological situations. In comparative physiology, the chicken is an interesting model to gain better understanding of the nutritional regulation of mRNA translation because of the very high rates of muscle growth and protein synthesis, and the unusual features compared with mammals. In the present review we provide an overview of the roles of insulin and amino acids as regulators of protein synthesis in both mammals and avian species.
Collapse
|
48
|
Tarnawski A, Pai R, Deng X, Ahluwalia A, Khomenko T, Tanigawa T, Akahoshi T, Sandor Z, Szabo S. Aging gastropathy-novel mechanisms: hypoxia, up-regulation of multifunctional phosphatase PTEN, and proapoptotic factors. Gastroenterology 2007; 133:1938-47. [PMID: 18054565 DOI: 10.1053/j.gastro.2007.08.037] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2006] [Accepted: 07/19/2007] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Aging gastric mucosa has impaired mucosal defense and increased susceptibility to injury. Our aims were to determine the mechanisms responsible for above abnormalities. METHODS We used Fisher F-344 rats, 3 and 24 months of age. We measured gastric mucosal blood flow; visualized mucosal hypoxia; examined expression of early growth response-1 transcription factor and phosphatase and tensin homologue deleted on chromosome 10 (PTEN); assessed apoptosis; and determined expression of caspase-3, caspase-9, and survivin. We also examined susceptibility of gastric mucosa of young and aging rats to ethanol injury and whether down-regulation of PTEN affects susceptibility of aging gastric mucosa to injury. To determine human relevance, we examined expression of PTEN and survivin in human gastric specimens of young and aging individuals. RESULTS Gastric mucosa of aging (vs young) rats has a 60% reduction in mucosal blood flow; prominent hypoxia; and increased early growth response-1 transcription factor and PTEN messenger RNAs, and proteins. It also has increased expression of proapoptotic proteins caspase-3 and capase-9, reduced survivin, and a 6-fold increased apoptosis vs mucosa of young rats. Ethanol-induced gastric mucosal injury in aging (vs young) rats was significantly increased. The down-regulation of PTEN in gastric mucosa of aging rats completely reversed its increased susceptibility to ethanol injury. In aging human gastric mucosa, PTEN expression was significantly increased, whereas survivin was significantly reduced. CONCLUSIONS (1) Gastric mucosa of aging rats has significantly reduced blood flow, tissue hypoxia, activation of Egr-1, PTEN; increased caspases; and reduced survivin. (2) These changes increase susceptibility of aging gastric mucosa to injury.
Collapse
Affiliation(s)
- Andrzej Tarnawski
- Department of Medicine, VA Long Beach Healthcare System and the University of California, Irvine, California, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Davé V, Wert SE, Tanner T, Thitoff AR, Loudy DE, Whitsett JA. Conditional deletion of Pten causes bronchiolar hyperplasia. Am J Respir Cell Mol Biol 2007; 38:337-45. [PMID: 17921358 DOI: 10.1165/rcmb.2007-0182oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a lipid phosphatase that regulates multiple cellular processes including cell polarity, migration, proliferation, and carcinogenesis. In this work, we demonstrate that conditional deletion of Pten (Pten(Delta/Delta)) in the respiratory epithelial cells of the developing mouse lung caused epithelial cell proliferation and hyperplasia as early as 4 to 6 weeks of age. While bronchiolar cell differentiation was normal, as indicated by beta-tubulin and FOXJ1 expression in ciliated cells and by CCSP expression in nonciliated cells, cell proliferation (detected by expression of Ki-67, phospho-histone-H3, and cyclin D1) was increased and associated with activation of the AKT/mTOR survival pathway. Deletion of Pten caused papillary epithelial hyperplasia characterized by a hypercellular epithelium lining papillae with fibrovascular cores that protruded into the airway lumens. Cell polarity, as assessed by subcellular localization of cadherin, beta-catenin, and zonula occludens-1, was unaltered. PTEN is required for regulation of epithelial cell proliferation in the lung and for the maintenance of the normal simple columnar epithelium characteristics of bronchi and bronchioles.
Collapse
Affiliation(s)
- Vrushank Davé
- Division of Pulmonary Biology, 4403, Cincinnati Children's Hospital Research Foundation, University of Cincinnati Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Davis TA, Suryawan A, Orellana RA, Nguyen HV, Fiorotto ML. Postnatal ontogeny of skeletal muscle protein synthesis in pigs. J Anim Sci 2007; 86:E13-8. [PMID: 17785597 PMCID: PMC2640319 DOI: 10.2527/jas.2007-0419] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The neonatal period is characterized by rapid growth and elevated rates of synthesis and accretion of skeletal muscle proteins. The fractional rate of muscle protein synthesis is very high at birth and declines rapidly with age. The elevated capacity for muscle protein synthesis in the neonatal pig is driven by the high ribosome content and, together with an increased efficiency of the translation process, promotes accelerated protein synthesis rates. Feeding profoundly stimulates muscle protein synthesis in neonatal pigs and the response decreases with age. The feeding-induced stimulation of muscle protein synthesis is modulated by an enhanced sensitivity to the postprandial increase in insulin and amino acids. The developmental decline in the response to insulin and amino acids parallels a marked decrease in the feeding-induced activation of translation initiation factors that regulate the binding of mRNA to the 40S ribosomal complex. The abundance and activation of many known positive regulators of the nutrient- and insulin-signaling pathways that are involved in translation initiation are high, whereas those of many negative regulators are low in skeletal muscle of younger pigs. Thus, the activation and(or) abundance of the positive regulators, such as the insulin receptor, insulin receptor-substrate-1, phosphoinositide-3 kinase, phosphoinositide-dependent kinase-1, protein kinase B, mammalian target of rapamycin, raptor, ribosomal protein S6 kinase-1, eukaryotic initiation factor (eIF) 4E-binding protein 1, and eIF4E associated with eIF4G, are greater in 7-d-old pigs than in 26-d-old pigs. The activation of negative regulators, including protein tyrosine phosphatase-1B, phosphatase and tensin homologue deleted on chromosome 10, protein phosphatase 2A, and tuberous sclerosis complex 1/2, are lower in 7-d-old pigs than in 26-d-old pigs. Thus, the developmental decline in the stimulation of skeletal muscle protein synthesis by insulin and amino acids is due in part to the developmentally related decrease in the activation of the signaling pathways that lead to translation initiation.
Collapse
Affiliation(s)
- T A Davis
- United States Department of Agriculture, Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston TX 77030, USA.
| | | | | | | | | |
Collapse
|