1
|
Arras W, Breugelmans T, Oosterlinck B, De Man JG, Malhotra-Kumar S, Abrams S, Van Laere S, Macken E, Somers M, Jauregui-Amezaga A, De Winter BY, Smet A. The Intestinal Mucin Isoform Landscape Reveals Region-Specific Biomarker Panels for Inflammatory Bowel Disease Patient Stratification. J Crohns Colitis 2025; 19:jjae155. [PMID: 39330996 PMCID: PMC11945306 DOI: 10.1093/ecco-jcc/jjae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/26/2024] [Accepted: 09/26/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND AND AIMS Mucosal healing is considered a key therapeutic endpoint in inflammatory bowel diseases (IBD) and comprises endoscopic improvement of inflammation without taking barrier healing into account. Mucins are critical components of the mucosal barrier function that give rise to structurally diverse isoforms. Unraveling disease-associated mucin isoforms that could act as an indication for barrier function would greatly enhance IBD management. METHODS We present the intestinal mucin RNA isoform landscape in IBD and control patients using a targeted mucin isoform sequencing approach on a discovery cohort (n = 106). Random Forest modeling (n = 1683 samples) with external validation (n = 130 samples) identified unique mucin RNA isoform panels that accurately stratified IBD patients in multiple subpopulations based on inflammation, IBD subtype (Crohn's disease [CD], ulcerative colitis [UC]), and anatomical location of the intestinal tract (i.e. ileum, proximal colon, distal colon, and rectum). RESULTS Particularly, the mucin RNA isoform panels obtained from the inflamed UC and CD distal colon showed high performance in distinguishing inflamed biopsies from their control counterparts (AUC of 93.3% and 91.1% in the training, 95.0% and 96.0% in the test, and 89.5% and 78.3% in the external validation datasets, respectively). Furthermore, the differentially expressed MUC4 (PB.1238.363), MUC5AC (PB.2811.15), MUC16 (ENST00000397910.8), and MUC1 (ENST00000462317.5 and ENST00000620103.4) RNA isoforms frequently occurred throughout the different panels highlighting their role in IBD pathogenesis. CONCLUSIONS We unveiled region-specific mucin RNA isoform panels capturing the heterogeneity of the IBD patient population and showing great potential to indicate barrier function in IBD patients.
Collapse
Affiliation(s)
- Wout Arras
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Tom Breugelmans
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Baptiste Oosterlinck
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Joris G De Man
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Steven Abrams
- Global Health Institute, Department of Family Medicine and Population Health, University of Antwerp, Antwerp, Belgium
- Data Science Institute, Interuniversity Institute for Biostatistics and statistical Bioinformatics, University of Hasselt, Diepenbeek, Belgium
| | - Steven Van Laere
- Center for Oncological Research, Integrated Personalized and Precision Oncology Network, University of Antwerp, Antwerp, Belgium
| | - Elisabeth Macken
- Division of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Michaël Somers
- Division of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | | | - Benedicte Y De Winter
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Division of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Annemieke Smet
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
2
|
Bernardi F, Fanizzi F, Parigi TL, Zilli A, Allocca M, Furfaro F, Peyrin-Biroulet L, Danese S, D’Amico F. Role of Probiotics in the Management of Patients with Ulcerative Colitis and Pouchitis. Microorganisms 2024; 13:19. [PMID: 39858787 PMCID: PMC11768050 DOI: 10.3390/microorganisms13010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
Acute severe ulcerative colitis (ASUC) often requires surgical intervention, such as proctocolectomy with ileal pouch-anal anastomosis (IPAA). While IPAA improves patient outcomes, it can be associated with pouchitis, a common and debilitating complication characterized by inflammation of the pouch. The development of pouchitis is closely linked to dysbiosis-an imbalance in the gut microbiota. Understanding the role of the microbiota in pouch health has spurred interest in probiotics as a therapeutic strategy. Probiotics represent a promising avenue in the management of pouchitis, offering a natural and targeted approach to improving outcomes for UC patients. This review explores the role of probiotics in the management of UC patients, with a specific focus on preventing and treating pouchitis. We compare the microbiota of healthy pouches to those with pouchitis, highlighting key microbial shifts linked to disease onset and discussing the growing evidence for probiotics as a prevention and therapeutic approach. Future directions should prioritize advancing research to optimize probiotic therapies and establish personalized approaches based on individual microbiome profiles, highlighting their significant potential as a promising treatment strategy for pouchitis.
Collapse
Affiliation(s)
- Francesca Bernardi
- Gastroenterology and Endoscopy IRCCS, Ospedale San Raffaele, 20132 Milano, Italy; (F.B.); (F.F.); (T.L.P.); (A.Z.); (M.A.); (F.F.); (S.D.)
- Gastroenterology and Endoscopy, Vita Salute San Raffaele University, 20132 Milano, Italy
| | - Fabrizio Fanizzi
- Gastroenterology and Endoscopy IRCCS, Ospedale San Raffaele, 20132 Milano, Italy; (F.B.); (F.F.); (T.L.P.); (A.Z.); (M.A.); (F.F.); (S.D.)
- Gastroenterology and Endoscopy, Vita Salute San Raffaele University, 20132 Milano, Italy
| | - Tommaso Lorenzo Parigi
- Gastroenterology and Endoscopy IRCCS, Ospedale San Raffaele, 20132 Milano, Italy; (F.B.); (F.F.); (T.L.P.); (A.Z.); (M.A.); (F.F.); (S.D.)
| | - Alessandra Zilli
- Gastroenterology and Endoscopy IRCCS, Ospedale San Raffaele, 20132 Milano, Italy; (F.B.); (F.F.); (T.L.P.); (A.Z.); (M.A.); (F.F.); (S.D.)
| | - Mariangela Allocca
- Gastroenterology and Endoscopy IRCCS, Ospedale San Raffaele, 20132 Milano, Italy; (F.B.); (F.F.); (T.L.P.); (A.Z.); (M.A.); (F.F.); (S.D.)
| | - Federica Furfaro
- Gastroenterology and Endoscopy IRCCS, Ospedale San Raffaele, 20132 Milano, Italy; (F.B.); (F.F.); (T.L.P.); (A.Z.); (M.A.); (F.F.); (S.D.)
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, INFINY Institute, INSERM NGERE, CHRU Nancy, F-54500 Vandœuvre-lès-Nancy, France;
| | - Silvio Danese
- Gastroenterology and Endoscopy IRCCS, Ospedale San Raffaele, 20132 Milano, Italy; (F.B.); (F.F.); (T.L.P.); (A.Z.); (M.A.); (F.F.); (S.D.)
- Gastroenterology and Endoscopy, Vita Salute San Raffaele University, 20132 Milano, Italy
| | - Ferdinando D’Amico
- Gastroenterology and Endoscopy IRCCS, Ospedale San Raffaele, 20132 Milano, Italy; (F.B.); (F.F.); (T.L.P.); (A.Z.); (M.A.); (F.F.); (S.D.)
| |
Collapse
|
3
|
Saad EA, Elsaid AM, Shoaib RMS, Megahed KF, Elsharawy AN. MUC7 VNTR polymorphism and association with bronchial asthma in Egyptian children. Sci Rep 2022; 12:18910. [PMID: 36344553 PMCID: PMC9640678 DOI: 10.1038/s41598-022-21631-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022] Open
Abstract
Overproduction of mucins in the airways donates largely to airway blockage in asthma patients. Glycoprotein MUC7 plays a role in the clearance of bacteria and has anti-candidacidal criteria. Our goal was to investigate the association between the MUC7 variable number of tandem repeats (VNTR) polymorphism and bronchial asthma among Egyptian children. The MUC7 VNTR polymorphism was investigated among 100 children with bronchial asthma and 100 healthy controls using polymerase chain reaction (PCR) method. Serum levels of immunoglobulin E (IgE), tumor necrosis factor-alpha (TNF-α), and transforming growth factor-beta1 (TGF-β1) were assessed by enzyme-linked immunosorbent assay (ELISA) technique. The frequencies of 6*5 genotype, 5*5 genotype, (6*5 + 5*5) genotypes, and MUC7*5 allele of the MUC7 VNTR variant were significantly lower among asthmatic patients than controls (p < 0.015, OR = 0.39, 95% CI = 0.19-0.81; p = 0.03, OR = 0.18, 95% CI = 0.04-0.86; p < 0.001, OR = 0.29, 95% CI = 0.15-0.58; p < 0.001, OR = 0.3, 95% CI = 0.17-0.55, respectively). The (6*5 + 5*5) genotypes of the MUC7 VNTR variant were not associated with the clinical manifestations and serum levels of IgE, TNF-α, and TGF-β1 among asthmatic patients (p ˃ 0.05). In conclusion, the (6*5 + 5*5) genotypes of the MUC7 VNTR variant may have a protective role for bronchial asthma in Egyptian children.
Collapse
Affiliation(s)
- Entsar A. Saad
- grid.462079.e0000 0004 4699 2981Chemistry Department, Faculty of Science, Damietta University, Damietta, 34517 Egypt
| | - Afaf M. Elsaid
- grid.10251.370000000103426662Genetics Unit, Children Hospital, Mansoura University, Mansoura, Egypt
| | - Rasha M. S. Shoaib
- grid.510451.4Food and Dairy Sciences and Technology Department, Faculty of Environmental Agricultural Sciences, Arish University, Arish, North Sinai Egypt
| | - Khaled F. Megahed
- grid.10251.370000000103426662Department of Pediatrics, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Amal N. Elsharawy
- grid.462079.e0000 0004 4699 2981Chemistry Department, Faculty of Science, Damietta University, Damietta, 34517 Egypt
| |
Collapse
|
4
|
Lillehoj EP, Luzina IG, Atamas SP. Mammalian Neuraminidases in Immune-Mediated Diseases: Mucins and Beyond. Front Immunol 2022; 13:883079. [PMID: 35479093 PMCID: PMC9035539 DOI: 10.3389/fimmu.2022.883079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/21/2022] [Indexed: 12/28/2022] Open
Abstract
Mammalian neuraminidases (NEUs), also known as sialidases, are enzymes that cleave off the terminal neuraminic, or sialic, acid resides from the carbohydrate moieties of glycolipids and glycoproteins. A rapidly growing body of literature indicates that in addition to their metabolic functions, NEUs also regulate the activity of their glycoprotein targets. The simple post-translational modification of NEU protein targets-removal of the highly electronegative sialic acid-affects protein folding, alters protein interactions with their ligands, and exposes or covers proteolytic sites. Through such effects, NEUs regulate the downstream processes in which their glycoprotein targets participate. A major target of desialylation by NEUs are mucins (MUCs), and such post-translational modification contributes to regulation of disease processes. In this review, we focus on the regulatory roles of NEU-modified MUCs as coordinators of disease pathogenesis in fibrotic, inflammatory, infectious, and autoimmune diseases. Special attention is placed on the most abundant and best studied NEU1, and its recently discovered important target, mucin-1 (MUC1). The role of the NEU1 - MUC1 axis in disease pathogenesis is discussed, along with regulatory contributions from other MUCs and other pathophysiologically important NEU targets.
Collapse
Affiliation(s)
- Erik P. Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Irina G. Luzina
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Research Service, Baltimore Veterans Affairs (VA) Medical Center, Baltimore, MD, United States
| | - Sergei P. Atamas
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
5
|
McHale P, Quinlan AR. trfermikit: a tool to discover VNTR-associated deletions. Bioinformatics 2022; 38:1231-1234. [PMID: 34864893 PMCID: PMC8826174 DOI: 10.1093/bioinformatics/btab805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/25/2021] [Accepted: 11/27/2021] [Indexed: 02/04/2023] Open
Abstract
SUMMARY We present trfermikit, a software tool designed to detect deletions larger than 50 bp occurring in Variable Number Tandem Repeats using Illumina DNA sequencing reads. In such regions, it achieves a better tradeoff between sensitivity and false discovery than a state-of-the-art structural variation caller, Manta and complements it by recovering a significant number of deletions that Manta missed. trfermikit is based upon the fermikit pipeline, which performs read assembly, maps the assembly to the reference genome and calls variants from the alignment. AVAILABILITY AND IMPLEMENTATION https://github.com/petermchale/trfermikit. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Peter McHale
- Department of Human Genetics and Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT 84112, USA
| | - Aaron R Quinlan
- Department of Human Genetics and Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
6
|
El-Sahhar S, Varga-Weisz P. The gut microbiome in health and disease: Inflammatory bowel diseases. ADV ECOL RES 2022. [DOI: 10.1016/bs.aecr.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Seol SY, Yang GE, Cho Y, Kim MC, Choi HJ, Choi YH, Leem SH. Rare minisatellite alleles of MUC2-MS8 influence susceptibility to rectal carcinoma. Genes Genomics 2021; 43:1381-1388. [PMID: 34436741 DOI: 10.1007/s13258-021-01158-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/14/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Previously, we identified eight novel minisatellites in the MUC2, of which allelic variants in MUC2-MS6 were examined to influence susceptibility to gastric cancer. However, studies on the susceptibility to gastrointestinal cancer of other minisatellites in the MUC2 region still remain unprogressive. OBJECTIVE In this study, we investigated whether polymorphic variations in the MUC2-MS8 region are related to susceptibility to gastrointestinal cancer. METHODS We assessed the association between MUC2-MS8 and gastrointestinal cancers by a case-control study with 1229 controls, 486 gastric cancer cases, 220 colon cancer cases and 278 rectal cancer cases. To investigate whether intronic minisatellites affect gene expression, various minisatellites were inserted into the luciferase-reporter vector and their expression levels were examined. We also examined the length of MUC2-MS8 alleles in blood and cancer tissue matching samples of 107 gastric cancer patients, 125 colon cancer patients, and 85 rectal cancer patients, and investigated whether the repeat sequence affects genome instability. RESULTS A statistically significant association was identified between rare MUC2-MS8 alleles and the occurrence of rectal cancer: odds ratio (OR), 6.66; 95% confidence interval (CI), 1.11-39.96; and P = 0.0165. In the younger group (age, < 55), rare alleles were significant associated with an increased risk of rectal cancer (odds ratio, 24.93 and P = 0.0001). Suppression of expression was found in the reporter vector inserted with minisatellites, and loss of heterozygosity (LOH) of the MUC2-MS8 region was confirmed in cancer tissues of gastrointestinal cancer patients (0.8-5.9%). CONCLUSION Our results suggest that the rare alleles of MUC2-MS8 could be used to identify the risk of rectal cancer and that this repeat region is related to genomic instability.
Collapse
Affiliation(s)
- So-Young Seol
- Department of Biomedical Science, Dong-A University, Busan, 49315, Korea.,Department of Medical Oncology, Gangnam Severance Cancer Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Gi-Eun Yang
- Department of Biomedical Science, Dong-A University, Busan, 49315, Korea.,Department of Health Sciences, Dong-A University, Busan, 49315, Korea
| | - Yoon Cho
- Department of Biomedical Science, Dong-A University, Busan, 49315, Korea.,Department of Health Sciences, Dong-A University, Busan, 49315, Korea
| | - Min Chan Kim
- Department of Surgery, College of Medicine, Dong-A University, Busan, 49201, Korea
| | - Hong-Jo Choi
- Department of Surgery, College of Medicine, Dong-A University, Busan, 49201, Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Anti-Aging Research Center, Dong-Eui University, Busan, 47227, Korea
| | - Sun-Hee Leem
- Department of Biomedical Science, Dong-A University, Busan, 49315, Korea. .,Department of Health Sciences, Dong-A University, Busan, 49315, Korea.
| |
Collapse
|
8
|
The Relationship between Mucins and Ulcerative Colitis: A Systematic Review. J Clin Med 2021; 10:jcm10091935. [PMID: 33946184 PMCID: PMC8125602 DOI: 10.3390/jcm10091935] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/20/2022] Open
Abstract
Mucins are a family of glycosylated proteins which are the primary constituents of mucus and play a dynamic role in the regulation of the protective mucosal barriers throughout the human body. Ulcerative colitis (UC) is an Inflammatory Bowel Disease (IBD) characterised by continuous inflammation of the inner layer of the large intestine, and in this systematic review we analyse currently available data to determine whether alterations exist in mucin activity in the colonic mucosa of UC patients. Database searches were conducted to identify studies published between 1990 and 2020 that assess the role of mucins in cohorts of UC patients, where biopsy specimens were resected for analysis and control groups were included for comparison. 5497 articles were initially identified and of these 14 studies were systematically selected for analysis, a further 2 articles were identified through citation chaining. Therefore, 16 studies were critically reviewed. 13 of these studies assessed the role of MUC2 in UC and the majority of articles indicated that alterations in MUC2 structure or synthesis had an impact on the colonic mucosa, although conflicting results were presented regarding MUC2 expression. This review highlights the importance of further research to enhance our understanding of mucin regulation in UC and summarises data that may inform future studies.
Collapse
|
9
|
Defects in the GINS complex increase the instability of repetitive sequences via a recombination-dependent mechanism. PLoS Genet 2019; 15:e1008494. [PMID: 31815930 PMCID: PMC6922473 DOI: 10.1371/journal.pgen.1008494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/19/2019] [Accepted: 10/25/2019] [Indexed: 12/16/2022] Open
Abstract
Faithful replication and repair of DNA lesions ensure genome maintenance. During replication in eukaryotic cells, DNA is unwound by the CMG helicase complex, which is composed of three major components: the Cdc45 protein, Mcm2-7, and the GINS complex. The CMG in complex with DNA polymerase epsilon (CMG-E) participates in the establishment and progression of the replisome. Impaired functioning of the CMG-E was shown to induce genomic instability and promote the development of various diseases. Therefore, CMG-E components play important roles as caretakers of the genome. In Saccharomyces cerevisiae, the GINS complex is composed of the Psf1, Psf2, Psf3, and Sld5 essential subunits. The Psf1-1 mutant form fails to interact with Psf3, resulting in impaired replisome assembly and chromosome replication. Here, we show increased instability of repeat tracts (mononucleotide, dinucleotide, trinucleotide and longer) in yeast psf1-1 mutants. To identify the mechanisms underlying this effect, we analyzed repeated sequence instability using derivatives of psf1-1 strains lacking genes involved in translesion synthesis, recombination, or mismatch repair. Among these derivatives, deletion of RAD52, RAD51, MMS2, POL32, or PIF1 significantly decreased DNA repeat instability. These results, together with the observed increased amounts of single-stranded DNA regions and Rfa1 foci suggest that recombinational mechanisms make important contributions to repeat tract instability in psf1-1 cells. We propose that defective functioning of the CMG-E complex in psf1-1 cells impairs the progression of DNA replication what increases the contribution of repair mechanisms such as template switch and break-induced replication. These processes require sequence homology search which in case of a repeated DNA tract may result in misalignment leading to its expansion or contraction. Processes that ensure genome stability are crucial for all organisms to avoid mutations and decrease the risk of diseases. The coordinated activity of mechanisms underlying the maintenance of high-fidelity DNA duplication and repair is critical to deal with the malfunction of replication forks or DNA damage. Repeated sequences in DNA are particularly prone to instability; these sequences undergo expansions or contractions, leading in humans to various neurological, neurodegenerative, and neuromuscular disorders. A mutant form of one of the noncatalytic subunits of active DNA helicase complex impairs DNA replication. Here, we show that this form also significantly increases the instability of mononucleotide, dinucleotide, trinucleotide and longer repeat tracts. Our results suggest that in cells that harbor a mutated variant of the helicase complex, continuation of DNA replication is facilitated by recombination processes, and this mechanism can be highly mutagenic during repair synthesis through repetitive regions, especially regions that form secondary structures. Our results indicate that proper functioning of the DNA helicase complex is crucial for maintenance of the stability of repeated DNA sequences, especially in the context of recently described disorders in which mutations or deregulation of the human homologs of genes encoding DNA helicase subunits were observed.
Collapse
|
10
|
Mucin gene expression in the intestine of ulcerative colitis patients: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol 2016; 28:1241-5. [PMID: 27442499 DOI: 10.1097/meg.0000000000000707] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mucus layer of the colon is the main barrier between luminal microbes and the mucosa, and plays a significant role in the body defense mechanisms. Several studies have examined mucin gene (MUC) expression in ulcerative colitis (UC) without conclusive results. The aim of the study was to establish the knowledge of mucin expression in UC as a basis for further investigation. English medical literature searches were performed for mucin expression in the colonic mucosa of UC patients in comparison with controls. Case-control studies were included. A meta-analysis was carried out using 'Comprehensive meta-analysis' software. Pooled odds ratios (ORs) and 95% confidence intervals were calculated. Altogether, we found 311 eligible studies. Only 10 case-control studies from five countries fulfilled the inclusion criteria. A moderate heterogeneity was found in the studies included: Q=52.703, d.f. (Q)=15.000, I=71.539%. OR for mucin expression in UC patients versus healthy controls was 1.868 with a 95% confidence interval (CI) 1.263-2.764, P=0.002. Thus, we could find a significant increase of 87% of mucin expression in UC patients. OR for MUC2 was 2.520, 95% CI 1.320-4.809, P<0.001. MUC3 was also increased with OR 2.599, 95% CI 1.389-4.861, P=0.003. Funnel plot did not indicate a significant publication bias. We found a global increase in mucin expression in UC patients, specifically in MUC2 and MUC3. Further studies are needed, especially in patients treated with biologics for mucosal healing, to understand the role of mucin expression in the natural history of UC.
Collapse
|
11
|
Genome-Wide Copy Number Variation Scan Identifies Complement Component C4 as Novel Susceptibility Gene for Crohn's Disease. Inflamm Bowel Dis 2016; 22:505-15. [PMID: 26595553 DOI: 10.1097/mib.0000000000000623] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The genetic component of Crohn's disease (CD) is well known, with 140 susceptibility loci identified so far. In addition to single nucleotide polymorphisms typically studied in genome-wide scans, copy number variation is responsible for a large proportion of human genetic variation. METHODS We performed a genome-wide search for copy number variants associated with CD using array comparative genomic hybridization. One of the found regions was validated independently through real-time PCR. Serum levels of the found gene were measured in patients and control subjects. RESULTS We found copy number differences for the C4S and C4L gene variants of complement component C4 in the central major histocompatibility complex region on chromosome 6p21. Specifically, we saw that CD patients tend to have lower C4L and higher C4S copies than control subjects (P = 5.00 × 10 and P = 9.11 × 10), which was independent of known associated classical HLA I and II alleles (P = 7.68 × 10 and P = 6.29 × 10). Although C4 serum levels were not different between patients and control subjects, the relationship between C4 copy number and serum level was different for patients and control subjects with higher copy numbers leading to higher serum concentrations in control subjects, compared with CD patients (P < 0.001). CONCLUSIONS C4 is part of the classical activation pathway of the complement system, which is important for (auto)immunity. Low C4L or high C4S copy number, and corresponding effects on C4 serum level, could lead to an exaggerated response against infections, possibly leading to (auto)immune disease.
Collapse
|
12
|
Exploring the role and diversity of mucins in health and disease with special insight into non-communicable diseases. Glycoconj J 2015; 32:575-613. [PMID: 26239922 DOI: 10.1007/s10719-015-9606-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/18/2015] [Indexed: 12/11/2022]
Abstract
Mucins are major glycoprotein components of the mucus that coats the surfaces of cells lining the respiratory, digestive, gastrointestinal and urogenital tracts. They function to protect epithelial cells from infection, dehydration and physical or chemical injury, as well as to aid the passage of materials through a tract i.e., lubrication. They are also implicated in the pathogenesis of benign and malignant diseases of secretory epithelial cells. In Human there are two types of mucins, membrane-bound and secreted that are originated from mucous producing goblet cells localized in the epithelial cell layer or in mucous producing glands and encoded by MUC gene. Mucins belong to a heterogeneous family of high molecular weight proteins composed of a long peptidic chain with a large number of tandem repeats that form the so-called mucin domain. The molecular weight is generally high, ranging between 0.2 and 10 million Dalton and all mucins contain one or more domains which are highly glycosylated. The size and number of repeats vary between mucins and the genetic polymorphism represents number of repeats (VNTR polymorphisms), which means the size of individual mucins can differ substantially between individuals which can be used as markers. In human it is only MUC1 and MUC7 that have mucin domains with less than 40% serine and threonine which in turn could reduce number of PTS domains. Mucins can be considered as powerful two-edged sword, as its normal function protects from unwanted substances and organisms at an arm's length while, malfunction of mucus may be an important factor in human diseases. In this review we have unearthed the current status of different mucin proteins in understanding its role and function in various non-communicable diseases in human with special reference to its organ specific locations. The findings described in this review may be of direct relevance to the major research area in biomedicine with reference to mucin and mucin associated diseases.
Collapse
|
13
|
Intestinal barrier function and the brain-gut axis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 817:73-113. [PMID: 24997030 DOI: 10.1007/978-1-4939-0897-4_4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The luminal-mucosal interface of the intestinal tract is the first relevant location where microorganism-derived antigens and all other potentially immunogenic particles face the scrutiny of the powerful mammalian immune system. Upon regular functioning conditions, the intestinal barrier is able to effectively prevent most environmental and external antigens to interact openly with the numerous and versatile elements that compose the mucosal-associated immune system. This evolutionary super system is capable of processing an astonishing amount of antigens and non-immunogenic particles, approximately 100 tons in one individual lifetime, only considering food-derived components. Most important, to develop oral tolerance and proper active immune responses needed to prevent disease and inflammation, this giant immunogenic load has to be managed in a way that physiological inflammatory balance is constantly preserved. Adequate functioning of the intestinal barrier involves local and distant regulatory networks integrating the so-called brain-gut axis. Along this complex axis both brain and gut structures participate in the processing and execution of response signals to external and internal changes coming from the digestive tract, using multidirectional pathways to communicate. Dysfunction of brain-gut axis facilitates malfunctioning of the intestinal barrier, and vice versa, increasing the risk of uncontrolled immunological reactions that may trigger mucosal and brain low-grade inflammation, a putative first step to the initiation of more permanent gut disorders. In this chapter, we describe the structure, function and interactions of intestinal barrier, microbiota and brain-gut axis in both healthy and pathological conditions.
Collapse
|
14
|
Abstract
Technological advances in the large scale analysis of human genetics have generated profound insights into possible genetic contributions to chronic diseases including the inflammatory bowel diseases (IBDs), Crohn's disease and ulcerative colitis. To date, 163 distinct genetic risk loci have been associated with either Crohn's disease or ulcerative colitis, with a substantial degree of genetic overlap between these 2 conditions. Although many risk variants show a reproducible correlation with disease, individual gene associations only affect a subset of patients, and the functional contribution(s) of these risk variants to the onset of IBD is largely undetermined. Although studies in twins have demonstrated that the development of IBD is not mediated solely by genetic risk, it is nevertheless important to elucidate the functional consequences of risk variants for gene function in relevant cell types known to regulate key physiological processes that are compromised in IBD. This article will discuss IBD candidate genes that are known to be, or are suspected of being, involved in regulating the intestinal epithelial barrier and several of the physiological processes presided over by this dynamic and versatile layer of cells. This will include assembly and regulation of tight junctions, cell adhesion and polarity, mucus and glycoprotein regulation, bacterial sensing, membrane transport, epithelial differentiation, and restitution.
Collapse
|
15
|
Abstract
Inflammatory bowel disease (IBD), which is characterized by chronic or recurrent relapsing gastrointestinal inflammation, includes ulcerative colitis (UC) and Crohn's disease (CD).The precise etiology of IBD remains unclear. In recent years, intestinal mucosal injury is considered the leading cause of IBD, and a large body of evidence suggests that mucins are an important component of the intestinal mucosa barrier and participate in the occurrence and development of IBD. Understanding the relationship between mucins and IBD can provide new avenues for the development of new treatments for this disease.
Collapse
|
16
|
Angriman I, Scarpa M, Castagliuolo I. Relationship between pouch microbiota and pouchitis following restorative proctocolectomy for ulcerative colitis. World J Gastroenterol 2014; 20:9665-9674. [PMID: 25110406 PMCID: PMC4123357 DOI: 10.3748/wjg.v20.i29.9665] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 12/23/2013] [Accepted: 05/05/2014] [Indexed: 02/06/2023] Open
Abstract
Restorative proctocolectomy with ileal pouch-anal anastomosis (IPAA) has become the surgical treatment of choice for many patients with medically refractory ulcerative colitis (UC) and familial adenomatous polyposis (FAP). UC patients with IPAA (UC-IPAA) are, nevertheless, susceptible to inflammatory and noninflammatory sequelae such as pouchitis, which is only rarely noted in FAP patients with IPAA. Pouchitis is the most frequent long-term complication of UC-IPAA patients, with a cumulative prevalence of up to 50%. Although the aetiology of pouchitis remains unclear, accumulating evidence suggests that a dysbiosis of the pouch microbiota and an abnormal mucosal immune response are implicated in its pathogenesis. Studies using culture and molecular techniques have detected a dysbiosis of the pouch microbiota in patients with pouchitis. Risk factors, genetic associations, and serological markers suggest that interactions between the host immune response and the pouch microbiota underlie the aetiology of this idiopathic inflammatory condition. This systematic review focuses on the dysbiosis of the microbiota that inhabit the pouch in UC and FAP patients and its interaction with the mucosal immune system. A meta-analysis was not attempted due to the highly heterogeneous microbiota composition and the different detection methods used by the various studies. Although no specific bacterial species, genus, or family has as yet been identified as pathogenic, there is evidence that a dysbiosis characterized by decreased gut microbiota diversity in UC-IPAA patients may, in genetically predisposed subjects, lead to aberrant mucosal immune regulation triggering an inflammatory process.
Collapse
|
17
|
Antoni L, Nuding S, Wehkamp J, Stange EF. Intestinal barrier in inflammatory bowel disease. World J Gastroenterol 2014; 20:1165-1179. [PMID: 24574793 PMCID: PMC3921501 DOI: 10.3748/wjg.v20.i5.1165] [Citation(s) in RCA: 289] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/08/2013] [Accepted: 12/13/2013] [Indexed: 02/06/2023] Open
Abstract
A complex mucosal barrier protects as the first line of defense the surface of the healthy intestinal tract from adhesion and invasion by luminal microorganisms. In this review, we provide an overview about the major components of this protective system as for example an intact epithelium, the synthesis of various antimicrobial peptides (AMPs) and the formation of the mucus layer. We highlight the crucial importance of their correct functioning for the maintenance of a proper intestinal function and the prevention of dysbiosis and disease. Barrier disturbances including a defective production of AMPs, alterations in thickness or composition of the intestinal mucus layer, alterations of pattern-recognition receptors, defects in the process of autophagy as well as unresolved endoplasmic reticulum stress result in an inadequate host protection and are thought to play a crucial role in the pathogenesis of the inflammatory bowel diseases Crohn’s disease and ulcerative colitis.
Collapse
|
18
|
Pastorelli L, De Salvo C, Mercado JR, Vecchi M, Pizarro TT. Central role of the gut epithelial barrier in the pathogenesis of chronic intestinal inflammation: lessons learned from animal models and human genetics. Front Immunol 2013; 4:280. [PMID: 24062746 PMCID: PMC3775315 DOI: 10.3389/fimmu.2013.00280] [Citation(s) in RCA: 327] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 08/29/2013] [Indexed: 12/12/2022] Open
Abstract
The gut mucosa is constantly challenged by a bombardment of foreign antigens and environmental microorganisms. As such, the precise regulation of the intestinal barrier allows the maintenance of mucosal immune homeostasis and prevents the onset of uncontrolled inflammation. In support of this concept, emerging evidence points to defects in components of the epithelial barrier as etiologic factors in the pathogenesis of inflammatory bowel diseases (IBDs). In fact, the integrity of the intestinal barrier relies on different elements, including robust innate immune responses, epithelial paracellular permeability, epithelial cell integrity, as well as the production of mucus. The purpose of this review is to systematically evaluate how alterations in the aforementioned epithelial components can lead to the disruption of intestinal immune homeostasis, and subsequent inflammation. In this regard, the wealth of data from mouse models of intestinal inflammation and human genetics are pivotal in understanding pathogenic pathways, for example, that are initiated from the specific loss of function of a single protein leading to the onset of intestinal disease. On the other hand, several recently proposed therapeutic approaches to treat human IBD are targeted at enhancing different elements of gut barrier function, further supporting a primary role of the epithelium in the pathogenesis of chronic intestinal inflammation and emphasizing the importance of maintaining a healthy and effective intestinal barrier.
Collapse
Affiliation(s)
- Luca Pastorelli
- Department of Pathology, Case Western Reserve University School of Medicine , Cleveland, OH , USA ; Department of Biomedical Sciences for Health, University of Milan , Milan , Italy ; Gastroenterology and Digestive Endoscopy Unit, IRCCS Policlinico San Donato , San Donato Milanese , Italy
| | | | | | | | | |
Collapse
|
19
|
Abstract
MUC2 is the primary component of the mucin barrier that separates the intestinal microbiota and the intestinal epithelium. This mucous barrier is affected by both luminal/microbial factors and host/immune factors, both of which have genetic and environmental determinants. The complex interactions between these players in health and disease states are not fully understood. Inflammatory bowel disease (IBD) has both genetic and environmental etiologies that lead to the breakdown of the epithelial barrier. In this review, we explore the up-to-date evidence that implicates mucin in the pathogenesis of IBD. In IBD, quantitative changes in mucin secretion occur, as well as structural changes in mucin's glycoprotein core and the sulfation and sialylation of mucin's oligosaccharide residues. These changes are associated with a diminished functionality of the mucous barrier. We identify the various genetic mutations associated with these changes and outline the animal models that have enhanced the current understanding of the genetic basis for IBD. Further study is needed to better characterize the immune and genetic influences on mucin expression and secretion and role of endoplasmic reticulum stress and a defective unfolded protein response in mediating these changes.
Collapse
|
20
|
Multiple pathways regulate minisatellite stability during stationary phase in yeast. G3-GENES GENOMES GENETICS 2012; 2:1185-95. [PMID: 23050229 PMCID: PMC3464111 DOI: 10.1534/g3.112.003673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 08/05/2012] [Indexed: 12/20/2022]
Abstract
Alterations in minisatellite DNA repeat tracts in humans have been correlated with a number of serious disorders, including cancer. Despite their importance for human health, the genetic factors that influence minisatellite stability are not well understood. Previously, we identified mutations in the Saccharomyces cerevisiae zinc homeostasis genes ZRT1 and ZAP1 that significantly increase the frequency of minisatellite alteration specifically during stationary phase. In this work, we identified mutants of END3, PKC1, and RAD27 that increase minisatellite instability during stationary phase. Genetic analysis reveals that these genes, along with ZRT1 and ZAP1, comprise multiple pathways regulating minisatellite stability during stationary phase. Minisatellite alterations generated by perturbation of any of these pathways occur via homologous recombination. We present evidence that suggests formation of ssDNA or ssDNA breaks may play a primary role in stationary phase instability. Finally, we examined the roles of these pathways in the stability of a human minisatellite tract associated with the HRAS1 oncogene and found that loss of RAD27, but not END3 or PKC1, destabilizes the HRAS1 minisatellite in stationary phase yeast. This result indicates that the genetic control of stationary phase minisatellite stability is dependent on the sequence composition of the minisatellite itself.
Collapse
|
21
|
Chandrasekaran EV, Xue J, Xia J, Locke RD, Patil SA, Neelamegham S, Matta KL. Characterization of cancer associated mucin type O-glycans using the exchange sialylation properties of mammalian sialyltransferase ST3Gal-II. J Proteome Res 2012; 11:2609-18. [PMID: 22329400 DOI: 10.1021/pr201108q] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Our previous studies suggest that the α2,3sialylated T-antigen (NeuAcα2,3Galβ1,3GalNac-) and associated glycan structures are likely to be elevated during cancer. An easy and reliable strategy to label mucinous glycans that contain such carbohydrates can enable the identification of novel glycoproteins that are cancer associated. To this end, the present study demonstrates that the exchange sialylation property of mammalian ST3Gal-II can facilitate the labeling of mucin glycoproteins in cancer cells, tumor specimens, and glycoproteins in cancer sera. Results show that (i) the radiolabeled mucin glycoproteins of each of the cancer cell lines studied (T47D, MCF7, LS180, LNCaP, SKOV3, HL60, DU4475, and HepG2) is distinct either in terms of the specific glycans presented or their relative distribution. While some cell lines like T47D had only one single sialylated O-glycan, others like LS180 and DU4475 contained a complex mixture of mucinous carbohydrates. (ii) [14C]sialyl labeling of primary tumor cells identified a 25-35 kDa mucin glycoprotein unique to pancreatic tumor. Labeled glycoproteins for other cancers had higher molecular weight. (iii) Studies of [14C] sialylated human sera showed larger mucin glycopeptides and >2-fold larger mucin-type chains in human serum compared to [14C]sialyl labeled glycans of fetuin. Overall, the exchange sialylation property of ST3Gal-II provides an efficient avenue to identify mucinous proteins for applications in glycoproteomics and cancer research.
Collapse
Affiliation(s)
- E V Chandrasekaran
- Department of Cancer Biology, Roswell Park Cancer Institute, Buffalo, New York 14263, United States.
| | | | | | | | | | | | | |
Collapse
|
22
|
Sheng YH, Hasnain SZ, Florin THJ, McGuckin MA. Mucins in inflammatory bowel diseases and colorectal cancer. J Gastroenterol Hepatol 2012; 27:28-38. [PMID: 21913981 DOI: 10.1111/j.1440-1746.2011.06909.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The gastrointestinal tract is protected by a mucus barrier with both secreted and cell-surface mucins contributing to the exclusion of luminal microbes and toxins. Alterations in the structure and/or quantity of mucins alter the barrier function of mucus and could play roles in initiating and maintaining mucosal inflammation in inflammatory bowel diseases (IBD), and in driving cancer development in the intestine. The aim of this review is to focus on the roles of the mucins in IBD. The polymorphisms of mucin genes that have been associated with susceptibility to IBD, and alterations in mucin expression as well as factors that regulate production of the mucins in IBD, are summarized. Data from animal models of intestinal inflammation, which support the importance of mucins in IBD and cancer development, are also discussed.
Collapse
Affiliation(s)
- Yong H Sheng
- Immunity, Infection and Inflammation Program, Mater Medical Research Institute, South Brisbane, Queensland, Australia
| | | | | | | |
Collapse
|
23
|
Zella GC, Hait EJ, Glavan T, Gevers D, Ward DV, Kitts CL, Korzenik JR. Distinct microbiome in pouchitis compared to healthy pouches in ulcerative colitis and familial adenomatous polyposis. Inflamm Bowel Dis 2011; 17:1092-100. [PMID: 20845425 DOI: 10.1002/ibd.21460] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 07/21/2010] [Indexed: 12/16/2022]
Abstract
BACKGROUND Pouchitis occurs in up to 50% of patients with ulcerative colitis (UC) undergoing ileal pouch anal anastomosis (IPAA). Pouchitis rarely occurs in patients with familial adenomatous polyposis (FAP) who undergo IPAA. Our aim was to compare mucosal and luminal flora in patients with UC-associated pouchitis (UCP), healthy UC pouches (HUC), and healthy FAP pouches (FAP). METHODS Nineteen patients were enrolled in this cross-sectional study (nine UCP, three HUC, seven FAP). Patients with active pouchitis were identified using the Pouchitis Disease Activity Index (PDAI). Ileal pouch mucosal biopsies and fecal samples were analyzed with a 16S rDNA-based terminal restriction fragment length polymorphism (TRFLP) approach. Pooled fecal DNA from four UCP and four FAP pouches were sequenced for further speciation. RESULTS TRFLP data revealed statistically significant differences in the mucosal and fecal microbiota between each group of patients. UCP samples exhibited significantly more TRFLP peaks matching Clostridium and Eubacterium genera compared to HUC and FAP pouches and fewer peaks matching Lactobacillus and Streptococcus genera compared to FAP. DNA Sanger sequencing of a subset of luminal samples revealed UCP having more identifiable sequences of Firmicutes (51.2% versus 21.2%) and Verrucomicrobia (20.2% versus 3.2%), and fewer Bacteroidetes (17.9% versus 60.5%) and Proteobacteria (9.8% versus 14.7%) compared to FAP. CONCLUSIONS The pouch microbial environment appears to be distinctly different in the settings of UC pouchitis, healthy UC, and FAP. These findings suggest that a dysbiosis may exist in pouchitis which may be central to understanding the disease.
Collapse
Affiliation(s)
- Garrett C Zella
- Division of Pediatric Gastroenterology, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Kelly MK, Alver B, Kirkpatrick DT. Minisatellite alterations in ZRT1 mutants occur via RAD52-dependent and RAD52-independent mechanisms in quiescent stationary phase yeast cells. DNA Repair (Amst) 2011; 10:556-66. [PMID: 21515092 DOI: 10.1016/j.dnarep.2011.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 02/21/2011] [Accepted: 03/04/2011] [Indexed: 12/11/2022]
Abstract
Alterations in minisatellite DNA repeat tracts are associated with a variety of human diseases including Type 1 diabetes, progressive myoclonus epilepsy, and some types of cancer. However, in spite of their role in human health, the factors required for minisatellite alterations are not well understood. We previously identified a stationary phase specific increase in minisatellite instability caused by mutations in the high affinity zinc transporter ZRT1, using a minisatellite inserted into the ADE2 locus in Saccharomyces cerevisiae. Here, we examined ZRT1-mediated minisatellite instability in yeast strains lacking key recombination genes to determine the mechanisms by which these alterations occur. Our analysis revealed that minisatellite alterations in a Δzrt1 mutant occur by a combination of RAD52-dependent and RAD52-independent mechanisms. In this study, plasmid-based experiments demonstrate that ZRT1-mediated minisatellite alterations occur independently of chromosomal context or adenine auxotrophy, and confirmed the stationary phase timing of the events. To further examine the stationary phase specificity of ZRT1-mediated minisatellite alterations, we deleted ETR1 and POR1, genes that were previously shown to differentially affect the viability of quiescent or nonquiescent cells in stationary phase populations. These experiments revealed that minisatellite alterations in Δzrt1 mutants occur exclusively in quiescent stationary phase cells. Finally, we show that loss of ZRT1 stimulates alterations in a derivative of the human HRAS1 minisatellite. We propose that the mechanism of ZRT1-mediated minisatellite instability during quiescence is relevant to human cells, and thus, human disease.
Collapse
Affiliation(s)
- Maire K Kelly
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
25
|
Broadhurst MJ, Leung JM, Kashyap V, McCune JM, Mahadevan U, McKerrow JH, Loke P. IL-22+ CD4+ T cells are associated with therapeutic trichuris trichiura infection in an ulcerative colitis patient. Sci Transl Med 2010; 2:60ra88. [PMID: 21123809 DOI: 10.1126/scitranslmed.3001500] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ulcerative colitis, a type of inflammatory bowel disease, is less common in countries endemic for helminth infections, suggesting that helminth colonization may have the potential to regulate intestinal inflammation in inflammatory bowel diseases. Indeed, therapeutic effects of experimental helminth infection have been reported in both animal models and clinical trials. Here, we provide a comprehensive cellular and molecular portrait of dynamic changes in the intestinal mucosa of an individual who infected himself with Trichuris trichiura to treat his symptoms of ulcerative colitis. Tissue with active colitis had a prominent population of mucosal T helper (T(H)) cells that produced the inflammatory cytokine interleukin-17 (IL-17) but not IL-22, a cytokine involved in mucosal healing. After helminth exposure, the disease went into remission, and IL-22-producing T(H) cells accumulated in the mucosa. Genes involved in carbohydrate and lipid metabolism were up-regulated in helminth-colonized tissue, whereas tissues with active colitis showed up-regulation of proinflammatory genes such as IL-17, IL-13RA2, and CHI3L1. Therefore, T. trichiura colonization of the intestine may reduce symptomatic colitis by promoting goblet cell hyperplasia and mucus production through T(H)2 cytokines and IL-22. Improved understanding of the physiological effects of helminth infection may lead to new therapies for inflammatory bowel diseases.
Collapse
Affiliation(s)
- Mara J Broadhurst
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Ahn EK, Kim WJ, Kwon JA, Choi PJ, Kim WJ, Sunwoo Y, Heo J, Leem SH. Variants of MUC5B minisatellites and the susceptibility of bladder cancer. DNA Cell Biol 2009; 28:169-76. [PMID: 19191526 DOI: 10.1089/dna.2008.0827] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The human MUC5B gene, which is primarily expressed in the tracheobronchial tract, is clustered to chromosome 11p15.5 with three other secreted gel-forming mucins, MUC6, MUC2, and MUC5AC. In this study, we identified seven variable number of tandem repeats (VNTRs; minisatellites) from the entire MUC5B region. Six (MUC5B-MS1, -MS2, -MS3, -MS4, -MS5, and -MS7) of the seven minisatellites evaluated in this study were novel minisatellites, but the MUC5B-MS6 minisatellite was described in a previous study. These minisatellites of MUC5B were analyzed in genomic DNA extracted from controls, cancer patients, and multigenerational families. Three (MUC5B-MS3, -MS6, and -MS7) of the seven minisatellites were found to be polymorphic and transmitted through meiosis following Mendelian inheritance in seven families; therefore, these minisatellite polymorphisms could be useful as markers for paternity mapping and DNA fingerprinting. In addition, we evaluated allelic variation in these minisatellites to determine if such variation affected the susceptibility to various carcinomas. To accomplish this, we conducted a case-control study in which the genomic DNA of 789 cancer-free controls and cancer patients with five types of cancer were compared. A statistically significant association between the long rare MUC5B-MS6 alleles and the occurrence of bladder cancer was identified in the younger group (<60; odds ratio, 4.54; 95% confidence interval, 1.0-20.7; p=0.03). This observation suggests that the long rare MUC5B-MS6 alleles evaluated in this study could be used to identify the risk of bladder cancer.
Collapse
Affiliation(s)
- Eun-Kyung Ahn
- Department of Biological Science, Dong-A University, Busan, Korea
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Dharmani P, Srivastava V, Kissoon-Singh V, Chadee K. Role of intestinal mucins in innate host defense mechanisms against pathogens. J Innate Immun 2008; 1:123-35. [PMID: 20375571 DOI: 10.1159/000163037] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 07/29/2008] [Indexed: 12/13/2022] Open
Abstract
Gastrointestinal mucins produced by goblet cells comprise the main structural components of the mucus layer. Mucins play a critical role in the maintenance of mucosal homeostasis and are responsible for the differential effector and regulatory responses against a plethora of microorganisms, including commensals and pathogens. In this review, we present a comprehensive overview on mucin biology, its properties, classification and gene assembly. We also consider the structure of the mucin gene, its proteins and its role in innate host defenses. We compare the various mucin secretagogues and the differential regulatory pathways involved in mucin biosynthesis and secretion during normal and diverse pathogenic conditions. Finally, we summarize the putative uncharted aspects of mucin-derived innate host defenses, whose exploration will help drug developers to identify factors that can strengthen mucosal integrity and will facilitate basic science research into curative treatments for gastrointestinal diseases.
Collapse
Affiliation(s)
- Poonam Dharmani
- Gastrointestinal Research Group, Faculty of Medicine, University of Calgary, Calgary, Alta., Canada
| | | | | | | |
Collapse
|
28
|
Ahn SH, Shah YM, Inoue J, Morimura K, Kim I, Yim S, Lambert G, Kurotani R, Nagashima K, Gonzalez FJ, Inoue Y. Hepatocyte nuclear factor 4alpha in the intestinal epithelial cells protects against inflammatory bowel disease. Inflamm Bowel Dis 2008; 14:908-20. [PMID: 18338782 PMCID: PMC2435391 DOI: 10.1002/ibd.20413] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hepatocyte nuclear factor 4alpha (HNF4alpha; NR2A1) is an orphan member of the nuclear receptor superfamily expressed in liver and intestine. While HNF4alpha expression is critical for liver function, its role in the gut and in the pathogenesis of inflammatory bowel disease (IBD) is unknown. METHODS Human intestinal biopsies from control and IBD patients were examined for expression of mRNAs encoding HNF4alpha and other nuclear receptors. An intestine-specific HNF4alpha null mouse line (Hnf4alpha(DeltaIEpC)) was generated using an Hnf4alpha-floxed allele and villin-Cre transgene. These mice and their control floxed counterparts (Hnf4alpha(F/F)), were subjected to a dextran sulfate sodium (DSS)-induced IBD colitis protocol and their clinical symptoms and gene expression patterns determined. RESULTS In human intestinal biopsies, HNF4alpha was significantly decreased in intestinal tissues from Crohn's disease and ulcerative colitis patients. HNF4alpha expression was also suppressed in the intestine of DSS-treated mice. In Hnf4alpha(DeltaIEpC) mice, disruption of HNF4alpha expression was observed in the epithelial cells throughout the intestine. In the DSS-induced colitis model Hnf4alpha(DeltaIEpC) mice showed markedly more severe changes in clinical symptoms and pathologies associated with IBD including loss of body weight, colon length, and histological morphology as compared with Hnf4alpha(F/F) mice. Furthermore, the Hnf4alpha(DeltaIEpC) mice demonstrate a significant alteration of mucin-associated genes and increased intestinal permeability, which may play an important role in the increased susceptibility to acute colitis following an inflammatory insult. CONCLUSIONS While HNF4alpha does not have a major role in normal function of the intestine, it protects the gut against DSS-induced colitis.
Collapse
Affiliation(s)
- Sung-Hoon Ahn
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Yatrik M. Shah
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Junko Inoue
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Keiichiro Morimura
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
- Department of Pathology, Osaka City University Medical School, Osaka 545-8585, Japan
| | - Insook Kim
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - SunHee Yim
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Gilles Lambert
- Universite de Nantes, Inserm U539, CHU Hotel-Dieu, Nantes 44035, France and The Heart Research Institute, Camperdown, NSW 2050, Australia
| | - Reiko Kurotani
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
- Cardiovascular Research Institute, Yokohama City University, Yokohama 236-0004, Japan
| | - Kunio Nagashima
- Image Analysis Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Yusuke Inoue
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
- Department of Chemistry and Chemical Biology, Graduate School of Engineering, Gunma University, Kiryu, Gunma 376-8515 Japan
| |
Collapse
|
29
|
Architecture of the large membrane-bound mucins. Gene 2007; 410:215-22. [PMID: 18242885 DOI: 10.1016/j.gene.2007.12.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 12/03/2007] [Accepted: 12/13/2007] [Indexed: 11/23/2022]
Abstract
Epithelial membrane-bound mucins are high molecular mass glycoproteins that may be also secreted or released into the extracellular environment. The genomic and multi-domain organizations of human large epithelial membrane-bound mucins are reviewed here with the purpose to clarify the literature on the subject with the help of mouse sequences. This family of complex molecules contains at least MUC3A, MUC12, MUC17, all organized in a cluster of genes, MUC4 and likely MUC16. In addition, we discuss the splicing events reported for these mucins with an emphasis on the human mucin MUC4.
Collapse
|
30
|
Jeong YH, Kim MC, Ahn EK, Seol SY, Do EJ, Choi HJ, Chu IS, Kim WJ, Kim WJ, Sunwoo Y, Leem SH. Rare exonic minisatellite alleles in MUC2 influence susceptibility to gastric carcinoma. PLoS One 2007; 2:e1163. [PMID: 18000536 PMCID: PMC2065792 DOI: 10.1371/journal.pone.0001163] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 10/16/2007] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Mucins are the major components of mucus and their genes share a common, centrally-located region of sequence that encodes tandem repeats. Mucins are well known genes with respect to their specific expression levels; however, their genomic levels are unclear because of complex genomic properties. In this study, we identified eight novel minisatellites from the entire MUC2 region and investigated how allelic variation in these minisatellites may affect susceptibility to gastrointestinal cancer. METHODOLOGY/PRINCIPLE FINDINGS We analyzed genomic DNA from the blood of normal healthy individuals and multi-generational family groups. Six of the eight minisatellites exhibited polymorphism and were transmitted meiotically in seven families, following Mendelian inheritance. Furthermore, a case-control study was performed that compared genomic DNA from 457 cancer-free controls with DNA from individuals with gastric (455), colon (192) and rectal (271) cancers. A statistically significant association was identified between rare exonic MUC2-MS6 alleles and the occurrence of gastric cancer: odds ratio (OR), 2.56; 95% confidence interval (CI), 1.31-5.04; and p = 0.0047. We focused on an association between rare alleles and gastric cancer. Rare alleles were divided into short (40, 43 and 44) and long (47, 50 and 54), according to their TR (tandem repeats) lengths. Interestingly, short rare alleles were associated with gastric cancer (OR = 5.6, 95% CI: 1.93-16.42; p = 0.00036). Moreover, hypervariable MUC2 minisatellites were analyzed in matched blood and cancer tissue from 28 patients with gastric cancer and in 4 cases of MUC2-MS2, minisatellites were found to have undergone rearrangement. CONCLUSIONS/SIGNIFICANCE Our observations suggest that the short rare MUC2-MS6 alleles could function as identifiers for risk of gastric cancer. Additionally, we suggest that minisatellite instability might be associated with MUC2 function in cancer cells.
Collapse
Affiliation(s)
- Yun Hee Jeong
- Department of Biological Science, Dong-A University, Busan, Korea
| | - Min Chan Kim
- Department of Surgery, College of Medicine, Dong-A University, Busan, Korea
| | - Eun-Kyung Ahn
- Department of Biological Science, Dong-A University, Busan, Korea
| | - So-Young Seol
- Department of Biological Science, Dong-A University, Busan, Korea
| | - Eun-Ju Do
- Department of Biological Science, Dong-A University, Busan, Korea
| | - Hong-Jo Choi
- Department of Surgery, College of Medicine, Dong-A University, Busan, Korea
| | - In-Sun Chu
- Medical Genomics Research Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Wun-Jae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Woo Jin Kim
- Department of Internal Medicine, College of Medicine, Kangwon National University, Chuncheon, Kangwon-Do, Korea
| | - Yangil Sunwoo
- Department of Biological Science, Dong-A University, Busan, Korea
| | - Sun-Hee Leem
- Department of Biological Science, Dong-A University, Busan, Korea
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
31
|
El Homsi M, Ducroc R, Claustre J, Jourdan G, Gertler A, Estienne M, Bado A, Scoazec JY, Plaisancié P. Leptin modulates the expression of secreted and membrane-associated mucins in colonic epithelial cells by targeting PKC, PI3K, and MAPK pathways. Am J Physiol Gastrointest Liver Physiol 2007; 293:G365-73. [PMID: 17495032 DOI: 10.1152/ajpgi.00091.2007] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mucins play an essential role in the protection and repair of gastrointestinal mucosa. We recently showed that luminal leptin strongly stimulated mucin secretion in vivo in rat colon. In the present study, we challenged the hypothesis that leptin may act directly on goblet cells to induce mucin expression in rat and human intestinal mucin-producing cells (DHE and HT29-MTX). The endoluminal effect of leptin was also studied in vivo in rat perfused colon model. The presence of leptin receptors was demonstrated in the two cell lines by Western blot and RT-PCR. In rat DHE cells, leptin (0.01-10 nmol/l, 60 min) dose dependently increased the secretion of mucins (210 +/- 3% of controls) and the expression of Muc2, Muc3, and Muc4 (twofold basal level) but not of Muc1 and Muc5AC. Luminal perfusion of leptin (60 min, 0.1-100 nmol/l) in rat colon also increased the mRNA level of Muc2, Muc3, and Muc4 but not of Muc1. In human HT29-MTX cells, leptin (0.01-10 nmol/l, 60 min) dose dependently enhanced MUC2, MUC5AC, and MUC4 mRNA levels. These effects were prevented by pretreatment of cells with the leptin mutein L39A/D40A/F41A, which acts as a receptor antagonist. Finally, pathway inhibition experiments suggest that leptin increased mucin expression by activating PKC-, phosphatidyl inositol 3-kinase-, and MAPK-dependent pathways but not the JAK/STAT pathway. In conclusion, leptin may contribute significantly to membrane-associated and secreted mucin production via a direct stimulation of colonic epithelial cells and the activation of leptin receptors. These data are consistent with a role for leptin in regulation of the intestinal barrier function.
Collapse
Affiliation(s)
- Mahmoud El Homsi
- INSERM UMR865, Faculté de Médecine R. Laennec, 7 rue Guillaume Paradin, 69008 Lyon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Van Limbergen J, Russell RK, Nimmo ER, Ho GT, Arnott ID, Wilson DC, Satsangi J. Genetics of the innate immune response in inflammatory bowel disease. Inflamm Bowel Dis 2007; 13:338-55. [PMID: 17206667 DOI: 10.1002/ibd.20096] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The discovery of nucleotide-binding oligomerization domain 2/caspase recruitment domain-containing protein 15 (NOD2/CARD15) as the first susceptibility gene in Crohn's disease (CD) has shifted the focus of research into the pathogenesis of inflammatory bowel disease (IBD) firmly to the innate immune response and the integrity of the epithelial barrier. The subsequent implication in IBD of variant alleles of OCTN, DLG5, MDR1, and TLRs has provided further support for a new, more complex model of innate immunity function in the gastrointestinal tract. In this review, we examine the recent advances in our understanding of the influence of genetics of the innate immune response on IBD. We will focus on germline variation of genes encoding pathogen-recognition receptors, proteins involved in epithelial homeostasis and secreted antimicrobial proteins.
Collapse
Affiliation(s)
- Johan Van Limbergen
- Gastrointestinal Unit, Molecular Medicine Centre, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK.
| | | | | | | | | | | | | |
Collapse
|
33
|
Louis NA, Hamilton KE, Canny G, Shekels LL, Ho SB, Colgan SP. Selective induction of mucin-3 by hypoxia in intestinal epithelia. J Cell Biochem 2007; 99:1616-27. [PMID: 16823775 DOI: 10.1002/jcb.20947] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Epithelial cells line mucosal surfaces (e.g., lung, intestine) and critically function as a semipermeable barrier to the outside world. Mucosal organs are highly vascular with extensive metabolic demands, and for this reason, are particularly susceptible to diminished blood flow and resultant tissue hypoxia. Here, we pursue the hypothesis that intestinal barrier function is regulated in a protective manner by hypoxia responsive genes. We demonstrate by PCR confirmation of microarray data and by avidin blotting of immunoprecipitated human Mucin 3 (MUC3), that surface MUC3 expression is induced in T84 intestinal epithelial cells following exposure to hypoxia. MUC3 RNA is minimally detectable while surface protein expression is absent under baseline normoxic conditions. There is a robust induction in both the mRNA (first evident by 8 h) and protein expression, first observed and maximally expressed following 24 h hypoxia. This is followed by a subsequent decline in protein expression, which remains well above baseline at 48 h of hypoxia. Further, we demonstrate that this induction of MUC3 protein is associated with a transient increase in the barrier restorative peptide, intestinal trefoil factor (ITF). ITF not only colocalizes with MUC3, by confocal microscopy, to the apical surface of T84 cells following exposure to hypoxia, but is also found, by co-immunoprecipitation, to be physically associated with MUC3, following 24 h of hypoxia. In exploration of the mechanism of hypoxic regulation of mucin 3 expression, we demonstrated by luciferase assay that the full-length promoter for mouse Mucin 3 (Muc3) is hypoxia-responsive with a 5.08 +/- 1.76-fold induction following 24 h of hypoxia. Furthermore, analysis of both the human (MUC3A) and mouse (Muc3) promoters revealed potential HIF-1 binding sites which were shown by chromatin immunoprecipitation to bind the pivotal hypoxia-regulating transcription factor HIF-1alpha. Taken together, these studies implicate the HIF-1alpha mediated hypoxic induced expression of mucin 3 and associated ITF in the maintenance of intestinal barrier function under hypoxic conditions.
Collapse
Affiliation(s)
- Nancy A Louis
- Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Moehle C, Ackermann N, Langmann T, Aslanidis C, Kel A, Kel-Margoulis O, Schmitz-Madry A, Zahn A, Stremmel W, Schmitz G. Aberrant intestinal expression and allelic variants of mucin genes associated with inflammatory bowel disease. J Mol Med (Berl) 2006; 84:1055-66. [PMID: 17058067 DOI: 10.1007/s00109-006-0100-2] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 07/14/2006] [Accepted: 07/19/2006] [Indexed: 02/06/2023]
Abstract
Loss of intestinal mucosa integrity is an important factor in the pathogenesis of inflammatory bowel disease (IBD). The aim of this study was to characterize expression changes and allelic variants of genes related to intestinal epithelial barrier function in this disease. Therefore, ileal and colonic mucosal biopsies from nonaffected regions of patients with ulcerative colitis (UC) and Crohn's disease (CD), as well as non-IBD probands, were subjected to Affymetrix DNA-microarray analysis. Real-time reverse transcription polymerase chain reaction was used for verification in larger IBD sample numbers. Disturbed mRNA expression was identified for several mucin genes in both disease groups and tissues. A significant downregulation in the colon was obtained for MUC2 in CD and MUC12 in CD and UC. Expression analysis of all dysregulated mucins in a broad human tissue panel revealed dominant epithelial tissue-specific transcription. In silico analysis of the regulatory regions of these mucins indicated nuclear factor kappaB (NFkappaB) binding sites in each promoter. Furthermore, NFkappaB was overrepresented in mucin promoters and a component of a specific combination of transcription factors (composite module). In vivo stimulation experiments in the adenocarcinoma cell line LS174T showed inducible mucin expression by the cytokines tumor necrosis factor-alpha and transforming growth factor-beta, which could be blocked by NFkappaB signaling inhibitors. Allelic discrimination screening obtained statistically significant associations for the MUC2-V116M (P = 0.003) polymorphism with CD and for MUC4-A585S (P = 0.025), as well as MUC13-R502S (P = 0.0003) with UC. These data suggest that the disturbed expression of mucin genes and the connection to the NFkappaB pathway may influence the integrity of the intestine and therefore contribute to the pathophysiology of IBD.
Collapse
Affiliation(s)
- Christoph Moehle
- Institut für Klinische Chemie und Laboratoriumsmedizin, Universitätsklinikum Regensburg, Franz-Josef-Strauss-Allee 11, 93042, Regensburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Longman RJ, Poulsom R, Corfield AP, Warren BF, Wright NA, Thomas MG. Alterations in the composition of the supramucosal defense barrier in relation to disease severity of ulcerative colitis. J Histochem Cytochem 2006; 54:1335-48. [PMID: 16924127 PMCID: PMC3958115 DOI: 10.1369/jhc.5a6904.2006] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mucin glycoproteins and trefoil peptides play an important role in protection and repair of the gastrointestinal epithelium. This study investigates alterations in mucin and trefoil peptide gene expression and product localization in ulcerative colitis (UC). Product localization and message expression of mucin MUC1 to 6 and trefoil peptide TFF1 to 3 genes was analyzed in rectosigmoid tissue from a cohort of patients with active UC and compared with that of normal colorectal mucosa. MUC1 expression was upregulated in severe UC at the site of rupture of crypt abscesses. Reduction in MUC2 expression occurred in UC adjacent to ulceration. No alteration in MUC3 or MUC4 gene expression was detectable in UC compared with normal colorectal mucosa. No ectopic expression of MUC5AC, MUC5B, or MUC6 was identified in UC. Ectopic TFF1 expression was identified in tissues eliciting histological features of severe disease. Decreased TFF3 localization was demonstrated in UC tissues, but no TFF2 expression was detected in any colorectal specimens. Subtle alterations in composition of the supramucosal defense barrier exist in UC and vary in relation to clinical severity of disease. There is upregulation in mucin MUC1 at crypt abscesses and neo-expression of TFF1 trefoil peptide in severe disease.
Collapse
Affiliation(s)
- Rob J Longman
- University Department of Surgery, Bristol Royal Infirmary, Bristol, United Kingdom.
| | | | | | | | | | | |
Collapse
|
36
|
Rousseau K, Vinall LE, Butterworth SL, Hardy RJ, Holloway J, Wadsworth MEJ, Swallow DM. MUC7 haplotype analysis: results from a longitudinal birth cohort support protective effect of the MUC7*5 allele on respiratory function. Ann Hum Genet 2006; 70:417-27. [PMID: 16759176 DOI: 10.1111/j.1469-1809.2006.00250.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mucin MUC7 is a glycoprotein that plays a role in bacterial clearance and has candidacidal activity. There are two common allelic forms with 5 or 6 tandem repeats (TR) of a 23 amino acid motif within the highly glycosylated (mucin) domain. The MUC7*5 allele has previously been shown to be less prevalent in patients with asthma, suggesting a protective role in respiratory function. Here we report the characterisation of other frequent genetic variation within and in the vicinity of the gene MUC7. A total of 26 polymorphisms were identified of which 5 are located in transcribed regions. A subset of 8 polymorphisms was selected to represent the major haplotypes, and allelic association was studied in individuals of Northern European ancestry, including known asthmatics. There was low haplotype diversity and strong association between each of the loci, and the MUC7*5 allele-carrying haplotype remained the one most strongly associated with asthma. Five of these polymorphisms have also been tested in the 1946 longitudinal birth cohort, for whom developmental, environmental and respiratory health data are available. We show that the haplotype carrying MUC7*5 is associated with higher FEV1 at 53 years, reduced age-related decline of FEV1, and also reduced incidence of wheeze.
Collapse
Affiliation(s)
- K Rousseau
- The Galton Laboratory, Department of Biology, University College London, Wolfson House, 4 Stephenson Way, London, NW1 2HE, UK
| | | | | | | | | | | | | |
Collapse
|
37
|
Imbert Y, Darling DS, Jumblatt MM, Foulks GN, Couzin EG, Steele PS, Young WW. MUC1 splice variants in human ocular surface tissues: possible differences between dry eye patients and normal controls. Exp Eye Res 2006; 83:493-501. [PMID: 16631167 DOI: 10.1016/j.exer.2006.01.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 01/16/2006] [Accepted: 01/23/2006] [Indexed: 11/28/2022]
Abstract
Mucins are highly glycosylated proteins that are vital to the maintenance of healthy epithelial surfaces including the ocular surface. Mucins act as lubricants, protectants, and mediators of signal transduction. The majority of the O-glycosylation sites on the transmembrane mucin MUC1 are found in a highly polymorphic core region containing a variable number of tandem repeats (VNTR). MUC1 alleles can be divided into size classes that contain small (30-45) or large (60-90) numbers of repeats. Although at least 12 splice variants of MUC1 have been found in other tissues, no splice variants have been reported in human ocular surface tissues. We have used RT-PCR to identify MUC1 splice variants that were then confirmed by sequencing. We here report the presence in some samples of human cornea, conjunctiva, and lacrimal gland of MUC1/B which features canonical splicing between exons 1 and 2 and MUC1/A, a transcript that retains 27bp from the 3' end of intron 1 and is predicted to add 9 amino acids to the MUC1 sequence upstream of the tandem repeat region. Cornea and conjunctiva both contain the MUC1/SEC splice variant that lacks the transmembrane domain and, therefore, results in a soluble, secreted form of MUC1. Cornea and conjunctiva also contain MUC1/Y and MUC1/Z(X) variants that lack the tandem repeat region. Cornea, conjunctiva, and lacrimal gland also contain a previously undescribed MUC1 variant transcript, termed MUC1/YI, that retains 99bp from the 5' end and 27bp from the 3' end of the first intron, resulting in a frame shift and premature stop codon. This transcript is predicted to produce a novel 27 amino acid peptide after signal peptidase cleavage. Analysis of brush cytology samples revealed that the percentage of dry eye patients expressing the MUC1/A variant in the conjunctival epithelium is lower than in normal control donors. Western blotting confirmed that MUC1/A is associated with alleles containing the large size class of tandem repeats. Therefore, we propose that one factor in susceptibility to dry eye disease may be the lengths of the MUC1 VNTR in conjunctival epithelium based on the rationale that longer VNTR provide better lubrication and greater protection of the ocular surface against inflammation.
Collapse
Affiliation(s)
- Yoannis Imbert
- Department of Molecular, Cellular & Craniofacial Biology, School of Dentistry, University of Louisville, 501 S. Preston St., Louisville, KY 40292, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
This review focuses on the role and regulation of mucin glycoproteins (mucins) in airway health and disease. Mucins are highly glycosylated macromolecules (> or =50% carbohydrate, wt/wt). MUC protein backbones are characterized by numerous tandem repeats that contain proline and are high in serine and/or threonine residues, the sites of O-glycosylation. Secretory and membrane-tethered mucins contribute to mucociliary defense, an innate immune defense system that protects the airways against pathogens and environmental toxins. Inflammatory/immune response mediators and the overproduction of mucus characterize chronic airway diseases: asthma, chronic obstructive pulmonary diseases (COPD), or cystic fibrosis (CF). Specific inflammatory/immune response mediators can activate mucin gene regulation and airway remodeling, including goblet cell hyperplasia (GCH). These processes sustain airway mucin overproduction and contribute to airway obstruction by mucus and therefore to the high morbidity and mortality associated with these diseases. Importantly, mucin overproduction and GCH, although linked, are not synonymous and may follow from different signaling and gene regulatory pathways. In section i, structure, expression, and localization of the 18 human MUC genes and MUC gene products having tandem repeat domains and the specificity and application of MUC-specific antibodies that identify mucin gene products in airway tissues, cells, and secretions are overviewed. Mucin overproduction in chronic airway diseases and secretory cell metaplasia in animal model systems are reviewed in section ii and addressed in disease-specific subsections on asthma, COPD, and CF. Information on regulation of mucin genes by inflammatory/immune response mediators is summarized in section iii. In section iv, deficiencies in understanding the functional roles of mucins at the molecular level are identified as areas for further investigations that will impact on airway health and disease. The underlying premise is that understanding the pathways and processes that lead to mucus overproduction in specific airway diseases will allow circumvention or amelioration of these processes.
Collapse
Affiliation(s)
- Mary Callaghan Rose
- Research Center for Genetic Medicine, Room 5700, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010, USA.
| | | |
Collapse
|
39
|
Hoebler C, Gaudier E, De Coppet P, Rival M, Cherbut C. MUC genes are differently expressed during onset and maintenance of inflammation in dextran sodium sulfate-treated mice. Dig Dis Sci 2006; 51:381-9. [PMID: 16534686 DOI: 10.1007/s10620-006-3142-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Accepted: 04/12/2005] [Indexed: 12/13/2022]
Abstract
Colonic mucosal protection is provided by mucous gel, mainly composed of secreted (Muc2) and membrane-bound (Muc1, Muc3, Muc4) mucins. Our aim was to determine the expression profile of secreted and membrane-bound mucins in experimental dextran sulfate sodium (DSS)-induced colitis. Acute colitis was induced in Balb/C mice by oral administration of 1.0% DSS (5 days) and chronic colitis was maintained by subsequent 0.15% DSS treatment (28 days). Clinical symptoms (mortality, weight gain), stool scores, and MPO activity confirmed the inflammatory state in the two phases of colitis. Muc2 gene expression was not modified by colitis, whereas Muc3 gene expression was increased (x2) only in the cecum and the distal colon of mice after acute colitis. Muc1 and Muc4 mRNA levels were more significantly increased in the cecum (x8-10) than in colonic segments (x4) after acute colitis. TFF3 involved in mucosal repair was up-regulated during colitis induction. These results indicate that Muc and TFF3 genes are regulated early in inflammation and suggest that their mRNA levels could be used as early markers of inflammation.
Collapse
Affiliation(s)
- C Hoebler
- Unité des Fonctions Digestives et de Nutrition Humaine, BP 71627, 44316, Nantes Cedex 3, France.
| | | | | | | | | |
Collapse
|
40
|
Khan WI, Collins SM. Immune-mediated alteration in gut physiology and its role in host defence in nematode infection. Parasite Immunol 2005; 26:319-26. [PMID: 15679628 DOI: 10.1111/j.0141-9838.2004.00715.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Activation of the mucosal immune system of the gastrointestinal tract in nematode infection results in altered intestinal physiology, which includes changes in intestinal motility and mucus production. These changes are considered to be under direct immunological control rather than a non-specific consequence of the inflammatory reaction to the infective agent. However, little is known about the immunological basis for the changes in intestinal physiology accompanying nematode infection, or the precise role of these changes in host defence, which remains an important area to explore. In this review we describe the mechanisms by which the immune response to nematode infection influences the changes in two major cells of intestinal physiology, namely smooth muscle and goblet cells, and how these changes in intestinal physiology contribute to the host defence. Data clearly demonstrate that the T helper (Th) 2 type immune response generated by nematode infection plays an important role in the development of infection-induced intestinal muscle hypercontractility and goblet cell hyperplasia and that these immune-mediated changes in intestinal physiology are associated with worm expulsion. These observations strongly suggest that intestinal muscle contractility, goblet cell hyperplasia and worm expulsion share a common immunological basis and may be causally related. These data not only provide insights into host defence in nematode infection in the context of muscle function and goblet cell response, but also have broad implications in elucidating the pathophysiology of a wide range of gastrointestinal disorders associated with altered gut physiology.
Collapse
Affiliation(s)
- W I Khan
- Intestinal Disease Research Program, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| | | |
Collapse
|
41
|
Abstract
Despite all of the advances in our understanding of the pathophysiology of inflammatory bowel disease (IBD), we still do not know its cause. Some of the most recently available data are discussed in this review; however, this field is changing rapidly and it is increasingly becoming accepted that immunogenetics play an important role in the predisposition, modulation and perpetuation of IBD. The role of intestinal milieu, and enteric flora in particular, appears to be of greater significance than previously thought. This complex interplay of genetic, microbial and environmental factors culminates in a sustained activation of the mucosal immune and non-immune response, probably facilitated by defects in the intestinal epithelial barrier and mucosal immune system, resulting in active inflammation and tissue destruction. Under normal situations, the intestinal mucosa is in a state of 'controlled' inflammation regulated by a delicate balance of proinflammatory (tumour necrosis factor [TNF]-alpha, interferon [IFN]-gamma, interleukin [IL]-1, IL-6, IL-12) and anti-inflammatory cytokines (IL-4, IL-10, IL-11). The mucosal immune system is the central effector of intestinal inflammation and injury, with cytokines playing a central role in modulating inflammation. Cytokines may, therefore, be a logical target for IBD therapy using specific cytokine inhibitors. Biotechnology agents targeted against TNF, leukocyte adhesion, T-helper cell (T(h))-1 polarisation, T-cell activation or nuclear factor (NF)-kappaB, and other miscellaneous therapies are being evaluated as potential therapies for IBD. In this context, infliximab is currently the only biologic agent approved for the treatment of inflammatory and fistulising Crohn's disease. Other anti-TNF biologic agents have emerged, including CDP 571, certolizumab pegol (CDP 870), etanercept, onercept and adalimumab. However, ongoing research continues to generate new biologic agents targeted at specific pathogenic mechanisms involved in the inflammatory process. Lymphocyte-endothelial interactions mediated by adhesion molecules are important in leukocyte migration and recruitment to sites of inflammation, and selective blockade of these adhesion molecules is a novel and promising strategy to treat Crohn's disease. Therapeutic agents that inhibit leukocyte trafficking include natalizumab, MLN-02 and alicaforsen (ISIS 2302). Other agents being investigated for the treatment of Crohn's disease include inhibitors of T-cell activation, peroxisome proliferator-activated receptors, proinflammatory cytokine receptors and T(h)1 polarisation, and growth hormone and growth factors. Agents being investigated for treatment of ulcerative colitis include many of those mentioned for Crohn's disease. More controlled clinical trials are currently being conducted, exploring the safety and efficacy of old and new biologic agents, and the search certainly will open new and exciting perspectives on the development of therapies for IBD.
Collapse
Affiliation(s)
- Sandro Ardizzone
- Chair of Gastroenterology, L. Sacco University Hospital, Milan, Italy
| | | |
Collapse
|
42
|
Yamazaki K, Takazoe M, Tanaka T, Ichimori T, Saito S, Iida A, Onouchi Y, Hata A, Nakamura Y. Association analysis of SLC22A4, SLC22A5 and DLG5 in Japanese patients with Crohn disease. J Hum Genet 2004; 49:664-668. [PMID: 15503241 DOI: 10.1007/s10038-004-0204-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Accepted: 09/11/2004] [Indexed: 02/06/2023]
Abstract
Crohn disease (CD) is an inflammatory bowel disease characterized by chronic transmural, segmental, and typically granulomatous inflammation of the gut. Recently, two novel candidate gene loci associated with CD, SLC22A4 and SLC22A5 on chromosome 5 known as IBD5 and DLG5 on chromosome 10, were identified through association analysis of Caucasian CD patients. We validated these candidate genes in Japanese patients with CD and found a weak but possible association with both SLC22A4 (P=0.028) and DLG5 (P=0.023). However, the reported genetic variants that were indicated to be causative in the Caucasian population were completely absent in or were not associated with Japanese CD patients. These findings imply significant differences in genetic background with CD susceptibility among different ethnic groups and further indicate some difficulty of population-based studies.
Collapse
Affiliation(s)
- Keiko Yamazaki
- Laboratory of Molecular Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Masakazu Takazoe
- Department of Medicine, Division of Gastroenterology, Social Insurance Central General Hospital, Tokyo, Japan
| | - Torao Tanaka
- Department of Medicine, Division of Gastroenterology, Social Insurance Central General Hospital, Tokyo, Japan
| | - Toshiki Ichimori
- Department of Medicine, Division of Gastroenterology, Suzaki Kuroshio Hospital, Kouchi, Japan
| | - Susumu Saito
- Laboratory for Genotyping, SNP Research Center, The Institute of Physical and Chemical Research (RIKEN), Kanagawa, Japan
| | - Aritoshi Iida
- Laboratory for Genotyping, SNP Research Center, The Institute of Physical and Chemical Research (RIKEN), Kanagawa, Japan
| | - Yoshihiro Onouchi
- Laboratory for Gastrointestinal Diseases, SNP Research Center, The Institute of Physical and Chemical Research (RIKEN), Kanagawa, Japan
| | - Akira Hata
- Laboratory for Gastrointestinal Diseases, SNP Research Center, The Institute of Physical and Chemical Research (RIKEN), Kanagawa, Japan
| | - Yusuke Nakamura
- Laboratory of Molecular Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
43
|
Bickston SJ, Comerford LW, Cominelli F. Future therapies for inflammatory bowel disease. Curr Gastroenterol Rep 2004; 5:518-23. [PMID: 14602063 DOI: 10.1007/s11894-003-0043-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Three domains are accepted components of the etiology of inflammatory bowel disease (IBD): genetic predisposition, environmental stimuli, and abnormal immune response. The latter two are reasonable targets for medical therapies in the near future, whereas all three merit consideration for the more distant future as techniques of genetic manipulation evolve. In this review we summarize some of the fundamental concepts and offer comments on treatments for IBD that are likely and desirable in the near and distant future.
Collapse
Affiliation(s)
- Stephen J Bickston
- University of Virginia Digestive Health Center of Excellence (UVA-DHCOE), MSB-2nd floor, Room 2121, Charlottesville, VA 22908-0708, USA.
| | | | | |
Collapse
|
44
|
Gazouli M, Zacharatos P, Gorgoulis V, Mantzaris G, Papalambros E, Ikonomopoulos J. The C3435T MDR1 gene polymorphism is not associated with susceptibility for ulcerative colitis in Greek population. Gastroenterology 2004; 126:367-9. [PMID: 14755848 DOI: 10.1053/j.gastro.2003.08.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Maria Gazouli
- Department of Histology-Embryology, School of Medicine, University of Athens, Athens, Greece
| | | | | | | | | | | |
Collapse
|
45
|
Fowler JC, Teixeira AS, Vinall LE, Swallow DM. Hypervariability of the membrane-associated mucin and cancer marker MUC1. Hum Genet 2003; 113:473-9. [PMID: 12942364 DOI: 10.1007/s00439-003-1011-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2003] [Accepted: 07/25/2003] [Indexed: 11/26/2022]
Abstract
The highly heterogeneous epithelial mucins show considerable inter-individual variability attributable to allelic variations in their tandem repeat (TR) peptide domains. Most mucins are known to show variations in repeat number but variation in the sequence of the individual TRs is not as well characterised. Here, we have studied variation in the immunodominant PDTR motif in the TR domain of the membrane-associated "cancer" mucin MUC1 by using the Minisatellite Variant Repeat-Polymerase chain reaction (MVR-PCR) technique. We have fully or partially mapped two nucleotide changes that encode two amino-acid changes, PDTR to PESR, across the arrays of 149 alleles. A total of 103 different maps was obtained when these changes alone were considered and additional variations were also observed. Most maps showed blocks of PDTR repeats interspersed with PESR repeats, although these were possibly more irregular in the longer alleles that also tended to have more PESR repeats. This variability has potential functional consequences and possible implications for some individuals with respect to the efficacy of immune targetting and immune therapy.
Collapse
Affiliation(s)
- Joanna C Fowler
- Galton Laboratory, Department of Biology, Wolfson House, 4 Stephenson Way, London NW12HE, UK
| | | | | | | |
Collapse
|
46
|
Fujii K, Miyashita T, Omata T, Kobayashi K, Takanashi JI, Kouchi K, Yamada M, Kohno Y. Gorlin syndrome with ulcerative colitis in a Japanese girl. Am J Med Genet A 2003; 121A:65-8. [PMID: 12900905 DOI: 10.1002/ajmg.a.20082] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We present the case of a 14-year-old Japanese girl who had both Gorlin syndrome and ulcerative colitis. She had complained of blood stools for 6 months and severe scoliosis from her infancy. Physical examination revealed multiple nevi, palmar and plantar pits, jaw cysts, and calcification of the falx cerebri, leading to the diagnosis of Gorlin syndrome. Total colonoscopy revealed an edematous and spotty bleeding mucosa extending from the anus to the transverse colon. Histological examination was also compatible with ulcerative colitis. Thus, we diagnosed her as having Gorlin syndrome with ulcerative colitis. Gene analysis revealed a mutation, 1247InsT, in the human patched gene (PTCH), resulting in the truncation of PTCH protein. Since Gorlin syndrome and ulcerative colitis are rare disorders in childhood, this association is interesting, suggesting a correlation between the hedgehog signaling and intestinal disorders.
Collapse
Affiliation(s)
- Katsunori Fujii
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Shekels LL, Ho SB. Characterization of the mouse Muc3 membrane bound intestinal mucin 5' coding and promoter regions: regulation by inflammatory cytokines. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1627:90-100. [PMID: 12818427 DOI: 10.1016/s0167-4781(03)00081-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The mouse Muc3 mucin is a membrane-bound glycoprotein highly expressed in the intestinal tract. We have characterized the mouse Muc3 5' structure and regulation of its promoter by cytokines and growth factors. The first two exons of Muc3 are separated by an intron of over 8 kb. Exon 3 contains the tandem repeat domain. Ten exons reside 3' to the tandem repeat domain. The 5' nonrepetitive sequence contains 104 amino acids characterized by a putative signal sequence, a single cysteine and 28% serine/threonine. No TATA box is found near the transcription start site. The promoter has consensus binding sites for AP1, CREB, SP1, NF kappa B, GATA binding protein and Cdx. Muc3 promoter constructs demonstrate that IL4, IL6, EGF or PMA increased promoter activity to 35-58% of control. TNF alpha and IFN gamma showed lesser stimulation. These data indicate that cytokines and growth factors are capable of regulating Muc3 gene expression, suggesting that this protein may play an active role in intestinal mucosal defense.
Collapse
Affiliation(s)
- Laurie L Shekels
- Department of Medicine, University of Minnesota and VA Medical Center, Research 151, 1 Veterans Drive, Minneapolis, MN 55417, USA.
| | | |
Collapse
|
48
|
Yoshida M, Tamura T, Miyasaka K, Shimizu A, Ohashi N, Itoh M. Analysis of numbers of repeated units in R2 region among varicella-zoster virus strains. J Dermatol Sci 2003; 31:129-33. [PMID: 12670723 DOI: 10.1016/s0923-1811(02)00147-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND A variable region, R2, on the varicella-zoster virus (VZV) genome contains a repeated 42-bp unit. OBJECTIVE The purpose of this study is the derivation of significance from tandem reiteration structure in the R2 region. METHODS Fifty-two specimens were collected from 52 patients with herpes zoster in Osaka and Tokyo, Japan. After treatment of the specimens to release viral DNA, the samples were amplified directly by polymerase chain reaction. In addition, 14 samples were collected from 7 of these zoster patients after valaciclovir or aciclovir therapy. RESULTS Analyses of the 52 specimens revealed that the number of repeats ranged from 4 to 13. Interestingly, the numbers of repeats among various VZV strains showed a normal distribution pattern, so that 6-9 repeats were found to be predominant in both Osaka (85%) and Tokyo (72%). The pre- and post-treatment strains taken from the same individuals showed the same numbers of repeats (7-9 in 6 cases and 11 in one). CONCLUSION Our results suggest that the 6-9 repetitions of the 42-bp unit, with presumed stability, may offer these virus strains an advantage in virulence to human skin.
Collapse
Affiliation(s)
- Masami Yoshida
- First Department of Dermatology, Toho University School of Medicine, Omori-nishi 5-21-16, Ota-ku, 143-8540, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
49
|
Schwab M, Schaeffeler E, Marx C, Fromm MF, Kaskas B, Metzler J, Stange E, Herfarth H, Schoelmerich J, Gregor M, Walker S, Cascorbi I, Roots I, Brinkmann U, Zanger UM, Eichelbaum M. Association between the C3435T MDR1 gene polymorphism and susceptibility for ulcerative colitis. Gastroenterology 2003; 124:26-33. [PMID: 12512026 DOI: 10.1053/gast.2003.50010] [Citation(s) in RCA: 219] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS The human multidrug resistance 1 (MDR1) gene product P-glycoprotein is highly expressed in intestinal epithelial cells, where it constitutes a barrier against xenobiotics. The finding that mdr1a knockout mice develop a form of colitis that is similar to ulcerative colitis, which can be prevented by antibiotics, indicates a barrier function for P-glycoprotein against the invasion of bacteria or toxins. Because the MDR1 single nucleotide polymorphism C3435T is associated with lower intestinal P-glycoprotein expression, we tested whether this polymorphism predisposes to development of ulcerative colitis. METHODS Allele frequencies and genotype distributions of the C3435T single nucleotide polymorphism were investigated in 149 patients with ulcerative colitis, 126 patients with Crohn's disease, and sex-matched healthy controls. RESULTS Significantly increased frequencies of the 3435T allele and the 3435TT genotype were observed in patients with ulcerative colitis compared with controls (3435T: P = 0.049; odds ratio, 1.4; 95% confidence interval, 1.02-1.94; 3435TT: P = 0.045; odds ratio, 2.03; 95% confidence interval, 1.04-3.95). In contrast, frequencies of the T allele and the TT genotype were the same in patients with Crohn's disease as in controls (P = 0.66 and P = 0.59, respectively). In comparison to 998 non-sex-matched controls, the effect for the TT genotype in ulcerative colitis patients was more pronounced (P = 0.0055; odds ratio, 2.1). CONCLUSIONS The higher frequency of the 3435TT genotype in patients with ulcerative colitis corroborates the findings from the mdr1a knockout mice. The results support the notion that P-glycoprotein plays a major role in the defense against intestinal bacteria or toxins. Impairment of barrier function in 3435TT subjects could render this genotype more susceptible to the development of ulcerative colitis.
Collapse
Affiliation(s)
- Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstrasse 112, 70376 Stuttgart, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Liévin-Le Moal V, Huet G, Aubert JP, Bara J, Forgue-Lafitte ME, Servin AL, Coconnier MH. Activation of mucin exocytosis and upregulation of MUC genes in polarized human intestinal mucin-secreting cells by the thiol-activated exotoxin listeriolysin O. Cell Microbiol 2002; 4:515-29. [PMID: 12174086 DOI: 10.1046/j.1462-5822.2002.00210.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The secreted thiol-activated cytolysin listeriolysin O (LLO) was responsible for L. monocytogenes-induced high-molecular glycoproteins (HMGs) exocytosis in cultured human mucosecreting HT29-MTX cells. By biochemical analysis we demonstrate that the majority of secreted HMGs in LLO-stimulated cells are of mucin origin. In parallel, analysis of the expression of MUCs genes showed that the transcription of the MUC3, MUC4 and MUC12 genes encoding for membrane-bound mucins was increased in LLO-stimulated cells. Upregulation of the MUC3 gene correlates with an increased expression of the membrane-bound MUC3 mucin. In contrast, increase in secretion of the gel-forming MUC5AC mucin develops without upregulation of the MUC5AC gene. Finally, results showed that NF-kappaB and AP-1 transcription factors were not involved in LLO-induced upregulation of MUCs genes in HT29-MTX cells, whereas L. monocytogenes infection was able to promote the degradation of IkappaB proteins in the cells.
Collapse
Affiliation(s)
- Vanessa Liévin-Le Moal
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 510, Pathogènes et Fonctions des Cellules Epithéliales Polarisées, Faculté de Pharmacie Paris XI, F-92296 Châtenay-Malabry, France
| | | | | | | | | | | | | |
Collapse
|