1
|
Huang X, Hou S, Li Y, Xu G, Xia N, Duan Z, Luo K, Tian B. Targeting lipid metabolism via nanomedicine: A prospective strategy for cancer therapy. Biomaterials 2025; 317:123022. [PMID: 39754967 DOI: 10.1016/j.biomaterials.2024.123022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/20/2024] [Accepted: 12/13/2024] [Indexed: 01/06/2025]
Abstract
Lipid metabolism has been increasingly recognized to play an influencing role in tumor initiation, progression, metastasis, and therapeutic drug resistance. Targeting lipid metabolic reprogramming represents a promising therapeutic strategy. Despite their structural complexity and poor targeting efficacy, lipid-metabolizing drugs, either used alone or in combination with chemotherapeutic agents, have been employed in clinical practice. The advent of nanotechnology offers new approaches to enhancing therapeutic effects, includingthe targeted delivery and integration of lipid metabolic reprogramming with chemotherapy, photodynamic therapy (PDT), and immunotherapy. The integrated nanoformulation, nanomedicine, could significantly advance the field of lipid metabolism therapy. In this review, we will briefly introduce the concept of cancer lipid metabolism reprogramming, then elaborate the latest advances in engineered nanomedicine for targeting lipid metabolism during cancer treatment, and finally provide our insights into future perspectives of nanomedicine for interference with lipid metabolism in the tumor microenvironment.
Collapse
Affiliation(s)
- Xing Huang
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shengzhong Hou
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinggang Li
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gang Xu
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Ning Xia
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenyu Duan
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China.
| | - Kui Luo
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China.
| | - Bole Tian
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Karimova AF, Khalitova AR, Suezov R, Markov N, Mukhamedshina Y, Rizvanov AA, Huber M, Simon HU, Brichkina A. Immunometabolism of tumor-associated macrophages: A therapeutic perspective. Eur J Cancer 2025; 220:115332. [PMID: 40048925 DOI: 10.1016/j.ejca.2025.115332] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 04/26/2025]
Abstract
Tumor-associated macrophages (TAMs) play a pivotal role in the tumor microenvironment (TME), actively contributing to the formation of an immunosuppressive niche that fosters tumor progression. Consequently, there has been a growing interest in targeting TAMs as a promising avenue for cancer therapy. Recent advances in the field of immunometabolism have shed light on the influence of metabolic adaptations on macrophage physiology in the context of cancer. Here, we discuss the key metabolic pathways that shape the phenotypic diversity of macrophages. We place special emphasis on how metabolic reprogramming impacts the activation status of TAMs and their functions within the TME. Additionally, we explore alterations in TAM metabolism and their effects on phagocytosis, production of cytokines/chemokines and interaction with cytotoxic T and NK immune cells. Moreover, we examine the application of nanomedical approaches to target TAMs and assess the clinical significance of modulating the metabolism of TAMs as a strategy to develop new anti-cancer therapies. Taken together, in this comprehensive review article focusing on TAMs, we provide invaluable insights for the development of effective immunotherapeutic strategies and the enhancement of clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Adelya F Karimova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Adelya R Khalitova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Roman Suezov
- Institute of Systems Immunology, Center for Tumor and Immune Biology, Philipps University of Marburg, Marburg, Germany
| | - Nikita Markov
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Yana Mukhamedshina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia; Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, Kazan, Russia
| | - Magdalena Huber
- Institute of Systems Immunology, Center for Tumor and Immune Biology, Philipps University of Marburg, Marburg, Germany
| | - Hans-Uwe Simon
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia; Institute of Pharmacology, University of Bern, Bern, Switzerland; Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| | - Anna Brichkina
- Institute of Systems Immunology, Center for Tumor and Immune Biology, Philipps University of Marburg, Marburg, Germany.
| |
Collapse
|
3
|
Yang X, Deng B, Zhao W, Guo Y, Wan Y, Wu Z, Su S, Gu J, Hu X, Feng W, Hu C, Li J, Xu Y, Huang X, Lin Y. FABP5 + lipid-loaded macrophages process tumour-derived unsaturated fatty acid signal to suppress T-cell antitumour immunity. J Hepatol 2025; 82:676-689. [PMID: 39357545 DOI: 10.1016/j.jhep.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND & AIMS Tumour-associated macrophages (TAMs) contribute to hepatocellular carcinoma (HCC) progression. However, while the pro-tumour and immunosuppressive roles of lipid-loaded macrophages are well established, the mechanisms by which lipid metabolism enhances the tumour-promoting effects of TAMs remain unclear. METHODS Single-cell RNA sequencing was performed on mouse and human HCC tumour samples to elucidate the landscape of HCC TAMs. Macrophages were stimulated with various long-chain unsaturated fatty acids (UFAs) to assess immunosuppressive molecule expression in vitro. Additionally, in vivo and in vitro studies were conducted using mice with macrophage-specific deficiencies in fatty acid-binding protein 5 (FABP5) or peroxisome proliferator-activated receptor γ (PPARγ). RESULTS Single-cell RNA sequencing identified a subpopulation of FABP5+ lipid-loaded TAMs characterized by enhanced immune checkpoint blocker ligands and immunosuppressive molecules in an oncogene-mutant HCC mouse model and human HCC tumours. Mechanistically, long-chain UFAs released by tumour cells activate PPARγ via FABP5, resulting in immunosuppressive properties in TAMs. FABP5 deficiency in macrophages decreases immunosuppressive molecule expression, enhances T cell-dependent antitumour immunity, diminishes HCC growth, and improves immunotherapy efficacy. CONCLUSIONS This study demonstrates that UFAs promote tumourigenesis by enhancing the immunosuppressive tumour microenvironment via FABP5-PPARγ signalling and provides a proof-of-concept for targeting this pathway to improve the efficacy of tumour immunotherapy. IMPACT AND IMPLICATIONS Despite the role of tumour-associated macrophages (TAMs) in promoting tumour progression being well established, the mechanisms by which lipid metabolism enhances the tumour-promoting effects of TAMs remain unclear. Our study reveals that FABP5-mediated unsaturated fatty acid metabolism in TAMs is crucial for modulating antitumour T-cell immunity and influencing the efficacy of immunotherapy. This finding provides novel insights into the immunomodulatory roles of FABP5+ lipid-loaded TAMs in hepatocellular carcinoma and suggests that targeting FABP5 could offer a new approach to liver cancer treatment.
Collapse
Affiliation(s)
- Xuguang Yang
- Clinical Research Center, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Department of Immunology of Basic Medical Sciences; Shanghai Pudong Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Bo Deng
- Division of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Weiwei Zhao
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yangyang Guo
- Department of Immunology of Basic Medical Sciences; Shanghai Pudong Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yaqi Wan
- Department of Immunology of Basic Medical Sciences; Shanghai Pudong Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhihao Wu
- Clinical Research Center, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Sheng Su
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jingyan Gu
- Department of Neurosurgery, Shanghai General Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Xiaoqian Hu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200032, China
| | - Wenxue Feng
- Department of Immunology of Basic Medical Sciences; Shanghai Pudong Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Chencheng Hu
- Frontier Innovation Center, Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Pathology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jia Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yanyong Xu
- Frontier Innovation Center, Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Pathology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Xiaowu Huang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Clinical Center for Biotherapy, Zhongshan Hospital (Xiamen), Fudan University, Shanghai, 200032, China.
| | - Yuli Lin
- Department of Immunology of Basic Medical Sciences; Shanghai Pudong Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Han Y, Zhou Z, Li R, Wang H. Tumor-Derived Exosomal circ_0020095 Promotes Colon Cancer Cell Proliferation and Metastasis by Inhibiting M1 Macrophage Polarization. J Biochem Mol Toxicol 2025; 39:e70225. [PMID: 40165503 DOI: 10.1002/jbt.70225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 01/20/2025] [Accepted: 03/03/2025] [Indexed: 04/02/2025]
Abstract
Tumor-associated macrophages (TAM) have been shown to regulate colon cancer (CC) progression. However, it is not clear whether tumor-derived exosomal circular RNA (circRNA) regulates TAM to influence CC progression. The expression levels of circ_0020095, M1 macrophage markers, M2 macrophage markers, and interleukin-1 receptor-associated kinase 1 (IRAK1) were determined by qRT-PCR. Cell proliferation, migration and invasion were examined by EdU assay, wound healing assay and transwell assay. Exosomes derived from CC cells were used to treat M0 macrophages. M1 macrophage surface marker CD86 was detected by flow cytometry, and protein expression was examined by western blot. Then, the medium of exosome-treated M0 macrophages was used to culture CC cells to determine CC cell functions. RNA pull-down assay, RIP assay and dual-luciferase reporter assay were performed to validate interaction. Circ_0020095 had elevated expression in CC tissues and cells, and its knockdown repressed CC cell proliferation and metastasis. M0 macrophages could take by CC cell-derived exosomes to regulate circ_0020095 expression. Exosomal circ_0020095 restrained M1 macrophage polarization and increased M2 macrophage polarization to enhance CC cell progression. Besides, IRAK1 silencing could promote CC cell proliferation and metastasis by inhibiting M1 macrophage polarization, and its overexpression also abolished the effect of exosomal circ_0020095. Mechanistically, circ_0020095 could competitively bind to IGF2BP1 and then reduced the binding ability of IGF2BP1 and IRAK1 3'UTR. Tumor-derived exosomal circ_0020095 promoted CC cell progression via inhibiting M1 macrophage polarization through IGF2BP1/IRAK1 axis.
Collapse
Affiliation(s)
- Yue Han
- The Second Department of Gastrointestinal Surgery, Shandong Provincial Third Hospital, Jinan City, China
| | - Zhe Zhou
- The Second Department of Gastrointestinal Surgery, Shandong Provincial Third Hospital, Jinan City, China
| | - Rudong Li
- The Second Department of Gastrointestinal Surgery, Shandong Provincial Third Hospital, Jinan City, China
| | - Hong Wang
- The Second Department of Gastrointestinal Surgery, Shandong Provincial Third Hospital, Jinan City, China
| |
Collapse
|
5
|
Hochstadt J, Martínez Pacheco S, Casanova-Acebes M. Embracing diversity: macrophage complexity in cancer. Trends Cancer 2025; 11:351-364. [PMID: 39753470 DOI: 10.1016/j.trecan.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 04/11/2025]
Abstract
Macrophages are myeloid cells that receive, integrate, and respond to tumoral cues. Tumors evolve and are shaped by macrophages, with tumor-associated macrophage (TAM)-tumor sculpting capacities going beyond an increase in their cellular mass. Longitudinal and local heterogeneity of TAM states is now possible with the use of single-cell and spatial transcriptomics. However, understanding TAM biology and its fundamental functional programs is still challenging, probably because of the lack of models that fully integrate TAM complexity. Here, we aim to review TAM diversity not only at the level of single-cell phenotypes but also by integrating complex physiological signals that determine their complexity and plasticity in tumors.
Collapse
Affiliation(s)
- Jan Hochstadt
- Cancer Immunity Laboratory, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Sarai Martínez Pacheco
- Cancer Immunity Laboratory, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - María Casanova-Acebes
- Cancer Immunity Laboratory, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain.
| |
Collapse
|
6
|
Caronni N, La Terza F, Frosio L, Ostuni R. IL-1β + macrophages and the control of pathogenic inflammation in cancer. Trends Immunol 2025:S1471-4906(25)00059-6. [PMID: 40169292 DOI: 10.1016/j.it.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 04/03/2025]
Abstract
While highlighting the complexity and heterogeneity of tumor immune microenvironments, the application of single-cell analyses in human cancers has identified recurrent subsets of tumor-associated macrophages (TAMs). Among these, interleukin (IL)-1β+ TAMs - cells with high levels of expression of inflammatory response and tissue repair genes, but with limited capacity to stimulate cytotoxic immunity - are emerging as key drivers of pathogenic inflammation in cancer. In this review we discuss recent literature defining the phenotypical, molecular, and functional properties of IL-1β+ TAMs, as well as their temporal dynamics and spatial organization. Elucidating the biology of these cells across tumor initiation, progression, metastasis, and therapy could inform the design and interpretation of clinical trials targeting IL-1β and/or other inflammatory factors in cancer immunotherapy.
Collapse
Affiliation(s)
- Nicoletta Caronni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Federica La Terza
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Frosio
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Renato Ostuni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
7
|
Yang W, Jiang F, Xu L, Pang N, Yang C, Yu R, Chen H. Small peritoneal macrophages are accelerators of peritoneal metastasis of colorectal cancer. Transl Cancer Res 2025; 14:1626-1637. [PMID: 40224966 PMCID: PMC11985204 DOI: 10.21037/tcr-24-1707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/27/2025] [Indexed: 04/15/2025]
Abstract
Background The peritoneal cavity (PerC) constitutes a distinct anatomical compartment that harbors various subpopulations of peritoneal macrophages. However, there remains a significant gap in our understanding of the functions of these macrophage subpopulations in the context of peritoneal metastasis of colorectal cancer (PM-CRC) and their roles in the tumor progression process. This investigation seeks to analyze the characteristics of large peritoneal macrophages (LPMs) and small peritoneal macrophages (SPMs), in the context of PM-CRC. Methods A murine model of PM-CRC was developed through the intraperitoneal administration of the MC38 colorectal cancer cell line into C57BL/6 mice. Peritoneal effusions were subsequently collected at various time points post-injection and subjected to analysis via flow cytometry, cell co-culture assays, among other techniques. Additionally, clodronate liposomes were employed to deplete peritoneal macrophages in order to investigate the impact of SPMs on tumor progression and survival in the PM-CRC mouse model. Results The findings of this study demonstrated a significant increase in the number of SPMs during the progression of PM-CRC, concomitant with a decrease in the proportion of LPMs. Notably, SPMs exhibited a macrophage phenotype conducive to tumor growth. In the PM-CRC mouse model, the dynamic escalation of SPMs following lipopolysaccharide stimulation was associated with a reduced survival rate. However, the depletion of SPMs using clodronate liposomes in the later stages of the model effectively extended the survival period in cases of PM-CRC. Conclusions The findings of this study suggest that SPMs acts as a catalyst in the progression of peritoneal metastasis in colorectal cancer, thereby identifying it as a potential therapeutic target for managing this condition.
Collapse
Affiliation(s)
- Wanli Yang
- Translational Institute for Cancer Pain, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Feng Jiang
- Translational Institute for Cancer Pain, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Lixia Xu
- Translational Institute for Cancer Pain, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Nan Pang
- Translational Institute for Cancer Pain, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Chao Yang
- Translational Institute for Cancer Pain, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Ruihua Yu
- Translational Institute for Cancer Pain, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Haiqun Chen
- Department of General Surgery, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
8
|
Luo H, She X, Zhang Y, Xie B, Zhang S, Li Q, Zhou Y, Guo S, Zhang S, Jiang Y, Dong Y, He J, Wang L, Zhang Q, Zhuang Y, Deng P, Wang F, Liu J, Chen X, Nie H, He H. PLIN2 Promotes Lipid Accumulation in Ascites-Associated Macrophages and Ovarian Cancer Progression by HIF1α/SPP1 Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411314. [PMID: 39921309 PMCID: PMC11948008 DOI: 10.1002/advs.202411314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/21/2025] [Indexed: 02/10/2025]
Abstract
A major characteristic of ovarian cancer (OC) is its unique route of metastasis via ascites. The immune microenvironment in ascites remains understudied, leaving the mechanism of ascites-mediated abdominal metastasis obscure. Here, a single-cell transcriptomic landscape of CD45+ immune cells across multiple anatomical sites is depicted, including primary tumors, metastatic lesions, and ascites, from patients diagnosed with high-grade serous ovarian carcinoma (HGSOC). A novel subset of perilipin 2 high (PLIN2hi) macrophages are identified that are enriched in ascites and positively correlated with OC progression, hence being designated as "ascites-associated macrophages (AAMs)". AAMs are lipid-loaded with overexpression of the lipid droplet protein PLIN2. Overexpression or suppression of PLIN2 can enhance or inhibit tumor cell migration, invasion, and vascular permeability in vitro, which is also confirmed in vivo. Mechanistically, it is demonstrated that PLIN2 boosts HIF1α/SPP1 signaling in macrophages, thereby exerting pro-tumor functions. Finally, a PLIN2-targeting liposome is designed to efficiently suppress ascites production and tumor metastasis. Taken together, this work provides a comprehensive characterization of the cancer-promoting function and lipid-rich property of ascites-enriched PLIN2hi macrophages, establishes a link between lipid metabolism and hypoxia within the context of the ascites microenvironment, and elucidates the pivotal role of ascites in trans-coelomic metastasis of OC.
Collapse
Affiliation(s)
- Hui Luo
- Guangdong Provincial Engineering Research Center of Molecular ImagingGuangdong‐Hong Kong‐Macao University Joint Laboratory of Interventional MedicineThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiGuangdong519000China
| | - Xiaolu She
- Guangdong Provincial Engineering Research Center of Molecular ImagingGuangdong‐Hong Kong‐Macao University Joint Laboratory of Interventional MedicineThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiGuangdong519000China
| | - Yubo Zhang
- Guangdong Provincial Engineering Research Center of Molecular ImagingGuangdong‐Hong Kong‐Macao University Joint Laboratory of Interventional MedicineThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiGuangdong519000China
| | - Bingfan Xie
- Department of GynecologyThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiGuangdong519000China
| | - Shibo Zhang
- Guangdong Provincial Engineering Research Center of Molecular ImagingGuangdong‐Hong Kong‐Macao University Joint Laboratory of Interventional MedicineThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiGuangdong519000China
| | - Qianqian Li
- Guangdong Provincial Engineering Research Center of Molecular ImagingGuangdong‐Hong Kong‐Macao University Joint Laboratory of Interventional MedicineThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiGuangdong519000China
| | - Yangyang Zhou
- Guangdong Provincial Engineering Research Center of Molecular ImagingGuangdong‐Hong Kong‐Macao University Joint Laboratory of Interventional MedicineThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiGuangdong519000China
| | - Shuang Guo
- Guangdong Provincial Engineering Research Center of Molecular ImagingGuangdong‐Hong Kong‐Macao University Joint Laboratory of Interventional MedicineThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiGuangdong519000China
| | - Shushan Zhang
- Department of UltrasoundThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiGuangdong519000China
| | - Yanhui Jiang
- Cancer CenterThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiGuangdong519000China
| | - Yingying Dong
- Guangdong Provincial Engineering Research Center of Molecular ImagingGuangdong‐Hong Kong‐Macao University Joint Laboratory of Interventional MedicineThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiGuangdong519000China
| | - Jianzhong He
- Cancer CenterThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiGuangdong519000China
| | - Lijie Wang
- Guangdong Provincial Engineering Research Center of Molecular ImagingGuangdong‐Hong Kong‐Macao University Joint Laboratory of Interventional MedicineThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiGuangdong519000China
| | - Qianqian Zhang
- Guangdong Provincial Engineering Research Center of Molecular ImagingGuangdong‐Hong Kong‐Macao University Joint Laboratory of Interventional MedicineThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiGuangdong519000China
| | - Yuan Zhuang
- Department of GynecologyThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiGuangdong519000China
| | - Panxia Deng
- Department of GynecologyThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiGuangdong519000China
| | - Feng Wang
- Department of GynecologyThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiGuangdong519000China
| | - Jihong Liu
- Department of Gynecology OncologyState Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdong510060China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacau999078China
| | - Huilong Nie
- Department of GynecologyThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiGuangdong519000China
| | - Huanhuan He
- Guangdong Provincial Engineering Research Center of Molecular ImagingGuangdong‐Hong Kong‐Macao University Joint Laboratory of Interventional MedicineThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiGuangdong519000China
| |
Collapse
|
9
|
Yu XX, Liu Y, Mo ZM, Luo RJ, Chen WK. Exploring BIRC family genes as prognostic biomarkers and therapeutic targets in prostate cancer. Discov Oncol 2025; 16:240. [PMID: 40009266 DOI: 10.1007/s12672-025-02002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 02/20/2025] [Indexed: 02/27/2025] Open
Abstract
The potential oncogenic role of Baculoviral inhibitor of apoptosis (IAP) Repeat-Containing (BIRC) genes in prostate cancer (PCa) has yet to be fully investigated. Two genes associated with disease recurrence, BIRC5 and BIRC7, were identified through survival analysis, and prostate cancer patients were categorized into two subtypes, C1 and C2, based on these genes. We performed survival analyses to assess the relationship between subtypes and the prognosis of PCa. Single-cell dataset analysis was used to identify specific cell types with enriched expression of BIRC family genes. Our findings show that BIRC5 and BIRC7 exhibit higher expression in PCa tissues compared to non-cancerous tissues. High expression of BIRC5 and BIRC7 independently correlates with an adverse prognosis in PCa. The analysis of mechanisms reveals that the differentially expressed genes impact signaling pathways associated with cancer and immunity. BIRC5/BIRC7 correlate with several immune cells infiltrating levels including T cells and macrophages. Furthermore, our research indicates that elevated expression of BIRC5 is associated with immune infiltration in PCa. These findings highlight the potential of BIRC5/BIRC7 or C1 subtype as prognostic biomarkers, offering new insights into possible targets for the development of therapeutic biomarkers and immunotherapeutic for PCa.
Collapse
Affiliation(s)
- Xiao-Xiang Yu
- Department of Urology, The 923rd Hospital of Chinese People's Liberation Army, Nanning, 530021, Guangxi, China.
| | - Yi Liu
- Department of Urology, The 923rd Hospital of Chinese People's Liberation Army, Nanning, 530021, Guangxi, China
| | - Zeng-Mi Mo
- Department of Urology, The 923rd Hospital of Chinese People's Liberation Army, Nanning, 530021, Guangxi, China
| | - Rong-Jiang Luo
- Department of Urology, The 923rd Hospital of Chinese People's Liberation Army, Nanning, 530021, Guangxi, China
| | - Wen-Kai Chen
- Department of Urology, The 923rd Hospital of Chinese People's Liberation Army, Nanning, 530021, Guangxi, China
| |
Collapse
|
10
|
Summer M, Riaz S, Ali S, Noor Q, Ashraf R, Khan RRM. Understanding the Dual Role of Macrophages in Tumor Growth and Therapy: A Mechanistic Review. Chem Biodivers 2025:e202402976. [PMID: 39869825 DOI: 10.1002/cbdv.202402976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/29/2025]
Abstract
Macrophages are heterogeneous cells that are the mediators of tissue homeostasis. These immune cells originated from monocytes and are classified into two basic categories, M1 and M2 macrophages. M1 macrophages exhibit anti-tumorous inflammatory reactions due to the behavior of phagocytosis. M2 macrophages or tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment (TME) and have a basic role in tumor progression by interacting with other immune cells in TME. By the expression of various cytokines, chemokines, and growth factors, TAMs lead to strengthening tumor cell proliferation, angiogenesis, and suppression of the immune system which further support invasion and metastasis. This review discusses recent and updated mechanisms regarding tumor progression by M2 macrophages. Moreover, the current therapeutic approaches targeting TAMs, their advantages, and limitations are also summarized, and further treatment approaches are outlined along with an elaboration of the tumor regression role of macrophages. This comprehensive review article possibly helps to understand the mechanisms underlying the tumor progression and regression role of macrophages in a comparative way from a basic level to the advanced one.
Collapse
Affiliation(s)
- Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Saima Riaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Qudsia Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Rimsha Ashraf
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Rana Rashad Mahmood Khan
- Faculty of Chemistry and Life Sciences, Department of Chemistry, Government College University Lahore, Lahore, Pakistan
| |
Collapse
|
11
|
Zhang Y, Yang Z, Liu Y, Pei J, Li R, Yang Y. Targeting lipid metabolism: novel insights and therapeutic advances in pancreatic cancer treatment. Lipids Health Dis 2025; 24:12. [PMID: 39806478 PMCID: PMC11727729 DOI: 10.1186/s12944-024-02426-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025] Open
Abstract
Lipid metabolism in cancer is characterized by dysregulated lipid regulation and utilization, critical for promoting tumor growth, survival, and resistance to therapy. Pancreatic cancer (PC) is a highly aggressive malignancy of the gastrointestinal tract that has a dismal 5-year survival rate of less than 10%. Given the essential function of the pancreas in digestion, cancer progression severely disrupts its function. Standard treatments for PC such as surgical resection, chemotherapy, and radiotherapy. However, these therapies often face significant challenges, including biochemical recurrence and drug resistance.Given these limitations, new therapeutic approaches are being developed to target tumor metabolism. Dysregulation of cholesterol biosynthesis and alterations in fatty acids (FAs), such as palmitate, stearate, omega-3, and omega-6, have been observed in pancreatic cancer. These lipids serve as energy sources, signaling molecules, and essential components of cell membranes. Their accumulation fosters an immunosuppressive tumor microenvironment that supports cancer cell proliferation and metastasis.Moreover, lipid metabolism dysregulation within immune cells, particularly T cells, impairs immune surveillance and weakens the body's defenses against cancer. Abnormal lipid metabolism also contributes to drug resistance in PC. Despite these challenges, targeting lipid metabolism may offer a promising therapeutic strategy. By enhancing lipid peroxidation, the induction of ferroptosis-a form of regulated cell death-could impair the survival of PC cells and hinder disease progression.
Collapse
Affiliation(s)
- Yanyan Zhang
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Bashan Mountains Bioresources Comprehensive Development C.I.C, Shaanxi University of Technology, Qinling, Hanzhong, 723001, China
| | - Zhichao Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Dalian Medical University, Dalian, China
| | - Yuchen Liu
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Bashan Mountains Bioresources Comprehensive Development C.I.C, Shaanxi University of Technology, Qinling, Hanzhong, 723001, China
| | - Jinjin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Bashan Mountains Bioresources Comprehensive Development C.I.C, Shaanxi University of Technology, Qinling, Hanzhong, 723001, China
| | - Ruojie Li
- Interventional Therapy Department, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, P.R. China.
| | - Yanhui Yang
- Emergency surgery Dapartment (Trauma center), The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, Henan, China.
| |
Collapse
|
12
|
Lanman NA, Meco E, Fitchev P, Kolliegbo AK, Broman MM, Filipovich Y, Kothandaraman H, Cresswell GM, Talaty P, Antoniak M, Brumer S, Glaser AP, Higgins AM, Helfand BT, Franco OE, Wang CH, Crawford SE, Ratliff TL, Hayward SW, Vickman RE. Infiltrating lipid-rich macrophage subpopulations identified as a regulator of increasing prostate size in human benign prostatic hyperplasia. Front Immunol 2025; 15:1494476. [PMID: 39867899 PMCID: PMC11757139 DOI: 10.3389/fimmu.2024.1494476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/11/2024] [Indexed: 01/28/2025] Open
Abstract
Introduction Macrophages exhibit marked phenotypic heterogeneity within and across disease states, with lipid metabolic reprogramming contributing to macrophage activation and heterogeneity. Chronic inflammation has been observed in human benign prostatic hyperplasia (BPH) tissues, however macrophage activation states and their contributions to this hyperplastic disease have not been defined. We postulated that a shift in macrophage phenotypes with increasing prostate size could involve metabolic alterations resulting in prostatic epithelial or stromal hyperplasia. Methods Single-cell RNA-seq of CD45+ transition zone leukocytes from 10 large (>90 grams) and 10 small (<40 grams) human prostates was conducted. Macrophage subpopulations were defined using marker genes and evaluated by flow cytometry. Results BPH macrophages do not distinctly categorize into M1 and M2 phenotypes. Instead, macrophages with neither polarization signature preferentially accumulate in large versus small prostates. Specifically, macrophage subpopulations with altered lipid metabolism pathways, demarcated by TREM2 and MARCO expression, accumulate with increased prostate volume. TREM2 high and MARCO high macrophage abundance positively correlates with patient body mass index and urinary symptom scores. TREM2high macrophages have a statistically significant increase in neutral lipid compared to TREM2low macrophages from BPH tissues. Lipid-rich macrophages were observed to localize within the stroma in BPH tissues. In vitro studies indicate that lipid-loaded macrophages increase prostate epithelial and stromal cell proliferation compared to control macrophages. Discussion These data define two new BPH immune subpopulations, TREM2high and MARCOhigh macrophages, and suggest that lipid-rich macrophages may exacerbate lower urinary tract symptoms in patients with large prostates. Further investigation is needed to evaluate the therapeutic benefit of targeting these cells in BPH.
Collapse
Affiliation(s)
- Nadia Atallah Lanman
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Era Meco
- Division of Urology, Department of Surgery, Endeavor Health (formerly NorthShore University HealthSystem), Evanston, IL, United States
| | - Philip Fitchev
- Division of Urology, Department of Surgery, Endeavor Health (formerly NorthShore University HealthSystem), Evanston, IL, United States
| | - Andree K. Kolliegbo
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
- Department of Computer Science, Purdue University, West Lafayette, IN, United States
| | - Meaghan M. Broman
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| | - Yana Filipovich
- Division of Urology, Department of Surgery, Endeavor Health (formerly NorthShore University HealthSystem), Evanston, IL, United States
| | - Harish Kothandaraman
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Gregory M. Cresswell
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| | - Pooja Talaty
- Division of Urology, Department of Surgery, Endeavor Health (formerly NorthShore University HealthSystem), Evanston, IL, United States
| | - Malgorzata Antoniak
- Division of Urology, Department of Surgery, Endeavor Health (formerly NorthShore University HealthSystem), Evanston, IL, United States
| | - Svetlana Brumer
- Division of Urology, Department of Surgery, Endeavor Health (formerly NorthShore University HealthSystem), Evanston, IL, United States
| | - Alexander P. Glaser
- Division of Urology, Department of Surgery, Endeavor Health (formerly NorthShore University HealthSystem), Evanston, IL, United States
- Division of Urology, Department of Surgery, University of Chicago Pritzker School of Medicine, Chicago, IL, United States
| | - Andrew M. Higgins
- Division of Urology, Department of Surgery, Endeavor Health (formerly NorthShore University HealthSystem), Evanston, IL, United States
- Division of Urology, Department of Surgery, University of Chicago Pritzker School of Medicine, Chicago, IL, United States
| | - Brian T. Helfand
- Division of Urology, Department of Surgery, Endeavor Health (formerly NorthShore University HealthSystem), Evanston, IL, United States
- Division of Urology, Department of Surgery, University of Chicago Pritzker School of Medicine, Chicago, IL, United States
| | - Omar E. Franco
- Department of Biochemistry and Molecular Biology, Feist-Weiller Cancer Center, Louisiana State University Shreveport, Shreveport, LA, United States
| | - Chi-Hsiung Wang
- Biostatistics and Research Informatics, Endeavor Health, Evanston, IL, United States
- Department of Medicine, University of Chicago Pritzker School of Medicine, Chicago, IL, United States
| | - Susan E. Crawford
- Division of Urology, Department of Surgery, Endeavor Health (formerly NorthShore University HealthSystem), Evanston, IL, United States
- Division of Urology, Department of Surgery, University of Chicago Pritzker School of Medicine, Chicago, IL, United States
| | - Timothy L. Ratliff
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Simon W. Hayward
- Division of Urology, Department of Surgery, Endeavor Health (formerly NorthShore University HealthSystem), Evanston, IL, United States
- Division of Urology, Department of Surgery, University of Chicago Pritzker School of Medicine, Chicago, IL, United States
| | - Renee E. Vickman
- Division of Urology, Department of Surgery, Endeavor Health (formerly NorthShore University HealthSystem), Evanston, IL, United States
- Division of Urology, Department of Surgery, University of Chicago Pritzker School of Medicine, Chicago, IL, United States
| |
Collapse
|
13
|
Trecarten S, Liss MA, Hamilton-Reeves J, DiGiovanni J. Obesity, dietary interventions and microbiome alterations in the development and progression of prostate cancer. Front Immunol 2025; 15:1448116. [PMID: 39840030 PMCID: PMC11747771 DOI: 10.3389/fimmu.2024.1448116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/06/2024] [Indexed: 01/23/2025] Open
Abstract
Purpose of review The role of the microbiome in prostate cancer is an emerging subject of research interest. Certain lifestyle factors, such as obesity and diet, can also impact the microbiome, which has been implicated in many diseases, such as heart disease and diabetes. However, this link has yet to be explored in detail in the context of prostate cancer. The purpose of this review is to explore the cross-talk between obesity, dietary interventions, and microbiome alterations in the development and progression of prostate cancer. Recent findings Many possible mechanisms exist linking obesity and dietary interventions to microbiome alterations and prostate cancer. The gut microbiome produces metabolites that could play a role in prostate cancer oncogenesis, including short-chain fatty acids, cholesterol derivatives, and folic acid. The microbiome also plays a pivotal role in the prostate tumor microenvironment (TME), contributing to inflammation, local tissue hypoxia, and epithelial-mesenchymal transition. A bidirectional relationship exists between obesity and the microbiome, and certain diets can enact changes to the microbiome, its associated metabolites, and prostate cancer outcomes. Summary Cross-talk exists between obesity, dietary interventions, and the role of the microbiome in the development and progression of prostate cancer. To further our understanding, future human studies in prostate cancer should investigate microbiome changes and incorporate an assessment of microbiome-derived metabolites and cellular/immune changes in the TME.
Collapse
Affiliation(s)
- Shaun Trecarten
- Department of Urology, The University of Texas Health Sciences Center San Antonio, San Antonio, TX, United States
| | - Michael A. Liss
- Department of Urology, University of San Diego, San Diego, CA, United States
| | - Jill Hamilton-Reeves
- Department of Urology, University of Kansas Medical Center, Kansas City, KS, United States
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin and Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
14
|
Lyu A, Fan Z, Clark M, Lea A, Luong D, Setayesh A, Starzinski A, Wolters R, Arias-Badia M, Allaire K, Wu K, Gurunathan V, Valderrábano L, Wei XX, Miller RA, Van Allen EM, Fong L. Evolution of myeloid-mediated immunotherapy resistance in prostate cancer. Nature 2025; 637:1207-1217. [PMID: 39633050 PMCID: PMC11779626 DOI: 10.1038/s41586-024-08290-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 10/25/2024] [Indexed: 12/07/2024]
Abstract
Patients with advanced metastatic castration-resistant prostate cancer (mCRPC) are refractory to immune checkpoint inhibitors (ICIs)1,2, partly because there are immunosuppressive myeloid cells in tumours3,4. However, the heterogeneity of myeloid cells has made them difficult to target, making blockade of the colony stimulating factor-1 receptor (CSF1R) clinically ineffective. Here we use single-cell profiling on patient biopsies across the disease continuum and find that a distinct population of tumour-associated macrophages with elevated levels of SPP1 transcripts (SPP1hi-TAMs) becomes enriched with the progression of prostate cancer to mCRPC. In syngeneic mouse modelling, an analogous macrophage population suppresses CD8+ T cell activity in vitro and promotes ICI resistance in vivo. Furthermore, Spp1hi-TAMs are not responsive to anti-CSF1R antibody treatment. Pathway analysis identifies adenosine signalling as a potential mechanism for SPP1hi-TAM-mediated immunotherapeutic resistance. Indeed, pharmacological inhibition of adenosine A2A receptors (A2ARs) significantly reverses Spp1hi-TAM-mediated immunosuppression in CD8+ T cells in vitro and enhances CRPC responsiveness to programmed cell death protein 1 (PD-1) blockade in vivo. Consistent with preclinical results, inhibition of A2ARs using ciforadenant in combination with programmed death 1 ligand 1 (PD-L1) blockade using atezolizumab induces clinical responses in patients with mCRPC. Moreover, inhibiting A2ARs results in a significant decrease in SPP1hi-TAM abundance in CRPC, indicating that this pathway is involved in both induction and downstream immunosuppression. Collectively, these findings establish SPP1hi-TAMs as key mediators of ICI resistance in mCRPC through adenosine signalling, emphasizing their importance as both a therapeutic target and a potential biomarker for predicting treatment efficacy.
Collapse
MESH Headings
- Male
- Animals
- Mice
- Humans
- Drug Resistance, Neoplasm/immunology
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Prostatic Neoplasms, Castration-Resistant/immunology
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/pathology
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/therapy
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/drug effects
- Myeloid Cells/immunology
- Myeloid Cells/drug effects
- Myeloid Cells/metabolism
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Immunotherapy
- Tumor-Associated Macrophages/immunology
- Tumor-Associated Macrophages/drug effects
- Tumor-Associated Macrophages/metabolism
- Adenosine/metabolism
- Adenosine/analogs & derivatives
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism
- Single-Cell Analysis
- Adenosine A2 Receptor Antagonists/pharmacology
- Adenosine A2 Receptor Antagonists/therapeutic use
- Signal Transduction/drug effects
- Disease Models, Animal
- Disease Progression
Collapse
Affiliation(s)
- Aram Lyu
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Immunotherapy Integrated Research Center, Division of Translational Science and Therapeutics, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Zenghua Fan
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Matthew Clark
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Averey Lea
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Diamond Luong
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Ali Setayesh
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Alec Starzinski
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Rachel Wolters
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Marcel Arias-Badia
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Kate Allaire
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Kai Wu
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Vibha Gurunathan
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Laura Valderrábano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xiao X Wei
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Eliezer M Van Allen
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lawrence Fong
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Immunotherapy Integrated Research Center, Division of Translational Science and Therapeutics, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
15
|
Zhang Y, Yang W, Kumagai Y, Loza M, Yang Y, Park SJ, Nakai K. In Silico Analysis Revealed Marco (SR-A6) and Abca1/2 as Potential Regulators of Lipid Metabolism in M1 Macrophage Hysteresis. Int J Mol Sci 2024; 26:111. [PMID: 39795974 PMCID: PMC11719740 DOI: 10.3390/ijms26010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/14/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Macrophages undergo polarization, resulting in distinct phenotypes. These transitions, including de-/repolarization, lead to hysteresis, where cells retain genetic and epigenetic signatures of previous states, influencing macrophage function. We previously identified a set of interferon-stimulated genes (ISGs) associated with high lipid levels in macrophages that exhibited hysteresis following M1 polarization, suggesting potential alterations in lipid metabolism. In this study, we applied weighted gene co-expression network analysis (WGCNA) and conducted comparative analyses on 162 RNA-seq samples from de-/repolarized and lipid-loaded macrophages, followed by functional exploration. Our results demonstrate that during M1 hysteresis, the sustained high expression of Marco (SR-A6) enhances lipid uptake, while the suppression of Abca1/2 reduces lipid efflux, collectively leading to elevated intracellular lipid levels. This accumulation may compensate for reduced cholesterol biosynthesis and provide energy for sustained inflammatory responses and interferon signaling. Our findings elucidate the relationship between M1 hysteresis and lipid metabolism, contributing to understanding the underlying mechanisms of macrophage hysteresis.
Collapse
Affiliation(s)
- Yubo Zhang
- Department of Computational Biology and Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.Z.); (W.Y.); (Y.Y.)
| | - Wenbo Yang
- Department of Computational Biology and Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.Z.); (W.Y.); (Y.Y.)
| | - Yutaro Kumagai
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, Tokyo 305-0044, Japan;
| | - Martin Loza
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (M.L.); (S.-J.P.)
| | - Yitao Yang
- Department of Computational Biology and Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.Z.); (W.Y.); (Y.Y.)
| | - Sung-Joon Park
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (M.L.); (S.-J.P.)
| | - Kenta Nakai
- Department of Computational Biology and Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.Z.); (W.Y.); (Y.Y.)
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (M.L.); (S.-J.P.)
| |
Collapse
|
16
|
Kloosterman DJ, Farber M, Boon M, Erbani J, Akkari L. Protocol for studying macrophage lipid crosstalk with murine tumor cells. STAR Protoc 2024; 5:103421. [PMID: 39488834 PMCID: PMC11566343 DOI: 10.1016/j.xpro.2024.103421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/26/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Lipid accumulation has recently emerged as a key feature underlying the pro-tumorigenic role of macrophages. Here, we present a workflow to study macrophage lipid crosstalk with tumor cells. We describe steps for the identification, purification, and multi-omics characterization of lipid-laden macrophages (LLMs) from murine tumors and outline protocols to assess the functional significance of LLMs in cancer malignancy. This approach has the potential to uncover the source of lipids that drives LLM formation and its pro-tumorigenic potential in multiple cancer types. For complete details on the use and execution of this protocol, please refer to Kloosterman, Erbani, et al.1.
Collapse
Affiliation(s)
- Daan J Kloosterman
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands.
| | - Martina Farber
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands
| | - Menno Boon
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands
| | - Johanna Erbani
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands.
| | - Leila Akkari
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands.
| |
Collapse
|
17
|
Dias AS, Almeida CR, Helguero L, Duarte IF. Antitumoral Activity and Metabolic Signatures of Dichloroacetate, 6-Aminonicotinamide and Etomoxir in Breast-Tumor-Educated Macrophages. J Proteome Res 2024; 23:5498-5510. [PMID: 39475502 DOI: 10.1021/acs.jproteome.4c00654] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Pharmacological targeting of metabolic pathways represents an appealing strategy to selectively kill cancer cells while promoting antitumor functions of stromal cells. In this study, we assessed the effectiveness of 13 metabolic drugs (MDs) in steering in vitro generated breast tumor-educated macrophages (TEMs) toward an antitumoral phenotype. For that, the production of vascular endothelial growth factor (VEGF) and tumor necrosis factor α (TNF-α), two important regulators of tumor progression, was evaluated. Notably, dichloroacetate (DCA), 6-aminonicotinamide (6-AN), and etomoxir decreased VEGF production and enhanced TNF-α release. Hence, we further clarified their impact on TEM metabolism using an untargeted NMR-based metabolomics approach. DCA downregulated glycolysis and enhanced the utilization of extracellular substrates like lactate while reconfiguring lipid metabolism. Several DCA-induced changes significantly correlated with heightened TNF-α production in response to pro-inflammatory stimulation. The inhibition of the pentose phosphate pathway by 6-AN was accompanied by enhanced glutaminolysis, which correlated with a decreased level of VEGF production. In etomoxir-treated TEM, inhibition of fatty acid oxidation was compensated through upregulation of glycolysis, catabolism of intracellular amino acids, and consumption of extracellular branched chain alpha-ketoacids (BCKA) and citrate. Overall, our results offer a comprehensive view of the metabolic signature of each MD in breast TEM and highlight putative correlations with phenotypic effects.
Collapse
Affiliation(s)
- Ana S Dias
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Catarina R Almeida
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Luisa Helguero
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Iola F Duarte
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
18
|
Wang S, Qi X, Liu D, Xie D, Jiang B, Wang J, Wang X, Wu G. The implications for urological malignancies of non-coding RNAs in the the tumor microenvironment. Comput Struct Biotechnol J 2024; 23:491-505. [PMID: 38249783 PMCID: PMC10796827 DOI: 10.1016/j.csbj.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/08/2023] [Accepted: 12/16/2023] [Indexed: 01/23/2024] Open
Abstract
Urological malignancies are a major global health issue because of their complexity and the wide range of ways they affect patients. There's a growing need for in-depth research into these cancers, especially at the molecular level. Recent studies have highlighted the importance of non-coding RNAs (ncRNAs) – these don't code for proteins but are crucial in controlling genes – and the tumor microenvironment (TME), which is no longer seen as just a background factor but as an active player in cancer progression. Understanding how ncRNAs and the TME interact is key for finding new ways to diagnose and predict outcomes in urological cancers, and for developing new treatments. This article reviews the basic features of ncRNAs and goes into detail about their various roles in the TME, focusing specifically on how different ncRNAs function and act in urological malignancies.
Collapse
Affiliation(s)
- Shijin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Xiaochen Qi
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Deqian Xie
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Bowen Jiang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Jin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Xiaoxi Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| |
Collapse
|
19
|
Zhu L, Cai Q, Li G, Zou X. Bromodomain containing 4 inhibition combats gastric precancerous lesions via modulating macrophage polarization. Tissue Cell 2024; 91:102580. [PMID: 39396437 DOI: 10.1016/j.tice.2024.102580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/22/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVE Gastric precancerous lesions (GPL), characterized by intestinal metaplasia and dysplasia, marks a pivotal juncture in the transformation from gastritis to gastric cancer. Research on GPL could offer fresh perspectives on preventing cancer occurrence. METHODS This study employed 1-methyl-3-nitro-1-nitrosoguanidine (MNNG) to establish GPL rat models and knocked BRD4 down in vivo to assess its impact on the lesions and macrophage morphology. Following that, the impacts of BRD4 knockdown on the malignant phenotypes of human gastric epithelial GES-1 cells were determined. Moreover, conditioned medium from macrophage was gathered and used for GES-1 cell culture. The involvement of macrophage polarization in the BRD4 regulatory mechanism in GES-1 cells was assessed. RESULTS This study elucidated that MNNG induced an increase level of BRD4 in the rat models. BRD4 knockdown reduced lesions based on pathological sections and immunohistochemistry to detect proliferative antigens. Western blotting and immunofluorescence showed that BRD4 knockdown suppressed epithelial-mesenchymal transition and macrophage M2 polarization. In in vitro experiments, BRD4 knockdown inhibited the malignant phenotype of GES-1 cells and the differentiation of THP-1 cells into M2 macrophages, respectively. The conditioned medium from M2 macrophages with BRD4 knockdown was co-incubated with GES-1 cells, which attenuated the malignant phenotypes compared with the medium from M2 macrophages. CONCLUSION Through in vivo and in vitro experiments, BRD4 upregulation was found to already occur during GPL, affecting macrophage polarization and epithelial cell cancerization. This finding provides an experimental basis for strategies targeting BRD4 inhibition at this critical stage.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Qingxin Cai
- Department of Pharmacy, The First Specialized Hospital of Harbin, Harbin, Heilongjiang 150001, China
| | - Gang Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Xiaoming Zou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
20
|
Portale F, Carriero R, Iovino M, Kunderfranco P, Pandini M, Marelli G, Morina N, Lazzeri M, Casale P, Colombo P, De Simone G, Camisaschi C, Lugli E, Basso G, Cibella J, Marchini S, Bordi M, Meregalli G, Garbin A, Dambra M, Magrini E, Rackwitz W, Cecconi F, Corbelli A, Fiordaliso F, Eitler J, Tonn T, Di Mitri D. C/EBPβ-dependent autophagy inhibition hinders NK cell function in cancer. Nat Commun 2024; 15:10343. [PMID: 39609420 PMCID: PMC11604937 DOI: 10.1038/s41467-024-54355-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 11/05/2024] [Indexed: 11/30/2024] Open
Abstract
NK cells are endowed with tumor killing ability, nevertheless most cancers impair NK cell functionality, and cell-based therapies have limited efficacy in solid tumors. How cancers render NK cell dysfunctional is unclear, and overcoming resistance is an important immune-therapeutic aim. Here, we identify autophagy as a central regulator of NK cell anti-tumor function. Analysis of differentially expressed genes in tumor-infiltrating versus non-tumor NK cells from our previously published scRNA-seq data of advanced human prostate cancer shows deregulation of the autophagic pathway in tumor-infiltrating NK cells. We confirm this by flow cytometry in patients and in diverse cancer models in mice. We further demonstrate that exposure of NK cells to cancer deregulates the autophagic process, decreases mitochondrial polarization and impairs effector functions. Mechanistically, CCAAT enhancer binding protein beta (C/EBPβ), downstream of CXCL12-CXCR4 interaction, acts as regulator of NK cell metabolism. Accordingly, inhibition of CXCR4 and C/EBPβ restores NK cell fitness. Finally, genetic and pharmacological activation of autophagy improves NK cell effector and cytotoxic functions, which enables tumour control by NK and CAR-NK cells. In conclusion, our study identifies autophagy as an intracellular checkpoint in NK cells and introduces autophagy regulation as an approach to strengthen NK-cell-based immunotherapies.
Collapse
Affiliation(s)
- Federica Portale
- IRCCS Humanitas Research Hospital, Tumor Microenviroment Unit, 20089, Via Manzoni 56, Rozzano, Milan, Italy
| | - Roberta Carriero
- IRCCS Humanitas Research Hospital, Bioinformatics Unit, 20089, Via Manzoni 56, Rozzano, Milan, Italy
| | - Marta Iovino
- IRCCS Humanitas Research Hospital, Tumor Microenviroment Unit, 20089, Via Manzoni 56, Rozzano, Milan, Italy
| | - Paolo Kunderfranco
- IRCCS Humanitas Research Hospital, Bioinformatics Unit, 20089, Via Manzoni 56, Rozzano, Milan, Italy
| | - Marta Pandini
- IRCCS Humanitas Research Hospital, Tumor Microenviroment Unit, 20089, Via Manzoni 56, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, 20072, Via Rita Levi Montalcini 4, Pieve Emanuele, Milan, Italy
| | - Giulia Marelli
- IRCCS Humanitas Research Hospital, Tumor Microenviroment Unit, 20089, Via Manzoni 56, Rozzano, Milan, Italy
| | - Nicolò Morina
- IRCCS Humanitas Research Hospital, Tumor Microenviroment Unit, 20089, Via Manzoni 56, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, 20072, Via Rita Levi Montalcini 4, Pieve Emanuele, Milan, Italy
| | - Massimo Lazzeri
- IRCCS Humanitas Research Hospital, Urology Unit, 20089, Via Manzoni 56, Rozzano, Milan, Italy
| | - Paolo Casale
- IRCCS Humanitas Research Hospital, Urology Unit, 20089, Via Manzoni 56, Rozzano, Milan, Italy
| | - Piergiuseppe Colombo
- IRCCS Humanitas Research Hospital, Department of Pathology, 20089, Via Manzoni 56, Rozzano, Milan, Italy
| | - Gabriele De Simone
- IRCCS Humanitas Research Hospital, Flow Cytometry Core, 20089, Via Manzoni 56, Rozzano, Milan, Italy
| | - Chiara Camisaschi
- IRCCS Humanitas Research Hospital, Flow Cytometry Core, 20089, Via Manzoni 56, Rozzano, Milan, Italy
| | - Enrico Lugli
- IRCCS Humanitas Research Hospital, Flow Cytometry Core, 20089, Via Manzoni 56, Rozzano, Milan, Italy
| | - Gianluca Basso
- IRCCS Humanitas Research Hospital, Genomics Unit, 20089, Via Manzoni 56, Rozzano, Milan, Italy
| | - Javier Cibella
- IRCCS Humanitas Research Hospital, Genomics Unit, 20089, Via Manzoni 56, Rozzano, Milan, Italy
| | - Sergio Marchini
- IRCCS Humanitas Research Hospital, Genomics Unit, 20089, Via Manzoni 56, Rozzano, Milan, Italy
| | - Matteo Bordi
- Department of Basic Biological science, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Greta Meregalli
- IRCCS Humanitas Research Hospital, Tumor Microenviroment Unit, 20089, Via Manzoni 56, Rozzano, Milan, Italy
| | - Anna Garbin
- IRCCS Humanitas Research Hospital, Tumor Microenviroment Unit, 20089, Via Manzoni 56, Rozzano, Milan, Italy
| | - Monica Dambra
- IRCCS Humanitas Research Hospital, Immunopathology Lab, 20089, Via Manzoni 56, Rozzano, Milan, Italy
| | - Elena Magrini
- IRCCS Humanitas Research Hospital, Immunopathology Lab, 20089, Via Manzoni 56, Rozzano, Milan, Italy
| | - Wiebke Rackwitz
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Francesco Cecconi
- Department of Basic Biological science, Università Cattolica del Sacro Cuore, Rome, Italy
- IRCCS, Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Alessandro Corbelli
- Unit of Bio-imaging, Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Fabio Fiordaliso
- Unit of Bio-imaging, Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Jiri Eitler
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
| | - Torsten Tonn
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
| | - Diletta Di Mitri
- IRCCS Humanitas Research Hospital, Tumor Microenviroment Unit, 20089, Via Manzoni 56, Rozzano, Milan, Italy.
- Department of Biomedical Sciences, Humanitas University, 20072, Via Rita Levi Montalcini 4, Pieve Emanuele, Milan, Italy.
| |
Collapse
|
21
|
Ummarino A, Calà N, Allavena P. Extrinsic and Cell-Intrinsic Stress in the Immune Tumor Micro-Environment. Int J Mol Sci 2024; 25:12403. [PMID: 39596467 PMCID: PMC11594858 DOI: 10.3390/ijms252212403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
In continuously progressive tumor tissues, the causes of cellular stress are multiple: metabolic alterations, nutrient deprivation, chronic inflammation and hypoxia. To survive, tumor cells activate the stress response program, a highly conserved molecular reprogramming proposed to cope with challenges in a hostile environment. Not only cancer cells are affected, but stress responses in tumors also have a profound impact on their normal cellular counterparts: fibroblasts, endothelial cells and infiltrating immune cells. In recent years, there has been a growing interest in the interaction between cancer and immune cells, especially in difficult conditions of cellular stress. A growing literature indicates that knowledge of the molecular pathways activated in tumor and immune cells under stress conditions may offer new insights for possible therapeutic interventions. Counter-regulating the stress caused by the presence of a growing tumor can therefore be a weapon to limit disease progression. Here, we review the main pathways activated in cellular stress responses with a focus on immune cells present in the tumor microenvironment.
Collapse
Affiliation(s)
- Aldo Ummarino
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy;
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Nicholas Calà
- Etromapmacs Pole, Agorà Biomedical Sciences, 71010 Foggia, Italy;
| | | |
Collapse
|
22
|
Yorek M, Jiang X, Liu S, Hao J, Yu J, Avellino A, Liu Z, Curry M, Keen H, Shao J, Kanagasabapathy A, Kong M, Xiong Y, Sauter ER, Sugg SL, Li B. FABP4-mediated lipid accumulation and lipolysis in tumor-associated macrophages promote breast cancer metastasis. eLife 2024; 13:RP101221. [PMID: 39513934 PMCID: PMC11548877 DOI: 10.7554/elife.101221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
A high density of tumor-associated macrophages (TAMs) is associated with poorer prognosis and survival in breast cancer patients. Recent studies have shown that lipid accumulation in TAMs can promote tumor growth and metastasis in various models. However, the specific molecular mechanisms that drive lipid accumulation and tumor progression in TAMs remain largely unknown. Herein, we demonstrated that unsaturated fatty acids (FAs), unlike saturated ones, are more likely to form lipid droplets in murine macrophages. Specifically, unsaturated FAs, including linoleic acids (LA), activate the FABP4/CEBPα pathway, leading to triglyceride synthesis and lipid droplet formation. Furthermore, FABP4 enhances lipolysis and FA utilization by breast cancer cell lines, which promotes cancer cell migration in vitro and metastasis in vivo. Notably, a deficiency of FABP4 in murine macrophages significantly reduces LA-induced lipid metabolism. Therefore, our findings suggest FABP4 as a crucial lipid messenger that facilitates unsaturated FA-mediated lipid accumulation and lipolysis in TAMs, thus contributing to the metastasis of breast cancer.
Collapse
Affiliation(s)
- Matthew Yorek
- Department of Pathology, Holden Comprehensive Cancer Center, University of IowaIowa CityUnited States
| | - Xingshan Jiang
- Department of Pathology, Holden Comprehensive Cancer Center, University of IowaIowa CityUnited States
| | - Shanshan Liu
- Department of Pathology, Holden Comprehensive Cancer Center, University of IowaIowa CityUnited States
| | - Jiaqing Hao
- Department of Pathology, Holden Comprehensive Cancer Center, University of IowaIowa CityUnited States
| | - Jianyu Yu
- Department of Pathology, Holden Comprehensive Cancer Center, University of IowaIowa CityUnited States
| | - Anthony Avellino
- Department of Pathology, Holden Comprehensive Cancer Center, University of IowaIowa CityUnited States
| | - Zhanxu Liu
- Department of Bioinformatics and Biostatistics, University of LouisvilleLouisvilleUnited States
| | - Melissa Curry
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and ClinicsIowa CityUnited States
| | - Henry Keen
- Iowa Institute of Human Genetics, University of IowaIowa CityUnited States
| | - Jianqiang Shao
- Central Microscopy Research Facility, University of IowaIowa CityUnited States
| | - Anand Kanagasabapathy
- Department of Pathology, Holden Comprehensive Cancer Center, University of IowaIowa CityUnited States
| | - Maying Kong
- Department of Bioinformatics and Biostatistics, University of LouisvilleLouisvilleUnited States
| | - Yiqin Xiong
- Department of Pathology, Holden Comprehensive Cancer Center, University of IowaIowa CityUnited States
| | - Edward R Sauter
- Division of Cancer Prevention, NIH/NCIRockvilleUnited States
| | - Sonia L Sugg
- Department of Surgery, University of IowaIowa CityUnited States
| | - Bing Li
- Department of Pathology, Holden Comprehensive Cancer Center, University of IowaIowa CityUnited States
| |
Collapse
|
23
|
Mantovani A, Marchesi F, Di Mitri D, Garlanda C. Macrophage diversity in cancer dissemination and metastasis. Cell Mol Immunol 2024; 21:1201-1214. [PMID: 39402303 PMCID: PMC11528009 DOI: 10.1038/s41423-024-01216-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/06/2024] [Indexed: 11/02/2024] Open
Abstract
Invasion and metastasis are hallmarks of cancer. In addition to the well-recognized hematogenous and lymphatic pathways of metastasis, cancer cell dissemination can occur via the transcoelomic and perineural routes, which are typical of ovarian and pancreatic cancer, respectively. Macrophages are a universal major component of the tumor microenvironment and, in established tumors, promote growth and dissemination to secondary sites. Here, we review the role of tumor-associated macrophages (TAMs) in cancer cell dissemination and metastasis, emphasizing the diversity of myeloid cells in different tissue contexts (lungs, liver, brain, bone, peritoneal cavity, nerves). The generally used models of lung metastasis fail to capture the diversity of pathways and tissue microenvironments. A better understanding of TAM diversity in different tissue contexts may pave the way for tailored diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Alberto Mantovani
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy.
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy.
- William Harvey Research Institute, Queen Mary University, London, UK.
| | - Federica Marchesi
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
- Department Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Diletta Di Mitri
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy
| | - Cecilia Garlanda
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy
| |
Collapse
|
24
|
Taranto D, Kloosterman DJ, Akkari L. Macrophages and T cells in metabolic disorder-associated cancers. Nat Rev Cancer 2024; 24:744-767. [PMID: 39354070 DOI: 10.1038/s41568-024-00743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 10/03/2024]
Abstract
Cancer and metabolic disorders have emerged as major global health challenges, reaching epidemic levels in recent decades. Often viewed as separate issues, metabolic disorders are shown by mounting evidence to heighten cancer risk and incidence. The intricacies underlying this connection are still being unraveled and encompass a complex interplay between metabolites, cancer cells and immune cells within the tumour microenvironment (TME). Here, we outline the interplay between metabolic and immune cell dysfunction in the context of three highly prevalent metabolic disorders, namely obesity; two associated liver diseases, metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH); and type 2 diabetes. We focus primarily on macrophages and T cells, the critical roles of which in dictating inflammatory response and immune surveillance in metabolic disorder-associated cancers are widely reported. Moreover, considering the ever-increasing number of patients prescribed with metabolism disorder-altering drugs and diets in recent years, we discuss how these therapies modulate systemic and local immune phenotypes, consequently impacting cancer malignancy. Collectively, unraveling the determinants of metabolic disorder-associated immune landscape and their role in fuelling cancer malignancy will provide a framework essential to therapeutically address these highly prevalent diseases.
Collapse
Affiliation(s)
- Daniel Taranto
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daan J Kloosterman
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Leila Akkari
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
25
|
Xu R, Vujić N, Bianco V, Reinisch I, Kratky D, Krstic J, Prokesch A. Lipid-associated macrophages between aggravation and alleviation of metabolic diseases. Trends Endocrinol Metab 2024; 35:981-995. [PMID: 38705759 DOI: 10.1016/j.tem.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
Lipid-associated macrophages (LAMs) are phagocytic cells with lipid-handling capacity identified in various metabolic derangements. During disease development, they locate to atherosclerotic plaques, adipose tissue (AT) of individuals with obesity, liver lesions in steatosis and steatohepatitis, and the intestinal lamina propria. LAMs can also emerge in the metabolically demanding microenvironment of certain tumors. In this review, we discuss major questions regarding LAM recruitment, differentiation, and self-renewal, and, ultimately, their acute and chronic functional impact on the development of metabolic diseases. Further studies need to clarify whether and under which circumstances LAMs drive disease progression or resolution and how their phenotype can be modulated to ameliorate metabolic disorders.
Collapse
Affiliation(s)
- Ruonan Xu
- Gottfried Schatz Research Center for Cell Signaling, Metabolism, and Aging, Division of Cell Biology, Histology, and Embryology, Medical University of Graz, Graz, Austria
| | - Nemanja Vujić
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Valentina Bianco
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Isabel Reinisch
- Institute of Food Nutrition and Health, Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich (ETH), Schwerzenbach, Switzerland
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Jelena Krstic
- Gottfried Schatz Research Center for Cell Signaling, Metabolism, and Aging, Division of Cell Biology, Histology, and Embryology, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Andreas Prokesch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism, and Aging, Division of Cell Biology, Histology, and Embryology, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
26
|
Li Z, Li Z, Luo Y, Chen W, Fang Y, Xiong Y, Zhang Q, Yuan D, Yan B, Zhu J. Application and new findings of scRNA-seq and ST-seq in prostate cancer. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:23. [PMID: 39470950 PMCID: PMC11522250 DOI: 10.1186/s13619-024-00206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/12/2024] [Indexed: 11/01/2024]
Abstract
Prostate cancer is a malignant tumor of the male urological system with the highest incidence rate in the world, which seriously threatens the life and health of middle-aged and elderly men. The progression of prostate cancer involves the interaction between tumor cells and tumor microenvironment. Understanding the mechanisms of prostate cancer pathogenesis and disease progression is important to guide diagnosis and therapy. The emergence of single-cell RNA sequencing (scRNA-seq) and spatial transcriptome sequencing (ST-seq) technologies has brought breakthroughs in the study of prostate cancer. It makes up for the defects of traditional techniques such as fluorescence-activated cell sorting that are difficult to elucidate cell-specific gene expression. This review summarized the heterogeneity and functional changes of prostate cancer and tumor microenvironment revealed by scRNA-seq and ST-seq, aims to provide a reference for the optimal diagnosis and treatment of prostate cancer.
Collapse
Affiliation(s)
- Zhuang Li
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang city, 550004, Guizhou Province, China
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang city, 550002, Guizhou Province, China
| | - Zhengnan Li
- Graduate School of Zunyi Medical University, Zunyi City, 563099, Guizhou Province, China
| | - Yuanyuan Luo
- Medical College of Guizhou University, Guiyang city, 550025, Guizhou Province, China
| | - Weiming Chen
- Medical College of Guizhou University, Guiyang city, 550025, Guizhou Province, China
| | - Yinyi Fang
- Medical College of Guizhou University, Guiyang city, 550025, Guizhou Province, China
| | - Yuliang Xiong
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang city, 550004, Guizhou Province, China
| | - Qinyi Zhang
- Graduate School of Zunyi Medical University, Zunyi City, 563099, Guizhou Province, China
| | - Dongbo Yuan
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang city, 550002, Guizhou Province, China
| | - Bo Yan
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang city, 550002, Guizhou Province, China
| | - Jianguo Zhu
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang city, 550004, Guizhou Province, China.
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang city, 550002, Guizhou Province, China.
- Graduate School of Zunyi Medical University, Zunyi City, 563099, Guizhou Province, China.
- Medical College of Guizhou University, Guiyang city, 550025, Guizhou Province, China.
| |
Collapse
|
27
|
Ou A, Hu W, Jiang P, Lu J, Zheng Y, Ke C, Mou Y, Sai K, Li D. Alterations in intratumoral and peripheral immune status in recurrent gliomas and their prognostic implications for patients underwent reoperation. Int Immunopharmacol 2024; 140:112797. [PMID: 39083926 DOI: 10.1016/j.intimp.2024.112797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Reoperation is a treatment option for recurrent gliomas, yet factors impacting survival following reoperation remain poorly defined. Tumor immunity is profoundly associated with disease progression. Here, we analyze the immune status characteristics and their prognostic implications in recurrent gliomas. METHODS Intratumoral and peripheral immune characteristics between primary and recurrent gliomas were compared by conducting immunohistological staining and hematological examination with our in-house samples, and analyzing bulk and single-cell sequencing data from publicly available sources. Survival analysis was conducted to identify immunological markers with prognostic significances. RESULTS We observed a significant reduction in peripheral lymphocyte count, while an elevation in neutrophil-to-lymphocyte ratio (NLR) and red cell distribution width-to-platelet ratio (RPR) in patients with recurrent gliomas than in newly-diagnosed patients. Higher NLR and RPR indicated worse survival following reoperation in recurrent patients. Transcriptomic and immunohistological analysis showed an increased infiltration of tumor-associated macrophages (TAMs) and CD8+ T cell in recurrent gliomas compared to primary gliomas in both IDH-wildtype and mutant subtypes. Moreover, the abundance of TAMs emerged as an independent indicator for an inferior prognosis in recurrent gliomas. Single-cell profiling revealed a significant heterogeneity in the phenotypes of TAMs between primary and recurrent gliomas. Notably, TAMs enriched in recurrent gliomas exhibited elevated expression of interferon-γ-induced genes, multiple immunosuppressive molecules (TGFB1, CD276), and increased activity in glycose and lipid metabolism, indicating metabolic reprogramming. CONCLUSION Recurrent gliomas demonstrate augmented immune cell infiltration, but they fail to overcome TAMs-induced immunosuppression. Immunosuppressive indices, including TAM abundance, peripheral NLR and RPR, have prognostic implications for recurrent gliomas.
Collapse
Affiliation(s)
- Ailian Ou
- Department of Neurosurgery and Neuro-Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China
| | - Wanming Hu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China; Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China
| | - Pingping Jiang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, PR China
| | - Jie Lu
- Department of Neurosurgery and Neuro-Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China
| | - Yongqiang Zheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China
| | - Chao Ke
- Department of Neurosurgery and Neuro-Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China
| | - Yonggao Mou
- Department of Neurosurgery and Neuro-Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China
| | - Ke Sai
- Department of Neurosurgery and Neuro-Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China.
| | - Depei Li
- Department of Neurosurgery and Neuro-Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China.
| |
Collapse
|
28
|
Ming S, Li X, Xiao Q, Qu S, Wang Q, Fang Q, Liang P, Xu Y, Yang J, Yang Y, Huang X, Wu Y. TREM2 aggravates sepsis by inhibiting fatty acid oxidation via the SHP1/BTK axis. J Clin Invest 2024; 135:e159400. [PMID: 39405126 DOI: 10.1172/jci159400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 10/08/2024] [Indexed: 01/03/2025] Open
Abstract
Impaired fatty acid oxidation (FAO) and the therapeutic benefits of FAO restoration have been revealed in sepsis. However, the regulatory factors contributing to FAO dysfunction during sepsis remain inadequately clarified. In this study, we identified a subset of lipid-associated macrophages characterized by high expression of trigger receptor expressed on myeloid cells 2 (TREM2) and demonstrated that TREM2 acted as a suppressor of FAO to increase the susceptibility to sepsis. TREM2 expression was markedly upregulated in sepsis patients and correlated with the severity of sepsis. Knockout of TREM2 in macrophages improved the survival rate and reduced inflammation and organ injuries of sepsis mice. Notably, TREM2-deficient mice exhibited decreased triglyceride accumulation and an enhanced FAO rate. Further observations showed that the blockade of FAO substantially abolished the alleviated symptoms observed in TREM2-knockout mice. Mechanically, we demonstrated that TREM2 interacted with the phosphatase SHP1 to inhibit bruton tyrosine kinase-mediated (BTK-mediated) FAO in sepsis. Our findings expand the understanding of FAO dysfunction in sepsis and reveal TREM2 as a critical regulator of FAO that may provide a promising target for the clinical treatment of sepsis.
Collapse
Affiliation(s)
- Siqi Ming
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Zhuhai Hospital, Zhuhai, China
| | - Xingyu Li
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Key Research Laboratory of Traditional Chinese Medicine in the Prevention and Treatment of Infectious Diseases, Traditional Chinese Medicine Bureau of Guangdong Province, the Fifth Affiliated Hospital, SunYat-Sen University, Zhuhai, China
| | - Qiang Xiao
- Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Siying Qu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Qiaohua Wang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Qiongyan Fang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Pingping Liang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yating Xu
- National Clinical Research Center for Infectious Disease, Shenzhen Third People' s Hospital, the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Jingwen Yang
- Affiliated Qingyuan Hospital, The Sixth Clinical Medical School, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Yongqiang Yang
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Zhuhai Hospital, Zhuhai, China
| | - Xi Huang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Key Research Laboratory of Traditional Chinese Medicine in the Prevention and Treatment of Infectious Diseases, Traditional Chinese Medicine Bureau of Guangdong Province, the Fifth Affiliated Hospital, SunYat-Sen University, Zhuhai, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People' s Hospital, the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Yongjian Wu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Key Research Laboratory of Traditional Chinese Medicine in the Prevention and Treatment of Infectious Diseases, Traditional Chinese Medicine Bureau of Guangdong Province, the Fifth Affiliated Hospital, SunYat-Sen University, Zhuhai, China
| |
Collapse
|
29
|
Novysedlak R, Guney M, Al Khouri M, Bartolini R, Koumbas Foley L, Benesova I, Ozaniak A, Novak V, Vesely S, Pacas P, Buchler T, Ozaniak Strizova Z. The Immune Microenvironment in Prostate Cancer: A Comprehensive Review. Oncology 2024:1-25. [PMID: 39380471 DOI: 10.1159/000541881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Prostate cancer (PCa) is a malignancy with significant immunosuppressive properties and limited immune activation. This immunosuppression is linked to reduced cytotoxic T cell activity, impaired antigen presentation, and elevated levels of immunosuppressive cytokines and immune checkpoint molecules. Studies demonstrate that cytotoxic CD8+ T cell infiltration correlates with improved survival, while increased regulatory T cells (Tregs) and tumor-associated macrophages (TAMs) are associated with worse outcomes and therapeutic resistance. Th1 cells are beneficial, whereas Th17 cells, producing interleukin-17 (IL-17), contribute to tumor progression. Tumor-associated neutrophils (TANs) and immune checkpoint molecules, such as PD-1/PD-L1 and T cell immunoglobulin-3 (TIM-3) are also linked to advanced stages of PCa. Chemotherapy holds promise in converting the "cold" tumor microenvironment (TME) to a "hot" one by depleting immunosuppressive cells and enhancing tumor immunogenicity. SUMMARY This comprehensive review examines the immune microenvironment in PCa, focusing on the intricate interactions between immune and tumor cells in the TME. It highlights how TAMs, Tregs, cytotoxic T cells, and other immune cell types contribute to tumor progression or suppression and how PCa's low immunogenicity complicates immunotherapy. KEY MESSAGES The infiltration of cytotoxic CD8+ T cells and Th1 cells correlates with better outcomes, while elevated T regs and TAMs promote tumor growth, metastasis, and resistance. TANs and natural killer (NK) cells exhibit dual roles, with higher NK cell levels linked to better prognoses. Immune checkpoint molecules like PD-1, PD-L1, and TIM-3 are associated with advanced disease. Chemotherapy can improve tumor immunogenicity by depleting T regs and myeloid-derived suppressor cells, offering therapeutic promise.
Collapse
Affiliation(s)
- Rene Novysedlak
- Third Department of Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Miray Guney
- Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Majd Al Khouri
- Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Robin Bartolini
- Lausanne Center for Immuno-oncology Toxicities (LCIT), Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Lily Koumbas Foley
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Iva Benesova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Andrej Ozaniak
- Third Department of Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Vojtech Novak
- Department of Urology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Stepan Vesely
- Department of Urology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Pavel Pacas
- Department of Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Tomas Buchler
- Department of Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Zuzana Ozaniak Strizova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| |
Collapse
|
30
|
Hu T, Liu CH, Lei M, Zeng Q, Li L, Tang H, Zhang N. Metabolic regulation of the immune system in health and diseases: mechanisms and interventions. Signal Transduct Target Ther 2024; 9:268. [PMID: 39379377 PMCID: PMC11461632 DOI: 10.1038/s41392-024-01954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/18/2024] [Accepted: 08/11/2024] [Indexed: 10/10/2024] Open
Abstract
Metabolism, including glycolysis, oxidative phosphorylation, fatty acid oxidation, and other metabolic pathways, impacts the phenotypes and functions of immune cells. The metabolic regulation of the immune system is important in the pathogenesis and progression of numerous diseases, such as cancers, autoimmune diseases and metabolic diseases. The concept of immunometabolism was introduced over a decade ago to elucidate the intricate interplay between metabolism and immunity. The definition of immunometabolism has expanded from chronic low-grade inflammation in metabolic diseases to metabolic reprogramming of immune cells in various diseases. With immunometabolism being proposed and developed, the metabolic regulation of the immune system can be gradually summarized and becomes more and more clearer. In the context of many diseases including cancer, autoimmune diseases, metabolic diseases, and many other disease, metabolic reprogramming occurs in immune cells inducing proinflammatory or anti-inflammatory effects. The phenotypic and functional changes of immune cells caused by metabolic regulation further affect and development of diseases. Based on experimental results, targeting cellular metabolism of immune cells becomes a promising therapy. In this review, we focus on immune cells to introduce their metabolic pathways and metabolic reprogramming, and summarize how these metabolic pathways affect immune effects in the context of diseases. We thoroughly explore targets and treatments based on immunometabolism in existing studies. The challenges of translating experimental results into clinical applications in the field of immunometabolism are also summarized. We believe that a better understanding of immune regulation in health and diseases will improve the management of most diseases.
Collapse
Affiliation(s)
- Tengyue Hu
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chang-Hai Liu
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Min Lei
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Qingmin Zeng
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Division of Renal and endocrinology, Qin Huang Hospital, Xi'an, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China.
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Nannan Zhang
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China.
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
31
|
Wang Y, Chen W, Qiao S, Zou H, Yu XJ, Yang Y, Li Z, Wang J, Chen MS, Xu J, Zheng L. Lipid droplet accumulation mediates macrophage survival and Treg recruitment via the CCL20/CCR6 axis in human hepatocellular carcinoma. Cell Mol Immunol 2024; 21:1120-1130. [PMID: 38942796 PMCID: PMC11443046 DOI: 10.1038/s41423-024-01199-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024] Open
Abstract
Metabolic changes play a crucial role in determining the status and function of macrophages, but how lipid reprogramming in macrophages contributes to tumor progression is not yet fully understood. Here, we investigated the phenotype, contribution, and regulatory mechanisms of lipid droplet (LD)-laden macrophages (LLMs) in hepatocellular carcinoma (HCC). Enriched LLMs were found in tumor tissues and were associated with disease progression in HCC patients. The LLMs displayed immunosuppressive phenotypes (with extensive expression of TREM2, PD-L1, CD206, and CD163) and attenuated the antitumor activities of CD8+ T cells. Mechanistically, tumor-induced reshuffling of cellular lipids and TNFα-mediated uptake of tumoral fatty acids contribute to the generation of triglycerides and LDs in macrophages. LDs prolong LLM survival and promote CCL20 secretion, which further recruits CCR6+ Tregs to HCC tissue. Inhibiting LLM formation by targeting DGAT1 and DGAT2, which catalyze the synthesis of triglycerides, significantly reduced Treg recruitment, and delayed tumor growth in a mouse hepatic tumor model. Our results reveal the suppressive phenotypes and mechanisms of LLM enrichment in HCC and suggest the therapeutic potential of targeting LLMs for HCC patients.
Collapse
Affiliation(s)
- Yongchun Wang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
- Key Laboratory of Gene Function and Regulation of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Weibai Chen
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
- Key Laboratory of Gene Function and Regulation of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Shuang Qiao
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Hao Zou
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Xing-Juan Yu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Yanyan Yang
- Key Laboratory of Gene Function and Regulation of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Zhixiong Li
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Junfeng Wang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Min-Shan Chen
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Jing Xu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China.
| | - Limin Zheng
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China.
- Key Laboratory of Gene Function and Regulation of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
32
|
Liu D, Wang L, Guo Y. Advances in and prospects of immunotherapy for prostate cancer. Cancer Lett 2024; 601:217155. [PMID: 39127338 DOI: 10.1016/j.canlet.2024.217155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/07/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Immunotherapy has shown promising therapeutic effects in hematological malignancies and certain solid tumors and has emerged as a critical and highly potential treatment modality for cancer. However, prostate cancer falls under the category of immune-resistant cold tumors, for which immunotherapy exhibits limited efficacy in patients with solid tumors. Thus, it is important to gain a deeper understanding of the tumor microenvironment in prostate cancer to facilitate immune system activation and overcome immune suppression to advance immunotherapy for prostate cancer. In this review, we discuss the immunosuppressive microenvironment of prostate cancer, which is characterized by the presence of few tumor-infiltrating lymphocytes, abundant immunosuppressive cells, low immunogenicity, and a noninflammatory phenotype, which significantly influences the efficacy of immunotherapy for prostate cancer. Immunotherapy is mainly achieved by activating the host immune system and overcoming immunosuppression. In this regard, we summarize the therapeutic advances in immune checkpoint blockade, immunogenic cell death, reversal of the immunosuppressive tumor microenvironment, tumor vaccines, immune adjuvants, chimeric antigen receptor T-cell therapy, and overcoming penetration barriers in prostate cancer, with the aim of providing novel research insights and approaches to enhance the effectiveness of immunotherapy for prostate cancer.
Collapse
Affiliation(s)
- Deng Liu
- Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, 400038, China; Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Luofu Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Yanli Guo
- Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
33
|
Wang X, Zhang S, Xue D, Neculai D, Zhang J. Metabolic reprogramming of macrophages in cancer therapy. Trends Endocrinol Metab 2024:S1043-2760(24)00244-3. [PMID: 39304355 DOI: 10.1016/j.tem.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024]
Abstract
Cancer presents a significant global public health challenge. Within the tumor microenvironment (TME), macrophages are the most abundant immune cell population. Tumor-associated macrophages (TAMs) undergo metabolic reprogramming through influence of the TME; thus, by manipulating key metabolic pathways such as glucose, lipid, or amino acid metabolism, it may be possible to shift TAMs towards an antitumor state, enhancing the immune response against tumors. Here, we highlight the metabolic reprogramming of macrophages as a potential approach for cancer immunotherapy. We explore the major pathways involved in the metabolic reprogramming of TAMs and offer new and valuable insights on the current technologies utilized for TAM reprogramming, including genome editing, antibodies, small molecules, nanoparticles and other in situ editing strategies.
Collapse
Affiliation(s)
- Xudong Wang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China; Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China.
| | - Shaolong Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
| | - Dixuan Xue
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China; The Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Dante Neculai
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jin Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China; Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China; The Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Institute of Hematology, Hangzhou, 310058, China; Center of Gene/Cell Engineering and Genome Medicine of Zhejiang Province, Hangzhou, 310000, China.
| |
Collapse
|
34
|
Kloosterman DJ, Erbani J, Boon M, Farber M, Handgraaf SM, Ando-Kuri M, Sánchez-López E, Fontein B, Mertz M, Nieuwland M, Liu NQ, Forn-Cuni G, van der Wel NN, Grootemaat AE, Reinalda L, van Kasteren SI, de Wit E, Ruffell B, Snaar-Jagalska E, Petrecca K, Brandsma D, Kros A, Giera M, Akkari L. Macrophage-mediated myelin recycling fuels brain cancer malignancy. Cell 2024; 187:5336-5356.e30. [PMID: 39137777 PMCID: PMC11429458 DOI: 10.1016/j.cell.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 04/26/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024]
Abstract
Tumors growing in metabolically challenged environments, such as glioblastoma in the brain, are particularly reliant on crosstalk with their tumor microenvironment (TME) to satisfy their high energetic needs. To study the intricacies of this metabolic interplay, we interrogated the heterogeneity of the glioblastoma TME using single-cell and multi-omics analyses and identified metabolically rewired tumor-associated macrophage (TAM) subpopulations with pro-tumorigenic properties. These TAM subsets, termed lipid-laden macrophages (LLMs) to reflect their cholesterol accumulation, are epigenetically rewired, display immunosuppressive features, and are enriched in the aggressive mesenchymal glioblastoma subtype. Engulfment of cholesterol-rich myelin debris endows subsets of TAMs to acquire an LLM phenotype. Subsequently, LLMs directly transfer myelin-derived lipids to cancer cells in an LXR/Abca1-dependent manner, thereby fueling the heightened metabolic demands of mesenchymal glioblastoma. Our work provides an in-depth understanding of the immune-metabolic interplay during glioblastoma progression, thereby laying a framework to unveil targetable metabolic vulnerabilities in glioblastoma.
Collapse
Affiliation(s)
- Daan J Kloosterman
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Johanna Erbani
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Menno Boon
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Martina Farber
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Shanna M Handgraaf
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Masami Ando-Kuri
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Elena Sánchez-López
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Bauke Fontein
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Marjolijn Mertz
- Bioimaging Facility, Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Marja Nieuwland
- Genomics Core Facility, Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Ning Qing Liu
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Gabriel Forn-Cuni
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Nicole N van der Wel
- Electron Microscopy Centre Amsterdam, Medical Biology, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Anita E Grootemaat
- Electron Microscopy Centre Amsterdam, Medical Biology, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Luuk Reinalda
- The Institute of Chemical Immunology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Sander I van Kasteren
- The Institute of Chemical Immunology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Elzo de Wit
- Division of Gene Regulation, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Brian Ruffell
- Department of Immunology, Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | - Kevin Petrecca
- Montreal Neurological Institute-Hospital, McGill University Health Centre and Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Dieta Brandsma
- Department of Neuro-Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, 1066CX Amsterdam, the Netherlands
| | - Alexander Kros
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Leila Akkari
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands.
| |
Collapse
|
35
|
Jonker PB, Muir A. Metabolic ripple effects - deciphering how lipid metabolism in cancer interfaces with the tumor microenvironment. Dis Model Mech 2024; 17:dmm050814. [PMID: 39284708 PMCID: PMC11423921 DOI: 10.1242/dmm.050814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
Cancer cells require a constant supply of lipids. Lipids are a diverse class of hydrophobic molecules that are essential for cellular homeostasis, growth and survival, and energy production. How tumors acquire lipids is under intensive investigation, as these mechanisms could provide attractive therapeutic targets for cancer. Cellular lipid metabolism is tightly regulated and responsive to environmental stimuli. Thus, lipid metabolism in cancer is heavily influenced by the tumor microenvironment. In this Review, we outline the mechanisms by which the tumor microenvironment determines the metabolic pathways used by tumors to acquire lipids. We also discuss emerging literature that reveals that lipid availability in the tumor microenvironment influences many metabolic pathways in cancers, including those not traditionally associated with lipid biology. Thus, metabolic changes instigated by the tumor microenvironment have 'ripple' effects throughout the densely interconnected metabolic network of cancer cells. Given the interconnectedness of tumor metabolism, we also discuss new tools and approaches to identify the lipid metabolic requirements of cancer cells in the tumor microenvironment and characterize how these requirements influence other aspects of tumor metabolism.
Collapse
Affiliation(s)
- Patrick B Jonker
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Alexander Muir
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
36
|
Lanman NA, Meco E, Fitchev P, Kolliegbo AK, Broman MM, Filipovich Y, Kothandaraman H, Cresswell GM, Talaty P, Antoniak M, Brumer S, Glaser AP, Higgins AM, Helfand BT, Franco OE, Crawford SE, Ratliff TL, Hayward SW, Vickman RE. Infiltrating lipid-rich macrophage subpopulations identified as a regulator of increasing prostate size in human benign prostatic hyperplasia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597992. [PMID: 38915654 PMCID: PMC11195107 DOI: 10.1101/2024.06.07.597992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Macrophages exhibit marked phenotypic heterogeneity within and across disease states, with lipid metabolic reprogramming contributing to macrophage activation and heterogeneity. Chronic inflammation has been observed in human benign prostatic hyperplasia (BPH) tissues, however macrophage activation states and their contributions to this hyperplastic disease have not been defined. We postulated that a shift in macrophage phenotypes with increasing prostate size could involve metabolic alterations resulting in prostatic epithelial or stromal hyperplasia. Single-cell RNA-seq of CD45+ transition zone leukocytes from 10 large (>90 grams) and 10 small (<40 grams) human prostates was conducted. Macrophage subpopulations were defined using marker genes. BPH macrophages do not distinctly categorize into M1 and M2 phenotypes. Instead, macrophages with neither polarization signature preferentially accumulate in large versus small prostates. Specifically, macrophage subpopulations with altered lipid metabolism pathways, demarcated by TREM2 and MARCO expression, significantly accumulate with increased prostate volume. TREM2+ and MARCO+ macrophage abundance positively correlates with patient body mass index and urinary symptom scores. TREM2+ macrophages have significantly higher neutral lipid than TREM2- macrophages from BPH tissues. Lipid-rich macrophages were observed to localize within the stroma in BPH tissues. In vitro studies indicate that lipid-loaded macrophages increase prostate epithelial and stromal cell proliferation compared to control macrophages. These data define two new BPH immune subpopulations, TREM2+ and MARCO+ macrophages, and suggest that lipid-rich macrophages may exacerbate lower urinary tract symptoms in patients with large prostates. Further investigation is needed to evaluate the therapeutic benefit of targeting these cells in BPH.
Collapse
|
37
|
Xu Z, Xu X, Hu J, Tan J, Wan Y, Cui F. Characteristics, clinical significance, and cancer immune interactions of lipid metabolism in prostate cancer. Transl Cancer Res 2024; 13:3575-3588. [PMID: 39145061 PMCID: PMC11319944 DOI: 10.21037/tcr-23-2140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/29/2024] [Indexed: 08/16/2024]
Abstract
Background The relationship between lipid metabolism, immune response, and immunotherapy in prostate cancer (PCa) is closely intertwined, and targeted intervention in lipid metabolism may facilitate the success of anticancer immunotherapy. This research attempted to explore effective immunotherapy for PCa. Methods We obtained RNA sequencing (RNA-seq) data for PCa patients from the UCSC Xena platform. Data analysis of differentially expressed genes (DEGs) was performed using package limma in R. Then, DEGs were subjected to enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The Human Protein Atlas (HPA) database was conducted to validate the protein expression of the up-regulated lipid metabolism related genes (LMRGs) between PCa tissues and normal prostate tissues. And then we identified critical transcription factors (TFs), LMRGs and miRNA by constructing a regulatory network of TF-gene-miRNA. Furthermore, we determined the high and low groups based on the score of lipid metabolism enrichment. The hallmark gene sets were derived from gene expression profiles using the gene set variation analysis (GSVA) R package. Finally, we conducted immune infiltration analysis and drug sensitivity analysis. Results Immune response and lipid metabolism have undergone significant changes in PCa and paracancerous tissues compared to normal tissues. A total of 21 LMRGs were differentially up-regulated in PCa. The TF-gene-miRNA network showed that PLA2G7, TWIST1, and TRIB3 may be the key genes that elevated lipid metabolism in PCa. The high group had more infiltration of B cell memory, macrophage M0, macrophage M1, and myeloid dendritic cell resting, and the low group had more infiltration of B cell plasma, monocyte, myeloid dendritic cell activated, and mast cell resting. The majority of checkpoint genes exhibited high expression levels in the low group. Lipid metabolism was remarkedly correlated with drug sensitivity. Conclusions The analysis of lipid metabolism and related genes has revealed a complex regulatory mechanism that has a significant influence on immune response, immunotherapy, and medication guidance for patients with PCa. Keywords Prostate cancer (PCa); lipid metabolism; cancer immune; RNA sequencing (RNA-seq).
Collapse
Affiliation(s)
- Zhipeng Xu
- Department of Urology, Affiliated People’s Hospital of Jiangsu University, The First People’s Hospital of Zhenjiang, Zhenjiang, China
| | - Xu Xu
- Department of Urology, Affiliated People’s Hospital of Jiangsu University, The First People’s Hospital of Zhenjiang, Zhenjiang, China
| | - Jianpeng Hu
- Department of Urology, Affiliated People’s Hospital of Jiangsu University, The First People’s Hospital of Zhenjiang, Zhenjiang, China
| | - Jian Tan
- Department of Urology, Affiliated People’s Hospital of Jiangsu University, The First People’s Hospital of Zhenjiang, Zhenjiang, China
| | - Yuanye Wan
- Department of Urology, Affiliated People’s Hospital of Jiangsu University, The First People’s Hospital of Zhenjiang, Zhenjiang, China
| | - Feilun Cui
- Department of Urology, Affiliated Taizhou Second People’s Hospital of Yangzhou University, Taizhou, China
| |
Collapse
|
38
|
Sun HJ, Zheng ZF, Zhang LJ, Fang L, Fu H, Chen SY, Feng RX, Liu XY, Tang QN, Liu XW. Increased infiltration of M2-polarized tumour-associated macrophages is highly associated with advanced disease stage and high expression of PD-L1 in buccal mucosa carcinoma. Discov Oncol 2024; 15:314. [PMID: 39073672 PMCID: PMC11286931 DOI: 10.1007/s12672-024-01190-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
OBJECTIVE To assess the infiltration characteristics of tumour-associated macrophages (TAMs) in buccal mucosa carcinoma (BMC) and the correlation of these features with clinicopathological factors. MATERIALS AND METHODS Immunohistochemistry was used to detect the expression of TAM-related markers (CD68, CD163, CD206), CD8+ T cell markers, PD-L1, and epidermal growth factor receptor (EGFR) in 46 patients with mucosal cancer after radical surgery. In addition, the correlation between TAM infiltration and clinical characteristics, PD-L1 expression, and EGFR expression was analysed. RESULTS A high infiltration level of M2-polarized (CD206+) TAMs and M2-polarized (CD163+) TAMs was more common in stage T3-T4, N+, III-IV patients than in other patient groups (P < 0.05). The infiltration degree of M2-polarized (CD68+) TAMs was positively correlated with the PD-L1 TPS (P = 0.0331). The infiltration level of M2-polarized (CD206+) TAMs was higher in the EGFR high expression group than in the EGFR low expression group (P = 0.040). CONCLUSION High infiltration of M2-polarized TAMs is highly associated with advanced disease stage and higher expression of PD-L1 and EGFR in BMCs, suggesting that M2-polarized TAMs infiltration can serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Hao-Jia Sun
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Zhui-Feng Zheng
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Department of Breast Medical Oncology, Fujian Cancer Hospital and the Fujian Medical University Cancer Hospital, Fuzhou, 350014, Fujian, China
| | - Li-Jun Zhang
- Department of Oncology, Huaihua First People's Hospital, Huaihua, 418000, Hunan, China
| | - Le Fang
- Department of Oncology, Loudi Central Hospital, Loudi, 417099, Hunan, China
| | - Hua Fu
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Shao-Yang Chen
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Rong-Xiu Feng
- Department of Radiation Oncology, Xiangtan Central Hospital, Xiangtan, 411199, Hunan, China
| | - Xiao-Yang Liu
- Department of Oncology, Changde First People's Hospital, Changde, 415003, Hunan, China
| | - Qing-Nan Tang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Xue-Wen Liu
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
39
|
Yorek M, Jiang X, Liu S, Hao J, Yu J, Avellino A, Liu Z, Curry M, Keen H, Shao J, Kanagasabapathy A, Kong M, Xiong Y, Sauter ER, Sugg SL, Li B. FABP4-mediated lipid accumulation and lipolysis in tumor associated macrophages promote breast cancer metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601733. [PMID: 39005322 PMCID: PMC11244950 DOI: 10.1101/2024.07.02.601733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
A high density of tumor-associated macrophages (TAMs) is associated with poorer prognosis and survival in breast cancer patients. Recent studies have shown that lipid accumulation in TAMs can promote tumor growth and metastasis in various models. However, the specific molecular mechanisms that drive lipid accumulation and tumor progression in TAMs remain largely unknown. Herein, we demonstrated that unsaturated fatty acids (FAs), unlike saturated ones, are more likely to form lipid droplets in macrophages. Specifically, unsaturated FAs, including linoleic acids (LA), activate the FABP4/CEBPα pathway, leading to triglyceride synthesis and lipid droplet formation. Furthermore, FABP4 enhances lipolysis and FA utilization by breast cancer cells, which promotes cancer cell migration in vitro and metastasis in vivo . Notably, a deficiency of FABP4 in macrophages significantly reduces LA-induced lipid metabolism. Therefore, our findings suggest FABP4 as a crucial lipid messenger that facilitates unsaturated FA-mediated lipid accumulation and lipolysis in TAMs, thus contributing to the metastasis of breast cancer. Graphic Abstract Highlights Unlike saturated fatty acids, unsaturated fatty acids preferentially promote lipid droplet formation in macrophages.Unsaturated fatty acids activate the FABP4/CEBPα axis for neutral lipid biosynthesis in macrophagesDeficiency of FABP4 compromised unsaturated fatty acid-mediated lipid accumulation and utilization in macrophagesFABP4-mediated lipid metabolism in macrophages contributes to breast cancer metastasis.
Collapse
|
40
|
Li J, Huang Z, Wang P, Li R, Gao L, Lai KP. Therapeutic targets of formononetin for treating prostate cancer at the single-cell level. Aging (Albany NY) 2024; 16:10380-10401. [PMID: 38874510 PMCID: PMC11236323 DOI: 10.18632/aging.205935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/22/2024] [Indexed: 06/15/2024]
Abstract
Prostate cancer is one of the serious health problems of older male, about 13% of male was affected by prostate cancer. Prostate cancer is highly heterogeneity disease with complex molecular and genetic alterations. So, targeting the gene candidates in prostate cancer in single-cell level can be a promising approach for treating prostate cancer. In the present study, we analyzed the single cell sequencing data obtained from 2 previous reports to determine the differential gene expression of prostate cancer in single-cell level. By using the network pharmacology analysis, we identified the therapeutic targets of formononetin in immune cells and tissue cells of prostate cancer. We then applied molecular docking to determine the possible direct binding of formononetin to its target proteins. Our result identified a cluster of differential gene expression in prostate cancer which can serve as novel biomarkers such as immunoglobulin kappa C for prostate cancer prognosis. The result of network pharmacology delineated the roles of formononetin's targets such CD74 and THBS1 in immune cells' function of prostate cancer. Also, formononetin targeted insulin receptor and zinc-alpha-2-glycoprotein which play important roles in metabolisms of tissue cells of prostate cancer. The result of molecular docking suggested the direct binding of formononetin to its target proteins including INSR, TNF, and CXCR4. Finally, we validated our findings by using formononetin-treated human prostate cancer cell DU145. For the first time, our result suggested the use of formononetin for treating prostate cancer through targeting different cell types in a single-cell level.
Collapse
Affiliation(s)
- Jiawei Li
- Department of Urology Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, PR China
| | | | - Ping Wang
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, PR China
| | - Rong Li
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, PR China
| | - Li Gao
- Department of Urology Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, PR China
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, PR China
| |
Collapse
|
41
|
Cheng Y, He J, Zuo B, He Y. Role of lipid metabolism in hepatocellular carcinoma. Discov Oncol 2024; 15:206. [PMID: 38833109 DOI: 10.1007/s12672-024-01069-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
Hepatocellular carcinoma (HCC), an aggressive malignancy with a dismal prognosis, poses a significant public health challenge. Recent research has highlighted the crucial role of lipid metabolism in HCC development, with enhanced lipid synthesis and uptake contributing to the rapid proliferation and tumorigenesis of cancer cells. Lipids, primarily synthesized and utilized in the liver, play a critical role in the pathological progression of various cancers, particularly HCC. Cancer cells undergo metabolic reprogramming, an essential adaptation to the tumor microenvironment (TME), with fatty acid metabolism emerging as a key player in this process. This review delves into intricate interplay between HCC and lipid metabolism, focusing on four key areas: de novo lipogenesis, fatty acid oxidation, dysregulated lipid metabolism of immune cells in the TME, and therapeutic strategies targeting fatty acid metabolism for HCC treatment.
Collapse
Affiliation(s)
- Yulin Cheng
- MOE Engineering Center of Hematological Disease, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jun He
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Bin Zuo
- MOE Engineering Center of Hematological Disease, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Yang He
- MOE Engineering Center of Hematological Disease, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu, 215006, China.
- MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
42
|
Su P, Li O, Ke K, Jiang Z, Wu J, Wang Y, Mou Y, Jin W. Targeting tumor‑associated macrophages: Critical players in tumor progression and therapeutic strategies (Review). Int J Oncol 2024; 64:60. [PMID: 38695252 PMCID: PMC11087038 DOI: 10.3892/ijo.2024.5648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
Tumor‑associated macrophages (TAMs) are essential components of the tumor microenvironment (TME) and display phenotypic heterogeneity and plasticity associated with the stimulation of bioactive molecules within the TME. TAMs predominantly exhibit tumor‑promoting phenotypes involved in tumor progression, such as tumor angiogenesis, metastasis, immunosuppression and resistance to therapies. In addition, TAMs have the potential to regulate the cytotoxic elimination and phagocytosis of cancer cells and interact with other immune cells to engage in the innate and adaptive immune systems. In this context, targeting TAMs has been a popular area of research in cancer therapy, and a comprehensive understanding of the complex role of TAMs in tumor progression and exploration of macrophage‑based therapeutic approaches are essential for future therapeutics against cancers. The present review provided a comprehensive and updated overview of the function of TAMs in tumor progression, summarized recent advances in TAM‑targeting therapeutic strategies and discussed the obstacles and perspectives of TAM‑targeting therapies for cancers.
Collapse
Affiliation(s)
- Pengfei Su
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Ou Li
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Kun Ke
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Zhichen Jiang
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Jianzhang Wu
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Yuanyu Wang
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Yiping Mou
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Weiwei Jin
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
43
|
Wang C, Li Y, Wang L, Han Y, Gao X, Li T, Liu M, Dai L, Du R. SPP1 represents a therapeutic target that promotes the progression of oesophageal squamous cell carcinoma by driving M2 macrophage infiltration. Br J Cancer 2024; 130:1770-1782. [PMID: 38600327 PMCID: PMC11130281 DOI: 10.1038/s41416-024-02683-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Tumour-associated macrophages (TAMs) are an important component of the tumour microenvironment (TME). However, the crosstalk between oesophageal squamous cell carcinoma (ESCC) cells and TAMs remains largely unexplored. METHODS Clinical samples and the TCGA database were used to evaluate the relevance of SPP1 and TAM infiltration in ESCC. Mouse models were constructed to investigate the roles of macrophages educated by SPP1 in ESCC. Macrophage phenotypes were determined using qRT‒PCR and immunohistochemical staining. RNA sequencing was performed to elucidate the mechanism. RESULTS Increasing expression of SPP1 correlated with M2-like TAM accumulation in ESCC, and they both predicted poor prognosis in the ESCC cohort. Knockdown of SPP1 significantly inhibited the infiltration of M2 TAMs in xenograft tumours. In vivo mouse model experiments showed that SPP1-mediated education of macrophages plays an essential role in the progression of ESCC. Mechanistically, SPP1 recruited macrophages and promoted M2 polarisation via CD44/PI3K/AKT signalling activation and then induced VEGFA and IL6 secretion to sustain ESCC progression. Finally, blockade of SPP1 with RNA aptamer significantly inhibited tumour growth and M2 TAM infiltration in xenograft mouse models. CONCLUSIONS This study highlights SPP1-mediated crosstalk between ESCC cells and TAMs in ESCC. SPP1 could serve as a potential target in ESCC therapy.
Collapse
Affiliation(s)
- Chen Wang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Nuclear Medicine, Xinxiang Central Hospital, Xinxiang, 453002, Henan, China
| | - Yutong Li
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Pharmacology of Liver Diseases, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Linhong Wang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Pharmacology of Liver Diseases, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yu Han
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiaohui Gao
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Pharmacology of Liver Diseases, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Tiandong Li
- College of Public Health, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Man Liu
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, 450000, Henan, China
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Pharmacology of Liver Diseases, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Renle Du
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan Key Laboratory for Pharmacology of Liver Diseases, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- College of Public Health, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
44
|
Lim CX, Redl A, Kleissl L, Pandey RV, Mayerhofer C, El Jammal T, Mazic M, Gonzales K, Sukhbaatar N, Krausgruber T, Bock C, Hengstschläger M, Calender A, Pacheco Y, Stary G, Weichhart T. Aberrant Lipid Metabolism in Macrophages Is Associated with Granuloma Formation in Sarcoidosis. Am J Respir Crit Care Med 2024; 209:1152-1164. [PMID: 38353578 PMCID: PMC7617514 DOI: 10.1164/rccm.202307-1273oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/14/2024] [Indexed: 05/02/2024] Open
Abstract
Rationale: Chronic sarcoidosis is a complex granulomatous disease with limited treatment options that can progress over time. Understanding the molecular pathways contributing to disease would aid in new therapeutic development. Objectives: To understand whether macrophages from patients with nonresolving chronic sarcoidosis are predisposed to macrophage aggregation and granuloma formation and whether modulation of the underlying molecular pathways influence sarcoidosis granuloma formation. Methods: Macrophages were cultivated in vitro from isolated peripheral blood CD14+ monocytes and evaluated for spontaneous aggregation. Transcriptomics analyses and phenotypic and drug inhibitory experiments were performed on these monocyte-derived macrophages. Human skin biopsies from patients with sarcoidosis and a myeloid Tsc2-specific sarcoidosis mouse model were analyzed for validatory experiments. Measurements and Main Results: Monocyte-derived macrophages from patients with chronic sarcoidosis spontaneously formed extensive granulomas in vitro compared with healthy control participants. Transcriptomic analyses separated healthy and sarcoidosis macrophages and identified an enrichment in lipid metabolic processes. In vitro patient granulomas, sarcoidosis mouse model granulomas, and those directly analyzed from lesional patient skin expressed an aberrant lipid metabolism profile and contained increased neutral lipids. Conversely, a combination of statins and cholesterol-reducing agents reduced granuloma formation both in vitro and in vivo in a sarcoidosis mouse model. Conclusions: Together, our findings show that altered lipid metabolism in sarcoidosis macrophages is associated with its predisposition to granuloma formation and suggest cholesterol-reducing therapies as a treatment option in patients.
Collapse
Affiliation(s)
- Clarice X. Lim
- Center of Pathobiochemistry & Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090Vienna, Austria
| | - Anna Redl
- Department of Dermatology, Medical University of Vienna, 1090Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090Vienna, Austria
| | - Lisa Kleissl
- Department of Dermatology, Medical University of Vienna, 1090Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090Vienna, Austria
| | - Ram Vinay Pandey
- Department of Dermatology, Medical University of Vienna, 1090Vienna, Austria
| | - Carolina Mayerhofer
- Department of Dermatology, Medical University of Vienna, 1090Vienna, Austria
| | - Thomas El Jammal
- Center of Pathobiochemistry & Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090Vienna, Austria
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR5305, University Claude Bernard Lyon 1, IBCP, 69007Lyon, France
| | - Mario Mazic
- Center of Pathobiochemistry & Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090Vienna, Austria
| | - Karine Gonzales
- Center of Pathobiochemistry & Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090Vienna, Austria
| | - Nyamdelger Sukhbaatar
- Center of Pathobiochemistry & Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090Vienna, Austria
| | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090Vienna, Austria
- Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090Vienna, Austria
- Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, Vienna, Austria
| | - Markus Hengstschläger
- Center of Pathobiochemistry & Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090Vienna, Austria
| | - Alain Calender
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR5305, University Claude Bernard Lyon 1, IBCP, 69007Lyon, France
- Department of Genetics, Hospices Civils de Lyon, University Claude Bernard Lyon 1, 69500Bron, France
| | - Yves Pacheco
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR5305, University Claude Bernard Lyon 1, IBCP, 69007Lyon, France
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, 1090Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090Vienna, Austria
| | - Thomas Weichhart
- Center of Pathobiochemistry & Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090Vienna, Austria
| |
Collapse
|
45
|
Rakina M, Larionova I, Kzhyshkowska J. Macrophage diversity in human cancers: New insight provided by single-cell resolution and spatial context. Heliyon 2024; 10:e28332. [PMID: 38571605 PMCID: PMC10988020 DOI: 10.1016/j.heliyon.2024.e28332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/05/2024] Open
Abstract
M1/M2 paradigm of macrophage plasticity has existed for decades. Now it becomes clear that this dichotomy doesn't adequately reflect the diversity of macrophage phenotypes in tumor microenvironment (TME). Tumor-associated macrophages (TAMs) are a major population of innate immune cells in the TME that promotes tumor cell proliferation, angiogenesis and lymphangiogenesis, invasion and metastatic niche formation, as well as response to anti-tumor therapy. However, the fundamental restriction in therapeutic TAM targeting is the limited knowledge about the specific TAM states in distinct human cancer types. Here we summarized the results of the most recent studies that use advanced technologies (e.g. single-cell RNA sequencing and spatial transcriptomics) allowing to decipher novel functional subsets of TAMs in numerous human cancers. The transcriptomic profiles of these TAM subsets and their clinical significance were described. We emphasized the characteristics of specific TAM subpopulations - TREM2+, SPP1+, MARCO+, FOLR2+, SIGLEC1+, APOC1+, C1QC+, and others, which have been most extensively characterized in several cancers, and are associated with cancer prognosis. Spatial transcriptomics technologies defined specific spatial interactions between TAMs and other cell types, especially fibroblasts, in tumors. Spatial transcriptomics methods were also applied to identify markers of immunotherapy response, which are expressed by macrophages or in the macrophage-abundant regions. We highlighted the perspectives for novel techniques that utilize spatial and single cell resolution in investigating new ligand-receptor interactions for effective immunotherapy based on TAM-targeting.
Collapse
Affiliation(s)
- Militsa Rakina
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, 634050, Russia
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia
| | - Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, 634050, Russia
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, 634050, Russia
- Institute of Transfusion Medicine and Immunology, Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, 68167, Germany
- German Red Cross Blood Service Baden-Württemberg – Hessen, Mannheim, 68167, Germany
| |
Collapse
|
46
|
Feng DC, Zhu WZ, Wang J, Li DX, Shi X, Xiong Q, You J, Han P, Qiu S, Wei Q, Yang L. The implications of single-cell RNA-seq analysis in prostate cancer: unraveling tumor heterogeneity, therapeutic implications and pathways towards personalized therapy. Mil Med Res 2024; 11:21. [PMID: 38605399 PMCID: PMC11007901 DOI: 10.1186/s40779-024-00526-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
In recent years, advancements in single-cell and spatial transcriptomics, which are highly regarded developments in the current era, particularly the emerging integration of single-cell and spatiotemporal transcriptomics, have enabled a detailed molecular comprehension of the complex regulation of cell fate. The insights obtained from these methodologies are anticipated to significantly contribute to the development of personalized medicine. Currently, single-cell technology is less frequently utilized for prostate cancer compared with other types of tumors. Starting from the perspective of RNA sequencing technology, this review outlined the significance of single-cell RNA sequencing (scRNA-seq) in prostate cancer research, encompassing preclinical medicine and clinical applications. We summarize the differences between mouse and human prostate cancer as revealed by scRNA-seq studies, as well as a combination of multi-omics methods involving scRNA-seq to highlight the key molecular targets for the diagnosis, treatment, and drug resistance characteristics of prostate cancer. These studies are expected to provide novel insights for the development of immunotherapy and other innovative treatment strategies for castration-resistant prostate cancer. Furthermore, we explore the potential clinical applications stemming from other single-cell technologies in this review, paving the way for future research in precision medicine.
Collapse
Affiliation(s)
- De-Chao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Division of Surgery & Interventional Science, University College London, London, WC1E 6BT, UK.
| | - Wei-Zhen Zhu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Deng-Xiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xu Shi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiao Xiong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jia You
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ping Han
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shi Qiu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
47
|
Fang B, Lu Y, Li X, Wei Y, Ye D, Wei G, Zhu Y. Targeting the tumor microenvironment, a new therapeutic approach for prostate cancer. Prostate Cancer Prostatic Dis 2024:10.1038/s41391-024-00825-z. [PMID: 38565910 DOI: 10.1038/s41391-024-00825-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND A growing number of studies have shown that in addition to adaptive immune cells such as CD8 + T cells and CD4 + T cells, various other cellular components within prostate cancer (PCa) tumor microenvironment (TME), mainly tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs) and myeloid-derived suppressor cells (MDSCs), have been increasingly recognized as important modulators of tumor progression and promising therapeutic targets. OBJECTIVE In this review, we aim to delineate the mechanisms by which TAMs, CAFs and MDSCs interact with PCa cells in the TME, summarize the therapeutic advancements targeting these cells and discuss potential new therapeutic avenues. METHODS We searched PubMed for relevant studies published through December 10 2023 on TAMs, CAFs and MDSCs in PCa. RESULTS TAMs, CAFs and MDSCs play a critical role in the tumorigenesis, progression, and metastasis of PCa. Moreover, they substantially mediate therapeutic resistance against conventional treatments including anti-androgen therapy, chemotherapy, and immunotherapy. Therapeutic interventions targeting these cellular components have demonstrated promising effects in preclinical models and several clinical trials for PCa, when administrated alone, or combined with other anti-cancer therapies. However, the lack of reliable biomarkers for patient selection and incomplete understanding of the mechanisms underlying the interactions between these cellular components and PCa cells hinder their clinical translation and utility. CONCLUSION New therapeutic strategies targeting TAMs, CAFs, and MDSCs in PCa hold promising prospects. Future research endeavors should focus on a more comprehensive exploration of the specific mechanisms by which these cells contribute to PCa, aiming to identify additional drug targets and conduct more clinical trials to validate the safety and efficacy of these treatment strategies.
Collapse
Affiliation(s)
- Bangwei Fang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Ying Lu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiaomeng Li
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Yu Wei
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Gonghong Wei
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China.
| |
Collapse
|
48
|
Li L, Ma SR, Yu ZL. Targeting the lipid metabolic reprogramming of tumor-associated macrophages: A novel insight into cancer immunotherapy. Cell Oncol (Dordr) 2024; 47:415-428. [PMID: 37776422 DOI: 10.1007/s13402-023-00881-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND Tumor-associated macrophages, as the major immunocytes in solid tumors, show divided loyalty and remarkable plasticity in tumorigenesis. Once the M2-to-M1 repolarization is achieved, they could be switched from the supporters for tumor development into the guardians for host immunity. Meanwhile, Lipid metabolic reprogramming is demonstrated to be one of the most important hallmarks of tumor-associated macrophages, which plays a decisive role in regulating their phenotypes and functions to promote tumorigenesis and immunotherapy resistance. Therefore, targeting the lipid metabolism of TAMs may provide a new direction for anti-tumor strategies. CONCLUSION In this review, we first summarized the origins, classifications and general lipid metabolic process of TAMs. Then we discussed the currently available drugs and interventions that target lipid metabolic disorders of TAMs, including those targeting lipid uptake, efflux, lipolysis, FAO and lipid peroxidation. Besides, based on the recent research status, we summarized the present challenges for this cancer immunotherapy, including the precise drug delivery system, the lipid metabolic heterogeneity, and the intricate lipid metabolic interactions in the TME, and we also proposed corresponding possible solutions. Collectively, we hope this review will give researchers a better understanding of the lipid metabolism of TAMs and lead to the development of corresponding anti-tumor therapies in the future.
Collapse
Affiliation(s)
- Liang Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, People's Republic of China
| | - Si-Rui Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, People's Republic of China.
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| | - Zi-Li Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, People's Republic of China.
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
49
|
Vishwa R, BharathwajChetty B, Girisa S, Aswani BS, Alqahtani MS, Abbas M, Hegde M, Kunnumakkara AB. Lipid metabolism and its implications in tumor cell plasticity and drug resistance: what we learned thus far? Cancer Metastasis Rev 2024; 43:293-319. [PMID: 38438800 DOI: 10.1007/s10555-024-10170-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/19/2024] [Indexed: 03/06/2024]
Abstract
Metabolic reprogramming, a hallmark of cancer, allows cancer cells to adapt to their specific energy needs. The Warburg effect benefits cancer cells in both hypoxic and normoxic conditions and is a well-studied reprogramming of metabolism in cancer. Interestingly, the alteration of other metabolic pathways, especially lipid metabolism has also grabbed the attention of scientists worldwide. Lipids, primarily consisting of fatty acids, phospholipids and cholesterol, play essential roles as structural component of cell membrane, signalling molecule and energy reserves. This reprogramming primarily involves aberrations in the uptake, synthesis and breakdown of lipids, thereby contributing to the survival, proliferation, invasion, migration and metastasis of cancer cells. The development of resistance to the existing treatment modalities poses a major challenge in the field of cancer therapy. Also, the plasticity of tumor cells was reported to be a contributing factor for the development of resistance. A number of studies implicated that dysregulated lipid metabolism contributes to tumor cell plasticity and associated drug resistance. Therefore, it is important to understand the intricate reprogramming of lipid metabolism in cancer cells. In this review, we mainly focused on the implication of disturbed lipid metabolic events on inducing tumor cell plasticity-mediated drug resistance. In addition, we also discussed the concept of lipid peroxidation and its crucial role in phenotypic switching and resistance to ferroptosis in cancer cells. Elucidating the relationship between lipid metabolism, tumor cell plasticity and emergence of resistance will open new opportunities to develop innovative strategies and combinatorial approaches for the treatment of cancer.
Collapse
Affiliation(s)
- Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
50
|
Zong S, Gao J. Identifying the tumor immune microenvironment-associated prognostic genes for prostate cancer. Discov Oncol 2024; 15:42. [PMID: 38376699 PMCID: PMC10879074 DOI: 10.1007/s12672-023-00856-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/29/2023] [Indexed: 02/21/2024] Open
Abstract
PURPOSE This study aimed to explore novel tumor immune microenvironment (TIME)-associated biomarkers in prostate adenocarcinoma (PRAD). METHODS PRAD RNA-sequencing data were obtained from UCSC Xena database as the training dataset. The ESTIMATE package was used to evaluate stromal, immune, and tumor purity scores. Differentially expressed genes (DEGs) related to TIME were screened using the immune and stromal scores. Gene functions were analyzed using DAVID. The LASSO method was performed to screen prognostic TIME-related genes. Kaplan-Meier curves were used to evaluate the prognosis of samples. The correlation between the screened genes and immune cell infiltration was explored using Tumor IMmune Estimation Resource. The GSE70768 dataset from the Gene Expression Omnibus was used to validate the expression of the screened genes. RESULTS The ESTIMATE results revealed that high immune, stromal, and ESTIMATE scores and low tumor purity had better prognoses. Function analysis indicated that DEGs are involved in the cytokine-cytokine receptor interaction signaling pathway. In TIME-related DEGs, METTL7B, HOXB8, and TREM1 were closely related to the prognosis. Samples with low expression levels of METTL7B, HOXB8, and TREM1 had better survival times. Similarly, both the validation dataset and qRT-PCR suggested that METTL7B, HOXB8, and TREM1 were significantly decreased. The three genes showed a positive correlation with immune infiltration. CONCLUSIONS This study identified three TIME-related genes, namely, METTL7B, HOXB8, and TREM1, which correlated with the prognosis of patients with PRAD. Targeting the TIME-related genes might have important clinical implications when making decisions for immunotherapy in PRAD.
Collapse
Affiliation(s)
- Shi Zong
- Department of Urology, Union Hospital of Jilin University, No.126, Xian Tai Road, Chang Chun, 130021, China
| | - Ji Gao
- Department of Urology, Union Hospital of Jilin University, No.126, Xian Tai Road, Chang Chun, 130021, China.
| |
Collapse
|