1
|
Rakhmetullina A, Lukasik A, Zielenkiewicz P. An Overview of miRNA and miRNA Target Analysis Tools. Methods Mol Biol 2025; 2900:43-71. [PMID: 40380052 DOI: 10.1007/978-1-0716-4398-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2025]
Abstract
MicroRNA molecules have been shown to play various significant roles in many physiological and pathophysiological processes in living organisms. The tremendous interest in these molecules has led to the significant development and constant release of a number of computational tools useful for basic as well as advanced miRNA-related analyses. These approaches have various constantly evolving utilities, such as detection, target prediction, functional annotation, and many others. In this chapter, we provide an overview of several computational tools useful for broadly defined plant miRNA analysis. We have added to the Tools4miRs new databases that provide extensive information on small noncoding RNA sequences. Additionally, several tools within the platform have been updated, now featuring comprehensive references and accessible links, ensuring users have access to the most recent and relevant research findings.
Collapse
Affiliation(s)
- Aizhan Rakhmetullina
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Lukasik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
- Department of Plant Molecular Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
2
|
Uhrova V, Parova H, Cervinkova Z, Kucera O, Palicka V. Optimal endogenous controls for microRNA analysis of visceral adipose tissue in the NAFLD mouse model. J Biosci 2025; 50:11. [PMID: 40098399 DOI: 10.1007/s12038-025-00492-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/02/2024] [Indexed: 04/22/2025]
Abstract
The selection of proper reference genes and materials is critical in the design of PCR experiments, especially for differential expression studies. In this study, we propose a method to identify robust endogenous control miRNAs in the visceral adipose tissue of C57BL/6J mice with non-alcoholic fatty liver disease induced by alternating Western and control diets. This study outlines a comprehensive methodology for the analysis of microRNA endogenous controls using microfluidic cards in conjunction with miRNA profiling through small RNA sequencing and subsequent validation by quantitative PCR and the RefFinder algorithm. Criteria included were fold change, p-value, reads per million, and gene stability assessment. A set of six putative endogenous microRNAs was identified (miR-331-3p, let-7a-5p, miR-1839-5p, miR-151a-5p, let-7d-5p, and let-7c-5p). Subsequent validation and analysis using the RefFinder algorithm assessed the stability of the selected genes, and a combination of the three most stable endogenous miRNA controls (miR-331-3p, let-7a- 5p, and miR-1839-5p) exhibiting consistent expression patterns with minimal variability was set. Given the absence of universal endogenous controls, individual evaluation of normalizers for each experiment is imperative for accurate miRNA expression measurements. This approach, which combines multiple techniques and assessments, provides a reliable strategy for identifying and validating endogenous controls in miRNA studies.
Collapse
Affiliation(s)
- Veronika Uhrova
- Department of Clinical Biochemistry and Diagnostics, Charles University, Faculty of Medicine in Hradec Kra´love´ and University Hospital Hradec Kra´love´, Hradec Kra´love´, Czech Republic
| | | | | | | | | |
Collapse
|
3
|
Levitis DL, Si J, Ravishankar K, Toborek M, Park M. Identification of Stable Reference miRNAs for miRNA Expression Analysis in Adult Neurogenesis Across Mouse and Human Tissues. Cells 2024; 13:2060. [PMID: 39768152 PMCID: PMC11674497 DOI: 10.3390/cells13242060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Accurate normalization in miRNA studies requires the use of appropriate endogenous controls, which can vary significantly depending on cell types, treatments, and physiological or pathological conditions. This study aimed to identify suitable endogenous miRNA controls for neural progenitor cells (NPCs) and hippocampal tissues, both of which play crucial roles in neurogenesis. Using small RNA sequencing, we identified the most stable miRNAs in primary mouse NPCs and hippocampal tissues and accessed their stability using NormFinder analysis. Six miRNAs-miR-181d-5p, miR-93-5p, miR-103-3p, let-7d-5p, miR-26a-5p, and miR-125a-5p-demonstrated high stability and were evaluated for their suitability as endogenous controls across multiple experimental conditions. All selected miRNAs exhibited consistent expression in the NE-4C mouse cell line but not in ReNcells, a human cell line. For ReNcells, only miR-186-5p, one of the known reference miRNAs tested for comparison, showed stable expression. Notably, miR-103-3p and let-7d-5p were stably expressed in hippocampal tissues from both mouse and human samples but were absent in human brain pericytes, human brain microvascular endothelial cells, and SVG p12 cells, a human fetal glial cell line. This study is the first to identify optimal reference miRNAs for adult neurogenesis in both mouse and human samples, providing reliable options for miRNA normalization and improving the accuracy and reproducibility of miRNA expression analyses in neurogenesis research.
Collapse
Affiliation(s)
- Daniella Liana Levitis
- College of Art and Science, University of Miami, Coral Gables, FL 33124, USA; (D.L.L.); (J.S.); (K.R.)
| | - Julia Si
- College of Art and Science, University of Miami, Coral Gables, FL 33124, USA; (D.L.L.); (J.S.); (K.R.)
| | - Kushal Ravishankar
- College of Art and Science, University of Miami, Coral Gables, FL 33124, USA; (D.L.L.); (J.S.); (K.R.)
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Institute of Physiotherapy and Health Sciences, The Blood-Brain Barrier Research Center, The Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland
| | - Minseon Park
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| |
Collapse
|
4
|
Hegde M, Girisa S, Kunnumakkara AB. A compilation of bioinformatic approaches to identify novel downstream targets for the detection and prophylaxis of cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:75-113. [PMID: 36858743 DOI: 10.1016/bs.apcsb.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The paradigm of cancer genomics has been radically changed by the development in next-generation sequencing (NGS) technologies making it possible to envisage individualized treatment based on tumor and stromal cells genome in a clinical setting within a short timeframe. The abundance of data has led to new avenues for studying coordinated alterations that impair biological processes, which in turn has increased the demand for bioinformatic tools for pathway analysis. While most of this work has been concentrated on optimizing certain algorithms to obtain quicker and more accurate results. Large volumes of these existing algorithm-based data are difficult for the biologists and clinicians to access, download and reanalyze them. In the present study, we have listed the bioinformatics algorithms and user-friendly graphical user interface (GUI) tools that enable code-independent analysis of big data without compromising the quality and time. We have also described the advantages and drawbacks of each of these platforms. Additionally, we emphasize the importance of creating new, more user-friendly solutions to provide better access to open data and talk about relevant problems like data sharing and patient privacy.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India.
| |
Collapse
|
5
|
Ishaq Y, Ikram A, Alzahrani B, Khurshid S. The Role of miRNAs, circRNAs and Their Interactions in Development and Progression of Hepatocellular Carcinoma: An Insilico Approach. Genes (Basel) 2022; 14:genes14010013. [PMID: 36672755 PMCID: PMC9858589 DOI: 10.3390/genes14010013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a type of malignant tumor. miRNAs are noncoding RNAs and their differential expression patterns are observed in HCC-induced by alcoholism, HBV and HCV infections. By acting as a competing endogenous RNA (ceRNA), circRNA regulates the miRNA function, indirectly controlling the gene expression and leading to HCC progression. In the present study, data mining was performed to screen out all miRNAs and circRNA involved in alcohol, HBV or HCV-induced HCC with statistically significant (≤0.05%) expression levels reported in various studies. Further, the interaction of miRNAs and circRNA was also investigated to explore their role in HCC due to various causative agents. Together, these study data provide a deeper understanding of the circRNA-miRNA regulatory mechanisms in HCC. These screened circRNA, miRNA and their interactions can be used as prognostic biomarkers or therapeutic targets for the treatment of HCC.
Collapse
Affiliation(s)
- Yasmeen Ishaq
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore (UOL), Lahore 54000, Pakistan
| | - Aqsa Ikram
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore (UOL), Lahore 54000, Pakistan
- Correspondence:
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, Jouf University, Sakaka 42421, Saudi Arabia
| | - Sana Khurshid
- Department of Molecular Biology, Virtual University of Pakistan, 1-Davis Road, Lahore 54000, Pakistan
| |
Collapse
|
6
|
Jain CK, Srivastava P, Pandey AK, Singh N, Kumar RS. miRNA therapeutics in precision oncology: a natural premium to nurture. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:511-532. [PMID: 36071981 PMCID: PMC9446160 DOI: 10.37349/etat.2022.00098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/02/2022] [Indexed: 11/22/2022] Open
Abstract
The dynamic spectrum of microRNA (miRNA) has grown significantly over the years with its identification and exploration in cancer therapeutics and is currently identified as an important resource for innovative strategies due to its functional behavior for gene regulation and modulation of complex biological networks. The progression of cancer is the consequence of uncontrolled, nonsynchronous procedural faults in the biological system. Diversified and variable cellular response of cancerous cells has always raised challenges in effective cancer therapy. miRNAs, a class of non-coding RNAs (ncRNAs), are the natural genetic gift, responsible to preserve the homeostasis of cell to nurture. The unprecedented significance of endogenous miRNAs has exhibited promising therapeutic potential in cancer therapeutics. Currently, miRNA mimic miR-34, and an antimiR aimed against miR-122 has entered the clinical trials for cancer treatments. This review, highlights the recent breakthroughs, challenges, clinical trials, and advanced delivery vehicles in the administration of miRNA therapies for precision oncology.
Collapse
Affiliation(s)
- Chakresh Kumar Jain
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201307, India
| | - Poornima Srivastava
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201307, India
| | - Amit Kumar Pandey
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Nisha Singh
- Department of Bioinformatics, Gujarat Biotechnology University, Gandhinagar, GIFT city 382355, India
| | - R Suresh Kumar
- Molecular Genetics Lab, Molecular Biology Group, National Institute of Cancer Prevention and Research (ICMR), Noida 201307, India
| |
Collapse
|
7
|
Turning Data to Knowledge: Online Tools, Databases, and Resources in microRNA Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1385:133-160. [DOI: 10.1007/978-3-031-08356-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Chen Y, Wu T, Zhu Z, Huang H, Zhang L, Goel A, Yang M, Wang X. An integrated workflow for biomarker development using microRNAs in extracellular vesicles for cancer precision medicine. Semin Cancer Biol 2021; 74:134-155. [PMID: 33766650 DOI: 10.1016/j.semcancer.2021.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023]
Abstract
EV-miRNAs are microRNA (miRNA) molecules encapsulated in extracellular vesicles (EVs), which play crucial roles in tumor pathogenesis, progression, and metastasis. Recent studies about EV-miRNAs have gained novel insights into cancer biology and have demonstrated a great potential to develop novel liquid biopsy assays for various applications. Notably, compared to conventional liquid biomarkers, EV-miRNAs are more advantageous in representing host-cell molecular architecture and exhibiting higher stability and specificity. Despite various available techniques for EV-miRNA separation, concentration, profiling, and data analysis, a standardized approach for EV-miRNA biomarker development is yet lacking. In this review, we performed a substantial literature review and distilled an integrated workflow encompassing important steps for EV-miRNA biomarker development, including sample collection and EV isolation, EV-miRNA extraction and quantification, high-throughput data preprocessing, biomarker prioritization and model construction, functional analysis, as well as validation. With the rapid growth of "big data", we highlight the importance of efficient mining of high-throughput data for the discovery of EV-miRNA biomarkers and integrating multiple independent datasets for in silico and experimental validations to increase the robustness and reproducibility. Furthermore, as an efficient strategy in systems biology, network inference provides insights into the regulatory mechanisms and can be used to select functionally important EV-miRNAs to refine the biomarker candidates. Despite the encouraging development in the field, a number of challenges still hinder the clinical translation. We finally summarize several common challenges in various biomarker studies and discuss potential opportunities emerging in the related fields.
Collapse
Affiliation(s)
- Yu Chen
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong
| | - Tan Wu
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong
| | - Zhongxu Zhu
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong
| | - Hao Huang
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong
| | - Liang Zhang
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong; Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute, City University of Hong Kong, Shenzhen, Guangdong Province, China
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Mengsu Yang
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong; Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute, City University of Hong Kong, Shenzhen, Guangdong Province, China
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong; Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute, City University of Hong Kong, Shenzhen, Guangdong Province, China.
| |
Collapse
|
9
|
Ali SA, Pastrello C, Kaur N, Peffers MJ, Ormseth MJ, Jurisica I. A Network Biology Approach to Understanding the Tissue-Specific Roles of Non-Coding RNAs in Arthritis. Front Endocrinol (Lausanne) 2021; 12:744747. [PMID: 34803912 PMCID: PMC8595833 DOI: 10.3389/fendo.2021.744747] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/14/2021] [Indexed: 12/31/2022] Open
Abstract
Discovery of non-coding RNAs continues to provide new insights into some of the key molecular drivers of musculoskeletal diseases. Among these, microRNAs have received widespread attention for their roles in osteoarthritis and rheumatoid arthritis. With evidence to suggest that long non-coding RNAs and circular RNAs function as competing endogenous RNAs to sponge microRNAs, the net effect on gene expression in specific disease contexts can be elusive. Studies to date have focused on elucidating individual long non-coding-microRNA-gene target axes and circular RNA-microRNA-gene target axes, with a paucity of data integrating experimentally validated effects of non-coding RNAs. To address this gap, we curated recent studies reporting non-coding RNA axes in chondrocytes from human osteoarthritis and in fibroblast-like synoviocytes from human rheumatoid arthritis. Using an integrative computational biology approach, we then combined the findings into cell- and disease-specific networks for in-depth interpretation. We highlight some challenges to data integration, including non-existent naming conventions and out-of-date databases for non-coding RNAs, and some successes exemplified by the International Molecular Exchange Consortium for protein interactions. In this perspective article, we suggest that data integration is a useful in silico approach for creating non-coding RNA networks in arthritis and prioritizing interactions for further in vitro and in vivo experimentation in translational research.
Collapse
Affiliation(s)
- Shabana Amanda Ali
- Bone and Joint Center, Department of Orthopaedic Surgery, Henry Ford Health System, Detroit, MI, United States
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
- *Correspondence: Shabana Amanda Ali, ; Igor Jurisica,
| | - Chiara Pastrello
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Navdeep Kaur
- Bone and Joint Center, Department of Orthopaedic Surgery, Henry Ford Health System, Detroit, MI, United States
| | - Mandy J. Peffers
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Michelle J. Ormseth
- Department of Research and Development, Veterans Affairs Medical Center, Nashville, TN, United States
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
- *Correspondence: Shabana Amanda Ali, ; Igor Jurisica,
| |
Collapse
|
10
|
Hulstaert E, Morlion A, Levanon K, Vandesompele J, Mestdagh P. Candidate RNA biomarkers in biofluids for early diagnosis of ovarian cancer: A systematic review. Gynecol Oncol 2020; 160:633-642. [PMID: 33257015 DOI: 10.1016/j.ygyno.2020.11.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/14/2020] [Indexed: 12/27/2022]
Abstract
Ovarian cancer is often diagnosed in an advanced stage and is associated with a high mortality rate. It is assumed that early detection of ovarian cancer could improve patient outcomes. Unfortunately, effective screening methods for early diagnosis of ovarian cancer are still lacking. Extracellular RNAs circulating in human biofluids can reliably be measured and are emerging as potential biomarkers in cancer. In this systematic review, we present 75 RNA biomarkers detectable in human biofluids that have been studied for early diagnosis of ovarian cancer. The majority of these markers are microRNAs identified using RT-qPCR or microarrays in blood-based fluids. A handful of studies used RNA-sequencing and explored alternative fluids, such as urine and ascites. Candidate RNA biomarkers that were more abundant in biofluids of ovarian cancer patients compared to controls in at least two independent studies include miR-21, the miR-200 family, miR-205, miR-10a and miR-346. Amongst the markers confirmed to be lower in at least two studies are miR-122, miR-193a, miR-223, miR-126 and miR-106b. While these biomarkers show promising diagnostic potential, further validation is required before implementation in routine clinical care. Challenges related to biomarker validation and reflections on future perspectives to accelerate progress in this field are discussed.
Collapse
Affiliation(s)
- Eva Hulstaert
- Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, Ghent 9000, Belgium; OncoRNALab, Cancer Research Institute Ghent (CRIG), Corneel Heymanslaan 10, Ghent 9000, Belgium; Department of Dermatology, Ghent University Hospital, Corneel Heymanslaan 10, Ghent 9000, Belgium.
| | - Annelien Morlion
- Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, Ghent 9000, Belgium; OncoRNALab, Cancer Research Institute Ghent (CRIG), Corneel Heymanslaan 10, Ghent 9000, Belgium.
| | - Keren Levanon
- Sheba Cancer Research Center, Chaim Sheba Medical Center, Ramat Gan 52621, Israel; Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel.
| | - Jo Vandesompele
- Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, Ghent 9000, Belgium; OncoRNALab, Cancer Research Institute Ghent (CRIG), Corneel Heymanslaan 10, Ghent 9000, Belgium.
| | - Pieter Mestdagh
- Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, Ghent 9000, Belgium; OncoRNALab, Cancer Research Institute Ghent (CRIG), Corneel Heymanslaan 10, Ghent 9000, Belgium.
| |
Collapse
|
11
|
Fromm B, Domanska D, Høye E, Ovchinnikov V, Kang W, Aparicio-Puerta E, Johansen M, Flatmark K, Mathelier A, Hovig E, Hackenberg M, Friedländer MR, Peterson KJ. MirGeneDB 2.0: the metazoan microRNA complement. Nucleic Acids Res 2020; 48:D132-D141. [PMID: 31598695 PMCID: PMC6943042 DOI: 10.1093/nar/gkz885] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/18/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023] Open
Abstract
Small non-coding RNAs have gained substantial attention due to their roles in animal development and human disorders. Among them, microRNAs are special because individual gene sequences are conserved across the animal kingdom. In addition, unique and mechanistically well understood features can clearly distinguish bona fide miRNAs from the myriad other small RNAs generated by cells. However, making this distinction is not a common practice and, thus, not surprisingly, the heterogeneous quality of available miRNA complements has become a major concern in microRNA research. We addressed this by extensively expanding our curated microRNA gene database - MirGeneDB - to 45 organisms, encompassing a wide phylogenetic swath of animal evolution. By consistently annotating and naming 10,899 microRNA genes in these organisms, we show that previous microRNA annotations contained not only many false positives, but surprisingly lacked >2000 bona fide microRNAs. Indeed, curated microRNA complements of closely related organisms are very similar and can be used to reconstruct ancestral miRNA repertoires. MirGeneDB represents a robust platform for microRNA-based research, providing deeper and more significant insights into the biology and evolution of miRNAs as well as biomedical and biomarker research. MirGeneDB is publicly and freely available at http://mirgenedb.org/.
Collapse
Affiliation(s)
- Bastian Fromm
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.,Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Diana Domanska
- Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway.,Department of Pathology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eirik Høye
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Vladimir Ovchinnikov
- School of Life Sciences, Faculty of Health and Life Sciences, University of Nottingham, UK.,Department of Human and Animal Genetics, The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Wenjing Kang
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | - Morten Johansen
- Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Kjersti Flatmark
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Gastroenterological Surgery, The Norwegian Radium Hospital, Oslo University Hospital, Nydalen, Oslo, Norway
| | - Anthony Mathelier
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway.,Department of Cancer Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Michael Hackenberg
- Department of Genetics, Faculty of Sciences, University of Granada, Granada, Spain
| | - Marc R Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Kevin J Peterson
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
12
|
Identification of microRNAs that Regulate the MAPK Pathway in Human Cumulus Cells from PCOS Women with Insulin Resistance. Reprod Sci 2020; 27:833-844. [PMID: 32046427 DOI: 10.1007/s43032-019-00086-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/08/2019] [Indexed: 12/14/2022]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common gynaecological endocrine disorders, and more than 60% of PCOS patients have varying degrees of insulin resistance (IR). The regulatory role of microRNAs (miRNAs) at post-transcriptional levels in human cumulus cells relating to IR in PCOS remains unclear. In this case-control study, 26 PCOS patients with IR (PCOS-IR) and 24 patients without IR (PCOS-control) were enrolled. We determined the differentially expressed miRNA and mRNA using next-generation sequencing technology, and these miRNAs and mRNAs were validated by quantitative real-time polymerase chain reaction (PCR). These miRNA regulating pathways (e.g., MAPK pathway) were analysed by bioinformatics analysis, and the Rap1b was demonstrated to be targeted by miR-612 based on quantitative real-time PCR, western blot and luciferase activity assay. A total of 59 known miRNAs and 617 differentially expressed genes were identified that differentially expressed between PCOS-IR and PCOS-control cumulus cells. Moreover, the potential regulating roles of miRNAs and their targeting genes in pathophysiology of IR and PCOS were analysed by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation, and several key processes were enriched, such as MAPK activity. Furthermore, Rap1b, a regulator of the MAPK pathway, was demonstrated to be suppressed directly by miR-612 in PCOS-IR cumulus cells based on negative expression correlation validation, dual luciferase activity assay and reduction of Rap1b expression after miR-612 mimics transfection. Our results suggested that miRNAs and their targeted pathways in ovarian cumulus cells may play important roles in the aetiology and pathophysiology of PCOS with IR.
Collapse
|
13
|
Bartoszewski R, Sikorski AF. Editorial focus: understanding off-target effects as the key to successful RNAi therapy. Cell Mol Biol Lett 2019; 24:69. [PMID: 31867046 PMCID: PMC6902517 DOI: 10.1186/s11658-019-0196-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/03/2019] [Indexed: 12/21/2022] Open
Abstract
With the first RNA interference (RNAi) drug (ONPATTRO (patisiran)) on the market, we witness the RNAi therapy field reaching a critical turning point, when further improvements in drug candidate design and delivery pipelines should enable fast delivery of novel life changing treatments to patients. Nevertheless, ignoring parallel development of RNAi dedicated in vitro pharmacological profiling aiming to identify undesirable off-target activity may slow down or halt progress in the RNAi field. Since academic research is currently fueling the RNAi development pipeline with new therapeutic options, the objective of this article is to briefly summarize the basics of RNAi therapy, as well as to discuss how to translate basic research into better understanding of related drug candidate safety profiles early in the process.
Collapse
Affiliation(s)
- Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Aleksander F. Sikorski
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
14
|
Manuweera B, Reynolds G, Kahanda I. Computational methods for the ab initio identification of novel microRNA in plants: a systematic review. PeerJ Comput Sci 2019; 5:e233. [PMID: 33816886 PMCID: PMC7924660 DOI: 10.7717/peerj-cs.233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 10/14/2019] [Indexed: 06/12/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) play a vital role as post-transcriptional regulators in gene expression. Experimental determination of miRNA sequence and structure is both expensive and time consuming. The next-generation sequencing revolution, which facilitated the rapid accumulation of biological data has brought biology into the "big data" domain. As such, developing computational methods to predict miRNAs has become an active area of inter-disciplinary research. OBJECTIVE The objective of this systematic review is to focus on the developments of ab initio plant miRNA identification methods over the last decade. DATA SOURCES Five databases were searched for relevant articles, according to a well-defined review protocol. STUDY SELECTION The search results were further filtered using the selection criteria that only included studies on novel plant miRNA identification using machine learning. DATA EXTRACTION Relevant data from each study were extracted in order to carry out an analysis on their methodologies and findings. RESULTS Results depict that in the last decade, there were 20 articles published on novel miRNA identification methods in plants of which only 11 of them were primarily focused on plant microRNA identification. Our findings suggest a need for more stringent plant-focused miRNA identification studies. CONCLUSION Overall, the study accuracies are of a satisfactory level, although they may generate a considerable number of false negatives. In future, attention must be paid to the biological plausibility of computationally identified miRNAs to prevent further propagation of biologically questionable miRNA sequences.
Collapse
Affiliation(s)
- Buwani Manuweera
- Gianforte School of Computing, Montana State University, Bozeman, MT, United States of America
| | - Gillian Reynolds
- Gianforte School of Computing, Montana State University, Bozeman, MT, United States of America
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States of America
| | - Indika Kahanda
- Gianforte School of Computing, Montana State University, Bozeman, MT, United States of America
| |
Collapse
|
15
|
Hernández-Romero IA, Guerra-Calderas L, Salgado-Albarrán M, Maldonado-Huerta T, Soto-Reyes E. The Regulatory Roles of Non-coding RNAs in Angiogenesis and Neovascularization From an Epigenetic Perspective. Front Oncol 2019; 9:1091. [PMID: 31709179 PMCID: PMC6821677 DOI: 10.3389/fonc.2019.01091] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/03/2019] [Indexed: 12/13/2022] Open
Abstract
Angiogenesis is a crucial process for organ morphogenesis and growth during development, and it is especially relevant during the repair of wounded tissue in adults. It is coordinated by an equilibrium of pro- and anti-angiogenic factors; nevertheless, when affected, it promotes several diseases. Lately, a growing body of evidence is indicating that non-coding RNAs (ncRNAs), such as miRNAs, circRNAs, and lncRNAs, play critical roles in angiogenesis. These ncRNAs can act in cis or trans and alter gene transcription by several mechanisms including epigenetic processes. In the following pages, we will discuss the functions of ncRNAs in the regulation of angiogenesis and neovascularization, both in normal and disease contexts, from an epigenetic perspective. Additionally, we will describe the contribution of Next-Generation Sequencing (NGS) techniques to the discovery and understanding of the role of ncRNAs in angiogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Ernesto Soto-Reyes
- Natural Sciences Department, Universidad Autónoma Metropolitana-Cuajimalpa, Mexico City, Mexico
| |
Collapse
|
16
|
Chen L, Heikkinen L, Wang C, Yang Y, Sun H, Wong G. Trends in the development of miRNA bioinformatics tools. Brief Bioinform 2019; 20:1836-1852. [PMID: 29982332 PMCID: PMC7414524 DOI: 10.1093/bib/bby054] [Citation(s) in RCA: 421] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/18/2018] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression via recognition of cognate sequences and interference of transcriptional, translational or epigenetic processes. Bioinformatics tools developed for miRNA study include those for miRNA prediction and discovery, structure, analysis and target prediction. We manually curated 95 review papers and ∼1000 miRNA bioinformatics tools published since 2003. We classified and ranked them based on citation number or PageRank score, and then performed network analysis and text mining (TM) to study the miRNA tools development trends. Five key trends were observed: (1) miRNA identification and target prediction have been hot spots in the past decade; (2) manual curation and TM are the main methods for collecting miRNA knowledge from literature; (3) most early tools are well maintained and widely used; (4) classic machine learning methods retain their utility; however, novel ones have begun to emerge; (5) disease-associated miRNA tools are emerging. Our analysis yields significant insight into the past development and future directions of miRNA tools.
Collapse
Affiliation(s)
- Liang Chen
- Faculty of Health Sciences, University of Macau, Taipa, Macau S.A.R, China
| | - Liisa Heikkinen
- Faculty of Health Sciences, University of Macau, Taipa, Macau S.A.R, China
| | - Changliang Wang
- Faculty of Health Sciences, University of Macau, Taipa, Macau S.A.R, China
| | - Yang Yang
- Faculty of Health Sciences, University of Macau, Taipa, Macau S.A.R, China
| | - Huiyan Sun
- Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Garry Wong
- Faculty of Health Sciences, University of Macau, Taipa, Macau S.A.R, China
| |
Collapse
|
17
|
Abstract
microRNAs are small non-coding RNA molecules playing a central role in gene regulation. miRBase is the standard reference source for analysis and interpretation of experimental studies. However, the richness and complexity of the annotation is often underappreciated by users. Moreover, even for experienced users, the size of the resource can make it difficult to explore annotation to determine features such as species coverage, the impact of specific characteristics and changes between successive releases. A further consideration is that each new miRBase release contains entries that have had limited review and which may subsequently be removed in a future release to ensure the quality of annotation. To aid the miRBase user, we developed a software tool, miRBaseMiner, for investigating miRBase annotation and generating custom annotation sets. We apply the tool to characterize each release from v9.2 to v22 to examine how annotation has changed across releases and highlight some of the annotation features that users should keep in mind when using for miRBase for data analysis. These include: (1) entries with identical or very similar sequences; (2) entries with multiple annotated genome locations; (3) hairpin precursor entries with extremely low-estimated minimum free energy; (4) entries possessing reverse complementary; (5) entries with 3ʹ poly(A) ends. As each of these factors can impact the identification of dysregulated features and subsequent clinical or biological conclusions, miRBaseMiner is a valuable resource for any user using miRBase as a reference source.
Collapse
Affiliation(s)
- Xiangfu Zhong
- Department of Medical Genetics, Oslo University Hospital and University of Oslo , Oslo , Norway
| | - Fatima Heinicke
- Department of Medical Genetics, Oslo University Hospital and University of Oslo , Oslo , Norway
| | - Simon Rayner
- Department of Medical Genetics, Oslo University Hospital and University of Oslo , Oslo , Norway
| |
Collapse
|
18
|
Backes C, Fehlmann T, Kern F, Kehl T, Lenhof HP, Meese E, Keller A. miRCarta: a central repository for collecting miRNA candidates. Nucleic Acids Res 2019; 46:D160-D167. [PMID: 29036653 PMCID: PMC5753177 DOI: 10.1093/nar/gkx851] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/15/2017] [Indexed: 12/20/2022] Open
Abstract
The continuous increase of available biological data as consequence of modern high-throughput technologies poses new challenges for analysis techniques and database applications. Especially for miRNAs, one class of small non-coding RNAs, many algorithms have been developed to predict new candidates from next-generation sequencing data. While the amount of publications describing novel miRNA candidates keeps steadily increasing, the current gold standard database for miRNAs - miRBase - has not been updated since June 2014. As a result, publications describing new miRNA candidates in the last three to five years might have a substantial overlap of candidates without noticing. With miRCarta we implemented a database to collect novel miRNA candidates and augment the information provided by miRBase. In the first stage, miRCarta is thought to be a highly sensitive collection of potential miRNA candidates with a high degree of analysis functionality, annotations and details on each miRNA. We added-besides the full content of the miRBase-12,857 human miRNA precursors to miRCarta. Users can match their own predictions to the entries of miRCarta to reduce potential redundancies in their studies. miRCarta provides the most comprehensive collection of human miRNAs and miRNA candidates to form a basis for further refinement and validation studies. The database is freely accessible at https://mircarta.cs.uni-saarland.de/.
Collapse
Affiliation(s)
- Christina Backes
- Chair for Clinical Bioinformatics, Saarland Informatics Campus, Saarland University, Germany
| | - Tobias Fehlmann
- Chair for Clinical Bioinformatics, Saarland Informatics Campus, Saarland University, Germany
| | - Fabian Kern
- Chair for Clinical Bioinformatics, Saarland Informatics Campus, Saarland University, Germany
| | - Tim Kehl
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, Germany
| | - Hans-Peter Lenhof
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, Germany
| | - Eckart Meese
- Institute for Human Genetics, Medical School, Saarland University, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland Informatics Campus, Saarland University, Germany
| |
Collapse
|
19
|
Ndzi EN, Indu Viswanath AN, Adzemye NG, Tamgue O, Nsongka MV, Nair AS, Nkenfou CN. Upregulated bovine tuberculosis microRNAs Trigger oncogenic pathways: An In silico perception. Int J Mycobacteriol 2019; 8:70-74. [PMID: 30860182 DOI: 10.4103/ijmy.ijmy_9_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background/Objective Although microRNA (miRNA)-directed regulation of bovine tuberculosis (bTB) has already been reported, very little is known about the incited pathways and genes. We profiled bTB-upregulated miRNAs through an in silico methodology. Methods The data of upregulated miRNAs in bTB versus healthy controls were collected and clustered into three groups by their tissue specificity as follows: G1 (mammary gland-specific): bta-miR-146a; G2 (peripheral blood mononuclear cell-specific): bta-miR-155; and G3 (alveolar macrophage-specific): bta-miR-146a, bta-miR-155, bta-miR-142-5p, bta-miR-423-3p, bta-miR-21-5p, bta-miR-27a-3p, bta-miR-99b, bta-miR-147, bta-miR-223, and bta-let-7i. The miRNA-mRNA interaction network was defined by TargetScan. The gene ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways of these transcripts were examined. Results The results illustrate the induction of pathways in cancer, highly enriched, and unanimous to all three gene sets (G1, G2, and G3). Mitogen-activated protein kinase and PI3K-Akt signaling were specific to G2 and G3 with fibroblast growth factors formed the key factors. Conclusion The inferred cancer cascades denote a probable modulation of innate immune response in an infectious state. These baseline pictures could lay the ground for further substantive studies.
Collapse
Affiliation(s)
- Elvis Ndukong Ndzi
- Department of Animal Production and Fisheries, Laboratory of Animal Physiology and Health, Institute of Agricultural Research for Development, Bambui, Cameroon
| | - Ambily Nath Indu Viswanath
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Nsadzetsen Gilbert Adzemye
- Department of Animal Production and Fisheries, Laboratory of Animal Physiology and Health, Institute of Agricultural Research for Development, Bambui, Cameroon
| | - Ousman Tamgue
- Division of Immunology and South Africa Medical Research Council, Immunology of Infectious Disease, Faculty of Health Sciences, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine, South Africa; Department of Biochemistry, University of Douala, Cameroon
| | - Munji Victorine Nsongka
- Department of Animal Production and Fisheries, Laboratory of Animal Physiology and Health, Institute of Agricultural Research for Development, Bambui, Cameroon
| | - Achuthsankar S Nair
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Céline Nguefeu Nkenfou
- System Biology Laboratory, Chantal Biya International Reference Center, Yaounde; Department of Biology, Higher Teachers' Training College, University of Yaounde I, Cameroon
| |
Collapse
|
20
|
Computational Resources for Prediction and Analysis of Functional miRNA and Their Targetome. Methods Mol Biol 2019; 1912:215-250. [PMID: 30635896 DOI: 10.1007/978-1-4939-8982-9_9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
microRNAs are evolutionarily conserved, endogenously produced, noncoding RNAs (ncRNAs) of approximately 19-24 nucleotides (nts) in length known to exhibit gene silencing of complementary target sequence. Their deregulated expression is reported in various disease conditions and thus has therapeutic implications. In the last decade, various computational resources are published in this field. In this chapter, we have reviewed bioinformatics resources, i.e., miRNA-centered databases, algorithms, and tools to predict miRNA targets. First section has enlisted more than 75 databases, which mainly covers information regarding miRNA registries, targets, disease associations, differential expression, interactions with other noncoding RNAs, and all-in-one resources. In the algorithms section, we have compiled about 140 algorithms from eight subcategories, viz. for the prediction of precursor (pre-) and mature miRNAs. These algorithms are developed on various sequence, structure, and thermodynamic based features incorporated into different machine learning techniques (MLTs). In addition, computational identification of miRNAs from high-throughput next generation sequencing (NGS) data and their variants, viz. isomiRs, differential expression, miR-SNPs, and functional annotation, are discussed. Prediction and analysis of miRNAs and their associated targets are also evaluated under miR-targets section providing knowledge regarding novel miRNA targets and complex host-pathogen interactions. In conclusion, we have provided comprehensive review of in silico resources published in miRNA research to help scientific community be updated and choose the appropriate tool according to their needs.
Collapse
|
21
|
Yang Q, Yu W, Han X. Overexpression of microRNA‑101 causes anti‑tumor effects by targeting CREB1 in colon cancer. Mol Med Rep 2019; 19:3159-3167. [PMID: 30816471 PMCID: PMC6423622 DOI: 10.3892/mmr.2019.9952] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 01/25/2019] [Indexed: 01/01/2023] Open
Abstract
Accumulating evidence has demonstrated that aberrantly expressed microRNAs (miRNAs) are involved in the initiation and progression of numerous types of human cancer. Although a number of miRNAs have been demonstrated to be associated with the diagnosis, progression and prognosis of colon cancer, the function of miRNA‑101 (miR‑101) in colon cancer remains unclear, and the molecular mechanisms underlying the effects of miR‑101 in colon cancer require further investigation. The present study investigated the role of miR‑101 in colon cancer, and the results suggested that miR‑101 expression levels were significantly decreased in colorectal carcinoma tissues and in three types of colorectal cancer cell lines. Furthermore, overexpression of miR‑101 inhibited cell proliferation and migration in HT29 cells. The transcription factor cAMP responsive element binding protein 1 (CREB1) was identified to be a direct target of miR‑101 using a luciferase reporter assay, reverse transcription‑quantitative polymerase chain reaction analysis and western blot assay. miR‑101 overexpression in tumor xenografts in vivo decreased the expression levels of proliferating cell nuclear antigen and CREB1, and suppressed tumor growth. The present results suggested that miR‑101 may serve a role in colon cancer by directly targeting CREB1. Collectively, the present study may contribute to the development of improved diagnosis and prognostics for colon cancer.
Collapse
Affiliation(s)
- Qinglin Yang
- Department of General Surgery, Yantai Yeda Hospital, Yantai, Shandong 264006, P.R. China
| | - Weijie Yu
- Department of General Surgery, Yantai Yeda Hospital, Yantai, Shandong 264006, P.R. China
| | - Xiaoli Han
- Department of General Surgery, Yantai Yeda Hospital, Yantai, Shandong 264006, P.R. China
| |
Collapse
|
22
|
Francavilla A, Tarallo S, Pardini B, Naccarati A. Fecal microRNAs as non-invasive biomarkers for the detection of colorectal cancer: a systematic review. MINERVA BIOTECNOL 2019; 31. [DOI: 10.23736/s1120-4826.18.02495-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
23
|
Abstract
microRNA molecules have been shown to play various significant roles in many physiological and pathophysiological processes in living organisms. The tremendous interest in these molecules has led to the significant development and constant release of a number of computational tools useful for basic as well as advanced miRNA-related analyses. These approaches have various constantly evolving utilities, such as detection, target prediction, functional annotation, and many others. In this chapter, we provide an overview of several computational tools useful for broadly defined plant miRNA analysis.
Collapse
Affiliation(s)
- Anna Lukasik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
- Department of Plant Molecular Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
24
|
Riefolo M, Porcellini E, Dika E, Broseghini E, Ferracin M. Interplay between small and long non-coding RNAs in cutaneous melanoma: a complex jigsaw puzzle with missing pieces. Mol Oncol 2019; 13:74-98. [PMID: 30499222 PMCID: PMC6322194 DOI: 10.1002/1878-0261.12412] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/20/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022] Open
Abstract
The incidence of cutaneous melanoma (CM) has increased in the past few decades. The biology of melanoma is characterized by a complex interaction between genetic, environmental and phenotypic factors. A greater understanding of the molecular mechanisms that promote melanoma cell growth and dissemination is crucial to improve diagnosis, prognostication, and treatment of CM. Both small and long non-coding RNAs (lncRNAs) have been identified to play a role in melanoma biology; microRNA and lncRNA expression is altered in transformed melanocytes and this in turn has functional effects on cell proliferation, apoptosis, invasion, metastasis, and immune response. Moreover, specific dysregulated ncRNAs were shown to have a diagnostic or prognostic role in melanoma and to drive the establishment of drug resistance. Here, we review the current literature on small and lncRNAs with a role in melanoma, with the aim of putting into some order this complex jigsaw puzzle.
Collapse
Affiliation(s)
- Mattia Riefolo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| | - Elisa Porcellini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| | - Emi Dika
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| | - Elisabetta Broseghini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| |
Collapse
|
25
|
Xu T, Su N, Liu L, Zhang J, Wang H, Zhang W, Gui J, Yu K, Li J, Le TD. miRBaseConverter: an R/Bioconductor package for converting and retrieving miRNA name, accession, sequence and family information in different versions of miRBase. BMC Bioinformatics 2018; 19:514. [PMID: 30598108 PMCID: PMC6311916 DOI: 10.1186/s12859-018-2531-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND miRBase is the primary repository for published miRNA sequence and annotation data, and serves as the "go-to" place for miRNA research. However, the definition and annotation of miRNAs have been changed significantly across different versions of miRBase. The changes cause inconsistency in miRNA related data between different databases and articles published at different times. Several tools have been developed for different purposes of querying and converting the information of miRNAs between different miRBase versions, but none of them individually can provide the comprehensive information about miRNAs in miRBase and users will need to use a number of different tools in their analyses. RESULTS We introduce miRBaseConverter, an R package integrating the latest miRBase version 22 available in Bioconductor to provide a suite of functions for converting and retrieving miRNA name (ID), accession, sequence, species, version and family information in different versions of miRBase. The package is implemented in R and available under the GPL-2 license from the Bioconductor website ( http://bioconductor.org/packages/miRBaseConverter/ ). A Shiny-based GUI suitable for non-R users is also available as a standalone application from the package and also as a web application at http://nugget.unisa.edu.au:3838/miRBaseConverter . miRBaseConverter has a built-in database for querying miRNA information in all species and for both pre-mature and mature miRNAs defined by miRBase. In addition, it is the first tool for batch querying the miRNA family information. The package aims to provide a comprehensive and easy-to-use tool for miRNA research community where researchers often utilize published miRNA data from different sources. CONCLUSIONS The Bioconductor package miRBaseConverter and the Shiny-based web application are presented to provide a suite of functions for converting and retrieving miRNA name, accession, sequence, species, version and family information in different versions of miRBase. The package will serve a wide range of applications in miRNA research and could provide a full view of the miRNAs of interest.
Collapse
Affiliation(s)
- Taosheng Xu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China
| | - Ning Su
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China
| | - Lin Liu
- School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, SA, 5095 Adelaide Australia
| | - Junpeng Zhang
- School of Engineering, Dali University, Dali, 671003 China
| | - Hongqiang Wang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China
| | - Weijia Zhang
- School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, SA, 5095 Adelaide Australia
| | - Jie Gui
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, 48109 United States
- National Engineering Research Center of Communications and Networking, Nanjing University of Posts and Telecommunications, Nanjing, 210023 China
| | - Kui Yu
- School of Computer and Information, Hefei University of Technology, Hefei, 230009 China
| | - Jiuyong Li
- School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, SA, 5095 Adelaide Australia
| | - Thuc Duy Le
- School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, SA, 5095 Adelaide Australia
- Centre for Cancer Biology, University of South Australia, SA, 5000 Adelaide Australia
| |
Collapse
|
26
|
Guerrero Flórez M, Guerrero Gómez OA, Mena Huertas J, Yépez Chamorro MC. Mapping of microRNAs related to cervical cancer in Latin American human genomic variants. F1000Res 2018; 6:946. [PMID: 37766816 PMCID: PMC10521080 DOI: 10.12688/f1000research.10138.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2018] [Indexed: 09/29/2023] Open
Abstract
Background: MicroRNAs are related to human cancers, including cervical cancer (CC) caused by HPV. In 2018, approximately 56.075 cases and 28.252 deaths from this cancer were registered in Latin America and the Caribbean according to GLOBOCAN reports. The main molecular mechanism of HPV in CC is related to integration of viral DNA into the hosts' genome. However, the different variants in the human genome can result in different integration mechanisms, specifically involving microRNAs (miRNAs). Methods: The miRNAs associated with CC were obtained from literature, the miRNA sequences and four human genome variants (HGV) from Latin American populations were obtained from miRBase and 1000 Genomes Browser, respectively. HPV integration sites near cell cycle regulatory genes were identified. miRNAs were mapped on HGV. miRSNPs were identified in the miRNA sequences located at HPV integration sites on the Latin American HGV. Results: Two hundred seventy-two miRNAs associated with CC were identified in 139 reports from different geographic locations. By mapping with Blast-Like Alignment Tool (BLAT), 2028 binding sites were identified from these miRNAs on the human genome (version GRCh38/hg38); 42 miRNAs were located on unique integration sites; and miR-5095, miR-548c-5p and miR-548d-5p were involved with multiple genes related to the cell cycle. Thirty-seven miRNAs were mapped on the Latin American HGV (PUR, MXL, CLM and PEL), but only miR-11-3p, miR-31-3p, miR-107, miR-133a-3p, miR-133a-5p, miR-133b, miR-215-5p, miR-491-3p, miR-548d-5p and miR-944 were conserved. Conclusions: Ten miRNAs were conserved in the four HGV. In the remaining 27 miRNAs, substitutions, deletions or insertions were observed. These variation patterns can imply differentiated mechanisms towards each genomic variant in human populations because of specific genomic patterns and geographic features. These findings may help in determining susceptibility for CC development. Further identification of cellular genes and signalling pathways involved in CC progression could lead new therapeutic strategies based on miRNAs.
Collapse
Affiliation(s)
- Milena Guerrero Flórez
- Department of Biology, University of Nariño, Pasto, Nariño, Colombia
- Department of Biology, Center for Health Studies at the University of Nariño (CESUN), University of Nariño, Pasto, Nariño, Colombia
| | - Olivia Alexandra Guerrero Gómez
- Department of Biology, University of Nariño, Pasto, Nariño, Colombia
- Department of Biology, Center for Health Studies at the University of Nariño (CESUN), University of Nariño, Pasto, Nariño, Colombia
| | - Jaqueline Mena Huertas
- Department of Biology, University of Nariño, Pasto, Nariño, Colombia
- Department of Biology, Center for Health Studies at the University of Nariño (CESUN), University of Nariño, Pasto, Nariño, Colombia
| | - María Clara Yépez Chamorro
- Department of Biology, Center for Health Studies at the University of Nariño (CESUN), University of Nariño, Pasto, Nariño, Colombia
| |
Collapse
|
27
|
Prahm KP, Høgdall C, Karlsen MA, Christensen IJ, Novotny GW, Høgdall E. Identification and validation of potential prognostic and predictive miRNAs of epithelial ovarian cancer. PLoS One 2018; 13:e0207319. [PMID: 30475821 PMCID: PMC6261038 DOI: 10.1371/journal.pone.0207319] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/29/2018] [Indexed: 12/17/2022] Open
Abstract
Background Ovarian cancer is the leading cause of death by gynecologic cancers in the Western world. The aim of the study was to identify microRNAs (miRNAs) associated with prognosis and/or resistance to chemotherapy among patients with epithelial ovarian cancer. Methods Using information from the Pelvic Mass Study we identified a cohort of women with epithelial ovarian cancer. Tumor tissues were then collected and analyzed by global miRNA microarrays. MiRNA profiling was then linked to survival and time to progression using Cox proportional-hazards regression models. Logistic regression models were used for the analysis of resistance to chemotherapy. Our results were validated using external datasets retrieved from the NCBI Gene Expression Omnibus database. Results A total of 197 patients with epithelial ovarian cancer were included for miRNA microarray analysis. In multivariate analyses we identified a number of miRNAs significantly correlated with overall survival (miR-1183 (HR: 1.42, 95% CI:1.17–1.74, p = 0.0005), miR-126-3p (HR: 1.38, 95% CI:1.11–1.71, p = 0.0036), time to progression (miR-139-3p (HR: 1.48, 95% CI: 1.13–1.94, p = 0.0047), miR-802 (HR: 0.48, 95% CI: 0.29–0.78, p = 0.0035)), progression free survival (miR-23a-5p (HR:1.32, 95% CI:1.09–1.61, p = 0.004), miR-23a-3p (HR:1.70, 95% CI:1.15–2.51, p = 0.0074), miR-802 (HR: 0.48, 95% CI: 0.29–0.80, p = 0.0048)), and resistance to chemotherapy (miR-1234 (HR: 0.26, 95% CI: 0.11–0.64, p = 0.003)). A few miRNAs identified in our training cohort, were validated in external cohorts with similar results. Conclusion Eight miRNAs were identified as significant predictors of overall survival, progression free survival, time to progression, and chemotherapy resistance. A number of these miRNAs were significantly validated using external datasets. Inter-platform and inter-laboratory variations may have influence on the ability to compare and reproduce miRNA results. The use of miRNAs as potential markers of relapse and survival in ovarian cancer warrants further investigation.
Collapse
Affiliation(s)
- Kira Philipsen Prahm
- Department of Pathology, Molecular unit, Danish CancerBiobank, Herlev University Hospital, Herlev, Denmark
- Gynecological Clinic, The Juliane Marie Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- * E-mail:
| | - Claus Høgdall
- Gynecological Clinic, The Juliane Marie Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mona Aarenstrup Karlsen
- Department of Pathology, Molecular unit, Danish CancerBiobank, Herlev University Hospital, Herlev, Denmark
- Gynecological Clinic, The Juliane Marie Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ib Jarle Christensen
- Department of Pathology, Molecular unit, Danish CancerBiobank, Herlev University Hospital, Herlev, Denmark
| | - Guy Wayne Novotny
- Department of Pathology, Molecular unit, Danish CancerBiobank, Herlev University Hospital, Herlev, Denmark
| | - Estrid Høgdall
- Department of Pathology, Molecular unit, Danish CancerBiobank, Herlev University Hospital, Herlev, Denmark
| |
Collapse
|
28
|
Oztemur Islakoglu Y, Noyan S, Aydos A, Gur Dedeoglu B. Meta-microRNA Biomarker Signatures to Classify Breast Cancer Subtypes. ACTA ACUST UNITED AC 2018; 22:709-716. [DOI: 10.1089/omi.2018.0157] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | - Senem Noyan
- Ankara University, Biotechnology Institute, Ankara, Turkey
| | - Alp Aydos
- Ankara University, Biotechnology Institute, Ankara, Turkey
| | | |
Collapse
|
29
|
Integrated microarray meta-analysis identifies miRNA-27a as an oncogene in ovarian cancer by inhibiting FOXO1. Life Sci 2018; 210:263-270. [PMID: 30138596 DOI: 10.1016/j.lfs.2018.08.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/10/2018] [Accepted: 08/19/2018] [Indexed: 02/05/2023]
Abstract
AIMS Survival of ovarian cancer patients is generally poor, partly because most of them are already at an advanced stage when diagnosed. The purpose of this study was to screen prognostic miRNAs for ovarian cancer, and to explore the underlying mechanisms. MAIN METHODS Integrated meta-analysis of miRNA microarrays retrieved from public repositories was employed to identify clinically significant miRNAs involved in ovarian cancer. Targets of candidate miRNA were predicted using four online databases, and validated with dual luciferase assay. Loss and gain of function were performed to investigate the role of miR27a in the growth of ovarian cancer cell lines. KEY FINDINGS Based on cross-validation results in multiple datasets, we recognized hsa-miR-27a as an oncogenic molecular and a prognostic factor for ovarian cancer patients. Dual luciferase assay indicated tumor suppressor FOXO1 was a direct target of miR-27a. In addition, hsa-miR-27a could stimulate SKOV3 and A2780 cell proliferation and migration by regulating the expression of FOXO1. SIGNIFICANCE In summary, our results indicate that miR-27a can promote progression of ovarian cancer by mediating FOXO1. To our knowledge, this is the first study focusing on the role of miR-27a/FOXO1 axis using the microarray meta-analysis in ovarian cancer. Furthermore, inhibiting miR-27a expression may be a new strategy for the treatment of ovarian cancer.
Collapse
|
30
|
Van Peer G, Mets E, Claeys S, De Punt I, Lefever S, Ongenaert M, Rondou P, Speleman F, Mestdagh P, Vandesompele J. A high-throughput 3' UTR reporter screening identifies microRNA interactomes of cancer genes. PLoS One 2018. [PMID: 29522551 PMCID: PMC5844555 DOI: 10.1371/journal.pone.0194017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Introduction Despite the established contribution of deregulated microRNA (miRNA) function to carcinogenesis, relatively few miRNA-cancer gene interactions have been validated, making it difficult to appreciate the true complexity of miRNA-cancer gene regulatory networks. Results In this effort, we identify miRNA interactomes of 17 well-established cancer genes, involved in various cancer types, through a miRNome-wide 3’ UTR reporter screening. Using a novel and performant strategy for high-throughput screening data analysis, we identify 390 interactions, quadrupling the size of the known miRNA interactome for the cancer genes under investigation. Clear enrichments of established and predicted interactions underscore the validity of the interactome data set. Interactomes appear to be primarily driven by canonical binding site interactions. Nonetheless, non-canonical binding sites, such as offset 6mer and seed-mismatched or G:U wobble sites, also have regulatory activity, albeit clearly less pronounced. Furthermore, we observe enhanced regulation in the presence of 3’ supplementary pairing for both canonical and non-canonical binding sites. Conclusions Altogether, the cancer gene-miRNA interactome data set represents a unique resource that will aid in the unraveling of regulatory miRNA networks and the dynamic regulation of key protein-coding cancer genes. In addition, it uncovers aspects of the functional miRNA binding site’s architecture and the relative contributions of different binding site types.
Collapse
Affiliation(s)
- Gert Van Peer
- Center for Medical Genetics, Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
- * E-mail:
| | - Evelien Mets
- Center for Medical Genetics, Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
| | - Shana Claeys
- Center for Medical Genetics, Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
| | - Ines De Punt
- Center for Medical Genetics, Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
| | - Steve Lefever
- Center for Medical Genetics, Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
| | - Maté Ongenaert
- Center for Medical Genetics, Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
| | - Pieter Rondou
- Center for Medical Genetics, Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
| | - Frank Speleman
- Center for Medical Genetics, Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
| | - Pieter Mestdagh
- Center for Medical Genetics, Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
| | - Jo Vandesompele
- Center for Medical Genetics, Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
| |
Collapse
|
31
|
Micolucci L, Akhtar MM, Olivieri F, Rippo MR, Procopio AD. Diagnostic value of microRNAs in asbestos exposure and malignant mesothelioma: systematic review and qualitative meta-analysis. Oncotarget 2018; 7:58606-58637. [PMID: 27259231 PMCID: PMC5295457 DOI: 10.18632/oncotarget.9686] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/28/2016] [Indexed: 12/13/2022] Open
Abstract
Background Asbestos is a harmful and exceptionally persistent natural material. Malignant mesothelioma (MM), an asbestos-related disease, is an insidious, lethal cancer that is poorly responsive to current treatments. Minimally invasive, specific, and sensitive biomarkers providing early and effective diagnosis in high-risk patients are urgently needed. MicroRNAs (miRNAs, miRs) are endogenous, non-coding, small RNAs with established diagnostic value in cancer and pollution exposure. A systematic review and a qualitative meta-analysis were conducted to identify high-confidence miRNAs that can serve as biomarkers of asbestos exposure and MM. Methods The major biomedical databases were systematically searched for miRNA expression signatures related to asbestos exposure and MM. The qualitative meta-analysis applied a novel vote-counting method that takes into account multiple parameters. The most significant miRNAs thus identified were then subjected to functional and bioinformatic analysis to assess their biomarker potential. Results A pool of deregulated circulating and tissue miRNAs with biomarker potential for MM was identified and designated as “mesomiRs” (MM-associated miRNAs). Comparison of data from asbestos-exposed and MM subjects found that the most promising candidates for a multimarker signature were circulating miR-126-3p, miR-103a-3p, and miR-625-3p in combination with mesothelin. The most consistently described tissue miRNAs, miR-16-5p, miR-126-3p, miR-143-3p, miR-145-5p, miR-192-5p, miR-193a-3p, miR-200b-3p, miR-203a-3p, and miR-652-3p, were also found to provide a diagnostic signature and should be further investigated as possible therapeutic targets. Conclusion The qualitative meta-analysis and functional investigation confirmed the early diagnostic value of two miRNA signatures for MM. Large-scale, standardized validation studies are needed to assess their clinical relevance, so as to move from the workbench to the clinic.
Collapse
Affiliation(s)
- Luigina Micolucci
- Computational Pathology Unit, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy.,Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Most Mauluda Akhtar
- Computational Pathology Unit, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy.,Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Fabiola Olivieri
- Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, Italian National Research Center on Aging (INRCA-IRCCS), Ancona, Italy
| | - Maria Rita Rippo
- Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Domenico Procopio
- Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, Italian National Research Center on Aging (INRCA-IRCCS), Ancona, Italy
| |
Collapse
|
32
|
Long-term ethanol exposure: Temporal pattern of microRNA expression and associated mRNA gene networks in mouse brain. PLoS One 2018; 13:e0190841. [PMID: 29315347 PMCID: PMC5760035 DOI: 10.1371/journal.pone.0190841] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/20/2017] [Indexed: 01/05/2023] Open
Abstract
Long-term alcohol use can result in lasting changes in brain function, ultimately leading to alcohol dependence. These functional alterations arise from dysregulation of complex gene networks, and growing evidence implicates microRNAs as key regulators of these networks. We examined time- and brain region-dependent changes in microRNA expression after chronic intermittent ethanol (CIE) exposure in C57BL/6J mice. Animals were sacrificed at 0, 8, and 120h following the last exposure to four weekly cycles of CIE vapor and we measured microRNA expression in prefrontal cortex (PFC), nucleus accumbens (NAC), and amygdala (AMY). The number of detected (395–419) and differentially expressed (DE, 42–47) microRNAs was similar within each brain region. However, the DE microRNAs were distinct among brain regions and across time within each brain region. DE microRNAs were linked with their DE mRNA targets across each brain region. In all brain regions, the greatest number of DE mRNA targets occurred at the 0 or 8h time points and these changes were associated with microRNAs DE at 0 or 8h. Two separate approaches (discrete temporal association and hierarchical clustering) were combined with pathway analysis to further characterize the temporal relationships between DE microRNAs and their 120h DE targets. We focused on targets dysregulated at 120h as this time point represents a state of protracted withdrawal known to promote an increase in subsequent ethanol consumption. Discrete temporal association analysis identified networks with highly connected genes including ERK1/2 (mouse equivalent Mapk3, Mapk1), Bcl2 (in AMY networks) and Srf (in PFC networks). Similarly, the cluster-based analysis identified hub genes that include Bcl2 (in AMY networks) and Srf in PFC networks, demonstrating robust microRNA-mRNA network alterations in response to CIE exposure. In contrast, datasets utilizing targets from 0 and 8h microRNAs identified NF-kB-centered networks (in NAC and PFC), and Smad3-centered networks (in AMY). These results demonstrate that CIE exposure results in dynamic and complex temporal changes in microRNA-mRNA gene network structure.
Collapse
|
33
|
Cui L, Markou A, Stratton CW, Lianidou E. Diagnosis and Assessment of Microbial Infections with Host and Microbial MicroRNA Profiles. ADVANCED TECHNIQUES IN DIAGNOSTIC MICROBIOLOGY 2018. [PMCID: PMC7119978 DOI: 10.1007/978-3-319-95111-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) encoded by viral genome or host have been found participating in host-microbe interactions. Differential expression profiles of miRNAs were shown linking to specific disease pathologies which indicated its potency as diagnostic/prognostic biomarkers of infectious disease. This was emphasized by the discovery of circulating miRNAs which were found to be remarkably stable in mammalian biofluids. Standardized methods of miRNA quantification including RNA isolation should be established before they will be ready for use in clinical practice.
Collapse
|
34
|
Minna E, Romeo P, Dugo M, De Cecco L, Todoerti K, Pilotti S, Perrone F, Seregni E, Agnelli L, Neri A, Greco A, Borrello MG. miR-451a is underexpressed and targets AKT/mTOR pathway in papillary thyroid carcinoma. Oncotarget 2017; 7:12731-47. [PMID: 26871295 PMCID: PMC4914318 DOI: 10.18632/oncotarget.7262] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/26/2016] [Indexed: 12/18/2022] Open
Abstract
Papillary Thyroid Carcinoma (PTC) is the most frequent thyroid cancer. Although several PTC-specific miRNA profiles have been reported, only few upregulated miRNAs are broadly recognized, while less consistent data are available about downregulated miRNAs. In this study we investigated miRNA deregulation in PTC by miRNA microarray, analysis of a public dataset from The Cancer Genome Atlas (TCGA), literature review and meta-analysis based on a univocal miRNA identifier derived from miRBase v21. A list of 18 miRNAs differentially expressed between PTC and normal thyroid was identified and validated in the TCGA dataset. Furthermore, we compared our signature with miRNA profiles derived from 15 studies selected from literature. Then, to select possibly functionally relevant miRNA, we integrated our miRNA signature with those from two in vitro cell models based on the PTC-driving oncogene RET/PTC1. Through this strategy, we identified commonly deregulated miRNAs, including miR-451a, which emerged also by our meta-analysis as the most frequently reported downregulated miRNA. We showed that lower expression of miR-451a correlates with aggressive clinical-pathological features of PTC as tall cell variant, advanced stage and extrathyroid extension. In addition, we demonstrated that ectopic expression of miR-451a impairs proliferation and migration of two PTC-derived cell lines, reduces the protein levels of its recognized targets MIF, c-MYC and AKT1 and attenuates AKT/mTOR pathway activation. Overall, our study provide both an updated overview of miRNA deregulation in PTC and the first functional evidence that miR-451a exerts tumor suppressor functions in this neoplasia.
Collapse
Affiliation(s)
- Emanuela Minna
- Department of Experimental Oncology and Molecular Medicine, Molecular Mechanisms Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paola Romeo
- Department of Experimental Oncology and Molecular Medicine, Molecular Mechanisms Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Matteo Dugo
- Department of Experimental Oncology and Molecular Medicine, Functional Genomics Core Facility, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Loris De Cecco
- Department of Experimental Oncology and Molecular Medicine, Functional Genomics Core Facility, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Katia Todoerti
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Silvana Pilotti
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Federica Perrone
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ettore Seregni
- Department of Diagnostic Imaging and Radiotherapy, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luca Agnelli
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Angela Greco
- Department of Experimental Oncology and Molecular Medicine, Molecular Mechanisms Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maria Grazia Borrello
- Department of Experimental Oncology and Molecular Medicine, Molecular Mechanisms Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
35
|
Balderas-Martínez YI, Rinaldi F, Contreras G, Solano-Lira H, Sánchez-Pérez M, Collado-Vides J, Selman M, Pardo A. Improving biocuration of microRNAs in diseases: a case study in idiopathic pulmonary fibrosis. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2017; 2017:3748307. [PMID: 28605770 PMCID: PMC5467562 DOI: 10.1093/database/bax030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 03/25/2017] [Indexed: 12/24/2022]
Abstract
MicroRNAs (miRNAs) are small and non-coding RNA molecules that inhibit gene expression posttranscriptionally. They play important roles in several biological processes, and in recent years there has been an interest in studying how they are related to the pathogenesis of diseases. Although there are already some databases that contain information for miRNAs and their relation with illnesses, their curation represents a significant challenge due to the amount of information that is being generated every day. In particular, respiratory diseases are poorly documented in databases, despite the fact that they are of increasing concern regarding morbidity, mortality and economic impacts. In this work, we present the results that we obtained in the BioCreative Interactive Track (IAT), using a semiautomatic approach for improving biocuration of miRNAs related to diseases. Our procedures will be useful to complement databases that contain this type of information. We adapted the OntoGene text mining pipeline and the ODIN curation system in a full-text corpus of scientific publications concerning one specific respiratory disease: idiopathic pulmonary fibrosis, the most common and aggressive of the idiopathic interstitial cases of pneumonia. We curated 823 miRNA text snippets and found a total of 246 miRNAs related to this disease based on our semiautomatic approach with the system OntoGene/ODIN. The biocuration throughput improved by a factor of 12 compared with traditional manual biocuration. A significant advantage of our semiautomatic pipeline is that it can be applied to obtain the miRNAs of all the respiratory diseases and offers the possibility to be used for other illnesses. Database URL http://odin.ccg.unam.mx/ODIN/bc2015-miRNA/.
Collapse
Affiliation(s)
- Yalbi Itzel Balderas-Martínez
- Facultad de Ciencias, Departamento Biología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior s/n, Coyoacán, CP 04510, Ciudad de México, CDMX, México.,CONACYT-INER Ismael Cosío Villegas, Departamento Investigación, Calzada de Tlalpan 4502 Sección XVI, Tlalpan, CP Ciudad de México, CDMX, México
| | - Fabio Rinaldi
- Swiss Institute of Bioinformatics and Institute of Computational Linguistics, University of Zurich, Andreasstrasse 15, CH-8050 Zurich, Switzerland.,Center for Genomics Sciences, Computational Genomics Program, Universidad Nacional Autónoma de México, Av. Universidad s/n, Chamilpa, CP 62210, Cuernavaca, Morelos, México
| | - Gabriela Contreras
- Center for Genomics Sciences, Computational Genomics Program, Universidad Nacional Autónoma de México, Av. Universidad s/n, Chamilpa, CP 62210, Cuernavaca, Morelos, México
| | - Hilda Solano-Lira
- Center for Genomics Sciences, Computational Genomics Program, Universidad Nacional Autónoma de México, Av. Universidad s/n, Chamilpa, CP 62210, Cuernavaca, Morelos, México
| | - Mishael Sánchez-Pérez
- Center for Genomics Sciences, Computational Genomics Program, Universidad Nacional Autónoma de México, Av. Universidad s/n, Chamilpa, CP 62210, Cuernavaca, Morelos, México
| | - Julio Collado-Vides
- Center for Genomics Sciences, Computational Genomics Program, Universidad Nacional Autónoma de México, Av. Universidad s/n, Chamilpa, CP 62210, Cuernavaca, Morelos, México
| | - Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Dirección de Investigación Calzada de Tlalpan 4502 Sección XVI, Tlalpan, CP Ciudad de México, CDMX, México
| | - Annie Pardo
- Facultad de Ciencias, Departamento Biología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior s/n, Coyoacán, CP 04510, Ciudad de México, CDMX, México
| |
Collapse
|
36
|
Króliczewski J, Sobolewska A, Lejnowski D, Collawn JF, Bartoszewski R. microRNA single polynucleotide polymorphism influences on microRNA biogenesis and mRNA target specificity. Gene 2017; 640:66-72. [PMID: 29032146 DOI: 10.1016/j.gene.2017.10.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 10/07/2017] [Indexed: 02/07/2023]
Abstract
microRNAs (miRNAs) are nowadays recognized as an essential component of gene regulatory networks. Furthermore, deregulation of miRNAs expression often contributes to human pathologies. Recently, a substantial number of single nucleotide polymorphism (SNPs) and rare mutations within pri-, pre- and mature miRNA sequences have been reported. These miRNA SNPs have often been associated with human disease. However, due to the complexity of miRNA biogenesis and the genome-wide functional effects of miRNAs, the determination of biological consequences of these miRNA SNPs remains challenging. Despite an increasing number of reports linking miRNA SNPs with human pathologies, few reports have analyzed the mechanism by which miRNA-SNPs contribute to disease pathogenesis. In this review, we discuss how single polynucleotide polymorphisms in miRNAs genes may influence miRNAs expression and function and thus potentially alter disease pathogenesis.
Collapse
Affiliation(s)
- Jarosław Króliczewski
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Aleksandra Sobolewska
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Dawid Lejnowski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Rafał Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland.
| |
Collapse
|
37
|
microRNA profiling in lung tissue and bronchoalveolar lavage of cigarette smoke-exposed mice and in COPD patients: a translational approach. Sci Rep 2017; 7:12871. [PMID: 28993685 PMCID: PMC5634489 DOI: 10.1038/s41598-017-13265-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/20/2017] [Indexed: 01/01/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by a progressive airflow limitation and is associated with a chronic inflammatory response in both airways and lungs. microRNAs (miRNAs) are often highly conserved between species and have an intricate role within homeostatic conditions and immune responses. Also, miRNAs are dysregulated in smoking-associated diseases. We investigated the miRNA profile of 523 miRNAs by stem-loop RT-qPCR in lung tissue and cell-free bronchoalveolar lavage (BAL) supernatant of mice exposed to air or cigarette smoke (CS) for 4 or 24 weeks. After 24 weeks of CS exposure, 31 miRNAs were differentially expressed in lung tissue and 78 in BAL supernatant. Next, we correlated the miRNA profiling data to inflammation in BAL and lung, obtained by flow cytometry or ELISA. In addition, we surveyed for overlap with newly assessed miRNA profiles in bronchial biopsies and with previously assessed miRNA profiles in lung tissue and induced sputum supernatant of smokers with COPD. Several miRNAs showed concordant differential expression between both species including miR-31*, miR-155, miR-218 and let-7c. Thus, investigating miRNA profiling data in different compartments and both species provided accumulating insights in miRNAs that may be relevant in CS-induced inflammation and the pathogenesis of COPD.
Collapse
|
38
|
Comprehensive miRNA expression profiling in human T-cell acute lymphoblastic leukemia by small RNA-sequencing. Sci Rep 2017; 7:7901. [PMID: 28801656 PMCID: PMC5554241 DOI: 10.1038/s41598-017-08148-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/05/2017] [Indexed: 12/21/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a genetically heterogeneous disease that can be classified into different molecular genetic subtypes according to their mRNA gene expression profile. In this study, we applied RNA sequencing to investigate the full spectrum of miRNA expression in primary T-ALL patient samples, T-ALL leukemia cell lines and healthy donor thymocytes. Notably, this analysis revealed that genetic subtypes of human T-ALL also display unique miRNA expression signatures, which are largely conserved in human T-ALL cell lines with corresponding genetic background. Furthermore, small RNA-sequencing also unraveled the variety of isoforms that are expressed for each miRNA in T-ALL and showed that a significant number of miRNAs are actually represented by an alternative isomiR. Finally, comparison of CD34+ and CD4+CD8+ healthy donor thymocytes and T-ALL miRNA profiles allowed identifying several novel miRNAs with putative oncogenic or tumor suppressor functions in T-ALL. Altogether, this study provides a comprehensive overview of miRNA expression in normal and malignant T-cells and sets the stage for functional evaluation of novel miRNAs in T-ALL disease biology.
Collapse
|
39
|
Piletič K, Kunej T. Minimal Standards for Reporting microRNA:Target Interactions. ACTA ACUST UNITED AC 2017; 21:197-206. [DOI: 10.1089/omi.2017.0023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Klara Piletič
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia
| |
Collapse
|
40
|
Sun M, Song H, Wang S, Zhang C, Zheng L, Chen F, Shi D, Chen Y, Yang C, Xiang Z, Liu Q, Wei C, Xiong B. Integrated analysis identifies microRNA-195 as a suppressor of Hippo-YAP pathway in colorectal cancer. J Hematol Oncol 2017; 10:79. [PMID: 28356122 PMCID: PMC5372308 DOI: 10.1186/s13045-017-0445-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/17/2017] [Indexed: 02/06/2023] Open
Abstract
Background With persistent inconsistencies in colorectal cancer (CRC) miRNAs expression data, it is crucial to shift toward inclusion of a “pre-laboratory” integrated analysis to expedite effective precision medicine and translational research. Aberrant expression of hsa-miRNA-195 (miR-195) which is distinguished as a clinically noteworthy miRNA has previously been observed in multiple cancers, yet its role in CRC remains unclear. Methods In this study, we performed an integrated analysis of seven CRC miRNAs expression datasets. The expression of miR-195 was validated in The Cancer Genome Atlas (TCGA) datasets, and an independent validation sample cohort. Colon cancer cells were transfected with miR-195 mimic and inhibitor, after which cell proliferation, colony formation, migration, invasion, and dual luciferase reporter were assayed. Xenograft mouse models were used to determine the role of miR-195 in CRC tumorigenicity in vivo. Results Four downregulated miRNAs (hsa-let-7a, hsa-miR-125b, hsa-miR-145, and hsa-miR-195) were demonstrated to be potentially useful diagnostic markers in the clinical setting. CRC patients with a decreased level of miR-195-5p in tumor tissues had significantly shortened survival as revealed by the TCGA colon adenocarcinoma (COAD) dataset and our CRC cohort. Overexpression of miR-195-5p in DLD1 and HCT116 cells repressed cell growth, colony formation, invasion, and migration. Inhibition of miR-195-5p function contributed to aberrant cell proliferation, migration, invasion, and epithelial mesenchymal transition (EMT). We identified miR-195-5p binding sites within the 3’-untranslated region (3′-UTR) of the human yes-associated protein (YAP) mRNA. YAP1 expression was downregulated after miR-195-5p treatment by qRT-PCR analysis and western blot. Conclusions Four downregulated miRNAs were shown to be prime candidates for a panel of biomarkers with sufficient diagnostic accuracy for CRC in a clinical setting. Our integrated microRNA profiling approach identified miR-195-5p independently associated with prognosis in CRC. Our results demonstrated that miR-195-5p was a potent suppressor of YAP1, and miR-195-5p-mediated downregulation of YAP1 significantly reduced tumor development in a mouse CRC xenograft model. In the clinic, miR-195-5p can serve as a prognostic marker to predict the outcome of the CRC patients. Electronic supplementary material The online version of this article (doi:10.1186/s13045-017-0445-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Min Sun
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, 430071, Wuhan, People's Republic of China
| | - Haibin Song
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, 430071, Wuhan, People's Republic of China
| | - Shuyi Wang
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, 430071, Wuhan, People's Republic of China
| | - Chunxiao Zhang
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, 430071, Wuhan, People's Republic of China
| | - Liang Zheng
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, 430071, Wuhan, People's Republic of China
| | - Fangfang Chen
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, 430071, Wuhan, People's Republic of China
| | - Dongdong Shi
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, 430071, Wuhan, People's Republic of China
| | - Yuanyuan Chen
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, 430071, Wuhan, People's Republic of China
| | - Chaogang Yang
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, 430071, Wuhan, People's Republic of China
| | - Zhenxian Xiang
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, 430071, Wuhan, People's Republic of China
| | - Qing Liu
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, 430071, Wuhan, People's Republic of China
| | - Chen Wei
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, 430071, Wuhan, People's Republic of China
| | - Bin Xiong
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, 430071, Wuhan, People's Republic of China.
| |
Collapse
|
41
|
Wallaert A, Durinck K, Taghon T, Van Vlierberghe P, Speleman F. T-ALL and thymocytes: a message of noncoding RNAs. J Hematol Oncol 2017; 10:66. [PMID: 28270163 PMCID: PMC5341419 DOI: 10.1186/s13045-017-0432-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 02/24/2017] [Indexed: 02/06/2023] Open
Abstract
In the last decade, the role for noncoding RNAs in disease was clearly established, starting with microRNAs and later expanded towards long noncoding RNAs. This was also the case for T cell acute lymphoblastic leukemia, which is a malignant blood disorder arising from oncogenic events during normal T cell development in the thymus. By studying the transcriptomic profile of protein-coding genes, several oncogenic events leading to T cell acute lymphoblastic leukemia (T-ALL) could be identified. In recent years, it became apparent that several of these oncogenes function via microRNAs and long noncoding RNAs. In this review, we give a detailed overview of the studies that describe the noncoding RNAome in T-ALL oncogenesis and normal T cell development.
Collapse
Affiliation(s)
- Annelynn Wallaert
- Center for Medical Genetics, Ghent University, Ghent, Belgium. .,Cancer Research Institute Ghent, Ghent, Belgium.
| | - Kaat Durinck
- Center for Medical Genetics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Tom Taghon
- Cancer Research Institute Ghent, Ghent, Belgium.,Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Pieter Van Vlierberghe
- Center for Medical Genetics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Frank Speleman
- Center for Medical Genetics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
42
|
Olsen LC, O'Reilly KC, Liabakk NB, Witter MP, Sætrom P. MicroRNAs contribute to postnatal development of laminar differences and neuronal subtypes in the rat medial entorhinal cortex. Brain Struct Funct 2017; 222:3107-3126. [PMID: 28260163 PMCID: PMC5585308 DOI: 10.1007/s00429-017-1389-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/13/2017] [Indexed: 01/23/2023]
Abstract
The medial entorhinal cortex (MEC) is important in spatial navigation and memory formation and its layers have distinct neuronal subtypes, connectivity, spatial properties, and disease susceptibility. As little is known about the molecular basis for the development of these laminar differences, we analyzed microRNA (miRNA) and messenger RNA (mRNA) expression differences between rat MEC layer II and layers III–VI during postnatal development. We identified layer and age-specific regulation of gene expression by miRNAs, which included processes related to neuron specialization and locomotor behavior. Further analyses by retrograde labeling and expression profiling of layer II stellate neurons and in situ hybridization revealed that the miRNA most up-regulated in layer II, miR-143, was enriched in stellate neurons, whereas the miRNA most up-regulated in deep layers, miR-219-5p, was expressed in ependymal cells, oligodendrocytes and glia. Bioinformatics analyses of predicted mRNA targets with negatively correlated expression patterns to miR-143 found that miR-143 likely regulates the Lmo4 gene, which is known to influence hippocampal-based spatial learning.
Collapse
Affiliation(s)
- Lene C Olsen
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kally C O'Reilly
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University for Science and Technology, Trondheim, Norway
| | - Nina B Liabakk
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University for Science and Technology, Trondheim, Norway
| | - Pål Sætrom
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway. .,Department of Computer and Information Science, Norwegian University for Science and Technology, Trondheim, Norway. .,Bioinformatics core facility-BioCore, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
43
|
Ayers D, Vandesompele J. Influence of microRNAs and Long Non-Coding RNAs in Cancer Chemoresistance. Genes (Basel) 2017; 8:genes8030095. [PMID: 28273813 PMCID: PMC5368699 DOI: 10.3390/genes8030095] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/15/2017] [Accepted: 02/24/2017] [Indexed: 12/16/2022] Open
Abstract
Innate and acquired chemoresistance exhibited by most tumours exposed to conventional chemotherapeutic agents account for the majority of relapse cases in cancer patients. Such chemoresistance phenotypes are of a multi-factorial nature from multiple key molecular players. The discovery of the RNA interference pathway in 1998 and the widespread gene regulatory influences exerted by microRNAs (miRNAs) and other non-coding RNAs have certainly expanded the level of intricacy present for the development of any single physiological phenotype, including cancer chemoresistance. This review article focuses on the latest research efforts in identifying and validating specific key molecular players from the two main families of non-coding RNAs, namely miRNAs and long non-coding RNAs (lncRNAs), having direct or indirect influences in the development of cancer drug resistance properties and how such knowledge can be utilised for novel theranostics in oncology.
Collapse
Affiliation(s)
- Duncan Ayers
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida MSD2080, Malta.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M1 7DN, UK.
| | - Jo Vandesompele
- Center for Medical Genetics Ghent, Ghent University, Ghent 9000, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
44
|
Vienberg S, Geiger J, Madsen S, Dalgaard LT. MicroRNAs in metabolism. Acta Physiol (Oxf) 2017; 219:346-361. [PMID: 27009502 PMCID: PMC5297868 DOI: 10.1111/apha.12681] [Citation(s) in RCA: 303] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/06/2016] [Accepted: 03/21/2016] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) have within the past decade emerged as key regulators of metabolic homoeostasis. Major tissues in intermediary metabolism important during development of the metabolic syndrome, such as β-cells, liver, skeletal and heart muscle as well as adipose tissue, have all been shown to be affected by miRNAs. In the pancreatic β-cell, a number of miRNAs are important in maintaining the balance between differentiation and proliferation (miR-200 and miR-29 families) and insulin exocytosis in the differentiated state is controlled by miR-7, miR-375 and miR-335. MiR-33a and MiR-33b play crucial roles in cholesterol and lipid metabolism, whereas miR-103 and miR-107 regulates hepatic insulin sensitivity. In muscle tissue, a defined number of miRNAs (miR-1, miR-133, miR-206) control myofibre type switch and induce myogenic differentiation programmes. Similarly, in adipose tissue, a defined number of miRNAs control white to brown adipocyte conversion or differentiation (miR-365, miR-133, miR-455). The discovery of circulating miRNAs in exosomes emphasizes their importance as both endocrine signalling molecules and potentially disease markers. Their dysregulation in metabolic diseases, such as obesity, type 2 diabetes and atherosclerosis stresses their potential as therapeutic targets. This review emphasizes current ideas and controversies within miRNA research in metabolism.
Collapse
Affiliation(s)
- S. Vienberg
- Center for Basic Metabolic ResearchFaculty of HealthUniversity of CopenhagenCopenhagenDenmark
| | - J. Geiger
- Department of Science and EnvironmentRoskilde UniversityRoskildeDenmark
| | - S. Madsen
- Center for Basic Metabolic ResearchFaculty of HealthUniversity of CopenhagenCopenhagenDenmark
| | - L. T. Dalgaard
- Department of Science and EnvironmentRoskilde UniversityRoskildeDenmark
| |
Collapse
|
45
|
Van Goethem A, Mestdagh P, Van Maerken T, Vandesompele J. MicroRNA Expression Analysis Using Small RNA Sequencing Discovery and RT-qPCR-Based Validation. Methods Mol Biol 2017; 1654:197-208. [PMID: 28986791 DOI: 10.1007/978-1-4939-7231-9_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
miRNAs are small noncoding RNA molecules that function as regulators of gene expression. Deregulated miRNA expression has been reported in various diseases including cancer. Due to their small size and high degree of homology, accurate quantification of miRNA expression is technically challenging. In this chapter, we present two different technologies for miRNA quantification: small RNA sequencing and RT-qPCR.
Collapse
Affiliation(s)
| | - Pieter Mestdagh
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Tom Van Maerken
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Jo Vandesompele
- Center for Medical Genetics, Ghent University, Ghent, Belgium.
| |
Collapse
|
46
|
microRNAs regulate TAL1 expression in T-cell acute lymphoblastic leukemia. Oncotarget 2016; 7:8268-81. [PMID: 26882564 PMCID: PMC4884991 DOI: 10.18632/oncotarget.6987] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/13/2016] [Indexed: 02/07/2023] Open
Abstract
The transcription factor TAL1 is a proto-oncogene whose aberrant expression in committed T-cell precursors is associated with the development of T-cell acute lymphoblastic leukemia (T-ALL). The mechanisms leading to aberrant activation of TAL1 in T-ALL patients who lack chromosomal rearrangements involving the TAL1 locus remain largely unknown. We hypothesized that TAL1 levels decrease during normal T-cell development at least in part due to miRNA-dependent silencing, in which case TAL1 over-expression in some T-ALL cases could be the consequence of deregulated miRNA expression. By performing computational prediction of miRNAs that bind to the human TAL1 mRNA we compiled a list of miRNAs that are candidates to regulate TAL1. Using a luciferase reporter system and mutagenesis assays we confirmed the miRNA-TAL1 mRNA interactions and selected candidate miRNAs: miR-101, miR-520d-5p, miR-140-5p, miR-448 and miR-485-5p. Over-expression of these microRNAs in different T-ALL cell lines consistently resulted in the down-regulation of TAL1 protein. In accordance, inhibition of miR-101 and miR-520d-5p promoted TAL1 protein expression. Importantly, we found that miR-101, miR-140-5p, miR-448 and miR-485-5p were down-regulated in T-ALL patient specimens and T-ALL cell lines. Our results show for the first time the existence of epigenetic regulation of TAL1 by specific miRNAs which may contribute, at least in part, to the ectopic expression of TAL1 in some T-ALL cases.
Collapse
|
47
|
Bradshaw G, Sutherland HG, Haupt LM, Griffiths LR. Dysregulated MicroRNA Expression Profiles and Potential Cellular, Circulating and Polymorphic Biomarkers in Non-Hodgkin Lymphoma. Genes (Basel) 2016; 7:genes7120130. [PMID: 27999330 PMCID: PMC5192506 DOI: 10.3390/genes7120130] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/23/2016] [Accepted: 12/05/2016] [Indexed: 02/07/2023] Open
Abstract
A large number of studies have focused on identifying molecular biomarkers, including microRNAs (miRNAs) to aid in the diagnosis and prognosis of the most common subtypes of non-Hodgkin lymphoma (NHL), Diffuse Large B-cell Lymphoma and Follicular Lymphoma. NHL is difficult to diagnose and treat with many cases becoming resistant to chemotherapy, hence the need to identify improved biomarkers to aid in both diagnosis and treatment modalities. This review summarises more recent research on the dysregulated miRNA expression profiles found in NHL, as well as the regulatory role and biomarker potential of cellular and circulating miRNAs found in tissue and serum, respectively. In addition, the emerging field of research focusing on miRNA single nucleotide polymorphisms (miRSNPs) in genes of the miRNA biogenesis pathway, in miRNA genes themselves, and in their target sites may provide new insights on gene expression changes in these genes. These miRSNPs may impact miRNA networks and have been shown to play a role in a host of different cancer types including haematological malignancies. With respect to NHL, a number of SNPs in miRNA-binding sites in target genes have been shown to be associated with overall survival.
Collapse
Affiliation(s)
- Gabrielle Bradshaw
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia.
| | - Heidi G Sutherland
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia.
| | - Larisa M Haupt
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia.
| | - Lyn R Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia.
| |
Collapse
|
48
|
Yang Z, Wu L, Wang A, Tang W, Zhao Y, Zhao H, Teschendorff AE. dbDEMC 2.0: updated database of differentially expressed miRNAs in human cancers. Nucleic Acids Res 2016; 45:D812-D818. [PMID: 27899556 PMCID: PMC5210560 DOI: 10.1093/nar/gkw1079] [Citation(s) in RCA: 257] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/01/2016] [Accepted: 10/27/2016] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) are often deregulated in cancer and are thought to play an important role in cancer development. Large amount of differentially expressed miRNAs have been identified in various cancers by using high-throughput methods. It is therefore quite important to make a comprehensive collection of these miRNAs and to decipher their roles in oncogenesis and tumor progression. In 2010, we presented the first release of dbDEMC, representing a database for collection of differentially expressed miRNAs in human cancers obtained from microarray data. Here we describe an update of the database. dbDEMC 2.0 documents 209 expression profiling data sets across 36 cancer types and 73 subtypes, and a total of 2224 differentially expressed miRNAs were identified. An easy-to-use web interface was constructed that allows users to make a quick search of the differentially expressed miRNAs in certain cancer types. In addition, a new function of ‘meta-profiling’ was added to view differential expression events according to user-defined miRNAs and cancer types. We expect this database to continue to serve as a valuable source for cancer investigation and potential clinical application related to miRNAs. dbDEMC 2.0 is freely available at http://www.picb.ac.cn/dbDEMC.
Collapse
Affiliation(s)
- Zhen Yang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, 320 Yue Yang Road, Shanghai 200031, China
| | - Liangcai Wu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), 1 Shuaifuyuan, Wangfujing, Beijing 100730, China
| | - Anqiang Wang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), 1 Shuaifuyuan, Wangfujing, Beijing 100730, China
| | - Wei Tang
- School of Biotechnology Engineering, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, China
| | - Yi Zhao
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Haitao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), 1 Shuaifuyuan, Wangfujing, Beijing 100730, China
| | - Andrew E Teschendorff
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, 320 Yue Yang Road, Shanghai 200031, China .,Statistical Cancer Genomics, Paul O'Gorman Building, UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK
| |
Collapse
|
49
|
Van Cauwenbergh C, Van Schil K, Cannoodt R, Bauwens M, Van Laethem T, De Jaegere S, Steyaert W, Sante T, Menten B, Leroy BP, Coppieters F, De Baere E. arrEYE: a customized platform for high-resolution copy number analysis of coding and noncoding regions of known and candidate retinal dystrophy genes and retinal noncoding RNAs. Genet Med 2016; 19:457-466. [PMID: 27608171 PMCID: PMC5392597 DOI: 10.1038/gim.2016.119] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/06/2016] [Indexed: 12/13/2022] Open
Abstract
Purpose: Our goal was to design a customized microarray, arrEYE, for high-resolution copy number variant (CNV) analysis of known and candidate genes for inherited retinal dystrophy (iRD) and retina-expressed noncoding RNAs (ncRNAs). Methods: arrEYE contains probes for the full genomic region of 106 known iRD genes, including those implicated in retinitis pigmentosa (RP) (the most frequent iRD), cone–rod dystrophies, macular dystrophies, and an additional 60 candidate iRD genes and 196 ncRNAs. Eight CNVs in iRD genes identified by other techniques were used as positive controls. The test cohort consisted of 57 patients with autosomal dominant, X-linked, or simplex RP. Results: In an RP patient, a novel heterozygous deletion of exons 7 and 8 of the HGSNAT gene was identified: c.634-408_820+338delinsAGAATATG, p.(Glu212Glyfs*2). A known variant was found on the second allele: c.1843G>A, p.(Ala615Thr). Furthermore, we expanded the allelic spectrum of USH2A and RCBTB1 with novel CNVs. Conclusion: The arrEYE platform revealed subtle single-exon to larger CNVs in iRD genes that could be characterized at the nucleotide level, facilitated by the high resolution of the platform. We report the first CNV in HGSNAT that, combined with another mutation, leads to RP, further supporting its recently identified role in nonsyndromic iRD. Genet Med19 4, 457–466.
Collapse
Affiliation(s)
- Caroline Van Cauwenbergh
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Kristof Van Schil
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Robrecht Cannoodt
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium.,Data Mining and Modeling for Biomedicine group, VIB Inflammation Research Center, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Miriam Bauwens
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Thalia Van Laethem
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Sarah De Jaegere
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Wouter Steyaert
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Tom Sante
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Björn Menten
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Bart P Leroy
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium.,Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium.,Division of Ophthalmology and Center for Cellular & Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Frauke Coppieters
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Elfride De Baere
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
50
|
Wu J, Gong H, Bai Y, Zhang W. Analyzing the miRNA-Gene Networks to Mine the Important miRNAs under Skin of Human and Mouse. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5469371. [PMID: 27689084 PMCID: PMC5027296 DOI: 10.1155/2016/5469371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/15/2016] [Accepted: 07/27/2016] [Indexed: 12/26/2022]
Abstract
Genetic networks provide new mechanistic insights into the diversity of species morphology. In this study, we have integrated the MGI, GEO, and miRNA database to analyze the genetic regulatory networks under morphology difference of integument of humans and mice. We found that the gene expression network in the skin is highly divergent between human and mouse. The GO term of secretion was highly enriched, and this category was specific in human compared to mouse. These secretion genes might be involved in eccrine system evolution in human. In addition, total 62,637 miRNA binding target sites were predicted in human integument genes (IGs), while 26,280 miRNA binding target sites were predicted in mouse IGs. The interactions between miRNAs and IGs in human are more complex than those in mouse. Furthermore, hsa-miR-548, mmu-miR-466, and mmu-miR-467 have an enormous number of targets on IGs, which both have the role of inhibition of host immunity response. The pattern of distribution on the chromosome of these three miRNAs families is very different. The interaction of miRNA/IGs has added the new dimension in traditional gene regulation networks of skin. Our results are generating new insights into the gene networks basis of skin difference between human and mouse.
Collapse
Affiliation(s)
- Jianghong Wu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
- Inner Mongolia Prataculture Research Center, Chinese Academy of Science, Hohhot 010031, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
| | - Husile Gong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
| | - Yongsheng Bai
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Wenguang Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|