1
|
Qian C, Sun Y, Yue Y. Construction and Validation of a T Cell Exhaustion-Related Prognostic Signature in Cholangiocarcinoma. Int J Genomics 2025; 2025:8823837. [PMID: 40226355 PMCID: PMC11991809 DOI: 10.1155/ijog/8823837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/24/2025] [Indexed: 04/15/2025] Open
Abstract
Objective: T cell exhaustion (TEX) is a critical determinant of immune resistance. This study was performed to investigate the key genes linked to TEX in cholangiocarcinoma (CCA) and construct a TEX-associated gene signature to forecast the prognosis of patients with CCA. Methods: Based on the expression data acquired from the E-MTAB-6389 dataset, the TEX-related modules and module genes were identified using weighted coexpression network analysis (WGCNA). Subsequently, a TEX-related prognostic signature was built by using the univariate and least absolute shrinkage and selection operator (LASSO) Cox regression analysis. The immune cell infiltration in each CCA sample was evaluated using the single-sample gene set enrichment analysis (ssGSEA) package, followed by single-cell RNA sequencing (scRNA-seq) analysis. Furthermore, the expression of TEX-related genes in the gene signature was experimentally validated in CCA cells by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and western blot analysis. Results: A total of 15 TEX-associated modules and 23 module genes were identified. Then, a four-gene signature related to TEX was established, containing Palladin, Cytoskeletal Associated Protein (PALLD), Member RAS Oncogene Family (RAB31), ADAM Metallopeptidase With Thrombospondin Type 1 Motif 2 (ADAMTS2), and WISP1, which could predict prognosis of patients with CCA. Moreover, neutrophils, endothelial cells, B cells, and T cells exhibited significant infiltration in CCA samples, and these four TEX-related genes were both significantly positively correlated with T cells, endothelial cells, and B cells while negatively correlated with neutrophils. Moreover, a total of 13 cell types were annotated after scRNA-seq analysis. Notably, RAB31 was mainly highly expressed in monocytes, macrophages, DC2 (Dendritic Cells 2), and DC3 (Dendritic Cells 3), and PALLD, ADAMTS2, and WISP1 were mainly overexpressed in fibroblasts. Furthermore, experimental validation revealed that the expression levels of PALLD, RAB31, ADAMTS2, and WISP1 were consistent with the trend results of bioinformatics analysis. Conclusion: A prognostic signature was developed by four TEX-related genes, including PALLD, RAB31, ADAMTS2, and WISP1, which might be a powerful predictor for the prognosis of patients with CCA. These TEX-related genes were related to the infiltration of neutrophils, endothelial cells, B cells, and T cells in CCA.
Collapse
Affiliation(s)
- Changshi Qian
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Yanbian University, Yanji, China
| | - Yuqiao Sun
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Yanbian University, Yanji, China
| | - Yihuai Yue
- Department of Surgery, Medical College of Yanbian University, Yanji, China
| |
Collapse
|
2
|
Bruzzini KM, Mann ST, Guttman JA. Overexpressed Palladin Rescues Enteropathogenic E. coli (EPEC) Pedestal Lengths in ArpC2 Depleted Cells. Cytoskeleton (Hoboken) 2024. [PMID: 39692253 DOI: 10.1002/cm.21974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024]
Abstract
Enteropathogenic Escherichia coli (EPEC) causes diarrheal disease. Once ingested, these extracellular pathogens attach to the intestinal epithelial cells of their host, collapse the localized microvilli, and generate actin-rich structures within the host cells that are located beneath the attached bacteria, called "pedestals." Palladin is an actin-associated protein that cross-links and stabilizes actin filaments. This protein also acts as a scaffolding protein for other actin-binding proteins. Here, we examine the role of Palladin during EPEC infections and show that Palladin is co-opted by EPEC. Depletion of Palladin resulted in shorter pedestals, and when Palladin containing mutations in either its actin- or VASP-binding domains were overexpressed in cells, pedestals decreased in length. Importantly, we show that the overexpression of Palladin in ArpC2-/- (Arp2/3 complex-depleted) cells rescued pedestal length. Together, our results demonstrate that Palladin has the ability to rescue pedestal length during EPEC infections when the function of the Arp2/3 complex is diminished.
Collapse
Affiliation(s)
- Kaitlin M Bruzzini
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - S Tara Mann
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Julian A Guttman
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
3
|
Li G, Jiang H, Wang L, Liang T, Ding C, Yang M, Shen Y, Xin M, Zhang L, Dai J, Sun X, Chen X, Liu J, Xu Y. The role of PALLD-STAT3 interaction in megakaryocyte differentiation and thrombocytopenia treatment. Haematologica 2024; 109:3693-3704. [PMID: 38813732 PMCID: PMC11532707 DOI: 10.3324/haematol.2024.285242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024] Open
Abstract
Impaired differentiation of megakaryocytes constitutes the principal etiology of thrombocytopenia. The signal transducer and activator of transcription 3 (STAT3) is a crucial transcription factor in regulating megakaryocyte differentiation, however the precise mechanism of its activation remains unclear. PALLD, an actin-associated protein, has been increasingly recognized for its essential functions in multiple biological processes. This study revealed that megakaryocyte/platelet-specific knockout of Palld in mice exhibited thrombocytopenia due to diminished platelet biogenesis. In megakaryocytes, PALLD deficiency led to impaired proplatelet formation and polyploidization, ultimately weakening their differentiation for platelet production. Mechanistic studies demonstrated that PALLD bound to STAT3 and interacted with its DNA-binding domain and Src homology 2 domain via immunoglobulin domain 3. Moreover, the absence of PALLD attenuated STAT3 Y705 phosphorylation and impeded STAT3 nuclear translocation. Based on the PALLD-STAT3 binding sequence, we designed a peptide C-P3, which can facilitate megakaryocyte differentiation and accelerate platelet production in vivo. In conclusion, this study highlights the pivotal role of PALLD in megakaryocyte differentiation and proposes a novel approach for treating thrombocytopenia by targeting the PALLD-STAT3 interaction.
Collapse
Affiliation(s)
- Guoming Li
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Haojie Jiang
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Lingbin Wang
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Tingting Liang
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Chen Ding
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Mina Yang
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Yingzhi Shen
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Min Xin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Lin Zhang
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Jing Dai
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Xueqing Sun
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Xuejiao Chen
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, Hubei Province.
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Synvida Biotechnology Co., Ltd, Shanghai.
| | - Yanyan Xu
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai.
| |
Collapse
|
4
|
Nguyen NUN, Hsu CC, Ali SR, Wang HV. Actin-organizing protein palladin modulates C2C12 cell fate determination. Biochem Biophys Rep 2024; 39:101762. [PMID: 39026565 PMCID: PMC11255515 DOI: 10.1016/j.bbrep.2024.101762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/28/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
Background Cell confluency and serum deprivation promote the transition of C2C12 myoblasts into myocytes and subsequence fusion into myotubes. However, despite all myoblasts undergoing the same serum deprivation trigger, their responses vary: whether they become founder myocytes, remain proliferative, or evolve into fusion-competent myocytes remains unclear. We have previously shown that depletion of the scaffolding protein palladin in myoblasts inhibits cell migration and promotes premature muscle differentiation, pointing to its potential significance in muscle development and the necessity for a more in-depth examination of its function in cellular heterogeneity. Methods and results Here, we showed that the subcellular localization of palladin might contribute to founder-fate cell decision in the early differentiation process. Depleting palladin in C2C12 myoblasts depleted integrin-β3 plasma membrane localization of and focal adhesion formation at the early stage of myogenesis, decreased kindlin-2 and metavinculin expression during the myotube maturation process, leading to the inability of myocytes to fuse into preexisting mature myotubes. This aligns with previous findings where early differentiation into nascent myotubes occurred but compromised maturation. In contrast, wildtype C2C12 overexpressing the 140-kDa palladin isoform developed a polarized morphology with star-like structures toward other myoblasts. However, this behaviour was not observed in palladin-depleted cells, where the 140-kDa palladin overexpression could not recover cell migration capacity, suggesting other palladin isoforms are also needed to establish cell polarity. Conclusion Our study identifies a counter-intuitive role for palladin in regulating myoblast-to-myocyte cell fate decisions and impacting their ability to form mature multinucleated myotubes by influencing cell signalling pathways and cytoskeletal organization, necessary for skeletal muscle regeneration and repair studies.
Collapse
Affiliation(s)
- Ngoc Uyen Nhi Nguyen
- Department of Life Sciences, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Ching-Cheng Hsu
- Institute of Basic Medical Science, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Shah R. Ali
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, USA
| | - Hao-Ven Wang
- Department of Life Sciences, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan
- University Center for Bioscience and Biotechnology, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan
- Marine Biology and Cetacean Research Center, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan
| |
Collapse
|
5
|
Türk L, Filippov I, Arnold C, Zaugg J, Tserel L, Kisand K, Peterson P. Cytotoxic CD8 + Temra cells show loss of chromatin accessibility at genes associated with T cell activation. Front Immunol 2024; 15:1285798. [PMID: 38370415 PMCID: PMC10870784 DOI: 10.3389/fimmu.2024.1285798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
As humans age, their memory T cell compartment expands due to the lifelong exposure to antigens. This expansion is characterized by terminally differentiated CD8+ T cells (Temra), which possess NK cell-like phenotype and are associated with chronic inflammatory conditions. Temra cells are predominantly driven by the sporadic reactivation of cytomegalovirus (CMV), yet their epigenomic patterns and cellular heterogeneity remain understudied. To address this gap, we correlated their gene expression profiles with chromatin openness and conducted single-cell transcriptome analysis, comparing them to other CD8+ subsets and CMV-responses. We confirmed that Temra cells exhibit high expression of genes associated with cytotoxicity and lower expression of costimulatory and chemokine genes. The data revealed that CMV-responsive CD8+ T cells (Tcmv) were predominantly derived from a mixed population of Temra and memory cells (Tcm/em) and shared their transcriptomic profiles. Using ATAC-seq analysis, we identified 1449 differentially accessible chromatin regions between CD8+ Temra and Tcm/em cells, of which only 127 sites gained chromatin accessibility in Temra cells. We further identified 51 gene loci, including costimulatory CD27, CD28, and ICOS genes, whose chromatin accessibility correlated with their gene expression. The differential chromatin regions Tcm/em cells were enriched in motifs that bind multiple transcriptional activators, such as Jun/Fos, NFkappaB, and STAT, whereas the open regions in Temra cells mainly contained binding sites of T-box transcription factors. Our single-cell analysis of CD8+CCR7loCD45RAhi sorted Temra population showed several subsets of Temra and NKT-like cells and CMC1+ Temra populations in older individuals that were shifted towards decreased cytotoxicity. Among CD8+CCR7loCD45RAhi sorted cells, we found a decreased proportion of IL7R+ Tcm/em-like and MAIT cells in individuals with high levels of CMV antibodies (CMVhi). These results shed new light on the molecular and cellular heterogeneity of CD8+ Temra cells and their relationship to aging and CMV infection.
Collapse
Affiliation(s)
- Lehte Türk
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Igor Filippov
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Qiagen Aarhus A/S, Aarhus, Denmark
| | - Christian Arnold
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Judith Zaugg
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Liina Tserel
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Pärt Peterson
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
6
|
Tawfeeq C, Song J, Khaniya U, Madej T, Wang J, Youkharibache P, Abrol R. Towards a structural and functional analysis of the immunoglobulin-fold proteome. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 138:135-178. [PMID: 38220423 DOI: 10.1016/bs.apcsb.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The immunoglobulin fold (Ig fold) domain is a super-secondary structural motif consisting of a sandwich with two layers of β-sheets that is present in many proteins with very diverse biological functions covering a wide range of physiological processes. This domain presents a modular architecture built with β strands connected by variable length loops that has a highly conserved structural core of four β-strands and quite variable β-sheet extensions in the two sandwich layers that enable both divergent and convergent evolutionary mechanisms in the known Ig fold proteome. The central role of this Ig fold's structural plasticity in the evolutionary success of antibodies in our immune system is well established. Nature has also utilized this Ig fold in all domains of life in many different physiological contexts that go way beyond the immune system. Here we will present a structural and functional overview of the utilization of the Ig fold in different biological processes and in different cellular contexts to highlight some of the innumerable ways that this structural motif can interact in multidomain proteins to enable their diversity of functions. This includes shareable specific protein structure visualizations behind those functions that serve as starting points for further explorations of the biomolecular interactions spanning the Ig fold proteome. This overview also highlights how this Ig fold is being utilized through natural adaptation, engineering, and even building from scratch for a range of biotechnological applications.
Collapse
Affiliation(s)
- Caesar Tawfeeq
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, United States
| | - James Song
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Umesh Khaniya
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Thomas Madej
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Jiyao Wang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Philippe Youkharibache
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, United States.
| | - Ravinder Abrol
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, United States.
| |
Collapse
|
7
|
Akdaş EY, Temizci B, Karabay A. miR96- and miR182-driven regulation of cytoskeleton results in inhibition of glioblastoma motility. Cytoskeleton (Hoboken) 2023; 80:367-381. [PMID: 36961307 DOI: 10.1002/cm.21754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/15/2023] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most common forms of brain tumor. As an excessively invasive tumor type, GBM cannot be fully cured due to its invasion ability into healthy brain tissues. Therefore, molecular mechanisms behind GBM migration and invasion need to be deeply investigated for the development of effective GBM treatments. Cellular motility and invasion are strictly associated with the cytoskeleton, especially with actins and tubulins. Palladin, an actin-binding protein, tightly bundles actins during initial invadopodia and contraction fiber formations, which are essential for cellular motility. Spastin, a microtubule-binding protein, cuts microtubules into small pieces and acts on invadopodia elongation and cellular trafficking of invadopodia-associated proteins. Regulation of proteins such as spastin and palladin involved in dynamic reorganization of the cytoskeleton, are rapidly carried out by microRNAs at the posttranscriptional level. Therefore, determining possible regulatory miRNAs of spastin and palladin is critical to elucidate GBM motility. miR96 and miR182 down-regulate SPAST and PALLD at both transcript and protein levels. Over-expression of miR96 and miR182 resulted in inhibition of the motility. However, over-expression of spastin and palladin induced the motility. Spastin and palladin rescue of miR96- or miR182-transfected U251 MG cells resulted in diminished effects of the miRNAs and rescued the motility. Our results demonstrate that miR96 and miR182 over-expressions inhibit GBM motility by regulating cytoskeleton through spastin and palladin. These findings suggest that miR96 and miR182 should be investigated in more detail for their potential use in GBM therapy.
Collapse
Affiliation(s)
- Enes Yağız Akdaş
- Department of Molecular Biology and Genetics, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Benan Temizci
- Department of Molecular Biology and Genetics, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Arzu Karabay
- Department of Molecular Biology and Genetics, Istanbul Technical University, Maslak, Istanbul, Turkey
| |
Collapse
|
8
|
Buenaventura RGM, Merlino G, Yu Y. Ez-Metastasizing: The Crucial Roles of Ezrin in Metastasis. Cells 2023; 12:1620. [PMID: 37371090 DOI: 10.3390/cells12121620] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Ezrin is the cytoskeletal organizer and functions in the modulation of membrane-cytoskeleton interaction, maintenance of cell shape and structure, and regulation of cell-cell adhesion and movement, as well as cell survival. Ezrin plays a critical role in regulating tumor metastasis through interaction with other binding proteins. Notably, Ezrin has been reported to interact with immune cells, allowing tumor cells to escape immune attack in metastasis. Here, we review the main functions of Ezrin, the mechanisms through which it acts, its role in tumor metastasis, and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Rand Gabriel M Buenaventura
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yanlin Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Shu X, Chen M, Liu S, Yu L, Sun L, Sun L, Ran Y. Palladin promotes cancer stem cell-like properties in lung cancer by activating Wnt/Β-Catenin signaling. Cancer Med 2023; 12:4510-4520. [PMID: 36047666 PMCID: PMC9972019 DOI: 10.1002/cam4.5192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are responsible for drug resistance, cancer relapse, and metastasis. Here, we report the first analysis of Palladin expression and its impacts on stem cell-like properties in lung cancer. METHODS Tissue microarrays were used to investigate Palladin expression and its association with prognosis. Immunofluorescence (IF), flow fluorescence assay, and Western blot were performed to detect Palladin expression in 6 NSCLC cell lines. Cell phenotypes and drug resistance were evaluated. Xenograft models were constructed to confirm the role of Palladin in vivo. RESULTS By using the tissue microarrays, Palladin was identified to be highly expressed in the cytoplasm, specifically in the cytomembrane of NSCLC, and its high expression is associated with poor prognosis. Palladin is widely expressed and enriched in the sphere cells. The in vitro and in vivo studies showed that Palladin promoted stem cell-like properties, including cell viability, invasion, migration, self-renewal abilities, taxol resistance, and tumorigenicity. Western blot revealed that Palladin promoted the accumulation of β-catenin and activated Wnt/β-catenin signaling. Tissue microarrays analysis further confirmed the positive correlation between Palladin and β-catenin. Wnt/β-catenin pathway inhibitor blocked the Palladin-induced enhancement of sphere-forming. CONCLUSIONS Palladin might act as an oncogene by promoting CSCs-like properties and tumorigenicity of NSCLC cells via the Wnt/β-catenin signaling pathway. Besides, Palladin was identified to have the potential as a cell surface marker for LCSCs identification. These findings provide a possible target for developing putative agents targeted to LCSCs.
Collapse
Affiliation(s)
- Xiong Shu
- Laboratory of Molecular OrthopaedicsBeijing Research Institute of Orthopaedics and Traumatology, Beijing JiShuiTan HospitalBeijingP. R. China
| | - Meng Chen
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Shi‐Ya Liu
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Long Yu
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Li‐Xin Sun
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Li‐Chao Sun
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Yu‐Liang Ran
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| |
Collapse
|
10
|
Stepanov YK, Speidel JD, Herrmann C, Schmid N, Behr R, Köhn FM, Stöckl JB, Pickl U, Trottmann M, Fröhlich T, Mayerhofer A, Welter H. Profound Effects of Dexamethasone on the Immunological State, Synthesis and Secretion Capacity of Human Testicular Peritubular Cells. Cells 2022; 11:cells11193164. [PMID: 36231125 PMCID: PMC9562650 DOI: 10.3390/cells11193164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/21/2022] [Accepted: 10/04/2022] [Indexed: 11/21/2022] Open
Abstract
The functions of human testicular peritubular cells (HTPCs), forming a small compartment located between the seminiferous epithelium and the interstitial areas of the testis, are not fully known but go beyond intratesticular sperm transport and include immunological roles. The expression of the glucocorticoid receptor (GR) indicates that they may be regulated by glucocorticoids (GCs). Herein, we studied the consequences of the GC dexamethasone (Dex) in cultured HTPCs, which serves as a unique window into the human testis. We examined changes in cytokines, mainly by qPCR and ELISA. A holistic mass-spectrometry-based proteome analysis of cellular and secreted proteins was also performed. Dex, used in a therapeutic concentration, decreased the transcript level of proinflammatory cytokines, e.g., IL6, IL8 and MCP1. An siRNA-mediated knockdown of GR reduced the actions on IL6. Changes in IL6 were confirmed by ELISA measurements. Of note, Dex also lowered GR levels. The proteomic results revealed strong responses after 24 h (31 significantly altered cellular proteins) and more pronounced ones after 72 h of Dex exposure (30 less abundant and 42 more abundant cellular proteins). Dex also altered the composition of the secretome (33 proteins decreased, 13 increased) after 72 h. Among the regulated proteins were extracellular matrix (ECM) and basement membrane components (e.g., FBLN2, COL1A2 and COL3A1), as well as PTX3 and StAR. These results pinpoint novel, profound effects of Dex in HTPCs. If transferrable to the human testis, changes specifically in ECM and the immunological state of the testis may occur in men upon treatment with Dex for medical reasons.
Collapse
Affiliation(s)
| | - Jan Dominik Speidel
- Biomedical Center, Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University Munich, 82152 Planegg-Martinsried, Germany
| | - Carola Herrmann
- Biomedical Center, Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University Munich, 82152 Planegg-Martinsried, Germany
| | - Nina Schmid
- Biomedical Center, Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University Munich, 82152 Planegg-Martinsried, Germany
| | - Rüdiger Behr
- Platform Degenerative Diseases, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | | | - Jan Bernd Stöckl
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU München, 81377 München, Germany
| | | | | | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU München, 81377 München, Germany
| | - Artur Mayerhofer
- Biomedical Center, Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University Munich, 82152 Planegg-Martinsried, Germany
- Correspondence: (A.M.); (H.W.); Tel.: +49-89218075859 (A.M.); +49-89218071882 (H.W.)
| | - Harald Welter
- Biomedical Center, Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University Munich, 82152 Planegg-Martinsried, Germany
- Correspondence: (A.M.); (H.W.); Tel.: +49-89218075859 (A.M.); +49-89218071882 (H.W.)
| |
Collapse
|
11
|
Hao X, Fan H, Yang J, Tang J, Zhou J, Zhao Y, Huang L, Xia Y. Network Pharmacology Research and Dual-omic Analyses Reveal the Molecular Mechanism of Natural Product Nodosin Inhibiting Muscle-Invasive Bladder Cancer in Vitro and in Vivo. JOURNAL OF NATURAL PRODUCTS 2022; 85:2006-2017. [PMID: 35976233 DOI: 10.1021/acs.jnatprod.2c00400] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bladder cancer, specifically, muscle-invasive bladder cancer (MIBC), is among the most common malignant tumors. Patients with MIBC who cannot tolerate standard drugs require novel treatments. Targeting apoptosis may help treat cancer, which may be achieved with the use of some natural products. Nodosin, found in Isodon serra (Maxim.) Kudo (known as Xihuangcao), may inhibit bladder cancer cells. Transcriptomics and proteomics dual-omic analyses revealed the network pharmacological mechanism: (1) blocking the S phase by up-regulating RPA2, CLSPN, MDC1, PDCD2L, and E2F6 gene expressions, suppressing cancer cell proliferation; (2) inducing apoptosis and autophagy and restraining ferroptosis by up-regulating HMOX1, G0S2, SQSTM1, FTL, SLC7A11, and AIFM2 gene expressions; (3) preventing cancer cell migration by down-regulating NEXN, LIMA1, CFL2, PALLD, and ITGA3 gene expressions. In vivo, nodosin inhibited bladder cancer cell growth in a model of xenograft tumor in nude mice. This study is the first to report basic research findings on the network pharmacological mechanism of cytotoxicity of bladder cancer cells by nodosin, providing novel evidence for the application of nodosin in the field of oncology; however, other mechanisms may be involved in the effects of nodosin for further research. These findings provide a foundation for the development of novel MIBC drugs.
Collapse
Affiliation(s)
- Xiaopeng Hao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan 450008, China
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Huixia Fan
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jinfu Tang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junhui Zhou
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuyang Zhao
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Luqi Huang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan 450008, China
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yong Xia
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, China
| |
Collapse
|
12
|
Liu X, Xu S, Li Y, Chen Q, Zhang Y, Peng L. Identification of CALU and PALLD as Potential Biomarkers Associated With Immune Infiltration in Heart Failure. Front Cardiovasc Med 2021; 8:774755. [PMID: 34926621 PMCID: PMC8671636 DOI: 10.3389/fcvm.2021.774755] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/08/2021] [Indexed: 01/15/2023] Open
Abstract
Background: Inflammatory activation and immune infiltration play important roles in the pathologic process of heart failure (HF). The current study is designed to investigate the immune infiltration and identify related biomarkers in heart failure patients due to ischemic cardiomyopathy. Methods: Expression data of HF due to ischemic cardiomyopathy (CM) samples and non-heart failure (NF) samples were downloaded from gene expression omnibus (GEO) database. Differentially expressed genes (DEGs) between CM and NF samples were identified. Single sample gene set enrichment analysis (ssGSEA) was performed to explore the landscape of immune infiltration. Weighted gene co-expression network analysis (WGCNA) was applied to screen the most relevant module associated with immune infiltration. The diagnostic values of candidate genes were evaluated by receiver operating curves (ROC) curves. The mRNA levels of potential biomarkers in the peripheral blood mononuclear cells (PBMCs) isolated from 10 CM patients and 10 NF patients were analyzed to further assess their diagnostic values. Results: A total of 224 DEGs were identified between CM and NF samples in GSE5406, which are mainly enriched in the protein processing and extracellular matrix related biological processes and pathways. The result of ssGSEA showed that the abundance of dendritic cells (DC), mast cells, natural killer (NK) CD56dim cells, T cells, T follicular helper cells (Tfh), gammadelta T cells (Tgd) and T helper 2 (Th2) cells were significantly higher, while the infiltration of eosinophils and central memory T cells (Tcm) were lower in CM samples compared to NF ones. Correlation analysis revealed that Calumenin (CALU) and palladin (PALLD) were negatively correlated with the abundance of DC, NK CD56dim cells, T cells, Tfh, Tgd and Th2 cells, but positively correlated with the level of Tcm. More importantly, CALU and PALLD were significantly lower in PBMCs from CM patients compared to NF ones. Conclusion: Our study revealed that CALU and PALLD are potential biomarkers associated with immune infiltration in heart failure due to ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Xing Liu
- Department of Cardiovascular Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shiyue Xu
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Li
- Department of Dermatology, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qian Chen
- Department of Cardiovascular Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuanyuan Zhang
- Department of Cardiovascular Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Long Peng
- Department of Cardiovascular Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Artelt N, Ritter AM, Leitermann L, Kliewe F, Schlüter R, Simm S, van den Brandt J, Endlich K, Endlich N. The podocyte-specific knockout of palladin in mice with a 129 genetic background affects podocyte morphology and the expression of palladin interacting proteins. PLoS One 2021; 16:e0260878. [PMID: 34879092 PMCID: PMC8654177 DOI: 10.1371/journal.pone.0260878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/18/2021] [Indexed: 11/19/2022] Open
Abstract
Proper and size selective blood filtration in the kidney depends on an intact morphology of podocyte foot processes. Effacement of interdigitating podocyte foot processes in the glomeruli causes a leaky filtration barrier resulting in proteinuria followed by the development of chronic kidney diseases. Since the function of the filtration barrier is depending on a proper actin cytoskeleton, we studied the role of the important actin-binding protein palladin for podocyte morphology. Podocyte-specific palladin knockout mice on a C57BL/6 genetic background (PodoPalldBL/6-/-) were back crossed to a 129 genetic background (PodoPalld129-/-) which is known to be more sensitive to kidney damage. Then we analyzed the morphological changes of glomeruli and podocytes as well as the expression of the palladin-binding partners Pdlim2, Lasp-1, Amotl1, ezrin and VASP in 6 and 12 months old mice. PodoPalld129-/- mice in 6 and 12 months showed a marked dilatation of the glomerular tuft and a reduced expression of the mesangial marker protein integrin α8 compared to controls of the same age. Furthermore, ultrastructural analysis showed significantly more podocytes with morphological deviations like an enlarged sub-podocyte space and regions with close contact to parietal epithelial cells. Moreover, PodoPalld129-/- of both age showed a severe effacement of podocyte foot processes, a significantly reduced expression of pLasp-1 and Pdlim2, and significantly reduced mRNA expression of Pdlim2 and VASP, three palladin-interacting proteins. Taken together, the results show that palladin is essential for proper podocyte morphology in mice with a 129 background.
Collapse
Affiliation(s)
- Nadine Artelt
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Alina M. Ritter
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Linda Leitermann
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Felix Kliewe
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Greifswald, Germany
| | - Stefan Simm
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Jens van den Brandt
- Central Core and Research Facility of Laboratory Animals (ZSFV), University Medicine Greifswald, Greifswald, Germany
| | - Karlhans Endlich
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Nicole Endlich
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
- * E-mail:
| |
Collapse
|
14
|
Li G, Kidd J, Gehr TWB, Li PL. Podocyte Sphingolipid Signaling in Nephrotic Syndrome. Cell Physiol Biochem 2021; 55:13-34. [PMID: 33861526 PMCID: PMC8193717 DOI: 10.33594/000000356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 11/25/2022] Open
Abstract
Podocytes play a vital role in the pathogenesis of nephrotic syndrome (NS), which is clinically characterized by heavy proteinuria, hypoalbuminemia, hyperlipidemia, and peripheral edema. The pathogenesis of NS has evolved through several hypotheses ranging from immune dysregulation theory and increased glomerular permeability theory to the current concept of podocytopathy. Podocytopathy is characterized by dysfunction or depletion of podocytes, which may be caused by unknown permeability factor, genetic disorders, drugs, infections, systemic disorders, and hyperfiltration. Over the last two decades, numerous studies have been done to explore the molecular mechanisms of podocyte injuries or NS and to develop the novel therapeutic strategies targeting podocytopathy for treatment of NS. Recent studies have shown that normal sphingolipid metabolism is essential for structural and functional integrity of podocytes. As a basic component of the plasma membrane, sphingolipids not only support the assembly of signaling molecules and interaction of receptors and effectors, but also mediate various cellular activities, such as apoptosis, proliferation, stress responses, necrosis, inflammation, autophagy, senescence, and differentiation. This review briefly summarizes current evidence demonstrating the regulation of sphingolipid metabolism in podocytes and the canonical or noncanonical roles of podocyte sphingolipid signaling in the pathogenesis of NS and associated therapeutic strategies.
Collapse
Affiliation(s)
- Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Jason Kidd
- Division of Nephrology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Todd W B Gehr
- Division of Nephrology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA,
| |
Collapse
|
15
|
Liu M, López de Juan Abad B, Cheng K. Cardiac fibrosis: Myofibroblast-mediated pathological regulation and drug delivery strategies. Adv Drug Deliv Rev 2021; 173:504-519. [PMID: 33831476 PMCID: PMC8299409 DOI: 10.1016/j.addr.2021.03.021] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/16/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
Cardiac fibrosis remains an unresolved problem in heart diseases. After initial injury, cardiac fibroblasts (CFs) are activated and subsequently differentiate into myofibroblasts (myoFbs) that are major mediator cells in the pathological remodeling. MyoFbs exhibit proliferative and secretive characteristics, and contribute to extracellular matrix (ECM) turnover, collagen deposition. The persistent functions of myoFbs lead to fibrotic scars and cardiac dysfunction. The anti-fibrotic treatment is hindered by the elusive mechanism of fibrosis and lack of specific targets on myoFbs. In this review, we will outline the progress of cardiac fibrosis and its contributions to the heart failure. We will also shed light on the role of myoFbs in the regulation of adverse remodeling. The communication between myoFbs and other cells that are involved in the heart injury and repair respectively will be reviewed in detail. Then, recently developed therapeutic strategies to treat fibrosis will be summarized such as i) chimeric antigen receptor T cell (CAR-T) therapy with an optimal target on myoFbs, ii) direct reprogramming from stem cells to quiescent CFs, iii) "off-target" small molecular drugs. The application of nano/micro technology will be discussed as well, which is involved in the construction of cell-based biomimic platforms and "pleiotropic" drug delivery systems.
Collapse
Affiliation(s)
- Mengrui Liu
- Department of Molecular Biomedical Sciences, North Carolina State University, NC, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA
| | - Blanca López de Juan Abad
- Department of Molecular Biomedical Sciences, North Carolina State University, NC, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences, North Carolina State University, NC, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA.
| |
Collapse
|
16
|
Jiang X, Qin Y, Kun L, Zhou Y. The Significant Role of the Microfilament System in Tumors. Front Oncol 2021; 11:620390. [PMID: 33816252 PMCID: PMC8010179 DOI: 10.3389/fonc.2021.620390] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Actin is the structural protein of microfilaments, and it usually exists in two forms: monomer and polymer. Among them, monomer actin is a spherical molecule composed of a polypeptide chain, also known as spherical actin. The function of actin polymers is to produce actin filaments, so it is also called fibroactin. The actin cytoskeleton is considered to be an important subcellular filament system. It interacts with numerous relevant proteins and regulatory cells, regulating basic functions, from cell division and muscle contraction to cell movement and ensuring tissue integrity. The dynamic reorganization of the actin cytoskeleton has immense influence on the progression and metastasis of cancer as well. This paper explores the significance of the microfilament network, the dynamic changes of its structure and function in the presence of a tumor, the formation process around the actin system, and the relevant proteins that may be target molecules for anticancer drugs so as to provide support and reference for interlinked cancer treatment research in the future.
Collapse
Affiliation(s)
- Xin Jiang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, China
| | - Yiming Qin
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, China
| | - Liu Kun
- Department of Neurosurgery, Brain Hospital of Hunan Province, Clinical Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Yanhong Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, China
| |
Collapse
|
17
|
Abbasi S, Schild-Poulter C. Identification of Ku70 Domain-Specific Interactors Using BioID2. Cells 2021; 10:cells10030646. [PMID: 33799447 PMCID: PMC8001828 DOI: 10.3390/cells10030646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 11/23/2022] Open
Abstract
Since its inception, proximity-dependent biotin identification (BioID), an in vivo biochemical screening method to identify proximal protein interactors, has seen extensive developments. Improvements and variants of the original BioID technique are being reported regularly, each expanding upon the existing potential of the original technique. While this is advancing our capabilities to study protein interactions under different contexts, we have yet to explore the full potential of the existing BioID variants already at our disposal. Here, we used BioID2 in an innovative manner to identify and map domain-specific protein interactions for the human Ku70 protein. Four HEK293 cell lines were created, each stably expressing various BioID2-tagged Ku70 segments designed to collectively identify factors that interact with different regions of Ku70. Historically, although many interactions have been mapped to the C-terminus of the Ku70 protein, few have been mapped to the N-terminal von Willebrand A-like domain, a canonical protein-binding domain ideally situated as a site for protein interaction. Using this segmented approach, we were able to identify domain-specific interactors as well as evaluate advantages and drawbacks of the BioID2 technique. Our study identifies several potential new Ku70 interactors and validates RNF113A and Spindly as proteins that contact or co-localize with Ku in a Ku70 vWA domain-specific manner.
Collapse
|
18
|
Li Y, Niu D, Wu Y, Dong Z, Li J. Integrated analysis of transcriptomic and metabolomic data to evaluate responses to hypersalinity stress in the gill of the razor clam (Sinonovacula constricta). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 38:100793. [PMID: 33513539 DOI: 10.1016/j.cbd.2021.100793] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 01/01/2023]
Abstract
Salinity is an important ecological factor that affects physiological metabolism, survival, and distribution of marine organisms. Despite changes in the osmolarity and composition of the cytosol during salinity shifts, marine mollusks are able to maintain their metabolic function. The razor clam (Sinonovacula constricta) survives the wide range of salinity in the intertidal zone via changes in behavior and physiology. To explore the stress responses and mechanisms of salinity tolerance in razor clams, we collected transcriptomic and metabolomic data from a control group (salinity 20‰, S20) and a salinity-stress group (salinity 35‰, S35). The transcriptome data showed that genes related to the immune system, cytoskeleton remodeling, and signal transduction pathways dominated in the S35 group to counteract hypersalinity stress in the gill. The metabolomic analysis showed that 142 metabolites were significantly different between the S35 and S20 groups and that amino acid and carbohydrate metabolism were affected by hypersalinity stress. Levels of amino acids and energy substances, such as l-proline, isoleucine, and fructose, were higher in the gill of the S35 group. The combination of transcriptomic and metabolomic data indicated that metabolism of amino acids, carbohydrates, and lipids was enhanced in the gill during adaptation to high salinity. These results clarified the complex physiological processes involved in the response to hyperosmotic stress and maintenance of metabolism in the gill of razor clams. These findings provide a reference for further study of the biological responses of euryhaline shellfish to hyperosmotic stress and a molecular basis for the search for populations with high salinity tolerance.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Donghong Niu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China.
| | - Yinghan Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zhiguo Dong
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China
| | - Jiale Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China.
| |
Collapse
|
19
|
Vattepu R, Klausmeyer RA, Ayella A, Yadav R, Dille JT, Saiz SV, Beck MR. Conserved tryptophan mutation disrupts structure and function of immunoglobulin domain revealing unusual tyrosine fluorescence. Protein Sci 2020; 29:2062-2074. [PMID: 32797644 DOI: 10.1002/pro.3929] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/27/2022]
Abstract
Immunoglobulin (Ig) domains are the most prevalent protein domain structure and share a highly conserved folding pattern; however, this structural family of proteins is also the most diverse in terms of biological roles and tissue expression. Ig domains vary significantly in amino acid sequence but share a highly conserved tryptophan in the hydrophobic core of this beta-stranded protein. Palladin is an actin binding and bundling protein that has five Ig domains and plays an important role in normal cell adhesion and motility. Mutation of the core tryptophan in one Ig domain of palladin has been identified in a pancreatic cancer cell line, suggesting a crucial role for this sole tryptophan in palladin Ig domain structure, stability, and function. We found that actin binding and bundling was not completely abolished with removal of this tryptophan despite a partially unfolded structure and significantly reduced stability of the mutant Ig domain as shown by circular dichroism investigations. In addition, this mutant palladin domain displays a tryptophan-like fluorescence attributed to an anomalous tyrosine emission at 341 nm. Our results indicate that this emission originates from a tyrosinate that may be formed in the excited ground state by proton transfer to a nearby aspartic acid residue. Furthermore, this study emphasizes the importance of tryptophan in protein structural stability and illustrates how tyrosinate emission contributions may be overlooked during the interpretation of the fluorescence properties of proteins.
Collapse
Affiliation(s)
- Ravi Vattepu
- Chemistry Department, Wichita State University, Wichita, Kansas, USA
| | | | - Allan Ayella
- Chemistry Department, Wichita State University, Wichita, Kansas, USA.,Chemistry Department, Washburn University, Topeka, Kansas, USA
| | - Rahul Yadav
- Chemistry Department, Wichita State University, Wichita, Kansas, USA
| | - Joseph T Dille
- Chemistry Department, Wichita State University, Wichita, Kansas, USA
| | - Stan V Saiz
- Chemistry Department, Wichita State University, Wichita, Kansas, USA
| | - Moriah R Beck
- Chemistry Department, Wichita State University, Wichita, Kansas, USA
| |
Collapse
|
20
|
Bahreini F, Rayzan E, Rezaei N. microRNA-related single-nucleotide polymorphisms and breast cancer. J Cell Physiol 2020; 236:1593-1605. [PMID: 32716070 DOI: 10.1002/jcp.29966] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022]
Abstract
Breast cancer, as the most common cancer in women which affects patients both mentally and physically, requires great attention in many areas and many levels as this cancer is known to be multifactorial. Single-stranded molecules called microRNAs with near 22 nucleotides are seen to act in central dogma of molecular biology by inhibiting the translation process; it is demonstrated that any alteration in their sequence especially single-nucleotide polymorphisms (SNPs) may lead into increasing the breast cancer risk. miR-SNPs are considered to be the potential biomarkers for early detection of breast cancer. As a result, this review documents the well-known miR-SNPs that are known to be associated with breast cancer. In this regard, two principals were discussed: (a) SNPs in the target genes of microRNAs and the alteration in gene expression due to this phenomenon; (b) changes based on the SNPs in the microRNA coding region and the impact on their interaction with target messenger RNA.
Collapse
Affiliation(s)
- Farbod Bahreini
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elham Rayzan
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- International Hematology/Oncology of Pediatrics Experts, Universal Scientific Education and Research Network, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity, Universal Scientific Education and Research Network, Tehran, Iran
| |
Collapse
|
21
|
Cloning and promoter analysis of palladin 90-kDa, 140-kDa, and 200-kDa isoforms involved in skeletal muscle cell maturation. BMC Res Notes 2020; 13:321. [PMID: 32620172 PMCID: PMC7333403 DOI: 10.1186/s13104-020-05152-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/24/2020] [Indexed: 11/10/2022] Open
Abstract
Objective Palladin is a ubiquitous phosphoprotein expressed in vertebrate cells that works as a scaffolding protein. Several isoforms deriving from alternative splicing are originated from the palladin gene and involved in mesenchymal and muscle cells formation, maturation, migration, and contraction. Recent studies have linked palladin to the invasive spread of cancer and myogenesis. However, since its discovery, the promoter region of the palladin gene has never been studied. The objective of this study was to predict, identify, and measure the activity of the promoter regions of palladin gene. Results By using promoter prediction programs, we successfully identified the transcription start sites for the Palld isoforms and revealed the presence of a variety of transcriptional regulatory elements including TATA box, GATA, MyoD, myogenin, MEF, Nkx2-5, and Tcf3 upstream promoter regions. The transcriptome profiling approach confirmed the active role of predicted transcription factors in the mouse genome. This study complements the missing piece in the characterization of palladin gene and certainly contributes to understanding the complexity and enrollment of palladin regulatory factors in gene transcription.
Collapse
|
22
|
Abstract
Palladin is an important component of motile actin-rich structures and nucleates branched actin filament arrays in vitro Here we examine the role of palladin during Listeria monocytogenes infections in order to tease out novel functions of palladin. We show that palladin is co-opted by L. monocytogenes during its cellular entry and intracellular motility. Depletion of palladin resulted in shorter and misshapen comet tails, and when actin- or VASP-binding mutants of palladin were overexpressed in cells, comet tails disintegrated or became thinner. Comet tail thinning resulted in parallel actin bundles within the structures. To determine whether palladin could compensate for the Arp2/3 complex, we overexpressed palladin in cells treated with the Arp2/3 inhibitor CK-666. In treated cells, bacterial motility could be initiated and maintained when levels of palladin were increased. To confirm these findings, we utilized a cell line depleted of multiple Arp2/3 complex subunits. Within these cells, L. monocytogenes failed to generate comet tails. When palladin was overexpressed in this Arp2/3 functionally null cell line, the ability of L. monocytogenes to generate comet tails was restored. Using purified protein components, we demonstrate that L. monocytogenes actin clouds and comet tails can be generated (in a cell-free system) by palladin in the absence of the Arp2/3 complex. Collectively, our results demonstrate that palladin can functionally replace the Arp2/3 complex during bacterial actin-based motility.IMPORTANCE Structures containing branched actin filaments require the Arp2/3 complex. One of the most commonly used systems to study intracellular movement generated by Arp2/3-based actin motility exploits actin-rich comet tails made by Listeria Using these infections together with live imaging and cell-free protein reconstitution experiments, we show that another protein, palladin, can be used in place of Arp2/3 to form actin-rich structures. Additionally, we show that palladin is needed for the structural integrity of comet tails as its depletion or mutation of critical regions causes dramatic changes to comet tail organization. These findings are the first to identify a protein that can functionally replace the Arp2/3 complex and have implications for all actin-based structures thought to exclusively use that complex.
Collapse
|
23
|
Palladin is a novel microtubule-associated protein responsible for spindle orientation. Sci Rep 2017; 7:11806. [PMID: 28924223 PMCID: PMC5603589 DOI: 10.1038/s41598-017-12051-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/25/2017] [Indexed: 11/26/2022] Open
Abstract
Mitotic spindles, which consist of microtubules (MTs) and associated proteins, play critical roles in controlling cell division and maintaining tissue homeostasis. The orientation of the mitotic spindle is closely related with the duration of mitosis. However, the molecular mechanism in regulating the orientation of the mitotic spindles is largely undefined. In this study, we found that Palladin is a novel MT-associated protein and regulator of spindle orientation, which maintains proper spindle orientation by stabilizing astral MTs. Palladin depletion distorted spindle orientation, prolonged the metaphase, and impaired proliferation of HeLa cells. Results showed that Palladin depletion-induced spindle misorientation and astral MT instability could be rescued by constitutively active AKT1 or dominant negative GSK3β. Our findings revealed that Palladin regulates spindle orientation and mitotic progression mainly through the AKT1–GSK3β pathway.
Collapse
|
24
|
Sun HM, Chen XL, Chen XJ, Liu J, Ma L, Wu HY, Huang QH, Xi XD, Yin T, Zhu J, Chen Z, Chen SJ. PALLD Regulates Phagocytosis by Enabling Timely Actin Polymerization and Depolymerization. THE JOURNAL OF IMMUNOLOGY 2017; 199:1817-1826. [PMID: 28739877 DOI: 10.4049/jimmunol.1602018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 06/12/2017] [Indexed: 12/28/2022]
Abstract
PALLD is an actin cross-linker supporting cellular mechanical tension. However, its involvement in the regulation of phagocytosis, a cellular activity essential for innate immunity and physiological tissue turnover, is unclear. We report that PALLD is highly induced along with all-trans-retinoic acid-induced maturation of myeloid leukemia cells, to promote Ig- or complement-opsonized phagocytosis. PALLD mechanistically facilitates phagocytic receptor clustering by regulating actin polymerization and c-Src dynamic activation during particle binding and early phagosome formation. PALLD is also required at the nascent phagosome to recruit phosphatase oculocerebrorenal syndrome of Lowe, which regulates phosphatidylinositol-4,5-bisphosphate hydrolysis and actin depolymerization to complete phagosome closure. Collectively, our results show a new function for PALLD as a crucial regulator of the early phase of phagocytosis by elaborating dynamic actin polymerization and depolymerization.
Collapse
Affiliation(s)
- Hai-Min Sun
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xin-Lei Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xin-Jie Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jin Liu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lie Ma
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hai-Yan Wu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qiu-Hua Huang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiao-Dong Xi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tong Yin
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiang Zhu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhu Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sai-Juan Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
25
|
Abstract
Myotilin is a component of the sarcomere where it plays an important role in organisation and maintenance of Z-disk integrity. This involves direct binding to F-actin and filamin C, a function mediated by its Ig domain pair. While the structures of these two individual domains are known, information about their relative orientation and flexibility remains limited. We set on to characterise the Ig domain pair of myotilin with emphasis on its molecular structure, dynamics and phylogeny. First, sequence conservation analysis of myotilin shed light on the molecular basis of myotilinopathies and revealed several motifs in Ig domains found also in I-band proteins. In particular, a highly conserved Glu344 mapping to Ig domain linker, was identified as a critical component of the inter-domain hinge mechanism. Next, SAXS and molecular dynamics revealed that Ig domain pair exists as a multi-conformation species with dynamic exchange between extended and compact orientations. Mutation of AKE motif to AAA further confirmed its impact on inter-domain flexibility. We hypothesise that the conformational plasticity of the Ig domain pair in its unbound form is part of the binding partner recognition mechanism.
Collapse
|
26
|
HILI destabilizes microtubules by suppressing phosphorylation and Gigaxonin-mediated degradation of TBCB. Sci Rep 2017; 7:46376. [PMID: 28393858 PMCID: PMC5385498 DOI: 10.1038/srep46376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/15/2017] [Indexed: 02/05/2023] Open
Abstract
Human PIWIL2, aka HILI, is a member of PIWI protein family and overexpresses in various tumors. However, the underlying mechanisms of HILI in tumorigenesis remain largely unknown. TBCB has a critical role in regulating microtubule dynamics and is overexpressed in many cancers. Here we report that HILI inhibits Gigaxonin-mediated TBCB ubiquitination and degradation by interacting with TBCB, promoting the binding between HSP90 and TBCB, and suppressing the interaction between Gigaxonin and TBCB. Meanwhile, HILI can also reduce phosphorylation level of TBCB induced by PAK1. Our results showed that HILI suppresses microtubule polymerization and promotes cell proliferation, migration and invasion via TBCB for the first time, revealing a novel mechanism for HILI in tumorigenesis.
Collapse
|
27
|
Chen X, Fan X, Tan J, Shi P, Wang X, Wang J, Kuang Y, Fei J, Liu J, Dang S, Wang Z. Palladin is involved in platelet activation and arterial thrombosis. Thromb Res 2016; 149:1-8. [PMID: 27865965 DOI: 10.1016/j.thromres.2016.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/31/2016] [Accepted: 11/09/2016] [Indexed: 10/20/2022]
Abstract
The dynamics of actin cytoskeleton have been shown to play a critical role during platelet activation. Palladin is an actin-associated protein, serving as a cytoskeleton scaffold to bundle actin fibers and actin cross linker. The functional role of palladin on platelet activation has not been investigated. Here, we characterized heterozygous palladin knockout (palladin+/-) mice to elucidate the platelet-related functions of palladin. The results showed that palladin was expressed in platelets and moderate palladin deficiency accelerated hemostasis and arterial thrombosis. The aggregation of palladin+/- platelets was increased in response to low levels of thrombin, U46619, and collagen. We also observed enhanced spreading of palladin+/- platelets on immobilized fibrinogen (Fg) and increased rate of clot retraction in platelet-rich plasma (PRP) containing palladin+/- platelets. Furthermore, the activation of the small GTPase Rac1 and Cdc42, which is associated with cytoskeletal dynamics and platelet activation signalings, was increased in the spreading and aggregating palladin+/- platelets compared to that in wild type platelets. Taken together, these findings indicated that palladin is involved in platelet activation and arterial thrombosis, implying a potent role of palladin in pathophysiology of thrombotic diseases.
Collapse
Affiliation(s)
- Xuejiao Chen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China; Shanghai Research Center for Model Organisms, Shanghai 201203, China
| | - Xuemei Fan
- Department of Biochemistry and Molecular Cell Biology, SJTUSM, Shanghai 200025, China
| | - Juan Tan
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China; Shanghai Research Center for Model Organisms, Shanghai 201203, China
| | - Panlai Shi
- Department of Biochemistry and Molecular Cell Biology, SJTUSM, Shanghai 200025, China
| | - Xiyi Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China; Shanghai Research Center for Model Organisms, Shanghai 201203, China
| | - Jinjin Wang
- Shanghai Research Center for Model Organisms, Shanghai 201203, China
| | - Ying Kuang
- Shanghai Research Center for Model Organisms, Shanghai 201203, China
| | - Jian Fei
- Shanghai Research Center for Model Organisms, Shanghai 201203, China
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, SJTUSM, Shanghai 200025, China
| | - Suying Dang
- Department of Biochemistry and Molecular Cell Biology, SJTUSM, Shanghai 200025, China; Shanghai Research Center for Model Organisms, Shanghai 201203, China.
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China; Shanghai Research Center for Model Organisms, Shanghai 201203, China.
| |
Collapse
|
28
|
Yadav R, Vattepu R, Beck MR. Phosphoinositide Binding Inhibits Actin Crosslinking and Polymerization by Palladin. J Mol Biol 2016; 428:4031-4047. [PMID: 27487483 DOI: 10.1016/j.jmb.2016.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/23/2016] [Accepted: 07/26/2016] [Indexed: 12/11/2022]
Abstract
Actin cytoskeleton remodeling requires the coordinated action of a large number of actin binding proteins that reorganize the actin cytoskeleton by promoting polymerization, stabilizing filaments, causing branching, or crosslinking filaments. Palladin is a key cytoskeletal actin binding protein whose normal function is to enable cell motility during development of tissues and organs of the embryo and in wound healing, but palladin is also responsible for regulating the ability of cancer cells to become invasive and metastatic. The membrane phosphoinositide phosphatidylinositol (PI) 4,5-bisphosphate [PI(4,5)P2] is a well-known precursor for intracellular signaling and a bona fide regulator of actin cytoskeleton reorganization. Our results show that two palladin domains [immunoglobulin (Ig) 3 and 34] interact with the head group of PI(4,5)P2 with moderate affinity (apparent Kd=17μM). Interactions with PI(4,5)P2 decrease the actin polymerizing activity of Ig domain 3 of palladin (Palld-Ig3). Furthermore, NMR titration and docking studies show that residues K38 and K51, which are present on the β-sheet C and D, form salt bridges with the head group of PI(4,5)P2. Moreover, charge neutralization at lysine 38 in the Palld-Ig3 domain severely limits the actin polymerizing and bundling activity of Palld-Ig3. Our results provide biochemical proof that PI(4,5)P2 functions as a moderator of palladin activity and have also identified residues directly involved in the crosslinking activity of palladin.
Collapse
Affiliation(s)
- Rahul Yadav
- Chemistry Department, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260, USA.
| | - Ravi Vattepu
- Chemistry Department, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260, USA.
| | - Moriah R Beck
- Chemistry Department, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260, USA.
| |
Collapse
|
29
|
The actin crosslinking protein palladin modulates force generation and mechanosensitivity of tumor associated fibroblasts. Sci Rep 2016; 6:28805. [PMID: 27353427 PMCID: PMC4926206 DOI: 10.1038/srep28805] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/10/2016] [Indexed: 01/15/2023] Open
Abstract
Cells organize actin filaments into higher-order structures by regulating the composition, distribution and concentration of actin crosslinkers. Palladin is an actin crosslinker found in the lamellar actin network and stress fibers, which are critical for mechanosensing of the environment. Palladin also serves as a molecular scaffold for α-actinin, another key actin crosslinker. By virtue of its close interactions with actomyosin structures in the cell, palladin may play an important role in cell mechanics. However, the role of palladin in cellular force generation and mechanosensing has not been studied. Here, we investigate the role of palladin in regulating the plasticity of the actin cytoskeleton and cellular force generation in response to alterations in substrate stiffness. Traction force microscopy revealed that tumor-associated fibroblasts generate larger forces on substrates of increased stiffness. Contrary to expectations, knocking down palladin increased the forces generated by cells and inhibited their ability to sense substrate stiffness for very stiff gels. This was accompanied by significant differences in actin organization, adhesion dynamics and altered myosin organization in palladin knock-down cells. Our results suggest that actin crosslinkers such as palladin and myosin motors coordinate for optimal cell function and to prevent aberrant behavior as in cancer metastasis.
Collapse
|
30
|
Lee M, San Martín A, Valdivia A, Martin-Garrido A, Griendling KK. Redox-Sensitive Regulation of Myocardin-Related Transcription Factor (MRTF-A) Phosphorylation via Palladin in Vascular Smooth Muscle Cell Differentiation Marker Gene Expression. PLoS One 2016; 11:e0153199. [PMID: 27088725 PMCID: PMC4835087 DOI: 10.1371/journal.pone.0153199] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 03/24/2016] [Indexed: 01/18/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) undergo a phenotypic switch from a differentiated to synthetic phenotype in cardiovascular diseases such as atherosclerosis and restenosis. Our previous studies indicate that transforming growth factor-β (TGF-β) helps to maintain the differentiated phenotype by regulating expression of pro-differentiation genes such as smooth muscle α-actin (SMA) and Calponin (CNN) through reactive oxygen species (ROS) derived from NADPH oxidase 4 (Nox4) in VSMCs. In this study, we investigated the relationship between Nox4 and myocardin-related transcription factor-A (MRTF-A), a transcription factor known to be important in expression of smooth muscle marker genes. Previous work has shown that MRTF-A interacts with the actin-binding protein, palladin, although how this interaction affects MRTF-A function is unclear, as is the role of phosphorylation in MRTF-A activity. We found that Rho kinase (ROCK)-mediated phosphorylation of MRTF-A is a key event in the regulation of SMA and CNN in VSMCs and that this phosphorylation depends upon Nox4-mediated palladin expression. Knockdown of Nox4 using siRNA decreases TGF-β -induced palladin expression and MRTF-A phosphorylation, suggesting redox-sensitive regulation of this signaling pathway. Knockdown of palladin also decreases MRTF-A phosphorylation. These data suggest that Nox4-dependent palladin expression and ROCK regulate phosphorylation of MRTF-A, a critical factor in the regulation of SRF responsive gene expression.
Collapse
Affiliation(s)
- Minyoung Lee
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, United Sates of America
| | - Alejandra San Martín
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, United Sates of America
| | - Alejandra Valdivia
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, United Sates of America
| | - Abel Martin-Garrido
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, United Sates of America
| | - Kathy K. Griendling
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, United Sates of America
| |
Collapse
|
31
|
Adams JN, Raffield LM, Martelle SE, Freedman BI, Langefeld CD, Carr JJ, Cox AJ, Bowden DW. Genetic analysis of advanced glycation end products in the DHS MIND study. Gene 2016; 584:173-9. [PMID: 26915486 DOI: 10.1016/j.gene.2016.02.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/21/2016] [Accepted: 02/19/2016] [Indexed: 11/24/2022]
Abstract
Advanced glycation end-products (AGEs) are a diverse group of molecules produced by the non-enzymatic addition of glucose to proteins, lipids, and nucleic acids. AGE levels have been associated with hyperglycemia and diabetic complications, especially in animal models, but less clearly in human studies. We measured total serum AGEs using an enzyme linked immunosorbant assay (ELISA) in 506 subjects from 246 families in the Diabetes Heart Study (DHS)/DHS MIND Study (n=399 type 2 diabetes (T2D)-affected). Single nucleotide polymorphisms (SNPs) in several candidate genes, including known AGE receptors, were tested for their influence on circulating AGE levels. The genetic analysis was expanded to include an exploratory genome-wide association study (GWAS) and exome chip analysis of AGEs (≈440,000 SNPs). AGEs were found to be highly heritable (h(2)=0.628, p=8.96 × 10(-10)). While no SNPs from candidate genes were significantly associated after Bonferroni correction, rs1035798 in the gene AGER was the most significantly associated (p=0.007). Additionally, rs7198427, in MT1A, showed a nominally significant p-value (p=0.0099). No SNPs from the GWAS or exome studies were identified after correction for multiple comparisons; however, rs17054480 in the PALLD2 gene on chromosome 4 showed the strongest association (p=7.77 × 10(-7)). Five SNPs at two loci (ISCA2/NPC2 and FBXO33) had p-values of less than 2.0 × 10(-5) and three additional SNPs (rs716326 in MACROD2, and rs6795197 and rs6765857 in ZBTB38) showed a nominal association with p-values of less than 1.0 × 10(-5).These findings provide a foundation for further investigation into the genetic component of circulating AGEs.
Collapse
Affiliation(s)
- Jeremy N Adams
- Program in Molecular Genetics and Genomics, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Laura M Raffield
- Program in Molecular Genetics and Genomics, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Susan E Martelle
- Integrative Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Barry I Freedman
- Department of Internal Medicine - Nephrology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Carl D Langefeld
- Division of Public Health Sciences, Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - J Jeffrey Carr
- Department of Radiologic Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Amanda J Cox
- Molecular Basis of Disease, Griffith University, Southport, QLD, Australia
| | - Donald W Bowden
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
32
|
Gurung R, Yadav R, Brungardt JG, Orlova A, Egelman EH, Beck MR. Actin polymerization is stimulated by actin cross-linking protein palladin. Biochem J 2016; 473:383-96. [PMID: 26607837 PMCID: PMC4912051 DOI: 10.1042/bj20151050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/25/2015] [Indexed: 12/15/2022]
Abstract
The actin scaffold protein palladin regulates both normal cell migration and invasive cell motility, processes that require the co-ordinated regulation of actin dynamics. However, the potential effect of palladin on actin dynamics has remained elusive. In the present study, we show that the actin-binding immunoglobulin-like domain of palladin, which is directly responsible for both actin binding and bundling, also stimulates actin polymerization in vitro. Palladin eliminated the lag phase that is characteristic of the slow nucleation step of actin polymerization. Furthermore, palladin dramatically reduced depolymerization, slightly enhanced the elongation rate, and did not alter the critical concentration. Microscopy and in vitro cross-linking assays reveal differences in actin bundle architecture when palladin is incubated with actin before or after polymerization. These results suggest a model whereby palladin stimulates a polymerization-competent form of globular or monomeric actin (G-actin), akin to metal ions, either through charge neutralization or through conformational changes.
Collapse
Affiliation(s)
- Ritu Gurung
- Chemistry Department, Wichita State University, Wichita, KS 67260, U.S.A
| | - Rahul Yadav
- Chemistry Department, Wichita State University, Wichita, KS 67260, U.S.A
| | - Joseph G Brungardt
- Chemistry Department, Wichita State University, Wichita, KS 67260, U.S.A
| | - Albina Orlova
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, U.S.A
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, U.S.A
| | - Moriah R Beck
- Chemistry Department, Wichita State University, Wichita, KS 67260, U.S.A.
| |
Collapse
|
33
|
Cannon AR, Owen MK, Guerrero MS, Kerber ML, Goicoechea SM, Hemstreet KC, Klazynski B, Hollyfield J, Chang EH, Hwang RF, Otey CA, Kim HJ. Palladin expression is a conserved characteristic of the desmoplastic tumor microenvironment and contributes to altered gene expression. Cytoskeleton (Hoboken) 2015; 72:402-11. [PMID: 26333695 DOI: 10.1002/cm.21239] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 07/29/2015] [Accepted: 08/07/2015] [Indexed: 01/05/2023]
Abstract
The stroma surrounding solid tumors contributes in complex ways to tumor progression. Cancer-associated fibroblasts (CAFs) are the predominant cell type in the tumor stroma. Previous studies have shown that the actin-binding protein palladin is highly expressed in the stroma of pancreas tumors, but the interpretation of these results is complicated by the fact that palladin exists as multiple isoforms. In the current study, the expression and localization of palladin isoform 4 was examined in normal specimens and adenocarcinomas of human pancreas, lung, colon, and stomach samples. Immunohistochemistry with isoform-selective antibodies revealed that expression of palladin isoform 4 was higher in adenocarcinomas versus normal tissues, and highest in CAFs. Immunohistochemistry staining revealed that palladin was present in both the cytoplasm and the nucleus of CAFs, and this was confirmed using immunofluorescence staining and subcellular fractionation of a pancreatic CAF cell line. To investigate the functional significance of nuclear palladin, RNA Seq analysis of palladin knockdown CAFs versus control CAFs was performed, and the results showed that palladin regulates the expression of genes involved in the biosynthesis and assembly of collagen, and organization of the extracellular matrix. These results suggested that palladin isoform 4 may play a conserved role in establishing the phenotype of CAFs in multiple tumor types.
Collapse
Affiliation(s)
- Austin R Cannon
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Meredith K Owen
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael S Guerrero
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael L Kerber
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - Kathryn C Hemstreet
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Brian Klazynski
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Johnathan Hollyfield
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Emily H Chang
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Kidney Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Rosa F Hwang
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carol A Otey
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Hong Jin Kim
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Surgery, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW The present review examines the role of actin binding proteins (ABPs) on blood-testis barrier (BTB), an androgen-dependent ultrastructure in the testis, in particular their involvement on BTB remodeling during spermatogenesis. RECENT FINDINGS The BTB divides the seminiferous epithelium into the basal and the adluminal compartments. The BTB is constituted by coexisting actin-based tight junction, basal ectoplasmic specialization, and gap junction, and also intermediate filament-based desmosome between Sertoli cells near the basement membrane. Junctions at the BTB undergo continuous remodeling to facilitate the transport of preleptotene spermatocytes residing in the basal compartment across the immunological barrier during spermatogenesis. Thus, meiosis I/II and postmeiotic spermatid development take place in the adluminal compartment behind the BTB. BTB remodeling also regulates exchanges of biomolecules between the two compartments. As tight junction, basal ectoplasmic specialization, and gap junction use F-actin for attachment, actin microfilaments rapidly convert between their bundled and unbundled/branched configuration to confer BTB plasticity. The events of actin reorganization are regulated by two major classes of ABPs that convert actin microfilaments between their bundled and branched/unbundled configuration. SUMMARY We provide a model on how ABPs regulate BTB remodeling, shedding new light on unexplained male infertility, such as environmental toxicant-induced reproductive dysfunction since the testis, in particular the BTB, is sensitive to environmental toxicants, such as cadmium, bisphenol A, phthalates, and PFOS (perfluorooctanesulfonic acid or perfluorooctane sulfonate).
Collapse
Affiliation(s)
- Nan Li
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | | | | |
Collapse
|
35
|
Nguyen NUN, Wang HV. Dual roles of palladin protein in in vitro myogenesis: inhibition of early induction but promotion of myotube maturation. PLoS One 2015; 10:e0124762. [PMID: 25875253 PMCID: PMC4396843 DOI: 10.1371/journal.pone.0124762] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 03/06/2015] [Indexed: 12/28/2022] Open
Abstract
Palladin is a microfilament-associated phosphoprotein whose function in skeletal muscle has rarely been studied. Therefore, we investigate whether myogenesis is influenced by the depletion of palladin expression known to interfere with the actin cytoskeleton dynamic required for skeletal muscle differentiation. The inhibition of palladin in C2C12 myoblasts leads to precocious myogenic differentiation with a concomitant reduction in cell apoptosis. This premature myogenesis is caused, in part, by an accelerated induction of p21, myogenin, and myosin heavy chain, suggesting that palladin acts as a negative regulator in early differentiation phases. Paradoxically, palladin-knockdown myoblasts are unable to differentiate terminally, despite their ability to perform some initial steps of differentiation. Cells with attenuated palladin expression form thinner myotubes with fewer myonuclei compared to those of the control. It is noteworthy that a negative regulator of myogenesis, myostatin, is activated in palladin-deficient myotubes, suggesting the palladin-mediated impairment of late-stage myogenesis. Additionally, overexpression of 140-kDa palladin inhibits myoblast differentiation while 200-kDa and 90-kDa palladin-overexpressed cells display an enhanced differentiation rate. Together, our data suggest that palladin might have both positive and negative roles in maintaining the proper skeletal myogenic differentiation in vitro.
Collapse
Affiliation(s)
- Ngoc-Uyen-Nhi Nguyen
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
- Center for Cell Dynamics, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Ven Wang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- Center for Cell Dynamics, National Cheng Kung University, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
36
|
Chang EH, Gasim AH, Kerber ML, Patel JB, Glaubiger SA, Falk RJ, Jennette JC, Otey CA. Palladin is upregulated in kidney disease and contributes to epithelial cell migration after injury. Sci Rep 2015; 5:7695. [PMID: 25573828 PMCID: PMC4648347 DOI: 10.1038/srep07695] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/03/2014] [Indexed: 01/25/2023] Open
Abstract
Recovery from acute kidney injury involving tubular epithelial cells requires proliferation and migration of healthy cells to the area of injury. In this study, we show that palladin, a previously characterized cytoskeletal protein, is upregulated in injured tubules and suggest that one of its functions during repair is to facilitate migration of remaining cells to the affected site. In a mouse model of anti-neutrophilic cytoplasmic antibody involving both tubular and glomerular disease, palladin is upregulated in injured tubular cells, crescents and capillary cells with angiitis. In human biopsies of kidneys from patients with other kidney diseases, palladin is also upregulated in crescents and injured tubules. In LLC-PK1 cells, a porcine proximal tubule cell line, stress induced by transforming growth factor-β1 (TGF-β1) leads to palladin upregulation. Knockdown of palladin in LLC-PK1 does not disrupt cell morphology but does lead to a defect in cell migration. Furthermore, TGF-β1 induced increase in the 75 kDa palladin isoform occurs in both the nucleus and the cytoplasm. These data suggest that palladin expression is induced in injured cells and contributes to proper migration of cells in proximal tubules, possibly by regulation of gene expression as part of the healing process after acute injury.
Collapse
Affiliation(s)
- Emily H Chang
- 1] UNC Kidney Center, Chapel Hill, NC [2] UNC Department of Cell Biology and Physiology, Chapel Hill, NC
| | - Adil H Gasim
- UNC Department of Pathology and Laboratory Medicine, Chapel Hill, NC
| | | | - Julie B Patel
- UNC Department of Cell Biology and Physiology, Chapel Hill, NC
| | | | | | - J Charles Jennette
- 1] UNC Kidney Center, Chapel Hill, NC [2] UNC Department of Pathology and Laboratory Medicine, Chapel Hill, NC
| | - Carol A Otey
- UNC Department of Cell Biology and Physiology, Chapel Hill, NC
| |
Collapse
|
37
|
Qian X, Mruk DD, Cheng YH, Cheng CY. Actin cross-linking protein palladin and spermatogenesis. SPERMATOGENESIS 2014; 3:e23473. [PMID: 23687615 PMCID: PMC3644046 DOI: 10.4161/spmg.23473] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the seminiferous epithelium of the mammalian testis, the most distinctive ultrastructure is the extensive bundles of actin filaments that lie near the Sertoli-spermatid interface and the Sertoli-Sertoli cell interface known as the apical ectoplasmic specialization (apical ES) and the basal ES, respectively. These actin filament bundles not only confer strong adhesion at these sites, they are uniquely found in the testis. Recent studies have shown that ES also confers spermatid and Sertoli cell polarity in the seminiferous epithelium during the epithelial cycle. While these junctions were first described in the 1970s, there are few functional studies in the literature to examine the regulation of these actin filament bundles. It is conceivable that these actin filament bundles at the ES undergo extensive re-organization to accommodate changes in location of developing spermatids during spermiogenesis as spermatids are transported across the seminiferous epithelium. Additionally, these actin filaments are rapidly reorganized during BTB restructuring to accommodate the transit of preleptotene spermatocytes across the barrier at stage VIII of the epithelial cycle. Thus, actin binding and regulatory proteins are likely involved in these events to confer changes in F-actin organization at these sites. Interestingly, there are no reports in the field to study these regulatory proteins until recently. Herein, we summarize some of the latest findings in the field regarding a novel actin cross-linker and actin-bundling protein called palladin. We also discuss in this opinion article the likely role of palladin in regulating actin filament bundles at the ES during spermatogenesis, highlighting the significant of palladin and how this protein is plausibly working in concert with other actin-binding/regulatory proteins and components of polarity proteins to regulate the cyclic events of actin organization and re-organization during the epithelial cycle of spermatogenesis. We also propose a hypothetic model by which palladin regulates ES restructuring during the epithelial cycle of spermatogenesis.
Collapse
Affiliation(s)
- Xiaojing Qian
- The Mary M. Wohlford Laboratory for Male Contraceptive Research; Center for Biomedical Research; Population Council; New York, NY USA ; School of Basic Medicine; Peking Union Medical College; Beijing, China
| | | | | | | |
Collapse
|
38
|
Dube DK, Wang J, Pellenz C, Fan Y, Dube S, Han M, Linask K, Sanger JM, Sanger JW. Expression of myotilin during chicken development. Anat Rec (Hoboken) 2014; 297:1596-603. [PMID: 25125173 PMCID: PMC4135462 DOI: 10.1002/ar.22964] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/07/2013] [Indexed: 12/12/2022]
Abstract
Several missense mutations in the Z-band protein, myotilin, have been implicated in human muscle diseases such as myofibrillar myopathy, spheroid body myopathy, and distal myopathy. Recently, we have reported the cloning of chicken myotilin cDNA. In this study, we have investigated the expression of myotilin in cross-striated muscles from developing chicken by qRT-PCR and in situ hybridizations. In situ hybridization of embryonic stages shows myotilin gene expression in heart, somites, neural tissue, eyes and otocysts. RT-PCR and qRT-PCR data, together with in situ hybridization results point to a biphasic transcriptional pattern for MYOT gene during early heart development with maximum expression level in the adult. In skeletal muscle, the expression level starts decreasing after embryonic day 20 and declines in the adult skeletal muscles. Western blot assays of myotilin in adult skeletal muscle reveal a decrease in myotilin protein compared with levels in embryonic skeletal muscle. Our results suggest that MYOT gene may undergo transcriptional activation and repression that varies between tissues in developing chicken. We believe this is the first report of the developmental regulation on myotilin expression in non-mammalian species.
Collapse
Affiliation(s)
- Dipak K. Dube
- Department of Medicine, SUNY Upstate Medical University, Syracuse, NY 13210
| | - Jushuo Wang
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210
| | - Christopher Pellenz
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210
| | - Yingli Fan
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210
| | - Syamalima Dube
- Department of Medicine, SUNY Upstate Medical University, Syracuse, NY 13210
| | - Mingda Han
- Department of Pediatrics, University of South Morsani College of Medicine Florida, Tampa, FL 33701
| | - Kersti Linask
- Department of Pediatrics, University of South Morsani College of Medicine Florida, Tampa, FL 33701
| | - Jean M. Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210
| | - Joseph W. Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
39
|
Nguyen NUN, Liang VR, Wang HV. Actin-associated protein palladin is required for migration behavior and differentiation potential of C2C12 myoblast cells. Biochem Biophys Res Commun 2014; 452:728-33. [DOI: 10.1016/j.bbrc.2014.08.143] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 08/26/2014] [Indexed: 11/17/2022]
|
40
|
von Nandelstadh P, Gucciardo E, Lohi J, Li R, Sugiyama N, Carpen O, Lehti K. Actin-associated protein palladin promotes tumor cell invasion by linking extracellular matrix degradation to cell cytoskeleton. Mol Biol Cell 2014; 25:2556-70. [PMID: 24989798 PMCID: PMC4148246 DOI: 10.1091/mbc.e13-11-0667] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Basal-like breast carcinomas, characterized by unfavorable prognosis and frequent metastases, are associated with epithelial-to-mesenchymal transition. During this process, cancer cells undergo cytoskeletal reorganization and up-regulate membrane-type 1 matrix metalloproteinase (MT1-MMP; MMP14), which functions in actin-based pseudopods to drive invasion by extracellular matrix degradation. However, the mechanisms that couple matrix proteolysis to the actin cytoskeleton in cell invasion have remained unclear. On the basis of a yeast two-hybrid screen for the MT1-MMP cytoplasmic tail-binding proteins, we identify here a novel Src-regulated protein interaction between the dynamic cytoskeletal scaffold protein palladin and MT1-MMP. These proteins were coexpressed in invasive human basal-like breast carcinomas and corresponding cell lines, where they were associated in the same matrix contacting and degrading membrane complexes. The silencing and overexpression of the 90-kDa palladin isoform revealed the functional importance of the interaction with MT1-MMP in pericellular matrix degradation and mesenchymal tumor cell invasion, whereas in MT1-MMP-negative cells, palladin overexpression was insufficient for invasion. Moreover, this invasion was inhibited in a dominant-negative manner by an immunoglobulin domain-containing palladin fragment lacking the dynamic scaffold and Src-binding domains. These results identify a novel protein interaction that links matrix degradation to cytoskeletal dynamics and migration signaling in mesenchymal cell invasion.
Collapse
Affiliation(s)
- Pernilla von Nandelstadh
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland Department of Pathology, Haartman Institute, FIN-00014, University of Helsinki, Helsinki, Finland
| | - Erika Gucciardo
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland Department of Pathology, Haartman Institute, FIN-00014, University of Helsinki, Helsinki, Finland
| | - Jouko Lohi
- Department of Pathology, Haartman Institute, FIN-00014, University of Helsinki, Helsinki, Finland Department of Pathology, HUSLAB, Helsinki University Central Hospital, FIN-00290, Helsinki, Finland
| | - Rui Li
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland Department of Pathology, Haartman Institute, FIN-00014, University of Helsinki, Helsinki, Finland
| | - Nami Sugiyama
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland Department of Pathology, Haartman Institute, FIN-00014, University of Helsinki, Helsinki, Finland
| | - Olli Carpen
- Department of Pathology, University of Turku and Turku University Central Hospital, FIN-20520, Turku, Finland
| | - Kaisa Lehti
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland Department of Pathology, Haartman Institute, FIN-00014, University of Helsinki, Helsinki, Finland
| |
Collapse
|
41
|
Abstract
The transport of germ cells across the seminiferous epithelium is composed of a series of cellular events during the epithelial cycle essential to the completion of spermatogenesis. Without the timely transport of spermatids during spermiogenesis, spermatozoa that are transformed from step 19 spermatids in the rat testis fail to reach the luminal edge of the apical compartment and enter the tubule lumen at spermiation, thereby arriving the epididymis for further maturation. Step 19 spermatids and/or sperms that remain in the epithelium beyond stage VIII of the epithelial cycle will be removed by the Sertoli cell via phagocytosis to form phagosomes and be degraded by lysosomes, leading to subfertility and/or infertility. However, the biology of spermatid transport, in particular the final events that lead to spermiation remain elusive. Based on recent data in the field, we critically evaluate the biology of spermiation herein by focusing on the actin binding proteins (ABPs) that regulate the organization of actin microfilaments at the Sertoli-spermatid interface, which is crucial for spermatid transport during this event. The hypothesis we put forth herein also highlights some specific areas of research that can be pursued by investigators in the years to come.
Collapse
|
42
|
He FF, Chen S, Su H, Meng XF, Zhang C. Actin-associated Proteins in the Pathogenesis of Podocyte Injury. Curr Genomics 2014; 14:477-84. [PMID: 24396279 PMCID: PMC3867723 DOI: 10.2174/13892029113146660014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 02/07/2023] Open
Abstract
Podocytes have a complex cellular architecture with interdigitating processes maintained by a precise organization of actin filaments. The actin-based foot processes of podocytes and the interposed slit diaphragm form the final barrier to proteinuria. The function of podocytes is largely based on the maintenance of the normal foot process structure with actin cytoskeleton. Cytoskeletal dynamics play important roles during normal podocyte development, in maintenance of the healthy glomerular filtration barrier, and in the pathogenesis of glomerular diseases. In this review, we focused on recent findings on the mechanisms of organization and reorganization of these actin-related molecules in the pathogenesis of podocyte injury and potential therapeutics targeting the regulation of actin cytoskeleton in podocytopathies.
Collapse
Affiliation(s)
- Fang-Fang He
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shan Chen
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xian-Fang Meng
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
43
|
Gateva G, Tojkander S, Koho S, Carpen O, Lappalainen P. Palladin promotes assembly of non-contractile dorsal stress fibers through VASP recruitment. J Cell Sci 2014; 127:1887-98. [DOI: 10.1242/jcs.135780] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Stress fibers are major contractile actin structures in non-muscle cells, where they have an important role in adhesion, morphogenesis and mechanotransduction. Palladin is a multidomain protein, which associates with stress fibers in a variety of cell-types. However, the exact role of palladin in stress fiber assembly and maintenance has remained obscure, and whether it functions as an actin filament cross-linker or scaffolding protein was unknown. We demonstrate that palladin is specifically required for assembly of non-contractile dorsal stress fibers, and is consequently essential for generation of stress fiber networks and regulation of cell morphogenesis in osteosarcoma cells migrating in three-dimensional collagen matrix. Importantly, we reveal that palladin is necessary for the recruitment of vasodilator stimulated phosphoprotein (VASP) to dorsal stress fibers, and that it promotes stress fiber assembly through VASP. Both palladin and VASP display similar rapid dynamics at dorsal stress fibers, suggesting that they associate with stress fibers as a complex. Thus, palladin functions as a dynamic scaffolding protein, which promotes the assembly of dorsal stress fibers by recruiting VASP to these structures.
Collapse
|
44
|
Viswanatha R, Wayt J, Ohouo PY, Smolka MB, Bretscher A. Interactome analysis reveals ezrin can adopt multiple conformational states. J Biol Chem 2013; 288:35437-51. [PMID: 24151071 DOI: 10.1074/jbc.m113.505669] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ezrin, a member of the ezrin-radixin-moesin family (ERM), is an essential regulator of the structure of microvilli on the apical aspect of epithelial cells. Ezrin provides a linkage between membrane-associated proteins and F-actin, oscillating between active/open and inactive/closed states, and is regulated in part by phosphorylation of a C-terminal threonine. In the open state, ezrin can bind a number of ligands, but in the closed state the ligand-binding sites are inaccessible. In vitro analysis has proposed that there may be a third hyperactivated form of ezrin. To gain a better understanding of ezrin, we conducted an unbiased proteomic analysis of ezrin-binding proteins in an epithelial cell line, Jeg-3. We refined our list of interactors by comparing the interactomes using quantitative mass spectrometry between wild-type ezrin, closed ezrin, open ezrin, and hyperactivated ezrin. The analysis reveals several novel interactors confirmed by their localization to microvilli, as well as a significant class of proteins that bind closed ezrin. Taken together, the data indicate that ezrin can exist in three different conformational states, and different ligands "perceive" ezrin conformational states differently.
Collapse
Affiliation(s)
- Raghuvir Viswanatha
- From the Department of Molecular Biology and Genetics and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853
| | | | | | | | | |
Collapse
|
45
|
Beck MR, Dixon RDS, Goicoechea SM, Murphy GS, Brungardt JG, Beam MT, Srinath P, Patel J, Mohiuddin J, Otey CA, Campbell SL. Structure and function of palladin's actin binding domain. J Mol Biol 2013; 425:3325-37. [PMID: 23806659 DOI: 10.1016/j.jmb.2013.06.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 06/03/2013] [Accepted: 06/11/2013] [Indexed: 11/28/2022]
Abstract
Here, we report the NMR structure of the actin-binding domain contained in the cell adhesion protein palladin. Previously, we demonstrated that one of the immunoglobulin domains of palladin (Ig3) is both necessary and sufficient for direct filamentous actin binding in vitro. In this study, we identify two basic patches on opposite faces of Ig3 that are critical for actin binding and cross-linking. Sedimentation equilibrium assays indicate that the Ig3 domain of palladin does not self-associate. These combined data are consistent with an actin cross-linking mechanism that involves concurrent attachment of two actin filaments by a single palladin molecule by an electrostatic mechanism. Palladin mutations that disrupt actin binding show altered cellular distributions and morphology of actin in cells, revealing a functional requirement for the interaction between palladin and actin in vivo.
Collapse
Affiliation(s)
- Moriah R Beck
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Niedenberger BA, Chappell VK, Kaye EP, Renegar RH, Geyer CB. Nuclear localization of the actin regulatory protein palladin in sertoli cells. Mol Reprod Dev 2013; 80:403-13. [DOI: 10.1002/mrd.22174] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 03/19/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Bryan A. Niedenberger
- Department of Anatomy and Cell Biology; Brody School of Medicine at East Carolina University; North Carolina
| | - Vesna K. Chappell
- Department of Anatomy and Cell Biology; Brody School of Medicine at East Carolina University; North Carolina
| | - Evelyn P. Kaye
- Department of Anatomy and Cell Biology; Brody School of Medicine at East Carolina University; North Carolina
| | - Randall H. Renegar
- Department of Anatomy and Cell Biology; Brody School of Medicine at East Carolina University; North Carolina
| | - Christopher B. Geyer
- Department of Anatomy and Cell Biology; Brody School of Medicine at East Carolina University; North Carolina
| |
Collapse
|
47
|
Lúcio PSC, Cavalcanti AL, Alves PM, Godoy GP, Nonaka CFW. Myofibroblasts and their relationship with oral squamous cell carcinoma. Braz J Otorhinolaryngol 2013; 79:112-118. [PMID: 23503917 PMCID: PMC9450875 DOI: 10.5935/1808-8694.20130019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 06/18/2012] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Myofibroblasts are hybrid-phenotype differentiated cells in between fibroblasts and smooth muscle cells. Due to their contractile features and ability to synthesize extracellular matrix components, cytokines, proteases, and proangiogenic factors, myofibroblasts have been implicated in the pathogenesis of fibrocontractive diseases and in the progression of many tumors, including oral squamous cell carcinoma (SCC). OBJECTIVE To perform a literature review on the origin of myofibroblasts, their main morpho-physiological and immunohistochemical aspects, and to discuss the correlations with oral SCC. METHOD A search was made on the PubMed database to select the main papers in the literature in English related to the subject, published between January 1991 and December 2011. CONCLUSION Myofibroblasts are an important component of the stroma of oral SCCs, although they are not present in all tumors. Abundant presence of myofibroblasts may be associated with local disease recurrence and decreased patient survival. However, given the relatively limited number of studies on the subject, further research is needed to clarify the molecular mechanisms by which myofibroblasts influence the biological behavior of oral SCC.
Collapse
Affiliation(s)
| | - Alessandro Leite Cavalcanti
- PhD (Professor - Dentistry Graduate Program - State University of Paraíba - UEPB - Campina Grande - PB - Brazil)
| | - Pollianna Muniz Alves
- PhD (Professor - Dentistry Graduate Program - State University of Paraíba - UEPB - Campina Grande - PB - Brazil)
| | - Gustavo Pina Godoy
- PhD (Professor - Dentistry Graduate Program - State University of Paraíba - UEPB - Campina Grande - PB - Brazil)
| | | |
Collapse
|
48
|
Najm P, El-Sibai M. Palladin regulation of the actin structures needed for cancer invasion. Cell Adh Migr 2013; 8:29-35. [PMID: 24525547 DOI: 10.4161/cam.28024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cell migration and invasion involve the formation of cell adhesion structures as well as the dynamic and spatial regulation of the cytoskeleton. The adhesive structures known as podosomes and invadopodia share a common role in cell motility, adhesion, and invasion, and form when the plasma membrane of motile cells undergoes highly regulated protrusions. Palladin, a molecular scaffold, co-localizes with actin-rich structures where it plays a role in their assembly and maintenance in a wide variety of cell lines. Palladin regulates actin cytoskeleton organization as well as cell adhesion formation. Moreover, palladin contributes to the invasive nature of cancer metastatic cells by regulating invadopodia formation. Palladin seems to regulate podosome and invodopodia formation through Rho GTPases, which are known as key players in coordinating the cellular responses required for cell migration and metastasis.
Collapse
Affiliation(s)
- Paul Najm
- Department of Natural Sciences; Lebanese American University; Beirut, Lebanon
| | - Mirvat El-Sibai
- Department of Natural Sciences; Lebanese American University; Beirut, Lebanon
| |
Collapse
|
49
|
Tang Y, Ma X, Zhang H, Gu Z, Hou Y, Gilkeson GS, Lu L, Zeng X, Sun L. Gene expression profile reveals abnormalities of multiple signaling pathways in mesenchymal stem cell derived from patients with systemic lupus erythematosus. Clin Dev Immunol 2012; 2012:826182. [PMID: 22966240 PMCID: PMC3433142 DOI: 10.1155/2012/826182] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 03/21/2012] [Accepted: 04/11/2012] [Indexed: 12/22/2022]
Abstract
We aimed to compare bone-marrow-derived mesenchymal stem cells (BMMSCs) between systemic lupus erythematosus (SLE) and normal controls by means of cDNA microarray, immunohistochemistry, immunofluorescence, and immunoblotting. Our results showed there were a total of 1, 905 genes which were differentially expressed by BMMSCs derived from SLE patients, of which, 652 genes were upregulated and 1, 253 were downregulated. Gene ontology (GO) analysis showed that the majority of these genes were related to cell cycle and protein binding. Pathway analysis exhibited that differentially regulated signal pathways involved actin cytoskeleton, focal adhesion, tight junction, and TGF-β pathway. The high protein level of BMP-5 and low expression of Id-1 indicated that there might be dysregulation in BMP/TGF-β signaling pathway. The expression of Id-1 in SLE BMMSCs was reversely correlated with serum TNF-α levels. The protein level of cyclin E decreased in the cell cycling regulation pathway. Moreover, the MAPK signaling pathway was activated in BMMSCs from SLE patients via phosphorylation of ERK1/2 and SAPK/JNK. The actin distribution pattern of BMMSCs from SLE patients was also found disordered. Our results suggested that there were distinguished differences of BMMSCs between SLE patients and normal controls.
Collapse
Affiliation(s)
- Yu Tang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Xiaolei Ma
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Huayong Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Zhifeng Gu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Yayi Hou
- Immunology and Reproductive Biology Lab, Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Gary S. Gilkeson
- Division of Rheumatology, Medical University of South Carolina, Charleston, SC 29403, USA
| | - Liwei Lu
- Department of Pathology and Center of Infection and Immunology, The University of Hong Kong, Hong Kong
| | - Xiaofeng Zeng
- Department of Rheumatology, Peking Union Medical College Hospital, Peking 100730, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| |
Collapse
|
50
|
Tojkander S, Gateva G, Lappalainen P. Actin stress fibers--assembly, dynamics and biological roles. J Cell Sci 2012; 125:1855-64. [PMID: 22544950 DOI: 10.1242/jcs.098087] [Citation(s) in RCA: 534] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Actin filaments assemble into diverse protrusive and contractile structures to provide force for a number of vital cellular processes. Stress fibers are contractile actomyosin bundles found in many cultured non-muscle cells, where they have a central role in cell adhesion and morphogenesis. Focal-adhesion-anchored stress fibers also have an important role in mechanotransduction. In animal tissues, stress fibers are especially abundant in endothelial cells, myofibroblasts and epithelial cells. Importantly, recent live-cell imaging studies have provided new information regarding the mechanisms of stress fiber assembly and how their contractility is regulated in cells. In addition, these studies might elucidate the general mechanisms by which contractile actomyosin arrays, including muscle cell myofibrils and cytokinetic contractile ring, can be generated in cells. In this Commentary, we discuss recent findings concerning the physiological roles of stress fibers and the mechanism by which these structures are generated in cells.
Collapse
Affiliation(s)
- Sari Tojkander
- Institute of Biotechnology, University of Helsinki, Finland
| | | | | |
Collapse
|