1
|
Haas B, Roth I, Säcker L, Wos-Maganga M, Beltzig L, Kaina B. Apoptotic and senolytic effects of hERG/Eag1 channel blockers in combination with temozolomide in human glioblastoma cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03955-w. [PMID: 40126672 DOI: 10.1007/s00210-025-03955-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/18/2025] [Indexed: 03/26/2025]
Abstract
Temozolomide (TMZ) concomitant with radiotherapy is the first-line treatment for glioblastoma. However, treatment resistance is frequently observed in patients. Cellular senescence (CSEN) induced by TMZ has been proposed to be one underlying mechanism resulting in resting cells, causing inflammation and possibly recurrences if senescent cells re-enter the cell cycle after treatment. Inhibition of the K+ channels human ether-à-go-go type 1 (Eag1) and human ether-à-go-go-related gene (hERG) has shown promising effects in several tumor types including glioblastoma through growth inhibition and induction of apoptosis. In the present study, we analyzed the impact of hERG/Eag1 inhibition on apoptosis and CSEN on its own and in combination with TMZ in a panel of human glioblastoma cell lines and primary glioblastoma cells. hERG/Eag1 protein expression was determined by Western blotting and immunocytochemistry. Cytotoxicity of astemizole and terfenadine alone or in combination with TMZ was assessed by MTT assays. Apoptotic yields were determined by Annexin V/propidium iodide staining, and CSEN was quantified by determining SA-β-galactosidase levels through flow cytometry. We observed a similar protein expression of hERG and Eag1 in all glioblastoma cell lines and primary glioblastoma cells. Astemizole and terfenadine were cytotoxic in glioblastoma cells at low micromolar concentrations (5-10 µM range) through induction of apoptosis. In combination with TMZ, both drugs synergistically sensitized glioblastoma cells to TMZ-induced apoptosis. Moreover, astemizole reduced significantly the TMZ-induced CSEN level, indicating its impact on CSEN induction. Here, we show for the first time that blocking hERG/Eag1 channels in glioblastoma cells can relief TMZ-induced CSEN and synergistically ameliorates cytotoxicity through the induction of apoptosis.
Collapse
Affiliation(s)
- Bodo Haas
- Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany.
| | - Inken Roth
- Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
- Faculty of Applied Natural Sciences, TH Köln - University of Applied Sciences, Campus Platz 1, 51379, Leverkusen, Germany
| | - Luisa Säcker
- Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
- Faculty of Applied Natural Sciences, TH Köln - University of Applied Sciences, Campus Platz 1, 51379, Leverkusen, Germany
| | - Maria Wos-Maganga
- Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Lea Beltzig
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany
| |
Collapse
|
2
|
Wei AD, Burgraff NJ, Oliveira LM, Moreira TS, Ramirez JM. Fentanyl blockade of K + channels contribute to Wooden Chest Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633656. [PMID: 39868169 PMCID: PMC11761417 DOI: 10.1101/2025.01.17.633656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Fentanyl is a potent synthetic opioid widely used perioperatively and illicitly as a drug of abuse 1,2. It is well established that fentanyl acts as a μ-opioid receptor agonist, signaling through Gαi/o intracellular pathways to inhibit electrical excitability, resulting in analgesia and respiratory depression 3,4. However, fentanyl uniquely also triggers muscle rigidity, including respiratory muscles, hindering the ability to execute central respiratory commands or to receive external resuscitation. This potentially lethal condition is termed Wooden Chest Syndrome (WCS), the mechanisms of which are poorly understood 5-7. Here we show that fentanyl directly blocks a subset of EAG-class potassium channels 8. Our results also demonstrate that these channels are widely expressed in cervical spinal motoneurons, including those innervating the diaphragm. A significant fraction of these motoneurons is excited by fentanyl, concomitant with blockade of voltage-dependent non-inactivating K+ currents. In vivo electromyography revealed a persistent tonic component of diaphragmatic muscle activity elicited by fentanyl, but not morphine. Taken together our results identify a novel off-target mechanism for fentanyl action, independent of μ-opioid receptor activation, with a paradoxical excitatory effect that may underlie WCS. We anticipate these findings may inform the design of safer analgesics and generalize to other neuronal circuits implicated in fentanyl-related maladaptive behaviors.
Collapse
Affiliation(s)
- Aguan D Wei
- Norcliffe Foundation Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Nicholas J Burgraff
- Norcliffe Foundation Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Luiz M Oliveira
- Norcliffe Foundation Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Thiago S Moreira
- Norcliffe Foundation Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Jan-Marino Ramirez
- Norcliffe Foundation Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Neurological Surgery, University of Washington School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Freuville L, Matthys C, Quinton L, Gillet JP. Venom-derived peptides for breaking through the glass ceiling of drug development. Front Chem 2024; 12:1465459. [PMID: 39398192 PMCID: PMC11468230 DOI: 10.3389/fchem.2024.1465459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/04/2024] [Indexed: 10/15/2024] Open
Abstract
Venoms are complex mixtures produced by animals and consist of hundreds of components including small molecules, peptides, and enzymes selected for effectiveness and efficacy over millions of years of evolution. With the development of venomics, which combines genomics, transcriptomics, and proteomics to study animal venoms and their effects deeply, researchers have identified molecules that selectively and effectively act against membrane targets, such as ion channels and G protein-coupled receptors. Due to their remarkable physico-chemical properties, these molecules represent a credible source of new lead compounds. Today, not less than 11 approved venom-derived drugs are on the market. In this review, we aimed to highlight the advances in the use of venom peptides in the treatment of diseases such as neurological disorders, cardiovascular diseases, or cancer. We report on the origin and activity of the peptides already approved and provide a comprehensive overview of those still in development.
Collapse
Affiliation(s)
- Lou Freuville
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Chloé Matthys
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| | - Loïc Quinton
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Jean-Pierre Gillet
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| |
Collapse
|
4
|
Singh V, Auerbach DS. Neurocardiac pathologies associated with potassium channelopathies. Epilepsia 2024; 65:2537-2552. [PMID: 39087855 DOI: 10.1111/epi.18066] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024]
Abstract
Voltage-gated potassium channels are expressed throughout the human body and are essential for physiological functions. These include delayed rectifiers, A-type channels, outward rectifiers, and inward rectifiers. They impact electrical function in the heart (repolarization) and brain (repolarization and stabilization of the resting membrane potential). KCNQx and KCNHx encode Kv7.x and Kv11.x proteins, which form delayed rectifier potassium channels. KCNQx and KCNHx channelopathies are associated with both cardiac and neuronal pathologies. These include electrocardiographic abnormalities, cardiac arrhythmias, sudden cardiac death (SCD), epileptiform discharges, seizures, bipolar disorder, and sudden unexpected death in epilepsy (SUDEP). Due to the ubiquitous expression of KCNQx and KCNHx channels, abnormalities in their function can be particularly harmful, increasing the risk of sudden death. For example, KCNH2 variants have a dual role in both cardiac and neuronal pathologies, whereas KCNQ2 and KCNQ3 variants are associated with severe and refractory epilepsy. Recurrent and uncontrolled seizures lead to secondary abnormalities, which include autonomics, cardiac electrical function, respiratory drive, and neuronal electrical activity. Even with a wide array of anti-seizure therapies available on the market, one-third of the more than 70 million people worldwide with epilepsy have uncontrolled seizures (i.e., intractable/drug-resistant epilepsy), which negatively impact neurodevelopment and quality of life. To capture the current state of the field, this review examines KCNQx and KCNHx expression patterns and electrical function in the brain and heart. In addition, it discusses several KCNQx and KCNHx variants that have been clinically and electrophysiologically characterized. Because these channel variants are associated with multi-system pathologies, such as epileptogenesis, Kv7 channel modulators provide a potential anti-seizure therapy, particularly for people with intractable epilepsy. Ultimately an increased understanding of the role of Kv channels throughout the body will fuel the development of innovative, safe, and effective therapies for people at a high risk of sudden death (SCD and SUDEP).
Collapse
Affiliation(s)
- Veronica Singh
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - David S Auerbach
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
5
|
Rao R, Mohammed C, Alschuler L, Pomeranz Krummel DA, Sengupta S. Phytochemical Modulation of Ion Channels in Oncologic Symptomatology and Treatment. Cancers (Basel) 2024; 16:1786. [PMID: 38730738 PMCID: PMC11083444 DOI: 10.3390/cancers16091786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/24/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024] Open
Abstract
Modern chemotherapies offer a broad approach to cancer treatment but eliminate both cancer and non-cancer cells indiscriminately and, thus, are associated with a host of side effects. Advances in precision oncology have brought about new targeted therapeutics, albeit mostly limited to a subset of patients with an actionable mutation. They too come with side effects and, ultimately, 'self-resistance' to the treatment. There is recent interest in the modulation of ion channels, transmembrane proteins that regulate the flow of electrically charged molecules in and out of cells, as an approach to aid treatment of cancer. Phytochemicals have been shown to act on ion channels with high specificity regardless of the tumor's genetic profile. This paper explores the use of phytochemicals in cancer symptom management and treatment.
Collapse
Affiliation(s)
- Rohan Rao
- Department of Neurology & Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Caroline Mohammed
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Lise Alschuler
- Andrew Weil Center for Integrative Medicine, University of Arizona College of Medicine, Tucson, AZ 85719, USA
| | - Daniel A. Pomeranz Krummel
- Department of Neurosurgery, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Soma Sengupta
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Department of Neurosurgery, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Zavarzina II, Kuzmenkov AI, Dobrokhotov NA, Maleeva EE, Korolkova YV, Peigneur S, Tytgat J, Krylov NA, Vassilevski AA, Chugunov AO. The scorpion toxin BeKm-1 blocks hERG cardiac potassium channels using an indispensable arginine residue. FEBS Lett 2024; 598:889-901. [PMID: 38563123 DOI: 10.1002/1873-3468.14850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024]
Abstract
BeKm-1 is a peptide toxin from scorpion venom that blocks the pore of the potassium channel hERG (Kv11.1) in the human heart. Although individual protein structures have been resolved, the structure of the complex between hERG and BeKm-1 is unknown. Here, we used molecular dynamics and ensemble docking, guided by previous double-mutant cycle analysis data, to obtain an in silico model of the hERG-BeKm-1 complex. Adding to the previous mutagenesis study of BeKm-1, our model uncovers the key role of residue Arg20, which forms three interactions (a salt bridge and hydrogen bonds) with the channel vestibule simultaneously. Replacement of this residue even by lysine weakens the interactions significantly. In accordance, the recombinantly produced BeKm-1R20K mutant exhibited dramatically decreased activity on hERG. Our model may be useful for future drug design attempts.
Collapse
Affiliation(s)
- Iana I Zavarzina
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | | | - Nikita A Dobrokhotov
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | | | | | | | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, Belgium
| | - Nikolay A Krylov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Alexander A Vassilevski
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Anton O Chugunov
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| |
Collapse
|
7
|
Ma B, Shi S, Guo W, Zhang H, Zhao Z, An H. Liensinine, a Novel and Food-Derived Compound, Exerts Potent Antihepatoma Efficacy via Inhibiting the Kv10.1 Channel. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4689-4702. [PMID: 38382537 DOI: 10.1021/acs.jafc.3c06142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Plant metabolites from natural product extracts offer unique advantages against carcinogenesis in the development of drugs. The target-based virtual screening from food-derived compounds represents a promising approach for tumor therapy. In this study, we performed virtual screening to target the presumed inhibitor-binding pocket and identified a highly potent Kv10.1 inhibitor, liensinine (Lien), which can inhibit the channel in a dose-dependent way with an IC50 of 0.24 ± 0.07 μM. Combining molecular dynamics simulations with mutagenesis experiments, our data show that Lien interacts with Kv10.1 by binding with Y539, T543, D551, E553, and H601 in the C-linker domain of Kv10.1. In addition, the interaction of sequence alignment and 3D structural modeling revealed differences between the C-linker domain of the Kv10.1 channel and the Kv11.1 channel. Furthermore, antitumor experiments revealed that Lien suppresses the proliferation and migration of HCC both in vitro and in vivo. In summary, the food-derived compound, Lien, may serve as a lead compound for antihepatoma therapeutic drugs targeting Kv10.1.
Collapse
Affiliation(s)
- Biao Ma
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China
- Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300401, China
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Sai Shi
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Wei Guo
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Hailin Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Zhen Zhao
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Hailong An
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China
- Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300401, China
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
8
|
Gomez-Lagunas F, Barriga-Montoya C, Pardo JP. State-independent inhibition of the oncogenic Kv10.1 channel by desethylamiodarone, a comparison with amiodarone. Pflugers Arch 2024; 476:323-335. [PMID: 38063872 PMCID: PMC10847070 DOI: 10.1007/s00424-023-02893-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/28/2023] [Accepted: 11/24/2023] [Indexed: 02/08/2024]
Abstract
Kv10.1 is a voltage-dependent K channel whose ectopic expression is associated with several human cancers. Additionally, Kv10.1 has structure-function properties which are not yet well understood. We are using drugs of clinical importance in an attempt to gain insight on the relationship between pharmacology and characteristic functional properties of this channel. Herein, we report the interaction of desethylamiodarone (desAd), the active metabolic product of the antiarrhythmic amiodarone with Kv10.1: desAd binds to both closed and open channels, with most inhibition taking place from the open state, with affinity ~ 5 times smaller than that of amiodarone. Current inhibition by desAd and amiodarone is not synergistic. Upon repolarization desAd becomes trapped in Kv10.1 and thereafter dissociates slowly from closed-and-blocked channels. The addition of the Cole-Moore shift plus desAd open-pore-block time courses yields an increasing phase on the steady-state inhibition curve (H∞) at hyperpolarized holding potentials. In contrast to amiodarone, desAd does not inhibit the Kv10.1 Cole-Moore shift, suggesting that a relevant hydrophobic interaction between amiodarone and Kv10.1 participates in the inhibition of the Cole-Moore shift, which is lost with desAd.
Collapse
Affiliation(s)
- F Gomez-Lagunas
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City, México.
| | - C Barriga-Montoya
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City, México
| | - J P Pardo
- Department of Biochemistry, School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City, México
| |
Collapse
|
9
|
Jiang X, Zhao K, Sun Y, Song X, Yi C, Xiong T, Wang S, Yu Y, Chen X, Liu R, Yan X, Antos CL. The scale of zebrafish pectoral fin buds is determined by intercellular K+ levels and consequent Ca2+-mediated signaling via retinoic acid regulation of Rcan2 and Kcnk5b. PLoS Biol 2024; 22:e3002565. [PMID: 38527087 PMCID: PMC11018282 DOI: 10.1371/journal.pbio.3002565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 04/15/2024] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
K+ channels regulate morphogens to scale adult fins, but little is known about what regulates the channels and how they control morphogen expression. Using the zebrafish pectoral fin bud as a model for early vertebrate fin/limb development, we found that K+ channels also scale this anatomical structure, and we determined how one K+-leak channel, Kcnk5b, integrates into its developmental program. From FLIM measurements of a Förster Resonance Energy Transfer (FRET)-based K+ sensor, we observed coordinated decreases in intracellular K+ levels during bud growth, and overexpression of K+-leak channels in vivo coordinately increased bud proportions. Retinoic acid, which can enhance fin/limb bud growth, decreased K+ in bud tissues and up-regulated regulator of calcineurin (rcan2). rcan2 overexpression increased bud growth and decreased K+, while CRISPR-Cas9 targeting of rcan2 decreased growth and increased K+. We observed similar results in the adult caudal fins. Moreover, CRISPR targeting of Kcnk5b revealed that Rcan2-mediated growth was dependent on the Kcnk5b. We also found that Kcnk5b enhanced depolarization in fin bud cells via Na+ channels and that this enhanced depolarization was required for Kcnk5b-enhanced growth. Lastly, Kcnk5b-induced shha transcription and bud growth required IP3R-mediated Ca2+ release and CaMKK activity. Thus, we provide a mechanism for how retinoic acid via rcan2 can regulate K+-channel activity to scale a vertebrate appendage via intercellular Ca2+ signaling.
Collapse
Affiliation(s)
- Xiaowen Jiang
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Kun Zhao
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Yi Sun
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Xinyue Song
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Chao Yi
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Tianlong Xiong
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Sen Wang
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Yi Yu
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
- Center for Quantitative Biology, Peking University, Beijing, People’s Republic of China
| | - Xiduo Chen
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Run Liu
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Xin Yan
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Christopher L. Antos
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
- Institut für Pharmakologie und Toxikologie, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
10
|
Sharma KR, Colvis CM, Rodgers GP, Sheeley DM. Illuminating the druggable genome: Pathways to progress. Drug Discov Today 2024; 29:103805. [PMID: 37890715 PMCID: PMC10939933 DOI: 10.1016/j.drudis.2023.103805] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
There are ∼4500 genes within the 'druggable genome', the subset of the human genome that expresses proteins able to bind drug-like molecules, yet existing drugs only target a few hundred. A substantial subset of druggable proteins are largely uncharacterized or understudied, with many falling within G protein-coupled receptor (GPCR), ion channel, and kinase protein families. To improve scientific understanding of these three understudied protein families, the US National Institutes of Health launched the Illuminating the Druggable Genome Program. Now, as the program draws to a close, this review will lay out resources developed by the program that are intended to equip the scientific community with the tools necessary to explore previously understudied biology with the potential to rapidly impact human health.
Collapse
Affiliation(s)
- Karlie R Sharma
- National Center for Advancing Translational Sciences, National Institutes of Health, 6701 Democracy Blvd, Bethesda, MD 20892, USA.
| | - Christine M Colvis
- National Center for Advancing Translational Sciences, National Institutes of Health, 6701 Democracy Blvd, Bethesda, MD 20892, USA
| | - Griffin P Rodgers
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Douglas M Sheeley
- Office of Strategic Coordination, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Ghorbani M, Wang ZJ, Chen X, Tiwari PB, Klauda JB, Brelidze TI. Chlorpromazine inhibits EAG1 channels by altering the coupling between the PAS, CNBH and pore domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.23.581826. [PMID: 38464246 PMCID: PMC10925124 DOI: 10.1101/2024.02.23.581826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
EAG1 depolarization-activated potassium selective channels are important targets for treatment of cancer and neurological disorders. EAG1 channels are formed by a tetrameric subunit assembly with each subunit containing an N-terminal Per-Arnt-Sim (PAS) domain and C-terminal cyclic nucleotide-binding homology (CNBH) domain. The PAS and CNBH domains from adjacent subunits interact and form an intracellular tetrameric ring that regulates the EAG1 channel gating, including the movement of the voltage sensor domain (VSD) from closed to open states. Small molecule ligands can inhibit EAG1 channels by binding to their PAS domains. However, the allosteric pathways of this inhibition are not known. Here we show that chlorpromazine, a PAS domain small molecule binder, alters interactions between the PAS and CNBH domains and decreases the coupling between the intracellular tetrameric ring and the pore of the channel, while having little effect on the coupling between the PAS and VSD domains. In addition, chlorpromazine binding to the PAS domain did not alter Cole-Moore shift characteristic of EAG1 channels, further indicating that chlorpromazine has no effect on VSD movement from the deep closed to opened states. Our study provides a framework for understanding global pathways of EAG1 channel regulation by small molecule PAS domain binders.
Collapse
|
12
|
Ma B, Shi S, Ren S, Qu C, Zhao Z, An H. Corydaline binds to a druggable pocket of hEAG1 channel and inhibits hepatic carcinoma cell viability. Eur J Pharmacol 2024; 962:176240. [PMID: 38048981 DOI: 10.1016/j.ejphar.2023.176240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Ether-à-go-go (EAG) potassium channels play a crucial role in the regulation of neuronal excitability and cancer progression, rendering them potential drug targets for cancer therapy. However, the scarcity of information regarding the selection sites on hEAG1 has posed a challenge in the discovery of new hEAG1 inhibitors. In this study, we introduced a novel natural product, corydaline, which selectively inhibits the hEAG1 channel without sensitivity to other KCNH channels. The IC50 of corydaline for the hEAG1 channel was 11.3 ± 0.6 μM, whereas the IC50 for hEAG2 and hERG1 were 73.6 ± 9.9 μM and 111.4 ± 8.5 μM, respectively. Molecular dynamics simulations together with site-directed mutagenesis, have unveiled that the site corydaline forms interactions with Lys217, Phe273, Pro276, Trp295 and Arg366, situated within the intracellular transmembrane segments S1-S4 of the voltage-sensor domain, be considered a novel drug pocket for hEAG1. Additionally, the intergaration of sequence alignment and 3D structural modeling revealed differences between the voltage sensor domain of hEAG1 channel and other EAG channels, suggesting the feasibility of a VSD modulation approach that could potentially lead to the selective inhibition of hEAG1 channels. Furthermore, antitumor experiments demonstrated that corydaline can inhibit the proliferation and migration of hepatic carcinoma cells by targeting hEAG1. The identification of this novel druggable pocket offers the possibility for drug screening against diseases linked to abnormal hEAG1 channels.
Collapse
Affiliation(s)
- Biao Ma
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300401, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin, 300401, China; Key Laboratory of Molecular Biophysics, Hebei Province, China; Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Sai Shi
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Shuxi Ren
- School of Sciences, Hebei University of Technology, Tianjin, 300401, China
| | - Chang Qu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300401, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin, 300401, China; Key Laboratory of Molecular Biophysics, Hebei Province, China; Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Zhen Zhao
- Key Laboratory of Molecular Biophysics, Hebei Province, China; Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Hailong An
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300401, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin, 300401, China; Key Laboratory of Molecular Biophysics, Hebei Province, China; Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
13
|
Durán-Pastén ML, Luis E. Cell-Based Thallium-Influx Fluorescence Assay for Kv10.1 Channels. Methods Mol Biol 2024; 2796:97-103. [PMID: 38856897 DOI: 10.1007/978-1-0716-3818-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The development of cell-based fluorescent assays has resulted in an incredible tool for searching new ion channels' modulators with a biophysical and clinical profile. Among all the ion channels, potassium (K+)-permeable channels represent the most diverse and relevant for cell function, making them attractive targets for drug discovery. Some of the cell-based assays for K+ channels take advantage of a thallium-sensitive dye whose fluorescence increased upon the binding of thallium (Tl+), an ion able to move through K+ channels. We optimize the FLIPR Potassium Assay Kit based on thallium influx to measure the Kv10.1 activity.
Collapse
Affiliation(s)
- María Luisa Durán-Pastén
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
| | - Enoch Luis
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico.
| |
Collapse
|
14
|
Wang ZJ, Ghorbani M, Chen X, Tiwari PB, Klauda JB, Brelidze TI. Molecular mechanism of EAG1 channel inhibition by imipramine binding to the PAS domain. J Biol Chem 2023; 299:105391. [PMID: 37898402 PMCID: PMC10687071 DOI: 10.1016/j.jbc.2023.105391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023] Open
Abstract
Ether-a-go-go (EAG) channels are key regulators of neuronal excitability and tumorigenesis. EAG channels contain an N-terminal Per-Arnt-Sim (PAS) domain that can regulate currents from EAG channels by binding small molecules. The molecular mechanism of this regulation is not clear. Using surface plasmon resonance and electrophysiology we show that a small molecule ligand imipramine can bind to the PAS domain of EAG1 channels and inhibit EAG1 currents via this binding. We further used a combination of molecular dynamics (MD) simulations, electrophysiology, and mutagenesis to investigate the molecular mechanism of EAG1 current inhibition by imipramine binding to the PAS domain. We found that Tyr71, located at the entrance to the PAS domain cavity, serves as a "gatekeeper" limiting access of imipramine to the cavity. MD simulations indicate that the hydrophobic electrostatic profile of the cavity facilitates imipramine binding and in silico mutations of hydrophobic cavity-lining residues to negatively charged glutamates decreased imipramine binding. Probing the PAS domain cavity-lining residues with site-directed mutagenesis, guided by MD simulations, identified D39 and R84 as residues essential for the EAG1 channel inhibition by imipramine binding to the PAS domain. Taken together, our study identified specific residues in the PAS domain that could increase or decrease EAG1 current inhibition by imipramine binding to the PAS domain. These findings should further the understanding of molecular mechanisms of EAG1 channel regulation by ligands and facilitate the development of therapeutic agents targeting these channels.
Collapse
Affiliation(s)
- Ze-Jun Wang
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Mahdi Ghorbani
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland, USA
| | - Xi Chen
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Purushottam B Tiwari
- Department of Oncology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland, USA; Institute for Physical Science and Technology and Biophysics Graduate Program, University of Maryland, College Park, Maryland, USA.
| | - Tinatin I Brelidze
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA.
| |
Collapse
|
15
|
Gómez-Herrera MA, Patlán E, Estrada-Garrido A, Hernández-Cruz A, Luis E. Fluorescent membrane potential assay for drug screening on Kv10.1 channel: identification of BL-1249 as a channel activator. Front Pharmacol 2023; 14:1238503. [PMID: 37554982 PMCID: PMC10404814 DOI: 10.3389/fphar.2023.1238503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/12/2023] [Indexed: 08/10/2023] Open
Abstract
Resting membrane potential is a bioelectric property of all cells. Multiple players govern this property, the ion channels being the most important. Ion channel dysfunction can affect cells' resting membrane potential and could be associated with numerous diseases. Therefore, the drug discovery focus on ion channels has increased yearly. In addition to patch-clamp, cell-based fluorescent assays have shown a rapid and reliable method for searching new ion channel modulators. Here, we used a cell-based membrane potential assay to search for new blockers of the Kv10.1, a potassium channel strongly associated with cancer progression and a promising target in anticancer therapy. We found that fluoxetine and miconazole can inhibit the Kv10.1 channel in the micromolar range. In contrast, BL-1249 potentiates Kv10.1 currents in a dose-dependent manner, becoming the first molecule described as an activator of the channel. These results demonstrate that cell-based membrane potential assay can accelerate the discovery of new Kv10.1 modulators.
Collapse
Affiliation(s)
- Mirsha Aseret Gómez-Herrera
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Enikar Patlán
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Armando Estrada-Garrido
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Universidad Tecnológica de México (UNITEC)—Campus Ecatepec, Estado de México, Mexico
| | - Arturo Hernández-Cruz
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Enoch Luis
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Cátedras CONAHCYT—Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
16
|
Martínez-Hernández L, López-Vera E, Aguilar MB, Rodriguez-Ruiz XC, Ortíz-Arellano MA. κO-SrVIA Conopeptide, a Novel Inhibitor Peptide for Two Members of the Human EAG Potassium Channel Family. Int J Mol Sci 2023; 24:11513. [PMID: 37511269 PMCID: PMC10380377 DOI: 10.3390/ijms241411513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The first conotoxin affecting the voltage-gated potassium channels of the EAG family was identified and characterized from the venom of the vermivorous species Conus spurius from the Gulf of Mexico. This conopeptide, initially named Cs68 and later designated κO-SrVIA, is extremely hydrophobic and comprises 31 amino acid residues, including six Cysteines in the framework VI/VII, and a free C-terminus. It inhibits the currents mediated by two human EAG subtypes, Kv10.1 (IC50 = 1.88 ± 1.08 µM) and Kv11.1 (IC50 = 2.44 ± 1.06 µM), and also the human subtype Kv1.6 (IC50 = 3.6 ± 1.04 µM). Despite its clear effects on potassium channels, it shares a high sequence identity with δ-like-AtVIA and δ-TsVIA. Also, κO-SrVIA is the third conopeptide from the venom of C. spurius with effects on potassium channels, and the seventh conotoxin that blocks Kv1.6 channels.
Collapse
Affiliation(s)
- Luis Martínez-Hernández
- Posgrado en Ciencias Biológicas, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Estuardo López-Vera
- Laboratorio de Toxinología Marina, Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Manuel B. Aguilar
- Laboratorio de Neurofarmacología Marina, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla 76230, Mexico;
| | - Ximena C. Rodriguez-Ruiz
- Laboratorio de Toxinología Marina, Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Mónica A. Ortíz-Arellano
- Laboratorio de Malacología, Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Mazatlán 82000, Mexico;
| |
Collapse
|
17
|
Avila E, Noriega-Mejía BJ, González-Macías J, Cortes-Hernández U, García-Quiroz J, García-Becerra R, Díaz L. The Preventive Role of the Vitamin D Endocrine System in Cervical Cancer. Int J Mol Sci 2023; 24:8665. [PMID: 37240017 PMCID: PMC10218637 DOI: 10.3390/ijms24108665] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Vitamin D along with its active metabolite calcitriol and its metabolic and signaling system, known as the vitamin D endocrine system, have been widely recognized as a pivotal regulator of calcium homeostasis in addition to non-calcemic antitumoral effects in a variety of human cancers, including cervical cancer. Several studies have found an inverse relationship between the incidence of cervical neoplasia and vitamin D levels. This narrative review updates the current evidence supporting the notion that the vitamin D endocrine system has a preventive role on cervical cancer, mainly in the early phases of the disease, acting at the level of suppressing cell proliferation, promoting apoptosis, modulating inflammatory responses, and probably favoring the clearance of human papillomavirus-dependent cervical lesions. Although an optimal vitamin D status helps in the prevention and regression of low-grade squamous intraepithelial lesions of the cervix, it appears that vitamin D alone or combined with chemotherapeutic agents has little effectivity once advanced cervical cancer is established. These observations suggest that an optimal vitamin D status might exert beneficial actions in the early phases of cervical cancer by preventing its onset and progression.
Collapse
Affiliation(s)
- Euclides Avila
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico; (B.J.N.-M.); (J.G.-M.); (U.C.-H.); (J.G.-Q.); (L.D.)
| | - Bryan Javier Noriega-Mejía
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico; (B.J.N.-M.); (J.G.-M.); (U.C.-H.); (J.G.-Q.); (L.D.)
| | - Jocelyn González-Macías
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico; (B.J.N.-M.); (J.G.-M.); (U.C.-H.); (J.G.-Q.); (L.D.)
| | - Ulises Cortes-Hernández
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico; (B.J.N.-M.); (J.G.-M.); (U.C.-H.); (J.G.-Q.); (L.D.)
| | - Janice García-Quiroz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico; (B.J.N.-M.); (J.G.-M.); (U.C.-H.); (J.G.-Q.); (L.D.)
| | - Rocío García-Becerra
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán, Ciudad de México 04510, Mexico;
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico; (B.J.N.-M.); (J.G.-M.); (U.C.-H.); (J.G.-Q.); (L.D.)
| |
Collapse
|
18
|
Zhang M, Shan Y, Pei D. Mechanism underlying delayed rectifying in human voltage-mediated activation Eag2 channel. Nat Commun 2023; 14:1470. [PMID: 36928654 PMCID: PMC10020445 DOI: 10.1038/s41467-023-37204-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
The transmembrane voltage gradient is a general physico-chemical cue that regulates diverse biological function through voltage-gated ion channels. How voltage sensing mediates ion flows remains unknown at the molecular level. Here, we report six conformations of the human Eag2 (hEag2) ranging from closed, pre-open, open, and pore dilation but non-conducting states captured by cryo-electron microscopy (cryo-EM). These multiple states illuminate dynamics of the selectivity filter and ion permeation pathway with delayed rectifier properties and Cole-Moore effect at the atomic level. Mechanistically, a short S4-S5 linker is coupled with the constrict sites to mediate voltage transducing in a non-domain-swapped configuration, resulting transitions for constrict sites of F464 and Q472 from gating to open state stabilizing for voltage energy transduction. Meanwhile, an additional potassium ion occupied at positions S6 confers the delayed rectifier property and Cole-Moore effects. These results provide insight into voltage transducing and potassium current across membrane, and shed light on the long-sought Cole-Moore effects.
Collapse
Affiliation(s)
- Mingfeng Zhang
- Fudan University, 200433, Shanghai, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, 310000, Hangzhou, China
| | - Yuanyue Shan
- Fudan University, 200433, Shanghai, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, 310000, Hangzhou, China
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, 310000, Hangzhou, China.
| |
Collapse
|
19
|
Morán-Zendejas R, Rodríguez-Menchaca AA. The anti-tumor drug 2-hydroxyoleic acid regulates the oncogenic potassium channel Kv10.1. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2023. [DOI: 10.1186/s43088-023-00354-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Abstract
Background
2-hydroxyoleic acid (2OHOA) is a synthetic fatty acid with antitumor properties that alters membrane composition and structure, which in turn influences the functioning of membrane proteins and cell signaling. In this study, we propose a novel antitumoral mechanism of 2OHOA accomplished through the regulation of Kv10.1 channels. We evaluated the effects of 2OHOA on Kv10.1 channels expressed in HEK-293 cells by using electrophysiological techniques and a cell proliferation assay.
Results
2OHOA increased Kv10.1 channel currents in a voltage-dependent manner, shifted its conductance-voltage relationship towards negative potentials, and accelerated its activation kinetics. Moreover, 2OHOA reduced proliferation of cells that exogenously (HEK-293) and endogenously (MCF-7) expressed Kv10.1 channels. It is worth noting that the antiproliferative effect of 2OHOA was maintained in HEK-293 cells expressing a non-conducting mutant of Kv10.1 channel (Kv10.1-F456A), while it did not affect HEK-293 cells not expressing Kv10.1 channels, suggesting that 2OHOA interferes with a non-conducting function of Kv10.1 channels involved in cell proliferation. Finally, we found that 2OHOA can act synergistically with astemizole, a Kv10.1 channel blocker, to decrease cell proliferation more efficiently.
Conclusion
Our data suggest that 2OHOA decreases cell proliferation, at least in part, by regulating Kv10.1 channels.
Collapse
|
20
|
Hsieh CH, Chou CC, Fang YC, Hsu PH, Chiu YH, Yang CS, Jow GM, Tang CY, Jeng CJ. 14-3-3 proteins regulate cullin 7-mediated Eag1 degradation. Cell Biosci 2023; 13:18. [PMID: 36717938 PMCID: PMC9885684 DOI: 10.1186/s13578-023-00969-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Mutations in the human gene encoding the neuron-specific Eag1 (KV10.1; KCNH1) potassium channel are linked to congenital neurodevelopmental diseases. Disease-causing mutant Eag1 channels manifest aberrant gating function and defective protein homeostasis. Both the E3 ubiquitin ligase cullin 7 (Cul7) and the small acid protein 14-3-3 serve as binding partners of Eag1. Cul7 mediates proteasomal and lysosomal degradation of Eag1 protein, whereas over-expression of 14-3-3 notably reduces Eag1 channel activity. It remains unclear whether 14-3-3 may also contribute to Eag1 protein homeostasis. RESULTS In human cell line and native rat neurons, disruptions of endogenous 14-3-3 function with the peptide inhibitor difopein or specific RNA interference up-regulated Eag1 protein level in a transcription-independent manner. Difopein hindered Eag1 protein ubiquitination at the endoplasmic reticulum and the plasma membrane, effectively promoting the stability of both immature and mature Eag1 proteins. Suppression of endogenous 14-3-3 function also reduced excitotoxicity-associated Eag1 degradation in neurons. Difopein diminished Cul7-mediated Eag1 degradation, and Cul7 knock-down abolished the effect of difopein on Eag1. Inhibition of endogenous 14-3-3 function substantially perturbed the interaction of Eag1 with Cul7. Further structural analyses suggested that the intracellular Per-Arnt-Sim (PAS) domain and cyclic nucleotide-binding homology domain (CNBHD) of Eag1 are essential for the regulatory effect of 14-3-3 proteins. Significantly, suppression of endogenous 14-3-3 function reduced Cul7-mediated degradation of disease-associated Eag1 mutant proteins. CONCLUSION Overall these results highlight a chaperone-like role of endogenous 14-3-3 proteins in regulating Eag1 protein homeostasis, as well as a therapeutic potential of 14-3-3 modulators in correcting defective protein expression of disease-causing Eag1 mutants.
Collapse
Affiliation(s)
- Chang-Heng Hsieh
- grid.260539.b0000 0001 2059 7017Institute of Anatomy and Cell Biology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan
| | - Chia-Cheng Chou
- grid.36020.370000 0000 8889 3720National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
| | - Ya-Ching Fang
- grid.260539.b0000 0001 2059 7017Institute of Anatomy and Cell Biology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan ,grid.19188.390000 0004 0546 0241Department of Physiology, College of Medicine, National Taiwan University, Taipei, 100 Taiwan
| | - Po-Hao Hsu
- grid.260539.b0000 0001 2059 7017Institute of Anatomy and Cell Biology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan ,grid.19188.390000 0004 0546 0241Department of Physiology, College of Medicine, National Taiwan University, Taipei, 100 Taiwan
| | - Yi-Hung Chiu
- grid.260539.b0000 0001 2059 7017Institute of Anatomy and Cell Biology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan
| | - Chi-Sheng Yang
- grid.260539.b0000 0001 2059 7017Institute of Anatomy and Cell Biology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan
| | - Guey-Mei Jow
- grid.256105.50000 0004 1937 1063School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Chih-Yung Tang
- grid.19188.390000 0004 0546 0241Department of Physiology, College of Medicine, National Taiwan University, Taipei, 100 Taiwan
| | - Chung-Jiuan Jeng
- grid.260539.b0000 0001 2059 7017Institute of Anatomy and Cell Biology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan ,grid.260539.b0000 0001 2059 7017Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
21
|
Boyle Y, Johns TG, Fletcher EV. Potassium Ion Channels in Malignant Central Nervous System Cancers. Cancers (Basel) 2022; 14:cancers14194767. [PMID: 36230692 PMCID: PMC9563970 DOI: 10.3390/cancers14194767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Malignant central nervous system (CNS) cancers are among the most difficult to treat, with low rates of survival and a high likelihood of recurrence. This is primarily due to their location within the CNS, hindering adequate drug delivery and tumour access via surgery. Furthermore, CNS cancer cells are highly plastic, an adaptive property that enables them to bypass targeted treatment strategies and develop drug resistance. Potassium ion channels have long been implicated in the progression of many cancers due to their integral role in several hallmarks of the disease. Here, we will explore this relationship further, with a focus on malignant CNS cancers, including high-grade glioma (HGG). HGG is the most lethal form of primary brain tumour in adults, with the majority of patient mortality attributed to drug-resistant secondary tumours. Hence, targeting proteins that are integral to cellular plasticity could reduce tumour recurrence, improving survival. This review summarises the role of potassium ion channels in malignant CNS cancers, specifically how they contribute to proliferation, invasion, metastasis, angiogenesis, and plasticity. We will also explore how specific modulation of these proteins may provide a novel way to overcome drug resistance and improve patient outcomes.
Collapse
Affiliation(s)
- Yasmin Boyle
- Telethon Kids Institute, Perth Children’s Hospital, 15 Hospital Ave, Nedlands, Perth, WA 6009, Australia
- School of Biomedicine, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, WA 6009, Australia
- Correspondence:
| | - Terrance G. Johns
- Telethon Kids Institute, Perth Children’s Hospital, 15 Hospital Ave, Nedlands, Perth, WA 6009, Australia
- School of Biomedicine, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, WA 6009, Australia
| | - Emily V. Fletcher
- Telethon Kids Institute, Perth Children’s Hospital, 15 Hospital Ave, Nedlands, Perth, WA 6009, Australia
- School of Biomedicine, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, WA 6009, Australia
| |
Collapse
|
22
|
New Diarylamine K V10.1 Inhibitors and Their Anticancer Potential. Pharmaceutics 2022; 14:pharmaceutics14091963. [PMID: 36145712 PMCID: PMC9501377 DOI: 10.3390/pharmaceutics14091963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Expression of the voltage-gated potassium channel KV10.1 (Eag1) has been detected in over 70% of human cancers, making the channel a promising new target for new anticancer drug discovery. A new structural class of KV10.1 inhibitors was prepared by structural optimisation and exploration of the structure–activity relationship of the previously published hit compound ZVS-08 (1) and its optimised analogue 2. The potency and selectivity of the new inhibitors between KV10.1 and hERG were investigated using whole-cell patch-clamp experiments. We obtained two new optimised KV10.1 inhibitors, 17a and 18b, with improved nanomolar IC50 values of 568 nM and 214 nM, respectively. Compound 17a exhibited better ratio between IC50 values for hEAG1 and hERG than previously published diarylamine inhibitors. Compounds 17a and 18b moderately inhibited the growth of the KV10.1-expressing cell line MCF-7 in two independent assays. In addition, 17a and 18b also inhibited the growth of hERG-expressing Panc-1 cells with higher potency compared with MCF-7 cells. The main obstacle for newly developed diarylamine KV10.1 inhibitors remains the selectivity toward the hERG channel, which needs to be addressed with targeted drug design strategies in the future.
Collapse
|
23
|
Mészáros B, Csoti A, Szanto TG, Telek A, Kovács K, Toth A, Volkó J, Panyi G. The hEag1 K + Channel Inhibitor Astemizole Stimulates Ca 2+ Deposition in SaOS-2 and MG-63 Osteosarcoma Cultures. Int J Mol Sci 2022; 23:ijms231810533. [PMID: 36142445 PMCID: PMC9504018 DOI: 10.3390/ijms231810533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/27/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
The hEag1 (Kv10.1) K+ channel is normally found in the brain, but it is ectopically expressed in tumor cells, including osteosarcoma. Based on the pivotal role of ion channels in osteogenesis, we tested whether pharmacological modulation of hEag1 may affect osteogenic differentiation of osteosarcoma cell lines. Using molecular biology (RT-PCR), electrophysiology (patch-clamp) and pharmacology (astemizole sensitivity, IC50 = 0.135 μM) we demonstrated that SaOS-2 osteosarcoma cells also express hEag1 channels. SaOS-2 cells also express to KCa1.1 K+ channels as shown by mRNA expression and paxilline sensitivity of the current. The inhibition of hEag1 (2 μM astemizole) or KCa1.1 (1 mM TEA) alone did not induce Ca2+ deposition in SaOS-2 cultures, however, these inhibitors, at identical concentrations, increased Ca2+ deposition evoked by the classical or pathological (inorganic phosphate, Pi) induction pathway without causing cytotoxicity, as reported by three completer assays (LDH release, MTT assay and SRB protein assay). We observed a similar effect of astemizole on Ca2+ deposition in MG-63 osteosarcoma cultures as well. We propose that the increase in the osteogenic stimuli-induced mineral matrix formation of osteosarcoma cell lines by inhibiting hEag1 may be a useful tool to drive terminal differentiation of osteosarcoma.
Collapse
Affiliation(s)
- Beáta Mészáros
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Life Science Building, Egyetem Ter 1, H-4032 Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, Life Science Building, Egyetem Ter 1, H-4032 Debrecen, Hungary
| | - Agota Csoti
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Life Science Building, Egyetem Ter 1, H-4032 Debrecen, Hungary
| | - Tibor G. Szanto
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Life Science Building, Egyetem Ter 1, H-4032 Debrecen, Hungary
| | - Andrea Telek
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Life Science Building, Egyetem Ter 1, H-4032 Debrecen, Hungary
| | - Katalin Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Life Science Building, Egyetem Ter 1, H-4032 Debrecen, Hungary
| | - Agnes Toth
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Life Science Building, Egyetem Ter 1, H-4032 Debrecen, Hungary
| | - Julianna Volkó
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Life Science Building, Egyetem Ter 1, H-4032 Debrecen, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Life Science Building, Egyetem Ter 1, H-4032 Debrecen, Hungary
- Correspondence: ; Tel.: +36-52-258603; Fax: +36-52-532201
| |
Collapse
|
24
|
Luis E, Lara Figueroa CO, Durán Pastén ML, Azorín Vega EP. Role of gamma radiation on functional expression of the voltage-gated potassium channel Kv10.1 and its importance in the radiobiological response. Appl Radiat Isot 2022; 187:110331. [DOI: 10.1016/j.apradiso.2022.110331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/02/2022]
|
25
|
Katsuta E, Takabe K, Vujcic M, Gottlieb PA, Dai T, Mercado-Perez A, Beyder A, Wang Q, Opyrchal M. Mechano-Sensing Channel PIEZO2 Enhances Invasive Phenotype in Triple-Negative Breast Cancer. Int J Mol Sci 2022; 23:9909. [PMID: 36077309 PMCID: PMC9455988 DOI: 10.3390/ijms23179909] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Mechanically gated PIEZO channels lead to an influx of cations, activation of additional Ca2+ channels, and cell depolarization. This study aimed to investigate PIEZO2's role in breast cancer. METHODS The clinical relevance of PIEZO2 expression in breast cancer patient was analyzed in a publicly available dataset. Utilizing PIEZO2 overexpressed breast cancer cells, and in vitro and in vivo experiments were conducted. RESULTS High expression of PIEZO2 was correlated with a worse survival in triple-negative breast cancer (TNBC) but not in other subtypes. Increased PEIZO2 channel function was confirmed in PIEZO2 overexpressed cells after mechanical stimulation. PIEZO2 overexpressed cells showed increased motility and invasive phenotypes as well as higher expression of SNAIL and Vimentin and lower expression of E-cadherin in TNBC cells. Correspondingly, high expression of PIEZO2 was correlated with the increased expression of epithelial-mesenchymal transition (EMT)-related genes in a TNBC patient. Activated Akt signaling was observed in PIEZO2 overexpressed TNBC cells. PIEZO2 overexpressed MDA-MB-231 cells formed a significantly higher number of lung metastases after orthotopic implantation. CONCLUSION PIEZO2 activation led to enhanced SNAIL stabilization through Akt activation. It enhanced Vimentin and repressed E-cadherin transcription, resulting in increased metastatic potential and poor clinical outcomes in TNBC patients.
Collapse
Affiliation(s)
- Eriko Katsuta
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY 14203, USA
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Surgery, Yokohama City University, Yokohama 236-0004, Japan
- Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
- Department of Breast Surgery, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Marija Vujcic
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Philip A. Gottlieb
- Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Tao Dai
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Arnaldo Mercado-Perez
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Arthur Beyder
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Qingfei Wang
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mateusz Opyrchal
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
26
|
Intracellular hemin is a potent inhibitor of the voltage-gated potassium channel Kv10.1. Sci Rep 2022; 12:14645. [PMID: 36030326 PMCID: PMC9420133 DOI: 10.1038/s41598-022-18975-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/23/2022] [Indexed: 11/08/2022] Open
Abstract
Heme, an iron-protoporphyrin IX complex, is a cofactor bound to various hemoproteins and supports a broad range of functions, such as electron transfer, oxygen transport, signal transduction, and drug metabolism. In recent years, there has been a growing recognition of heme as a non-genomic modulator of ion channel functions. Here, we show that intracellular free heme and hemin modulate human ether à go-go (hEAG1, Kv10.1) voltage-gated potassium channels. Application of hemin to the intracellular side potently inhibits Kv10.1 channels with an IC50 of about 4 nM under ambient and 63 nM under reducing conditions in a weakly voltage-dependent manner, favoring inhibition at resting potential. Functional studies on channel mutants and biochemical analysis of synthetic and recombinant channel fragments identified a heme-binding motif CxHx8H in the C-linker region of the Kv10.1 C terminus, with cysteine 541 and histidines 543 and 552 being important for hemin binding. Binding of hemin to the C linker may induce a conformational constraint that interferes with channel gating. Our results demonstrate that heme and hemin are endogenous modulators of Kv10.1 channels and could be exploited to modulate Kv10.1-mediated cellular functions.
Collapse
|
27
|
Zhao J, Li M, Xu J, Cheng W. The modulation of ion channels in cancer chemo-resistance. Front Oncol 2022; 12:945896. [PMID: 36033489 PMCID: PMC9399684 DOI: 10.3389/fonc.2022.945896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022] Open
Abstract
Ion channels modulate the flow of ions into and out of a cell or intracellular organelle, leading to generation of electrical or chemical signals and regulating ion homeostasis. The abundance of ion channels in the plasma and intracellular membranes are subject to physiological and pathological regulations. Abnormal and dysregulated expressions of many ion channels are found to be linked to cancer and cancer chemo-resistance. Here, we will summarize ion channels distribution in multiple tumors. And the involvement of ion channels in cancer chemo-resistance will be highlighted.
Collapse
|
28
|
Luis E, Anaya-Hernández A, León-Sánchez P, Durán-Pastén ML. The Kv10.1 Channel: A Promising Target in Cancer. Int J Mol Sci 2022; 23:ijms23158458. [PMID: 35955591 PMCID: PMC9369319 DOI: 10.3390/ijms23158458] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/19/2022] Open
Abstract
Carcinogenesis is a multistage process involving the dysregulation of multiple genes, proteins, and pathways that make any normal cell acquire a cancer cell phenotype. Therefore, it is no surprise that numerous ion channels could be involved in this process. Since their discovery and subsequent cloning, ion channels have been established as therapeutic targets in excitable cell pathologies (e.g., cardiac arrhythmias or epilepsy); however, their involvement in non-excitable cell pathologies is relatively recent. Among all ion channels, the voltage-gated potassium channels Kv10.1 have been established as a promising target in cancer treatment due to their high expression in tumoral tissues compared to low levels in healthy tissues.
Collapse
Affiliation(s)
- Enoch Luis
- Cátedras CONACYT—Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, C.U., Ciudad de México 04510, Mexico
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, C.U., Ciudad de México 04510, Mexico; (P.L.-S.); (M.L.D.-P.)
- Correspondence:
| | - Arely Anaya-Hernández
- Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Km. 10.5 Autopista Tlaxcala-San Martín, Tlaxcala 90120, Mexico;
| | - Paulina León-Sánchez
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, C.U., Ciudad de México 04510, Mexico; (P.L.-S.); (M.L.D.-P.)
| | - María Luisa Durán-Pastén
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, C.U., Ciudad de México 04510, Mexico; (P.L.-S.); (M.L.D.-P.)
| |
Collapse
|
29
|
Abstract
Bioelectricity goes far beyond electrical signaling in the nervous system, but this was initially not obvious for me. This article describes the journey from studying the biophysics of ion channels in classical electrically excitable tissues to focusing on the pathogenic roles of the Kv10.1 potassium channel in cancers.
Collapse
Affiliation(s)
- Luis A. Pardo
- Oncophysiology Group, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), Göttingen, Germany
| |
Collapse
|
30
|
Creating a Novel Mathematical Model of the Kv10.1 Ion Channel and Controlling Channel Activity with Nanoelectromechanical Systems. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The use of nanoelectromechanical systems or nanorobots offers a new concept for sensing and controlling subcellular structures, such as ion channels. We present here a novel method for mathematical modeling of ion channels based on control system theory and system identification. We investigated the use of nanoelectromechanical devices to control the activity of ion channels, particularly the activity of the voltage-gated ion channel Kv10.1, an important channel in cancer development and progression. A mathematical model of the dynamic behavior of the selected ion channel Kv10.1 in the Laplace (s) domain was developed, which is given in the representation of a transfer function. In addition, we addressed the possibilities of controlling ion channel activity by nanoelectromechanical devices and nanorobots and finally presented a control algorithm for the Kv10.1 as a control object. A use case demonstrates the potential of a Kv10.1 controlled nanorobot for cancer treatment at a single-cell level.
Collapse
|
31
|
Sheth M, Esfandiari L. Bioelectric Dysregulation in Cancer Initiation, Promotion, and Progression. Front Oncol 2022; 12:846917. [PMID: 35359398 PMCID: PMC8964134 DOI: 10.3389/fonc.2022.846917] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is primarily a disease of dysregulation – both at the genetic level and at the tissue organization level. One way that tissue organization is dysregulated is by changes in the bioelectric regulation of cell signaling pathways. At the basis of bioelectricity lies the cellular membrane potential or Vmem, an intrinsic property associated with any cell. The bioelectric state of cancer cells is different from that of healthy cells, causing a disruption in the cellular signaling pathways. This disruption or dysregulation affects all three processes of carcinogenesis – initiation, promotion, and progression. Another mechanism that facilitates the homeostasis of cell signaling pathways is the production of extracellular vesicles (EVs) by cells. EVs also play a role in carcinogenesis by mediating cellular communication within the tumor microenvironment (TME). Furthermore, the production and release of EVs is altered in cancer. To this end, the change in cell electrical state and in EV production are responsible for the bioelectric dysregulation which occurs during cancer. This paper reviews the bioelectric dysregulation associated with carcinogenesis, including the TME and metastasis. We also look at the major ion channels associated with cancer and current technologies and tools used to detect and manipulate bioelectric properties of cells.
Collapse
Affiliation(s)
- Maulee Sheth
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States
| | - Leyla Esfandiari
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, United States
- *Correspondence: Leyla Esfandiari,
| |
Collapse
|
32
|
Conformation-sensitive antibody reveals an altered cytosolic PAS/CNBh assembly during hERG channel gating. Proc Natl Acad Sci U S A 2021; 118:2108796118. [PMID: 34716268 DOI: 10.1073/pnas.2108796118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/22/2021] [Indexed: 11/18/2022] Open
Abstract
The human ERG (hERG) K+ channel has a crucial function in cardiac repolarization, and mutations or channel block can give rise to long QT syndrome and catastrophic ventricular arrhythmias. The cytosolic assembly formed by the Per-Arnt-Sim (PAS) and cyclic nucleotide binding homology (CNBh) domains is the defining structural feature of hERG and related KCNH channels. However, the molecular role of these two domains in channel gating remains unclear. We have previously shown that single-chain variable fragment (scFv) antibodies can modulate hERG function by binding to the PAS domain. Here, we mapped the scFv2.12 epitope to a site overlapping with the PAS/CNBh domain interface using NMR spectroscopy and mutagenesis and show that scFv binding in vitro and in the cell is incompatible with the PAS interaction with CNBh. By generating a fluorescently labeled scFv2.12, we demonstrate that association with the full-length hERG channel is state dependent. We detect Förster resonance energy transfer (FRET) with scFv2.12 when the channel gate is open but not when it is closed. In addition, state dependence of scFv2.12 FRET signal disappears when the R56Q mutation, known to destabilize the PAS-CNBh interaction, is introduced in the channel. Altogether, these data are consistent with an extensive structural alteration of the PAS/CNBh assembly when the cytosolic gate opens, likely favoring PAS domain dissociation from the CNBh domain.
Collapse
|
33
|
Rodat-Despoix L, Chamlali M, Ouadid-Ahidouch H. Ion channels as key partners of cytoskeleton in cancer disease. Biochim Biophys Acta Rev Cancer 2021; 1876:188627. [PMID: 34520803 DOI: 10.1016/j.bbcan.2021.188627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022]
Abstract
Several processes occur during tumor development including changes in cell morphology, a reorganization of the expression and distribution of the cytoskeleton proteins as well as ion channels. If cytoskeleton proteins and ion channels have been widely investigated in understanding cancer mechanisms, the interaction between these two elements and the identification of the associated signaling pathways are only beginning to emerge. In this review, we summarize the work published over the past 15 years relating to the roles played by ion channels in these mechanisms of reorganization of the cellular morphology, essential to metastatic dissemination, both through the physical interactions with elements of the cytoskeleton and by intracellular signaling pathways involved.
Collapse
Affiliation(s)
- Lise Rodat-Despoix
- Laboratoire de Physiologie Cellulaire et Moléculaire (UR 4667), Université de Picardie Jules Verne, UFR des Sciences, 33 Rue St Leu, 80039 Amiens, France.
| | - Mohamed Chamlali
- Laboratoire de Physiologie Cellulaire et Moléculaire (UR 4667), Université de Picardie Jules Verne, UFR des Sciences, 33 Rue St Leu, 80039 Amiens, France
| | - Halima Ouadid-Ahidouch
- Laboratoire de Physiologie Cellulaire et Moléculaire (UR 4667), Université de Picardie Jules Verne, UFR des Sciences, 33 Rue St Leu, 80039 Amiens, France
| |
Collapse
|
34
|
Potassium and Chloride Ion Channels in Cancer: A Novel Paradigm for Cancer Therapeutics. Rev Physiol Biochem Pharmacol 2021; 183:135-155. [PMID: 34291318 DOI: 10.1007/112_2021_62] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cancer is a collection of diseases caused by specific changes at the genomic level that support cell proliferation indefinitely. Traditionally, ion channels are known to control a variety of cellular processes including electrical signal generation and transmission, secretion, and contraction by controlling ionic gradients. However, recent studies had brought to light important facts on ion channels in cancer biology.In this review we discuss the mechanism linking potassium or chloride ion channel activity to biochemical pathways controlling proliferation in cancer cells and the potential advantages of targeting ion channels as an anticancer therapeutic option.
Collapse
|
35
|
Codding SJ, Johnson AA, Trudeau MC. Gating and regulation of KCNH (ERG, EAG, and ELK) channels by intracellular domains. Channels (Austin) 2021; 14:294-309. [PMID: 32924766 PMCID: PMC7515569 DOI: 10.1080/19336950.2020.1816107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The KCNH family comprises the ERG, EAG, and ELK voltage-activated, potassium-selective channels. Distinct from other K channels, KCNH channels contain unique structural domains, including a PAS (Per-Arnt-Sim) domain in the N-terminal region and a CNBHD (cyclic nucleotide-binding homology domain) in the C-terminal region. The intracellular PAS domains and CNBHDs interact directly and regulate some of the characteristic gating properties of each type of KCNH channel. The PAS-CNBHD interaction regulates slow closing (deactivation) of hERG channels, the kinetics of activation and pre-pulse dependent population of closed states (the Cole-Moore shift) in EAG channels and voltage-dependent potentiation in ELK channels. KCNH channels are all regulated by an intrinsic ligand motif in the C-terminal region which binds to the CNBHD. Here, we focus on some recent advances regarding the PAS-CNBHD interaction and the intrinsic ligand.
Collapse
Affiliation(s)
- Sara J Codding
- Department of Physiology, University of Maryland School of Medicine , Baltimore, MD, USA
| | - Ashley A Johnson
- Department of Physiology, University of Maryland School of Medicine , Baltimore, MD, USA
| | - Matthew C Trudeau
- Department of Physiology, University of Maryland School of Medicine , Baltimore, MD, USA
| |
Collapse
|
36
|
Kamgar-Dayhoff P, Brelidze TI. Multifaceted effect of chlorpromazine in cancer: implications for cancer treatment. Oncotarget 2021; 12:1406-1426. [PMID: 34262651 PMCID: PMC8274723 DOI: 10.18632/oncotarget.28010] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
Since its discovery in 1951, chlorpromazine (CPZ) has been one of the most widely used antipsychotic medications for treating schizophrenia and other psychiatric disorders. In addition to its antipsychotic effect, many studies in the last several decades have found that CPZ has a potent antitumorigenic effect. These studies have shown that CPZ affects a number of molecular oncogenic targets through multiple pathways, including the regulation of cell cycle, cancer growth and metastasis, chemo-resistance and stemness of cancer cells. Here we review studies on molecular mechanisms of CPZ’s action on key proteins involved in cancer, including p53, YAP, Ras protein, ion channels, and MAPKs. We discuss common and overlapping signaling pathways of CPZ’s action, its cancer-type specificity, antitumorigenic effects of CPZ reported in animal models and population studies on the rate of cancer in psychiatric patients. We also discuss the potential benefits and limitations of repurposing CPZ for cancer treatment.
Collapse
Affiliation(s)
- Pareesa Kamgar-Dayhoff
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Tinatin I Brelidze
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D.C., USA
| |
Collapse
|
37
|
Loza-Huerta A, Milo E, Picones A, Hernández-Cruz A, Luis E. Thallium-sensitive fluorescent assay reveals loperamide as a new inhibitor of the potassium channel Kv10.1. Pharmacol Rep 2021; 73:1744-1753. [PMID: 34213738 DOI: 10.1007/s43440-021-00304-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Ion channels have been proposed as therapeutic targets for different types of malignancies. One of the most studied ion channels in cancer is the voltage-gated potassium channel ether-à-go-go 1 or Kv10.1. Various studies have shown that Kv10.1 expression induces the proliferation of several cancer cell lines and in vivo tumor models, while blocking or silencing inhibits proliferation. Kv10.1 is a promising target for drug discovery modulators that could be used in cancer treatment. This work aimed to screen for new Kv10.1 channel modulators using a thallium influx-based assay. METHODS Pharmacological effects of small molecules on Kv10.1 channel activity were studied using a thallium-based fluorescent assay and patch-clamp electrophysiological recordings, both performed in HEK293 stably expressing the human Kv10.1 potassium channel. RESULTS In thallium-sensitive fluorescent assays, we found that the small molecules loperamide and amitriptyline exert a potent inhibition on the activity of the oncogenic potassium channel Kv10.1. These results were confirmed by electrophysiological recordings, which showed that loperamide and amitriptyline decreased the amplitude of Kv10.1 currents in a dose-dependent manner. Both drugs could be promising tools for further studies. CONCLUSIONS Thallium-sensitive fluorescent assay represents a reliable methodological tool for the primary screening of different molecules with potential activity on Kv10.1 channels or other K+ channels.
Collapse
Affiliation(s)
- Arlet Loza-Huerta
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, C.U. 04510, Mexico City, Mexico
| | - Edgar Milo
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, C.U. 04510, Mexico City, Mexico
| | - Arturo Picones
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, C.U. 04510, Mexico City, Mexico
| | - Arturo Hernández-Cruz
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, C.U. 04510, Mexico City, Mexico.,Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, C.U. 04510, Mexico City, Mexico
| | - Enoch Luis
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, C.U. 04510, Mexico City, Mexico. .,Cátedras CONACYT - Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, C.U. 04510, Mexico City, Mexico.
| |
Collapse
|
38
|
Langthaler S, Rienmüller T, Scheruebel S, Pelzmann B, Shrestha N, Zorn-Pauly K, Schreibmayer W, Koff A, Baumgartner C. A549 in-silico 1.0: A first computational model to simulate cell cycle dependent ion current modulation in the human lung adenocarcinoma. PLoS Comput Biol 2021; 17:e1009091. [PMID: 34157016 PMCID: PMC8219159 DOI: 10.1371/journal.pcbi.1009091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/18/2021] [Indexed: 11/18/2022] Open
Abstract
Lung cancer is still a leading cause of death worldwide. In recent years, knowledge has been obtained of the mechanisms modulating ion channel kinetics and thus of cell bioelectric properties, which is promising for oncological biomarkers and targets. The complex interplay of channel expression and its consequences on malignant processes, however, is still insufficiently understood. We here introduce the first approach of an in-silico whole-cell ion current model of a cancer cell, in particular of the A549 human lung adenocarcinoma, including the main functionally expressed ion channels in the plasma membrane as so far known. This hidden Markov-based model represents the electrophysiology behind proliferation of the A549 cell, describing its rhythmic oscillation of the membrane potential able to trigger the transition between cell cycle phases, and it predicts membrane potential changes over the cell cycle provoked by targeted ion channel modulation. This first A549 in-silico cell model opens up a deeper insight and understanding of possible ion channel interactions in tumor development and progression, and is a valuable tool for simulating altered ion channel function in lung cancer electrophysiology.
Collapse
Affiliation(s)
- Sonja Langthaler
- Institute of Health Care Engineering with European Testing Center for Medical Devices, Graz University of Technology, Graz, Austria
| | - Theresa Rienmüller
- Institute of Health Care Engineering with European Testing Center for Medical Devices, Graz University of Technology, Graz, Austria
| | - Susanne Scheruebel
- Research Unit on Ion Channels and Cancer Biology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Brigitte Pelzmann
- Research Unit on Ion Channels and Cancer Biology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Niroj Shrestha
- Research Unit on Ion Channels and Cancer Biology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Klaus Zorn-Pauly
- Research Unit on Ion Channels and Cancer Biology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Wolfgang Schreibmayer
- Research Unit on Ion Channels and Cancer Biology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Andrew Koff
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York City, New York, United States of America
| | - Christian Baumgartner
- Institute of Health Care Engineering with European Testing Center for Medical Devices, Graz University of Technology, Graz, Austria
| |
Collapse
|
39
|
Toplak Ž, Hendrickx LA, Abdelaziz R, Shi X, Peigneur S, Tomašič T, Tytgat J, Peterlin-Mašič L, Pardo LA. Overcoming challenges of HERG potassium channel liability through rational design: Eag1 inhibitors for cancer treatment. Med Res Rev 2021; 42:183-226. [PMID: 33945158 DOI: 10.1002/med.21808] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/18/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022]
Abstract
Two decades of research have proven the relevance of ion channel expression for tumor progression in virtually every indication, and it has become clear that inhibition of specific ion channels will eventually become part of the oncology therapeutic arsenal. However, ion channels play relevant roles in all aspects of physiology, and specificity for the tumor tissue remains a challenge to avoid undesired effects. Eag1 (KV 10.1) is a voltage-gated potassium channel whose expression is very restricted in healthy tissues outside of the brain, while it is overexpressed in 70% of human tumors. Inhibition of Eag1 reduces tumor growth, but the search for potent inhibitors for tumor therapy suffers from the structural similarities with the cardiac HERG channel, a major off-target. Existing inhibitors show low specificity between the two channels, and screenings for Eag1 binders are prone to enrichment in compounds that also bind HERG. Rational drug design requires knowledge of the structure of the target and the understanding of structure-function relationships. Recent studies have shown subtle structural differences between Eag1 and HERG channels with profound functional impact. Thus, although both targets' structure is likely too similar to identify leads that exclusively bind to one of the channels, the structural information combined with the new knowledge of the functional relevance of particular residues or areas suggests the possibility of selective targeting of Eag1 in cancer therapies. Further development of selective Eag1 inhibitors can lead to first-in-class compounds for the treatment of different cancers.
Collapse
Affiliation(s)
- Žan Toplak
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Louise A Hendrickx
- Department of Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| | - Reham Abdelaziz
- AG Oncophysiology, Max-Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Xiaoyi Shi
- AG Oncophysiology, Max-Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Steve Peigneur
- Department of Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| | - Tihomir Tomašič
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Jan Tytgat
- Department of Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| | | | - Luis A Pardo
- AG Oncophysiology, Max-Planck Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
40
|
Vianney YM, Weisz K. First Tandem Repeat of a Potassium Channel KCNN4 Minisatellite Folds into a V-Loop G-Quadruplex Structure. Biochemistry 2021; 60:1337-1346. [PMID: 33844501 DOI: 10.1021/acs.biochem.1c00043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The KCNN4 gene encoding a potassium channel protein whose expression has been correlated with tumor progression was found to comprise a guanine-rich minisatellite region with the ability to form a putative G-quadruplex (G4). Given the suggested regulatory role of G4s in gene expression, G-quadruplex formation for the polymorphic first repeat of the minisatellite was studied by nuclear magnetic resonance spectroscopy. A stable G-quadruplex of a truncated mutant sequence was shown to represent one of several coexisting species of the wild-type sequence. The high-resolution structure features a noncanonical G4 with a broken G-column and a V-shaped loop. The presence of a 3'-flanking thymidine interacting with the lateral loop preceding the V loop seems to be critical for the formation of this G4 topology. On the contrary, an additional 5'-flanking residue disfavored but still allowed folding into the V-loop structure. The latter may therefore serve as a putative therapeutic target in strategies for G4-based modulation of KCNN4 expression.
Collapse
Affiliation(s)
- Yoanes Maria Vianney
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Strasse 4, D-17487 Greifswald, Germany
| | - Klaus Weisz
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Strasse 4, D-17487 Greifswald, Germany
| |
Collapse
|
41
|
Hernández-Meza JM, Mares-Sámano S, Garduño-Juárez R. Insights into the Molecular Inhibition of the Oncogenic Channel K V10.1 by Globular Toxins. J Chem Inf Model 2021; 61:2328-2340. [PMID: 33900765 DOI: 10.1021/acs.jcim.0c01353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Inhibition of the expression of the human ether-à-go-go (hEAG1 or hKV10.1) channel is associated with a dramatic reduction in the growth of several cancerous tumors. The modulation of this channel's activity is a promising target for the development of new anticancer drugs. Although some small molecules have shown inhibitory activity against KV10.1, their lack of specificity has prevented their use in humans. In vitro studies have recently identified a limited number of peptide toxins with proven specificity in their hKV10.1 channel inhibitory effect. These peptide toxins have become desirable candidates to use as lead compounds to design more potent and specific hKV10.1 inhibitors. However, the currently available studies lack the atomic resolution needed to characterize the molecular features that favor their binding to hKV10.1. In this work, we present the first attempt to locate the possible hKV10.1 binding sites of the animal peptide toxins APETx4, Aa1a, Ap1a, and k-hefutoxin 1, all of which described as hKV10.1 inhibitors. Our studies incorporated homology modeling to construct a robust three-dimensional (3D) model of hKV10.1, applied protein docking, and multiscale molecular dynamics techniques to reveal in atomic resolution the toxin-channel interactions. Our approach suggests that some peptide toxins bind in the outer vestibule surrounding the pore of hKV10.1; it also identified the channel residues Met397 and Asp398 as possible anchors that stabilize the binding of the evaluated toxins. Finally, a description of the possible mechanism for inhibition and gating is presented.
Collapse
Affiliation(s)
- Juan M Hernández-Meza
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, México
| | - Sergio Mares-Sámano
- CONACYT - Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, México
| | - Ramón Garduño-Juárez
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, México
| |
Collapse
|
42
|
Hofschröer V, Najder K, Rugi M, Bouazzi R, Cozzolino M, Arcangeli A, Panyi G, Schwab A. Ion Channels Orchestrate Pancreatic Ductal Adenocarcinoma Progression and Therapy. Front Pharmacol 2021; 11:586599. [PMID: 33841132 PMCID: PMC8025202 DOI: 10.3389/fphar.2020.586599] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is a devastating disease with a dismal prognosis. Therapeutic interventions are largely ineffective. A better understanding of the pathophysiology is required. Ion channels contribute substantially to the "hallmarks of cancer." Their expression is dysregulated in cancer, and they are "misused" to drive cancer progression, but the underlying mechanisms are unclear. Ion channels are located in the cell membrane at the interface between the intracellular and extracellular space. They sense and modify the tumor microenvironment which in itself is a driver of PDAC aggressiveness. Ion channels detect, for example, locally altered proton and electrolyte concentrations or mechanical stimuli and transduce signals triggered by these microenvironmental cues through association with intracellular signaling cascades. While these concepts have been firmly established for other cancers, evidence has emerged only recently that ion channels are drivers of PDAC aggressiveness. Particularly, they appear to contribute to two of the characteristic PDAC features: the massive fibrosis of the tumor stroma (desmoplasia) and the efficient immune evasion. Our critical review of the literature clearly shows that there is still a remarkable lack of knowledge with respect to the contribution of ion channels to these two typical PDAC properties. Yet, we can draw parallels from ion channel research in other fibrotic and inflammatory diseases. Evidence is accumulating that pancreatic stellate cells express the same "profibrotic" ion channels. Similarly, it is at least in part known which major ion channels are expressed in those innate and adaptive immune cells that populate the PDAC microenvironment. We explore potential therapeutic avenues derived thereof. Since drugs targeting PDAC-relevant ion channels are already in clinical use, we propose to repurpose those in PDAC. The quest for ion channel targets is both motivated and complicated by the fact that some of the relevant channels, for example, KCa3.1, are functionally expressed in the cancer, stroma, and immune cells. Only in vivo studies will reveal which arm of the balance we should put our weights on when developing channel-targeting PDAC therapies. The time is up to explore the efficacy of ion channel targeting in (transgenic) murine PDAC models before launching clinical trials with repurposed drugs.
Collapse
Affiliation(s)
| | - Karolina Najder
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Micol Rugi
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Rayhana Bouazzi
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Marco Cozzolino
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, Münster, Germany
| |
Collapse
|
43
|
Bachmann M, Li W, Edwards MJ, Ahmad SA, Patel S, Szabo I, Gulbins E. Voltage-Gated Potassium Channels as Regulators of Cell Death. Front Cell Dev Biol 2020; 8:611853. [PMID: 33381507 PMCID: PMC7767978 DOI: 10.3389/fcell.2020.611853] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Ion channels allow the flux of specific ions across biological membranes, thereby determining ion homeostasis within the cells. Voltage-gated potassium-selective ion channels crucially contribute to the setting of the plasma membrane potential, to volume regulation and to the physiologically relevant modulation of intracellular potassium concentration. In turn, these factors affect cell cycle progression, proliferation and apoptosis. The present review summarizes our current knowledge about the involvement of various voltage-gated channels of the Kv family in the above processes and discusses the possibility of their pharmacological targeting in the context of cancer with special emphasis on Kv1.1, Kv1.3, Kv1.5, Kv2.1, Kv10.1, and Kv11.1.
Collapse
Affiliation(s)
- Magdalena Bachmann
- Department of Biology, University of Padova, Padua, Italy.,Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States
| | - Weiwei Li
- Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States
| | - Michael J Edwards
- Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States
| | - Syed A Ahmad
- Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States
| | - Sameer Patel
- Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States
| | - Ildiko Szabo
- Department of Biology, University of Padova, Padua, Italy.,Consiglio Nazionale delle Ricerche Institute of Neuroscience, Padua, Italy
| | - Erich Gulbins
- Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States.,Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
44
|
Schnipper J, Dhennin-Duthille I, Ahidouch A, Ouadid-Ahidouch H. Ion Channel Signature in Healthy Pancreas and Pancreatic Ductal Adenocarcinoma. Front Pharmacol 2020; 11:568993. [PMID: 33178018 PMCID: PMC7596276 DOI: 10.3389/fphar.2020.568993] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth most common cause of cancer-related deaths in United States and Europe. It is predicted that PDAC will become the second leading cause of cancer-related deaths during the next decades. The development of PDAC is not well understood, however, studies have shown that dysregulated exocrine pancreatic fluid secretion can contribute to pathologies of exocrine pancreas, including PDAC. The major roles of healthy exocrine pancreatic tissue are secretion of enzymes and bicarbonate rich fluid, where ion channels participate to fine-tune these biological processes. It is well known that ion channels located in the plasma membrane regulate multiple cellular functions and are involved in the communication between extracellular events and intracellular signaling pathways and can function as signal transducers themselves. Hereby, they contribute to maintain resting membrane potential, electrical signaling in excitable cells, and ion homeostasis. Despite their contribution to basic cellular processes, ion channels are also involved in the malignant transformation from a normal to a malignant phenotype. Aberrant expression and activity of ion channels have an impact on essentially all hallmarks of cancer defined as; uncontrolled proliferation, evasion of apoptosis, sustained angiogenesis and promotion of invasion and migration. Research indicates that certain ion channels are involved in the aberrant tumor growth and metastatic processes of PDAC. The purpose of this review is to summarize the important expression, localization, and function of ion channels in normal exocrine pancreatic tissue and how they are involved in PDAC progression and development. As ion channels are suggested to be potential targets of treatment they are furthermore suggested to be biomarkers of different cancers. Therefore, we describe the importance of ion channels in PDAC as markers of diagnosis and clinical factors.
Collapse
Affiliation(s)
- Julie Schnipper
- Laboratory of Cellular and Molecular Physiology, UR-4667, University of Picardie Jules Verne, Amiens, France
| | - Isabelle Dhennin-Duthille
- Laboratory of Cellular and Molecular Physiology, UR-4667, University of Picardie Jules Verne, Amiens, France
| | - Ahmed Ahidouch
- Laboratory of Cellular and Molecular Physiology, UR-4667, University of Picardie Jules Verne, Amiens, France.,Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Halima Ouadid-Ahidouch
- Laboratory of Cellular and Molecular Physiology, UR-4667, University of Picardie Jules Verne, Amiens, France
| |
Collapse
|
45
|
Ion Channels in Cancer: Orchestrators of Electrical Signaling and Cellular Crosstalk. Rev Physiol Biochem Pharmacol 2020; 183:103-133. [PMID: 32894333 DOI: 10.1007/112_2020_48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ion channels are pore-forming transmembrane proteins that govern ion flux to regulate a myriad of biological processes in development, physiology, and disease. Across various types of cancer, ion channel expression and activity are often dysregulated. We review the contribution of ion channels to multiple stages of tumorigenesis based on data from in vivo model systems. As intertumoral and intratumoral heterogeneities are major obstacles in developing effective therapies, we provide perspectives on how ion channels in tumor cells and their microenvironment represent targetable vulnerabilities in the areas of tumor-stromal cell interactions, cancer neuroscience, and cancer mechanobiology.
Collapse
|
46
|
Capatina AL, Lagos D, Brackenbury WJ. Targeting Ion Channels for Cancer Treatment: Current Progress and Future Challenges. Rev Physiol Biochem Pharmacol 2020; 183:1-43. [PMID: 32865696 DOI: 10.1007/112_2020_46] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ion channels are key regulators of cancer cell pathophysiology. They contribute to a variety of processes such as maintenance of cellular osmolarity and membrane potential, motility (via interactions with the cytoskeleton), invasion, signal transduction, transcriptional activity and cell cycle progression, leading to tumour progression and metastasis. Ion channels thus represent promising targets for cancer therapy. Ion channels are attractive targets because many of them are expressed at the plasma membrane and a broad range of existing inhibitors are already in clinical use for other indications. However, many of the ion channels identified in cancer cells are also active in healthy normal cells, so there is a risk that certain blockers may have off-target effects on normal physiological function. This review describes recent research advances into ion channel inhibitors as anticancer therapeutics. A growing body of evidence suggests that a range of existing and novel Na+, K+, Ca2+ and Cl- channel inhibitors may be effective for suppressing cancer cell proliferation, migration and invasion, as well as enhancing apoptosis, leading to suppression of tumour growth and metastasis, either alone or in combination with standard-of-care therapies. The majority of evidence to date is based on preclinical in vitro and in vivo studies, although there are several examples of ion channel-targeting strategies now reaching early phase clinical trials. Given the strong links between ion channel function and regulation of tumour growth, metastasis and chemotherapy resistance, it is likely that further work in this area will facilitate the development of new therapeutic approaches which will reach the clinic in the future.
Collapse
Affiliation(s)
| | - Dimitris Lagos
- Hull York Medical School, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - William J Brackenbury
- Department of Biology, University of York, York, UK.
- York Biomedical Research Institute, University of York, York, UK.
| |
Collapse
|
47
|
Movsisyan N, Pardo LA. Kv10.1 Regulates Microtubule Dynamics during Mitosis. Cancers (Basel) 2020; 12:cancers12092409. [PMID: 32854244 PMCID: PMC7564071 DOI: 10.3390/cancers12092409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022] Open
Abstract
Kv10.1 (potassium voltage-gated channel subfamily H member 1, known as EAG1 or Ether-à-go-go 1), is a voltage-gated potassium channel, prevailingly expressed in the central nervous system. The aberrant expression of Kv10.1 is detected in over 70% of all human tumor tissues and correlates with poorer prognosis. In peripheral tissues, Kv10.1 is expressed almost exclusively during the G2/M phase of the cell cycle and regulates its progression-downregulation of Kv10.1 extends the duration of the G2/M phase both in cancer and healthy cells. Here, using biochemical and imaging techniques, such as live-cell measurements of microtubule growth and of cytosolic calcium, we elucidate the mechanisms of Kv10.1-mediated regulation at the G2/M phase. We show that Kv10.1 has a dual effect on mitotic microtubule dynamics. Through the functional interaction with ORAI1 (calcium release-activated calcium channel protein 1), it modulates cytosolic calcium oscillations, thereby changing microtubule behavior. The inhibition of either Kv10.1 or ORAI1 stabilizes the microtubules. In contrast, the knockdown of Kv10.1 increases the dynamicity of mitotic microtubules, resulting in a stronger spindle assembly checkpoint, greater mitotic spindle angle, and a decrease in lagging chromosomes. Understanding of Kv10.1-mediated modulation of the microtubule architecture will help to comprehend how cancer tissue benefits from the presence of Kv10.1, and thereby increase the efficacy and safety of Kv10.1-directed therapeutic strategies.
Collapse
|
48
|
New opportunities and challenges of venom-based and bacteria-derived molecules for anticancer targeted therapy. Semin Cancer Biol 2020; 80:356-369. [PMID: 32846203 DOI: 10.1016/j.semcancer.2020.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/14/2020] [Accepted: 08/15/2020] [Indexed: 12/24/2022]
Abstract
Due to advances in detection and treatment of cancer, especially the rise in the targeted therapy, the five-year relative survival rate of all cancers has increased significantly. However, according to the analysis of the survival rate of cancer patients in 2019, the survival rate of most cancers is still less than five years. Therefore, to combat complex cancer and further improve the 5-year survival rate of cancer patients, it is necessary to develop some new anticancer drugs. Because of the adaptive evolution of toxic species for millions of years, the venom sac is a "treasure bank", which has millions of biomolecules with high affinity and stability awaiting further development. Complete utilization of venom-based and bacteria-derived drugs in the market is still staggering because of incomplete understanding regarding their mode of action. In this review, we focused on the currently identified targets for anticancer effects based on venomous and bacterial biomolecules, such as ion channels, membrane non-receptor molecules, integrins, and other related target molecules. This review will serve as the key for exploring the molecular mechanisms behind the anticancer potential of venom-based and bacteria-derived drugs and will also lay the path for the development of anticancer targeted therapy.
Collapse
|
49
|
Böhme I, Schönherr R, Eberle J, Bosserhoff AK. Membrane Transporters and Channels in Melanoma. Rev Physiol Biochem Pharmacol 2020; 181:269-374. [PMID: 32737752 DOI: 10.1007/112_2020_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent research has revealed that ion channels and transporters can be important players in tumor development, progression, and therapy resistance in melanoma. For example, members of the ABC family were shown to support cancer stemness-like features in melanoma cells, while several members of the TRP channel family were reported to act as tumor suppressors.Also, many transporter proteins support tumor cell viability and thus suppress apoptosis induction by anticancer therapy. Due to the high number of ion channels and transporters and the resulting high complexity of the field, progress in understanding is often focused on single molecules and is in total rather slow. In this review, we aim at giving an overview about a broad subset of ion transporters, also illustrating some aspects of the field, which have not been addressed in detail in melanoma. In context with the other chapters in this special issue on "Transportome Malfunctions in the Cancer Spectrum," a comparison between melanoma and these tumors will be possible.
Collapse
Affiliation(s)
- Ines Böhme
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Roland Schönherr
- Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Jürgen Eberle
- Department of Dermatology, Venerology and Allergology, Skin Cancer Center Charité, University Medical Center Charité, Berlin, Germany
| | - Anja Katrin Bosserhoff
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany. .,Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany.
| |
Collapse
|
50
|
Novel Therapeutic Approaches of Ion Channels and Transporters in Cancer. Rev Physiol Biochem Pharmacol 2020; 183:45-101. [PMID: 32715321 DOI: 10.1007/112_2020_28] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The expression and function of many ion channels and transporters in cancer cells display major differences in comparison to those from healthy cells. These differences provide the cancer cells with advantages for tumor development. Accordingly, targeting ion channels and transporters have beneficial anticancer effects including inhibition of cancer cell proliferation, migration, invasion, metastasis, tumor vascularization, and chemotherapy resistance, as well as promoting apoptosis. Some of the molecular mechanisms associating ion channels and transporters with cancer include the participation of oxidative stress, immune response, metabolic pathways, drug synergism, as well as noncanonical functions of ion channels. This diversity of mechanisms offers an exciting possibility to suggest novel and more effective therapeutic approaches to fight cancer. Here, we review and discuss most of the current knowledge suggesting novel therapeutic approaches for cancer therapy targeting ion channels and transporters. The role and regulation of ion channels and transporters in cancer provide a plethora of exceptional opportunities in drug design, as well as novel and promising therapeutic approaches that may be used for the benefit of cancer patients.
Collapse
|