1
|
Barrios Steed D, Koundakjian D, Harris AD, Rosato AE, Konstantinidis KT, Woodworth MH. Leveraging strain competition to address antimicrobial resistance with microbiota therapies. Gut Microbes 2025; 17:2488046. [PMID: 40195644 PMCID: PMC11988218 DOI: 10.1080/19490976.2025.2488046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/28/2024] [Accepted: 03/28/2025] [Indexed: 04/09/2025] Open
Abstract
The enteric microbiota is an established reservoir for multidrug-resistant organisms that present urgent clinical and public health threats. Observational data and small interventional studies suggest that microbiome interventions, such as fecal microbiota products and characterized live biotherapeutic bacterial strains, could be an effective antibiotic-sparing prevention approach to address these threats. However, bacterial colonization is a complex ecological phenomenon that remains understudied in the context of the human gut. Antibiotic resistance is one among many adaptative strategies that impact long-term colonization. Here we review and synthesize evidence of how bacterial competition and differential fitness in the context of the gut present opportunities to improve mechanistic understanding of colonization resistance, therapeutic development, patient care, and ultimately public health.
Collapse
Affiliation(s)
- Danielle Barrios Steed
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Anthony D. Harris
- Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute for Healthcare Computing, University of Maryland, Baltimore, MD, USA
| | - Adriana E Rosato
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
| | | | - Michael H Woodworth
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
2
|
Wu Y, Chen X, Wu Q, Wang Q. Research progress on fecal microbiota transplantation in tumor prevention and treatment. Open Life Sci 2025; 20:20220954. [PMID: 40177417 PMCID: PMC11964189 DOI: 10.1515/biol-2022-0954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/27/2024] [Accepted: 08/07/2024] [Indexed: 04/05/2025] Open
Abstract
The application of fecal microbiota transplantation (FMT) as a therapeutic strategy to directly modify the makeup of the gut microbiota has made significant progress in the last few decades. The gut microbiota, a sizable microbial community present in the human gut, is essential for digestion, immunomodulation, and nutrition absorption. Alternatively, a growing body of research indicates that gut microbiota is a key contributor to cancer, and intratumoral bacteria are considered to be crucial "accomplices" in the development and metastasis of malignancies. The exceptional clinical effectiveness of FMT in treating melanoma patients has been adequately established in earlier research, which has created new avenues for the diagnosis and treatment of cancer and sparked an increasing interest in the treatment and prevention of other cancers. However, further research on the function and mechanisms of the gut microbiota is required to properly comprehend the impact and role of these organisms in tumor regulation. In this article, we present a detailed account of the influence of FMT on the entire course of cancer patients' illness and treatment, from tumor development, metastasis, and invasion, to the impact and application of treatment and prognosis, as well as address the associated mechanisms.
Collapse
Affiliation(s)
- Yijia Wu
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xi Chen
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Qingming Wu
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Qiang Wang
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, China
| |
Collapse
|
3
|
Lin SM, Le PH, Chen CL, Yeh YM, Liao HL, Chiu CH. Fecal microbiota transplantation to decolonize vancomycin-resistant Enterococcus: A pilot study to evaluate safety and clinical outcome. J Glob Antimicrob Resist 2025:S2213-7165(25)00069-4. [PMID: 40154780 DOI: 10.1016/j.jgar.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025] Open
Abstract
OBJECTIVES Fecal microbiota transplantation (FMT) has shown promise as a treatment for recurrent or refractory Clostridioides difficile infections. This study aimed to evaluate the decolonization effects of FMT on vancomycin-resistant Enterococcus (VRE). METHODS This feasibility trial prospectively recruited patients with more than three recurrent VRE infections. FMT was performed by infusing fecal microbiota solutions from healthy, unrelated donors into the participants' guts via colonoscopy. Fecal microbiota profiles before and after FMT were analyzed. RESULTS Three of the six patients (50%) experienced VRE decolonization after FMT, lasting over six months. Baseline analysis revealed that patients who achieved decolonization had greater microbial diversity compared to those with persistent VRE colonization. Throughout the study, there were no adverse events observed in the patients after FMT. Elevated alpha diversity persisted in responders, while non-responders showed no significant changes. In responders, the abundance of genera within the phylum Firmicutes (Bacillota), including Anaerostipes, Blautia, Faecalibacterium, and Ruminococcus, and the genus Collinsella within the phylum Actinobacteriota increased steadily through 180 days post-FMT. CONCLUSIONS FMT may leverage bacterial strain competition to facilitate decolonization of drug-resistant organisms, with successful VRE decolonization potentially linked to increased abundance of phyla Firmicutes and Actinobacteriota over 6 months.
Collapse
Affiliation(s)
- Shu-Min Lin
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan, Taiwan
| | - Puo-Hsien Le
- Chang Gung Microbiota Therapy Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Chang Gung Inflammatory Bowel Disease Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chyi-Liang Chen
- Chang Gung Microbiota Therapy Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Microbiology and Immunology, College of Medicine, School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yuan-Ming Yeh
- Chang Gung Microbiota Therapy Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Hsien-Li Liao
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Chang Gung Microbiota Therapy Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
4
|
Ding W, Cheng Y, Liu X, Zhu Z, Wu L, Gao J, Lei W, Li Y, Zhou X, Wu J, Gao Y, Ling Z, Jiang R. Harnessing the human gut microbiota: an emerging frontier in combatting multidrug-resistant bacteria. Front Immunol 2025; 16:1563450. [PMID: 40165964 PMCID: PMC11955657 DOI: 10.3389/fimmu.2025.1563450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Antimicrobial resistance (AMR) has become a major and escalating global health threat, undermining the effectiveness of current antibiotic and antimicrobial therapies. The rise of multidrug-resistant bacteria has led to increasingly difficult-to-treat infections, resulting in higher morbidity, mortality, and healthcare costs. Tackling this crisis requires the development of novel antimicrobial agents, optimization of current therapeutic strategies, and global initiatives in infection surveillance and control. Recent studies highlight the crucial role of the human gut microbiota in defending against AMR pathogens. A balanced microbiota protects the body through mechanisms such as colonization resistance, positioning it as a key ally in the fight against AMR. In contrast, gut dysbiosis disrupts this defense, thereby facilitating the persistence, colonization, and dissemination of resistant pathogens. This review will explore how gut microbiota influence drug-resistant bacterial infections, its involvement in various types of AMR-related infections, and the potential for novel microbiota-targeted therapies, such as fecal microbiota transplantation, prebiotics, probiotics, phage therapy. Elucidating the interactions between gut microbiota and AMR pathogens will provide critical insights for developing novel therapeutic strategies to prevent and treat AMR infections. While previous reviews have focused on the general impact of the microbiota on human health, this review will specifically look at the latest research on the interactions between the gut microbiota and the evolution and spread of AMR, highlighting potential therapeutic strategies.
Collapse
Affiliation(s)
- Wenwen Ding
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhangcheng Zhu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lingbin Wu
- Department of Intensive Care Unit, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| | - Jie Gao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenhui Lei
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Yating Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xin Zhou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Center for Genomics and Personalized Medicine, Stanford, CA, United States
- Stanford Diabetes Research Center, Stanford, CA, United States
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Jian Wu
- Department of Clinical Laboratory, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Yongtao Gao
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ruilai Jiang
- Department of Intensive Care Unit, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| |
Collapse
|
5
|
Claytor JD, Lin DL, Magnaye KM, Guerrero YS, Langelier CR, Lynch SV, El-Nachef N. Effect of Fecal Microbiota Transplant on Antibiotic Resistance Genes Among Patients with Chronic Pouchitis. Dig Dis Sci 2025; 70:982-990. [PMID: 39804518 DOI: 10.1007/s10620-024-08828-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 12/24/2024] [Indexed: 03/20/2025]
Abstract
BACKGROUND Pouchitis is common among patients with ulcerative colitis (UC) who have had colectomy with ileal pouch-anal anastomosis. Antibiotics are first-line therapy for pouch inflammation, increasing the potential for gut colonization with multi-drug resistant organisms (MDRO). Fecal microbial transplant (FMT) is being studied in the treatment of pouchitis and in the eradication of MDRO. Prior work using aerobic antibiotic culture disks suggests that some patients with chronic pouchitis may regain fluoroquinolone sensitivity after FMT. However, gut MDRO include anaerobic, fastidious organisms that are difficult to culture using traditional methods. AIM We aimed to assess whether FMT reduced the abundance of antibiotic resistance genes (ARG) or affected resistome diversity, evenness, or richness in patients with chronic pouchitis. METHODS We collected clinical characteristics regarding infections and antibiotic exposures for 18 patients who had previously been enrolled in an observational study investigating FMT as a treatment for pouchitis. Twenty-six pre- and post-FMT stool samples were analyzed using FLASH (Finding Low Abundance Sequences by Hybridization), a CRISPR/Cas9-based shotgun metagenomic sequence enrichment technique that detects acquired and chromosomal bacterial ARGs. Wilcoxon rank sum tests were used to assess differences in clinical characteristics, ARG counts, resistome diversity and ARG richness, pre- and post-FMT. RESULTS All 13 of the patients with sufficient stool samples for analysis had recently received antibiotics for pouchitis prior to a single endoscopic FMT. Fecal microbiomes of all patients had evidence of multi-drug resistance genes and ESBL resistance genes at baseline; 62% encoded fluoroquinolone resistance genes. A numerical decrease in overall ARG counts was noted post-FMT, but no statistically significant differences were noted (P = 0.19). Richness and diversity were not significantly altered. Three patients developed infections during the 5-year follow-up period, none of which were associated with MDRO. CONCLUSION Antibiotic resistance genes are prevalent among antibiotic-exposed patients with chronic pouchitis. FMT led to a numerical decrease, but no statistically significant change in ARG, nor were there significant changes in the diversity, richness, or evenness of ARGs. Further investigations to improve FMT engraftment and to optimize FMT delivery in patients with inflammatory pouch disorders are warranted.
Collapse
Affiliation(s)
- Jennifer D Claytor
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Din L Lin
- Department of Immunology, University of California, San Francisco, CA, USA
| | - Kevin M Magnaye
- Department of Immunology, University of California, San Francisco, CA, USA
- Caris Life Sciences, 3600 W Royal Ln, Irving, 75063, TX, USA
| | | | - Charles R Langelier
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Division of Infectious Diseases, University of California, San Francisco, CA, USA
| | - Susan V Lynch
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Division of Gastroenterology, University of California, San Francisco, CA, USA
| | - Najwa El-Nachef
- Division of Gastroenterology, University of California, San Francisco, CA, USA
- Division of Gastroenterology, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
6
|
Almeida-Santos AC, Novais C, Peixe L, Freitas AR. Vancomycin-resistant Enterococcus faecium: A current perspective on resilience, adaptation, and the urgent need for novel strategies. J Glob Antimicrob Resist 2025; 41:233-252. [PMID: 39880121 DOI: 10.1016/j.jgar.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/31/2025] Open
Abstract
Vancomycin-resistant Enterococcus faecium (VREfm) has become a critical opportunistic pathogen, urgently requiring new antimicrobial strategies due to its rising prevalence and significant impact on patient safety and healthcare costs. VREfm continues to evolve through mutations and the acquisition of new genes via horizontal gene transfer, contributing to resistance against several last-resort antibiotics. Although primarily hospital-associated, VREfm are also detected in the community, food chain, livestock, and environmental sources like wastewater, indicating diverse transmission pathways and the need for a One Health approach. Advances in genomics have shed light on VREfm's persistence in hospital settings, particularly its adaptation to the gastrointestinal tract of hospitalized patients, recent clonal shifts, and the dominance of specific clonal lineages. Despite extensive research, significant gaps remain in understanding the molecular mechanisms behind VREfm's unique adaptation to clinical environments. In this review, we aim to present an overview of VREfm current prevalence, mechanisms of resistance, and unveil the adaptive traits that have facilitated VREfm's rise and global success. A particular focus is given to key plasmids, namely linear plasmids, virulence factors, and bacteriocins as potential drivers in the global emergence of the ST78 clonal lineage. We also address diagnostic challenges and the limited treatment options available for VREfm, as well as emerging antibiotic alternatives aimed at restoring gut microbiota balance and curbing VREfm proliferation. A multifaceted approach combining research, clinical practices, and public health policies is crucial to mitigate the impact of this superbug and preserve antimicrobial effectiveness for future generations.
Collapse
Affiliation(s)
- Ana C Almeida-Santos
- UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; Laboratório Associado i4HB, Instituto para a Saúde e a Bioeconomia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Carla Novais
- UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; Laboratório Associado i4HB, Instituto para a Saúde e a Bioeconomia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Luísa Peixe
- UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; Laboratório Associado i4HB, Instituto para a Saúde e a Bioeconomia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Ana R Freitas
- UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; Laboratório Associado i4HB, Instituto para a Saúde e a Bioeconomia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Instituto Universitário de Ciências da Saúde (1H-TOXRUN, IUCS-CESPU), Gandra, Portugal.
| |
Collapse
|
7
|
Jasiński M, Biliński J, Maciejewska M, Ostrowska K, Rusicka-Krzewska P, Konarski W, Podsiadły E, Snarski E, Basak GW. Impact of gut colonization by antibiotic-resistant bacteria on the outcomes of autologous stem cell transplantation in multiple myeloma. Sci Rep 2024; 14:31221. [PMID: 39732757 DOI: 10.1038/s41598-024-82589-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/06/2024] [Indexed: 12/30/2024] Open
Abstract
Patients undergoing autologous stem cell transplantation (auto-SCT) face elevated risks of infections. Additionally, patients colonized in the gastrointestinal tract with antibiotic-resistant bacteria (ARB) are at higher risk of infection with ARB and other infections. Therefore, patients colonized with ARB before auto-SCT should present with an exceptionally high incidence of infections. According to current literature, ARB colonization is the surrogate marker for dysbiosis, which is known to be associated with a diagnosis of multiple myeloma (MM). Given that, this retrospective study aimed to assess the influence of ARB colonization on infection rates, hematopoiesis regeneration, mucositis, overall survival, and progression-free survival following auto-SCT in MM. Data from 138 MM patients undergoing 141 auto-SCT were analyzed, with 15% showing ARB colonization. Among colonized patients, ESBL-producing gram-negative rods predominated. Patients with gut ARB colonization had significantly higher infection rates than non-colonized individuals (52 vs. 26%, P = 0.02), particularly bloodstream infections (43% vs. 14%, P = 0.004). Colonized patients also tended to exhibit shorter survival rates although there was no statistical significance (1-year and 2-year OS; non-colonized vs. colonized; 97 and 92% vs. 90 and 86%; p = 0.054). Based on our results, gut colonization before auto-SCT negatively affects treatment outcomes.
Collapse
Affiliation(s)
- Marcin Jasiński
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, 02-091, Poland
| | - Jarosław Biliński
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland.
- Human Biome Institute, Gdansk, 80-137, Poland.
| | - Martyna Maciejewska
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Karolina Ostrowska
- Laboratory of Microbiology, University Center of Laboratory Medicine, 1a Banacha Str, Warsaw, 02-097, Poland
| | - Patrycja Rusicka-Krzewska
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Wojciech Konarski
- Department of Orthopaedic Surgery, Ciechanów Hospital, Ciechanów, 06-400, Poland
| | - Edyta Podsiadły
- Laboratory of Microbiology, University Center of Laboratory Medicine, 1a Banacha Str, Warsaw, 02-097, Poland
- Department of Dental Microbiology, Medical University of Warsaw, Warsaw, 02-091, Poland
| | - Emilian Snarski
- Institute of Medical Sciences, University of Zielona Góra, Zielona Góra, Poland
| | - Grzegorz W Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
- Human Biome Institute, Gdansk, 80-137, Poland
| |
Collapse
|
8
|
Cibulkova I, Rehorova V, Soukupova H, Waldauf P, Cahova M, Manak J, Matejovic M, Duska F. Allogenic faecal microbiota transplantation for antibiotic-associated diarrhoea in critically ill patients (FEBATRICE)-Study protocol for a multi-centre randomised controlled trial (phase II). PLoS One 2024; 19:e0310180. [PMID: 39729440 DOI: 10.1371/journal.pone.0310180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/25/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Exposure of critically ill patients to antibiotics lead to intestinal dysbiosis, which often manifests as antibiotic-associated diarrhoea. Faecal microbiota transplantation restores gut microbiota and may lead to faster resolution of diarrhoea. METHODS Into this prospective, multi-centre, randomized controlled trial we will enrol 36 critically ill patients with antibiotic-associated diarrhoea. We will exclude patients with ongoing sepsis, need of systemic antibiotics, or those after recent bowel surgery or any other reason that prevents the FMT. Randomisation will be in 1:1 ratio. Patients in the control group will receive standard treatment based on oral diosmectite. In the intervention group, patients will receive, in addition to the standard of care, faecal microbiota transplantation via rectal tube, in the form of a preparation mixed from 7 thawed aliquots (50 mL) made from fresh stool of 7 healthy unrelated donors and quarantined deep frozen for 3 to 12 months. Primary outcome is treatment failure defined as intervention not delivered or diarrhoea persisting at day 7 after randomisation. Secondary outcomes include safety measures such as systemic inflammatory response, adverse events, and also diarrhoea recurrence within 28 days. Exploratory outcomes focus on gut barrier function and composition of intestinal microbiota. DISCUSSION Faecal microbiota transplantation has been effective for dysbiosis in non-critically ill patients with recurrent C. difficile infections and it is plausible to hypothesize that it will be equally effective for symptoms of dysbiosis in the critically ill patients. In addition, animal experiments and observational data suggest other benefits such as reduced colonization with multi-drug resistant bacteria and improved gut barrier and immune function. The frozen faeces from unrelated donors are immediately available when needed, unlike those from the relatives, who require lengthy investigation. Using multiple donors maximises graft microbiota diversity. Nonetheless, in vulnerable critically ill patients, Faecal microbiota transplantation might lead to bacterial translocation and unforeseen complications. From growing number of case series it is clear that its off label use in the critically ill patients is increasing and that there is a burning need to objectively assess its efficacy and safety, which this trial aims. TRIAL REGISTRATION www.clinicaltrials.gov (NCT05430269).
Collapse
Affiliation(s)
- Ivana Cibulkova
- Division of Gastroenterology, Department of Internal Medicine, Kralovske Vinohrady University Hospital, Prague, Czech Republic
- The Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Veronika Rehorova
- The Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Anaesthesia and Intensive Care Medicine, Kralovske Vinohrady University Hospital, Prague, Czech Republic
| | - Hana Soukupova
- The Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Microbiology, Kralovske Vinohrady University Hospital, Prague, Czech Republic
| | - Petr Waldauf
- The Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Anaesthesia and Intensive Care Medicine, Kralovske Vinohrady University Hospital, Prague, Czech Republic
| | - Monika Cahova
- Department of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jan Manak
- 3rd Department of Internal Medicine-Metabolism and Gerontology, Charles University Teaching Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Martin Matejovic
- 1st Department of Internal Medicine, Faculty of Medicine in Pilsen, Pilsen University Hospital, Pilsen, Czech Republic
| | - Frantisek Duska
- The Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Anaesthesia and Intensive Care Medicine, Kralovske Vinohrady University Hospital, Prague, Czech Republic
| |
Collapse
|
9
|
Zhuang L, You Y, Zeng S, Yu Z, Wang H, Chen M, Wen W. Fecal microbiota transplantation in severe pneumonia: a case report on overcoming pan-drug resistant Klebsiella pneumoniae infection. Front Med (Lausanne) 2024; 11:1451751. [PMID: 39776845 PMCID: PMC11703846 DOI: 10.3389/fmed.2024.1451751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Objective To evaluate the therapeutic potential of fecal microbiota transplantation (FMT) in treating severe pneumonia patients with concurrent pan-drug resistant Klebsiella pneumoniae infection. Methods A case report of a 95-year-old female patient with severe pneumonia, complicated by pan-resistant bacterial infections, is presented. The patient was diagnosed with severe pneumonia caused by COVID-19, along with co-infections of Staphylococcus hominis, Enterococcus faecalis, Candida tropicalis, Pseudomonas aeruginosa, ESBL-producing pan-drug resistant Klebsiella pneumoniae and pan-resistant Acinetobacter baumannii. During hospitalization, the patient underwent comprehensive treatments, including antimicrobials, mechanical ventilation, and fiberoptic bronchoscopic alveolar lavage. FMT was administered following the failure of conventional treatments to resolve recurrent diarrhea, increased sputum production, and persistent pan-drug resistant Klebsiella pneumoniae infection. Results Post-FMT, the patient exhibited significant clinical improvement, including reduced sputum production, cessation of diarrhea, and the normalization of respiratory symptoms. Gut microbiota analysis revealed that FMT enhanced the abundance of beneficial microbiota and suppressed Klebsiella pneumoniae, and the patient was successfully discharged after 133 days of hospitalization. Conclusion FMT emerged as a pivotal intervention in the management of this severe pneumonia case, suggesting its efficacy in restoring gut microbiota balance and aiding recovery from multi-drug-resistant infections. This case underscores the potential of FMT as a therapeutic option in severe pulmonary infections, especially in the context of antibiotic resistance in severe pneumonia patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wen Wen
- Department of Respiratory and Critical Care Medicine, Fuzong Clinical Medical College of Fujian Medical University, Dongfang Hospital of Xiamen University, The 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| |
Collapse
|
10
|
Mullish BH, Innes AJ, Roberts LA, Anim-Burton S, Webber L, Johnson NA, Ghani R, Farshi P, Khan AB, Kinsella F, Kottaridis P, Krishnamurthy P, Nicholson E, Palanicawandar R, Wheeler G, Davies F, Marchesi JR, Pavlů J. Intestinal Microbiota Transplant Prior to Allogeneic Stem Cell Transplant (MAST) trial: study protocol for a multicentre, double-blinded, placebo-controlled, phase IIa trial. BMJ Open 2024; 14:e093120. [PMID: 39773995 PMCID: PMC11884074 DOI: 10.1136/bmjopen-2024-093120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
INTRODUCTION Lower diversity of the gut microbiome prior to allogeneic haematopoietic cell transplantation (HCT) correlates with reduced survival after the intervention. Most patients undergoing HCT for a haematological malignancy have previously received intensive chemotherapy, resulting in prolonged neutropenic episodes requiring broad-spectrum antibiotics; use of these has been linked to reduced microbiome diversity. Intestinal microbiota transplant (IMT) is a novel treatment approach that restores this diversity. We hypothesised that IMT performed prior to initiation of HCT conditioning restores microbiome diversity during the early stages of HCT, leading to decreased frequency of complications and improved outcomes of HCT. METHODS AND ANALYSIS 50 adult patients receiving allogeneic HCT will be recruited into this phase IIa trial and randomised 1:1 to receive capsulised IMT or matched placebo shortly prior to initiation of HCT conditioning and followed for up to 12 months. The primary outcome will be to assess the increase in alpha diversity between pre-IMT and that measured at ~42 days after IMT administration (day +28 of HCT), comparing the difference between patients receiving IMT compared with placebo. Secondary outcomes will include tolerability, the dynamics of gut microbiome diversity metrics and taxonomy over all time points assessed, as well as clinical outcomes (including burden of invasive infections, days of fever, admission to intensive care, development of graft-vs-host disease and mortality). ETHICS AND DISSEMINATION This study was approved by a UK Research Ethics Committee (REC reference: 23/NE/0105). Dissemination of results will be in concert with patient and public involvement group input and is expected to be primarily via abstract presentation at conferences and manuscripts in peer-reviewed journals. TRIAL REGISTRATION NUMBERS NCT6355583; EudraCT: 2022-003617-10.
Collapse
Affiliation(s)
- Benjamin H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Department of Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Andrew J Innes
- Centre for Haematology, Department of immunology and inflammation, Faculty of Medicine, Imperial College London, London, UK
- Department of Haematology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Lauren A Roberts
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Shian Anim-Burton
- Cancer Research UK Imperial Centre, Clinical Trials Section, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Lee Webber
- Cancer Research UK Imperial Centre, Clinical Trials Section, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Nicholas A Johnson
- Imperial Clinical Trials Unit, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Rohma Ghani
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Department of Infectious Diseases, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Pakhshan Farshi
- Department of Haematology, Manchester Royal Infirmary, Manchester, UK
| | - Anjum B Khan
- Department of Haematology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Francesca Kinsella
- Department of Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Panagiotis Kottaridis
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | | | - Emma Nicholson
- Department of Haematology, The Royal Marsden Hospital, London, UK
| | - Renuka Palanicawandar
- Centre for Haematology, Department of immunology and inflammation, Faculty of Medicine, Imperial College London, London, UK
- Department of Haematology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Graham Wheeler
- Imperial Clinical Trials Unit, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
- Statistics and Data Science Innovation Hub, GSK, London, UK
| | - Frances Davies
- Department of Infectious Diseases, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Julian R Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Jiří Pavlů
- Centre for Haematology, Department of immunology and inflammation, Faculty of Medicine, Imperial College London, London, UK
- Department of Haematology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
11
|
Akhmedov M, Espinoza JL. Addressing the surge of infections by multidrug-resistant Enterobacterales in hematopoietic cell transplantation. Blood Rev 2024; 68:101229. [PMID: 39217051 DOI: 10.1016/j.blre.2024.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Patients undergoing hematopoietic cell transplantation (HCT) have an increased risk of developing severe infections. In recent years, bloodstream infections caused by Gram-negative bacteria have been increasingly reported among HCT recipients, and many of these infections are caused by bacterial strains of the Enterobacterales order. Among these pathogens, particularly concerning are the multidrug-resistant Enterobacterales (MDRE), such as Extended Spectrum β-lactamase-producing Enterobacterales and Carbapenem-resistant Enterobacterales, since infections caused by these pathogens are difficult to treat due to the limited antimicrobial options and are associated with worse transplant outcomes. We summarized the evidence from studies published in PubMed and Scopus on the burden of MDRE infections in HCT recipients, and strategies for the management and prevention of these infections, including strict adherence to recommended infection control practices and multidisciplinary antimicrobial stewardship, the use of probiotics, and fecal microbiota transplantation, are also discussed.
Collapse
Affiliation(s)
- Mobil Akhmedov
- Department of High-dose Chemotherapy and Bone Marrow Transplantation, P. Hertsen Moscow Oncology Research Institute, Russia; Department of Oncology and Oncosurgery, Russian University of Medicine, Russia
| | | |
Collapse
|
12
|
Zhang HJ, Wang HW, Tian FY, Yang CZ, Zhao M, Ding YX, Wang XY, Cui XY. Decolonization strategies for ESBL-producing or carbapenem-resistant Enterobacterales carriage: a systematic review and meta-analysis. Sci Rep 2024; 14:24349. [PMID: 39420082 PMCID: PMC11487172 DOI: 10.1038/s41598-024-75791-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
The prevalence of extended-spectrum β-lactamase-producing Enterobacterales (ESBL-E) and carbapenem-resistant Enterobacterales (CRE) has become a global public health problem. ESBL-E/CRE colonization can increase the risk of infection in patients and lead to poor disease prognosis. We conducted a systematic review and meta-analysis to evaluate current decolonization strategies regarding ESBL-E/CRE and their efficacy. A literature search was conducted until August 2023 on the five databases to review decolonization strategies associated with ESBL-E/CRE. A meta-analysis was conducted using RevMan 5.4 to compare differences in the decolonization strategy with placebo controls. The primary outcome was decolonization rates, with secondary outcomes of attributable death and adverse events. Quality of identified studies was determined using the Newcastle-Ottawa scale and cochrane risk assessment tool. Random and fixed effects meta-analyses were performed to calculate pooled value. A total of 25 studies were included. In five randomized controlled trial (RCT) studies, the decolonization effect of selective digestive decontamination(SDD) on ESBL-E/CRE at the end of treatment was significantly better in the experimental group than the controls [risk radio (RR): 3.30; 95% CI 1.78-6.14]. In three n-RCT studies, the decolonization effect in the experimental group was still better than the controls one month after SDD therapy [odds ratio (OR): 4.01; 95% CI 1.88-8.56]. The combined decolonization rates reported by six single-arm trial studies of SDD therapy ranged from 53.8 to 68.0%. Additionally, TSA analysis confirmed the effectiveness of SDD therapy. In studies on Faecal microbiota transplantation (FMT) therapy, the decolonization effect of the experimental group was significantly better than the controls 1 month after treatment (OR: 2.57; 95% CI 1.07-6.16). In studies without a control group and with varying follow-up times, the decolonization rates varied widely but indicated the effectiveness trend of FMT therapy (61.3-81.2%). Currently, research on the decolonization effect of probiotic therapy on ESBL-E/CRE is insufficient, and only a systematic review was conducted. SDD and FMT strategies have short-term benefits for ESBL-E/CRE decolonization, but long-term effects are unclear. The effect of probiotic therapy on ESBL-E/CRE decolonization is an interesting topic that still requires further investigation.
Collapse
Affiliation(s)
- Hai-Jiao Zhang
- Infection Management Department of the Second Hospital of Shanxi Medical University, No.382, Wuyi Road, Taiyuan, 030000, Shanxi, China
| | - Hong-Wei Wang
- Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Fang-Ying Tian
- Infection Management Department of the Second Hospital of Shanxi Medical University, No.382, Wuyi Road, Taiyuan, 030000, Shanxi, China.
| | - Cai-Zheng Yang
- Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Ming Zhao
- Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Yong-Xia Ding
- Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Xue-Yu Wang
- Department of Infectious Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Xin-Yu Cui
- Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| |
Collapse
|
13
|
Naji A, Siskin D, Woodworth MH, Lee JR, Kraft CS, Mehta N. The Role of the Gut, Urine, and Vaginal Microbiomes in the Pathogenesis of Urinary Tract Infection in Women and Consideration of Microbiome Therapeutics. Open Forum Infect Dis 2024; 11:ofae471. [PMID: 39247802 PMCID: PMC11378400 DOI: 10.1093/ofid/ofae471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024] Open
Abstract
The gut, urine, and vaginal microbiomes play significant roles in the pathogenesis of recurrent urinary tract infections (rUTIs). Analysis of these microbiota has shown distinct associations with urinary tract infections. Encouraging data indicate that rUTIs may be responsive to microbiome treatments such as fecal microbiota transplantation, expanding potential treatments beyond antibiotics, hydration, and behavioral interventions. If successful, these nonantibiotic therapies have the potential to increase time between rUTI episodes and reduce the prevalence of multidrug-resistant organisms. In this review, we discuss the role of the 3 microbiomes in the pathogenesis of rUTI and utilization of live biotherapeutic products as therapy for rUTI.
Collapse
Affiliation(s)
- Amal Naji
- Piedmont Hospital, Atlanta, Georgia, USA
| | | | - Michael H Woodworth
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - John R Lee
- Division of Nephrology and Hypertension, Weill Cornell Medicine, New York, New York, USA
| | - Colleen S Kraft
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| | - Nirja Mehta
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
14
|
Davido B, Watson AR, de Truchis P, Galazzo G, Dinh A, Batista R, Terveer EM, Lawrence C, Michelon H, Jobard M, Saleh-Mghir A, Kuijper EJ, Caballero S. Bacterial diversity and specific taxa are associated with decolonization of carbapenemase-producing enterobacterales after fecal microbiota transplantation. J Infect 2024; 89:106216. [PMID: 38964511 DOI: 10.1016/j.jinf.2024.106216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
OBJECTIVES We evaluated the effect of fecal microbiota transplantation (FMT) on the clearance of carbapenemase-producing Enterobacterales (CPE) carriage. METHODS We performed a prospective, multi-center study, conducted among patients who received a single dose of FMT from one of four healthy donors. The primary endpoint was complete clearance of CPE carriage two weeks after FMT with a secondary endpoint at three months. Shotgun metagenomic sequencing was performed to assess gut microbiota composition of donors and recipients before and after FMT. RESULTS Twenty CPE-colonized patients were included in the study, where post-FMT 20% (n = 4/20) of patients met the primary endpoint and 40% (n = 8/20) of patients met the secondary endpoint. Kaplan-Meier curves between patients with FMT intervention and the control group (n = 82) revealed a similar rate of decolonization between groups. Microbiota composition analyses revealed that response to FMT was not donor-dependent. Responders had a significantly lower relative abundance of CPE species pre-FMT than non-responders, and 14 days post-FMT responders had significantly higher bacterial species richness and alpha diversity compared to non-responders (p < 0.05). Responder fecal samples were also enriched in specific species, with significantly higher relative abundances of Faecalibacterium prausnitzii, Parabacteroides distasonis, Collinsella aerofaciens, Alistipes finegoldii and Blautia_A sp900066335 (q<0.01) compared to non-responders. CONCLUSION FMT administration using the proposed regimen did not achieve statistical significance for complete CPE decolonization but was correlated with the relative abundance of specific bacterial taxa, including CPE species.
Collapse
Affiliation(s)
- Benjamin Davido
- Maladies Infectieuses, Hôpital Universitaire Raymond-Poincaré, AP-HP Université Paris Saclay, 92380 Garches, France; FHU PaCeMM, Hôpital Saint-Antoine, AP-HP Université Paris Centre, 75571 Paris Cedex 12, France.
| | | | - Pierre de Truchis
- Maladies Infectieuses, Hôpital Universitaire Raymond-Poincaré, AP-HP Université Paris Saclay, 92380 Garches, France
| | | | - Aurelien Dinh
- Maladies Infectieuses, Hôpital Universitaire Raymond-Poincaré, AP-HP Université Paris Saclay, 92380 Garches, France; FHU PaCeMM, Hôpital Saint-Antoine, AP-HP Université Paris Centre, 75571 Paris Cedex 12, France
| | - Rui Batista
- Pharmacie Hospitalière, Hôpital Universitaire Cochin, AP-HP, 75014 Paris, France
| | - Elisabeth M Terveer
- Department of Medical Microbiology, Netherlands Donor Feces Bank (NDFB) at Leiden University Medical Center, Leiden, the Netherlands
| | - Christine Lawrence
- Laboratoire de Microbiologie, Hôpital Universitaire Raymond-Poincaré, AP-HP Université Paris Saclay, 92380 Garches, France
| | - Hugues Michelon
- Pharmacie Hospitalière, Hôpital Universitaire Raymond-Poincaré, AP-HP Université Paris Saclay, 92380 Garches, France
| | - Marion Jobard
- Pharmacie Hospitalière, Hôpital Universitaire Cochin, AP-HP, 75014 Paris, France
| | - Azzam Saleh-Mghir
- Maladies Infectieuses, Hôpital Universitaire Raymond-Poincaré, AP-HP Université Paris Saclay, 92380 Garches, France; UMR1173, Université Versailles Saint-Quentin, 78000 Versailles, France
| | - Ed J Kuijper
- Department of Medical Microbiology, Netherlands Donor Feces Bank (NDFB) at Leiden University Medical Center, Leiden, the Netherlands
| | | |
Collapse
|
15
|
Gholamzad A, Khakpour N, Hashemi SMA, Goudarzi Y, Ahmadi P, Gholamzad M, Mohammadi M, Hashemi M. Exploring the virome: An integral part of human health and disease. Pathol Res Pract 2024; 260:155466. [PMID: 39053136 DOI: 10.1016/j.prp.2024.155466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
The human microbiome is a complex network of microorganisms that includes viruses, bacteria, and fungi. The gut virome is an essential component of the immune system, which is responsible for regulating the growth and responses of the host's immune system. The virome maintains a crucial role in the development of numerous diseases, including inflammatory bowel disease (IBD), Crohn's disease, and neurodegenerative disorders. The human virome has emerged as a promising biomarker and therapeutic target. This comprehensive review summarizes the present understanding of the virome and its implications in matters of health and disease, with a focus on the Human Microbiome Project.
Collapse
Affiliation(s)
- Amir Gholamzad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloofar Khakpour
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Ali Hashemi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yalda Goudarzi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Parisa Ahmadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Gholamzad
- Department of Microbiology and Immunology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mahya Mohammadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology ,Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
16
|
Berryhill BA, Burke KB, Fontaine J, Brink CE, Harvill MG, Goldberg DA, Konstantinidis KT, Levin BR, Woodworth MH. Enteric Populations of Escherichia coli are Likely to be Resistant to Phages Due to O Antigen Expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.08.566299. [PMID: 37986824 PMCID: PMC10659284 DOI: 10.1101/2023.11.08.566299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
There is a surfeit of bioinformatic data showing that bacteriophages abound in the enteric microbiomes of humans. What is the contribution of these viruses in shaping the bacterial strain and species composition of the gut microbiome and how are these phages maintained over time? To address these questions, we performed experiments with Escherichia coli and phages isolated from four fecal microbiota transplantation (FMT) doses as representative samples of non-dysbiotic enteric microbiota and develop and analyze the properties of a mathematical model of the population and evolutionary dynamics of bacteria and phage. Our models predict and experiments confirm that due to production of the O antigen, E. coli in the enteric microbiome are likely to be resistant to infection with co-occurring phages. Furthermore, our modeling suggests that the phages can be maintained in the population due to the high rates of host transition between resistant and sensitive states, which we call leaky resistance. Based on our observations and model predictions, we postulate that the phages found in the human gut are likely to play little role in shaping the composition of E. coli at the strain level in the enteric microbiome in healthy individuals. How general this is for other species of bacteria in the enteric flora is not yet clear, although O antigen expression is common across many taxa.
Collapse
Affiliation(s)
- Brandon A. Berryhill
- Department of Biology, Emory University; Atlanta, Georgia, 30322, USA
- Program in Microbiology and Molecular Genetics (MMG), Graduate Division of Biological and Biomedical Sciences (GDBBS), Laney Graduate School, Emory University; Atlanta, Georgia, 30322, USA
| | - Kylie B. Burke
- Department of Biology, Emory University; Atlanta, Georgia, 30322, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine; Atlanta, Georgia, 30322, USA
| | - Jake Fontaine
- Department of Biology, Emory University; Atlanta, Georgia, 30322, USA
| | - Catherine E. Brink
- Ocean Science & Engineering, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mason G. Harvill
- Department of Biology, Emory University; Atlanta, Georgia, 30322, USA
| | - David A. Goldberg
- Department of Biology, Emory University; Atlanta, Georgia, 30322, USA
| | - Konstantinos T. Konstantinidis
- Ocean Science & Engineering, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Bruce R. Levin
- Department of Biology, Emory University; Atlanta, Georgia, 30322, USA
| | - Michael H. Woodworth
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine; Atlanta, Georgia, 30322, USA
| |
Collapse
|
17
|
Wang H, Wei W, Liu F, Wang M, Zhang Y, Du S. Effects of fucoidan and synbiotics supplementation during bismuth quadruple therapy of Helicobacter pylori infection on gut microbial homeostasis: an open-label, randomized clinical trial. Front Nutr 2024; 11:1407736. [PMID: 39010853 PMCID: PMC11246856 DOI: 10.3389/fnut.2024.1407736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
Background The eradication regimen for Helicobacter pylori (H. pylori) infection can induce gut dysbiosis. In this open-label, prospective, and randomized clinical trial, we aimed to assess the effects of fucoidan supplementation on the eradication rate and gut microbial homeostasis in the context of quadruple therapy, as well as to investigate the combined effects of fucoidan and synbiotics supplementations. Methods Eighty patients with H. pylori infection were enrolled and randomly assigned to one of four treatment groups: the QT (a 2-week quadruple therapy alone), QF (quadruple therapy plus a 6-week fucoidan supplementation), QS (quadruple therapy plus a 6-week synbiotics supplementation), and QFS (quadruple therapy with a 6-week fucoidan and synbiotics supplementation), with 20 patients in each group. The QT regimen included rabeprazole, minocycline, amoxicillin, and bismuth potassium citrate. The synbiotics supplementation contained three strains of Bifidobacterium, three strains of Lactobacillus, along with three types of dietary fiber. All of the patients underwent 13C-urea breath test (13C-UBT) at baseline and at the end of the 6th week after the initiation of the interventions. Fresh fecal samples were collected at baseline and at the end of the 6th week for gut microbiota analysis via 16S rRNA gene sequencing. Results The eradication rates among the four groups showed no significant difference. In the QT group, a significant reduction in α-diversity of gut microbiota diversity and a substantial shift in microbial composition were observed, particularly an increase in Escherichia-Shigella and a decrease in the abundance of genera from the Lachnospiraceae and Ruminococcaceae families. The Simpson index was significantly higher in the QF group than in the QT group. Neither the QS nor QFS groups exhibited significant changes in α-diversity or β-diversity. The QFS group was the only one that did not show a significant increase in the relative abundance of Escherichia-Shigella, and the relative abundance of Klebsiella significantly decreased in this group. Conclusion The current study provided supporting evidence for the positive role of fucoidan and synbiotics supplementation in the gut microbiota. The combined use of fucoidan and synbioticss might be a promising adjuvant regimen to mitigate gut dysbiosis during H. pylori eradication therapy.
Collapse
Affiliation(s)
- Huifen Wang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Wei Wei
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
- Department of Clinical Nutrition, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fang Liu
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Miao Wang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Yanli Zhang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Shiyu Du
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
18
|
Fang Q, Yin X, He Y, Feng Y, Zhang L, Luo H, Yin G, McNally A, Zong Z. Safety and efficacy of phage application in bacterial decolonisation: a systematic review. THE LANCET. MICROBE 2024; 5:e489-e499. [PMID: 38452780 DOI: 10.1016/s2666-5247(24)00002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/24/2023] [Accepted: 01/04/2024] [Indexed: 03/09/2024]
Abstract
Colonisation by bacterial pathogens typically precedes invasive infection and seeds transmission. Thus, effective decolonisation strategies are urgently needed. The literature reports attempts to use phages for decolonisation. To assess the in-vivo efficacy and safety of phages for bacterial decolonisation, we performed a systematic review by identifying relevant studies to assess the in-vivo efficacy and safety of phages for bacterial decolonisation. We searched PubMed, Embase (Ovid), MEDLINE (Ovid), Web of Science, and the Cochrane Library to identify relevant articles published between Jan 1, 1990, and May 12, 2023, without language restrictions. We included studies that assessed the efficacy of phage for bacterial decolonisation in humans or vertebrate animal models. This systematic review is registered with PROSPERO, CRD42023457637. We identified 6694 articles, of which 56 (51 animal studies and five clinical reports) met the predetermined selection criteria and were included in the final analysis. The gastrointestinal tract (n=49, 88%) was the most studied bacterial colonisation site, and other sites were central venous catheters, lung, nose, skin, and urinary tract. Of the 56 included studies, the bacterial load at the colonisation site was reported to decrease significantly in 45 (80%) studies, but only five described eradication of the target bacteria. 15 studies reported the safety of phages for decolonisation. No obvious adverse events were reported in both the short-term and long-term observation period. Given the increasing life-threatening risks posed by bacteria that are difficult to treat, phages could be an alternative option for bacterial decolonisation, although further optimisation is required before their application to meet clinical needs.
Collapse
Affiliation(s)
- Qingqing Fang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Department of General Practice, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Xin Yin
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Yanling He
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Yan Feng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Linwan Zhang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Huan Luo
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Geng Yin
- Department of General Practice, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China.
| |
Collapse
|
19
|
Weber D, Meedt E, Poeck H, Thiele-Orberg E, Hiergeist A, Gessner A, Holler E. Fecal Microbiota Transfer in Acute Graft-versus-Host Disease following Allogeneic Stem Cell Transplantation. Visc Med 2024; 40:1-6. [PMID: 39047173 PMCID: PMC11218917 DOI: 10.1159/000538303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/08/2024] [Indexed: 07/27/2024] Open
Abstract
Background Acute graft-versus-host disease (GvHD) is a major and sometimes lethal complication following allogeneic stem cell transplantation (aSCT). In the last 10 years, a massive loss of microbiota diversity with suppression of commensal bacteria and their protective metabolites has been identified as a major risk factor of GvHD. Summary Since 2018, several studies have been published showing some efficacy of fecal microbiota transfer (FMT) in aSCT patients. FMT was used (1) to eliminate antibiotic resistant bacteria, (2) to restore microbiota diversity after hematopoietic recovery, or (3) in most cases to treat steroid-resistant GvHD. Overall response rates between 30 and 50% have been reported, but randomized trials are still pending. Newer approaches try to evaluate the role of prophylactic FMT in order to prevent GvHD and other complications. Although aSCT patients are heavily immunosuppressed, no major safety concerns regarding FMT have been reported so far. Key Message FMT is a promising approach for modulation of GvHD after aSCT and should be further explored in randomized trials.
Collapse
Affiliation(s)
- D. Weber
- Department of Internal Medicine III (Haematology/Oncology), University Hospital Regensburg, Regensburg, Germany
| | - Elisabeth Meedt
- Department of Internal Medicine III (Haematology/Oncology), University Hospital Regensburg, Regensburg, Germany
| | - Hendrik Poeck
- Department of Internal Medicine III (Haematology/Oncology), University Hospital Regensburg, Regensburg, Germany
| | - Eric Thiele-Orberg
- Department of Internal Medicine III (Haematology/Oncology), University Hospital Regensburg, Regensburg, Germany
- Department of Medicine III, Technical University of Munich (TUM), Klinikum r.d. Isar, Munich, Germany
| | - Andreas Hiergeist
- Department for Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Andre Gessner
- Department for Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Ernst Holler
- Department of Internal Medicine III (Haematology/Oncology), University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
20
|
Kriz J, Hysperska V, Bebrova E, Roznetinska M. Faecal microbiota transplantation for multidrug-resistant organism decolonization in spinal cord injury patients: a case series. Infect Prev Pract 2024; 6:100340. [PMID: 38357521 PMCID: PMC10865020 DOI: 10.1016/j.infpip.2024.100340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/18/2023] [Indexed: 02/16/2024] Open
Abstract
Introduction The increase of multidrug-resistant (MDR) bacteria in healthcare settings is a worldwide concern. Isolation precautions must be implemented to control the significant risk of transmitting these pathogens among patients. Antibiotic decolonization is not recommended because of the threat of increasing antibiotic resistance. However, restoring gut microflora through faecal microbiota transplantation (FMT) is a hopeful solution. Patients and method In 2019-2022, FMT was indicated in seven patients of the Spinal Cord Unit at University Hospital Motol who were colonized with MDR bacterial strains. Five patients tested positive for carriage of carbapenemase-producing Enterobacteriaceae, and two were carriers of vancomycin-resistant enterococci. Isolation measures were implemented in all patients. Donor faeces were obtained from healthy, young, screened volunteers. According to local protocol, 200-300 ml of suspension was applied through a nasoduodenal tube. Results The mean age of the patients was 43 years. The mean length of previous hospital stay was 93.2 days. All patients were treated with broad-spectrum antibiotics for infectious complications before detecting colonisation with MDR bacteria. MDR organism decolonization was achieved in five patients, and consequently, isolation measures could be removed. Colonization persisted in two patients, one of whom remained colonized even after a third FMT. No adverse events were reported after FMT. Conclusion FMT is a safe and effective strategy to eradicate MDR bacteria, even in spinal cord injured patients. FMT can allow relaxation of isolation facilitates, the participation of patients in a complete rehabilitation program, their social integration, and transfer to follow-up rehabilitation centres.
Collapse
Affiliation(s)
- Jiri Kriz
- Spinal Cord Unit, Department of Rehabilitation and Sports Medicine, 2 Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
- Department of Orthopaedics and Traumatology, 3 Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Veronika Hysperska
- Spinal Cord Unit, Department of Rehabilitation and Sports Medicine, 2 Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Eliska Bebrova
- Department of Medical Microbiology, 2 Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Marketa Roznetinska
- Department of Internal Medicine, 2 Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
21
|
Nooij S, Vendrik KEW, Zwittink RD, Ducarmon QR, Keller JJ, Kuijper EJ, Terveer EM. Long-term beneficial effect of faecal microbiota transplantation on colonisation of multidrug-resistant bacteria and resistome abundance in patients with recurrent Clostridioides difficile infection. Genome Med 2024; 16:37. [PMID: 38419010 PMCID: PMC10902993 DOI: 10.1186/s13073-024-01306-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/13/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Multidrug-resistant (MDR) bacteria are a growing global threat, especially in healthcare facilities. Faecal microbiota transplantation (FMT) is an effective prevention strategy for recurrences of Clostridioides difficile infections and can also be useful for other microbiota-related diseases. METHODS We study the effect of FMT in patients with multiple recurrent C. difficile infections on colonisation with MDR bacteria and antibiotic resistance genes (ARG) on the short (3 weeks) and long term (1-3 years), combining culture methods and faecal metagenomics. RESULTS Based on MDR culture (n = 87 patients), we notice a decrease of 11.5% in the colonisation rate of MDR bacteria after FMT (20/87 before FMT = 23%, 10/87 3 weeks after FMT). Metagenomic sequencing of patient stool samples (n = 63) shows a reduction in relative abundances of ARGs in faeces, while the number of different resistance genes in patients remained higher compared to stools of their corresponding healthy donors (n = 11). Furthermore, plasmid predictions in metagenomic data indicate that patients harboured increased levels of resistance plasmids, which appear unaffected by FMT. In the long term (n = 22 patients), the recipients' resistomes are still donor-like, suggesting the effect of FMT may last for years. CONCLUSIONS Taken together, we hypothesise that FMT restores the gut microbiota to a composition that is closer to the composition of healthy donors, and potential pathogens are either lost or decreased to very low abundances. This process, however, does not end in the days following FMT. It may take months for the gut microbiome to re-establish a balanced state. Even though a reservoir of resistance genes remains, a notable part of which on plasmids, FMT decreases the total load of resistance genes.
Collapse
Affiliation(s)
- Sam Nooij
- Netherlands Donor Feces Bank, Leiden University Center of Infectious Diseases (LUCID) Medical Microbiology and Infection Prevention, Leiden University Medical Center, PO Box 9600, Postzone E4-P, Leiden, 2300RC, Netherlands.
- Center for Microbiome Analyses and Therapeutics, LUCID Research, Leiden University Medical Center, Leiden, Netherlands.
| | - Karuna E W Vendrik
- Netherlands Donor Feces Bank, Leiden University Center of Infectious Diseases (LUCID) Medical Microbiology and Infection Prevention, Leiden University Medical Center, PO Box 9600, Postzone E4-P, Leiden, 2300RC, Netherlands
- Center for Microbiome Analyses and Therapeutics, LUCID Research, Leiden University Medical Center, Leiden, Netherlands
- Present address: Centre for Infectious Disease Control, Netherlands Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Romy D Zwittink
- Center for Microbiome Analyses and Therapeutics, LUCID Research, Leiden University Medical Center, Leiden, Netherlands
- Present address: Centre for Infectious Disease Control, Netherlands Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Quinten R Ducarmon
- Center for Microbiome Analyses and Therapeutics, LUCID Research, Leiden University Medical Center, Leiden, Netherlands
| | - Josbert J Keller
- Netherlands Donor Feces Bank, Leiden University Center of Infectious Diseases (LUCID) Medical Microbiology and Infection Prevention, Leiden University Medical Center, PO Box 9600, Postzone E4-P, Leiden, 2300RC, Netherlands
- Department of Gastroenterology, Haaglanden Medical Center, The Hague, Netherlands
| | - Ed J Kuijper
- Center for Microbiome Analyses and Therapeutics, LUCID Research, Leiden University Medical Center, Leiden, Netherlands
| | - Elisabeth M Terveer
- Netherlands Donor Feces Bank, Leiden University Center of Infectious Diseases (LUCID) Medical Microbiology and Infection Prevention, Leiden University Medical Center, PO Box 9600, Postzone E4-P, Leiden, 2300RC, Netherlands
- Center for Microbiome Analyses and Therapeutics, LUCID Research, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
22
|
Rees MJ, Rivalland A, Tan S, Xie M, Yong MK, Ritchie D. Non-viral pathogens of infectious diarrhoea post-allogeneic stem cell transplantation are associated with graft-versus-host disease. Ann Hematol 2024; 103:593-602. [PMID: 37926752 DOI: 10.1007/s00277-023-05526-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Infectious diarrhoea is common post-allogeneic haematopoietic stem-cell transplantation (alloHSCT). While the epidemiology of Clostridioides difficile infection (CDI) post-alloHSCT has been described, the impact of other diarrhoeal pathogens is uncertain. We reviewed all alloHSCT between 2017 and 2022 at a single large transplant centre; 374 patients were identified and included. The 1-year incidence of infectious diarrhoea was 23%, divided into viral (13/374, 3%), CDI (65/374, 17%) and other bacterial infections (16/374, 4%). There was a significant association between infectious diarrhoea within 1 year post-transplant and the occurrence of severe acute lower gastrointestinal graft-versus-host disease (GVHD, OR = 4.64, 95% CI 2.57-8.38, p < 0.001) and inferior GVHD-free, relapse-free survival on analysis adjusted for age, donor type, stem cell source and T-cell depletion (aHR = 1.64, 95% CI = 1.18-2.27, p = 0.003). When the classes of infectious diarrhoea were compared to no infection, bacterial (OR = 6.38, 95% CI 1.90-21.40, p = 0.003), CDI (OR = 3.80, 95% CI 1.91-7.53, p < 0.001) and multiple infections (OR = 11.16, 95% CI 2.84-43.92, p < 0.001) were all independently associated with a higher risk of severe GI GVHD. Conversely, viral infections were not (OR = 2.98, 95% CI 0.57-15.43, p = 0.20). Non-viral infectious diarrhoea is significantly associated with the development of GVHD. Research to examine whether the prevention of infectious diarrhoea via infection control measures or modulation of the microbiome reduces the incidence of GVHD is needed.
Collapse
Affiliation(s)
- Matthew J Rees
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, 305 Grattan St, Melbourne, VIC, 3000, Australia.
| | - Alexandra Rivalland
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, 305 Grattan St, Melbourne, VIC, 3000, Australia
| | - Sarah Tan
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, 305 Grattan St, Melbourne, VIC, 3000, Australia
| | - Mingdi Xie
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, 305 Grattan St, Melbourne, VIC, 3000, Australia
| | - Michelle K Yong
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Victorian Infectious Diseases Service, Melbourne Health, Melbourne, Australia
- Sir Peter MacCallum, Department of Oncology, University of Melbourne, Melbourne, Australia
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Melbourne, Australia
| | - David Ritchie
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, 305 Grattan St, Melbourne, VIC, 3000, Australia
| |
Collapse
|
23
|
Wu J, Singleton SS, Bhuiyan U, Krammer L, Mazumder R. Multi-omics approaches to studying gastrointestinal microbiome in the context of precision medicine and machine learning. Front Mol Biosci 2024; 10:1337373. [PMID: 38313584 PMCID: PMC10834744 DOI: 10.3389/fmolb.2023.1337373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/27/2023] [Indexed: 02/06/2024] Open
Abstract
The human gastrointestinal (gut) microbiome plays a critical role in maintaining host health and has been increasingly recognized as an important factor in precision medicine. High-throughput sequencing technologies have revolutionized -omics data generation, facilitating the characterization of the human gut microbiome with exceptional resolution. The analysis of various -omics data, including metatranscriptomics, metagenomics, glycomics, and metabolomics, holds potential for personalized therapies by revealing information about functional genes, microbial composition, glycans, and metabolites. This multi-omics approach has not only provided insights into the role of the gut microbiome in various diseases but has also facilitated the identification of microbial biomarkers for diagnosis, prognosis, and treatment. Machine learning algorithms have emerged as powerful tools for extracting meaningful insights from complex datasets, and more recently have been applied to metagenomics data via efficiently identifying microbial signatures, predicting disease states, and determining potential therapeutic targets. Despite these rapid advancements, several challenges remain, such as key knowledge gaps, algorithm selection, and bioinformatics software parametrization. In this mini-review, our primary focus is metagenomics, while recognizing that other -omics can enhance our understanding of the functional diversity of organisms and how they interact with the host. We aim to explore the current intersection of multi-omics, precision medicine, and machine learning in advancing our understanding of the gut microbiome. A multidisciplinary approach holds promise for improving patient outcomes in the era of precision medicine, as we unravel the intricate interactions between the microbiome and human health.
Collapse
Affiliation(s)
- Jingyue Wu
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Stephanie S. Singleton
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Urnisha Bhuiyan
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Lori Krammer
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
- Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
| | - Raja Mazumder
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
- The McCormick Genomic and Proteomic Center, The George Washington University, Washington, DC, United States
| |
Collapse
|
24
|
Rashidi A, Ebadi M, Rehman TU, Elhusseini H, Kazadi D, Halaweish H, Khan MH, Hoeschen A, Cao Q, Luo X, Kabage AJ, Lopez S, Holtan SG, Weisdorf DJ, Liu C, Ishii S, Khoruts A, Staley C. Long- and short-term effects of fecal microbiota transplantation on antibiotic resistance genes: results from a randomized placebo-controlled trial. Gut Microbes 2024; 16:2327442. [PMID: 38478462 PMCID: PMC10939144 DOI: 10.1080/19490976.2024.2327442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/04/2024] [Indexed: 03/17/2024] Open
Abstract
In small series, third-party fecal microbiota transplantation (FMT) has been successful in decolonizing the gut from clinically relevant antibiotic resistance genes (ARGs). Less is known about the short- and long-term effects of FMT on larger panels of ARGs. We analyzed 226 pre- and post-treatment stool samples from a randomized placebo-controlled trial of FMT in 100 patients undergoing allogeneic hematopoietic cell transplantation or receiving anti-leukemia induction chemotherapy for 47 ARGs. These patients have heavy antibiotic exposure and a high incidence of colonization with multidrug-resistant organisms. Samples from each patient spanned a period of up to 9 months, allowing us to describe both short- and long-term effects of FMT on ARGs, while the randomized design allowed us to distinguish between spontaneous changes vs. FMT effect. We find an overall bimodal pattern. In the first phase (days to weeks after FMT), low-level transfer of ARGs largely associated with commensal healthy donor microbiota occurs. This phase is followed by long-term resistance to new ARGs as stable communities with colonization resistance are formed after FMT. The clinical implications of these findings are likely context-dependent and require further research. In the setting of cancer and intensive therapy, long-term ARG decolonization could translate into fewer downstream infections.
Collapse
Affiliation(s)
- Armin Rashidi
- Clinical Research Division, Fred Hutchinson Cancer Center and Division of Oncology, University of Washington, Seattle, WA, USA
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Maryam Ebadi
- Department of Radiation Oncology, University of Washington and Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Tauseef Ur Rehman
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Heba Elhusseini
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - David Kazadi
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Hossam Halaweish
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Mohammad H. Khan
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Andrea Hoeschen
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Qing Cao
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Xianghua Luo
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Amanda J. Kabage
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Sharon Lopez
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Shernan G. Holtan
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Daniel J. Weisdorf
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Chang Liu
- Department of Soil, Water, and Climate, BioTechnology Institute, University of Minnesota, MN, USA
| | - Satoshi Ishii
- Department of Soil, Water, and Climate, BioTechnology Institute, University of Minnesota, MN, USA
| | - Alexander Khoruts
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Biotechnology Institute, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
25
|
Ghani R, Chrysostomou D, Roberts LA, Pandiaraja M, Marchesi JR, Mullish BH. Faecal (or intestinal) microbiota transplant: a tool for repairing the gut microbiome. Gut Microbes 2024; 16:2423026. [PMID: 39499189 PMCID: PMC11540080 DOI: 10.1080/19490976.2024.2423026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/07/2024] Open
Abstract
Faecal/intestinal microbiota transplant (FMT/IMT) is an efficacious treatment option for recurrent Clostridioides difficile infection, which has prompted substantial interest in FMT's potential role in the management of a much broader range of diseases associated with the gut microbiome. Despite its promise, the success rates of FMT in these other settings have been variable. This review critically evaluates the current evidence on the impact of clinical, biological, and procedural factors upon the therapeutic efficacy of FMT, and identifies areas that remain nebulous. Due to some of these factors, the optimal therapeutic approach remains unclear; for example, the preferred timing of FMT administration in a heavily antibiotic-exposed hematopoietic cell transplant recipient is not standardized, with arguments that can be made in alternate directions. We explore how these factors may impact upon more informed selection of donors, potential matching of donors to recipients, and aspects of clinical care of FMT recipients. This includes consideration of how gut microbiome composition and functionality may strategically inform donor selection criteria. Furthermore, we review how the most productive advances within the FMT space are those where clinical and translational outcomes are assessed together, and where this model has been used productively in recent years to better understand the contribution of the gut microbiome to human disease, and start the process toward development of more targeted microbiome therapeutics.
Collapse
Affiliation(s)
- Rohma Ghani
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Department of Infectious Diseases, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Despoina Chrysostomou
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Lauren A Roberts
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Madhumitha Pandiaraja
- Department of Gastroenterology, St Mary’s Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Julian R. Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Benjamin H. Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Department of Hepatology, St Mary’s Hospital, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
26
|
Abstract
Antibiotics have benefitted human health since their introduction nearly a century ago. However, the rise of antibiotic resistance may portend the dawn of the "post-antibiotic age." With the narrow pipeline for novel antimicrobials, we need new approaches to deal with the rise of multidrug resistant organisms. In the last 2 decades, the role of the intestinal microbiota in human health has been acknowledged and studied widely. Of the various activities carried out by the gut microbiota, colonization resistance is a key function that helps maintain homeostasis. Therefore, re-establishing a healthy microbiota is a novel strategy for treating drug resistance organisms. Preliminary studies suggest that this is a viable approach. However, the extent of their success still needs to be examined. Herein, we will review work in this area and suggest where future studies can further investigate this method for dealing with the threat of antibiotic resistance.
Collapse
Affiliation(s)
- Nguyen T Q Nhu
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Vincent B Young
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
27
|
Rashidi A, Ebadi M, Rehman TU, Elhusseini H, Kazadi D, Halaweish H, Khan MH, Hoeschen A, Cao Q, Luo X, Kabage AJ, Lopez S, Holtan SG, Weisdorf DJ, Khoruts A, Staley C. Randomized Double-Blind Phase II Trial of Fecal Microbiota Transplantation Versus Placebo in Allogeneic Hematopoietic Cell Transplantation and AML. J Clin Oncol 2023; 41:5306-5319. [PMID: 37235836 PMCID: PMC10691796 DOI: 10.1200/jco.22.02366] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/03/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
PURPOSE Gut microbiota injury in allogeneic hematopoietic cell transplantation (HCT) recipients and patients with AML has been associated with adverse clinical outcomes. Previous studies in these patients have shown improvements in various microbiome indices after fecal microbiota transplantation (FMT). However, whether microbiome improvements translate into improved clinical outcomes remains unclear. We examined this question in a randomized, double-blind, placebo-controlled phase II trial. METHODS Two independent cohorts of allogeneic HCT recipients and patients with AML receiving induction chemotherapy were randomly assigned in a 2:1 ratio to receive standardized oral encapsulated FMT versus placebo upon neutrophil recovery. After each course of antibacterial antibiotics, patients received a study treatment. Up to three treatments were administered within 3 months. The primary end point was 4-month all-cause infection rate. Patients were followed for 9 months. RESULTS In the HCT cohort (74 patients), 4-month infection density was 0.74 and 0.91 events per 100 patient-days in FMT and placebo arms, respectively (infection rate ratio, 0.83; 95% CI, 0.48 to 1.42; P = .49). In the AML cohort (26 patients), 4-month infection density was 0.93 in the FMT arm and 1.25 in the placebo arm, with an infection rate ratio of 0.74 (95% CI, 0.32 to 1.71; P = .48). Unique donor bacterial sequences comprised 25%-30% of the fecal microbiota after FMT. FMT improved postantibiotic recovery of microbiota diversity, restored several depleted obligate anaerobic commensals, and reduced the abundance of expanded genera Enterococcus, Streptococcus, Veillonella, and Dialister. CONCLUSION In allogeneic HCT recipients and patients with AML, third-party FMT was safe and ameliorated intestinal dysbiosis, but did not decrease infections. Novel findings from this trial will inform future development of FMT trials.
Collapse
Affiliation(s)
- Armin Rashidi
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
- Clinical Research Division, Fred Hutchinson Cancer Center; and Division of Oncology, University of Washington, Seattle, WA
| | - Maryam Ebadi
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
- Department of Radiation Oncology, University of Washington, Seattle, WA
| | - Tauseef Ur Rehman
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Heba Elhusseini
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - David Kazadi
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | | | | | - Andrea Hoeschen
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Qing Cao
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Xianghua Luo
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN
| | | | - Sharon Lopez
- Center for Immunology, University of Minnesota, Minneapolis, MN
| | - Shernan G. Holtan
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Daniel J. Weisdorf
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Alexander Khoruts
- Center for Immunology, University of Minnesota, Minneapolis, MN
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Minnesota, Minneapolis, MN
- Biotechnology Institute, University of Minnesota, St Paul, MN
| | | |
Collapse
|
28
|
He S, Lin F, Hu X, Pan P. Gut Microbiome-Based Therapeutics in Critically Ill Adult Patients-A Narrative Review. Nutrients 2023; 15:4734. [PMID: 38004128 PMCID: PMC10675331 DOI: 10.3390/nu15224734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The gut microbiota plays a crucial role in the human microenvironment. Dysbiosis of the gut microbiota is a common pathophysiological phenomenon in critically ill patients. Therefore, utilizing intestinal microbiota to prevent complications and improve the prognosis of critically ill patients is a possible therapeutic direction. The gut microbiome-based therapeutics approach focuses on improving intestinal microbiota homeostasis by modulating its diversity, or treating critical illness by altering the metabolites of intestinal microbiota. There is growing evidence that fecal microbiota transplantation (FMT), selective digestive decontamination (SDD), and microbiota-derived therapies are all effective treatments for critical illness. However, different treatments are appropriate for different conditions, and more evidence is needed to support the selection of optimal gut microbiota-related treatments for different diseases. This narrative review summarizes the curative effects and limitations of microbiome-based therapeutics in different critically ill adult patients, aiming to provide possible directions for gut microbiome-based therapeutics for critically ill patients such as ventilator-associated pneumonia, sepsis, acute respiratory distress syndrome, and COVID-19, etc.
Collapse
Affiliation(s)
- Shiyue He
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; (S.H.); (F.L.)
- FuRong Laboratory, Changsha 410078, China
| | - Fengyu Lin
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; (S.H.); (F.L.)
- FuRong Laboratory, Changsha 410078, China
| | - Xinyue Hu
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; (S.H.); (F.L.)
- FuRong Laboratory, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, China
| | - Pinhua Pan
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; (S.H.); (F.L.)
- FuRong Laboratory, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, China
| |
Collapse
|
29
|
Mansoor AER, O'Neil CA, Kwon JH. The role of microbiome-based therapeutics for the reduction and prevention of antimicrobial-resistant organism colonization. Anaerobe 2023; 83:102772. [PMID: 37572864 DOI: 10.1016/j.anaerobe.2023.102772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
The gut is host to a diverse array of microbiota that constitute a complex ecological system crucial to human physiology. Disruptors to the normal host microbiota, such as antimicrobials, can cause a loss of species diversity in the gut, reducing its ability to resist colonization by invading pathogens and potentially leading to colonization with antimicrobial resistant organisms (AROs). ARO negatively impact gut health by disrupting the usual heterogeneity of gut microbiota and have the potential to cause systemic disease. In recent years, fecal microbiota transplantation (FMT) has been increasingly explored in the management of specific disease states such as Clostridioides difficile infection (CDI). Promising data from management of CDI has led to considerable interest in understanding the role of therapeutics to restore the gut microbiota to a healthy state. This review aims to discuss key studies that highlight the current landscape, and explore existing clinical evidence, for the use of FMT and microbiome-based therapeutics in combating intestinal colonization with ARO. We also explore potential future directions of such therapeutics and discuss unaddressed needs in this field that merit further investigation.
Collapse
Affiliation(s)
- Armaghan-E-Rehman Mansoor
- Division of Infectious Diseases, Department of Medicine, Washington University in St. Louis, 4523 Clayton Avenue, St. Louis, MO, 63110, USA.
| | - Caroline A O'Neil
- Division of Infectious Diseases, Department of Medicine, Washington University in St. Louis, 4523 Clayton Avenue, St. Louis, MO, 63110, USA.
| | - Jennie H Kwon
- Division of Infectious Diseases, Department of Medicine, Washington University in St. Louis, 4523 Clayton Avenue, St. Louis, MO, 63110, USA.
| |
Collapse
|
30
|
Stefansson M, Bladh O, Flink O, Skolling O, Ekre HP, Rombo L, Engstrand L, Ursing J. Safety and tolerability of frozen, capsulized autologous faecal microbiota transplantation. A randomized double blinded phase I clinical trial. PLoS One 2023; 18:e0292132. [PMID: 37756322 PMCID: PMC10529588 DOI: 10.1371/journal.pone.0292132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Faecal microbiota transplantation (FMT) is recommended treatment for recurrent Clostridioides difficile infection and is studied as a potential modifier of other gastrointestinal and systemic disorders. Autologous FMT limits the potential risks of donor transplant material and enables prophylactic treatment. Capsulized FMT is convenient and accessible, but safety data are lacking. AIMS To describe safety and tolerability of capsules containing autologous FMT, compared to placebo, in healthy volunteers treated with antibiotics. METHOD Healthy volunteers without antibiotic exposure during the past three months, that had a negative Clostridioides difficile stool sample, were recruited. Study persons donated faeces for production of capsules containing autologous microbiota. They were then given Clindamycin for seven days to disrupt the intestinal microbiota, which was followed by a two-day washout. Study persons were then randomized (1:1) to unsupervised treatment with autologous faecal matter or placebo, with two capsules twice daily for five days. A standardized questionnaire about side effects and tolerability, daily until day 28, and on days 60 and 180, was completed. RESULTS Twenty-four study persons were included, all completed the treatment. One person from the placebo and FMT groups each, were lost to follow up from days 21 and 60, respectively. No study person experienced serious side effects, but severe fatigue was reported during the antibiotic period (n = 2). Reported side effects were mild to moderate and there were no significant differences between the groups. Reported general and intestinal health improved significantly and similarly in both groups after the antibiotic treatment. Time to normalized intestinal habits were 17 and 19 days from study start in the placebo group and the FMT group, respectively (p = 0.8). CONCLUSION Capsulized frozen autologous faecal microbiota transplantation was safe and well tolerated but did not affect time to normalized intestinal habits compared to placebo. TRIAL REGISTRATION EudraCT 2017-002418-30.
Collapse
Affiliation(s)
- Måns Stefansson
- Centre for Clinical Research Sörmland, Uppsala University, Eskilstuna, Sweden
- Department of Clinical Sciences Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Oscar Bladh
- Department of Clinical Sciences Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Danderyd Hospital, Stockholm, Sweden
| | | | | | | | - Lars Rombo
- Centre for Clinical Research Sörmland, Uppsala University, Eskilstuna, Sweden
| | - Lars Engstrand
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Johan Ursing
- Department of Clinical Sciences Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Danderyd Hospital, Stockholm, Sweden
| |
Collapse
|
31
|
Metafuni E, Di Marino L, Giammarco S, Bellesi S, Limongiello MA, Sorà F, Frioni F, Maggi R, Chiusolo P, Sica S. The Role of Fecal Microbiota Transplantation in the Allogeneic Stem Cell Transplant Setting. Microorganisms 2023; 11:2182. [PMID: 37764025 PMCID: PMC10536954 DOI: 10.3390/microorganisms11092182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Microbiota changes during allogeneic hematopoietic stem cell transplantation has several known causes: conditioning chemotherapy and radiation, broad-spectrum antibiotic administration, modification in nutrition status and diet, and graft-versus-host disease. This article aims to review the current knowledge about the close link between microbiota and allogeneic stem cell transplantation setting. The PubMed search engine was used to perform this review. We analyzed data on microbiota dysbiosis related to the above-mentioned affecting factors. We also looked at treatments aimed at modifying gut dysbiosis and applications of fecal microbiota transplantation in the allogeneic stem cell transplant field, with particular interest in fecal microbiota transplantation for graft-versus-host disease (GvHD), multidrug-resistant and clostridium difficile infections, and microbiota restoration after chemotherapy and antibiotic therapy.
Collapse
Affiliation(s)
- Elisabetta Metafuni
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.G.); (S.B.); (M.A.L.); (F.S.); (P.C.); (S.S.)
| | - Luca Di Marino
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.M.); (F.F.); (R.M.)
| | - Sabrina Giammarco
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.G.); (S.B.); (M.A.L.); (F.S.); (P.C.); (S.S.)
| | - Silvia Bellesi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.G.); (S.B.); (M.A.L.); (F.S.); (P.C.); (S.S.)
| | - Maria Assunta Limongiello
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.G.); (S.B.); (M.A.L.); (F.S.); (P.C.); (S.S.)
| | - Federica Sorà
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.G.); (S.B.); (M.A.L.); (F.S.); (P.C.); (S.S.)
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.M.); (F.F.); (R.M.)
| | - Filippo Frioni
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.M.); (F.F.); (R.M.)
| | - Roberto Maggi
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.M.); (F.F.); (R.M.)
| | - Patrizia Chiusolo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.G.); (S.B.); (M.A.L.); (F.S.); (P.C.); (S.S.)
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.M.); (F.F.); (R.M.)
| | - Simona Sica
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.G.); (S.B.); (M.A.L.); (F.S.); (P.C.); (S.S.)
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.M.); (F.F.); (R.M.)
| |
Collapse
|
32
|
Abenavoli L, Scarpellini E, Paravati MR, Scarlata GGM, Boccuto L, Tilocca B, Roncada P, Luzza F. Gut Microbiota and Critically Ill Patients: Immunity and Its Modulation via Probiotics and Immunonutrition. Nutrients 2023; 15:3569. [PMID: 37630759 PMCID: PMC10459644 DOI: 10.3390/nu15163569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Critically ill patients have a hyper-inflammatory response against various offending injuries that can result in tissue damage, organ failure, and fatal prognosis. The origin of this detrimental, uncontrolled inflammatory cascade can be found also within our gut. In detail, one of the main actors is our gut microbiota with its imbalance, namely gut dysbiosis: learning about the microbiota's dysfunction and pathophysiology in the frame of critical patients is of crucial and emerging importance in the management of the systemic inflammatory response syndrome (SIRS) and the multiple organ dysfunction syndrome (MODS). Multiple pieces of evidence indicate that the bacteria that populate our gut efficiently modulate the immune response. Treatment and pretreatment with probiotics have shown promising preliminary results to attenuate systemic inflammation, especially in postoperative infections and ventilation performance. Finally, it is emerging how immunonutrition may exert a possible impact on the health status of patients in intensive care. Thus, this manuscript reviews evidence from the literature on gut microbiota composition, its derangement in critically ill patients, its pathophysiological role, and the described and emerging opportunities arising from its modulation.
Collapse
Affiliation(s)
- Ludovico Abenavoli
- Department of Health Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (M.R.P.); (G.G.M.S.); (B.T.); (P.R.); (F.L.)
| | - Emidio Scarpellini
- Translationeel Onderzoek van Gastro-Enterologische Aandoeningen (T.A.R.G.I.D.), Gasthuisberg University 11 Hospital, KU Leuven, Herestraat 49, 3000 Leuven, Belgium;
| | - Maria Rosaria Paravati
- Department of Health Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (M.R.P.); (G.G.M.S.); (B.T.); (P.R.); (F.L.)
| | - Giuseppe Guido Maria Scarlata
- Department of Health Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (M.R.P.); (G.G.M.S.); (B.T.); (P.R.); (F.L.)
| | - Luigi Boccuto
- School of Nursing, Healthcare Genetics Program, Clemson University, Clemson, SC 29634, USA;
- School of Health Research, Clemson University, Clemson, SC 29634, USA
| | - Bruno Tilocca
- Department of Health Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (M.R.P.); (G.G.M.S.); (B.T.); (P.R.); (F.L.)
| | - Paola Roncada
- Department of Health Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (M.R.P.); (G.G.M.S.); (B.T.); (P.R.); (F.L.)
| | - Francesco Luzza
- Department of Health Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (M.R.P.); (G.G.M.S.); (B.T.); (P.R.); (F.L.)
| |
Collapse
|
33
|
Pawłowski P, Pawłowska P, Ziętara KJ, Samardakiewicz M. The Critical Exploration into Current Evidence behind the Role of the Nutritional Support in Adult Patients Who Undergo Haematogenic Stem Cell Transplantation. Nutrients 2023; 15:3558. [PMID: 37630748 PMCID: PMC10459351 DOI: 10.3390/nu15163558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Haematopoietic stem cell transplantation (HSCT) is a treatment option for many haematological conditions in patients of all ages. Nutritional support is important at each stage of treatment, but particular nutritional needs and dictated support occur during the preparatory (conditioning regimen) and post-transplant periods. Patients may require nutritional treatment by the enteral or parenteral route. The quantitative and qualitative composition of meals may change. Vitamin requirements, including vitamin D and vitamin C, might also be different. An adequately composed diet, adapted to the needs of the patient, may influence the occurrence of complications such as graft-versus-host disease (GvHD), gastrointestinal disorders, infections, and reduced survival time. Haematological diseases as well as transplantation can negatively affect the intestinal flora, with negative consequences in the form of mucosal inflammation and disorders of a functional nature. Currently, aspects related to nutrition are crucial in the care of patients after HSCT, and numerous studies, including randomized trials on these aspects, are being conducted. This study serves the critical analysis of current scientific evidence regarding nutritional support for patients after HSCT.
Collapse
Affiliation(s)
- Piotr Pawłowski
- Student Scientific Association at the Department of Psychology, Faculty of Medicine, Medical University of Lublin, 20-081 Lublin, Poland;
| | - Paulina Pawłowska
- The Critical Care Unit, The Royal Marsden Hospital, London SW3 6JJ, UK;
| | - Karolina Joanna Ziętara
- Student Scientific Association at the Department of Psychology, Faculty of Medicine, Medical University of Lublin, 20-081 Lublin, Poland;
| | - Marzena Samardakiewicz
- Department of Psychology, Psychosocial Aspects of Medicine, Medical University of Lublin, 20-081 Lublin, Poland;
| |
Collapse
|
34
|
Scaglione S, Gotta F, Vay D, Leli C, Roveta A, Maconi A, Rocchetti A. Rapid RT-PCR identification of SARS-CoV-2 in screening donors of fecal microbiota transplantation. Heliyon 2023; 9:e17438. [PMID: 37366528 PMCID: PMC10277158 DOI: 10.1016/j.heliyon.2023.e17438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/22/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
Since its first appearance in late 2019 in Wuhan, China, severe acute respiratory syndrome caused by Coronavirus 2 (SARS-CoV-2) has had a major impact on healthcare facilities around the world. Although in the past year, mass vaccination and the development of monoclonal antibody treatments have reduced the number of deaths and severe cases, the circulation of SARS-CoV-2 remains high. Over the past two years, diagnostics have played a crucial role in virus containment both in health care facilities and at the community level. For SARS-CoV-2 detection, the commonly used specimen type is the nasopharyngeal swab, although the virus can be identified in other matrices such as feces. Since fecal microbiota transplantation (FMT) assumes significant importance in the treatment of chronic gut infections and that feces may be a potential vehicle for transmission of SARS-CoV-2, in this study we have evaluated the performance of the rapid cartridge-based RT-PCR test STANDARD™ M10 SARS-CoV-2 (SD Biosensor Inc., Suwon, South Korea) using fecal samples. The results obtained indicates that STANDARD™ M10 SARS-CoV-2 can detect SARS-CoV-2 in stool samples even at low concentration. For this reason, STANDARD™ M10 SARS-CoV-2 could be used as reliable methods for the detection of SARS-CoV-2 in fecal samples and for the screening of FMT donors.
Collapse
Affiliation(s)
- Sara Scaglione
- Microbiology Laboratory, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy, EU
| | - Franca Gotta
- Microbiology Laboratory, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy, EU
| | - Daria Vay
- Microbiology Laboratory, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy, EU
| | - Christian Leli
- Microbiology Laboratory, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy, EU
| | - Annalisa Roveta
- Research Training Innovation Infrastructure, Research and Innovation Department (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121, Alessandria, Italy
| | - Antonio Maconi
- Research Training Innovation Infrastructure, Research and Innovation Department (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121, Alessandria, Italy
| | - Andrea Rocchetti
- Microbiology Laboratory, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy, EU
| |
Collapse
|
35
|
Merrick B, Sergaki C, Edwards L, Moyes DL, Kertanegara M, Prossomariti D, Shawcross DL, Goldenberg SD. Modulation of the Gut Microbiota to Control Antimicrobial Resistance (AMR)-A Narrative Review with a Focus on Faecal Microbiota Transplantation (FMT). Infect Dis Rep 2023; 15:238-254. [PMID: 37218816 DOI: 10.3390/idr15030025] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
Antimicrobial resistance (AMR) is one of the greatest challenges facing humanity, causing a substantial burden to the global healthcare system. AMR in Gram-negative organisms is particularly concerning due to a dramatic rise in infections caused by extended-spectrum beta-lactamase and carbapenemase-producing Enterobacterales (ESBL and CPE). These pathogens have limited treatment options and are associated with poor clinical outcomes, including high mortality rates. The microbiota of the gastrointestinal tract acts as a major reservoir of antibiotic resistance genes (the resistome), and the environment facilitates intra and inter-species transfer of mobile genetic elements carrying these resistance genes. As colonisation often precedes infection, strategies to manipulate the resistome to limit endogenous infections with AMR organisms, as well as prevent transmission to others, is a worthwhile pursuit. This narrative review presents existing evidence on how manipulation of the gut microbiota can be exploited to therapeutically restore colonisation resistance using a number of methods, including diet, probiotics, bacteriophages and faecal microbiota transplantation (FMT).
Collapse
Affiliation(s)
- Blair Merrick
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, King's College, London SE1 7EH, UK
| | - Chrysi Sergaki
- Diagnostics R&D, Medicines and Healthcare Products Regulatory Agency (MHRA), Potters Bar EN6 3QG, UK
| | - Lindsey Edwards
- School of Immunology and Microbial Sciences, Institute of Liver Studies, Faculty of Life Sciences and Medicine, King's College, London SE1 1UL, UK
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - David L Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College, London SE1 1UK, UK
| | - Michael Kertanegara
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, King's College, London SE1 7EH, UK
| | - Désirée Prossomariti
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, King's College, London SE1 7EH, UK
| | - Debbie L Shawcross
- School of Immunology and Microbial Sciences, Institute of Liver Studies, Faculty of Life Sciences and Medicine, King's College, London SE1 1UL, UK
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Simon D Goldenberg
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, King's College, London SE1 7EH, UK
| |
Collapse
|
36
|
Dallas JW, Warne RW. Captivity and Animal Microbiomes: Potential Roles of Microbiota for Influencing Animal Conservation. MICROBIAL ECOLOGY 2023; 85:820-838. [PMID: 35316343 DOI: 10.1007/s00248-022-01991-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/07/2022] [Indexed: 05/04/2023]
Abstract
During the ongoing biodiversity crisis, captive conservation and breeding programs offer a refuge for species to persist and provide source populations for reintroduction efforts. Unfortunately, captive animals are at a higher disease risk and reintroduction efforts remain largely unsuccessful. One potential factor in these outcomes is the host microbiota which includes a large diversity and abundance of bacteria, fungi, and viruses that play an essential role in host physiology. Relative to wild populations, the generalized pattern of gut and skin microbiomes in captivity are reduced alpha diversity and they exhibit a significant shift in community composition and/or structure which often correlates with various physiological maladies. Many conditions of captivity (antibiotic exposure, altered diet composition, homogenous environment, increased stress, and altered intraspecific interactions) likely lead to changes in the host-associated microbiome. To minimize the problems arising from captivity, efforts can be taken to manipulate microbial diversity and composition to be comparable with wild populations through methods such as increasing dietary diversity, exposure to natural environmental reservoirs, or probiotics. For individuals destined for reintroduction, these strategies can prime the microbiota to buffer against novel pathogens and changes in diet and improve reintroduction success. The microbiome is a critical component of animal physiology and its role in species conservation should be expanded and included in the repertoire of future management practices.
Collapse
Affiliation(s)
- Jason W Dallas
- Department of Biological Sciences, Southern Illinois University, 1125 Lincoln Drive, Carbondale, IL, 62901, USA.
| | - Robin W Warne
- Department of Biological Sciences, Southern Illinois University, 1125 Lincoln Drive, Carbondale, IL, 62901, USA
| |
Collapse
|
37
|
Wang Y, Qu S, Chen M, Cui Y, Shi C, Pu X, Gao W, Li Q, Han J, Zhang A. Effects of buckwheat milk Co-fermented with two probiotics and two commercial yoghurt strains on gut microbiota and production of short-chain Fatty Acids. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
38
|
Lou X, Xue J, Shao R, Yang Y, Ning D, Mo C, Wang F, Chen G. Fecal microbiota transplantation and short-chain fatty acids reduce sepsis mortality by remodeling antibiotic-induced gut microbiota disturbances. Front Immunol 2023; 13:1063543. [PMID: 36713461 PMCID: PMC9874322 DOI: 10.3389/fimmu.2022.1063543] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
Objective Sepsis is the leading cause of death in critically ill patients. The gastrointestinal tract has long been thought to play an important role in the pathophysiology of sepsis. Antibiotic therapy can reduce a patient's commensal bacterial population and raise their risk of developing subsequent illnesses, where gut microbiota dysbiosis may be a key factor. Methods In this study, we analyzed the 16S rRNA of fecal samples from both healthy people and patients with sepsis to determine if alterations in gut bacteria are associated with sepsis. Then, we developed a mouse model of sepsis using cecal ligation and puncture (CLP) in order to examine the effects of fecal microbiota transplantation (FMT) and short-chain fatty acids (SCFAs) on survival rate, systemic inflammatory response, gut microbiota, and mucosal barrier function. Results Sepsis patients' gut microbiota composition significantly differed from that of healthy people. At the phylum level, the amount of Proteobacteria in the intestinal flora of sepsis patients was much larger than that of the control group, whereas the number of Firmicutes was significantly lower. Mice with gut microbiota disorders (ANC group) were found to have an elevated risk of death, inflammation, and organ failure as compared to CLP mice. However, all of these could be reversed by FMT and SCFAs. FMT and SCFAs could regulate the abundance of bacteria such as Firmicutes, Proteobacteria, Escherichia Shigella, and Lactobacillus, restoring them to levels comparable to those of healthy mice. In addition, they increased the expression of the Occludin protein in the colon of mice with sepsis, downregulated the expression of the NLRP3 and GSDMD-N proteins, and reduced the release of the inflammatory factors IL-1β and IL-18 to inhibit cell pyroptosis, ultimately playing a protective role in sepsis. Disccusion FMT and SCFAs provide a microbe-related survival benefit in a mouse model of sepsis, suggesting that they may be a viable treatment for sepsis.
Collapse
Affiliation(s)
- Xiran Lou
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Jinfang Xue
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Ruifei Shao
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Yan Yang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Deyuan Ning
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Chunyan Mo
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Fuping Wang
- Department of Emergency Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Guobing Chen
- Department of Emergency Medicine, The First People’s Hospital of Yunnan Province, Kunming, China,*Correspondence: Guobing Chen,
| |
Collapse
|
39
|
Lee EH, Lee SK, Cheon JH, Koh H, Lee JA, Kim CH, Kim JN, Lee KH, Lee SJ, Kim JH, Ahn JY, Jeong SJ, Ku NS, Yong DE, Yoon SS, Yeom JS, Choi JY. Comparing the efficacy of different methods of faecal microbiota transplantation via oral capsule, oesophagogastroduodenoscopy, colonoscopy, or gastric tube. J Hosp Infect 2023; 131:234-243. [PMID: 36414164 DOI: 10.1016/j.jhin.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND The increasing prevalence of multidrug-resistant organism (MDRO) carriage poses major challenges to medicine as healthcare costs increase. Recently, faecal microbiota transplantation (FMT) has been discussed as a novel and effective method for decolonizing MDRO. AIM To compare the efficacy of different FMT methods to optimize the success rate of decolonization in patients with MDRO carriage. METHODS This prospective cohort study enrolled patients with MDRO carriages from 2018 to 2021. Patients underwent FMT via one of the following methods: oral capsule, oesophagogastroduodenoscopy (EGD), colonoscopy, or gastric tube. FINDINGS A total of 57 patients underwent FMT for MDRO decolonization. The colonoscopy group required the shortest time for decolonization, whereas the EGD group required the longest (24.9 vs 190.4 days, P = 0.022). The decolonization rate in the oral capsule group was comparable to that in the EGD group (84.6% vs 85.7%, P = 0.730). An important clinical factor associated with decolonization failure was antibiotic use after FMT (odds ratio = 6.810, P = 0.008). All four groups showed reduced proportions of MDRO species in microbiome analysis after FMT. CONCLUSION Compared to other conventional methods, the oral capsule is an effective FMT method for patients who can tolerate an oral diet. The discontinuation of antibiotics after FMT is a key factor in the success of decolonization.
Collapse
Affiliation(s)
- E H Lee
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - S K Lee
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - J H Cheon
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - H Koh
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Severance Children's Hospital, Severance Pediatric Liver Disease Research Group, Yonsei University College of Medicine, Seoul, South Korea
| | - J A Lee
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - C H Kim
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - J N Kim
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - K H Lee
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - S J Lee
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - J H Kim
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - J Y Ahn
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - S J Jeong
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - N S Ku
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - D E Yong
- Division of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - S S Yoon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, South Korea
| | - J S Yeom
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - J Y Choi
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
40
|
Qiao X, Biliński J, Wang L, Yang T, Luo R, Fu Y, Yang G. Safety and efficacy of fecal microbiota transplantation in the treatment of graft-versus-host disease. Bone Marrow Transplant 2023; 58:10-19. [PMID: 36167905 DOI: 10.1038/s41409-022-01824-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 01/10/2023]
Abstract
This article evaluates the efficacy and safety of FMT in the treatment of GVHD after HSCT using a systematic literature search to conduct a meta-analysis constructed of studies involving GVHD patients treated with FMT. 23 studies were included, among which 2 prospective cohort studies, 10 prospective single arm studies, 2 retrospective single arm studies, 2 case series and 7 case reports, comprise a total of 242 patients with steroid-resistant or steroid-dependent GVHD secondary to HSCT who were treated with FMT. 100 cases achieved complete responses, while 61 cases showed partial responses, and 81 cases presented no effect after FMT treatment. The estimate of clinical remission odds ratio was 5.51 (95% CI 1.49-20.35) in cohort studies, and the pooled clinical remission rate is 64% (51-77%) in prospective single arm studies and 81% (62-95%) in retrospective studies, case series and case reports. Five (2.1%) patients had FMT-related infection events, but all recovered after treatment. Other adverse effects were mild and acceptable. Microbiota diversity and composition, donor type, and other related issues were also analyzed. The data proves that FMT is a promising treatment modality of GVHD, but further validation of its safety and efficacy is still needed with prospective control studies.Clinical trial registration: Registered in https://www.crd.york.ac.uk/PROSPERO/ CRD42022296288.
Collapse
Affiliation(s)
- Xiaoying Qiao
- Peking University Health Science Center, Beijing, 100191, China.,Peking University People'hospital, Beijing, China
| | - Jarosław Biliński
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland.
| | - Leyi Wang
- Peking University Health Science Center, Beijing, 100191, China
| | - Tianyu Yang
- Peking University Health Science Center, Beijing, 100191, China
| | - Rongmu Luo
- Department of Hematology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China
| | - Yi Fu
- Department of Gastroenterology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China
| | - Guibin Yang
- Department of Gastroenterology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China.
| |
Collapse
|
41
|
Hyun J, Lee SK, Cheon JH, Yong DE, Koh H, Kang YK, Kim MH, Sohn Y, Cho Y, Baek YJ, Kim JH, Ahn JY, Jeong SJ, Yeom JS, Choi JY. Faecal microbiota transplantation reduces amounts of antibiotic resistance genes in patients with multidrug-resistant organisms. Antimicrob Resist Infect Control 2022; 11:20. [PMID: 35093183 PMCID: PMC8800327 DOI: 10.1186/s13756-022-01064-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/18/2022] [Indexed: 12/04/2022] Open
Abstract
Background Multidrug-resistant organisms (MDROs) such as vancomycin-resistant enterococci (VRE) and carbapenemase-producing Enterobacteriaceae (CPE) are associated with prolonged hospitalisation, increased medical costs, and severe infections. Faecal microbiota transplantation (FMT) has emerged as an important strategy for decolonisation. This study aimed to evaluate the genetic response of MDROs to FMT. Methods A single-centre prospective study was conducted on patients infected with VRE, CPE, or VRE/CPE who underwent FMT between May 2018 and April 2019. Genetic response was assessed as the change in the expression of the resistance genes VanA, blaKPC, blaNDM, and blaOXA on days 1, 7, 14, and 28 by real-time reverse-transcription polymerase chain reaction. Results Twenty-nine patients received FMT, of which 26 (59.3%) were infected with VRE, 5 (11.1%) with CPE, and 8 (29.6%) with VRE/CPE. The mean duration of MDRO carriage before FMT was 71 days. Seventeen patients (63.0%) used antibiotics within a week of FMT. In a culture-dependent method, the expression of VanA and overall genes significantly decreased (p = 0.011 and p = 0.003 respectively). In a culture-independent method, VanA, blaNDM, and overall gene expression significantly decreased over time after FMT (p = 0.047, p = 0.048, p = 0.002, respectively). Similar results were confirmed following comparison between each time point in both the culture-dependent and -independent methods. Regression analysis did not reveal important factors underlying the genetic response after FMT. No adverse events were observed. Conclusion FMT in patients infected with MDROs downregulates the expression of resistance genes, especially VanA, and facilitates MDRO decolonisation.
Collapse
|
42
|
Malard F, Gaugler B, Mohty M. Faecal microbiota transplantation in patients with haematological malignancies undergoing cellular therapies: from translational research to routine clinical practice. Lancet Haematol 2022; 9:e776-e785. [PMID: 36174640 DOI: 10.1016/s2352-3026(22)00223-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/20/2022] [Accepted: 07/04/2022] [Indexed: 06/16/2023]
Abstract
The effect of the gut microbiota on patients' outcomes after allogeneic haematopoietic cell transplantation (HCT) is now well established. In particular, gut microbiota dysbiosis has been associated with acute graft-versus-host disease (GVHD). Furthermore, increasing data also suggest an effect of the gut microbiota on outcome after autologous HCT and CAR T cells. In fact, the bacterial gut microbiota interplays with the immune system and contributes to immunological complication and antitumour response to treatment. Therefore, faecal microbiota transplantation has been evaluated in patients with haematological malignancies for various indications, including Clostridioides difficile infection, eradication of multidrug-resistant bacteria, and steroid refractory acute GVHD. In addition, use of prophylactic faecal microbiota transplantation to restore the gut microbiota and improve patients' outcomes is being developed in the setting of allogeneic HCT, but also probably very soon in patients receiving autologous HCT or CAR T cells.
Collapse
Affiliation(s)
- Florent Malard
- Centre de Recherche Saint-Antoine INSERM UMRs938, Sorbonne Université, AP-HP, Paris, France; Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, AP-HP, Paris, France.
| | - Béatrice Gaugler
- Centre de Recherche Saint-Antoine INSERM UMRs938, Sorbonne Université, AP-HP, Paris, France; Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, AP-HP, Paris, France
| | - Mohamad Mohty
- Centre de Recherche Saint-Antoine INSERM UMRs938, Sorbonne Université, AP-HP, Paris, France; Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, AP-HP, Paris, France
| |
Collapse
|
43
|
Efficacy and Safety of Fecal Microbiota Transplantation for Clearance of Multidrug-Resistant Organisms under Multiple Comorbidities: A Prospective Comparative Trial. Biomedicines 2022; 10:biomedicines10102404. [PMID: 36289668 PMCID: PMC9598999 DOI: 10.3390/biomedicines10102404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Fecal microbiota transplantation (FMT) could decolonize multidrug-resistant organisms. We investigated FMT effectiveness and safety in the eradication of carbapenem-resistant Enterobacteriaceae (CRE) and vancomycin-resistant enterococci (VRE) intestinal colonization. A prospective non-randomized comparative study was performed with 48 patients. FMT material (60 g) was obtained from a healthy donor, frozen, and administered via endoscopy. The primary endpoint was 1-month decolonization, and secondary endpoints were 3-month decolonization and adverse events. Microbiota analysis of fecal samples was performed using 16S rRNA sequencing. Intention-to-treat analysis revealed overall negative conversion between the FMT and control groups at 1 (26% vs. 10%, p = 0.264) and 3 (52% vs. 24%, p = 0.049) months. The 1-month and 3-month CRE clearance did not differ significantly by group (36% vs. 10%, p = 0.341; and 71% vs. 30%, p = 0.095, respectively). Among patients with VRE, FMT was ineffective for 1-month or 3-month negative conversion (13% vs. 9%, p > 0.999; and 36% vs. 18%, p = 0.658, respectively) However, cumulative overall negative-conversion rate was significantly higher in the FMT group (p = 0.037). Enterococcus abundance in patients with VRE significantly decreased following FMT. FMT may be effective at decolonizing multidrug-resistant organisms in the intestinal tract.
Collapse
|
44
|
Sen T, Thummer RP. The Impact of Human Microbiotas in Hematopoietic Stem Cell and Organ Transplantation. Front Immunol 2022; 13:932228. [PMID: 35874759 PMCID: PMC9300833 DOI: 10.3389/fimmu.2022.932228] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022] Open
Abstract
The human microbiota heavily influences most vital aspects of human physiology including organ transplantation outcomes and transplant rejection risk. A variety of organ transplantation scenarios such as lung and heart transplantation as well as hematopoietic stem cell transplantation is heavily influenced by the human microbiotas. The human microbiota refers to a rich, diverse, and complex ecosystem of bacteria, fungi, archaea, helminths, protozoans, parasites, and viruses. Research accumulating over the past decade has established the existence of complex cross-species, cross-kingdom interactions between the residents of the various human microbiotas and the human body. Since the gut microbiota is the densest, most popular, and most studied human microbiota, the impact of other human microbiotas such as the oral, lung, urinary, and genital microbiotas is often overshadowed. However, these microbiotas also provide critical and unique insights pertaining to transplantation success, rejection risk, and overall host health, across multiple different transplantation scenarios. Organ transplantation as well as the pre-, peri-, and post-transplant pharmacological regimens patients undergo is known to adversely impact the microbiotas, thereby increasing the risk of adverse patient outcomes. Over the past decade, holistic approaches to post-transplant patient care such as the administration of clinical and dietary interventions aiming at restoring deranged microbiota community structures have been gaining momentum. Examples of these include prebiotic and probiotic administration, fecal microbial transplantation, and bacteriophage-mediated multidrug-resistant bacterial decolonization. This review will discuss these perspectives and explore the role of different human microbiotas in the context of various transplantation scenarios.
Collapse
Affiliation(s)
| | - Rajkumar P. Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
45
|
Dore MP, Sau R, Niolu C, Abbondio M, Tanca A, Bibbò S, Loria M, Pes GM, Uzzau S. Metagenomic Changes of Gut Microbiota following Treatment of Helicobacter pylori Infection with a Simplified Low-Dose Quadruple Therapy with Bismuth or Lactobacillus reuteri. Nutrients 2022; 14:nu14142789. [PMID: 35889746 PMCID: PMC9316840 DOI: 10.3390/nu14142789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 02/06/2023] Open
Abstract
Background: Probiotic supplementation to antibiotic regimens against Helicobacter pylori infection has been proposed to improve eradication rate and to decrease detrimental effects on gut microbiota. Aims: To evaluate microbiota modifications due to a low-dose quadruple therapy with bismuth or Lactobacillus reuteri. Methods: Forty-six patients infected with H. pylori were prospectively enrolled in a single-centre, randomized controlled trial to receive b.i.d. with meals for 10 days low-dose quadruple therapy consisting of rabeprazole 20 mg and bismuth (two capsules of Pylera® plus 250 mg each of tetracycline and metronidazole), or the same dose of rabeprazole and antibiotics plus Gastrus® (L. reuteri), one tablet twice-a-day for 27 days. Stool samples were collected at the enrolment, at the end and 30–40 days after the treatment. Gut microbiota composition was investigated with 16S rRNA gene sequencing. Results: Eradication rate was by ITT 78% in both groups, and by PP analysis 85.7% and 95.5% for Gastrus® and bismuth group, respectively. Alpha and beta diversity decreased at the end of treatment and was associated with a reduction of bacterial genera beneficial for gut homeostasis, which was rescued 30–40 days later in both groups, suggesting a similar impact of the two regimens in challenging bacterial community complexity. Conclusions: Low-dose bismuth quadruple therapy proved to be effective with lower costs and amount of antibiotics and bismuth. Gastrus® might be an option for patients with contraindications to bismuth. L. reuteri was unable to significantly counteract dysbiosis induced by antibiotics. How to administer probiotics to prevent gut microbiota alterations remains an open question.
Collapse
Affiliation(s)
- Maria Pina Dore
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy; (C.N.); (M.L.); (G.M.P.)
- Correspondence: ; Tel.: +39-079-229886
| | - Rosangela Sau
- Dipartimento di Scienze Biomediche, University of Sassari, Viale San Pietro 43B, 07100 Sassari, Italy; (R.S.); (M.A.); (A.T.); (S.U.)
| | - Caterina Niolu
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy; (C.N.); (M.L.); (G.M.P.)
| | - Marcello Abbondio
- Dipartimento di Scienze Biomediche, University of Sassari, Viale San Pietro 43B, 07100 Sassari, Italy; (R.S.); (M.A.); (A.T.); (S.U.)
| | - Alessandro Tanca
- Dipartimento di Scienze Biomediche, University of Sassari, Viale San Pietro 43B, 07100 Sassari, Italy; (R.S.); (M.A.); (A.T.); (S.U.)
| | - Stefano Bibbò
- CEMAD Digestive Disease Center—Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Mariafrancesca Loria
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy; (C.N.); (M.L.); (G.M.P.)
| | - Giovanni Mario Pes
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy; (C.N.); (M.L.); (G.M.P.)
| | - Sergio Uzzau
- Dipartimento di Scienze Biomediche, University of Sassari, Viale San Pietro 43B, 07100 Sassari, Italy; (R.S.); (M.A.); (A.T.); (S.U.)
| |
Collapse
|
46
|
Cao Z, Sugimura N, Burgermeister E, Ebert MP, Zuo T, Lan P. The gut virome: A new microbiome component in health and disease. EBioMedicine 2022; 81:104113. [PMID: 35753153 PMCID: PMC9240800 DOI: 10.1016/j.ebiom.2022.104113] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/14/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022] Open
Abstract
The human gastrointestinal tract harbours an abundance of viruses, collectively known as the gut virome. The gut virome is highly heterogeneous across populations and is linked to geography, ethnicity, diet, lifestyle, and urbanisation. The currently known function of the gut virome varies greatly across human populations, and much remains unknown. We review current literature on the human gut virome, and the intricate trans-kingdom interplay among gut viruses, bacteria, and the mammalian host underlying health and diseases. We summarise evidence on the use of the gut virome as diagnostic markers and a therapeutic target. We shed light on novel avenues of microbiome-inspired diagnosis and therapies. We also review pre-clinical and clinical studies on gut virome-rectification-based therapies, including faecal microbiota transplantation, faecal virome transplantation, and refined phage therapy. Our review suggests that future research effort should focus on unravelling the mechanisms exerted by gut viruses/phages in human pathophysiology, and on developing phage-prompted precision therapies.
Collapse
Affiliation(s)
- Zhirui Cao
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China; Centre for Faecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Naoki Sugimura
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Elke Burgermeister
- Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Matthias P Ebert
- Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; DKFZ-Hector Cancer Institute, Mannheim, Germany; Mannheim Cancer Centre (MCC), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tao Zuo
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China; Centre for Faecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Ping Lan
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China; Centre for Faecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
47
|
Bilinski J, Dziurzynski M, Grzesiowski P, Podsiadly E, Stelmaszczyk-Emmel A, Dzieciatkowski T, Lis K, Tyszka M, Ozieranski K, Dziewit Ł, Basak GW. Fresh Versus Frozen Stool for Fecal Microbiota Transplantation—Assessment by Multimethod Approach Combining Culturing, Flow Cytometry, and Next-Generation Sequencing. Front Microbiol 2022; 13:872735. [PMID: 35847075 PMCID: PMC9284506 DOI: 10.3389/fmicb.2022.872735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022] Open
Abstract
The objective of this work was to compare the quality of FMT preparations made from fresh feces with those made from feces frozen at –30°C without any pre-processing or cryopreservation additives. The research hypothesis was that such preservation protocol (frozen whole stool, then thawed and processed) is equipotent to classical fresh FMT preparation. For that, three complementary methods were applied, including: (i) culturing in aerobic and anaerobic conditions, (ii) measuring viability by flow cytometry, and (iii) next-generation sequencing. Flow cytometry with cell staining showed that the applied freezing protocol causes significant changes in all of the observed bacterial fractions. Alive cell counts dropped four times, from around 70% to 15%, while the other two fractions, dead and unknown cell counts quadrupled and doubled, with the unknown fraction becoming the dominant one, with an average contribution of 57.47% per sample. It will be very interesting to uncover what this unknown fraction is (e.g., bacterial spores), as this may change our conclusions (if these are spores, the viability could be even higher after freezing). Freezing had a huge impact on the structure of cultivable bacterial communities. The biggest drop after freezing in the number of cultivable species was observed for Actinobacteria and Bacilli. In most cases, selected biodiversity indices were slightly lower for frozen samples. PCoA visualization built using weighted UniFrac index showed no donor-wise clusters, but a clear split between fresh and frozen samples. This split can be in part attributed to the changes in the relative abundance of Bacteroidales and Clostridiales orders. Our results clearly show that whole stool freezing without any cryoprotectants has a great impact on the cultivability and biodiversity of the bacterial community, and possibly also on the viability of bacterial cells.
Collapse
Affiliation(s)
- Jaroslaw Bilinski
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
- *Correspondence: Jaroslaw Bilinski,
| | - Mikolaj Dziurzynski
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
- Mikolaj Dziurzynski,
| | | | - Edyta Podsiadly
- Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland
| | - Anna Stelmaszczyk-Emmel
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | | | - Karol Lis
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Martyna Tyszka
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | - Łukasz Dziewit
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Grzegorz W. Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
48
|
Lee S, Fan P, Liu T, Yang A, Boughton RK, Pepin KM, Miller RS, Jeong KC. Transmission of antibiotic resistance at the wildlife-livestock interface. Commun Biol 2022; 5:585. [PMID: 35705693 PMCID: PMC9200806 DOI: 10.1038/s42003-022-03520-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 05/23/2022] [Indexed: 12/23/2022] Open
Abstract
Antibiotic-resistant microorganisms (ARMs) are widespread in natural environments, animals (wildlife and livestock), and humans, which has reduced our capacity to control life threatening infectious disease. Yet, little is known about their transmission pathways, especially at the wildlife-livestock interface. This study investigated the potential transmission of ARMs and antibiotic resistance genes (ARGs) between cattle and wildlife by comparing gut microbiota and ARG profiles of feral swine (Sus scrofa), coyotes (Canis latrans), cattle (Bos taurus), and environmental microbiota. Unexpectedly, wild animals harbored more abundant ARMs and ARGs compared to grazing cattle. Gut microbiota of cattle was significantly more similar to that of feral swine captured within the cattle grazing area where the home range of both species overlapped substantially. In addition, ARMs against medically important antibiotics were more prevalent in wildlife than grazing cattle, suggesting that wildlife could be a source of ARMs colonization in livestock. Analysis of microbiome data from feral swine, coyotes, domesticated cattle, and the surrounding environment reveals that wild animals harbor more abundant antibiotic-resistant organisms than livestock, and might act as a source of antibiotic-resistant microbes in outbreaks.
Collapse
Affiliation(s)
- Shinyoung Lee
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, USA.,Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Peixin Fan
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, USA.,Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Ting Liu
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, USA.,Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Anni Yang
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, 80523, USA.,National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, 4101 Laporte Ave., Fort Collins, CO, 80521, USA
| | - Raoul K Boughton
- Range Cattle Research and Education Center, Wildlife Ecology and Conservation, University of Florida, Ona, FL, 33865, USA
| | - Kim M Pepin
- National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, 4101 Laporte Ave., Fort Collins, CO, 80521, USA
| | - Ryan S Miller
- Center for Epidemiology and Animal Health, United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, 2150 Center Dr., Fort Collins, CO, 80523, USA
| | - Kwangcheol Casey Jeong
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, USA. .,Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
49
|
Benítez-Páez A, Hartstra AV, Nieuwdorp M, Sanz Y. Species- and strain-level assessment using rrn long-amplicons suggests donor's influence on gut microbial transference via fecal transplants in metabolic syndrome subjects. Gut Microbes 2022; 14:2078621. [PMID: 35604764 PMCID: PMC9132484 DOI: 10.1080/19490976.2022.2078621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Fecal microbiota transplantation (FMT) is currently used for treating Clostridium difficile infection and explored for other clinical applications in experimental trials. However, the effectiveness of this therapy could vary, and partly depend on the donor's bacterial species engraftment, whose evaluation is challenging because there are no cost-effective strategies for accurately tracking the microbe transference. In this regard, the precise identification of bacterial species inhabiting the human gut is essential to define their role in human health unambiguously. We used Nanopore-based device to sequence bacterial rrn operons (16S-ITS-23S) and to reveal species-level abundance changes in the human gut microbiota of a FMT trial. By assessing the donor and recipient microbiota before and after FMT, we further evaluated whether this molecular approach reveals strain-level genetic variation to demonstrate microbe transfer and engraftment. Strict control over sequencing data quality and major microbiota covariates was critical for accurately estimating the changes in gut microbial species abundance in the recipients after FMT. We detected strain-level variation via single-nucleotide variants (SNVs) at rrn regions in a species-specific manner. We showed that it was possible to explore successfully the donor-bacterial strain (e.g., Parabacteroides merdae) engraftment in recipients of the FMT by assessing the nucleotide frequencies at rrn-associated SNVs. Our findings indicate that the engraftment of donors' microbiota is to some extent correlated with the improvement of metabolic health in recipients and that parameters such as the baseline gut microbiota configuration, sex, and age of donors should be considered to ensure the success of FMT in humans. The study was prospectively registered at the Dutch Trial registry - NTR4488 (https://www.trialregister.nl/trial/4488).
Collapse
Affiliation(s)
- Alfonso Benítez-Páez
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna-Valencia, Spain,Host-Microbe Interactions in Metabolic Health Laboratory, Principe Felipe Research Center (CIPF), Valencia, Spain,CONTACT Alfonso Benítez-Páez Host-Microbe Interactions in Metabolic Health Laboratory, Principe Felipe Research Center (CIPF), Valencia, Spain
| | - Annick V. Hartstra
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Yolanda Sanz
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna-Valencia, Spain,Yolanda Sanz Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna-Valencia46980, Spain
| |
Collapse
|
50
|
Interaction Between Altered Gut Microbiota and Sepsis: A Hypothesis or an Authentic Fact? J Intensive Care Med 2022; 38:121-131. [DOI: 10.1177/08850666221102796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sepsis, as an important public health concern, is one of the leading causes of death in hospitals around the world, accounting for 25% of all deaths. Nowadays, several factors contribute to the development of sepsis. The role of the gut microbiota and the response state of the aberrant immune system is dominant. The effect of the human microbiome on health is undeniable, and gut microbiota is even considered a body organ. It is now clear that the alteration in the normal balance of the microbiota (dysbiosis) is associated with a change in the status of immune system responses. Owing to the strong association between the gut microbiota and its metabolites particularly short-chain fatty acids with many illnesses, the gut microbiota has a unique position in the research of microbiologists and even clinicians. This review aimed to analyze studies’ results on the association between microbiota and sepsis, with a substantial understanding of their relationship. As a result, an extensive and comprehensive search was conducted on this issue in existing databases.
Collapse
|