1
|
Parsons MS, Bolton DL. The utility of nonhuman primate models for understanding acute HIV-1 infection. Curr Opin HIV AIDS 2025; 20:218-227. [PMID: 40099824 PMCID: PMC11970610 DOI: 10.1097/coh.0000000000000920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
PURPOSE OF REVIEW Nonhuman primate (NHP) models of HIV-1 infection provide complementary experimental pathways for assessing aspects of acute HIV-1 infection (AHI) that cannot be addressed in humans. This article reviews acute infection studies in SIV-infected or SHIV-infected macaque species over the previous 18 months. RECENT FINDINGS Reviewed studies examined the dynamics of replication-competent viral reservoir establishment during early infection, reservoir maintenance throughout therapy, and factors influencing viral rebound after treatment cessation. Also discussed are acute infection events in the central nervous system and liver and potential links between these events and manifestations of comorbidities during chronic infection. Additional studies addressed how occurrences during acute infection impact the development of natural viral control or posttreatment control. Another report evaluated treatment during acute infection with broadly neutralizing antibodies with enhanced ability to engage innate immune cells, highlighting the ability of this early intervention to shape innate and adaptive antiviral responses. SUMMARY NHP models of HIV-1 infection are a fundamental research tool for investigating AHI events. These models enable detailed pathogenesis characterization and the testing of hypothesis-driven strategies for altering disease courses through interventions during AHI, including targeting viral persistence and comorbidities that persist throughout chronic infection.
Collapse
Affiliation(s)
- Matthew S. Parsons
- Walter Reed Army Institute of Research - Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Diane L. Bolton
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| |
Collapse
|
2
|
Giovane RA, deWeber K, Sauceda U, Bianchi D. Blood-Borne Infection Prevention in Combat Sports: Position Statement of the Association of Ringside Physicians. Clin J Sport Med 2025:00042752-990000000-00320. [PMID: 40197438 DOI: 10.1097/jsm.0000000000001350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 02/22/2025] [Indexed: 04/10/2025]
Abstract
ABSTRACT The Association of Ringside Physicians (ARP) emphasizes the importance of screening combat sports athletes for blood-borne infections, including hepatitis B, HIV, and hepatitis C, to mitigate transmission risks and ensure participant safety. Although transmission of hepatitis B and C and HIV in combat sports is rare, protecting athletes is of utmost importance. It is the recommendation of the ARP that all fighters participating in combat sports, in which the presence of blood is a common occurrence and is allowed during competition, should undergo testing for HIV, hepatitis B (HBV), and hepatitis C (HCV). Testing should be conducted using serum samples, because rapid tests are not considered acceptable for accurate results. Testing for HBV, HCV, and HIV should optimally be done within 3 months of competition, but within 6 months is acceptable. Athletes whose tests suggest active HBV, HCV, or HIV infection should be disqualified from competition in sports where blood is common and allowed. Athletes with cured prior HCV infection may be cleared for competition in all combat sports. Athletes with prior HBV infection and no detectable HBV DNA in blood can be cleared for competition in all combat sports. Athletes with latent HBV infection with detectable HBV DNA in blood have a small risk of disease reactivation, so they should not be cleared.
Collapse
Affiliation(s)
- Richard A Giovane
- Department of Family Medicine, University of Alabama, Tuscaloosa, Alabama
| | - Kevin deWeber
- SW Washington Sports Medicine Fellowship, Vancouver, Washington
- Oregon Health and Science University, Portland, Oregon
| | - Uziel Sauceda
- RUHS/UCR Sports Medicine Fellowship, Moreno Valley California
- Riverside University Health System/University of California Riverside, Moreno Valley California
| | - Davide Bianchi
- Chief Medical Officer SwissBoxing, Verbandarzt SwissBoxing, Switzerland
| |
Collapse
|
3
|
Benlarbi M, Richard J, Clemente T, Bourassa C, Tolbert WD, Gottumukkala S, Peet MM, Medjahed H, Pazgier M, Maldarelli F, Castagna A, Durand M, Finzi A. CD4 T cell counts are inversely correlated with anti-cluster A antibodies in antiretroviral therapy-treated PLWH. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.25.25322882. [PMID: 40061344 PMCID: PMC11888508 DOI: 10.1101/2025.02.25.25322882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
While antiretroviral therapy efficiently suppresses viral replication, inflammation and immune dysfunction persist in some people living with HIV-1 (PLWH). Soluble gp120 (sgp120) has been detected in PLWH plasma and its presence is linked to immune dysfunction. It was reported that sgp120 binding to CD4 on uninfected bystander CD4 + T cells sensitizes them to antibody-dependent cellular-cytotoxicity (ADCC) mediated by non-neutralizing antibodies present in PLWH plasma. Using three independent PLWH cohorts, we observed that non-neutralizing anti-cluster A antibodies are negatively associated with CD4 + T cell counts. Anti-CD4BS antibodies blocked the coating of uninfected bystander cells by sgp120, thereby preventing their elimination by ADCC. Supporting a protective role of anti-CD4BS antibodies, PLWH having these antibodies didn't show a negative association between CD4 T cell counts and anti-cluster A. Our results reveal that anti-cluster A antibodies are associated with immune dysfunction in PLWH and anti-CD4BS antibodies might have a beneficial impact in these individuals.
Collapse
|
4
|
Giron LB, Pasternak AO, Abdel-Mohsen M. Soluble markers of viral rebound and post-treatment HIV control. Curr Opin HIV AIDS 2025; 20:61-69. [PMID: 39392413 PMCID: PMC11620946 DOI: 10.1097/coh.0000000000000889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
PURPOSE OF REVIEW We focus on the different classes of biological molecules measurable in easily accessible bodily fluids that have the potential to serve as biomarkers for the HIV post-treatment controller (PTC) phenotype and/or the timing of viral rebound after stopping antiretroviral therapy (ART). RECENT FINDINGS Various viral components and host factors measurable in body fluids can play crucial roles in understanding and predicting the PTC phenotype. We review recent findings linking viral components, the quantitative and qualitative features of antibodies (including autologous HIV-specific antibodies), markers of inflammation and tissue damage, other host proteins (including hormones such as sex hormones), as well as metabolites, extracellular vesicles, and cell-free DNA to HIV control post-ART interruption. Several of these molecules can or have the potential to predict the time and probability of viral rebound after stopping ART and are biologically active molecules that can directly or indirectly (by modulating immune pressures) impact the size and activity of HIV reservoirs during and post-ART interruption. SUMMARY A comprehensive model combining multiple markers is needed to predict the PTC phenotype. This model can be leveraged to predict and understand the PTC phenotype, which can guide novel curative interventions to replicate this phenotype in post-treatment non-controllers.
Collapse
Affiliation(s)
| | - Alexander O. Pasternak
- Amsterdam UMC, University of Amsterdam, Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam, Netherlands
| | | |
Collapse
|
5
|
Zanet E, Taborelli M, Tirelli U, Diez-Martin J, Balsalobre P, Re A, Rupolo M, Mazzucato M, Cwynarski K, Gomez MRV, Guillerm G, Serraino D, Ciancia R, Chirumbolo S, Carbone A, Michieli M. Long-Term Clinical Outcomes After Autologous Hematopoietic Stem Cell Transplantation in 49 Individuals Living With HIV (PLWH) and Affected by High-Risk or Relapsed Lymphoma: A European Experience of Continued Relevance for PLWH. J Med Virol 2025; 97:e70165. [PMID: 39810706 DOI: 10.1002/jmv.70165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/17/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025]
Abstract
Previous reports have indicated that during the era of combination antiretroviral therapy, the major causes of morbidity and mortality in people living with HIV (PLWH) were not solely linked to HIV-related opportunistic infections but also to cancers that were difficult to manage due to HIV-related immunodeficiency. We investigated whether PLWH who underwent autologous hematopoietic stem cell transplantation (ASCT) for lymphomas experienced significant morbidity over the past thirty years following HIV infection. We conducted a retrospective follow-up study of 49 PLWH over a 10-year period following ASCT. We collected survival data, examined the occurrence of long-term events, assessed CD4 + T-cell immune recovery, and analysed the correlation between immune recovery and the events experienced by these patients. The data confirmed the significant long-term effectiveness of ASCT, with an overall survival rate of 78% at 10 years post-ASCT. Opportunistic infections, which occurred soon after ASCT and were associated with lower CD4 + T-cell counts, were successfully managed. However, lymphoma relapse, secondary malignancies, cardiovascular disease, and bone disease, which developed years after ASCT, were major causes of morbidity and mortality in this population. Our findings highlight the need for the development and validation of specific tests to predict risk and guide effective interventions for metabolic diseases, secondary malignancies, and lymphoma relapses in PLWH treated with ASCT for lymphoma.
Collapse
Affiliation(s)
- Ernesto Zanet
- Department of Medical Oncology, National Cancer Institute, Aviano, Italy
| | | | - Umberto Tirelli
- Former Chairman of the Department of Medical Oncology, National Cancer Institute, Aviano, Italy
| | - Jose Diez-Martin
- Hematology Department, Hospital G U Gregorio Marañon, Instituto de Investigación Sanitaria GM, Medicina, UCM, Madrid, Spain
| | - Pascual Balsalobre
- Hematology Department, Hospital G U Gregorio Marañon, Instituto de Investigación Sanitaria GM, Medicina, UCM, Madrid, Spain
| | - Alessandro Re
- Division of Hematology, Spedali Civili di Brescia, Brescia, Italy
| | - Maurizio Rupolo
- Oncohaematology and Cell Therapy Unit, Department of Medical Oncology, National Cancer Institute, Aviano, Italy
| | - Mario Mazzucato
- Unit of Stem Cells Collection and Processing, Department of Translational Research, National Cancer Institute, Aviano, Italy
| | - Kate Cwynarski
- Department of Haematology, University College Hospital, London, UK
| | | | | | - Diego Serraino
- Cancer Epidemiology Unit, National Cancer Institute, Aviano, Italy
| | - Rosanna Ciancia
- Oncohaematology and Cell Therapy Unit, Department of Medical Oncology, National Cancer Institute, Aviano, Italy
| | | | - Antonino Carbone
- Professor of Pathology, Former Chairman of the Department of Pathology, National Cancer Institute, Aviano, Italy
| | - Mariagrazia Michieli
- Oncohaematology and Cell Therapy Unit, Department of Medical Oncology, National Cancer Institute, Aviano, Italy
| |
Collapse
|
6
|
Chantziou A, Brenna C, Ioannidou K, Chen OY, Korkolopoulou P, Antoniadou A, Psichogiou M, Papaioannou M, Tsirigotis P, Foukas PG, de Leval L, Petrovas C. HIV infection is associated with compromised tumor microenvironment adaptive immune reactivity in Hodgkin lymphoma. Blood Adv 2024; 8:6215-6231. [PMID: 39116294 PMCID: PMC11697195 DOI: 10.1182/bloodadvances.2023012116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
ABSTRACT The impact of HIV infection on the tumor microenvironment (TME) of classic Hodgkin lymphoma (cHL), one of the most common comorbidities after HIV infection, is not well understood. Here, we have used multiplexed immunofluorescence and spatial transcriptomic analysis to dissect the impact of viral infections (Epstein-Barr virus [EBV] and HIV/EBV) on cHL TME. HIV-EBV+ cHL TME was characterized by higher cell densities of CD8high T cells coexpressing inhibitory receptors (PD-1 and TIGIT), macrophage subsets, and an in situ inflammatory molecular profile associated with increased expression of T-cell receptor (TCR) and B-cell receptor cell signaling pathways than HIV-EBV- cHL TME. Compared with HIV-EBV+, HIV+EBV+ cHL TME was characterized by significantly less CD8high T cells coexpressing PD-1 and TIGIT, a profile concomitant with significantly increased cell densities of CD155high neoplastic cells. Significant downregulation of in situ TCR signaling and upregulation of extracellular matrix reorganization pathways were found in HIV+EBV+ cHL TME, in line with an altered topological organization of CXCL13 and heparan sulfate, an extracellular matrix glycosaminoglycan. Our data reveal the complexity of the cellular and molecular composition of cHL TME in the presence of viral infections, with possible implications for combinatorial immunotherapies. Furthermore, the data suggest specific molecular targets and pathways for further investigation that could improve our understanding of possible mechanistic links between HIV and lymphomagenesis.
Collapse
Affiliation(s)
- Amanda Chantziou
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital, Lausanne, Switzerland
| | - Cloe Brenna
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital, Lausanne, Switzerland
| | - Kalliopi Ioannidou
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital, Lausanne, Switzerland
| | - Oliver Y. Chen
- Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Penelope Korkolopoulou
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasia Antoniadou
- Fourth Department of Internal Medicine, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Mina Psichogiou
- First Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Papaioannou
- First Department of Internal Medicine, Hematology Unit, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, XX, Greece
| | - Panagiotis Tsirigotis
- Division of Hematology, Second Department of Internal Medicine, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Periklis G. Foukas
- Second Department of Pathology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Laurence de Leval
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital, Lausanne, Switzerland
| | - Constantinos Petrovas
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
7
|
Nazziwa J, Freyhult E, Hong MG, Johansson E, Årman F, Hare J, Gounder K, Rezeli M, Mohanty T, Kjellström S, Kamali A, Karita E, Kilembe W, Price MA, Kaleebu P, Allen S, Hunter E, Ndung'u T, Gilmour J, Rowland-Jones SL, Sanders E, Hassan AS, Esbjörnsson J. Dynamics of the blood plasma proteome during hyperacute HIV-1 infection. Nat Commun 2024; 15:10593. [PMID: 39632834 PMCID: PMC11618498 DOI: 10.1038/s41467-024-54848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
The complex dynamics of protein expression in plasma during hyperacute HIV-1 infection and its relation to acute retroviral syndrome, viral control, and disease progression are largely unknown. Here, we quantify 1293 blood plasma proteins from 157 longitudinally linked plasma samples collected before, during, and after hyperacute HIV-1 infection of 54 participants from four sub-Saharan African countries. Six distinct longitudinal expression profiles are identified, of which four demonstrate a consistent decrease in protein levels following HIV-1 infection. Proteins involved in inflammatory responses, immune regulation, and cell motility are significantly altered during the transition from pre-infection to one month post-infection. Specifically, decreased ZYX and SCGB1A1 levels, and increased LILRA3 levels are associated with increased risk of acute retroviral syndrome; increased NAPA and RAN levels, and decreased ITIH4 levels with viral control; and increased HPN, PRKCB, and ITGB3 levels with increased risk of disease progression. Overall, this study provides insight into early host responses in hyperacute HIV-1 infection, and present potential biomarkers and mechanisms linked to HIV-1 disease progression and viral load.
Collapse
Affiliation(s)
- Jamirah Nazziwa
- Department of Translational Medicine, Lund University, Lund, Sweden
- Lund University Virus Centre, Lund University, Lund, Sweden
| | - Eva Freyhult
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Mun-Gwan Hong
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Emil Johansson
- Department of Translational Medicine, Lund University, Lund, Sweden
- Lund University Virus Centre, Lund University, Lund, Sweden
| | - Filip Årman
- BioMS-Swedish National Infrastructure for Biological Mass Spectrometry, Lund University, Lund, Sweden
| | - Jonathan Hare
- IAVI Human Immunology Laboratory, Imperial College, London, UK
- IAVI, New York, NY, USA
- IAVI, Nairobi, Kenya
| | - Kamini Gounder
- Africa Health Research Institute, Durban, South Africa
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Division of Infection and Immunity, University College London, London, UK
| | - Melinda Rezeli
- BioMS-Swedish National Infrastructure for Biological Mass Spectrometry, Lund University, Lund, Sweden
- Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden
| | - Tirthankar Mohanty
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Sven Kjellström
- BioMS-Swedish National Infrastructure for Biological Mass Spectrometry, Lund University, Lund, Sweden
| | | | | | | | - Matt A Price
- IAVI, New York, NY, USA
- IAVI, Nairobi, Kenya
- UCSF Department of Epidemiology and Biostatistics, San Francisco, CA, USA
| | - Pontiano Kaleebu
- Uganda Research Unit, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Entebbe, Uganda
| | - Susan Allen
- Center for Family Health Research, Kigali, Rwanda
- Center for Family Health Research, Lusaka, Zambia
- Department of Pathology & Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Eric Hunter
- Center for Family Health Research, Kigali, Rwanda
- Center for Family Health Research, Lusaka, Zambia
- Department of Pathology & Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Thumbi Ndung'u
- Africa Health Research Institute, Durban, South Africa
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Division of Infection and Immunity, University College London, London, UK
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Jill Gilmour
- Department of Infectious Diseases, Infection and Immunity, Faculty of Medicine, Imperial College, London, UK
| | | | - Eduard Sanders
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
- The Aurum Institute, Johannesburg, South Africa
| | - Amin S Hassan
- Department of Translational Medicine, Lund University, Lund, Sweden
- Lund University Virus Centre, Lund University, Lund, Sweden
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
- Institute for Human Development, Aga Khan University, Nairobi, Kenya
| | - Joakim Esbjörnsson
- Department of Translational Medicine, Lund University, Lund, Sweden.
- Lund University Virus Centre, Lund University, Lund, Sweden.
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
8
|
Swanson EC, Basting CM, Klatt NR. The role of pharmacomicrobiomics in HIV prevention, treatment, and women's health. MICROBIOME 2024; 12:254. [PMID: 39627860 PMCID: PMC11613800 DOI: 10.1186/s40168-024-01953-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/17/2024] [Indexed: 12/06/2024]
Abstract
In the absence of an effective vaccine or curative treatment for HIV, the global HIV/AIDS epidemic continues despite significant advances in treatment and prevention. Antiretroviral therapy (ART) drugs have transformed HIV from a terminal illness to a manageable chronic condition. Likewise, pre-exposure prophylaxis treatment (PrEP) has dramatically reduced transmission in some of the highest risk populations. However, quality of life and life expectancy in people living with HIV (PWH) still lag significantly behind the general population. The mechanisms that reduce the efficacy of PrEP and ART are multifaceted, but one factor that warrants additional attention is the impact of the microbiome on ART and PrEP efficacy, as well as pharmacokinetics more broadly. In this review, we assess the current state of research on the HIV-associated microbiome, how this impacts treatment efficacy, and how microbiome states can alter HIV susceptibility. We also explore how the mechanisms we propose could extend to the efficacy of other drugs and identify promising areas of research that remain understudied. Video Abstract.
Collapse
Affiliation(s)
- Erik C Swanson
- Division of Surgical Outcomes and Precision Medicine Research, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Christopher M Basting
- Division of Surgical Outcomes and Precision Medicine Research, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Nichole R Klatt
- Division of Surgical Outcomes and Precision Medicine Research, Department of Surgery, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
9
|
Capriotti Z, Klase Z. Innate immune memory in chronic HIV and HIV-associated neurocognitive disorders (HAND): potential mechanisms and clinical implications. J Neurovirol 2024; 30:451-476. [PMID: 39733092 PMCID: PMC11846772 DOI: 10.1007/s13365-024-01239-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/26/2024] [Accepted: 12/13/2024] [Indexed: 12/30/2024]
Abstract
Although antiretroviral therapy (ART) has dramatically improved the outlook of the HIV/AIDS pandemic, people living with HIV (PLWH) on suppressive therapy are still at higher risk for a range of comorbidities including cardiovascular disease (CVD) and HIV-associated neurocognitive disorders (HAND), among others. Chronic inflammation and immune activation are thought to be an underlying cause of these comorbidities. Many of the factors thought to drive chronic inflammation and immune activation in HIV overlap with factors known to induce trained immunity. Trained immunity is a form of innate immune memory that metabolically and epigenetically reprograms innate immune cells to mount enhanced inflammatory responses upon secondary encounter with unrelated inflammatory stimuli. While this phenotype has been characterized in a variety of disease states in animals and humans, very little is known about its potential contribution to chronic HIV pathogenesis. In this review, a broad overview of innate immune memory in the periphery and the central nervous system (CNS) is provided and the evidence for trained immunity in the context of HIV is considered. In PLWH on ART, this phenotype could contribute to the chronic inflammation and immune activation associated with HIV comorbidities and could complicate HIV cure strategies due to the potential persistence of the phenotype after eradication of the virus. Further research into this immune state in the context of HIV may open the door for new therapeutics aimed at treating HIV comorbidities like HAND.
Collapse
Affiliation(s)
- Zachary Capriotti
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Molecular and Cell Biology and Genetics Graduate Program, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Zachary Klase
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
- Center for Neuroimmunology and CNS Therapeutics, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19102, USA.
| |
Collapse
|
10
|
Mickens KL, Dillon SM, Guo K, Thompson AN, Barrett BS, Wood C, Kechris K, Santiago ML, Wilson CC. Death and survival of gut CD4 T cells following HIV-1 infection ex vivo. PNAS NEXUS 2024; 3:pgae486. [PMID: 39780917 PMCID: PMC11707799 DOI: 10.1093/pnasnexus/pgae486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/09/2024] [Indexed: 01/11/2025]
Abstract
The gastrointestinal tract is ground zero for the massive and sustained CD4 T cell depletion during acute HIV-1 infection. To date, the molecular mechanisms governing this fundamental pathogenic process remain unclear. HIV-1 infection in the gastrointestinal tract is associated with chronic inflammation due to a disrupted epithelial barrier that results in microbial translocation. Here, we utilized the lamina propria aggregate culture model to demonstrate that the profound induction of granzyme B by bacteria in primary gut CD4 T cells ex vivo significantly contributes to HIV-1-mediated CD4 T cell death. Counterintuitively, a substantial fraction of gut granzyme B+ CD4 T cells harboring high levels of HIV-1 infection survive via a pathway linked to CD120b/TNFR2. Our findings underscore previously undescribed mechanisms governing the death and survival of gut CD4 T cells during HIV-1 infection that could inform strategies to counter HIV-1 pathogenesis and persistence in this critical tissue compartment.
Collapse
Affiliation(s)
- Kaylee L Mickens
- Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine, 12700 E 19th Ave, Mail Stop B168, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 E 19th Avenue, Mail Stop 8333, Aurora, CO 80045, USA
| | - Stephanie M Dillon
- Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine, 12700 E 19th Ave, Mail Stop B168, Aurora, CO 80045, USA
| | - Kejun Guo
- Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine, 12700 E 19th Ave, Mail Stop B168, Aurora, CO 80045, USA
| | - Ashley N Thompson
- Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine, 12700 E 19th Ave, Mail Stop B168, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 E 19th Avenue, Mail Stop 8333, Aurora, CO 80045, USA
| | - Bradley S Barrett
- Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine, 12700 E 19th Ave, Mail Stop B168, Aurora, CO 80045, USA
| | - Cheyret Wood
- Department of Biostatistics and Informatics, Center for Innovative Design and Analysis, 13001 E 17th Place, Mail Stop B119, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Katerina Kechris
- Department of Biostatistics and Informatics, Center for Innovative Design and Analysis, 13001 E 17th Place, Mail Stop B119, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Mario L Santiago
- Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine, 12700 E 19th Ave, Mail Stop B168, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 E 19th Avenue, Mail Stop 8333, Aurora, CO 80045, USA
| | - Cara C Wilson
- Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine, 12700 E 19th Ave, Mail Stop B168, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 E 19th Avenue, Mail Stop 8333, Aurora, CO 80045, USA
| |
Collapse
|
11
|
Brooks K, Nelson CE, Aguilar C, Hoang TN, Ortiz AM, Langner CA, Yee DS, Flynn JK, Vrba S, Laidlaw E, Vannella KM, Grazioli A, Saharia KK, Purcell M, Singireddy S, Wu J, Stankiewicz J, Chertow DS, Sereti I, Paiardini M, Hickman HD, Via LE, Barber DL, Brenchley JM. SARS-CoV-2 infection perturbs the gastrointestinal tract and induces modest microbial translocation across the intestinal barrier. J Virol 2024; 98:e0128824. [PMID: 39264207 PMCID: PMC11495055 DOI: 10.1128/jvi.01288-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024] Open
Abstract
SARS-CoV-2 infects via the respiratory tract, but COVID-19 includes an array of non-respiratory symptoms, among them gastrointestinal (GI) manifestations such as vomiting and diarrhea. Here we investigated the GI pathology of SARS-CoV-2 infections in rhesus macaques and humans. Macaques experienced mild infection with USA-WA1/2020 and shed viral RNA in the respiratory tract and stool, including subgenomic RNA indicative of replication in the GI tract. Intestinal immune cell populations were disturbed, with significantly fewer proliferating (Ki67+) jejunal B cells in SARS-CoV-2-infected macaques than uninfected ones. Modest translocation of bacteria/bacterial antigen was observed across the colonic epithelium, with a corresponding significant increase in plasma soluble CD14 (sCD14) that may be induced by LPS. Human plasma demonstrated significant decreases in interleukin (IL)-6 and sCD14 upon recovery from COVID-19, suggesting resolution of inflammation and response to translocated bacteria. sCD14 significantly positively correlated with zonulin, an indicator of gut barrier integrity, and IL-6. These results demonstrate that GI perturbations such as microbial translocation can occur in even mild SARS-CoV-2 infections and may contribute to the COVID-19 inflammatory state.IMPORTANCEThis study investigates gastrointestinal (GI) barrier disruption in SARS-CoV-2 infections and how it may contribute to disease. We observed bacteria or bacterial products crossing from the colon interior (the lumen) to the lamina propria during SARS-CoV-2 infection in macaques. Bacteria/bacterial products are tolerated in the lumen but may induce immune responses if they translocate to the lamina propria. We also observed a significant increase in soluble CD14, which is associated with an immune response to bacterial products. In addition, we observed that humans recovering from COVID-19 experienced a significant decrease in soluble CD14, as well as the inflammatory marker interleukin (IL)-6. IL-6 and sCD14 correlated significantly across macaque and human samples. These findings suggest that SARS-CoV-2 infection results in GI barrier disruption that permits microbial translocation and a corresponding immune response. These findings could aid in developing interventions to improve COVID-19 patient outcomes.
Collapse
Affiliation(s)
- Kelsie Brooks
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Christine E. Nelson
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Cynthia Aguilar
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Timothy N. Hoang
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Alexandra M. Ortiz
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Charlotte A. Langner
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Debra S. Yee
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jacob K. Flynn
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sophia Vrba
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth Laidlaw
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kevin M. Vannella
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Critical Care Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Alison Grazioli
- Department of Medicine and Program in Trauma, R. Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kapil K. Saharia
- Division of Infectious Diseases, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Madeleine Purcell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Shreya Singireddy
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jocelyn Wu
- Department of Radiology and Imagining Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Jason Stankiewicz
- Department of Pulmonary and Critical Care Medicine, Geisinger Medical Center, Danville, Pennsylvania, USA
| | - Daniel S. Chertow
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Critical Care Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Irini Sereti
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Mirko Paiardini
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Heather D. Hickman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Laura E. Via
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Tuberculosis Imaging Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel L. Barber
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jason M. Brenchley
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Ebrahimi R, Masouri MM, Salehi Amniyeh Khozani AA, Ramadhan Hussein D, Nejadghaderi SA. Safety and efficacy of fecal microbiota transplantation for viral diseases: A systematic review of clinical trials. PLoS One 2024; 19:e0311731. [PMID: 39432486 PMCID: PMC11493255 DOI: 10.1371/journal.pone.0311731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/21/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Gut microbiota play important roles in several diseases like viral infections. In this systematic review, our objective was to assess the efficacy and safety of fecal microbiota transplantation (FMT) in treating various viral diseases. METHODS We conducted searches on databases including PubMed, Web of Science, Scopus, and Google Scholar until November 2023. Clinical trials reported outcomes related to safety of FMT or its efficacy in patients with viral diseases were included. We excluded other types of studies that enrolled healthy individuals or patients with other disorders and did not use FMT. The assessment of bias risk was conducted using the National Institutes of Health (NIH) study quality evaluation tool. RESULTS Eight studies with total 196 participants were included. Viral diseases were human immunodeficiency virus (HIV), hepatitis B, COVID-19 and Clostridioides difficile coinfection, and cytomegalovirus colitis. In hepatitis B cases, HBeAg clearance was significant in those received FMT (p<0.01), while it was not significant in another one (p = 0.19). A clinical response was noted in 37.5% of patients with cytomegalovirus colitis, with an equal percentage achieving clinical remission post-FMT. There was a significant reduction in Clostridioides difficile relapse rate in FMT group than controls in coinfection of Clostridioides difficile and COVID-19 (2.17% vs. 42.5%, p<0.05). In patients with HIV, partial engraftment of the donor microbiome and increases in alpha diversity were observed after FMT. No severe adverse events were reported. Most studies had fair or good qualities. CONCLUSIONS Our findings revealed FMT as a promising, safe treatment for some viral diseases. It improved viral clearance, clinical outcomes, and inflammation. However, the varying responses and small sample sizes call for more trials on FMT in viral diseases.
Collapse
Affiliation(s)
- Rasoul Ebrahimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | - Seyed Aria Nejadghaderi
- HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
13
|
Soo N, Farinre O, Chahroudi A, Boliar S, Goswami R. A gut check: understanding the interplay of the gastrointestinal microbiome and the developing immune system towards the goal of pediatric HIV remission. Retrovirology 2024; 21:15. [PMID: 39425183 PMCID: PMC11490017 DOI: 10.1186/s12977-024-00648-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
Despite the efficacy of antiretroviral therapy (ART) in reducing the global incidence of vertical HIV transmissions, more than 120,000 children are still infected with the virus each year. Since ART cannot clear the HIV reservoir that is established soon after infection, children living with HIV (CLWH) are forced to rely on therapy for their lives and suffer from long-term drug-related complications. Pediatric HIV infection, like adult infection, is associated with gut microbial dysbiosis, loss of gut epithelial integrity, bacterial translocation, CD4 + T cell depletion, systemic immune activation, and viral reservoir establishment. However, unlike in adults, HIV that is vertically acquired by infants interacts with a gut microbiome that is continuously evolving while concomitantly shaping the infant's immune ontogeny. Therefore, to determine whether there may be interventions that target the HIV reservoir through microbiome-directed approaches, understanding the complex tripartite interactions between the transmitted HIV, the maturing gut microbiome, and the developing immune system during early life is crucial. Importantly, early life is the time when the gut microbiome of an individual is highly dynamic, and this temporal development of the gut microbiome plays a crucial role in educating the maturing immune system of a child. Therefore, manipulation of the gut microbiome of CLWH to a phenotype that can reduce HIV persistence by fostering an antiviral immune system might be an opportune strategy to achieve ART-free viral suppression in CLWH. This review summarizes the current state of knowledge on the vertical transmission of HIV, the developing gut microbiome of CLWH, and the immune landscape of pediatric elite controllers, and explores the prospect of employing microbial modulation as a potential therapeutic approach to achieve ART-free viral suppression in the pediatric population.
Collapse
Affiliation(s)
- Nicole Soo
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Omotayo Farinre
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA, 30322, USA
| | - Saikat Boliar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Ria Goswami
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, 10021, USA.
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
14
|
Wang Q, Shan L. Role of the CARD8 inflammasome in HIV pathogenesis. CELL INSIGHT 2024; 3:100193. [PMID: 39183739 PMCID: PMC11342869 DOI: 10.1016/j.cellin.2024.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 08/27/2024]
Abstract
Human immunodeficiency virus (HIV) continues to be a significant global health challenge despite decades of research and advances in treatment. Substantial gaps in our understanding of the mechanisms of HIV pathogenesis and the host immune responses still exist. The interaction between HIV and these immune responses is pivotal in the disease progression to acquired immunodeficiency syndrome (AIDS). Recently, the caspase recruitment domain-containing protein 8 (CARD8) inflammasome has emerged as a crucial factor in orchestrating innate immune responses to HIV infection and exerting a substantial impact on viral pathogenesis. CARD8 restricts viral replication by detecting the activity of HIV protease. Conversely, it also contributes to the depletion of CD4+ T cells, a key feature of disease progression towards AIDS. The purpose of this review is to summarize the role of the CARD8 inflammasome in HIV pathogenesis, delving into its mechanisms of action and potential implications for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Qiankun Wang
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518000, China
| | - Liang Shan
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| |
Collapse
|
15
|
Al-Talib M, Dimonte S, Humphreys IR. Mucosal T-cell responses to chronic viral infections: Implications for vaccine design. Cell Mol Immunol 2024; 21:982-998. [PMID: 38459243 PMCID: PMC11364786 DOI: 10.1038/s41423-024-01140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/31/2024] [Indexed: 03/10/2024] Open
Abstract
Mucosal surfaces that line the respiratory, gastrointestinal and genitourinary tracts are the major interfaces between the immune system and the environment. Their unique immunological landscape is characterized by the necessity of balancing tolerance to commensal microorganisms and other innocuous exposures against protection from pathogenic threats such as viruses. Numerous pathogenic viruses, including herpesviruses and retroviruses, exploit this environment to establish chronic infection. Effector and regulatory T-cell populations, including effector and resident memory T cells, play instrumental roles in mediating the transition from acute to chronic infection, where a degree of viral replication is tolerated to minimize immunopathology. Persistent antigen exposure during chronic viral infection leads to the evolution and divergence of these responses. In this review, we discuss advances in the understanding of mucosal T-cell immunity during chronic viral infections and how features of T-cell responses develop in different chronic viral infections of the mucosa. We consider how insights into T-cell immunity at mucosal surfaces could inform vaccine strategies: not only to protect hosts from chronic viral infections but also to exploit viruses that can persist within mucosal surfaces as vaccine vectors.
Collapse
Affiliation(s)
- Mohammed Al-Talib
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
- Bristol Medical School, University of Bristol, 5 Tyndall Avenue, Bristol, BS8 1UD, UK
| | - Sandra Dimonte
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Ian R Humphreys
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK.
| |
Collapse
|
16
|
Bohórquez JA, Jagannath C, Xu H, Wang X, Yi G. T Cell Responses during Human Immunodeficiency Virus/ Mycobacterium tuberculosis Coinfection. Vaccines (Basel) 2024; 12:901. [PMID: 39204027 PMCID: PMC11358969 DOI: 10.3390/vaccines12080901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Coinfection with Mycobacterium tuberculosis (Mtb) and the human immunodeficiency virus (HIV) is a significant public health concern. Individuals infected with Mtb who acquire HIV are approximately 16 times more likely to develop active tuberculosis. T cells play an important role as both targets for HIV infection and mediators of the immune response against both pathogens. This review aims to synthesize the current literature and provide insights into the effects of HIV/Mtb coinfection on T cell populations and their contributions to immunity. Evidence from multiple in vitro and in vivo studies demonstrates that T helper responses are severely compromised during coinfection, leading to impaired cytotoxic responses. Moreover, HIV's targeting of Mtb-specific cells, including those within granulomas, offers an explanation for the severe progression of the disease. Herein, we discuss the patterns of differentiation, exhaustion, and transcriptomic changes in T cells during coinfection, as well as the metabolic adaptations that are necessary for T cell maintenance and functionality. This review highlights the interconnectedness of the immune response and the pathogenesis of HIV/Mtb coinfection.
Collapse
Affiliation(s)
- José Alejandro Bohórquez
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA;
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Center for Infectious Diseases and Translational Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA;
| | - Huanbin Xu
- Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, Covington, LA 70112, USA; (H.X.); (X.W.)
| | - Xiaolei Wang
- Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, Covington, LA 70112, USA; (H.X.); (X.W.)
| | - Guohua Yi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA;
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
| |
Collapse
|
17
|
Hu A, Zaongo SD, Harypursat V, Wang X, Ouyang J, Chen Y. HIV-associated neurocognitive disorder: key implications of the microbiota-gut-brain axis. Front Microbiol 2024; 15:1428239. [PMID: 39155987 PMCID: PMC11327151 DOI: 10.3389/fmicb.2024.1428239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
HIV-associated neurocognitive disorder (HAND) is now recognized to be relatively common in people living with HIV (PLWH), and remains a common cause of cognitive impairment. Unfortunately, the fundamental pathogenic processes underlying this specific outcome of HIV infection have not as yet been fully elucidated. With increased interest in research related to the microbiota-gut-brain axis, the gut-brain axis has been shown to play critical roles in regulating central nervous system disorders such as Alzheimer's disease and Parkinson's disease. PLWH are characterized by a particular affliction, referred to as gut-associated dysbiosis syndrome, which provokes an alteration in microbial composition and diversity, and of their associated metabolite composition within the gut. Interestingly, the gut microbiota has also been recognized as a key element, which both positively and negatively influences human brain health, including the functioning and development of the central nervous system (CNS). In this review, based on published evidence, we critically discuss the relevant interactions between the microbiota-gut-brain axis and the pathogenesis of HAND in the context of HIV infection. It is likely that HAND manifestation in PLWH mainly results from (i) gut-associated dysbiosis syndrome and a leaky gut on the one hand and (ii) inflammation on the other hand. In other words, the preceding features of HIV infection negatively alter the composition of the gut microbiota (microbes and their associated metabolites) and promote proinflammatory immune responses which singularly or in tandem damage neurons and/or induce inadequate neuronal signaling. Thus, HAND is fairly prevalent in PLWH. This work aims to demonstrate that in the quest to prevent and possibly treat HAND, the gut microbiota may ultimately represent a therapeutically targetable "host factor."
Collapse
Affiliation(s)
- Aizhen Hu
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Silvere D. Zaongo
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Vijay Harypursat
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Xin Wang
- Phase I Clinical Trial Center, Chonggang General Hospital, Chongqing, China
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Yaokai Chen
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
18
|
Zhou Z, Guo J, Hetrick B, Tiwari S, Haikerwal A, Han Y, Bond VC, Huang MB, Mankowski MK, Snyder BA, Hogan PA, Sharma SK, Liotta DC, Reid TE, Wilson LJ, Wu Y. Characterization of a CXCR4 antagonist TIQ-15 with dual tropic HIV entry inhibition properties. PLoS Pathog 2024; 20:e1012448. [PMID: 39146384 PMCID: PMC11349218 DOI: 10.1371/journal.ppat.1012448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/27/2024] [Accepted: 07/25/2024] [Indexed: 08/17/2024] Open
Abstract
The chemokine co-receptors CXCR4 and CCR5 mediate HIV entry and signal transduction necessary for viral infection. However, to date only the CCR5 antagonist maraviroc is approved for treating HIV-1 infection. Given that approximately 50% of late-stage HIV patients also develop CXCR4-tropic virus, clinical anti-HIV CXCR4 antagonists are needed. Here, we describe a novel allosteric CXCR4 antagonist TIQ-15 which inhibits CXCR4-tropic HIV-1 infection of primary and transformed CD4 T cells. TIQ-15 blocks HIV entry with an IC50 of 13 nM. TIQ-15 also inhibits SDF-1α/CXCR4-mediated cAMP production, cofilin activation, and chemotactic signaling. In addition, TIQ-15 induces CXCR4 receptor internalization without affecting the levels of the CD4 receptor, suggesting that TIQ-15 may act through a novel allosteric site on CXCR4 for blocking HIV entry. Furthermore, TIQ-15 did not inhibit VSV-G pseudotyped HIV-1 infection, demonstrating its specificity in blocking CXCR4-tropic virus entry, but not CXCR4-independent endocytosis or post-entry steps. When tested against a panel of clinical isolates, TIQ-15 showed potent inhibition against CXCR4-tropic and dual-tropic viruses, and moderate inhibition against CCR5-tropic isolates. This observation was followed by a co-dosing study with maraviroc, and TIQ-15 demonstrated synergistic activity. In summary, here we describe a novel HIV-1 entry inhibitor, TIQ-15, which potently inhibits CXCR4-tropic viruses while possessing low-level synergistic activities against CCR5-tropic viruses. TIQ-15 could potentially be co-dosed with the CCR5 inhibitor maraviroc to block viruses of mixed tropisms.
Collapse
Affiliation(s)
- Zheng Zhou
- Center for Infectious Disease Research, George Mason University, Manassas, Virginia, United States of America
| | - Jia Guo
- Center for Infectious Disease Research, George Mason University, Manassas, Virginia, United States of America
| | - Brian Hetrick
- Center for Infectious Disease Research, George Mason University, Manassas, Virginia, United States of America
| | - Sameer Tiwari
- Center for Infectious Disease Research, George Mason University, Manassas, Virginia, United States of America
| | - Amrita Haikerwal
- Center for Infectious Disease Research, George Mason University, Manassas, Virginia, United States of America
| | - Yang Han
- Center for Infectious Disease Research, George Mason University, Manassas, Virginia, United States of America
| | - Vincent C. Bond
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Ming B. Huang
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Marie K. Mankowski
- Department of Infectious Disease Research, Southern Research Institute, Frederick, Maryland, United States of America
| | - Beth A. Snyder
- Department of Infectious Disease Research, Southern Research Institute, Frederick, Maryland, United States of America
| | - Priscilla A. Hogan
- Department of Infectious Disease Research, Southern Research Institute, Frederick, Maryland, United States of America
| | - Savita K. Sharma
- Department of Chemistry, Emory University, Atlanta, Georgia, United States of America
| | - Dennis C. Liotta
- Department of Chemistry, Emory University, Atlanta, Georgia, United States of America
| | - Terry-Elinor Reid
- Center for Infectious Disease Research, George Mason University, Manassas, Virginia, United States of America
| | - Lawrence J. Wilson
- Department of Chemistry, Emory University, Atlanta, Georgia, United States of America
| | - Yuntao Wu
- Center for Infectious Disease Research, George Mason University, Manassas, Virginia, United States of America
| |
Collapse
|
19
|
Roesmann F, Sertznig H, Klaassen K, Wilhelm A, Heininger D, Heß S, Elsner C, Marschalek R, Santiago ML, Esser S, Sutter K, Dittmer U, Widera M. The interferon-regulated host factor hnRNPA0 modulates HIV-1 production by interference with LTR activity, mRNA trafficking, and programmed ribosomal frameshifting. J Virol 2024; 98:e0053424. [PMID: 38899932 PMCID: PMC11265465 DOI: 10.1128/jvi.00534-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The interplay between host factors and viral components impacts viral replication efficiency profoundly. Members of the cellular heterogeneous nuclear ribonucleoprotein family (hnRNPs) have been extensively studied as HIV-1 host dependency factors, but whether they play a role in innate immunity is currently unknown. This study aimed to identify hnRNPA0 as a type I interferon (IFN)-repressed host factor in HIV-1-infected cells. Knockdown of hnRNPA0, a situation that mirrors conditions under IFN stimulation, increased LTR activity, export of unspliced HIV-1 mRNA, viral particle production, and thus, increased infectivity. Conversely, hnRNPA0 overexpression primarily reduced plasmid-driven and integrated HIV-1 long terminal repeat (LTR) activity, significantly decreasing total viral mRNA and protein levels. In addition, high levels of hnRNPA0 significantly reduced the HIV-1 programmed ribosomal frameshifting efficiency, resulting in a shift in the HIV-1 p55/p15 ratio. The HIV-1 alternative splice site usage remained largely unaffected by altered hnRNPA0 levels suggesting that the synergistic inhibition of the LTR activity and viral mRNA transcription, as well as impaired ribosomal frameshifting efficiency, are critical factors for efficient HIV-1 replication regulated by hnRNPA0. The pleiotropic dose-dependent effects under high or low hnRNPA0 levels were further confirmed in HIV-1-infected Jurkat cells. Finally, our study revealed that hnRNPA0 levels in PBMCs were lower in therapy-naive HIV-1-infected individuals compared to healthy controls. Our findings highlight a significant role for hnRNPA0 in HIV-1 replication and suggest that its IFN-I-regulated expression levels are critical for viral fitness allowing replication in an antiviral environment.IMPORTANCERNA-binding proteins, in particular, heterogeneous nuclear ribonucleoproteins (hnRNPs), have been extensively studied. Some act as host dependency factors for HIV-1 since they are involved in multiple cellular gene expression processes. Our study revealed hnRNPA0 as an IFN-regulated host factor, that is differently expressed after IFN-I treatment in HIV-1 target cells and lower expressed in therapy-naïve HIV-1-infected individuals. Our findings demonstrate the significant pleiotropic role of hnRNPA0 in viral replication: In high concentrations, hnRNPA0 limits viral replication by negatively regulating Tat-LTR transcription, retaining unspliced mRNA in the nucleus, and significantly impairing programmed ribosomal frameshifting. Low hnRNPA0 levels as observed in IFN-treated THP-1 cells, particularly facilitate HIV LTR activity and unspliced mRNA export, suggesting a role in innate immunity in favor of HIV replication. Understanding the mode of action between hnRNPA0 and HIV-1 gene expression might help to identify novel therapeutically strategies against HIV-1 and other viruses.
Collapse
Affiliation(s)
- Fabian Roesmann
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt, Germany
| | - Helene Sertznig
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Katleen Klaassen
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt, Germany
| | - Alexander Wilhelm
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt, Germany
| | - Delia Heininger
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt, Germany
| | - Stefanie Heß
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt, Germany
| | - Carina Elsner
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology, Goethe-University, Frankfurt am Main, Hessen, Germany
| | - Mario L. Santiago
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Stefan Esser
- Institute for the Research on HIV and AIDS-associated Diseases University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Department of Dermatology, HPSTD Outpatient Clinic, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Institute for the Research on HIV and AIDS-associated Diseases University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Institute for the Research on HIV and AIDS-associated Diseases University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Marek Widera
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt, Germany
| |
Collapse
|
20
|
Falasca K, Ucciferri C, Di Gasbarro A, Borrelli P, Di Nicola M, Frisenda C, Costantini E, Aielli L, Reale M, Vecchiet J. Cytokines assets in PLWH in two-drug dolutergravir based or three-drug antiretroviral regimen. BMC Infect Dis 2024; 24:665. [PMID: 38961336 PMCID: PMC11223302 DOI: 10.1186/s12879-024-09565-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
To minimize the toxicity and impact of combined antiretroviral therapy (cART) on the lifestyle of people living with Human Immunodeficiency Virus (PLWH), scientific community evaluated the efficacy, safety and sustained virologic response of two drugs antiretroviral regimens, in particular dolutegravir (DTG). The effects of deintensification therapy on inflammatory settings are currently unknown in PLWH. Thus, our study explored the inflammatory state in virologically suppressed HIV individuals between patients in treatment with a DTG-containing dual therapy (2DR) versus triple regimen therapies (3DR). We enrolled a total of 116 subjects in 2DRs or 3DRs regimens, and the plasma levels of pro- and anti-inflammatory cytokines (in particular IL-1β, IL-10, IL-18, IL-33, IL-36 and IFN-γ) have been evaluated. CD4 + cell's median value was 729.0 cell/µL in the 3DR group and 771.5 cell/µL in 2DR group; the viral load was negative in all patients. Significant differences were found in levels of IL-18 (648.8 cell/µL in 3DR group vs. 475.0 cell/µL in 2DR group, p = 0.034) and IL-36 (281.7 cell/µL in 3DR group vs. 247.0 cell/µL in 2DR group, p = 0.050), and a correlation between IL-18 and IL-36 was found in 3DR group (rho = 0.266, p = 0.015). This single-center retrospective pharmacological study confirms the absence of significant differences in IL-1β, IL-10, IL-33, and IFN-γ levels between patients on two-drug antiretroviral regimens compared to patients on 3DR antiretroviral regimens. Patients in 2DR show greater control over IL-18 and IL-36 serum levels, cytokines related to an increased cardiovascular risk and development of age-related chronic diseases. Based on our results, we suggest that DTG-based 2DR antiretroviral regimens could be associated with better control of the chronic inflammation that characterizes the population living with HIV in effective ART.
Collapse
Affiliation(s)
- Katia Falasca
- Clinic of Infectious Diseases, Department of Medicine and Science of Aging, University "G. d'Annunzio", Via dei Vestini, Chieti, 66100, Italy.
| | - Claudio Ucciferri
- Clinic of Infectious Diseases, Department of Medicine and Science of Aging, University "G. d'Annunzio", Via dei Vestini, Chieti, 66100, Italy
| | - Alessandro Di Gasbarro
- Clinic of Infectious Diseases, Department of Medicine and Science of Aging, University "G. d'Annunzio", Via dei Vestini, Chieti, 66100, Italy
| | - Paola Borrelli
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio", Via dei Vestini, Chieti, 66100, Italy
| | - Marta Di Nicola
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio", Via dei Vestini, Chieti, 66100, Italy
| | - Carla Frisenda
- Clinic of Infectious Diseases, Department of Medicine and Science of Aging, University "G. d'Annunzio", Via dei Vestini, Chieti, 66100, Italy
| | - Erica Costantini
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio", Via dei Vestini, Chieti, 66100, Italy
| | - Lisa Aielli
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio", Via dei Vestini, Chieti, 66100, Italy
| | - Marcella Reale
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio", Via dei Vestini, Chieti, 66100, Italy
| | - Jacopo Vecchiet
- Clinic of Infectious Diseases, Department of Medicine and Science of Aging, University "G. d'Annunzio", Via dei Vestini, Chieti, 66100, Italy
| |
Collapse
|
21
|
Hmiel L, Zhang S, Obare LM, Santana MADO, Wanjalla CN, Titanji BK, Hileman CO, Bagchi S. Inflammatory and Immune Mechanisms for Atherosclerotic Cardiovascular Disease in HIV. Int J Mol Sci 2024; 25:7266. [PMID: 39000373 PMCID: PMC11242562 DOI: 10.3390/ijms25137266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Atherosclerotic vascular disease disproportionately affects persons living with HIV (PLWH) compared to those without. The reasons for the excess risk include dysregulated immune response and inflammation related to HIV infection itself, comorbid conditions, and co-infections. Here, we review an updated understanding of immune and inflammatory pathways underlying atherosclerosis in PLWH, including effects of viral products, soluble mediators and chemokines, innate and adaptive immune cells, and important co-infections. We also present potential therapeutic targets which may reduce cardiovascular risk in PLWH.
Collapse
Affiliation(s)
- Laura Hmiel
- Department of Medicine, Division of Infectious Disease, MetroHealth Medical Center and Case Western Reserve University, Cleveland, OH 44109, USA
| | - Suyu Zhang
- Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Laventa M. Obare
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Celestine N. Wanjalla
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Boghuma K. Titanji
- Division of Infectious Diseases, Emory University, Atlanta, GA 30322, USA
| | - Corrilynn O. Hileman
- Department of Medicine, Division of Infectious Disease, MetroHealth Medical Center and Case Western Reserve University, Cleveland, OH 44109, USA
| | - Shashwatee Bagchi
- Division of Infectious Diseases, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
22
|
Zhou L, Wang X, Xiao Q, Khan S, Ho WZ. Flagellin Restricts HIV-1 Infection of Macrophages through Modulation of Viral Entry Receptors and CC Chemokines. Viruses 2024; 16:1063. [PMID: 39066226 PMCID: PMC11281555 DOI: 10.3390/v16071063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/18/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Both bacteria product flagellin and macrophages are implicated in HIV-1 infection/disease progression. However, the impact of their interaction on HIV-1 infection and the associated mechanisms remain to be determined. We thus examined the effect of the flagellins on HIV-1 infection of primary human macrophages. We observed that the pretreatment of macrophages with the flagellins from the different bacteria significantly inhibited HIV-1 infection. The mechanistic investigation showed that the flagellin treatment of macrophages downregulated the major HIV-1 entry receptors (CD4 and CCR5) and upregulated the CC chemokines (MIP-1α, MIP-1β and RANTES), the ligands of CCR5. These effects of the flagellin could be compromised by a toll-like receptor 5 (TLR5) antagonist. Given the important role of flagellin as a vaccine adjuvant in TLR5 activation-mediated immune regulation and in HIV-1 infection of macrophages, future investigations are necessary to determine the in vivo impact of flagellin-TLR5 interaction on macrophage-mediated innate immunity against HIV-1 infection and the effectiveness of flagellin adjuvant-based vaccines studies.
Collapse
Affiliation(s)
| | | | | | | | - Wen-Zhe Ho
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| |
Collapse
|
23
|
Ogutu S, Mohammed M, Mwambi H. Investigating the effects of cytokine biomarkers on HIV incidence: a case study for individuals randomized to pre-exposure prophylaxis vs. control. Front Public Health 2024; 12:1393627. [PMID: 38983264 PMCID: PMC11231092 DOI: 10.3389/fpubh.2024.1393627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Introduction Understanding and identifying the immunological markers and clinical information linked with HIV acquisition is crucial for effectively implementing Pre-Exposure Prophylaxis (PrEP) to prevent HIV acquisition. Prior analysis on HIV incidence outcomes have predominantly employed proportional hazards (PH) models, adjusting solely for baseline covariates. Therefore, models that integrate cytokine biomarkers, particularly as time-varying covariates, are sorely needed. Methods We built a simple model using the Cox PH to investigate the impact of specific cytokine profiles in predicting the overall HIV incidence. Further, Kaplan-Meier curves were used to compare HIV incidence rates between the treatment and placebo groups while assessing the overall treatment effectiveness. Utilizing stepwise regression, we developed a series of Cox PH models to analyze 48 longitudinally measured cytokine profiles. We considered three kinds of effects in the cytokine profile measurements: average, difference, and time-dependent covariate. These effects were combined with baseline covariates to explore their influence on predictors of HIV incidence. Results Comparing the predictive performance of the Cox PH models developed using the AIC metric, model 4 (Cox PH model with time-dependent cytokine) outperformed the others. The results indicated that the cytokines, interleukin (IL-2, IL-3, IL-5, IL-10, IL-16, IL-12P70, and IL-17 alpha), stem cell factor (SCF), beta nerve growth factor (B-NGF), tumor necrosis factor alpha (TNF-A), interferon (IFN) alpha-2, serum stem cell growth factor (SCG)-beta, platelet-derived growth factor (PDGF)-BB, granulocyte macrophage colony-stimulating factor (GM-CSF), tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), and cutaneous T-cell-attracting chemokine (CTACK) were significantly associated with HIV incidence. Baseline predictors significantly associated with HIV incidence when considering cytokine effects included: age of oldest sex partner, age at enrollment, salary, years with a stable partner, sex partner having any other sex partner, husband's income, other income source, age at debut, years lived in Durban, and sex in the last 30 days. Discussion Overall, the inclusion of cytokine effects enhanced the predictive performance of the models, and the PrEP group exhibited reduced HIV incidences compared to the placebo group.
Collapse
Affiliation(s)
- Sarah Ogutu
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Mohanad Mohammed
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa
- School of Nursing and Public Health, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Henry Mwambi
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
24
|
Symmonds J, Gaufin T, Xu C, Raehtz KD, Ribeiro RM, Pandrea I, Apetrei C. Making a Monkey out of Human Immunodeficiency Virus/Simian Immunodeficiency Virus Pathogenesis: Immune Cell Depletion Experiments as a Tool to Understand the Immune Correlates of Protection and Pathogenicity in HIV Infection. Viruses 2024; 16:972. [PMID: 38932264 PMCID: PMC11209256 DOI: 10.3390/v16060972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Understanding the underlying mechanisms of HIV pathogenesis is critical for designing successful HIV vaccines and cure strategies. However, achieving this goal is complicated by the virus's direct interactions with immune cells, the induction of persistent reservoirs in the immune system cells, and multiple strategies developed by the virus for immune evasion. Meanwhile, HIV and SIV infections induce a pandysfunction of the immune cell populations, making it difficult to untangle the various concurrent mechanisms of HIV pathogenesis. Over the years, one of the most successful approaches for dissecting the immune correlates of protection in HIV/SIV infection has been the in vivo depletion of various immune cell populations and assessment of the impact of these depletions on the outcome of infection in non-human primate models. Here, we present a detailed analysis of the strategies and results of manipulating SIV pathogenesis through in vivo depletions of key immune cells populations. Although each of these methods has its limitations, they have all contributed to our understanding of key pathogenic pathways in HIV/SIV infection.
Collapse
Affiliation(s)
- Jen Symmonds
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Thaidra Gaufin
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA;
| | - Cuiling Xu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kevin D. Raehtz
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
25
|
Obare LM, Temu T, Mallal SA, Wanjalla CN. Inflammation in HIV and Its Impact on Atherosclerotic Cardiovascular Disease. Circ Res 2024; 134:1515-1545. [PMID: 38781301 PMCID: PMC11122788 DOI: 10.1161/circresaha.124.323891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
People living with HIV have a 1.5- to 2-fold increased risk of developing cardiovascular disease. Despite treatment with highly effective antiretroviral therapy, people living with HIV have chronic inflammation that makes them susceptible to multiple comorbidities. Several factors, including the HIV reservoir, coinfections, clonal hematopoiesis of indeterminate potential (CHIP), microbial translocation, and antiretroviral therapy, may contribute to the chronic state of inflammation. Within the innate immune system, macrophages harbor latent HIV and are among the prominent immune cells present in atheroma during the progression of atherosclerosis. They secrete inflammatory cytokines such as IL (interleukin)-6 and tumor necrosis-α that stimulate the expression of adhesion molecules on the endothelium. This leads to the recruitment of other immune cells, including cluster of differentiation (CD)8+ and CD4+ T cells, also present in early and late atheroma. As such, cells of the innate and adaptive immune systems contribute to both systemic inflammation and vascular inflammation. On a molecular level, HIV-1 primes the NLRP3 (NLR family pyrin domain containing 3) inflammasome, leading to an increased expression of IL-1β, which is important for cardiovascular outcomes. Moreover, activation of TLRs (toll-like receptors) by HIV, gut microbes, and substance abuse further activates the NLRP3 inflammasome pathway. Finally, HIV proteins such as Nef (negative regulatory factor) can inhibit cholesterol efflux in monocytes and macrophages through direct action on the cholesterol transporter ABCA1 (ATP-binding cassette transporter A1), which promotes the formation of foam cells and the progression of atherosclerotic plaque. Here, we summarize the stages of atherosclerosis in the context of HIV, highlighting the effects of HIV, coinfections, and antiretroviral therapy on cells of the innate and adaptive immune system and describe current and future interventions to reduce residual inflammation and improve cardiovascular outcomes among people living with HIV.
Collapse
Affiliation(s)
- Laventa M. Obare
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN (L.M.O., S.A.M., C.N.W.)
| | - Tecla Temu
- Department of Pathology, Harvard Medical School, Boston, MA (T.T.)
| | - Simon A. Mallal
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN (L.M.O., S.A.M., C.N.W.)
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN (S.A.M.)
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN (S.A.M.)
- Institute for Immunology and Infectious Diseases, Murdoch University, WA, Western Australia (S.A.M.)
| | - Celestine N. Wanjalla
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN (L.M.O., S.A.M., C.N.W.)
| |
Collapse
|
26
|
Thirugnanam S, Rout N. A Perfect Storm: The Convergence of Aging, Human Immunodeficiency Virus Infection, and Inflammasome Dysregulation. Curr Issues Mol Biol 2024; 46:4768-4786. [PMID: 38785555 PMCID: PMC11119826 DOI: 10.3390/cimb46050287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
The emergence of combination antiretroviral therapy (cART) has greatly transformed the life expectancy of people living with HIV (PWH). Today, over 76% of the individuals with HIV have access to this life-saving therapy. However, this progress has come with a new challenge: an increase in age-related non-AIDS conditions among patients with HIV. These conditions manifest earlier in PWH than in uninfected individuals, accelerating the aging process. Like PWH, the uninfected aging population experiences immunosenescence marked by an increased proinflammatory environment. This phenomenon is linked to chronic inflammation, driven in part by cellular structures called inflammasomes. Inflammatory signaling pathways activated by HIV-1 infection play a key role in inflammasome formation, suggesting a crucial link between HIV and a chronic inflammatory state. This review outlines the inflammatory processes triggered by HIV-1 infection and aging, with a focus on the inflammasomes. This review also explores current research regarding inflammasomes and potential strategies for targeting inflammasomes to mitigate inflammation. Further research on inflammasome signaling presents a unique opportunity to develop targeted interventions and innovative therapeutic modalities for combating HIV and aging-associated inflammatory processes.
Collapse
Affiliation(s)
- Siva Thirugnanam
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA;
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Namita Rout
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA;
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
27
|
Persaud AT, Khela J, Fernandes C, Chaphekar D, Burnie J, Tang VA, Colpitts CC, Guzzo C. Virion-incorporated CD14 enables HIV-1 to bind LPS and initiate TLR4 signaling in immune cells. J Virol 2024; 98:e0036324. [PMID: 38661384 PMCID: PMC11092368 DOI: 10.1128/jvi.00363-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/01/2024] [Indexed: 04/26/2024] Open
Abstract
HIV-1 has a broad range of nuanced interactions with the immune system, and the incorporation of cellular proteins by nascent virions continues to redefine our understanding of the virus-host relationship. Proteins located at the sites of viral egress can be selectively incorporated into the HIV-1 envelope, imparting new functions and phenotypes onto virions, and impacting viral spread and disease. Using virion capture assays and western blot, we show that HIV-1 can incorporate the myeloid antigen CD14 into its viral envelope. Virion-incorporated CD14 remained biologically active and able to bind its natural ligand, bacterial lipopolysaccharide (LPS), as demonstrated by flow virometry and immunoprecipitation assays. Using a Toll-like receptor 4 (TLR4) reporter cell line, we also demonstrated that virions with bound LPS can trigger TLR4 signaling to activate transcription factors that regulate inflammatory gene expression. Complementary assays with THP-1 monocytes demonstrated enhanced secretion of inflammatory cytokines like tumor necrosis factor alpha (TNF-α) and the C-C chemokine ligand 5 (CCL5), when exposed to LPS-loaded virus. These data highlight a new type of interplay between HIV-1 and the myeloid cell compartment, a previously well-established cellular contributor to HIV-1 pathogenesis and inflammation. Persistent gut inflammation is a hallmark of chronic HIV-1 infection, and contributing to this effect is the translocation of microbes across the gut epithelium. Our data herein provide proof of principle that virion-incorporated CD14 could be a novel mechanism through which HIV-1 can drive chronic inflammation, facilitated by HIV-1 particles binding bacterial LPS and initiating inflammatory signaling in TLR4-expressing cells.IMPORTANCEHIV-1 establishes a lifelong infection accompanied by numerous immunological changes. Inflammation of the gut epithelia, exacerbated by the loss of mucosal T cells and cytokine dysregulation, persists during HIV-1 infection. Feeding back into this loop of inflammation is the translocation of intestinal microbes across the gut epithelia, resulting in the systemic dissemination of bacterial antigens, like lipopolysaccharide (LPS). Our group previously demonstrated that the LPS receptor, CD14, can be readily incorporated by HIV-1 particles, supporting previous clinical observations of viruses derived from patient plasma. We now show that CD14 can be incorporated by several primary HIV-1 isolates and that this virion-incorporated CD14 can remain functional, enabling HIV-1 to bind to LPS. This subsequently allowed CD14+ virions to transfer LPS to monocytic cells, eliciting pro-inflammatory signaling and cytokine secretion. We posit here that virion-incorporated CD14 is a potential contributor to the dysregulated immune responses present in the setting of HIV-1 infection.
Collapse
Affiliation(s)
- Arvin T. Persaud
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Jasmin Khela
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Claire Fernandes
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Deepa Chaphekar
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan Burnie
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Vera A. Tang
- Flow Cytometry and Virometry Core Facility, Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Che C. Colpitts
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Christina Guzzo
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Calado M, Ferreira R, Pires D, Santos-Costa Q, Anes E, Brites D, Azevedo-Pereira JM. Unravelling the triad of neuroinvasion, neurodissemination, and neuroinflammation of human immunodeficiency virus type 1 in the central nervous system. Rev Med Virol 2024; 34:e2534. [PMID: 38588024 DOI: 10.1002/rmv.2534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/05/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
Since the identification of human immunodeficiency virus type 1 (HIV-1) in 1983, many improvements have been made to control viral replication in the peripheral blood and to treat opportunistic infections. This has increased life expectancy but also the incidence of age-related central nervous system (CNS) disorders and HIV-associated neurodegeneration/neurocognitive impairment and depression collectively referred to as HIV-associated neurocognitive disorders (HAND). HAND encompasses a spectrum of different clinical presentations ranging from milder forms such as asymptomatic neurocognitive impairment or mild neurocognitive disorder to a severe HIV-associated dementia (HAD). Although control of viral replication and suppression of plasma viral load with combination antiretroviral therapy has reduced the incidence of HAD, it has not reversed milder forms of HAND. The objective of this review, is to describe the mechanisms by which HIV-1 invades and disseminates in the CNS, a crucial event leading to HAND. The review will present the evidence that underlies the relationship between HIV infection and HAND. Additionally, recent findings explaining the role of neuroinflammation in the pathogenesis of HAND will be discussed, along with prospects for treatment and control.
Collapse
Affiliation(s)
- Marta Calado
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Rita Ferreira
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - David Pires
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Center for Interdisciplinary Research in Health, Católica Medical School, Universidade Católica Portuguesa, Estrada Octávio Pato, Rio de Mouro, Portugal
| | - Quirina Santos-Costa
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Elsa Anes
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Dora Brites
- Neuroinflammation, Signaling and Neuroregeneration Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - José Miguel Azevedo-Pereira
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
29
|
Anidi IU, Sakai S, Brooks K, Fling SP, Wagner MJ, Lurain K, Lindestam Arlehamn CS, Sette A, Knox KS, Brenchley JM, Uldrick TS, Sharon E, Barber DL. Exacerbation of CMV and Nontuberculous Mycobacterial Infections Following PD-1 Blockade for HIV-Associated Kaposi Sarcoma. Open Forum Infect Dis 2024; 11:ofae183. [PMID: 38680611 PMCID: PMC11049581 DOI: 10.1093/ofid/ofae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
Blockade of the co-inhibitory receptor PD-1 enhances antitumor responses by boosting the function of antigen-specific T cells. Although rare, PD-1 blockade in patients with cancer can lead to exacerbation of infection-associated pathology. Here, we detail the case of a 38-year-old man who was enrolled in a clinical trial for assessment of the safety and activity of anti-PD-1 therapy for Kaposi sarcoma in people with HIV well-controlled on antiretroviral therapy. Less than a week after receiving the first dose of anti-PD-1 antibody (pembrolizumab), he presented with severe abdominal pain associated with sudden exacerbations of preexisting cytomegalovirus (CMV) enteritis and nontuberculous mycobacterial mesenteric lymphadenitis. Plasma biomarkers of gastrointestinal tract damage were highly elevated compared with healthy controls, consistent with HIV-associated loss of gut epithelial barrier integrity. Moreover, CMV-specific CD8 T cells expressed high levels of PD-1, and 7 days following PD-1 blockade, there was an increase in the frequency of activated CD38+ Ki67+ CMV-specific CD8 T cells. This case highlights the potential for PD-1 blockade to drive rapid exacerbations of inflammatory symptoms when administered to individuals harboring multiple unresolved infections.
Collapse
Affiliation(s)
- Ifeanyichukwu U Anidi
- Critical Care Medicine and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Shunsuke Sakai
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kelsie Brooks
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Steven P Fling
- Cancer Immunotherapy Trials Network, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Michael J Wagner
- Division of Medical Oncology, University of Washington and Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kathryn Lurain
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Cecilia S Lindestam Arlehamn
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, California, USA
| | - Kenneth S Knox
- Department of Internal Medicine, College of Medicine Phoenix, University of Arizona Health Sciences, Phoenix, Arizona, USA
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Thomas S Uldrick
- Cancer Immunotherapy Trials Network, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Elad Sharon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland, USA
| | - Daniel L Barber
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
30
|
Johansson E, Nazziwa J, Freyhult E, Hong MG, Lindman J, Neptin M, Karlson S, Rezeli M, Biague AJ, Medstrand P, Månsson F, Norrgren H, Esbjörnsson J, Jansson M. HIV-2 mediated effects on target and bystander cells induce plasma proteome remodeling. iScience 2024; 27:109344. [PMID: 38500818 PMCID: PMC10945182 DOI: 10.1016/j.isci.2024.109344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/23/2023] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
Despite low or undetectable plasma viral load, people living with HIV-2 (PLWH2) typically progress toward AIDS. The driving forces behind HIV-2 disease progression and the role of viremia are still not known, but low-level replication in tissues is believed to play a role. To investigate the impact of viremic and aviremic HIV-2 infection on target and bystander cell pathology, we used data-independent acquisition mass spectrometry to determine plasma signatures of tissue and cell type engagement. Proteins derived from target and bystander cells in multiple tissues, such as the gastrointestinal tract and brain, were detected at elevated levels in plasma of PLWH2, compared with HIV negative controls. Moreover, viremic HIV-2 infection appeared to induce enhanced release of proteins from a broader range of tissues compared to aviremic HIV-2 infection. This study expands the knowledge on the link between plasma proteome remodeling and the pathological cell engagement in tissues during HIV-2 infection.
Collapse
Affiliation(s)
- Emil Johansson
- Department of Translational Medicine, Lund University, Lund, Sweden
- Lund University Virus Centre, Lund, Sweden
| | - Jamirah Nazziwa
- Department of Translational Medicine, Lund University, Lund, Sweden
- Lund University Virus Centre, Lund, Sweden
| | - Eva Freyhult
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mun-Gwan Hong
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Jacob Lindman
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Malin Neptin
- Department of Translational Medicine, Lund University, Lund, Sweden
- Lund University Virus Centre, Lund, Sweden
| | - Sara Karlson
- Lund University Virus Centre, Lund, Sweden
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Melinda Rezeli
- BioMS – Swedish National Infrastructure for Biological Mass Spectrometry, Lund University, Lund, Sweden
| | | | - Patrik Medstrand
- Department of Translational Medicine, Lund University, Lund, Sweden
- Lund University Virus Centre, Lund, Sweden
| | - Fredrik Månsson
- Department of Translational Medicine, Lund University, Lund, Sweden
| | - Hans Norrgren
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Joakim Esbjörnsson
- Department of Translational Medicine, Lund University, Lund, Sweden
- Lund University Virus Centre, Lund, Sweden
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Marianne Jansson
- Lund University Virus Centre, Lund, Sweden
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - for the SWEGUB CORE group
- Department of Translational Medicine, Lund University, Lund, Sweden
- Lund University Virus Centre, Lund, Sweden
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Laboratory Medicine, Lund University, Lund, Sweden
- BioMS – Swedish National Infrastructure for Biological Mass Spectrometry, Lund University, Lund, Sweden
- National Public Health Laboratory, Bissau, Guinea-Bissau
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
31
|
Mbonye U, Karn J. The cell biology of HIV-1 latency and rebound. Retrovirology 2024; 21:6. [PMID: 38580979 PMCID: PMC10996279 DOI: 10.1186/s12977-024-00639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024] Open
Abstract
Transcriptionally latent forms of replication-competent proviruses, present primarily in a small subset of memory CD4+ T cells, pose the primary barrier to a cure for HIV-1 infection because they are the source of the viral rebound that almost inevitably follows the interruption of antiretroviral therapy. Over the last 30 years, many of the factors essential for initiating HIV-1 transcription have been identified in studies performed using transformed cell lines, such as the Jurkat T-cell model. However, as highlighted in this review, several poorly understood mechanisms still need to be elucidated, including the molecular basis for promoter-proximal pausing of the transcribing complex and the detailed mechanism of the delivery of P-TEFb from 7SK snRNP. Furthermore, the central paradox of HIV-1 transcription remains unsolved: how are the initial rounds of transcription achieved in the absence of Tat? A critical limitation of the transformed cell models is that they do not recapitulate the transitions between active effector cells and quiescent memory T cells. Therefore, investigation of the molecular mechanisms of HIV-1 latency reversal and LRA efficacy in a proper physiological context requires the utilization of primary cell models. Recent mechanistic studies of HIV-1 transcription using latently infected cells recovered from donors and ex vivo cellular models of viral latency have demonstrated that the primary blocks to HIV-1 transcription in memory CD4+ T cells are restrictive epigenetic features at the proviral promoter, the cytoplasmic sequestration of key transcription initiation factors such as NFAT and NF-κB, and the vanishingly low expression of the cellular transcription elongation factor P-TEFb. One of the foremost schemes to eliminate the residual reservoir is to deliberately reactivate latent HIV-1 proviruses to enable clearance of persisting latently infected cells-the "Shock and Kill" strategy. For "Shock and Kill" to become efficient, effective, non-toxic latency-reversing agents (LRAs) must be discovered. Since multiple restrictions limit viral reactivation in primary cells, understanding the T-cell signaling mechanisms that are essential for stimulating P-TEFb biogenesis, initiation factor activation, and reversing the proviral epigenetic restrictions have become a prerequisite for the development of more effective LRAs.
Collapse
Affiliation(s)
- Uri Mbonye
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
32
|
Zhou J, Yang Y, Xie Z, Lu D, Huang J, Lan L, Guo B, Yang X, Wang Q, Li Z, Zhang Y, Yang X, Ai S, Liu N, Cui P, Liang H, Ye L, Huang J. Dysbiosis of gut microbiota and metabolites during AIDS: implications for CD4 + T cell reduction and immune activation. AIDS 2024; 38:633-644. [PMID: 38061029 PMCID: PMC10942204 DOI: 10.1097/qad.0000000000003812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/11/2023] [Accepted: 11/29/2023] [Indexed: 03/16/2024]
Abstract
OBJECTIVE Identifying the gut microbiota associated with host immunity in the AIDS stage. DESIGN We performed a cross-sectional study. METHODS We recruited people with HIV (PWH) in the AIDS or non-AIDS stage and evaluated their gut microbiota and metabolites by using 16S ribosomal RNA (rRNA) sequencing and liquid chromatography-mass spectrometry (LC-MS). Machine learning models were used to analyze the correlations between key bacteria and CD4 + T cell count, CD4 + T cell activation, bacterial translocation, gut metabolites, and KEGG functional pathways. RESULTS We recruited 114 PWH in the AIDS stage and 203 PWH in the non-AIDS stage. The α-diversity of gut microbiota was downregulated in the AIDS stage ( P < 0.05). Several machine learning models could be used to identify key gut microbiota associated with AIDS, including the logistic regression model with area under the curve (AUC), sensitivity, specificity, and Brier scores of 0.854, 0.813, 0.813, and 0.160, respectively. The decreased key bacteria ASV1 ( Bacteroides sp.), ASV8 ( Fusobacterium sp.), ASV30 ( Roseburia sp.), ASV37 ( Bacteroides sp.), and ASV41 ( Lactobacillus sp.) in the AIDS stage were positively correlated with the CD4 + T cell count, the EndoCAb IgM level, 4-hydroxyphenylpyruvic acid abundance, and the predicted cell growth pathway, and negatively correlated with the CD3 + CD4 + CD38 + HLA-DR + T cell count and the sCD14 level. CONCLUSION Machine learning has the potential to recognize key gut microbiota related to AIDS. The key five bacteria in the AIDS stage and their metabolites might be related to CD4 + T cell reduction and immune activation.
Collapse
Affiliation(s)
- Jie Zhou
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University
- Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease
| | - Yuecong Yang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University
- Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease
| | | | - Dongjia Lu
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University
- Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease
| | | | - Liuyang Lan
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University
- Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease
| | - Baodong Guo
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University
- Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease
| | - Xiping Yang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University
- Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease
| | - Qing Wang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University
- Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease
| | - Zhuoxin Li
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University
- Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease
| | - Yu Zhang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University
- Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease
| | - Xing Yang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University
- Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease
| | - Sufang Ai
- The Fourth People's Hospital of Nanning
| | | | - Ping Cui
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University
- Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University
- Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease
- Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University
- Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease
- Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiegang Huang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University
- Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease
| |
Collapse
|
33
|
Tincati C, Bono V, Cannizzo ES, Tosi D, Savi F, Falcinella C, Casabianca A, Orlandi C, Luigiano C, Augello M, Rusconi S, Muscatello A, Bandera A, Calcagno A, Gori A, Nozza S, Marchetti G. Primary HIV infection features colonic damage and neutrophil inflammation yet containment of microbial translocation. AIDS 2024; 38:623-632. [PMID: 38016163 PMCID: PMC10942218 DOI: 10.1097/qad.0000000000003799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/20/2023] [Accepted: 11/18/2023] [Indexed: 11/30/2023]
Abstract
INTRODUCTION Impairment of the gastrointestinal barrier leads to microbial translocation and peripheral immune activation, which are linked to disease progression. Data in the setting of primary HIV/SIV infection suggest that gut barrier damage is one of the first events of the pathogenic cascade, preceding mucosal immune dysfunction and microbial translocation. We assessed gut structure and immunity as well as microbial translocation in acutely and chronically-infected, combination antiretroviral therapy (cART)-naive individuals. METHODS Fifteen people with primary HIV infection (P-HIV) and 13 with chronic HIV infection (C-HIV) c-ART-naive participants were cross-sectionally studied. Gut biopsies were analysed in terms of gut reservoirs (total, integrated and unintegrated HIV DNA); tight junction proteins (E-cadherin, Zonula Occludens-1), CD4 + expression, neutrophil myeloperoxidase (histochemical staining); collagen deposition (Masson staining). Flow cytometry was used to assess γδ T-cell frequency (CD3 + panγδ+Vδ1+/Vδ2+). In plasma, we measured microbial translocation (LPS, sCD14, EndoCAb) and gut barrier function (I-FABP) markers (ELISA). RESULTS P-HIV displayed significantly higher tissue HIV DNA, yet neutrophil infiltration and collagen deposition in the gut were similar in the two groups. In contrast, microbial translocation markers were significantly lower in P-HIV compared with C-HIV. A trend to higher mucosal E-cadherin, and gut γδ T-cells was also observed in P-HIV. CONCLUSION Early HIV infection features higher HIV DNA in the gut, yet comparable mucosal alterations to those observed in chronic infection. In contrast, microbial translocation is contained in primary HIV infection, likely because of a partial preservation of E-cadherin and mucosal immune subsets, namely γδ T-cells.
Collapse
Affiliation(s)
- Camilla Tincati
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan
| | - Valeria Bono
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan
| | | | - Delfina Tosi
- Pathology Unit, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan
| | - Federica Savi
- Pathology Unit, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan
| | - Camilla Falcinella
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan
| | - Anna Casabianca
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Fano
| | - Chiara Orlandi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Fano
| | | | - Matteo Augello
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan
| | - Stefano Rusconi
- UOC Malattie Infettive, Ospedale Civile di Legnano, Department of Biomedical and Clinical Biosciences, University of Milan
| | - Antonio Muscatello
- Infectious Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan
| | - Alessandra Bandera
- Infectious Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan
| | - Andrea Calcagno
- Unit of Infectious Diseases Unit, Department of Medical Sciences, University of Turin, Turin
| | - Andrea Gori
- Clinic of Infectious Diseases, Department of Pathophysiology and Transplantation, ASST Fatebenefratelli Sacco University of Milan
| | - Silvia Nozza
- Infectious Diseases Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Giulia Marchetti
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan
| |
Collapse
|
34
|
Maghini DG, Oduaran OH, Wirbel J, Olubayo LAI, Smyth N, Mathema T, Belger CW, Agongo G, Boua PR, Choma SSR, Gómez-Olivé FX, Kisiangani I, Mashaba GR, Micklesfield L, Mohamed SF, Nonterah EA, Norris S, Sorgho H, Tollman S, Wafawanaka F, Tluway F, Ramsay M, Bhatt AS, Hazelhurst S. Expanding the human gut microbiome atlas of Africa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584859. [PMID: 38559015 PMCID: PMC10980044 DOI: 10.1101/2024.03.13.584859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Population studies are crucial in understanding the complex interplay between the gut microbiome and geographical, lifestyle, genetic, and environmental factors. However, populations from low- and middle-income countries, which represent ~84% of the world population, have been excluded from large-scale gut microbiome research. Here, we present the AWI-Gen 2 Microbiome Project, a cross-sectional gut microbiome study sampling 1,803 women from Burkina Faso, Ghana, Kenya, and South Africa. By intensively engaging with communities that range from rural and horticultural to urban informal settlements and post-industrial, we capture population diversity that represents a far greater breadth of the world's population. Using shotgun metagenomic sequencing, we find that study site explains substantially more microbial variation than disease status. We identify taxa with strong geographic and lifestyle associations, including loss of Treponema and Cryptobacteroides species and gain of Bifidobacterium species in urban populations. We uncover a wealth of prokaryotic and viral novelty, including 1,005 new bacterial metagenome-assembled genomes, and identify phylogeography signatures in Treponema succinifaciens. Finally, we find a microbiome signature of HIV infection that is defined by several taxa not previously associated with HIV, including Dysosmobacter welbionis and Enterocloster sp. This study represents the largest population-representative survey of gut metagenomes of African individuals to date, and paired with extensive clinical biomarkers, demographic data, and lifestyle information, provides extensive opportunity for microbiome-related discovery and research.
Collapse
Affiliation(s)
- Dylan G Maghini
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
- Department of Medicine (Hematology), Stanford University, Stanford, CA, USA
| | - Ovokeraye H Oduaran
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Jakob Wirbel
- Department of Medicine (Hematology), Stanford University, Stanford, CA, USA
| | - Luicer A Ingasia Olubayo
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Natalie Smyth
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Theophilous Mathema
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Carl W Belger
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Godfred Agongo
- Department of Biochemistry and Forensic Sciences, C. K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana
| | - Palwendé R Boua
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Burkina Faso
| | - Solomon SR Choma
- DIMAMO Population Health Research Centre, University of Limpopo, South Africa
| | - F Xavier Gómez-Olivé
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), Faculty of Health Sciences, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Given R Mashaba
- DIMAMO Population Health Research Centre, University of Limpopo, South Africa
| | - Lisa Micklesfield
- SAMRC/Wits Developmental Pathways for Health Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | - Shane Norris
- SAMRC/Wits Developmental Pathways for Health Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Development and Health, University of Southampton, Southampton, United Kingdom
| | - Hermann Sorgho
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Burkina Faso
| | - Stephen Tollman
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), Faculty of Health Sciences, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Floidy Wafawanaka
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), Faculty of Health Sciences, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Furahini Tluway
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Ami S Bhatt
- Department of Medicine (Hematology, Blood and Marrow Transplantation), Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Scott Hazelhurst
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
- School of Electrical & Information Engineering, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
35
|
Wang Q, Clark KM, Tiwari R, Raju N, Tharp GK, Rogers J, Harris RA, Raveendran M, Bosinger SE, Burdo TH, Silvestri G, Shan L. The CARD8 inflammasome dictates HIV/SIV pathogenesis and disease progression. Cell 2024; 187:1223-1237.e16. [PMID: 38428396 PMCID: PMC10919936 DOI: 10.1016/j.cell.2024.01.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/16/2023] [Accepted: 01/29/2024] [Indexed: 03/03/2024]
Abstract
While CD4+ T cell depletion is key to disease progression in people living with HIV and SIV-infected macaques, the mechanisms underlying this depletion remain incompletely understood, with most cell death involving uninfected cells. In contrast, SIV infection of "natural" hosts such as sooty mangabeys does not cause CD4+ depletion and AIDS despite high-level viremia. Here, we report that the CARD8 inflammasome is activated immediately after HIV entry by the viral protease encapsulated in incoming virions. Sensing of HIV protease activity by CARD8 leads to rapid pyroptosis of quiescent cells without productive infection, while T cell activation abolishes CARD8 function and increases permissiveness to infection. In humanized mice reconstituted with CARD8-deficient cells, CD4+ depletion is delayed despite high viremia. Finally, we discovered loss-of-function mutations in CARD8 from "natural hosts," which may explain the peculiarly non-pathogenic nature of these infections. Our study suggests that CARD8 drives CD4+ T cell depletion during pathogenic HIV/SIV infections.
Collapse
Affiliation(s)
- Qiankun Wang
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kolin M Clark
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ritudhwaj Tiwari
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Nagarajan Raju
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Gregory K Tharp
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - R Alan Harris
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Muthuswamy Raveendran
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Steven E Bosinger
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA; Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Tricia H Burdo
- Department of Microbiology, Immunology, and Inflammation, Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Guido Silvestri
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA; Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Liang Shan
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
36
|
Singh S, Giron LB, Shaikh MW, Shankaran S, Engen PA, Bogin ZR, Bambi SA, Goldman AR, Azevedo JLLC, Orgaz L, de Pedro N, González P, Giera M, Verhoeven A, Sánchez-López E, Pandrea I, Kannan T, Tanes CE, Bittinger K, Landay AL, Corley MJ, Keshavarzian A, Abdel-Mohsen M. Distinct intestinal microbial signatures linked to accelerated systemic and intestinal biological aging. MICROBIOME 2024; 12:31. [PMID: 38383483 PMCID: PMC10882811 DOI: 10.1186/s40168-024-01758-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/05/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND People living with HIV (PLWH), even when viral replication is controlled through antiretroviral therapy (ART), experience persistent inflammation. This inflammation is partly attributed to intestinal microbial dysbiosis and translocation, which may lead to non-AIDS-related aging-associated comorbidities. The extent to which living with HIV - influenced by the infection itself, ART usage, sexual orientation, or other associated factors - affects the biological age of the intestines is unclear. Furthermore, the role of microbial dysbiosis and translocation in the biological aging of PLWH remains to be elucidated. To investigate these uncertainties, we used a systems biology approach, analyzing colon and ileal biopsies, blood samples, and stool specimens from PLWH on ART and people living without HIV (PLWoH) as controls. RESULTS PLWH exhibit accelerated biological aging in the colon, ileum, and blood, as measured by various epigenetic aging clocks, compared to PLWoH. Investigating the relationship between microbial translocation and biological aging, PLWH had decreased levels of tight junction proteins in the intestines, along with increased microbial translocation. This intestinal permeability correlated with faster biological aging and increased inflammation. When investigating the relationship between microbial dysbiosis and biological aging, the intestines of PLWH had higher abundance of specific pro-inflammatory bacteria, such as Catenibacterium and Prevotella. These bacteria correlated with accelerated biological aging. Conversely, the intestines of PLWH had lower abundance of bacteria known for producing the anti-inflammatory short-chain fatty acids, such as Subdoligranulum and Erysipelotrichaceae, and these bacteria were associated with slower biological aging. Correlation networks revealed significant links between specific microbial genera in the colon and ileum (but not in feces), increased aging, a rise in pro-inflammatory microbe-related metabolites (e.g., those in the tryptophan metabolism pathway), and a decrease in anti-inflammatory metabolites like hippuric acid. CONCLUSIONS We identified specific microbial compositions and microbiota-related metabolic pathways that are intertwined with intestinal and systemic biological aging. This microbial signature of biological aging is likely reflecting various factors including the HIV infection itself, ART usage, sexual orientation, and other aspects associated with living with HIV. A deeper understanding of the mechanisms underlying these connections could offer potential strategies to mitigate accelerated aging and its associated health complications. Video Abstract.
Collapse
Affiliation(s)
- Shalini Singh
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Leila B Giron
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Maliha W Shaikh
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University, Chicago, IL, USA
| | - Shivanjali Shankaran
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University, Chicago, IL, USA
- Department of Medicine, Rush University, Chicago, IL, USA
| | - Phillip A Engen
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University, Chicago, IL, USA
| | - Zlata R Bogin
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University, Chicago, IL, USA
| | - Simona A Bambi
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University, Chicago, IL, USA
| | - Aaron R Goldman
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Joao L L C Azevedo
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | | | | | | | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Aswin Verhoeven
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Elena Sánchez-López
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Toshitha Kannan
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Ceylan E Tanes
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alan L Landay
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University, Chicago, IL, USA
- Department of Medicine, Rush University, Chicago, IL, USA
| | | | - Ali Keshavarzian
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University, Chicago, IL, USA
- Department of Medicine, Rush University, Chicago, IL, USA
| | - Mohamed Abdel-Mohsen
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
37
|
Kapembwa MS, Batman PA, Fleming SC, Griffin GE. HIV enteropathy and 'Slim disease': Historical and current perspectives. Int J Infect Dis 2024; 139:86-91. [PMID: 38052315 DOI: 10.1016/j.ijid.2023.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023] Open
Abstract
OBJECTIVES Chronic diarrhoea and severe wasting associated with HIV infection were first described in East African patients as slim disease (SD) in 1985. The main histological features are flattening of the villi (villous atrophy) and crypt hyperplasia (elongated crypts), i.e., HIV enteropathy (HIVE). Selective loss of mucosal clusters of differentiation 4 (CD4)+ T helper (Th)17+ lymphocytes is the immunological hallmark of HIVE. This review explores (i) the historical background of HIVE and SD, (ii) the relationship between gut mucosal CD4+ Th17+ and intestinal-resident intra-epithelial gamma delta (IRIE) T lymphocytes in pathogenesis of HIVE, (iii) the role of cytokines in regulation of intestinal epithelial proliferation, and (iv) the role of antiretroviral therapy in HIVE. METHODS Recent studies have highlighted the role of IRIE T lymphocytes, mostly CD8+, in regulating gut epithelial regeneration. CD4+Th17+ and IRIE T cells are necessary to maintain intestinal barrier integrity and mucosal antimicrobial immune defence. However, the immunological cross-talk between such lymphocyte sub-sets culminating in HIVE is uncertain. We undertook a narrative literature review under the headings 'HIVE', 'SD', and 'Highly active antiretroviral therapy (HAART). Relevant studies were located using the electronic search engines Google Scholar and PubMed from 1984 to 2022. RESULTS Depletion of Th17+ cells in the lamina propria, attributed to low-level viraemia, is accompanied by concomitant increase in the density of gut mucosal IRIE T lymphocytes in AIDS. The latter express a broad range of cytokines (interferon-gamma, tumor necrosis factor-alpha, interleukin-17) and chemokines e.g., keratinocyte growth factor, post exposure to HIV-infected cells. Keratinocyte growth factor induces epithelial proliferation mainly in the crypts, leading to functional immaturity of enterocytes, reduced gut absorptive surface area and malabsorption in animal experiments. Of note, the absence of IRIE T cells is associated with a reduction in epithelial cell turnover. Patients with HIVE receiving early HAART show enhanced expression of mucosal repair genes and improvement of gut symptoms. CONCLUSION Multiple lines of enquiry suggest HIVE is directly related to HIV infection and is a consequence of perturbations in mucosal CD4+Th17+ and IRIE T lymphocytes. The pathological result is enterocyte immaturity and dysfunction. SD whose main features are malabsorption, diarrhoea and weight loss, is a severe clinical expression of HIVE. A better understanding of immuno-pathogenesis of HIVE opens a window of opportunity for the potential use of immunotherapy in HIV disease and other T cell-mediated enteropathies.
Collapse
Affiliation(s)
- Moses Silungwe Kapembwa
- London Northwest Teaching Hospitals NHS Trust & Imperial College of Medicine, Northwick Park & St Mark's Hospitals, Harrow, UK.
| | - Philip Anthony Batman
- Department of Histopathology, Bradford Hospitals NHS Trust, Bradford Royal Infirmary, Bradford, UK
| | | | - George Edward Griffin
- Department of Cellular and Molecular Sciences. St George's Hospital Medical School. Cranmer Terrace, London, UK
| |
Collapse
|
38
|
Vellas C, Nayrac M, Collercandy N, Requena M, Jeanne N, Latour J, Dimeglio C, Cazabat M, Barange K, Alric L, Carrere N, Martin-Blondel G, Izopet J, Delobel P. Intact proviruses are enriched in the colon and associated with PD-1 +TIGIT - mucosal CD4 + T cells of people with HIV-1 on antiretroviral therapy. EBioMedicine 2024; 100:104954. [PMID: 38160480 PMCID: PMC10792747 DOI: 10.1016/j.ebiom.2023.104954] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND The persistence of intact replication-competent HIV-1 proviruses is responsible for the virological rebound off treatment. The gut could be a major reservoir of HIV-1 due to the high number of infected target cells. METHODS We collected blood samples and intestinal biopsies (duodenum, ileum, colon) from 42 people with HIV-1 receiving effective antiretroviral therapy. We used the Intact Proviral DNA Assay to estimate the frequency of intact HIV-1 proviruses in the blood and in the intestinal mucosa of these individuals. We analyzed the genetic complexity of the HIV-1 reservoir by performing single-molecule next-generation sequencing of HIV-1 env DNA. The activation/exhaustion profile of mucosal T lymphocytes was assessed by flow cytometry. FINDINGS Intact proviruses are particularly enriched in the colon. Residual HIV-1 transcription in the gut is associated with persistent mucosal and systemic immune activation. The HIV-1 intestinal reservoir appears to be shaped by the proliferation of provirus-hosting cells. The genetic complexity of the viral reservoir in the colon is positively associated with TIGIT expression but negatively with PD-1, and inversely related to its intact content. The size of the intact reservoir in the colon is associated with PD-1+TIGIT- mucosal CD4+ T cells, particularly in CD27+ memory cells, whose proliferation and survival could contribute to the enrichment of the viral reservoir by intact proviruses. INTERPRETATION Enrichment in intact proviruses makes the gut a key compartment for HIV-1 persistence on antiretroviral therapy. FUNDING This project was supported by grants from the ANRS-MIE (ANRS EP61 GALT), Sidaction, and the Institut Universitaire de France.
Collapse
Affiliation(s)
- Camille Vellas
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse F-31300, France
| | - Manon Nayrac
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse F-31300, France
| | - Nived Collercandy
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse F-31300, France; CHU de Toulouse, Service des Maladies Infectieuses et Tropicales, Toulouse F-31300, France
| | - Mary Requena
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse F-31300, France; CHU de Toulouse, Laboratoire de Virologie, Toulouse F-31300, France
| | - Nicolas Jeanne
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse F-31300, France; CHU de Toulouse, Laboratoire de Virologie, Toulouse F-31300, France
| | - Justine Latour
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse F-31300, France; CHU de Toulouse, Laboratoire de Virologie, Toulouse F-31300, France
| | - Chloé Dimeglio
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse F-31300, France
| | - Michelle Cazabat
- CHU de Toulouse, Laboratoire de Virologie, Toulouse F-31300, France
| | - Karl Barange
- CHU de Toulouse, Service d'Hépato-Gastro-Entérologie, Toulouse F-31400, France
| | - Laurent Alric
- Université Toulouse III Paul Sabatier, Toulouse F-31400, France; CHU de Toulouse, Service de Médecine Interne et Immunologie clinique, Toulouse F-31400, France
| | - Nicolas Carrere
- Université Toulouse III Paul Sabatier, Toulouse F-31400, France; CHU de Toulouse, Service de Chirurgie Générale et Digestive, Toulouse F-31400, France
| | - Guillaume Martin-Blondel
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse F-31300, France; CHU de Toulouse, Service des Maladies Infectieuses et Tropicales, Toulouse F-31300, France; Université Toulouse III Paul Sabatier, Toulouse F-31400, France
| | - Jacques Izopet
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse F-31300, France; CHU de Toulouse, Laboratoire de Virologie, Toulouse F-31300, France; Université Toulouse III Paul Sabatier, Toulouse F-31400, France
| | - Pierre Delobel
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse F-31300, France; CHU de Toulouse, Service des Maladies Infectieuses et Tropicales, Toulouse F-31300, France; Université Toulouse III Paul Sabatier, Toulouse F-31400, France.
| |
Collapse
|
39
|
Rausch JW, Parvez S, Pathak S, Capoferri AA, Kearney MF. HIV Expression in Infected T Cell Clones. Viruses 2024; 16:108. [PMID: 38257808 PMCID: PMC10820123 DOI: 10.3390/v16010108] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
The principal barrier to an HIV-1 cure is the persistence of infected cells harboring replication-competent proviruses despite antiretroviral therapy (ART). HIV-1 transcriptional suppression, referred to as viral latency, is foremost among persistence determinants, as it allows infected cells to evade the cytopathic effects of virion production and killing by cytotoxic T lymphocytes (CTL) and other immune factors. HIV-1 persistence is also governed by cellular proliferation, an innate and essential capacity of CD4+ T cells that both sustains cell populations over time and enables a robust directed response to immunological threats. However, when HIV-1 infects CD4+ T cells, this capacity for proliferation can enable surreptitious HIV-1 propagation without the deleterious effects of viral gene expression in latently infected cells. Over time on ART, the HIV-1 reservoir is shaped by both persistence determinants, with selective forces most often favoring clonally expanded infected cell populations harboring transcriptionally quiescent proviruses. Moreover, if HIV latency is incomplete or sporadically reversed in clonal infected cell populations that are replenished faster than they are depleted, such populations could both persist indefinitely and contribute to low-level persistent viremia during ART and viremic rebound if treatment is withdrawn. In this review, select genetic, epigenetic, cellular, and immunological determinants of viral transcriptional suppression and clonal expansion of HIV-1 reservoir T cells, interdependencies among these determinants, and implications for HIV-1 persistence will be presented and discussed.
Collapse
Affiliation(s)
- Jason W. Rausch
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (S.P.); (S.P.); (A.A.C.); (M.F.K.)
| | | | | | | | | |
Collapse
|
40
|
Avdonin PP, Blinova MS, Generalova GA, Emirova KM, Avdonin PV. The Role of the Complement System in the Pathogenesis of Infectious Forms of Hemolytic Uremic Syndrome. Biomolecules 2023; 14:39. [PMID: 38254639 PMCID: PMC10813406 DOI: 10.3390/biom14010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/24/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Hemolytic uremic syndrome (HUS) is an acute disease and the most common cause of childhood acute renal failure. HUS is characterized by a triad of symptoms: microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury. In most of the cases, HUS occurs as a result of infection caused by Shiga toxin-producing microbes: hemorrhagic Escherichia coli and Shigella dysenteriae type 1. They account for up to 90% of all cases of HUS. The remaining 10% of cases grouped under the general term atypical HUS represent a heterogeneous group of diseases with similar clinical signs. Emerging evidence suggests that in addition to E. coli and S. dysenteriae type 1, a variety of bacterial and viral infections can cause the development of HUS. In particular, infectious diseases act as the main cause of aHUS recurrence. The pathogenesis of most cases of atypical HUS is based on congenital or acquired defects of complement system. This review presents summarized data from recent studies, suggesting that complement dysregulation is a key pathogenetic factor in various types of infection-induced HUS. Separate links in the complement system are considered, the damage of which during bacterial and viral infections can lead to complement hyperactivation following by microvascular endothelial injury and development of acute renal failure.
Collapse
Affiliation(s)
- Piotr P. Avdonin
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (M.S.B.); (P.V.A.)
| | - Maria S. Blinova
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (M.S.B.); (P.V.A.)
| | - Galina A. Generalova
- Saint Vladimir Moscow City Children’s Clinical Hospital, 107014 Moscow, Russia; (G.A.G.); (K.M.E.)
- Department of Pediatrics, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Khadizha M. Emirova
- Saint Vladimir Moscow City Children’s Clinical Hospital, 107014 Moscow, Russia; (G.A.G.); (K.M.E.)
- Department of Pediatrics, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Pavel V. Avdonin
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (M.S.B.); (P.V.A.)
| |
Collapse
|
41
|
Cossarini F, Aberg JA, Chen BK, Mehandru S. Viral Persistence in the Gut-Associated Lymphoid Tissue and Barriers to HIV Cure. AIDS Res Hum Retroviruses 2023; 40:54-65. [PMID: 37450338 PMCID: PMC10790554 DOI: 10.1089/aid.2022.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
More than 40 years after the first reported cases of what then became known as acquired immunodeficiency syndrome (AIDS), tremendous progress has been achieved in transforming the disease from almost universally fatal to a chronic manageable condition. Nonetheless, the efforts to find a preventative vaccine or a cure for the underlying infection with Human Immunodeficiency Virus (HIV) remain largely unsuccessful. Many challenges intrinsic to the virus characteristics and host response need to be overcome for either goal to be achieved. This article will review the obstacles to an effective HIV cure, specifically the steps involved in the generation of HIV latency, focusing on the role of the gut-associated lymphoid tissue, which has received less attention compared with the peripheral blood, despite being the largest repository of lymphoid tissue in the human body, and a large site for HIV persistence.
Collapse
Affiliation(s)
- Francesca Cossarini
- Division of Infectious Diseases, Department of Medicine, Icahn School at Mount Sinai, New York, New York, USA
- Precision Immunology Institute, Icahn School at Mount Sinai, New York, New York, USA
| | - Judith A. Aberg
- Division of Infectious Diseases, Department of Medicine, Icahn School at Mount Sinai, New York, New York, USA
| | - Benjamin K. Chen
- Division of Infectious Diseases, Department of Medicine, Icahn School at Mount Sinai, New York, New York, USA
- Precision Immunology Institute, Icahn School at Mount Sinai, New York, New York, USA
| | - Saurabh Mehandru
- Precision Immunology Institute, Icahn School at Mount Sinai, New York, New York, USA
- Division of Gastroenterology, Department of Medicine, Icahn School at Mount Sinai, New York, New York, USA
| |
Collapse
|
42
|
Rosado-Sánchez I, Herrero-Fernández I, Sobrino S, Carvajal AE, Genebat M, Tarancón-Díez L, Garcia-Guerrero MC, Puertas MC, de Pablos RM, Ruiz R, Martinez-Picado J, Leal M, Pacheco YM. Caecum OX40+CD4 T-cell subset associates with mucosal damage and key markers of disease in treated HIV-infection. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:1129-1138. [PMID: 37704537 DOI: 10.1016/j.jmii.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Blood OX40-expressing CD4 T-cells from antiretroviral (ART)-treated people living with HIV (PWH) were found to be enriched for clonally-expanded HIV sequences, hence contributing to the HIV reservoir. OX40-OX40L is also a checkpoint regulator of inflammation in multiple diseases. We explored gut mucosal OX40+CD4+ T-cells and their potential significance in HIV disease. METHODS Biopsies of caecum and terminal-ileum of ART-treated PWH (n = 32) were obtained and mucosal damage and HIV reservoir were assessed. Mucosal OX40+ and Ki67+ CD4 T-cell subsets, as well as several tissue T-cell subsets modulating mucosal integrity and homeostasis (Th17, Th22, Treg, Tc17, Tc22, IL17+TCRγδ, IL22+TCRγδ) were quantified. Inflammatory-related markers, T-cell activation and thymic output were also determined in blood samples. Correlations were explored using Spearman rank test and corrected for multiple comparisons by Benjamini-Hochberg. RESULTS Compared to healthy controls, a high frequency of mucosal, mainly caecum, CD4 T-cells were OX40+ in PWH. Such frequency strongly correlated with nadir CD4 (r = -0.836; p < 0.0001), CD4/CD8 ratio (r = -0.630; p = 0.002), caecum mucosal damage (r = 0.606; p = 0.008), caecum Th22 (r = -0.635; p = 0.002), caecum Th17 (r = 0.474; p = 0.03) and thymic output (r = -0.686; p < 0.001). It also correlated with Neutrophil-to-Lymphocyte Ratio and blood CD4 T-cell activation and tended to with mucosal HIV reservoir. CONCLUSION High frequencies of caecum OX40+CD4 T-cells are found in people with HIV (PWH) and successful viral control. Interestingly, this cellular subset reflects key markers of disease and peripheral T-cell activation, as well as HIV-driven mucosal damage. OX40+CD4 T-cells deserve further investigation since they could expand because of T-cell homeostatic proliferation and relate to the Th22/Th17 gut mucosal ratio.
Collapse
Affiliation(s)
- Isaac Rosado-Sánchez
- Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville 41013, Spain.
| | - Inés Herrero-Fernández
- Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville 41013, Spain.
| | - Salvador Sobrino
- Digestive Endoscopy Unit, Virgen del Rocío University Hospital, Seville 41013, Spain.
| | - Ana E Carvajal
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
| | - Miguel Genebat
- Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville 41013, Spain.
| | - Laura Tarancón-Díez
- Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville 41013, Spain.
| | | | - María Carmen Puertas
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Barcelona, Catalonia, Spain; CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain.
| | - Rocío M de Pablos
- Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville 41013, Spain; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
| | - Rocío Ruiz
- Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville 41013, Spain; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Barcelona, Catalonia, Spain; CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain; University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| | - Manuel Leal
- Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville 41013, Spain; Internal Medicine Service, Viamed-Santa Ángela Hospital, Seville 41014, Spain.
| | - Yolanda M Pacheco
- Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville 41013, Spain; Universidad Loyola Andalucía, Facultad de Ciencias de la Salud, Campus Sevilla, 41704, Dos Hermanas, Sevilla, Spain.
| |
Collapse
|
43
|
Li S, Wang H, Guo N, Su B, Lambotte O, Zhang T. Targeting the HIV reservoir: chimeric antigen receptor therapy for HIV cure. Chin Med J (Engl) 2023; 136:2658-2667. [PMID: 37927030 PMCID: PMC10684145 DOI: 10.1097/cm9.0000000000002904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Indexed: 11/07/2023] Open
Abstract
ABSTRACT Although antiretroviral therapy (ART) can reduce the viral load in the plasma to undetectable levels in human immunodeficiency virus (HIV)-infected individuals, ART alone cannot completely eliminate HIV due to its integration into the host cell genome to form viral reservoirs. To achieve a functional cure for HIV infection, numerous preclinical and clinical studies are underway to develop innovative immunotherapies to eliminate HIV reservoirs in the absence of ART. Early studies have tested adoptive T-cell therapies in HIV-infected individuals, but their effectiveness was limited. In recent years, with the technological progress and great success of chimeric antigen receptor (CAR) therapy in the treatment of hematological malignancies, CAR therapy has gradually shown its advantages in the field of HIV infection. Many studies have identified a variety of HIV-specific CAR structures and types of cytolytic effector cells. Therefore, CAR therapy may be beneficial for enhancing HIV immunity, achieving HIV control, and eliminating HIV reservoirs, gradually becoming a promising strategy for achieving a functional HIV cure. In this review, we provide an overview of the design of anti-HIV CAR proteins, the cell types of anti-HIV CAR (including CAR T cells, CAR natural killer cells, and CAR-encoding hematopoietic stem/progenitor cells), the clinical application of CAR therapy in HIV infection, and the prospects and challenges in anti-HIV CAR therapy for maintaining viral suppression and eliminating HIV reservoirs.
Collapse
Affiliation(s)
- Shuang Li
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Hu Wang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Na Guo
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Olivier Lambotte
- Department of Internal Medicine, AP-HP, Bicêtre Hospital, UMR1184 INSERM CEA, Le Kremlin Bicêtre, University Paris Saclay, Paris 94270, France
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
44
|
Singh S, Giron LB, Shaikh MW, Shankaran S, Engen PA, Bogin ZR, Bambi SA, Goldman AR, Azevedo JLLC, Orgaz L, de Pedro N, González P, Giera M, Verhoeven A, Sánchez-López E, Pandrea IV, Kannan T, Tanes CE, Bittinger K, Landay AL, Corley MJ, Keshavarzian A, Abdel-Mohsen M. Distinct Intestinal Microbial Signatures Linked to Accelerated Biological Aging in People with HIV. RESEARCH SQUARE 2023:rs.3.rs-3492242. [PMID: 37961645 PMCID: PMC10635386 DOI: 10.21203/rs.3.rs-3492242/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background People with HIV (PWH), even with controlled viral replication through antiretroviral therapy (ART), experience persistent inflammation. This is partly due to intestinal microbial dysbiosis and translocation. Such ongoing inflammation may lead to the development of non-AIDS-related aging-associated comorbidities. However, there remains uncertainty regarding whether HIV affects the biological age of the intestines and whether microbial dysbiosis and translocation influence the biological aging process in PWH on ART. To fill this knowledge gap, we utilized a systems biology approach, analyzing colon and ileal biopsies, blood samples, and stool specimens from PWH on ART and their matched HIV-negative counterparts. Results Despite having similar chronological ages, PWH on ART exhibit accelerated biological aging in the colon, ileum, and blood, as measured by various epigenetic aging clocks, compared to HIV-negative controls. Investigating the relationship between microbial translocation and biological aging, PWH on ART had decreased levels of tight junction proteins in the colon and ileum, along with increased microbial translocation. This increased intestinal permeability correlated with faster intestinal and systemic biological aging, as well as increased systemic inflammation. When investigating the relationship between microbial dysbiosis and biological aging, the intestines of PWH on ART had higher abundance of specific pro-inflammatory bacterial genera, such as Catenibacterium and Prevotella. These bacteria significantly correlated with accelerated local and systemic biological aging. Conversely, the intestines of PWH on ART had lower abundance of bacterial genera known for producing short-chain fatty acids and exhibiting anti-inflammatory properties, such as Subdoligranulum and Erysipelotrichaceae, and these bacteria taxa were associated with slower biological aging. Correlation networks revealed significant links between specific microbial genera in the colon and ileum (but not in feces), increased aging, a rise in pro-inflammatory microbial-related metabolites (e.g., those in the tryptophan metabolism pathway), and a decrease in anti-inflammatory metabolites like hippuric acid and oleic acid. Conclusions We identified a specific microbial composition and microbiome-related metabolic pathways that are intertwined with both intestinal and systemic biological aging in PWH on ART. A deeper understanding of the mechanisms underlying these connections could potentially offer strategies to counteract premature aging and its associated health complications in PWH.
Collapse
|
45
|
Zaongo SD, Harypursat V, Rashid F, Dahourou DL, Ouedraogo AS, Chen Y. Influence of HIV infection on cognition and overall intelligence in HIV-infected individuals: advances and perspectives. Front Behav Neurosci 2023; 17:1261784. [PMID: 37953826 PMCID: PMC10637382 DOI: 10.3389/fnbeh.2023.1261784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023] Open
Abstract
It is now well understood that HIV-positive individuals, even those under effective ART, tend to develop a spectrum of cognitive, motor, and/or mood conditions which are contemporarily referred to as HIV-associated neurocognitive disorder (HAND), and which is directly related to HIV-1 infection and HIV-1 replication in the central nervous system (CNS). As HAND is known to induce difficulties associated with attention, concentration, and memory, it is thus legitimate and pertinent to speculate upon the possibility that HIV infection may well influence human cognition and intelligence. We therefore propose herein to review the concept of intelligence, the concept of cells of intelligence, the influence of HIV on these particular cells, and the evidence pointing to differences in observed intelligence quotient (IQ) scores between HIV-positive and HIV-negative individuals. Additionally, cumulative research evidence continues to draw attention to the influence of the gut on human intelligence. Up to now, although it is known that HIV infection profoundly alters both the composition and diversity of the gut microbiota and the structural integrity of the gut, the influence of the gut on intelligence in the context of HIV infection remains poorly described. As such, we also provide herein a review of the different ways in which HIV may influence human intelligence via the gut-brain axis. Finally, we provide a discourse on perspectives related to HIV and human intelligence which may assist in generating more robust evidence with respect to this issue in future studies. Our aim is to provide insightful knowledge for the identification of novel areas of investigation, in order to reveal and explain some of the enigmas related to HIV infection.
Collapse
Affiliation(s)
- Silvere D. Zaongo
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Vijay Harypursat
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Farooq Rashid
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Désiré Lucien Dahourou
- Département Biomédical/Santé Publique, Institut de Recherche en Sciences de la Santé/CNRST, Ouagadougou, Burkina Faso
| | - Abdoul-Salam Ouedraogo
- Centre Muraz, Bobo-Dioulasso, Burkina Faso
- Department of Bacteriology and Virology, Souro Sanou University Hospital, Bobo-Dioulasso, Burkina Faso
| | - Yaokai Chen
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
46
|
Guo XY, Guo YT, Wang ZR, Jiao YM, Hu Y, Fan LN, Cheng RQ, Qu MM, Zhang C, Song JW, Xu RN, Fan X, Xu W, Zhang JY, Bai BK, Linghu EQ, Chen YK, Ma P, Wang FS. Severe intestinal barrier damage in HIV-infected immunological non-responders. Heliyon 2023; 9:e20790. [PMID: 37876458 PMCID: PMC10590933 DOI: 10.1016/j.heliyon.2023.e20790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 09/07/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023] Open
Abstract
The intestinal epithelial barrier plays an important role during human immunodeficiency virus (HIV) disease progression. However, the extent to which the intestinal epithelial barrier is damaged in immunological non-responders (INRs) and immunological responders (IRs) is largely unknown. In this study, we investigated and compared the levels of intestinal gland damage and related molecules, including the tight junction protein claudin-1, apoptosis marker caspase-3, HIV DNA, CD4+ T cell count, and inflammation marker tumor necrosis factor-α (TNF-α) among the IRs (n = 10), INRs (n = 8), and healthy controls (HCs, n = 7). Intestinal damage was not completely restored in both INRs and IRs and was more serious in INRs than that in IRs. Moreover, intestinal damage was positively correlated with HIV DNA levels and negatively correlated with CD4+ T cell counts. These results provide insight into understanding the characteristics of intestinal epithelial barrier damage between IRs and INRs.
Collapse
Affiliation(s)
- Xiao-Yan Guo
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Senior Department of Infectious Diseases, the Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yun-Tian Guo
- Senior Department of Infectious Diseases, the Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ze-Rui Wang
- Department of Gastroenterology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan-Mei Jiao
- Senior Department of Infectious Diseases, the Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yue Hu
- Department of Infectious Diseases, Tianjin Second People's Hospital, Tianjin, China
| | - Li-Na Fan
- Department of Infectious Diseases, Tianjin Second People's Hospital, Tianjin, China
| | | | - Meng-Meng Qu
- Senior Department of Infectious Diseases, the Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chao Zhang
- Senior Department of Infectious Diseases, the Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Wen Song
- Senior Department of Infectious Diseases, the Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ruo-Nan Xu
- Senior Department of Infectious Diseases, the Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xing Fan
- Senior Department of Infectious Diseases, the Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Wen Xu
- Senior Department of Infectious Diseases, the Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ji-Yuan Zhang
- Senior Department of Infectious Diseases, the Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Bing-Ke Bai
- Senior Department of Infectious Diseases, the Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - En-Qiang Linghu
- Department of Gastroenterology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yao-Kai Chen
- Department of Infectious Disease, Chongqing Public Health Medical Center, Chongqing, China
| | - Ping Ma
- Department of Infectious Diseases, Tianjin Second People's Hospital, Tianjin, China
| | - Fu-Sheng Wang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Senior Department of Infectious Diseases, the Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
47
|
Zhang Y, Andreu-Sánchez S, Vadaq N, Wang D, Matzaraki V, van der Heijden WA, Gacesa R, Weersma RK, Zhernakova A, Vandekerckhove L, de Mast Q, Joosten LAB, Netea MG, van der Ven AJAM, Fu J. Gut dysbiosis associates with cytokine production capacity in viral-suppressed people living with HIV. Front Cell Infect Microbiol 2023; 13:1202035. [PMID: 37583444 PMCID: PMC10425223 DOI: 10.3389/fcimb.2023.1202035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/06/2023] [Indexed: 08/17/2023] Open
Abstract
Background People living with human immunodeficiency virus (PLHIV) are exposed to chronic immune dysregulation, even when virus replication is suppressed by antiretroviral therapy (ART). Given the emerging role of the gut microbiome in immunity, we hypothesized that the gut microbiome may be related to the cytokine production capacity of PLHIV. Methods To test this hypothesis, we collected metagenomic data from 143 ART-treated PLHIV and assessed the ex vivo production capacity of eight different cytokines [interleukin-1β (IL-1β), IL-6, IL-1Ra, IL-10, IL-17, IL-22, tumor necrosis factor, and interferon-γ] in response to different stimuli. We also characterized CD4+ T-cell counts, HIV reservoir, and other clinical parameters. Results Compared with 190 age- and sex-matched controls and a second independent control cohort, PLHIV showed microbial dysbiosis that was correlated with viral reservoir levels (CD4+ T-cell-associated HIV-1 DNA), cytokine production capacity, and sexual behavior. Notably, we identified two genetically different P. copri strains that were enriched in either PLHIV or healthy controls. The control-related strain showed a stronger negative association with cytokine production capacity than the PLHIV-related strain, particularly for Pam3Cys-incuded IL-6 and IL-10 production. The control-related strain is also positively associated with CD4+ T-cell level. Conclusions Our findings suggest that modulating the gut microbiome may be a strategy to modulate immune response in PLHIV.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Sergio Andreu-Sánchez
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Nadira Vadaq
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Daoming Wang
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Vasiliki Matzaraki
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Wouter A. van der Heijden
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ranko Gacesa
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, Netherlands
| | - Rinse K. Weersma
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Quirijn de Mast
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Leo A. B. Joosten
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - André J. A. M. van der Ven
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
48
|
Haddaji A, Ouladlahsen A, Lkhider M, Bensghir R, Jebbar S, Hilmi S, Abbadi I, Sodqi M, Marih L, Pineau P, El Filali KM, Ezzikouri S. Impact of the first-line antiretroviral therapy on soluble markers of inflammation in cohort of human immunodeficiency virus type 1 in Moroccan patients: a prospective study. Arch Microbiol 2023; 205:223. [PMID: 37154966 DOI: 10.1007/s00203-023-03574-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/04/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
Chronic inflammation and immune activation are a hallmark of HIV-1 infection. In this study, we assessed inflammation biomarkers in a cohort of people living with HIV-1 (PLWH) before and after long-term suppressive combined antiretroviral therapy (cART). A single-center prospective cohort study was conducted to assess inflammatory biomarkers in 86 cART-naive PLWH and after receiving suppressive cART and 50 uninfected controls. Tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and soluble CD14 (sCD14) were measured using enzyme-linked immunosorbent assay (ELISA). No significant difference was found in IL-6 levels between cART-naïve PLWH and controls (p = 0.753). In contrast, TNF-α level showed a significant difference between cART naïve-PLWH and controls (p = 0.019). Interestingly, IL-6 and TNF-α levels were significantly decreased in PLWH after cART (p < 0.0001). The sCD14 showed no significant difference between cART-naïve patients and controls (p = 0.839) and similar levels were observed in pre- and post-treatment (p = 0.719). Our results highlight the critical importance of early treatment to reduce inflammation and its consequences during HIV infection.
Collapse
Affiliation(s)
- Asmaa Haddaji
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 1, Place Louis Pasteur, 20360, Casablanca, Morocco
- Laboratory of Virology, Oncology, Biosciences, Environment and New Energies, Faculty of Sciences and Techniques of Mohammedia, Hassan II University of Casablanca, Mohammedia, Morocco
| | - Ahd Ouladlahsen
- Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca, Morocco
- Service Des Maladies Infectieuses, CHU Ibn Rochd, Casablanca, Morocco
| | - Mustapha Lkhider
- Laboratory of Virology, Oncology, Biosciences, Environment and New Energies, Faculty of Sciences and Techniques of Mohammedia, Hassan II University of Casablanca, Mohammedia, Morocco
| | - Rajaa Bensghir
- Service Des Maladies Infectieuses, CHU Ibn Rochd, Casablanca, Morocco
| | - Sanaa Jebbar
- Service Des Maladies Infectieuses, CHU Ibn Rochd, Casablanca, Morocco
| | - Soufiane Hilmi
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 1, Place Louis Pasteur, 20360, Casablanca, Morocco
| | - Islam Abbadi
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 1, Place Louis Pasteur, 20360, Casablanca, Morocco
- Laboratory of Virology, Oncology, Biosciences, Environment and New Energies, Faculty of Sciences and Techniques of Mohammedia, Hassan II University of Casablanca, Mohammedia, Morocco
| | - Mustapha Sodqi
- Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca, Morocco
- Service Des Maladies Infectieuses, CHU Ibn Rochd, Casablanca, Morocco
| | - Latifa Marih
- Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca, Morocco
- Service Des Maladies Infectieuses, CHU Ibn Rochd, Casablanca, Morocco
| | - Pascal Pineau
- Unité "Organisation Nucléaire et Oncogenèse", INSERM U993, Institut Pasteur, Paris, France
| | - Kamal Marhoum El Filali
- Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca, Morocco
- Service Des Maladies Infectieuses, CHU Ibn Rochd, Casablanca, Morocco
| | - Sayeh Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 1, Place Louis Pasteur, 20360, Casablanca, Morocco.
| |
Collapse
|
49
|
Van Doren VE, Smith SA, Hu YJ, Tharp G, Bosinger S, Ackerley CG, Murray PM, Amara RR, Amancha PK, Arthur RA, Johnston HR, Kelley CF. HIV, asymptomatic STI, and the rectal mucosal immune environment among young men who have sex with men. PLoS Pathog 2023; 19:e1011219. [PMID: 37253061 PMCID: PMC10256205 DOI: 10.1371/journal.ppat.1011219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/09/2023] [Accepted: 05/10/2023] [Indexed: 06/01/2023] Open
Abstract
Young men who have sex with men (YMSM) are disproportionately affected by HIV and bacterial sexually transmitted infections (STI) including gonorrhea, chlamydia, and syphilis; yet research into the immunologic effects of these infections is typically pursued in siloes. Here, we employed a syndemic approach to understand potential interactions of these infections on the rectal mucosal immune environment among YMSM. We enrolled YMSM aged 18-29 years with and without HIV and/or asymptomatic bacterial STI and collected blood, rectal secretions, and rectal tissue biopsies. YMSM with HIV were on suppressive antiretroviral therapy (ART) with preserved blood CD4 cell counts. We defined 7 innate and 19 adaptive immune cell subsets by flow cytometry, the rectal mucosal transcriptome by RNAseq, and the rectal mucosal microbiome by 16S rRNA sequencing and examined the effects of HIV and STI and their interactions. We measured tissue HIV RNA viral loads among YMSM with HIV and HIV replication in rectal explant challenge experiments among YMSM without HIV. HIV, but not asymptomatic STI, was associated with profound alterations in the cellular composition of the rectal mucosa. We did not detect a difference in the microbiome composition associated with HIV, but asymptomatic bacterial STI was associated with a higher probability of presence of potentially pathogenic taxa. When examining the rectal mucosal transcriptome, there was evidence of statistical interaction; asymptomatic bacterial STI was associated with upregulation of numerous inflammatory genes and enrichment for immune response pathways among YMSM with HIV, but not YMSM without HIV. Asymptomatic bacterial STI was not associated with differences in tissue HIV RNA viral loads or in HIV replication in explant challenge experiments. Our results suggest that asymptomatic bacterial STI may contribute to inflammation particularly among YMSM with HIV, and that future research should examine potential harms and interventions to reduce the health impact of these syndemic infections.
Collapse
Affiliation(s)
- Vanessa E. Van Doren
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - S. Abigail Smith
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Yi-Juan Hu
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Gregory Tharp
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Steven Bosinger
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Cassie G. Ackerley
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Phillip M. Murray
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Rama R. Amara
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Praveen K. Amancha
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Robert A. Arthur
- Emory Integrated Computational Core, Emory University, Atlanta, Georgia, United States of America
| | - H. Richard Johnston
- Emory Integrated Computational Core, Emory University, Atlanta, Georgia, United States of America
| | - Colleen F. Kelley
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Grady Health System, Atlanta, Georgia, United States of America
| |
Collapse
|
50
|
Znaidia M, de Souza-Angelo Y, Létoffé S, Staropoli I, Grzelak L, Ghigo JM, Schwartz O, Casartelli N. Exposure to Secreted Bacterial Factors Promotes HIV-1 Replication in CD4 + T Cells. Microbiol Spectr 2023; 11:e0431322. [PMID: 36853052 PMCID: PMC10100953 DOI: 10.1128/spectrum.04313-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/08/2023] [Indexed: 03/01/2023] Open
Abstract
Microbial translocation is associated with systemic immune activation in HIV-1 disease. Circulating T cells can encounter microbial products in the bloodstream and lymph nodes, where viral replication takes place. The mechanisms by which bacteria contribute to HIV-associated pathogenesis are not completely deciphered. Here, we examined how bacteria may impact T cell function and viral replication. We established cocultures between a panel of live bacteria and uninfected or HIV-1-infected activated peripheral blood CD4-positive (CD4+) T cells. We show that some bacteria, such as Escherichia coli and Acinetobacter baumannii, sustain lymphocyte activation and enhance HIV-1 replication. Bacteria secrete soluble factors that upregulate CD25 and ICAM-1 cell surface levels and activate NF-κB nuclear translocation. Our data also demonstrate that CD25 polarizes at the virological synapse, suggesting a previously unappreciated role of CD25 during viral replication. These findings highlight how interactions between bacterial factors and T cells may promote T cell activation and HIV-1 replication. IMPORTANCE People living with HIV suffer from chronic immune activation despite effective antiretroviral therapy. Early after infection, HIV-1 actively replicates in the gut, causing the breakage of the intestinal epithelial barrier and microbial translocation. Microbial translocation and chronic immune activation have been proven linked; however, gaps in our knowledge on how bacteria contribute to the development of HIV-related diseases remain. Whether T cells in the peripheral blood react to bacterial products and how this affects viral replication are unknown. We show that some bacteria enriched in people living with HIV activate T cells and favor HIV-1's spread. Bacteria release soluble factors that cause the overexpression of cellular molecules related to their activation state. T cells overexpressing these molecules also replicate HIV-1 more efficiently. These results help us learn more about how HIV-1, T cells, and bacteria interact with each other, as well as the mechanisms behind chronic immune activation.
Collapse
Affiliation(s)
- M. Znaidia
- Institut Pasteur, Université Paris-Cité, UMR CNRS 3569, Virus and Immunity Unit, Paris, France
| | - Y. de Souza-Angelo
- Institut Pasteur, Université Paris-Cité, UMR CNRS 3569, Virus and Immunity Unit, Paris, France
| | - S. Létoffé
- Institut Pasteur, Université Paris-Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, Paris, France
| | - I. Staropoli
- Institut Pasteur, Université Paris-Cité, UMR CNRS 3569, Virus and Immunity Unit, Paris, France
| | - L. Grzelak
- Institut Pasteur, Université Paris-Cité, UMR CNRS 3569, Virus and Immunity Unit, Paris, France
| | - J. M. Ghigo
- Institut Pasteur, Université Paris-Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, Paris, France
| | - O. Schwartz
- Institut Pasteur, Université Paris-Cité, UMR CNRS 3569, Virus and Immunity Unit, Paris, France
- Vaccine Research Institute, Créteil, France
| | - N. Casartelli
- Institut Pasteur, Université Paris-Cité, UMR CNRS 3569, Virus and Immunity Unit, Paris, France
| |
Collapse
|