1
|
De Visscher A, Vandeput M, Malengier-Devlies B, Bernaerts E, Mitera T, Berghmans N, Van den Steen PE, Wouters C, Matthys P. Upregulation of Fcγ Receptor IV on Activated Monocytes and Macrophages Causes Nonspecific Binding of the PK136 Anti-NK1.1 Antibody in Murine Models of Toll-Like Receptor-Induced Inflammation. Scand J Immunol 2025; 101:e70027. [PMID: 40275544 DOI: 10.1111/sji.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025]
Abstract
Nonspecific binding of monoclonal antibodies to Fcγ receptors (FcγRs) is a well-known root cause of unreliable results in flow cytometry. Over the past decade, liver Group 1 innate lymphoid cells (ILCs), including conventional natural killer (cNK) cells and type 1 ILCs (ILC1s), have been extensively studied by flow cytometry in various inflammatory liver disorders. In our previous work, we specifically evaluated changes in liver ILC1 numbers in two murine models of Toll-like receptor (TLR)-induced macrophage activation syndrome, a hyperinflammatory disorder with liver inflammation that is classified as a secondary form of hemophagocytic lymphohistiocytosis. Here, we follow up on a cell population that significantly expands during TLR triggering and resembles ILC1s, as they express CD49a and NK1.1 but lack expression of CD49b, a marker for cNK cells. However, detailed analysis revealed that these are CD49a+ monocytes/macrophages instead of ILC1s. During TLR triggering, their expression of FcγRIV increases significantly, leading to nonspecific binding of the frequently used PK136 anti-NK1.1 antibody, which cannot be blocked by standard Fcγ receptor blocking protocols. Instead, preincubation with anti-FcγRIV antibody or additional rat or mouse serum during antibody staining is necessary to prevent nonspecific anti-NK1.1 binding. Although we observed nonspecific binding of the anti-NK1.1 antibody in ex vivo applications, we confirmed that in vivo anti-NK1.1 only depletes truly NK1.1+ populations. In conclusion, we emphasise that studying NK1.1+ ILCs during inflammation by flow cytometry requires additional FcγRIV blocking reagents and careful exclusion of myeloid cells.
Collapse
Affiliation(s)
- Amber De Visscher
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven - University of Leuven, Leuven, Belgium
| | - Marte Vandeput
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven - University of Leuven, Leuven, Belgium
| | - Bert Malengier-Devlies
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven - University of Leuven, Leuven, Belgium
- Currently at Centre for Reproductive Health and Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Eline Bernaerts
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven - University of Leuven, Leuven, Belgium
| | - Tania Mitera
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven - University of Leuven, Leuven, Belgium
| | - Nele Berghmans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven - University of Leuven, Leuven, Belgium
| | - Philippe E Van den Steen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven - University of Leuven, Leuven, Belgium
| | - Carine Wouters
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven - University of Leuven, Leuven, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Nouari W, Aribi M. Innate lymphoid cells, immune functional dynamics, epithelial parallels, and therapeutic frontiers in infections. Int Rev Immunol 2025:1-28. [PMID: 40242974 DOI: 10.1080/08830185.2025.2490233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 02/19/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025]
Abstract
Innate lymphoid cells (ILCs) have emerged as pivotal players in the field of immunology, expanding our understanding of innate immunity beyond conventional paradigms. This comprehensive review delves into the multifaceted world of ILCs, beginning with their serendipitous discovery and traversing their ontogeny and heterogeneity. We explore the distinct subsets of ILCs unraveling their intriguing plasticity, which adds a layer of complexity to their functional repertoire. As we journey through the functional activities of ILCs, we address their role in immune responses against various infections, categorizing their interactions with helminthic parasites, bacterial pathogens, fungal infections, and viral invaders. Notably, this review offers a detailed examination of ILCs in the context of specific infections, such as Mycobacterium tuberculosis, Citrobacter rodentium, Clostridium difficile, Salmonella typhimurium, Helicobacter pylori, Listeria monocytogenes, Staphylococcus aureus, Pseudomonas aeruginosa, Influenza virus, Cytomegalovirus, Herpes simplex virus, and severe acute respiratory syndrome coronavirus 2. This selection aimed for a comprehensive exploration of ILCs in various infectious contexts, opting for microorganisms based on extensive research findings rather than considerations of virulence or emergence. Furthermore, we raise intriguing questions about the potential immune functional resemblances between ILCs and epithelial cells, shedding light on their interconnectedness within the mucosal microenvironment. The review culminates in a critical assessment of the therapeutic prospects of targeting ILCs during infection, emphasizing their promise as novel immunotherapeutic targets. Nevertheless, due to their recent discovery and evolving understanding, effectively manipulating ILCs is challenging. Ensuring specificity and safety while evaluating long-term effects in clinical settings will be crucial.
Collapse
Affiliation(s)
- Wafa Nouari
- Laboratory of Applied Molecular Biology and Immunology, University of Tlemcen, Tlemcen, Algeria
| | - Mourad Aribi
- Laboratory of Applied Molecular Biology and Immunology, University of Tlemcen, Tlemcen, Algeria
| |
Collapse
|
3
|
Pan Z, Ye YS, Liu C, Li W. Role of liver-resident NK cells in liver immunity. Hepatol Int 2025; 19:315-324. [PMID: 39893278 PMCID: PMC12003521 DOI: 10.1007/s12072-025-10778-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/10/2025] [Indexed: 02/04/2025]
Abstract
The tolerogenic immune microenvironment of the liver (the immune system avoids attacking harmless antigens, such as antigens derived from food and gut microbiota) has garnered significant attention in recent years. Inherent immune cells in the liver play a unique role in regulating this microenvironment. Liver-resident natural killer (LrNK) cells, also known as liver type 1 innate lymphoid cells (ILC1s), are a recently discovered subset of immune cells that possess properties distinct from those of conventional NK (cNK) cells. Accumulating evidence suggests that there are significant differences between LrNK and cNK cells, with LrNK cells potentially exhibiting immunosuppressive functions in the liver. This review summarizes the latest findings on LrNK cells, focusing on their phenotype, heterogeneity, plasticity, origin, development, and the required transcription factors. In addition, immune functions of LrNK cells in various liver diseases, including liver cancer, viral infections, liver injury, and cirrhosis, were analyzed. By elucidating the role of LrNK cells in liver immunity, this review aims to enhance our understanding of the mechanisms underlying liver immunity and contribute to the improvement of liver disease treatment.
Collapse
Affiliation(s)
- Zheng Pan
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Yan-Shuo Ye
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Chang Liu
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Wei Li
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| |
Collapse
|
4
|
Tatematsu BK, Sojka DK. Tissue-resident natural killer cells derived from conventional natural killer cells are regulated by progesterone in the uterus. Mucosal Immunol 2025; 18:390-401. [PMID: 39708955 DOI: 10.1016/j.mucimm.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/28/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
The murine uterus contains three subsets of innate lymphoid cells (ILCs). Innate lymphoid cell type 1 (ILC1) and conventional natural killer (cNK) cells seed the uterus before puberty. Tissue-resident NK (trNK) cells emerge at puberty and vary in number during the estrous cycle. Here, we addressed the origin of uterine trNK cells and the influence of ovarian hormones on their local activation and differentiation in vivo. We used parabiosed mice in combination with intravascular fluorescent antibody labeling and flow cytometry to distinguish tissue-resident from circulating immune cells. Additionally, we used C57BL/6J ovariectomized (OVX) and non-OVX mice supplemented with ovarian hormones to assess their effects on uterine trNK cell function. Strikingly, mice OVX at three weeks of age and analyzed as adults lacked uterine trNK cells unless progesterone was administered. Our parabiosis studies confirmed that the progesterone-responsive trNK cells are derived from peripheral cNK cells. Moreover, medroxyprogesterone 17-acetate-induced expansion of cNK-derived trNK cells was abolished by a progesterone receptor antagonist. These data reveal a novel, uterine-specific differentiation pathway of trNK cells that is tightly regulated by progesterone.
Collapse
Affiliation(s)
- Bruna K Tatematsu
- Microbiology and Immunology Department, Loyola University Health Science Campus, Maywood, IL, United States 60153
| | - Dorothy K Sojka
- Microbiology and Immunology Department, Loyola University Health Science Campus, Maywood, IL, United States 60153.
| |
Collapse
|
5
|
Abe S, Kagao M, Asahi T, Kato R, Tani-Ichi S, Shimba A, Ishibashi R, Miyachi H, Kitano S, Miyazaki M, Rodewald HR, Toyoshima F, Ikuta K. The transcription factor RORα is required for the development of type 1 innate lymphoid cells in adult bone marrow. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf001. [PMID: 40079843 DOI: 10.1093/jimmun/vkaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/02/2025] [Indexed: 03/15/2025]
Abstract
Type 1 innate lymphoid cells (ILC1s) respond to infections and tumors by producing IFN-γ. Although RAR-related orphan receptor α (RORα) is required for ILC2s and some ILC3s, its role in ILC1 development remains controversial. To investigate the role of RORα in ILC1s, we analyzed bone marrow (BM) chimeras of RORα-deficient mice. ILC1s derived from RORα-deficient BM cells were significantly reduced in various tissues, including the intestine, indicating a hematopoietic cell-intrinsic need for RORα in ILC1 development. Developmental stage-specific RORα-deficient mice showed a decrease in adult liver and BM IL-7R+ ILC1s and an increase in BM NK cells, whereas fetal liver ILC1s and adult liver IL-7R- ILC1s remained unchanged. Furthermore, RORα is primarily required for IL-7R+ precursor stages and partially affects small intestine ILC1 after differentiation. This study suggests that RORα promotes ILC1 differentiation while suppressing NK cell differentiation at the ILC precursor stage in the adult BM.
Collapse
Affiliation(s)
- Shinya Abe
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Homeostatic Medicine, Medical Research Laboratory, Institute for Integrated Research, Institute of Science Tokyo, Tokyo, Japan
| | - Moe Kagao
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takuma Asahi
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryoma Kato
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Shizue Tani-Ichi
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akihiro Shimba
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Riki Ishibashi
- Laboratory of Tissue Homeostasis, Department of Biosystem Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hitoshi Miyachi
- Reproductive Engineering Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Satsuki Kitano
- Reproductive Engineering Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Masaki Miyazaki
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Fumiko Toyoshima
- Department of Homeostatic Medicine, Medical Research Laboratory, Institute for Integrated Research, Institute of Science Tokyo, Tokyo, Japan
- Laboratory of Tissue Homeostasis, Department of Biosystem Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Chang TD, Chen YJ, Luo JL, Zhang C, Chen SY, Lin ZQ, Zhang PD, Shen YX, Tang TX, Li H, Dong LM, Tang ZH, Chen D, Wang YM. Adaptation of Natural Killer Cells to Hypoxia: A Review of the Transcriptional, Translational, and Metabolic Processes. Immunotargets Ther 2025; 14:99-121. [PMID: 39990274 PMCID: PMC11846490 DOI: 10.2147/itt.s492334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/08/2025] [Indexed: 02/25/2025] Open
Abstract
As important innate immune cells, natural killer (NK) cells play an essential role in resisting pathogen invasion and eliminating transformed cells. However, the hypoxic microenvironment caused by disease conditions is an important physicochemical factor that impairs NK cell function. With the increasing prominence of NK cells in immunotherapy, there has been a surge of interest in developing biological means through which NK cells may overcome the inhibition caused by hypoxia in disease conditions. Although the effects of hypoxic conditions in shaping the functions of NK cells have been increasingly recognized and investigated, reviews have been scantly. A comprehensive understanding of how NK cells adapt to hypoxia can provide valuable insights into how the functional capacity of NK cells may be restored. This review focuses on the functional alterations of NK cells in response to hypoxia. It delineates the mechanisms by which NK cells adapt to hypoxia at the transcriptional, metabolic, translational levels. Furthermore, given the complexity of the hypoxic microenvironment, we also elucidated the effects of key hypoxic metabolites on NK cells. Finally, this review discusses the current clinical therapies derived from targeting hypoxic NK cells. The study of NK cell adaptation to hypoxia has yielded new insights into immunotherapy. These insights may lead to development of novel strategies to improve the treatment of infectious diseases and cancer.
Collapse
Affiliation(s)
- Te-Ding Chang
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yu-Jie Chen
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jia-Liu Luo
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Cong Zhang
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Shun-Yao Chen
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Zhi-Qiang Lin
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Pei-Dong Zhang
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - You-Xie Shen
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ting-Xuan Tang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Hui Li
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Li-Ming Dong
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Zhao-Hui Tang
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Deng Chen
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yu-Man Wang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| |
Collapse
|
7
|
Ma R, Li Z, Tang H, Wu X, Tian L, Shah Z, Liu N, Barr T, Zhang J, Wang S, Swaminathan S, Marcucci G, Peng Y, Caligiuri MA, Yu J. NKp46 enhances type 1 innate lymphoid cell proliferation and function and anti-acute myeloid leukemia activity. Nat Commun 2025; 16:989. [PMID: 39856052 PMCID: PMC11760942 DOI: 10.1038/s41467-025-55923-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
NKp46 is a critical regulator of natural killer (NK) cell immunity, but its function in non-NK innate immune cells remains unclear. Here, we show that NKp46 is indispensable for expressing IL-2 receptor-α (IL-2Rα) by non-NK liver-resident type-1 innate lymphoid cells (ILC1s). Deletion of NKp46 reduces IL-2Rα on ILC1s by downregulating NF-κB signaling, thus impairing ILC1 proliferation and cytotoxicity in vitro and in vivo. The binding of anti-NKp46 antibody to NKp46 triggers the activation of NF-κB, the expression of IL-2Rα, interferon-γ (IFN-γ), tumor necrosis factor (TNF), proliferation, and cytotoxicity. Functionally, NKp46 expressed on mouse ILC1s interacts with tumor cells through cell-cell contact, increasing ILC1 production of IFN-γ and TNF, and enhancing cytotoxicity. In a mouse model of acute myeloid leukemia, deletion of NKp46 impairs the ability of ILC1s to control tumor growth and reduces survival. This can be reversed by injecting NKp46+ ILC1s into NKp46 knock-out mice. Human NKp46+ ILC1s exhibit stronger cytokine production and cytotoxicity than their NKp46- counterparts, suggesting that NKp46 plays a similar role in humans. These findings identify an NKp46-NF-κB-IL-2Rα axis and suggest that activating NKp46 with an anti-NKp46 antibody may provide a potential strategy for anti-tumor innate immunity.
Collapse
MESH Headings
- Natural Cytotoxicity Triggering Receptor 1/metabolism
- Natural Cytotoxicity Triggering Receptor 1/genetics
- Animals
- Humans
- Immunity, Innate
- Cell Proliferation
- Mice
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Antigens, Ly/metabolism
- Antigens, Ly/immunology
- NF-kappa B/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Lymphocytes/immunology
- Lymphocytes/metabolism
- Interferon-gamma/metabolism
- Interferon-gamma/immunology
- Killer Cells, Natural/immunology
- Signal Transduction
- Cell Line, Tumor
Collapse
Affiliation(s)
- Rui Ma
- Center for Molecular Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Zhenlong Li
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Hejun Tang
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Xiaojin Wu
- The First Affiliated Hospital of Soochow University, Suzhou, 215005, China
| | - Lei Tian
- Division of Hematology & Oncology, Department of Medicine, School of Medicine, University of California, Irvine, CA, 92697, USA
- The Clemons Family Center for Transformative Cancer Research, University of California, Irvine, CA, 92697, USA
| | - Zahir Shah
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Ningyuan Liu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Tasha Barr
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Jianying Zhang
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Sean Wang
- Division of Transfusion Medicine, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Srividya Swaminathan
- Department of Systems Biology, City of Hope Beckman Research Institute, Los Angeles, CA, 91010, USA
| | - Guido Marcucci
- Gehr Family Center for Leukemia Research, Hematologic Malignancies Research Institute, Department of Hematological Malignancies Translational Science, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Yong Peng
- Center for Molecular Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Michael A Caligiuri
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA.
- Department of Systems Biology, City of Hope Beckman Research Institute, Los Angeles, CA, 91010, USA.
| | - Jianhua Yu
- Division of Hematology & Oncology, Department of Medicine, School of Medicine, University of California, Irvine, CA, 92697, USA.
- The Clemons Family Center for Transformative Cancer Research, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
8
|
Li J, Xiao C, Li C, He J. Tissue-resident immune cells: from defining characteristics to roles in diseases. Signal Transduct Target Ther 2025; 10:12. [PMID: 39820040 PMCID: PMC11755756 DOI: 10.1038/s41392-024-02050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 01/19/2025] Open
Abstract
Tissue-resident immune cells (TRICs) are a highly heterogeneous and plastic subpopulation of immune cells that reside in lymphoid or peripheral tissues without recirculation. These cells are endowed with notably distinct capabilities, setting them apart from their circulating leukocyte counterparts. Many studies demonstrate their complex roles in both health and disease, involving the regulation of homeostasis, protection, and destruction. The advancement of tissue-resolution technologies, such as single-cell sequencing and spatiotemporal omics, provides deeper insights into the cell morphology, characteristic markers, and dynamic transcriptional profiles of TRICs. Currently, the reported TRIC population includes tissue-resident T cells, tissue-resident memory B (BRM) cells, tissue-resident innate lymphocytes, tissue-resident macrophages, tissue-resident neutrophils (TRNs), and tissue-resident mast cells, but unignorably the existence of TRNs is controversial. Previous studies focus on one of them in specific tissues or diseases, however, the origins, developmental trajectories, and intercellular cross-talks of every TRIC type are not fully summarized. In addition, a systemic overview of TRICs in disease progression and the development of parallel therapeutic strategies is lacking. Here, we describe the development and function characteristics of all TRIC types and their major roles in health and diseases. We shed light on how to harness TRICs to offer new therapeutic targets and present burning questions in this field.
Collapse
Affiliation(s)
- Jia Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
9
|
Prosser AC, Klenerman P, Lucas M. Understanding Liver Transplantation Outcomes Through the Lens of Its Tissue-resident Immunobiome. Transplantation 2025:00007890-990000000-00973. [PMID: 39780303 DOI: 10.1097/tp.0000000000005303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Tissue-resident lymphocytes (TRLs) provide a front-line immunological defense mechanism uniquely placed to detect perturbations in tissue homeostasis. The heterogeneous TRL population spans the innate to adaptive immune continuum, with roles during normal physiology in homeostatic maintenance, tissue repair, pathogen detection, and rapid mounting of immune responses. TRLs are especially enriched in the liver, with every TRL subset represented, including liver-resident natural killer cells; tissue-resident memory B cells; conventional tissue-resident memory CD8, CD4, and regulatory T cells; and unconventional gamma-delta, natural killer, and mucosal-associated invariant T cells. The importance of donor- and recipient-derived TRLs after transplantation is becoming increasingly recognized, although it has not been examined in detail after liver transplantation. This review summarizes the evidence for the roles of TRLs in liver transplant immunology, focusing on their features, functions, and potential for their harnessing to improve transplant outcomes.
Collapse
Affiliation(s)
- Amy C Prosser
- Medical School, University of Western Australia, Perth, WA, Australia
| | - Paul Klenerman
- Translational Gastroenterology and Liver Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Michaela Lucas
- Medical School, University of Western Australia, Perth, WA, Australia
- Department of Immunology, PathWest Laboratory Medicine, Perth, WA, Australia
- Department of Immunology, Sir Charles Gairdner Hospital, Perth, WA, Australia
- Department of Immunology, Perth Children's Hospital, Perth, WA, Australia
| |
Collapse
|
10
|
Shinzawa Y, Hara D, Shinguryo Y, Yokoyama S, Kawada M, Hayakawa Y. PP2A negatively regulates NK cell T-bet expression and anti-tumor effector function. Int Immunol 2024; 37:97-107. [PMID: 39404747 DOI: 10.1093/intimm/dxae057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/11/2024] [Indexed: 12/28/2024] Open
Abstract
The transcription factor T-bet is essential for the anti-tumor effector function of natural killer (NK) cells, but the mechanism regulating its expression in NK cells remains unclear. In this study, we aimed to identify an NK cell-intrinsic regulator that controls T-bet expression. Using T-bet-luciferase reporter assay screening, we identified a protein phosphatase inhibitor as a potential activator of T-bet expression. A series of protein phosphatase 2A (PP2A)-specific inhibitors (PP2Ai) or PP2A siRNA induced the expression of T-bet. In PP2Ai-treated mice, the expression of T-bet and its downstream effector molecules, granzyme B and IFN-γ, was also upregulated in NK cells. Mechanistically, PP2Ai increased the phosphorylation of mTOR and ribosomal protein S6 in NK cells, and mTOR inhibitor canceled the effects of PP2Ai in NK cells. Importantly, NK cells isolated from PP2Ai-treated mice showed higher cytotoxicity and IFN-γ production; therefore, they increased the anti-tumor effector function of NK cells. Accordingly, PP2Ai treatment inhibited lung metastasis of B16 melanoma by NK cell- and mTOR-dependent mechanisms. These results suggest that PP2A negatively regulates NK cell T-bet expression and effector function by an mTOR-dependent mechanism.
Collapse
Affiliation(s)
- Yui Shinzawa
- Section of Host Defences, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Daisuke Hara
- Section of Host Defences, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Yuki Shinguryo
- Section of Host Defences, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Satoru Yokoyama
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Manabu Kawada
- Laboratory of Oncology, Institute of Microbial Chemistry, Tokyo, Japan
| | - Yoshihiro Hayakawa
- Section of Host Defences, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
11
|
Liao Y, Zheng Y, Zhang R, Chen X, Huang J, Liu J, Zhao Y, Zheng Y, Zhang X, Gao Z, Gao X, Bu J, Peng T, Li X, Shen E. Regulatory roles of transcription factors T-bet and Eomes in group 1 ILCs. Int Immunopharmacol 2024; 143:113229. [PMID: 39357208 DOI: 10.1016/j.intimp.2024.113229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
T-bet and Eomes, both T-box transcription factors, have been extensively studied for their critical roles in the differentiation and functional maintenance of various immune cells. In this review, we provide a focused overview of their contributions to the transcriptional activation and differentiation, development, and terminal maturation of natural killer cells and innate lymphoid cell 1 cells. Furthermore, the interplay between T-bet and Eomes in regulating NK cell function, and its subsequent implications for immune responses against infections and tumors, is thoroughly examined. The review explores the ramifications of dysregulated transcription factor expression, examining its impact on homeostatic balance and its role in a spectrum of disease models. Expression variances among distinct NK cell subsets resident in different tissues are highlighted to underscore the complexity of their biological roles. Collectively, this work aims to expand the current understanding of NK cell biology, thereby paving the way for innovative approaches in the realm of NK cell-based immunotherapies.
Collapse
Affiliation(s)
- Yue Liao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yanling Zheng
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China; Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ruizhi Zhang
- Department of Emergency Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiangming Chen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Jijun Huang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Jiamin Liu
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yuyang Zhao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yu Zheng
- National Center for STD Control, Chinese Center for Disease Control and Prevention, Nanjing, Jiangsu, China; Hospital for Skin Disease (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Xueyan Zhang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Zhiyan Gao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Xiaojing Gao
- National Center for STD Control, Chinese Center for Disease Control and Prevention, Nanjing, Jiangsu, China; Hospital for Skin Disease (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Jin Bu
- National Center for STD Control, Chinese Center for Disease Control and Prevention, Nanjing, Jiangsu, China; Hospital for Skin Disease (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China.
| | - Tieli Peng
- The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, China.
| | - Xiaomin Li
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China.
| | - Erxia Shen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
12
|
Roy T, Bernstein L, Keplinger HK, Fisk K, Ng SK, Denton SL, Gigley JP. CD4 Co-Receptor Regulates Sex-Specific NK Cell Responses to Acute Toxoplasma gondii Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627254. [PMID: 39713357 PMCID: PMC11661116 DOI: 10.1101/2024.12.06.627254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Immunity to Toxoplasma gondii ( T. gondii ) is sexually dimorphic in humans and mice, with females having higher morbidity and mortality during immune dysfunction and HIV-AIDS. The mechanisms underlying these sex differences are unclear. We investigated how a lack of CD4+ T cells (CD4 co-receptor KO) impacted T. gondii survival in mice. Female CD4 co-receptor KO mice succumbed to T. gondii much faster than males. To dissect why female CD4 co-receptor KO mice died faster, we tested their NK cell responses to acute T. gondii infection compared to males. Although in wild-type (WT) animals, both sexes had similar increases in total NK cells and IFNγ + NK cells, infected CD4 co-receptor KO female mice had 50% fewer IFNγ+ NK cells than infected WT female mice. Infected male CD4 co-receptor KO had a similar increase in IFNγ+ NK cells as WT male mice. Since CD4 co-receptor deficient mice still have functional helper T cells that are CD4-, we next tested survival and NK cell responses in female and male MHCII deficient (MHCIIKO) animals, which completely lack helper CD4+T cells. Surprisingly, survival, NK cell numbers, and IFNγ+ NK cells were not significantly different between WT or MHCIIKO female and male mice. These results suggest CD4 co-receptor expression is required for survival via optimal NK cell responses during acute T. gondii infection only in female mice and not in male mice. Our findings reveal an unappreciated sexual dimorphic role of CD4 co-receptor expression in regulating NK cell responses to acute T. gondii infection.
Collapse
|
13
|
De Visscher A, Vandeput M, Vandenhaute J, Malengier-Devlies B, Bernaerts E, Ahmadzadeh K, Filtjens J, Mitera T, Berghmans N, Van den Steen PE, Friedrich C, Gasteiger G, Wouters C, Matthys P. Liver type 1 innate lymphoid cells undergo apoptosis in murine models of macrophage activation syndrome and are dispensable for disease. Eur J Immunol 2024; 54:e2451043. [PMID: 39348088 DOI: 10.1002/eji.202451043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/03/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024]
Abstract
Macrophage activation syndrome (MAS) exemplifies a severe cytokine storm disorder with liver inflammation. In the liver, classical natural killer (cNK) cells and liver-resident type 1 innate lymphoid cells (ILC1s) dominate the ILC population. Thus far, research has primarily focused on the corresponding role of cNK cells. Considering the liver inflammation and cytokine storm in MAS, liver-resident ILC1s represent an interesting population to explore due to their rapid cytokine production upon environmental triggers. By utilizing a Toll-like receptor (TLR)9- and TLR3:4-triggered MAS model, we showed that ILC1s highly produce IFN-γ and TNF-α. However, activated ILC1s undergo apoptosis and are strongly reduced in numbers, while cNK cells resist inflammation-induced apoptosis. Signs of mitochondrial stress suggest that this ILC1 apoptosis may be driven by inflammation-induced mitochondrial impairment. To study whether early induction of highly cytokine-producing ILC1s influences MAS development, we used Hobit KO mice due to their paucity of liver ILC1s but unaffected cNK cell numbers. Nevertheless, neither the severity of MAS features nor the total inflammatory cytokine levels were affected in these Hobit KO mice, indicating that ILC1s are dispensable for MAS pathogenesis. Collectively, our data demonstrate that ILC1s undergo apoptosis during TLR-triggering and are dispensable for MAS pathogenesis.
Collapse
Affiliation(s)
- Amber De Visscher
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Marte Vandeput
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Jessica Vandenhaute
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Bert Malengier-Devlies
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
- Centre for Reproductive Health and Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Eline Bernaerts
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Kourosh Ahmadzadeh
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Jessica Filtjens
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Tania Mitera
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Nele Berghmans
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Philippe E Van den Steen
- Laboratory of Immunoparasitology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Christin Friedrich
- Würzburg Institute and Max Planck Research Group for Systems Immunology, Würzburg, Germany
| | - Georg Gasteiger
- Würzburg Institute and Max Planck Research Group for Systems Immunology, Würzburg, Germany
| | - Carine Wouters
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Santopolo S, Ciancaglini C, Mariotti FR, Moretta L, Quatrini L. In vitro ILC differentiation from human HSCs. Methods Cell Biol 2024; 191:41-57. [PMID: 39824563 DOI: 10.1016/bs.mcb.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
The Innate Lymphoid Cells (ILCs) are a family of innate immune cells composed by the Natural Killer (NK) cells and the helper ILCs (hILCs) (ILC1, ILC2, ILC3), both developing from a common ILC precursor (ILCP) derived from hematopoietic stem cells (HSCs). A correct ILC reconstitution is crucial, particularly in patients receiving HSC transplantation (HSCT), the only therapeutic option for many adult and pediatric high-risk hematological malignancies. Indeed, mainly thanks to their cytotoxic activity, NK cells have a strong Graft-versus-Leukemia (GvL) effect. On the other hand, hILCs, that are mainly tissue resident, are involved in tissue repair and homeostasis, Graft-versus-Host Disease (GvHD) prevention and immune response to infections. Unlike NK cell development, hILC-poiesis is still poorly characterized in humans. Here, we provide a protocol for the in vitro ILC differentiation from healthy donor peripheral blood-derived CD34+ HSCs. This could represent a useful model to dissect the molecular mechanisms by which the distinct ILC subsets are generated from ILCP leading to the development of novel strategies to improve the HSCT clinical outcome.
Collapse
Affiliation(s)
- Silvia Santopolo
- Innate Lymphoid Cells Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | | | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Linda Quatrini
- Innate Lymphoid Cells Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
15
|
Huang D, Jiao X, Huang S, Liu J, Si H, Qi D, Pei X, Lu D, Wang Y, Li Z. Analysis of the heterogeneity and complexity of murine extraorbital lacrimal gland via single-cell RNA sequencing. Ocul Surf 2024; 34:60-95. [PMID: 38945476 DOI: 10.1016/j.jtos.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
PURPOSE The lacrimal gland is essential for maintaining ocular surface health and avoiding external damage by secreting an aqueous layer of the tear film. However, a healthy lacrimal gland's inventory of cell types and heterogeneity remains understudied. METHODS Here, 10X Genome-based single-cell RNA sequencing was used to generate an unbiased classification of cellular diversity in the extraorbital lacrimal gland (ELG) of C57BL/6J mice. From 43,850 high-quality cells, we produced an atlas of cell heterogeneity and defined cell types using classic marker genes. The possible functions of these cells were analyzed through bioinformatics analysis. Additionally, the CellChat was employed for a preliminary analysis of the cell-cell communication network in the ELG. RESULTS Over 37 subclasses of cells were identified, including seven types of glandular epithelial cells, three types of fibroblasts, ten types of myeloid-derived immune cells, at least eleven types of lymphoid-derived immune cells, and five types of vascular-associated cell subsets. The cell-cell communication network analysis revealed that fibroblasts and immune cells play a pivotal role in the dense intercellular communication network within the mouse ELG. CONCLUSIONS This study provides a comprehensive transcriptome atlas and related database of the mouse ELG.
Collapse
Affiliation(s)
- Duliurui Huang
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Xinwei Jiao
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Jiangman Liu
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Hongli Si
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Di Qi
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Yimian Wang
- Division of Medicine, Faculty of Medical Sciences, University College London, Gower Street, London, WC1E 6BT, UK
| | - Zhijie Li
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China; Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China.
| |
Collapse
|
16
|
Clark PA, Gogoi M, Rodriguez-Rodriguez N, Ferreira ACF, Murphy JE, Walker JA, Crisp A, Jolin HE, Shields JD, McKenzie ANJ. Recipient tissue microenvironment determines developmental path of intestinal innate lymphoid progenitors. Nat Commun 2024; 15:7809. [PMID: 39242588 PMCID: PMC11379955 DOI: 10.1038/s41467-024-52155-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
Innate lymphoid cells (ILCs) are critical in maintaining tissue homeostasis, and during infection and inflammation. Here we identify, by using combinatorial reporter mice, a rare ILC progenitor (ILCP) population, resident to the small intestinal lamina propria (siLP) in adult mice. Transfer of siLP-ILCP into recipients generates group 1 ILCs (including ILC1 and NK cells), ILC2s and ILC3s within the intestinal microenvironment, but almost exclusively group 1 ILCs in the liver, lung and spleen. Single cell gene expression analysis and high dimensional spectral cytometry analysis of the siLP-ILCPs and ILC progeny indicate that the phenotype of the group 1 ILC progeny is also influenced by the tissue microenvironment. Thus, a local pool of siLP-ILCP can contribute to pan-ILC generation in the intestinal microenvironment but has more restricted potential in other tissues, with a greater propensity than bone marrow-derived ILCPs to favour ILC1 and ILC3 production. Therefore, ILCP potential is influenced by both tissue of origin and the microenvironment during development. This may provide additional flexibility during the tuning of immune reactions.
Collapse
Affiliation(s)
- Paula A Clark
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.
| | - Mayuri Gogoi
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | | | - Jane E Murphy
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | - Alastair Crisp
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Helen E Jolin
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Jacqueline D Shields
- Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | | |
Collapse
|
17
|
Piersma SJ. Tissue-specific features of innate lymphoid cells in antiviral defense. Cell Mol Immunol 2024; 21:1036-1050. [PMID: 38684766 PMCID: PMC11364677 DOI: 10.1038/s41423-024-01161-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Innate lymphocytes (ILCs) rapidly respond to and protect against invading pathogens and cancer. ILCs include natural killer (NK) cells, ILC1s, ILC2s, ILC3s, and lymphoid tissue inducer (LTi) cells and include type I, type II, and type III immune cells. While NK cells have been well recognized for their role in antiviral immunity, other ILC subtypes are emerging as players in antiviral defense. Each ILC subset has specialized functions that uniquely impact the antiviral immunity and health of the host depending on the tissue microenvironment. This review focuses on the specialized functions of each ILC subtype and their roles in antiviral immune responses across tissues. Several viruses within infection-prone tissues will be highlighted to provide an overview of the extent of the ILC immunity within tissues and emphasize common versus virus-specific responses.
Collapse
Affiliation(s)
- Sytse J Piersma
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
18
|
He J, Gao L, Wang P, Chan WK, Zheng Y, Zhang Y, Sun J, Li X, Wang J, Li XH, Chen H, Yang Z, Wang Y. Prdm1 positively regulates liver Group 1 ILCs cancer immune surveillance and preserves functional heterogeneity. eLife 2024; 13:RP92948. [PMID: 39133873 PMCID: PMC11318973 DOI: 10.7554/elife.92948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Group 1 innate lymphoid cells (ILCs) comprise conventional natural killer (cNK) cells and type 1 innate lymphoid cells (ILC1s). The main functions of liver cNK cells and ILC1s not only include directly killing target cells but also regulating local immune microenvironment of the liver through the secretion of cytokines. Uncovering the intricate mechanisms by which transcriptional factors regulate and influence the functions of liver cNK cells and ILC1s, particularly within the context of liver tumors, presents a significant opportunity to amplify the effectiveness of immunotherapies against liver malignancies. Using Ncr1-drived conditional knockout mouse model, our study reveals the regulatory role of Prdm1 in shaping the composition and maturation of cNK cells. Although Prdm1 did not affect the killing function of cNK cells in an in vivo cytotoxicity model, a significant increase in cancer metastasis was observed in Prdm1 knockout mice. Interferon-gamma (IFN-γ), granzyme B, and perforin secretion decreased significantly in Prdm1-deficient cNK cells and liver ILC1s. Single-cell RNA sequencing (scRNA-seq) data also provided evidences that Prdm1 maintains functional subsets of cNK cells and liver ILC1s and facilitates communications between cNK cells, liver ILC1s, and macrophages. The present study unveiled a novel regulatory mechanism of Prdm1 in cNK cells and liver ILC1s, showing promising potential for developing innovative immune therapy strategies against liver cancer.
Collapse
Affiliation(s)
- Jitian He
- Institute of Medical Engineering & Translational Medicine, Tianjin UniversityTianjinChina
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhouChina
| | - Le Gao
- Institute of Medical Engineering & Translational Medicine, Tianjin UniversityTianjinChina
| | - Peiying Wang
- Institute of Medical Engineering & Translational Medicine, Tianjin UniversityTianjinChina
| | - Wing Keung Chan
- Department of Internal Medicine, Division of Hematology, The Ohio State UniversityColumbusUnited States
| | - Yiran Zheng
- Institute of Medical Engineering & Translational Medicine, Tianjin UniversityTianjinChina
| | - Yumo Zhang
- Institute of Medical Engineering & Translational Medicine, Tianjin UniversityTianjinChina
| | - Jiaman Sun
- Institute of Medical Engineering & Translational Medicine, Tianjin UniversityTianjinChina
| | - Xue Li
- Department of Basic Medicine, Haihe Hospital, Tianjin UniversityTianjinChina
| | - Jiming Wang
- Tianjin Economic-Technological Development Area (TEDA) HospitalTianjinChina
| | - Xiao-Hong Li
- Institute of Medical Engineering & Translational Medicine, Tianjin UniversityTianjinChina
| | - Huaiyong Chen
- Department of Basic Medicine, Haihe Hospital, Tianjin UniversityTianjinChina
- College of Pulmonary and Critical Care Medicine, 8th Medical Center, Chinese PLA General HospitalBeijingChina
- Tianjin Key Laboratory of Lung Regenerative MedicineTianjinChina
| | - Zhouxin Yang
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang HospitalHangzhouChina
| | - Youwei Wang
- Institute of Medical Engineering & Translational Medicine, Tianjin UniversityTianjinChina
| |
Collapse
|
19
|
Jaeger N, Antonova AU, Kreisel D, Roan F, Lantelme E, Ziegler SF, Cella M, Colonna M. Diversity of group 1 innate lymphoid cells in human tissues. Nat Immunol 2024; 25:1460-1473. [PMID: 38956380 DOI: 10.1038/s41590-024-01885-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/31/2024] [Indexed: 07/04/2024]
Abstract
Group 1 innate lymphoid cells (ILC1s) are cytotoxic and interferon gamma-producing lymphocytes lacking antigen-specific receptors, which include ILC1s and natural killer (NK) cells. In mice, ILC1s differ from NK cells, as they develop independently of the NK-specifying transcription factor EOMES, while requiring the repressor ZFP683 (ZNF683 in humans) for tissue residency. Here we identify highly variable ILC1 subtypes across tissues through investigation of human ILC1 diversity by single-cell RNA sequencing and flow cytometry. The intestinal epithelium contained abundant mature EOMES- ILC1s expressing PRDM1 rather than ZNF683, alongside a few immature TCF7+PRDM1- ILC1s. Other tissues harbored NK cells expressing ZNF683 and EOMES transcripts; however, EOMES protein content was variable. These ZNF683+ NK cells are tissue-imprinted NK cells phenotypically resembling ILC1s. The tissue ILC1-NK spectrum also encompassed conventional NK cells and NK cells distinguished by PTGDS expression. These findings establish a foundation for evaluating phenotypic and functional changes within the NK-ILC1 spectrum in diseases.
Collapse
Affiliation(s)
- Natalia Jaeger
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alina Ulezko Antonova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel Kreisel
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Florence Roan
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
- Division of Allergy and Infectious Diseases, University of Washington School of Medicine, Seattle, WA, USA
| | - Erica Lantelme
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven F Ziegler
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
20
|
Nicolini A, Ferrari P. Involvement of tumor immune microenvironment metabolic reprogramming in colorectal cancer progression, immune escape, and response to immunotherapy. Front Immunol 2024; 15:1353787. [PMID: 39119332 PMCID: PMC11306065 DOI: 10.3389/fimmu.2024.1353787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/04/2024] [Indexed: 08/10/2024] Open
Abstract
Metabolic reprogramming is a k`ey hallmark of tumors, developed in response to hypoxia and nutrient deficiency during tumor progression. In both cancer and immune cells, there is a metabolic shift from oxidative phosphorylation (OXPHOS) to aerobic glycolysis, also known as the Warburg effect, which then leads to lactate acidification, increased lipid synthesis, and glutaminolysis. This reprogramming facilitates tumor immune evasion and, within the tumor microenvironment (TME), cancer and immune cells collaborate to create a suppressive tumor immune microenvironment (TIME). The growing interest in the metabolic reprogramming of the TME, particularly its significance in colorectal cancer (CRC)-one of the most prevalent cancers-has prompted us to explore this topic. CRC exhibits abnormal glycolysis, glutaminolysis, and increased lipid synthesis. Acidosis in CRC cells hampers the activity of anti-tumor immune cells and inhibits the phagocytosis of tumor-associated macrophages (TAMs), while nutrient deficiency promotes the development of regulatory T cells (Tregs) and M2-like macrophages. In CRC cells, activation of G-protein coupled receptor 81 (GPR81) signaling leads to overexpression of programmed death-ligand 1 (PD-L1) and reduces the antigen presentation capability of dendritic cells. Moreover, the genetic and epigenetic cell phenotype, along with the microbiota, significantly influence CRC metabolic reprogramming. Activating RAS mutations and overexpression of epidermal growth factor receptor (EGFR) occur in approximately 50% and 80% of patients, respectively, stimulating glycolysis and increasing levels of hypoxia-inducible factor 1 alpha (HIF-1α) and MYC proteins. Certain bacteria produce short-chain fatty acids (SCFAs), which activate CD8+ cells and genes involved in antigen processing and presentation, while other mechanisms support pro-tumor activities. The use of immune checkpoint inhibitors (ICIs) in selected CRC patients has shown promise, and the combination of these with drugs that inhibit aerobic glycolysis is currently being intensively researched to enhance the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Paola Ferrari
- Unit of Oncology, Department of Medical and Oncological Area, Azienda Ospedaliera-Universitaria Pisana, Pisa, Italy
| |
Collapse
|
21
|
Liang Z, Anderson HD, Locher V, O'Leary C, Riesenfeld SJ, Jabri B, McDonald BD, Bendelac A. Eomes expression identifies the early bone marrow precursor to classical NK cells. Nat Immunol 2024; 25:1172-1182. [PMID: 38871999 PMCID: PMC11409033 DOI: 10.1038/s41590-024-01861-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/01/2024] [Indexed: 06/15/2024]
Abstract
Natural killer (NK) cells traffic through the blood and mount cytolytic and interferon-γ (IFNγ)-focused responses to intracellular pathogens and tumors. Type 1 innate lymphoid cells (ILC1s) also produce type 1 cytokines but reside in tissues and are not cytotoxic. Whether these differences reflect discrete lineages or distinct states of a common cell type is not understood. Using single-cell RNA sequencing and flow cytometry, we focused on populations of TCF7+ cells that contained precursors for NK cells and ILC1s and identified a subset of bone marrow lineage-negative NK receptor-negative cells that expressed the transcription factor Eomes, termed EomeshiNKneg cells. Transfer of EomeshiNKneg cells into Rag2-/-Il2rg-/- recipients generated functional NK cells capable of preventing metastatic disease. By contrast, transfer of PLZF+ ILC precursors generated a mixture of ILC1s, ILC2s and ILC3s that lacked cytotoxic potential. These findings identified EomeshiNKneg cells as the bone marrow precursor to classical NK cells and demonstrated that the NK and ILC1 lineages diverged early during development.
Collapse
Affiliation(s)
- Zhitao Liang
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Hope D Anderson
- Biophysical Sciences Graduate Program, University of Chicago, Chicago, IL, USA
| | - Veronica Locher
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Crystal O'Leary
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Samantha J Riesenfeld
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| | - Bana Jabri
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | - Albert Bendelac
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- Department of Pathology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
22
|
He J, Chen D, Xiong W, Hou X, Quan Y, Yang M, Dong Z. Eomesodermin spatiotemporally orchestrates the early and late stages of NK cell development by targeting KLF2 and T-bet, respectively. Cell Mol Immunol 2024; 21:662-673. [PMID: 38740922 PMCID: PMC11214621 DOI: 10.1038/s41423-024-01164-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 04/07/2024] [Indexed: 05/16/2024] Open
Abstract
Eomesodermin (Eomes) is a critical factor in the development of natural killer (NK) cells, but its precise role in temporal and spatial coordination during this process remains unclear. Our study revealed that Eomes plays distinct roles during the early and late stages of NK cell development. Specifically, the early deletion of Eomes via the CD122-Cre transgene resulted in significant blockade at the progenitor stage due to the downregulation of KLF2, another important transcription factor. ChIP-seq revealed direct binding of Eomes to the conserved noncoding sequence (CNS) of Klf2. Utilizing the CHimeric IMmune Editing (CHIME) technique, we found that deletion of the CNS region of Klf2 via CRISPRi led to a reduction in the NK cell population and developmental arrest. Moreover, constitutive activation of this specific CNS region through CRISPRa significantly reversed the severe defects in NK cell development caused by Eomes deficiency. Conversely, Ncr1-Cre-mediated terminal deletion of Eomes expedited the transition of NK cell subsets from the CD27+CD11b+ phenotype to the CD27-CD11b+ phenotype. Late-stage deficiency of Eomes led to a significant increase in T-bet expression, which subsequently increased the expression of the transcription factor Zeb2. Genetic deletion of one allele of Tbx21, encoding T-bet, effectively reversed the aberrant differentiation of Eomes-deficient NK cells. In summary, we utilized two innovative genetic models to elucidate the intricate mechanisms underlying Eomes-mediated NK cell commitment and differentiation.
Collapse
Affiliation(s)
- Junming He
- The First Affiliated Hospital of Anhui Medical University and Institute for Clinical Immunology, Anhui Medical University, Anhui, 230032, China
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, 100084, Beijing, China
| | - Donglin Chen
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, 100084, Beijing, China
| | - Wei Xiong
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, 100084, Beijing, China
| | - Xinlei Hou
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, 100084, Beijing, China
| | - Yuhe Quan
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, 100084, Beijing, China
| | - Meixiang Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, China.
- The Biomedical Translational Research Institute. Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control (Jinan University). Guangzhou Key Laboratory for Germ-Free Animals and Microbiota Application. School of Medicine. Jinan University, Guangzhou, 510632, China.
| | - Zhongjun Dong
- The First Affiliated Hospital of Anhui Medical University and Institute for Clinical Immunology, Anhui Medical University, Anhui, 230032, China.
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, 100084, Beijing, China.
- Innovative Institute of Tumor Immunity and Medicine (ITIM), Hefei, 230032, China.
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, 230032, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
23
|
Chen Y, Gu X, Cao K, Tu M, Liu W, Ju J. The role of innate lymphoid cells in systemic lupus erythematosus. Cytokine 2024; 179:156623. [PMID: 38685155 DOI: 10.1016/j.cyto.2024.156623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
Systemic lupus erythematosus (SLE) is a connective tissue disorder that affects various body systems. Both the innate and adaptive immunity contribute to the onset and progression of SLE. The main mechanism of SLE is an excessive immune response of immune cells to autoantigens, which leads to systemic inflammation and inflammation-induced organ damage. Notably, a subset of innate immune cells known as innate lymphoid cells (ILCs) has recently emerged. ILCs are pivotal in the early stages of infection; participate in immune responses, inflammation, and tissue repair; and regulate the immune function of the body by resisting pathogens and regulating autoimmune inflammation and metabolic homeostasis. Thus, ILCs dysfunction can lead to autoimmune diseases. This review discusses the maturation of ILCs, the potential mechanisms by which ILCs exacerbate SLE pathogenesis, and their contributions to organ inflammatory deterioration in SLE.
Collapse
Affiliation(s)
- Yong Chen
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Xiaotian Gu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Kunyu Cao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Miao Tu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Wan Liu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China.
| | - Jiyu Ju
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China.
| |
Collapse
|
24
|
Ding Y, Lavaert M, Grassmann S, Band VI, Chi L, Das A, Das S, Harly C, Shissler SC, Malin J, Peng D, Zhao Y, Zhu J, Belkaid Y, Sun JC, Bhandoola A. Distinct developmental pathways generate functionally distinct populations of natural killer cells. Nat Immunol 2024; 25:1183-1192. [PMID: 38872000 DOI: 10.1038/s41590-024-01865-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 05/08/2024] [Indexed: 06/15/2024]
Abstract
Natural killer (NK) cells function by eliminating virus-infected or tumor cells. Here we identified an NK-lineage-biased progenitor population, referred to as early NK progenitors (ENKPs), which developed into NK cells independently of common precursors for innate lymphoid cells (ILCPs). ENKP-derived NK cells (ENKP_NK cells) and ILCP-derived NK cells (ILCP_NK cells) were transcriptionally different. We devised combinations of surface markers that identified highly enriched ENKP_NK and ILCP_NK cell populations in wild-type mice. Furthermore, Ly49H+ NK cells that responded to mouse cytomegalovirus infection primarily developed from ENKPs, whereas ILCP_NK cells were better IFNγ producers after infection with Salmonella and herpes simplex virus. Human CD56dim and CD56bright NK cells were transcriptionally similar to ENKP_NK cells and ILCP_NK cells, respectively. Our findings establish the existence of two pathways of NK cell development that generate functionally distinct NK cell subsets in mice and further suggest these pathways may be conserved in humans.
Collapse
Affiliation(s)
- Yi Ding
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marieke Lavaert
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Simon Grassmann
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Victor I Band
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Liang Chi
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Arundhoti Das
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sumit Das
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christelle Harly
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, Nantes, France
- LabEx IGO "Immunotherapy, Graft Oncology", Nantes, France
| | - Susannah C Shissler
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Justin Malin
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dingkang Peng
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yongge Zhao
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Avinash Bhandoola
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
25
|
Liu Y, Hu Y, Li B, Su R, Han Z, Jin B, Li T, Zheng X, Han Y. Innate lymphoid cell subsets in the pathogenesis of primary biliary cholangitis. J Gastroenterol Hepatol 2024; 39:1431-1441. [PMID: 38606537 DOI: 10.1111/jgh.16547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND AND AIM Primary biliary cholangitis (PBC) is an autoimmune liver disease characterized by destructive lymphocytic cholangitis and specific anti-mitochondrial antibodies. Innate lymphoid cells (ILCs) have been reported to play a role in liver homeostasis and autoimmunity. METHODS We evaluated the features of peripheral ILC1s and ILC3 in patients with PBC and hepatic ILC1 and ILC3 in two different PBC mouse models (dominant-negative transforming growth factor-beta receptor II [dnTGFβRII] and 2-octynoic acid-bovine serum albumin [2OA-BSA]). RESULTS A total of 115 patients and 18 healthy controls were enrolled in the study. Decreased circulating ILC1/3s were observed in early-stage PBC patients, and the numbers of ILC1/3s were negatively correlated with specific parameters and the proportion of T-helper (Th) 1 and Th17 cells. Reduced numbers of ILC1s were observed in PBC mouse models with different etiologies. ILC1-deficient mice had more severe hepatic inflammation after inducing the 2OA-BSA model. Continuous low-dose injections of lipopolysaccharide (LPS) reduced ILC1 levels in mice, consistent with the lower level of ILC1s in PBC patients with high LPS (> 50 ng/mL), and aggravated hepatic lymphocyte infiltration. CONCLUSION Patients with PBC had decreased ILC1s, which were negatively correlated with CD4+ T cells. Deficient ILC1 populations led to disease exacerbations in mice. Our results indicated that ILC1s may participate in the pathogenesis of PBC.
Collapse
Affiliation(s)
- Yansheng Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yinan Hu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Bo Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Rui Su
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Zheyi Han
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Boquan Jin
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Ting Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Xiaohong Zheng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Ying Han
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
26
|
Banerjee A, Das D, Mukherjee S, Maji BK. Comprehensive study of the interplay between immunological and metabolic factors in hepatic steatosis. Int Immunopharmacol 2024; 133:112091. [PMID: 38657500 DOI: 10.1016/j.intimp.2024.112091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
The pathophysiology of hepatic steatosis is thoroughly reviewed in this comprehensive report, with particular attention to the complex interactions between inflammatory pathways, insulin resistance, lipid metabolism, metabolic dysregulation, and immunological responses in the liver including non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), and hepatocellular carcinoma (HCC). The study highlights the role of immune cell regulation in disease progression and explores the potential of immune cell-specific treatments for treating hepatic disorders. The development of liver disorders is significantly influenced by immune cells, including dendritic cells, T cells, and natural killer cells. Clinical investigations show that immune cell-specific treatments can effectively reduce liver fibrosis and inflammation. Future research should focus on finding new immunological targets for therapeutic interventions, as well as addressing the management challenges associated with NAFLD/NASH. Hepatic immune microorganisms also impact liver homeostasis and disorders. Improvements in immune cell regulation and liver transplantation methods give patients hope for better prognoses. Important phases include optimizing the selection of donors for malignancy of the liver, using machine perfusion for organ preservation, and fine-tuning immunosuppressive strategies. For focused treatments in hepatic steatosis, it is imperative to understand the intricate interactions between immune and metabolic variables. Understanding the liver's heterogeneous immune profile, encompassing a range of immune cell subpopulations, is crucial for formulating focused therapeutic interventions. To improve patient care and outcomes in hepatic illnesses, there is an urgent need for further research and innovation. Therefore, to effectively treat hepatic steatosis, it is important to enhance therapeutic techniques and maximize liver transplantation strategies.
Collapse
Affiliation(s)
- Arnab Banerjee
- Department of Physiology (UG & PG), Serampore College, 9 William Carey Road, Serampore, Hooghly 712201, West Bengal, India.
| | - Debasmita Das
- Department of Physiology (UG & PG), Serampore College, 9 William Carey Road, Serampore, Hooghly 712201, West Bengal, India
| | - Sandip Mukherjee
- Department of Physiology (UG & PG), Serampore College, 9 William Carey Road, Serampore, Hooghly 712201, West Bengal, India
| | - Bithin Kumar Maji
- Department of Physiology (UG & PG), Serampore College, 9 William Carey Road, Serampore, Hooghly 712201, West Bengal, India.
| |
Collapse
|
27
|
Chen Y, Zhang W, Cheng M, Hao X, Wei H, Sun R, Tian Z. Galectin-3-ITGB1 Signaling Mediates Interleukin 10 Production of Hepatic Conventional Natural Killer Cells in Hepatitis B Virus Transgenic Mice and Correlates with Hepatocellular Carcinoma Progression in Patients. Viruses 2024; 16:737. [PMID: 38793619 PMCID: PMC11125742 DOI: 10.3390/v16050737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND AND AIMS The outcomes of HBV infections are related to complex immune imbalances; however, the precise mechanisms by which HBV induces immune dysfunction are not well understood. METHODS HBV transgenic (HBs-Tg) mice were used to investigate intrahepatic NK cells in two distinct subsets: conventional NK (cNK) and liver-resident NK (LrNK) cells during a chronic HBV infection. RESULTS The cNK cells, but not the LrNK cells, were primarily responsible for the increase in the number of bulk NK cells in the livers of ageing HBs-Tg mice. The hepatic cNK cells showed a stronger ability to produce IL-10, coupled with a higher expression of CD69, TIGIT and PD-L1, and lower NKG2D expression in ageing HBs-Tg mice. A lower mitochondrial mass and membrane potential, and less polarized localization were observed in the hepatic cNK cells compared with the splenic cNK cells in the HBs-Tg mice. The enhanced galectin-3 (Gal-3) secreted from HBsAg+ hepatocytes accounted for the IL-10 production of hepatic cNK cells via ITGB1 signaling. For humans, LGALS3 and ITGB1 expression is positively correlated with IL-10 expression, and negatively correlated with the poor clinical progression of HCC. CONCLUSIONS Gal-3-ITGB1 signaling shapes hepatic cNK cells but not LrNK cells during a chronic HBV infection, which may correlate with HCC progression.
Collapse
Affiliation(s)
- Yongyan Chen
- Key Laboratory of Immune Response and Immunotherapy, Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Hefei 230027, China
| | - Wendi Zhang
- Key Laboratory of Immune Response and Immunotherapy, Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Min Cheng
- Key Laboratory of Immune Response and Immunotherapy, Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Xiaolei Hao
- Key Laboratory of Immune Response and Immunotherapy, Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Haiming Wei
- Key Laboratory of Immune Response and Immunotherapy, Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Hefei 230027, China
| | - Rui Sun
- Key Laboratory of Immune Response and Immunotherapy, Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Hefei 230027, China
| | - Zhigang Tian
- Key Laboratory of Immune Response and Immunotherapy, Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Hefei 230027, China
| |
Collapse
|
28
|
Sudan R, Gilfillan S, Colonna M. Group 1 ILCs: Heterogeneity, plasticity, and transcriptional regulation. Immunol Rev 2024; 323:107-117. [PMID: 38563448 PMCID: PMC11102297 DOI: 10.1111/imr.13327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Group 1 innate lymphoid cells (ILCs), comprising ILC1s and natural killer cells (NK cells), belong to a large family of developmentally related innate lymphoid cells that lack rearranged antigen-specific receptors. NK cells and ILC1s both require the transcription factor T-bet for lineage commitment but additionally rely on Eomes and Hobit, respectively, for their development and effector maturation programs. Both ILC1s and NK cells are essential for rapid responses against infections and mediate cancer immunity through production of effector cytokines and cytotoxicity mediators. ILC1s are enriched in tissues and hence generally considered tissue resident cells whereas NK cells are often considered circulatory. Despite being deemed different cell types, ILC1s and NK cells share many common features both phenotypically and functionally. Recent studies employing single cell RNA sequencing (scRNA-seq) technology have exposed previously unappreciated heterogeneity in group 1 ILCs and further broaden our understanding of these cells. Findings from these studies imply that ILC1s in different tissues and organs share a common signature but exhibit some unique characteristics, possibly stemming from tissue imprinting. Also, data from recent fate mapping studies employing Hobit, RORγt, and polychromic reporter mice have greatly advanced our understanding of the developmental and effector maturation programs of these cells. In this review, we aim to outline the fundamental traits of mouse group 1 ILCs and explore recent discoveries related to their developmental programs, phenotypic heterogeneity, plasticity, and transcriptional regulation.
Collapse
Affiliation(s)
- Raki Sudan
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
29
|
Schuster IS, Andoniou CE, Degli-Esposti MA. Tissue-resident memory NK cells: Homing in on local effectors and regulators. Immunol Rev 2024; 323:54-60. [PMID: 38568046 PMCID: PMC11102295 DOI: 10.1111/imr.13332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 05/18/2024]
Abstract
Natural killer (NK) cells are the prototype innate effector lymphocyte population that plays an important role in controlling viral infections and tumors. Studies demonstrating that NK cells form long-lived memory populations, akin to those generated by adaptive immune cells, prompted a revaluation of the potential functions of NK cells. Recent data demonstrating that NK cells are recruited from the circulation into tissues where they form long-lived memory-like populations further emphasize that NK cells have properties that mirror those of adaptive immune cells. NK cells that localize in non-lymphoid tissues are heterogeneous, and there is a growing appreciation that immune responses occurring within tissues are subject to tissue-specific regulation. Here we discuss both the immune effector and immunoregulatory functions of NK cells, with a particular emphasis on the role of NK cells within non-lymphoid tissues and how the tissue microenvironment shapes NK cell-dependent outcomes.
Collapse
Affiliation(s)
- Iona S Schuster
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University; Clayton, Victoria, Australia
- Centre for Experimental Immunology, Lions Eye Institute; Nedlands, Western Australia, Australia
| | - Christopher E Andoniou
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University; Clayton, Victoria, Australia
- Centre for Experimental Immunology, Lions Eye Institute; Nedlands, Western Australia, Australia
| | - Mariapia A Degli-Esposti
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University; Clayton, Victoria, Australia
- Centre for Experimental Immunology, Lions Eye Institute; Nedlands, Western Australia, Australia
| |
Collapse
|
30
|
Li JH, Zhou A, Lee CD, Shah SN, Ji JH, Senthilkumar V, Padilla ET, Ball AB, Feng Q, Bustillos CG, Riggan L, Greige A, Divakaruni AS, Annese F, Cooley Coleman JA, Skinner SA, Cowan CW, O'Sullivan TE. MEF2C regulates NK cell effector functions through control of lipid metabolism. Nat Immunol 2024; 25:778-789. [PMID: 38589619 DOI: 10.1038/s41590-024-01811-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024]
Abstract
Natural killer (NK) cells are a critical first line of defense against viral infection. Rare mutations in a small subset of transcription factors can result in decreased NK cell numbers and function in humans, with an associated increased susceptibility to viral infection. However, our understanding of the specific transcription factors governing mature human NK cell function is limited. Here we use a non-viral CRISPR-Cas9 knockout screen targeting genes encoding 31 transcription factors differentially expressed during human NK cell development. We identify myocyte enhancer factor 2C (MEF2C) as a master regulator of human NK cell functionality ex vivo. MEF2C-haploinsufficient patients and mice displayed defects in NK cell development and effector function, with an increased susceptibility to viral infection. Mechanistically, MEF2C was required for an interleukin (IL)-2- and IL-15-mediated increase in lipid content through regulation of sterol regulatory element-binding protein (SREBP) pathways. Supplementation with oleic acid restored MEF2C-deficient and MEF2C-haploinsufficient patient NK cell cytotoxic function. Therefore, MEF2C is a critical orchestrator of NK cell antiviral immunity by regulating SREBP-mediated lipid metabolism.
Collapse
Affiliation(s)
- Joey H Li
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Adalia Zhou
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Cassidy D Lee
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Siya N Shah
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jeong Hyun Ji
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Vignesh Senthilkumar
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Eddie T Padilla
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Andréa B Ball
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Qinyan Feng
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Christian G Bustillos
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Luke Riggan
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alain Greige
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Ajit S Divakaruni
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Fran Annese
- Greenwood Genetic Center, Greenwood, SC, USA
| | | | | | - Christopher W Cowan
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Timothy E O'Sullivan
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
31
|
Verner JM, Arbuthnott HF, Ramachandran R, Bharadwaj M, Chaudhury N, Jou E. Emerging roles of type 1 innate lymphoid cells in tumour pathogenesis and cancer immunotherapy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:296-315. [PMID: 38745765 PMCID: PMC11090689 DOI: 10.37349/etat.2024.00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/14/2023] [Indexed: 05/16/2024] Open
Abstract
Innate lymphoid cells (ILCs) are the most recently discovered class of innate immune cells found to have prominent roles in various human immune-related pathologies such as infection and autoimmune diseases. However, their role in cancer was largely unclear until recently, where several emerging studies over the past few years unanimously demonstrate ILCs to be critical players in tumour immunity. Being the innate counterpart of T cells, ILCs are potent cytokine producers through which they orchestrate the overall immune response upstream of adaptive immunity thereby modulating T cell function. Out of the major ILC subsets, ILC1s have gained significant traction as potential immunotherapeutic candidates due to their central involvement with the anti-tumour type 1 immune response. ILC1s are potent producers of the well-established anti-tumour cytokine interferon γ (IFNγ), and exert direct cytotoxicity against cancer cells in response to the cytokine interleukin-15 (IL-15). However, in advanced diseases, ILC1s are found to demonstrate an exhausted phenotype in the tumour microenvironment (TME) with impaired effector functions, characterised by decreased responsiveness to cytokines and reduced IFNγ production. Tumour cells produce immunomodulatory cytokines such as transforming growth factor β (TGFβ) and IL-23, and through these suppress ILC1 anti-tumour actfivities and converts ILC1s to pro-tumoural ILC3s respectively, resulting in disease progression. This review provides a comprehensive overview of ILC1s in tumour immunity, and discusses the exciting prospects of harnessing ILC1s for cancer immunotherapy, either alone or in combination with cytokine-based treatment. The exciting prospects of targeting the upstream innate immune system through ILC1s may surmount the limitations associated with adaptive immune T cell-based strategies used in the clinic currently, and overcome cancer immunotherapeutic resistance.
Collapse
Affiliation(s)
| | | | - Raghavskandhan Ramachandran
- Medical Sciences Division, Oxford University Hospitals, OX3 9DU Oxford, United Kingdom
- Balliol College, University of Oxford, OX1 3BJ Oxford, United Kingdom
| | - Manini Bharadwaj
- Wexham Park Hospital, Frimley Health NHS Foundation Trust, SL2 4HL Slough, United Kingdom
| | - Natasha Chaudhury
- Wexham Park Hospital, Frimley Health NHS Foundation Trust, SL2 4HL Slough, United Kingdom
| | - Eric Jou
- Medical Sciences Division, Oxford University Hospitals, OX3 9DU Oxford, United Kingdom
- Wexham Park Hospital, Frimley Health NHS Foundation Trust, SL2 4HL Slough, United Kingdom
- Kellogg College, University of Oxford, OX2 6PN Oxford, United Kingdom
| |
Collapse
|
32
|
Verner JM, Arbuthnott HF, Ramachandran R, Bharadwaj M, Chaudhury N, Jou E. Emerging roles of type 1 innate lymphoid cells in tumour pathogenesis and cancer immunotherapy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:296-315. [DOI: 10.37349/etat.2023.00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/14/2023] [Indexed: 01/04/2025] Open
Abstract
Innate lymphoid cells (ILCs) are the most recently discovered class of innate immune cells found to have prominent roles in various human immune-related pathologies such as infection and autoimmune diseases. However, their role in cancer was largely unclear until recently, where several emerging studies over the past few years unanimously demonstrate ILCs to be critical players in tumour immunity. Being the innate counterpart of T cells, ILCs are potent cytokine producers through which they orchestrate the overall immune response upstream of adaptive immunity thereby modulating T cell function. Out of the major ILC subsets, ILC1s have gained significant traction as potential immunotherapeutic candidates due to their central involvement with the anti-tumour type 1 immune response. ILC1s are potent producers of the well-established anti-tumour cytokine interferon γ (IFNγ), and exert direct cytotoxicity against cancer cells in response to the cytokine interleukin-15 (IL-15). However, in advanced diseases, ILC1s are found to demonstrate an exhausted phenotype in the tumour microenvironment (TME) with impaired effector functions, characterised by decreased responsiveness to cytokines and reduced IFNγ production. Tumour cells produce immunomodulatory cytokines such as transforming growth factor β (TGFβ) and IL-23, and through these suppress ILC1 anti-tumour actfivities and converts ILC1s to pro-tumoural ILC3s respectively, resulting in disease progression. This review provides a comprehensive overview of ILC1s in tumour immunity, and discusses the exciting prospects of harnessing ILC1s for cancer immunotherapy, either alone or in combination with cytokine-based treatment. The exciting prospects of targeting the upstream innate immune system through ILC1s may surmount the limitations associated with adaptive immune T cell-based strategies used in the clinic currently, and overcome cancer immunotherapeutic resistance.
Collapse
Affiliation(s)
| | | | - Raghavskandhan Ramachandran
- Medical Sciences Division, Oxford University Hospitals, OX3 9DU Oxford, United Kingdom; Balliol College, University of Oxford, OX1 3BJ Oxford, United Kingdom
| | - Manini Bharadwaj
- exham Park Hospital, Frimley Health NHS Foundation Trust, SL2 4HL Slough, United Kingdom
| | - Natasha Chaudhury
- exham Park Hospital, Frimley Health NHS Foundation Trust, SL2 4HL Slough, United Kingdom
| | - Eric Jou
- Medical Sciences Division, Oxford University Hospitals, OX3 9DU Oxford, United Kingdom; Wexham Park Hospital, Frimley Health NHS Foundation Trust, SL2 4HL Slough, United Kingdom; Kellogg College, University of Oxford, OX2 6PN Oxford, United Kingdom
| |
Collapse
|
33
|
Pollenus E, Prenen F, Possemiers H, Knoops S, Mitera T, Lamote J, De Visscher A, Vandermosten L, Pham TT, Matthys P, Van den Steen PE. Aspecific binding of anti-NK1.1 antibodies on myeloid cells in an experimental model for malaria-associated acute respiratory distress syndrome. Malar J 2024; 23:110. [PMID: 38637828 PMCID: PMC11025177 DOI: 10.1186/s12936-024-04944-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/12/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Conventional natural killer (cNK) cells play an important role in the innate immune response by directly killing infected and malignant cells and by producing pro- and anti-inflammatory cytokines. Studies on their role in malaria and its complications have resulted in conflicting results. METHODS Using the commonly used anti-NK1.1 depletion antibodies (PK136) in an in-house optimized experimental model for malaria-associated acute respiratory distress syndrome (MA-ARDS), the role of cNK cells was investigated. Moreover, flow cytometry was performed to characterize different NK cell populations. RESULTS While cNK cells were found to be dispensable in the development of MA-ARDS, the appearance of a NK1.1+ cell population was observed in the lungs upon infection despite depletion with anti-NK1.1. Detailed characterization of the unknown population revealed that this population consisted of a mixture of monocytes and macrophages that bind the anti-NK1.1 antibody in an aspecific way. This aspecific binding may occur via Fcγ receptors, such as FcγR4. In contrast, in vivo depletion using anti-NK1.1 antibodies was proved to be specific for cNK cells. CONCLUSION cNK cells are dispensable in the development of experimental MA-ARDS. Moreover, careful flow cytometric analysis, with a critical mindset in relation to potential aspecific binding despite the use of commercially available Fc blocking reagents, is critical to avoid misinterpretation of the results.
Collapse
Affiliation(s)
- Emilie Pollenus
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Fran Prenen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Hendrik Possemiers
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Sofie Knoops
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Tania Mitera
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Jochen Lamote
- Laboratory for Molecular Cancer Biology, Department of Oncology, VIB, KU Leuven, Leuven, Belgium
| | - Amber De Visscher
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Leen Vandermosten
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Thao-Thy Pham
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
- Currently at Clinical Immunology Unit, Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Philippe E Van den Steen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.
| |
Collapse
|
34
|
Stosik M, Tokarz-Deptuła B, Deptuła W. Innate lymphoid cells (ILCs) in teleosts against data on ILCs in humans. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109415. [PMID: 38296004 DOI: 10.1016/j.fsi.2024.109415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/13/2024]
Abstract
It is assumed that cells corresponding to innate lymphoid cells (ILCs) in humans, in addition to lymphoid tissue inducer cells (LTi), are also found in teleosts. In this systematic group of organisms, however, they are a poorly understood cell population. In contrast to the data on ILCs in humans, which also remain incomplete despite advanced research, in teleosts, these cells require much more attention. ILCs in teleosts have been presented as cells that may be evolutionary precursors of NK cells or ILCs identified in mammals, including humans. It is a highly heterogeneous group of cells in both humans and fish and their properties, as revealed by studies in humans, are most likely to remain strictly dependent on the location of these cells and the physiological state of the individual from which they originate. They form a bridge between innate and adaptive immunity. The premise of this paper is to review the current knowledge of ILCs in teleosts, taking into account data on similar cells in humans. A review of the knowledge concerning these particular cells, elements of innate immunity mechanisms as equivalent to, or perhaps dominant over, adaptive immunity mechanisms in teleosts, as presented, may inspire the need for further research.
Collapse
Affiliation(s)
- Michał Stosik
- Institute of Biological Sciences, University of Zielona Góra, Poland
| | | | - Wiesław Deptuła
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Poland
| |
Collapse
|
35
|
Kveštak D, Mihalić A, Jonjić S, Brizić I. Innate lymphoid cells in neuroinflammation. Front Cell Neurosci 2024; 18:1364485. [PMID: 38450285 PMCID: PMC10915051 DOI: 10.3389/fncel.2024.1364485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/09/2024] [Indexed: 03/08/2024] Open
Abstract
Innate lymphoid cells (ILCs) are largely tissue-resident cells that participate in the maintenance of tissue homeostasis and react early to inflammatory events. Mature ILCs are divided into three major groups based on the transcription factors required for their development and function. Under physiological conditions, ILCs are present within the choroid plexus and meninges while the CNS parenchyma is almost devoid of these cells. However, pathological conditions such as autoimmune neuroinflammation and viral infections of the CNS result in the infiltration of ILCs into parenchyma. In this article, we provide an overview of the involvement and function of the ILCs within the CNS during physiological conditions and in infections, autoimmune diseases, neurodegeneration, and injury.
Collapse
Affiliation(s)
- Daria Kveštak
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Andrea Mihalić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Stipan Jonjić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Department of Biomedical Sciences, Croatian Academy of Sciences and Arts, Rijeka, Croatia
| | - Ilija Brizić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
36
|
To TT, Oparaugo NC, Kheshvadjian AR, Nelson AM, Agak GW. Understanding Type 3 Innate Lymphoid Cells and Crosstalk with the Microbiota: A Skin Connection. Int J Mol Sci 2024; 25:2021. [PMID: 38396697 PMCID: PMC10888374 DOI: 10.3390/ijms25042021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Innate lymphoid cells (ILCs) are a diverse population of lymphocytes classified into natural killer (NK) cells, ILC1s, ILC2s, ILC3s, and ILCregs, broadly following the cytokine secretion and transcription factor profiles of classical T cell subsets. Nonetheless, the ILC lineage does not have rearranged antigen-specific receptors and possesses distinct characteristics. ILCs are found in barrier tissues such as the skin, lungs, and intestines, where they play a role between acquired immune cells and myeloid cells. Within the skin, ILCs are activated by the microbiota and, in turn, may influence the microbiome composition and modulate immune function through cytokine secretion or direct cellular interactions. In particular, ILC3s provide epithelial protection against extracellular bacteria. However, the mechanism by which these cells modulate skin health and homeostasis in response to microbiome changes is unclear. To better understand how ILC3s function against microbiota perturbations in the skin, we propose a role for these cells in response to Cutibacterium acnes, a predominant commensal bacterium linked to the inflammatory skin condition, acne vulgaris. In this article, we review current evidence describing the role of ILC3s in the skin and suggest functional roles by drawing parallels with ILC3s from other organs. We emphasize the limited understanding and knowledge gaps of ILC3s in the skin and discuss the potential impact of ILC3-microbiota crosstalk in select skin diseases. Exploring the dialogue between the microbiota and ILC3s may lead to novel strategies to ameliorate skin immunity.
Collapse
Affiliation(s)
- Thao Tam To
- Division of Dermatology, Department of Medicine, University of California (UCLA), Los Angeles, CA 90095, USA
| | - Nicole Chizara Oparaugo
- Division of Dermatology, Department of Medicine, University of California (UCLA), Los Angeles, CA 90095, USA
| | - Alexander R. Kheshvadjian
- Division of Dermatology, Department of Medicine, University of California (UCLA), Los Angeles, CA 90095, USA
| | - Amanda M. Nelson
- Department of Dermatology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - George W. Agak
- Division of Dermatology, Department of Medicine, University of California (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
37
|
Xu Y, Li X, Cheng F, Zhao B, Fang M, Li Z, Meng S. Heat shock protein gp96 drives natural killer cell maturation and anti-tumor immunity by counteracting Trim28 to stabilize Eomes. Nat Commun 2024; 15:1106. [PMID: 38321029 PMCID: PMC10847424 DOI: 10.1038/s41467-024-45426-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
The maturation process of natural killer (NK) cells, which is regulated by multiple transcription factors, determines their functionality, but few checkpoints specifically targeting this process have been thoroughly studied. Here we show that NK-specific deficiency of glucose-regulated protein 94 (gp96) leads to decreased maturation of NK cells in mice. These gp96-deficient NK cells exhibit undermined activation, cytotoxicity and IFN-γ production upon stimulation, as well as weakened responses to IL-15 for NK cell maturation, in vitro. In vivo, NK-specific gp96-deficient mice show increased tumor growth. Mechanistically, we identify Eomes as the downstream transcription factor, with gp96 binding to Trim28 to prevent Trim28-mediated ubiquitination and degradation of Eomes. Our study thus suggests the gp96-Trim28-Eomes axis to be an important regulator for NK cell maturation and cancer surveillance in mice.
Collapse
Affiliation(s)
- Yuxiu Xu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Xin Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.
| | - Fang Cheng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Bao Zhao
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, China
| | - Min Fang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Zihai Li
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Songdong Meng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.
- University of Chinese Academy of Sciences, Beijing, P.R. China.
| |
Collapse
|
38
|
Joulia E, Michieletto MF, Agesta A, Peillex C, Girault V, Le Dorze AL, Peroceschi R, Bucciarelli F, Szelechowski M, Chaubet A, Hakim N, Marrocco R, Lhuillier E, Lebeurrier M, Argüello RJ, Saoudi A, El Costa H, Adoue V, Walzer T, Sarry JE, Dejean AS. Eomes-dependent mitochondrial regulation promotes survival of pathogenic CD4+ T cells during inflammation. J Exp Med 2024; 221:e20230449. [PMID: 38189779 PMCID: PMC10772920 DOI: 10.1084/jem.20230449] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/02/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
The mechanisms whereby Eomes controls tissue accumulation of T cells and strengthens inflammation remain ill-defined. Here, we show that Eomes deletion in antigen-specific CD4+ T cells is sufficient to protect against central nervous system (CNS) inflammation. While Eomes is dispensable for the initial priming of CD4+ T cells, it is required for long-term maintenance of CNS-infiltrating CD4+ T cells. We reveal that the impact of Eomes on effector CD4+ T cell longevity is associated with sustained expression of multiple genes involved in mitochondrial organization and functions. Accordingly, epigenetic studies demonstrate that Eomes supports mitochondrial function by direct binding to either metabolism-associated genes or mitochondrial transcriptional modulators. Besides, the significance of these findings was confirmed in CD4+ T cells from healthy donors and multiple sclerosis patients. Together, our data reveal a new mechanism by which Eomes promotes severity and chronicity of inflammation via the enhancement of CD4+ T cell mitochondrial functions and resistance to stress-induced cell death.
Collapse
Affiliation(s)
- Emeline Joulia
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Michaël F. Michieletto
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arantxa Agesta
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Cindy Peillex
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
- École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Virginie Girault
- Suivi Immunologique des Thérapeutiques Innovantes, Pôle de Biologie, Pontchaillou University Hospital, Rennes, France
- UMR1236, University of Rennes, Institut National de la Santé et de la Recherche Médicale, Etablissement Français du Sang Bretagne, Rennes, France
| | - Anne-Louise Le Dorze
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Romain Peroceschi
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Florence Bucciarelli
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Marion Szelechowski
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Adeline Chaubet
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Nawad Hakim
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Rémi Marrocco
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Emeline Lhuillier
- GeT-Santé, Plateforme Génome et Transcriptome, GenoToul, Toulouse, France
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Manuel Lebeurrier
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Rafael J. Argüello
- Aix Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Abdelhadi Saoudi
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Hicham El Costa
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Veronique Adoue
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Thierry Walzer
- Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, Lyon, France
| | - Jean-Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Institut National de la Santé et de la Recherche Médicale, Toulouse, France
| | - Anne S. Dejean
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| |
Collapse
|
39
|
Noel OD, Hassouneh Z, Svatek RS, Mukherjee N. Innate Lymphoid Cells in Bladder Cancer: From Mechanisms of Action to Immune Therapies. Cancer Immunol Res 2024; 12:149-160. [PMID: 38060011 PMCID: PMC11492724 DOI: 10.1158/2326-6066.cir-23-0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/10/2023] [Accepted: 10/24/2023] [Indexed: 12/08/2023]
Abstract
Bladder tumors have a high mutational burden and tend to be responsive to immune therapies; however, response rates remain modest. To date, immunotherapy in bladder cancer has largely focused on enhancing T-cell immune responses in the bladder tumor microenvironment. It is anticipated that other immune cells, including innate lymphoid cells (ILC), which play an important role in bladder oncogenesis and tumor suppression, could be targeted to improve response to existing therapies. ILCs are classified into five groups: natural killer cells, ILC1s, ILC2s, ILC3s, and lymphoid tissue inducer cells. ILCs are pleiotropic and play dual and sometimes paradoxical roles in cancer development and progression. Here, a comprehensive discussion of the current knowledge and recent advancements in understanding the role of ILCs in bladder cancer is provided. We discuss the multifaceted roles that ILCs play in bladder immune surveillance, tumor protection, and immunopathology of bladder cancer. This review provides a rationale for targeting ILCs in bladder cancer, which is relevant for other solid tumors.
Collapse
Affiliation(s)
- Onika D.V. Noel
- Department of Urology, University of Texas Health San Antonio, San Antonio, Texas
| | - Zaineb Hassouneh
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas
| | - Robert S. Svatek
- Department of Urology, University of Texas Health San Antonio, San Antonio, Texas
| | - Neelam Mukherjee
- Department of Urology, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
40
|
Tougaard P, Pérez MR, Steels W, Huysentruyt J, Verstraeten B, Vetters J, Divert T, Gonçalves A, Roelandt R, Takahashi N, Janssens S, Buus TB, Taghon T, Leclercq G, Vandenabeele P. Type 1 immunity enables neonatal thymic ILC1 production. SCIENCE ADVANCES 2024; 10:eadh5520. [PMID: 38232171 PMCID: PMC10793954 DOI: 10.1126/sciadv.adh5520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024]
Abstract
Acute thymic atrophy occurs following type 1 inflammatory conditions such as viral infection and sepsis, resulting in cell death and disruption of T cell development. However, the impact type 1 immunity has on thymic-resident innate lymphoid cells (ILCs) remains unclear. Single-cell RNA sequencing revealed neonatal thymic-resident type 1 ILCs (ILC1s) as a unique and immature subset compared to ILC1s in other primary lymphoid organs. Culturing murine neonatal thymic lobes with the type 1 cytokines interleukin-12 (IL-12) and IL-18 resulted in a rapid expansion and thymic egress of KLRG1+CXCR6+ cytotoxic ILC1s. Live imaging showed the subcapsular thymic localization and exit of ILC1s following IL-12 + IL-18 stimulation. Similarly, murine cytomegalovirus infection in neonates resulted in thymic atrophy and subcapsular localization of thymic-resident ILC1s. Neonatal thymic grafting revealed that type 1 inflammation enhances the homing of cytokine-producing thymus-derived ILC1s to the liver and peritoneal cavity. Together, we show that type 1 immunity promotes the expansion and peripheral homing of thymic-derived ILC1s.
Collapse
Affiliation(s)
- Peter Tougaard
- Cell death and Inflammation Unit, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Mario R. Pérez
- Cell death and Inflammation Unit, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Wolf Steels
- Cell death and Inflammation Unit, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jelle Huysentruyt
- Cell death and Inflammation Unit, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Bruno Verstraeten
- Cell death and Inflammation Unit, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jessica Vetters
- Laboratory for ER Stress and Inflammation, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Tatyana Divert
- Cell death and Inflammation Unit, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Amanda Gonçalves
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB BioImaging Core, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
| | - Ria Roelandt
- Cell death and Inflammation Unit, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Nozomi Takahashi
- Cell death and Inflammation Unit, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sophie Janssens
- Laboratory for ER Stress and Inflammation, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Terkild B. Buus
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Tom Taghon
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Georges Leclercq
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Peter Vandenabeele
- Cell death and Inflammation Unit, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
41
|
Narni-Mancinelli E, Berruyer C, Vivier E. On blood and tissue-resident natural killer cells. Immunity 2024; 57:6-8. [PMID: 38198854 DOI: 10.1016/j.immuni.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
Conventional natural killer (cNK) cells patrol the organism via circulation and invade tissues in response to infection or inflammation. In this issue of Immunity, Torcellan et al. report that circulating cNK cells are recruited into infected skin and differentiate into long-lived tissue-resident NK cells capable of mediating an accelerated response upon reinfection.
Collapse
Affiliation(s)
| | - Carole Berruyer
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Eric Vivier
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France; APHM, Hôpital de la Timone, Marseille-Immunopôle, Marseille, France; Innate Pharma Research Laboratories, Innate Pharma, Marseille, France; Paris Saclay Cancer Cluster, Le Kremlin-Bicêtre, France
| |
Collapse
|
42
|
Torcellan T, Friedrich C, Doucet-Ladevèze R, Ossner T, Solé VV, Riedmann S, Ugur M, Imdahl F, Rosshart SP, Arnold SJ, Gomez de Agüero M, Gagliani N, Flavell RA, Backes S, Kastenmüller W, Gasteiger G. Circulating NK cells establish tissue residency upon acute infection of skin and mediate accelerated effector responses to secondary infection. Immunity 2024; 57:124-140.e7. [PMID: 38157853 PMCID: PMC10783803 DOI: 10.1016/j.immuni.2023.11.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/25/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Natural killer (NK) cells are present in the circulation and can also be found residing in tissues, and these populations exhibit distinct developmental requirements and are thought to differ in terms of ontogeny. Here, we investigate whether circulating conventional NK (cNK) cells can develop into long-lived tissue-resident NK (trNK) cells following acute infections. We found that viral and bacterial infections of the skin triggered the recruitment of cNK cells and their differentiation into Tcf1hiCD69hi trNK cells that share transcriptional similarity with CD56brightTCF1hi NK cells in human tissues. Skin trNK cells arose from interferon (IFN)-γ-producing effector cells and required restricted expression of the transcriptional regulator Blimp1 to optimize Tcf1-dependent trNK cell formation. Upon secondary infection, trNK cells rapidly gained effector function and mediated an accelerated NK cell response. Thus, cNK cells redistribute and permanently position at sites of previous infection via a mechanism promoting tissue residency that is distinct from Hobit-dependent developmental paths of NK cells and ILC1 seeding tissues during ontogeny.
Collapse
Affiliation(s)
- Tommaso Torcellan
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Christin Friedrich
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Rémi Doucet-Ladevèze
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Thomas Ossner
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany; International Max Planck Research School for Immunobiology, Epigenetics, and Metabolism (IMPRS-IEM), 79108 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Virgínia Visaconill Solé
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Sofie Riedmann
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Milas Ugur
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Fabian Imdahl
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), 97078 Würzburg, Germany
| | - Stephan P Rosshart
- Department of Microbiome Research, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Sebastian J Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Mercedes Gomez de Agüero
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Nicola Gagliani
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Richard A Flavell
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Simone Backes
- Institute for Virology and Immunobiology, University of Würzburg, 97078 Würzburg, Germany
| | - Wolfgang Kastenmüller
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Georg Gasteiger
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
| |
Collapse
|
43
|
Ikuta K, Asahi T, Cui G, Abe S, Takami D. Control of the Development, Distribution, and Function of Innate-Like Lymphocytes and Innate Lymphoid Cells by the Tissue Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:111-127. [PMID: 38467976 DOI: 10.1007/978-981-99-9781-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Recently, considerable attention has been directed toward innate-like T cells (ITCs) and innate lymphoid cells (ILCs) owing to their indispensable contributions to immune responses, tissue homeostasis, and inflammation. Innate-like T cells include NKT cells, MAIT cells, and γδ T cells, whereas ILCs include NK cells, type 1 ILCs (ILC1s), type 2 ILCs (ILC2s), and type 3 ILCs (ILC3s). Many of these ITCs and ILCs are distributed to specific tissues and remain tissue-resident, while others, such as NK cells and some γδ T cells, circulate through the bloodstream. Nevertheless, recent research has shed light on novel subsets of innate immune cells that exhibit characteristics intermediate between tissue-resident and circulating states under normal and pathological conditions. The local microenvironment frequently influences the development, distribution, and function of these innate immune cells. This review aims to consolidate the current knowledge on the functional heterogeneity of ITCs and ILCs, shaped by local environmental cues, with particular emphasis on IL-15, which governs the activities of the innate immune cells involved in type 1 immune responses.
Collapse
Affiliation(s)
- Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| | - Takuma Asahi
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Guangwei Cui
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shinya Abe
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Daichi Takami
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
44
|
Ali SI, Salama A. Natural Immunomodulatory Agents as a Complementary Therapy for Poxviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:337-354. [PMID: 38801589 DOI: 10.1007/978-3-031-57165-7_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Poxviruses target innate immunity mediators such as tumor necrosis factors, interleukins, interferons, complement, and chemokines. It also targets adaptive immunity such as CD4+ T cells, CD4+ T cells, and B cells. Emerging of the recent epidemic of monkeypox virus (MPXV), a zoonotic disease native to Central and Western Africa, besides the lack of permitted treatments for poxviruses infections, encouraged researchers to identify effective inhibitors to help in preventing and treating poxviruses infections. Natural bioactive components, particularly polyphenolics, are promising for creating powerful antioxidants, anti-inflammatory, immune-stimulating, and antiviral agents. As a result, they are potentially effective therapies for preventing and treating viral diseases, such as infections caused by poxviruses including the recent pandemic MPXV. Polyphenolics: rosmarinic acid, caffeic acid, resveratrol, quercitrin, myricitrin, gingerol, gallotannin, and propolis-benzofuran A, as well as isoquinoline alkaloids: galanthamine and thalimonine represent prospective antiviral agents against MPXV, they can inhibit MPXV and other poxviruses via targeting different viral elements including DNA Topoisomerase I (TOP1), Thymidine Kinase (TK), serine/threonine protein kinase (Ser/Thr kinase), and protein A48R. The bioactive extracts of different traditional plants including Guiera senegalensis, Larrea tridentata, Sarracenia purpurea, Kalanchoe pinnata (Lam.) Pers., Zingiber officinale Roscoe, Quercus infectoria, Rhus chinensis, Prunella vulgaris L., Salvia rosmarinus, and Origanum vulgare also can inhibit the growth of different poxviruses including MPXV, vaccinia virus (VACV), variola virus, buffalopox virus, fowlpox virus, and cowpox virus. There is an urgent need for additional molecular studies to identify and confirm the anti-poxviruses properties of various natural bioactive components, especially those that showed potent antiviral activity against other viruses.
Collapse
Affiliation(s)
- Sami I Ali
- Plant Biochemistry Department, National Research Centre (NRC), 33 El Buhouth St. (Former El-Tahrir St.), Dokki, Cairo, 12622, Egypt.
| | - Abeer Salama
- Pharmacology Department, National Research Centre (NRC), 33 El Buhouth St. (Former El-Tahrir St.), Dokki, Cairo, 12622, Egypt
| |
Collapse
|
45
|
Srivastava RK, Sapra L, Bhardwaj A, Mishra PK, Verma B, Baig Z. Unravelling the immunobiology of innate lymphoid cells (ILCs): Implications in health and disease. Cytokine Growth Factor Rev 2023; 74:56-75. [PMID: 37743134 DOI: 10.1016/j.cytogfr.2023.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/09/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023]
Abstract
Innate lymphoid cells (ILCs), a growing class of immune cells, imitate the appearance and abilities of T cells. However, unlike T cells, ILCs lack acquired antigen receptors, and they also do not undergo clonal selection or proliferation in response to antigenic stimuli. Despite lacking antigen-specific receptors, ILCs respond quickly to signals from infected or damaged tissues and generate an array of cytokines that regulate the development of adaptive immune response. ILCs can be categorized into four types based on their signature cytokines and transcription factors: ILC1, ILC2, ILC3 (including Lymphoid Tissue inducer- LTi cells), and regulatory ILCs (ILCregs). ILCs play key functions in controlling and resolving inflammation, and variations in their proportion are linked to various pathological diseases including cancer, gastrointestinal, pulmonary, and skin diseases. We highlight current advancements in the biology and classification of ILCs in this review. Additionally, we provide a thorough overview of their contributions to several inflammatory bone-related pathologies, including osteoporosis, rheumatoid arthritis, periodontitis, and ankylosing spondylitis. Understanding the multiple functions of ILCs in both physiological and pathological conditions will further mobilize future research towards targeting ILCs for therapeutic purposes.
Collapse
Affiliation(s)
- Rupesh K Srivastava
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| | - Leena Sapra
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Asha Bhardwaj
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | | | - Bhupendra Verma
- Department of Biotechnology, All India Institute of Medical Sciences(AIIMS), New Delhi-110029, India
| | - Zainab Baig
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| |
Collapse
|
46
|
Jia H, Wan H, Zhang D. Innate lymphoid cells: a new key player in atopic dermatitis. Front Immunol 2023; 14:1277120. [PMID: 37908364 PMCID: PMC10613734 DOI: 10.3389/fimmu.2023.1277120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
Atopic dermatitis (AD) is a common allergic inflammatory skin condition mainly caused by gene variants, immune disorders, and environmental risk factors. The T helper (Th) 2 immune response mediated by interleukin (IL)-4/13 is generally believed to be central in the pathogenesis of AD. It has been shown that innate lymphoid cells (ILCs) play a major effector cell role in the immune response in tissue homeostasis and inflammation and fascinating details about the interaction between innate and adaptive immunity. Changes in ILCs may contribute to the onset and progression of AD, and ILC2s especially have gained much attention. However, the role of ILCs in AD still needs to be further elucidated. This review summarizes the role of ILCs in skin homeostasis and highlights the signaling pathways in which ILCs may be involved in AD, thus providing valuable insights into the behavior of ILCs in skin homeostasis and inflammation, as well as new approaches to treating AD.
Collapse
Affiliation(s)
- Haiping Jia
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Huiying Wan
- Department of Dermatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Dingding Zhang
- Sichuan Provincial Key Laboratory for Genetic Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
47
|
Rožmanić C, Lisnić B, Pribanić Matešić M, Mihalić A, Hiršl L, Park E, Lesac Brizić A, Indenbirken D, Viduka I, Šantić M, Adler B, Yokoyama WM, Krmpotić A, Juranić Lisnić V, Jonjić S, Brizić I. Perinatal murine cytomegalovirus infection reshapes the transcriptional profile and functionality of NK cells. Nat Commun 2023; 14:6412. [PMID: 37828009 PMCID: PMC10570381 DOI: 10.1038/s41467-023-42182-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
Infections in early life can elicit substantially different immune responses and pathogenesis than infections in adulthood. Here, we investigate the consequences of murine cytomegalovirus infection in newborn mice on NK cells. We show that infection severely compromised NK cell maturation and functionality in newborns. This effect was not due to compromised virus control. Inflammatory responses to infection dysregulated the expression of major transcription factors governing NK cell fate, such as Eomes, resulting in impaired NK cell function. Most prominently, NK cells from perinatally infected mice have a diminished ability to produce IFN-γ due to the downregulation of long non-coding RNA Ifng-as1 expression. Moreover, the bone marrow's capacity to efficiently generate new NK cells is reduced, explaining the prolonged negative effects of perinatal infection on NK cells. This study demonstrates that viral infections in early life can profoundly impact NK cell biology, including long-lasting impairment in NK cell functionality.
Collapse
Affiliation(s)
- Carmen Rožmanić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Berislav Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | | | - Andrea Mihalić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Lea Hiršl
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Eugene Park
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ana Lesac Brizić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Daniela Indenbirken
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Ina Viduka
- Department of Microbiology and Parasitology, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| | - Marina Šantić
- Department of Microbiology and Parasitology, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| | - Barbara Adler
- Max von Pettenkofer Institute & Gene Center, Virology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Wayne M Yokoyama
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Astrid Krmpotić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Vanda Juranić Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Stipan Jonjić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| | - Ilija Brizić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
48
|
Marciniak M, Wagner M. Innate lymphoid cells and tumor-derived lactic acid: novel contenders in an enduring game. Front Immunol 2023; 14:1236301. [PMID: 37868977 PMCID: PMC10585168 DOI: 10.3389/fimmu.2023.1236301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Aerobic glycolysis, also known as the Warburg effect, has for a prolonged period of time been perceived as a defining feature of tumor metabolism. The redirection of glucose utilization towards increased production of lactate by cancer cells enables their rapid proliferation, unceasing growth, and longevity. At the same time, it serves as a significant contributor to acidification of the tumor microenvironment, which, in turn, imposes substantial constraints on infiltrating immune cells. Here, we delve into the influence of tumor-derived lactic acid on innate lymphoid cells (ILCs) and discuss potential therapeutic approaches. Given the abundance of ILCs in barrier tissues such as the skin, we provide insights aimed at translating this knowledge into therapies that may specifically target skin cancer.
Collapse
Affiliation(s)
- Mateusz Marciniak
- Cancer Biomarkers Research Group, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wrocław, Poland
| | - Marek Wagner
- Cancer Biomarkers Research Group, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wrocław, Poland
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
49
|
Scarno G, Mazej J, Laffranchi M, Di Censo C, Mattiola I, Candelotti AM, Pietropaolo G, Stabile H, Fionda C, Peruzzi G, Brooks SR, Tsai WL, Mikami Y, Bernardini G, Gismondi A, Sozzani S, Di Santo JP, Vosshenrich CAJ, Diefenbach A, Gadina M, Santoni A, Sciumè G. Divergent roles for STAT4 in shaping differentiation of cytotoxic ILC1 and NK cells during gut inflammation. Proc Natl Acad Sci U S A 2023; 120:e2306761120. [PMID: 37756335 PMCID: PMC10556635 DOI: 10.1073/pnas.2306761120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/10/2023] [Indexed: 09/29/2023] Open
Abstract
Natural killer (NK) cells and type 1 innate lymphoid cells (ILC1) require signal transducer and activator of transcription 4 (STAT4) to elicit rapid effector responses and protect against pathogens. By combining genetic and transcriptomic approaches, we uncovered divergent roles for STAT4 in regulating effector differentiation of these functionally related cell types. Stat4 deletion in Ncr1-expressing cells led to impaired NK cell terminal differentiation as well as to an unexpected increased generation of cytotoxic ILC1 during intestinal inflammation. Mechanistically, Stat4-deficient ILC1 exhibited upregulation of gene modules regulated by STAT5 in vivo and an aberrant effector differentiation upon in vitro stimulation with IL-2, used as a prototypical STAT5 activator. Moreover, STAT4 expression in NCR+ innate lymphocytes restrained gut inflammation in the dextran sulfate sodium-induced colitis model limiting pathogenic production of IL-13 from adaptive CD4+ T cells in the large intestine. Collectively, our data shed light on shared and distinctive mechanisms of STAT4-regulated transcriptional control in NK cells and ILC1 required for intestinal inflammatory responses.
Collapse
Affiliation(s)
- Gianluca Scarno
- Department of Molecular Medicine, Sapienza University of Rome, Rome00161, Italy
- Laboratory affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, Rome00161, Italy
| | - Julija Mazej
- Department of Molecular Medicine, Sapienza University of Rome, Rome00161, Italy
- Laboratory affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, Rome00161, Italy
| | - Mattia Laffranchi
- Department of Molecular Medicine, Sapienza University of Rome, Rome00161, Italy
- Laboratory affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, Rome00161, Italy
| | - Chiara Di Censo
- Department of Molecular Medicine, Sapienza University of Rome, Rome00161, Italy
- Laboratory affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, Rome00161, Italy
| | - Irene Mattiola
- Laboratory of Innate Immunity, Institute of Microbiology, Infectious Diseases and Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt–Universität zu Berlin, Campus Benjamin Franklin, Berlin12203, Germany
- Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Association, Berlin10117, Germany
| | - Arianna M. Candelotti
- Department of Molecular Medicine, Sapienza University of Rome, Rome00161, Italy
- Laboratory affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, Rome00161, Italy
| | - Giuseppe Pietropaolo
- Department of Molecular Medicine, Sapienza University of Rome, Rome00161, Italy
- Laboratory affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, Rome00161, Italy
| | - Helena Stabile
- Department of Molecular Medicine, Sapienza University of Rome, Rome00161, Italy
- Laboratory affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, Rome00161, Italy
| | - Cinzia Fionda
- Department of Molecular Medicine, Sapienza University of Rome, Rome00161, Italy
- Laboratory affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, Rome00161, Italy
| | - Giovanna Peruzzi
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Rome00161, Italy
| | - Stephen R. Brooks
- Biodata Mining and Discovery Section, Office of Science and Technology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, NIH, Bethesda, MD20892
| | - Wanxia Li Tsai
- Translational Immunology Section, Office of Science and Technology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, NIH, Bethesda, MD20892
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo1608582, Japan
| | - Giovanni Bernardini
- Department of Molecular Medicine, Sapienza University of Rome, Rome00161, Italy
- Laboratory affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, Rome00161, Italy
| | - Angela Gismondi
- Department of Molecular Medicine, Sapienza University of Rome, Rome00161, Italy
- Laboratory affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, Rome00161, Italy
| | - Silvano Sozzani
- Department of Molecular Medicine, Sapienza University of Rome, Rome00161, Italy
- Laboratory affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, Rome00161, Italy
- Istituti di Ricovero e Cura a Carattere Scientifico Neuromed, Isernia86077, Italy
| | - James P. Di Santo
- Innate Immunity Unit, Institut Pasteur, Université Paris Cité, INSERM U1223, Paris75724, France
| | | | - Andreas Diefenbach
- Laboratory of Innate Immunity, Institute of Microbiology, Infectious Diseases and Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt–Universität zu Berlin, Campus Benjamin Franklin, Berlin12203, Germany
- Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Association, Berlin10117, Germany
| | - Massimo Gadina
- Translational Immunology Section, Office of Science and Technology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, NIH, Bethesda, MD20892
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Rome00161, Italy
- Laboratory affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, Rome00161, Italy
- Istituti di Ricovero e Cura a Carattere Scientifico Neuromed, Isernia86077, Italy
| | - Giuseppe Sciumè
- Department of Molecular Medicine, Sapienza University of Rome, Rome00161, Italy
- Laboratory affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, Rome00161, Italy
| |
Collapse
|
50
|
Moreno-Vicente J, Halim TY. Role of innate lymphoid cells in cancer metastasis. Int J Biochem Cell Biol 2023; 163:106465. [PMID: 37666359 DOI: 10.1016/j.biocel.2023.106465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/18/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
Metastatic spread of cancer accounts for most cancer-related deaths. Cancer seeding in secondary organs requires reprogramming of the local stromal and immune landscape, which ultimately supports tumour growth. Yet, the cellular and molecular mechanisms that promote this tumour-permissive environment remain largely unknown. Innate lymphoid cells (ILCs) have recently been shown to modulate the immune response to cancer in multiple ways. Given their tissue-resident nature, ILCs are well placed to respond to local cues within the early or pre-metastatic niche, and to orchestrate the recruitment of additional immune cells that could either support or dampen metastatic growth. Here, we review the emerging body of evidence supporting a role for ILCs in the establishment and progression of metastasis, whilst discussing the pleiotropic effects that have been attributed to different ILC subsets.
Collapse
Affiliation(s)
| | - Timotheus Yf Halim
- University of Cambridge, CRUK Cambridge Institute, Cambridge CB2 0RE, UK.
| |
Collapse
|