1
|
Iseki M, Sakamoto Y, Takezaki D, Matsuda Y, Inoue M, Morizane S, Mukai T. Epstein-Barr Virus-Induced 3 Attributes to TLR7-Mediated Splenomegaly. Immunology 2025; 175:36-51. [PMID: 39876525 DOI: 10.1111/imm.13905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/17/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
Epstein-Barr virus-induced 3 (EBI3) functions as a component of the heterodimer cytokine IL-27, which regulates innate and acquired immune responses. The expression of EBI3 gene is induced by Toll-like receptors (TLRs). Repeated treatment with imiquimod (IMQ), a TLR7 agonist, induces splenomegaly and cytopaenia due to increased splenic function. Although immune cell activation is speculated to play a role in chronic infection-mediated splenomegaly, the detailed mechanisms remain unknown. This study shows that IMQ treatment induces marked splenomegaly and severe bicytopaenia (anaemia and thrombocytopaenia) in wild-type mice. In IMQ-treated mice, myeloid cell populations in the spleen increased, and extramedullary haematopoiesis was observed. RNA-seq analysis revealed the upregulation of type I interferon (IFN)-related genes in the spleens of IMQ-treated mice. IMQ-induced pathological changes were partially mitigated by EBI3 deficiency. To investigate the mechanism of the improved phenotypes in the Ebi3 KO mice, we examined the involvement of IL-27, a heterodimer of EBI3 and IL-27p28. The expression of Il27a, which encodes IL-27p28, was increased in the spleen and peripheral blood by IMQ treatment. Furthermore, IL-27 stimulation upregulated type I IFN-related genes in bone marrow-derived macrophage cultures without type I IFN. These findings suggest that EBI3 deficiency mitigated IMQ-mediated pathological changes, presumably via a lack of IL-27 formation. Our study thus provides insights into the molecular mechanisms underlying chronic infection-mediated splenomegaly.
Collapse
Affiliation(s)
- Masanori Iseki
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki, Japan
| | - Yuma Sakamoto
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki, Japan
| | - Daiki Takezaki
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki, Japan
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshihiro Matsuda
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki, Japan
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mariko Inoue
- Medical Bioresource Research Unit, Central Research Institute, Kawasaki Medical School, Kurashiki, Japan
| | - Shin Morizane
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tomoyuki Mukai
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki, Japan
| |
Collapse
|
2
|
Pilati D, Agyei EK, Elkhashab M, Fuchs E, Nielsen IH, Bjerg TW, Anthi AK, Jiménez-Reinoso A, Iversen MB, Pohl L, Narita R, Frago S, Jakobsen MR, Andersen JT, Degn SE, Paludan SR, Alvarez-Vallina L, Howard KA. Exploiting FcRn engagement of an albumin-CpG oligonucleotide covalent conjugate for potent TLR9 immune induction. J Biol Chem 2025:108508. [PMID: 40222546 DOI: 10.1016/j.jbc.2025.108508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/26/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025] Open
Abstract
CpG-oligodeoxynucleotide (CpG ODN)-based toll-like receptor (TLR) agonists are promising immunostimulatory adjuvants, however, low entry into TLR-rich cellular endosomal compartments and poor lymphatic accumulation limit clinical translation. In this work, we introduce a recombinant human serum albumin (rHA)-CpG ODN covalent conjugate (rHA-CpG) designed to exploit the neonatal Fc receptor (FcRn)-driven albumin cellular sorting pathway to maximise CpG delivery into TLR9-rich endosomes and accumulate in lymph nodes. Site-selective conjugation of CpG to albumin cysteine 34, distant from its main FcRn binding interface, resulted in a retained pH dependent human FcRn binding, and receptor-driven endosomal trafficking in a cellular recycling assay. Induction of tumour necrosis factor (TNF) secretion in THP-1 cells and interferon alpha (IFN-α) in human hematopoietic stem and progenitor cell (HSPC)-derived plasmacytoid dendritic cells (pDCs), in contrast, to a myeloid differentiation primary response 88 (MyD88) and TLR9 knockout cells, respectively, support TLR9-engagement. The rHA-CpG construct induced greater TNF-α than free CpG ODN in mouse RAW 264.7 cells, and in human peripheral blood mononuclear cells (PBMCs) and expansion of classical (CD14+CD16-) monocytes. Furthermore, greater accumulation of Cy5.5-labelled CpG in the inguinal (>3-fold) and axillary (>18-fold) lymph nodes was observed when conjugated to rHA compared to an unconjugated rHA/CpG mix following subcutaneous injection in mice. Moreover, increased LN accumulation of an rHA variant engineered with high FcRn-binding affinity supports an FcRn-driven mechanism. Demonstration of FcRn-mediated albumin targeting at intra- and extracellular sites provides the mechanistic basis for potent immune induction observed using the novel rHA-CpG conjugate design class introduced in this work.
Collapse
Affiliation(s)
- Diego Pilati
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University; DK-8000 Aarhus C, Denmark
| | - Eugene Kusi Agyei
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University; DK-8000 Aarhus C, Denmark
| | - Marwa Elkhashab
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University; DK-8000 Aarhus C, Denmark
| | - Elisabeth Fuchs
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University; DK-8000 Aarhus C, Denmark
| | - Ian Helstrup Nielsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Tobias Wang Bjerg
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Aina Karen Anthi
- Department of Immunology, Oslo University Hospital Rikshospitalet; 0372 Oslo, Norway; Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet; 0372 Oslo, Norway; Precision Immunotherapy Alliance (PRIMA), University of Oslo; 0372 Oslo, Norway
| | - Anaïs Jiménez-Reinoso
- Immuno-Oncology and Immunotherapy Group, Biomedical Research Institute Hospital Universitario, 12 de Octubre, 28041 Madrid, Spain; Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario, 12 de Octubre, 28041 Madrid, Spain; H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Marie Beck Iversen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Layla Pohl
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Ryo Narita
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Susana Frago
- Leadartis, S.L., QUBE Technology Park, 28760 Tres Cantos, Madrid
| | - Martin R Jakobsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Jan Terje Andersen
- Department of Immunology, Oslo University Hospital Rikshospitalet; 0372 Oslo, Norway
| | - Søren E Degn
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Luis Alvarez-Vallina
- Immuno-Oncology and Immunotherapy Group, Biomedical Research Institute Hospital Universitario, 12 de Octubre, 28041 Madrid, Spain; Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario, 12 de Octubre, 28041 Madrid, Spain; H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Kenneth A Howard
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University; DK-8000 Aarhus C, Denmark.
| |
Collapse
|
3
|
van der Sluis RM, García-Rodríguez JL, Nielsen IH, Gris-Oliver A, Becker J, Costa B, Chaudhry MZ, Werner M, Laustsen A, Pedersen JG, Gammelgaard KR, Mogensen TH, Kalinke U, Cicin-Sain L, Bak RO, Kristensen LS, Jakobsen MR. Distinctive CD8 + T cell activation by antigen-presenting plasmacytoid dendritic cells compared to conventional dendritic cells. Cell Rep 2025; 44:115413. [PMID: 40073016 DOI: 10.1016/j.celrep.2025.115413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 12/16/2024] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
Plasmacytoid dendritic cells (pDCs) play a pivotal role in immune responses, particularly against viral infections. pDCs exhibit diverse functions, including interferon production, cytokine secretion, and antigen presentation. Here, we investigate the antigen cross-presentation capacity of pDCs and their role in CD8+ T cell activation. Utilizing a culturing system with CD8+ T cells and autologous pDCs derived from circulating CD34+ hematopoietic stem and progenitor cells, we demonstrate that pDCs efficiently activate CD8+ T cells via cross-presentation, promoting T cell expansion and cytotoxic activity. The antigen presentation capacity of pDCs is comparable to that of monocyte-derived dendritic cells (moDCs) and myeloid dendritic cells, which are known for their efficient antigen-presentation capacity. Transcriptomic analysis reveals genetic signatures in CD8+ T cells activated by pDCs distinct from moDCs, suggesting different activation mechanisms. These findings underscore the importance of pDCs in antigen presentation and their contribution to CD8+ T cell activation.
Collapse
Affiliation(s)
- Renée M van der Sluis
- Aarhus Institute of Advanced Studies, Aarhus University, 8000 Aarhus, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark.
| | | | | | | | - Jennifer Becker
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Bibiana Costa
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - M Zeeshan Chaudhry
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Hannover-Braunschweig Site, 38124 Braunschweig, Germany; Centre for Individualized Infection Medicine, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Marvin Werner
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Anders Laustsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Jesper G Pedersen
- Aarhus Institute of Advanced Studies, Aarhus University, 8000 Aarhus, Denmark
| | | | - Trine H Mogensen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany; Cluster of Excellence - Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Hannover, Germany
| | - Luka Cicin-Sain
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Hannover-Braunschweig Site, 38124 Braunschweig, Germany; Centre for Individualized Infection Medicine, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Rasmus O Bak
- Aarhus Institute of Advanced Studies, Aarhus University, 8000 Aarhus, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | | | | |
Collapse
|
4
|
Hara A, Watanabe T, Minaga K, Kamata K, Strober W, Kudo M. Sequential activation of conventional and plasmacytoid dendritic cells in autoimmune pancreatitis and systemic lupus erythematosus: similarities and dissimilarities. Front Immunol 2025; 16:1554492. [PMID: 40040712 PMCID: PMC11876061 DOI: 10.3389/fimmu.2025.1554492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 01/31/2025] [Indexed: 03/06/2025] Open
Abstract
Type 1 autoimmune pancreatitis (AIP) and systemic lupus erythematosus (SLE) are caused by type I IFNs secreted by plasmacytoid dendritic cells (pDCs). Our understanding of the immune consequences before and after pDC activation in SLE is expanding, whereas knowledge on those in AIP are insufficient. In this article, we summarize the similarities and dissimilarities in pDC activation between AIP and SLE. In SLE, neutrophil extracellular traps containing self-DNA, anti-microbial peptides, and endogenous alarmins form anti-DNA antibody complexes, promoting type I IFN production by pDCs. Type I IFNs produced by pDCs function as initiators rather than effectors in SLE, as evidenced by the fact that these cytokines induce the maturation of conventional DCs (cDCs) leading to the expansion of autoreactive T cells and B cells. Notably, type I IFNs produced by pDCs were observed at the maturation phase but not at the induction phase in experimental AIP. Mechanistically, cDCs producing type I IFNs, C-X-C motif chemokine ligand 9 (CXCL9), and CXCL10 are initiator cells of AIP, and C-X-C chemokine receptor 3 (CXCR3)+T helper type 1(Th1) cells migrate to the pancreas in response to CXCL9 and CXCL10. CXCR3+Th1 cells produce C-C chemokine ligand 25 (CCL25) to attract C-C chemokine receptor 9 (CCR9)+pDCs to the pancreas. Pancreatic pDCs producing type I IFNs, CXCL9, CXCL10, and CXCR3+Th1 cells producing CCL25 form a positive feedback loop in which the sensing of intestinal dysbiosis induces large amounts of type I IFNs by pDCs.
Collapse
Affiliation(s)
- Akane Hara
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Kosuke Minaga
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Ken Kamata
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Warren Strober
- Mucosal Immunity Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| |
Collapse
|
5
|
Soe YM, Sim SL, Kumari S. Innate Immune Sensors and Cell Death-Frontiers Coordinating Homeostasis, Immunity, and Inflammation in Skin. Viruses 2025; 17:241. [PMID: 40006996 PMCID: PMC11861910 DOI: 10.3390/v17020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
The skin provides a life-sustaining interface between the body and the external environment. A dynamic communication among immune and non-immune cells in the skin is essential to ensure body homeostasis. Dysregulated cellular communication can lead to the manifestation of inflammatory skin conditions. In this review, we will focus on the following two key frontiers in the skin: innate immune sensors and cell death, as well as their cellular crosstalk in the context of skin homeostasis and inflammation. This review will highlight the recent advancements and mechanisms of how these pathways integrate signals and orchestrate skin immunity, focusing on inflammatory skin diseases and skin infections in mice and humans.
Collapse
Affiliation(s)
| | | | - Snehlata Kumari
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Woolloongabba, Brisbane, QLD 4102, Australia; (Y.M.S.); (S.L.S.)
| |
Collapse
|
6
|
Zeng J, Sun Y, Fang Y, Wang X, Huang Q, Zhang P, Shao M, Wang P, Cheng J, Di M, Liu T, Qian Q. Unleashing the potential of a low CpG Passer transposon for superior CAR-T cell therapy. Front Immunol 2025; 16:1541653. [PMID: 39981247 PMCID: PMC11840574 DOI: 10.3389/fimmu.2025.1541653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 01/15/2025] [Indexed: 02/22/2025] Open
Abstract
Background To date, the non-viral vector Chimeric Antigen Receptor (CAR) T cell preparation platform, exemplified by transposons, has demonstrated significant potential in tumor immunotherapy and yielded positive results in multiple clinical trials. Nonetheless, non-methylated CpG sequences within plasmid DNA can elicit an inflammatory response via Toll-like receptor 9 (TLR9) during CAR-T cell preparation, adversely affecting transgene expression. Additionally, de novo DNA methylation programs promote T cell exhaustion, which poses a significant limitation for CAR-T cell therapy applications. Methods High-throughput liquid protein chip and CBA analyses were utilized to determine the expression levels of inflammatory factors. Flow cytometry and luciferase reporter assays were employed for mutation screening. BALB/c mice and M-NSG mice were used to evaluate the inflammatory response and efficacy of LCG CAR-T in vivo, with TIL grouping detected via immunohistochemistry. Results In this study, we modified the newly discovered Passer (JL) transposon to construct a low-CpG content transposon for CAR-T cell (LCG CAR-T cell) preparation. In vitro experiments demonstrated that LCG CAR-T cells prepared using this new transposon exhibited stronger cytotoxicity. In animal models, LCG CAR-T cells significantly inhibited tumor growth and increased the populations of CD4+CAR-T cells and tumor-infiltrating lymphocytes. Furthermore, LCG CAR-T cells modulated pro-inflammatory cytokine release, thereby reducing in vivo inflammatory responses and surpassing the effects observed with unmodified CAR-T cells. Conclusions Collectively, our results demonstrate the high safety and efficacy of non-viral, low CpG Passer transposon CAR-T cells, offering new avenues for improving CAR-T cell efficacy while minimizing in vivo inflammation.
Collapse
Affiliation(s)
- Jianyao Zeng
- School of Medicine, Shanghai University, Shanghai, China
| | - Yan Sun
- School of Medicine, Shanghai University, Shanghai, China
- Innovative Drugs Business Group, Shanghai Cell Therapy Group, Shanghai, China
| | - Yuan Fang
- Innovative Drugs Business Group, Shanghai Cell Therapy Group, Shanghai, China
| | - Xiaodie Wang
- School of Medicine, Shanghai University, Shanghai, China
| | - Qian Huang
- Innovative Drugs Business Group, Shanghai Cell Therapy Group, Shanghai, China
| | - Pingjing Zhang
- Innovative Drugs Business Group, Shanghai Cell Therapy Group, Shanghai, China
| | - Meiqi Shao
- Innovative Drugs Business Group, Shanghai Cell Therapy Group, Shanghai, China
| | - Pei Wang
- Innovative Drugs Business Group, Shanghai Cell Therapy Group, Shanghai, China
| | - Jingbo Cheng
- Innovative Drugs Business Group, Shanghai Cell Therapy Group, Shanghai, China
| | - Meng Di
- School of Medicine, Shanghai University, Shanghai, China
| | - Tao Liu
- Innovative Drugs Business Group, Shanghai Cell Therapy Group, Shanghai, China
| | - Qijun Qian
- School of Medicine, Shanghai University, Shanghai, China
- Innovative Drugs Business Group, Shanghai Cell Therapy Group, Shanghai, China
- Shanghai Mengchao Cancer Hospital, Shanghai University, Shanghai, China
| |
Collapse
|
7
|
Jeon D, Hill E, McNeel DG. Toll-like receptor agonists as cancer vaccine adjuvants. Hum Vaccin Immunother 2024; 20:2297453. [PMID: 38155525 PMCID: PMC10760790 DOI: 10.1080/21645515.2023.2297453] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/16/2023] [Indexed: 12/30/2023] Open
Abstract
Cancer immunotherapy has emerged as a promising strategy to treat cancer patients. Among the wide range of immunological approaches, cancer vaccines have been investigated to activate and expand tumor-reactive T cells. However, most cancer vaccines have not shown significant clinical benefit as monotherapies. This is likely due to the antigen targets of vaccines, "self" proteins to which there is tolerance, as well as to the immunosuppressive tumor microenvironment. To help circumvent immune tolerance and generate effective immune responses, adjuvants for cancer vaccines are necessary. One representative adjuvant family is Toll-Like receptor (TLR) agonists, synthetic molecules that stimulate TLRs. TLRs are the largest family of pattern recognition receptors (PRRs) that serve as the sensors of pathogens or cellular damage. They recognize conserved foreign molecules from pathogens or internal molecules from cellular damage and propel innate immune responses. When used with vaccines, activation of TLRs signals an innate damage response that can facilitate the development of a strong adaptive immune response against the target antigen. The ability of TLR agonists to modulate innate immune responses has positioned them to serve as adjuvants for vaccines targeting infectious diseases and cancers. This review provides a summary of various TLRs, including their expression patterns, their functions in the immune system, as well as their ligands and synthetic molecules developed as TLR agonists. In addition, it presents a comprehensive overview of recent strategies employing different TLR agonists as adjuvants in cancer vaccine development, both in pre-clinical models and ongoing clinical trials.
Collapse
Affiliation(s)
- Donghwan Jeon
- Department of Oncology, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Ethan Hill
- Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Douglas G. McNeel
- Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| |
Collapse
|
8
|
Polis B, Cuda CM, Putterman C. Animal models of neuropsychiatric systemic lupus erythematosus: deciphering the complexity and guiding therapeutic development. Autoimmunity 2024; 57:2330387. [PMID: 38555866 DOI: 10.1080/08916934.2024.2330387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/10/2024] [Indexed: 04/02/2024]
Abstract
Systemic lupus erythematosus (SLE) poses formidable challenges due to its multifaceted etiology while impacting multiple tissues and organs and displaying diverse clinical manifestations. Genetic and environmental factors contribute to SLE complexity, with relatively limited approved therapeutic options. Murine models offer insights into SLE pathogenesis but do not always replicate the nuances of human disease. This review critically evaluates spontaneous and induced animal models, emphasizing their validity and relevance to neuropsychiatric SLE (NPSLE). While these models undoubtedly contribute to understanding disease pathophysiology, discrepancies persist in mimicking some NPSLE intricacies. The lack of literature addressing this issue impedes therapeutic progress. We underscore the urgent need for refining models that truly reflect NPSLE complexities to enhance translational fidelity. We encourage a comprehensive, creative translational approach for targeted SLE interventions, balancing scientific progress with ethical considerations to eventually improve the management of NPSLE patients. A thorough grasp of these issues informs researchers in designing experiments, interpreting results, and exploring alternatives to advance NPSLE research.
Collapse
Affiliation(s)
- Baruh Polis
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Research Institute, Galilee Medical Center, Nahariya, Israel
| | - Carla M Cuda
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Chaim Putterman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Research Institute, Galilee Medical Center, Nahariya, Israel
- Division of Rheumatology and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
9
|
Liu AR, Sarkar N, Cress JD, de Jesus TJ, Vadlakonda A, Centore JT, Griffith AD, Rohr B, McCormick TS, Cooper KD, Ramakrishnan P. NF-κB c-Rel is a critical regulator of TLR7-induced inflammation in psoriasis. EBioMedicine 2024; 110:105452. [PMID: 39586195 PMCID: PMC11625363 DOI: 10.1016/j.ebiom.2024.105452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/28/2024] [Accepted: 10/30/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Nuclear factor kappa B (NF-κB) c-Rel is a psoriasis susceptibility locus, however mechanisms underlying c-Rel transactivation during disease are poorly understood. Inflammation in psoriasis can be triggered following Toll-like Receptor 7 (TLR7) signalling in dendritic cells (DCs), and c-Rel is a critical regulator of DC function. Here, we studied the mechanism of TLR7-induced c-Rel-mediated inflammation in DCs. METHODS The overall expression of c-Rel was analysed in skin sections from patients with psoriasis in human transcriptomics datasets as well as the imiquimod-induced psoriasis mouse model. The function of c-Rel in DCs following TLR7 stimulation was determined by c-Rel CRISPR/Cas9 knockout DC2.4 immortalised cells and primary bone marrow derived dendritic cells from c-Rel knockout C57BL6/J mice. FINDINGS c-Rel is highly expressed in lesional skin of patients with psoriasis and TLR7-induced psoriatic lesions in mice. c-Rel deficiency protected mice from the disease, and specifically compromised TLR7-induced, and not TLR9- or TLR3-induced, inflammation in dendritic cells. Mechanistically, c-Rel deficiency disrupted activating NF-κB dimers and allowed binding of inhibitory NF-κB homodimers to the IL-1β and IL-6 promoters thus inhibiting their expression. This functionally compromises the ability of c-Rel deficient DCs to induce Th17 polarisation, which is critical in psoriasis pathogenesis. INTERPRETATION Our findings reveal that c-Rel is a key regulator of TLR7-mediated dendritic cell-dependent inflammation, and that targeting c-Rel-dependent signalling could prove an effective strategy to dampen excessive inflammation in TLR7-related skin inflammation. FUNDING A complete list of funding sources that contributed to this study can be found in the Acknowledgements section.
Collapse
Affiliation(s)
- Angela Rose Liu
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, Ohio 44106, USA
| | - Nandini Sarkar
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, Ohio 44106, USA
| | - Jordan D Cress
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, Ohio 44106, USA
| | - Tristan J de Jesus
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, Ohio 44106, USA
| | - Ananya Vadlakonda
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, Ohio 44106, USA
| | - Joshua T Centore
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, Ohio 44106, USA
| | - Alexis D Griffith
- Department of Dermatology, Case Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106, USA
| | - Bethany Rohr
- Department of Dermatology, Case Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106, USA; University Hospitals-Cleveland Medical Center, 11100 Euclid Ave, Cleveland, Ohio 44106, USA
| | - Thomas S McCormick
- Department of Dermatology, Case Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106, USA; University Hospitals-Cleveland Medical Center, 11100 Euclid Ave, Cleveland, Ohio 44106, USA
| | - Kevin D Cooper
- Department of Dermatology, Case Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106, USA; University Hospitals-Cleveland Medical Center, 11100 Euclid Ave, Cleveland, Ohio 44106, USA
| | - Parameswaran Ramakrishnan
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, Ohio 44106, USA; The Case Comprehensive Cancer Center, Case Western Reserve University, 2103 Cornell Road, Cleveland, Ohio 44106, USA; Department of Biochemistry, Case Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106, USA; University Hospitals-Cleveland Medical Center, 11100 Euclid Ave, Cleveland, Ohio 44106, USA; Louis Stokes Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, Ohio 44106, USA.
| |
Collapse
|
10
|
Salvi V, Gaudenzi C, Mariotti B, Giongrandi G, Alacqua S, Gianello V, Schioppa T, Tiberio L, Ceribelli A, Selmi C, Bergese P, Calza S, Del Prete A, Sozzani S, Bazzoni F, Bosisio D. Cell damage shifts the microRNA content of small extracellular vesicles into a Toll-like receptor 7-activating cargo capable to propagate inflammation and immunity. Cell Commun Signal 2024; 22:536. [PMID: 39516877 PMCID: PMC11545887 DOI: 10.1186/s12964-024-01924-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The physiological relevance of cell-to-cell communication mediated by small extracellular vesicle-encapsulated microRNAs (sEV-miRNAs) remains debated because of the limiting representativity of specific miRNAs within the extracellular pool. We hypothesize that sEV-miRNA non-canonical function consisting of the stimulation of Toll-like receptor 7 (TLR7) may rely on a global shift of the sEV cargo rather than on the induction of one or few specific miRNAs. Psoriasis represents an ideal model to test such hypothesis as it is driven by overt activation of TLR7-expressing plasmacytoid dendritic cells (pDCs) following keratinocyte damage. METHODS To mimic the onset of psoriasis, keratinocytes were treated with a cocktail of psoriatic cytokines or UV-irradiated. SmallRNA sequencing was performed on sEVs released by healthy and UV-treated keratinocytes. sEV-miRNAs were analyzed for nucleotide composition as well as for the presence of putative TLR7-binding triplets. Primary human pDCs where stimulated with sEVs +/- inhibitors of TLR7 (Enpatoran), of sEV release (GW4869 + manumycin) and of TLR7-mediated pDC activation (anti-BDCA-2 antibody). Secretion of type I IFNs and activation of CD8+T cells were used as readouts. qPCR on psoriatic and healthy skin biopsies was conducted to identify induced miRNAs. RESULTS sEV-miRNAs released by damaged keratinocytes revealed a significantly higher content of TLR7-activating sequences than healthy cells. As expected, differential expression analysis confirmed the presence of miRNAs upregulated in psoriatic skin, including miR203a. More importantly, 76.5% of induced miRNAs possessed TLR7-binding features and among these we could detect several previously demonstrated TLR7 ligands. In accordance with this in silico analysis, sEVs from damaged keratinocytes recapitulated key events of psoriatic pathogenesis by triggering pDCs to release type I interferon and activate cytotoxic CD8+T cells in a TLR7- and sEV-dependent manner. DISCUSSION Our results demonstrate that miR203a is just one paradigmatic TLR7-activating miRNA among the hundreds released by UV-irradiated keratinocytes, which altogether trigger pDC activation in psoriatic conditions. This represents the first evidence that cell damage shifts the miRNA content of sEVs towards a TLR7-activating cargo capable to propagate inflammation and immunity, offering strong support to the physiological role of systemic miRNA-based cell-to-cell communication.
Collapse
Affiliation(s)
- Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Carolina Gaudenzi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | | | - Gaia Giongrandi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Silvia Alacqua
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Veronica Gianello
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Tiziana Schioppa
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Angela Ceribelli
- Department of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Carlo Selmi
- Department of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Paolo Bergese
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Stefano Calza
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Silvano Sozzani
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Institute Pasteur-Italia, Rome, Italy
| | - Flavia Bazzoni
- Department of Medicine, University of Verona, Verona, Italy
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy.
| |
Collapse
|
11
|
Amosu MM, Jankowski AM, McCright JC, Yang BE, Grano de Oro Fernandez J, Moore KA, Gadde HS, Donthi M, Kaluzienski ML, Maisel K. Plasmacytoid Dendritic Cells Mediate CpG-ODN-induced Increase in Survival in a Mouse Model of Lymphangioleiomyomatosis. Am J Respir Cell Mol Biol 2024; 71:519-533. [PMID: 38990702 PMCID: PMC11568470 DOI: 10.1165/rcmb.2023-0410oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/11/2024] [Indexed: 07/13/2024] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a devastating disease primarily found in women of reproductive age that leads to cystic destruction of the lungs. Recent work has shown that LAM causes immunosuppression and that checkpoint inhibitors can be used as LAM treatment. Toll-like receptor (TLR) agonists can also reactivate immunity, and the TLR9 agonist CpG oligodeoxynucleotide (CpG-ODN) has been effective in treating lung cancer in animal models. In this study, we investigated the use of TLR9 agonist CpG-ODN as LAM immunotherapy in combination with checkpoint inhibitor anti-PD1 and standard of care rapamycin, and determined the immune mechanisms underlying therapeutic efficacy. We used survival studies, flow cytometry, ELISA, and histology to assess immune response and survival after intranasal treatment with CpG-ODN in combination with rapamycin or anti-PD1 therapy in a mouse model of metastatic LAM. We found that local administration of CpG-ODN enhances survival in a mouse model of LAM. We found that a lower dose led to longer survival, likely because of fewer local side effects, but increased LAM nodule count and size compared with the higher dose. CpG-ODN treatment also reduced regulatory T cells and increased the number of T-helper type 17 cells as well as cytotoxic T cells. These effects appear to be mediated in part by plasmacytoid dendritic cells because depletion of plasmacytoid dendritic cells reduces survival and abrogates T-helper type 17 cell response. Finally, we found that CpG-ODN treatment is effective in early-stage and progressive disease and is additive with anti-PD1 therapy and rapamycin. In summary, we have found that TLR9 agonist CpG-ODN can be used as LAM immunotherapy and effectively synergizes with rapamycin and anti-PD1 therapy in LAM.
Collapse
Affiliation(s)
- Mayowa M Amosu
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Ashleigh M Jankowski
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Jacob C McCright
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Bennett E Yang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | | | - Kaitlyn A Moore
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Havish S Gadde
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Mehul Donthi
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Michele L Kaluzienski
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Katharina Maisel
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| |
Collapse
|
12
|
Lv Y, Guo S, Jin L, Wang K, Li Y, Li H, Lu Y, Liu H. MiR-5195-3p predicts clinical prognosis and represses colorectal cancer progression by targeting TLR4/MyD88 signaling. Cell Div 2024; 19:29. [PMID: 39390599 PMCID: PMC11468180 DOI: 10.1186/s13008-024-00133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Recent studies have highlighted the role of miR-5195-3p in suppressing cell growth in various cancers. However, the specific functional impact of miR-5195-3p in colorectal cancer (CRC) remain to be fully clarified. The importance of miR-5195-3p in CRC was evaluated, aiming to uncover its underlying molecular mechanism and identify it as a potential therapeutic target for CRC. RESULTS Our research has shown that miR-5195-3p is markedly under-expressed in CRC tissues and cell cultures, with its reduced presence associated with a higher TNM stage, lymphatic invasion, and unfavorable survival outcome. Ectopic miR-5195-3p expression curtailed proliferation, migration, and invasion of SW1116 and HT29 cells. Additionally, we discovered that miR-5195-3p directly targets and negatively influences Toll-like receptor 4 (TLR4) in CRC cells. Moreover, an inverse relationship was noted between miR-5195-3p and TLR4 expression in CRC tissue samples. Notably, restoring TLR4 expression counteracted miR-5195-3p's suppressive impact on cell growth, motility, invasiveness, epithelial-mesenchymal transition (EMT), and the TLR4/MyD88 signaling pathway in SW1116 and HT29 cells. CONCLUSIONS MiR-5195-3p suppresses the CRC cellular functions through the downregulation of TLR4/MyD88 signaling, indicating that targeting miR-5195-3p might offer a viable therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Yandong Lv
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, No.110 Yanan South Road, Luzhou District, 046000, Changzhi City, Shanxi Province, P. R. China
| | - Shuwei Guo
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, No.110 Yanan South Road, Luzhou District, 046000, Changzhi City, Shanxi Province, P. R. China
| | - Lingtong Jin
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, No.110 Yanan South Road, Luzhou District, 046000, Changzhi City, Shanxi Province, P. R. China
| | - Kai Wang
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, No.110 Yanan South Road, Luzhou District, 046000, Changzhi City, Shanxi Province, P. R. China
| | - Yongsheng Li
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, No.110 Yanan South Road, Luzhou District, 046000, Changzhi City, Shanxi Province, P. R. China
| | - Haonan Li
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, No.110 Yanan South Road, Luzhou District, 046000, Changzhi City, Shanxi Province, P. R. China
| | - Yikang Lu
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, No.110 Yanan South Road, Luzhou District, 046000, Changzhi City, Shanxi Province, P. R. China
| | - Hongzhou Liu
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, No.110 Yanan South Road, Luzhou District, 046000, Changzhi City, Shanxi Province, P. R. China.
| |
Collapse
|
13
|
Bhat RR, Bhat NN, Shabir A, Mir MUR, Ahmad SB, Hussain I, Hussain SA, Ali A, Shamim K, Rehman MU. SNP Analysis of TLR4 Promoter and Its Transcriptional Factor Binding Profile in Relevance to Bovine Subclinical Mastitis. Biochem Genet 2024; 62:3605-3623. [PMID: 38158465 DOI: 10.1007/s10528-023-10578-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/28/2023] [Indexed: 01/03/2024]
Abstract
Bovine mastitis is a complex infectious disease that develops in the mammary gland, predominantly caused by a bacterial infection of mammary tissue. Genetic variability of mastitis is well established and depends upon different quantitative trait loci (QTL) related to mastitis resistance or susceptibility. The susceptibility is often attributed to single-nucleotide polymorphisms (SNPs) in the variable cow breed genomes. Several global investigative attempts have resulted in studies mapping mastitis to the variations in the relevant genes. Reports have been attributed to dramatic genetic expression changes in Toll-Like Receptor 4 (TLR4) genes in mastitis-positive cows. However, the mechanism behind this variable genetic expression of TLR4 genes has been studied poorly. The present study aims to investigate SCM through various screening tests like somatic cell count (SCC), electric conductivity (EC), pH, and California mastitis test (CMT) in milk samples. This study also aims to investigate possible mechanisms behind this variable expression of TLR4 by comparative SNP evaluation and transcriptional factor profile mining. So that the important genetic mutations and effects thereof can be exploited in selecting specific breeds with higher mastitis resistance and milk yield. Seventy Holstein Frisian (HF) crossbred dairy cows were selected in the present study. The animals were screened based on various diagnostic tests (SCC, pH, EC, and CMT). Blood samples (5 mL) were collected for extraction of DNA followed by amplification of PPR1 and PPR2 of the promoter region and 5'UTR of the bovine TLR4 gene using specific primers. Sanger's enzymatic DNA sequencing technique sequenced the amplified PCR products. Further, the identification of SNPs was done through various bioinformatic tools used in this study. The findings of the present study revealed that CMT, EC, pH, and SCC could be used for the early detection of subclinical mastitis. In the present study, a significant increase in the EC, pH, and SCC in milk samples of animals affected with SCM was found in comparison to the healthy animals. The present study also revealed 16 SNPs falling in TLR4 promoter and 5' untranslated region (5'UTR) sequences in mastitis-positive genotypes compared to reference genomes. The study also investigates the potential transcriptional factor program deployed in response to variable mastitis development resistance. In the present study, the allelic and genotype frequencies of all SNP variants in the three regions viz., PPR1, PPR2, and 5'UTR, were the same indicating the absence of heterozygous condition at the respective loci. The present study has wide applicability for researchers developing mastitis-resistant breeding programs and the data generated may aid in the selection of better genetic breeds. The transcription factor binding profiles can serve as concrete leads about the studies on bovine mastitis at the molecular level and may also aid global research groups working on transcription factor (TF)-based molecular pathology of mastitis.
Collapse
Affiliation(s)
- Rahil Razak Bhat
- Division of Veterinary Biochemistry FVSc & AH, SKUAST-Kashmir, Shuhama, Alusteng, Srinagar, J&K, 190006, India
| | - Nadiem Nazir Bhat
- Division of Veterinary Biochemistry FVSc & AH, SKUAST-Kashmir, Shuhama, Alusteng, Srinagar, J&K, 190006, India
| | - Ambreen Shabir
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries, SKUAST-Kashmir, Rangil, Ganderbal, J&K, 191201, India
| | - Manzoor Ur Rahman Mir
- Division of Veterinary Biochemistry FVSc & AH, SKUAST-Kashmir, Shuhama, Alusteng, Srinagar, J&K, 190006, India.
| | - Sheikh Bilal Ahmad
- Division of Veterinary Biochemistry FVSc & AH, SKUAST-Kashmir, Shuhama, Alusteng, Srinagar, J&K, 190006, India
| | - Ishraq Hussain
- Division of Veterinary Biochemistry FVSc & AH, SKUAST-Kashmir, Shuhama, Alusteng, Srinagar, J&K, 190006, India
| | - Syed Ashaq Hussain
- Division of Veterinary Clinical Medicine, Ethics and Jurisprudence, FVSc & AH, SKUAST-Kashmir, Shuhama, Alusteng, Srinagar, J&K, 190006, India
| | - Aarif Ali
- Division of Veterinary Biochemistry FVSc & AH, SKUAST-Kashmir, Shuhama, Alusteng, Srinagar, J&K, 190006, India.
| | - Kashif Shamim
- National Centre for Natural Products Research, University of Mississippi, Oxford, MS, 38677, USA
| | - Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Deb P, Singh S, Kalyoussef E, Hess NJ, Tapping RI, Fitzgerald-Bocarsly P. TLR10 (CD290) Is a Regulator of Immune Responses in Human Plasmacytoid Dendritic Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:577-587. [PMID: 38995177 PMCID: PMC11333166 DOI: 10.4049/jimmunol.2200468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 06/10/2024] [Indexed: 07/13/2024]
Abstract
TLRs are the most thoroughly studied group of pattern-recognition receptors that play a central role in innate immunity. Among them, TLR10 (CD290) remains the only TLR family member without a known ligand and clearly defined functions. One major impediment to studying TLR10 is its absence in mice. A recent study on TLR10 knock-in mice demonstrated its intrinsic inhibitory role in B cells, indicating that TLR10 is a potential drug target in autoimmune diseases. In this study, we interrogated the expression and function of TLR10 in human plasmacytoid dendritic cells (pDCs). We have seen that primary human pDCs, B cells, and monocytes constitutively express TLR10. Upon preincubation with an anti-TLR10 Ab, production of cytokines in pDCs was downregulated in response to stimulation with DNA and RNA viruses. Upon further investigation into the possible mechanism, we documented phosphorylation of STAT3 upon Ab-mediated engagement of TLR10. This leads to the induction of inhibitory molecule suppressor of cytokine signaling 3 (SOCS3) expression. We have also documented the inhibition of nuclear translocation of transcription factor IFN regulatory factor 7 (IRF7) in pDCs following TLR10 engagement. Our data provide the (to our knowledge) first evidence that TLR10 is constitutively expressed on the surface of human pDCs and works as a regulator of their innate response. Our findings indicate the potential of harnessing the function of pDCs by Ab-mediated targeting of TLR10 that may open a new therapeutic avenue for autoimmune disorders.
Collapse
Affiliation(s)
- Pratik Deb
- Rutgers School of Graduate Studies, Newark, NJ 07103
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Sukhwinder Singh
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Evelyne Kalyoussef
- Dept. of Otorhinolaryngology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Nicholas J. Hess
- Dept. of Medical Microbiology & Immunology, University of Wisconsin-Madison
| | | | - Patricia Fitzgerald-Bocarsly
- Rutgers School of Graduate Studies, Newark, NJ 07103
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103
| |
Collapse
|
15
|
Quispe-Salcedo A, Yamazaki T, Ohshima H. Effects of Synthetic Toll-Like Receptor 9 Ligand Molecules on Pulpal Immunomodulatory Response and Repair after Injuries. Biomolecules 2024; 14:931. [PMID: 39199319 PMCID: PMC11353191 DOI: 10.3390/biom14080931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Synthetic oligodeoxynucleotides (ODNs) containing unmethylated cytosine-phosphate-guanine (CpG) motifs (CpG-ODNs) are ligand molecules for Toll-like receptor 9 (TLR9), which is expressed by odontoblasts in vitro and dental pulp cells. This study determined the effects of CpG-ODNs on pulpal immunomodulatory response and repair following injury. Briefly, the upper right first molars of three-week-old mice were extracted, immersed in Type A (D35) or B (K3) CpG-ODN solutions (0.1 or 0.8 mM) for 30 min, and then replanted. Pulpal healing and immunomodulatory activity were assessed by hematoxylin-eosin and AZAN staining, as well as immunohistochemistry. One week following the operation, inflammatory reactions occurred in all of the experimental groups; however, re-revascularization and newly formed hard tissue deposition were observed in the pulp chamber of all groups at week 2. A positive trend in the expression of immune cell markers was observed toward the CpG-ODN groups at 0.1 mM. Our data suggest that synthetic CpG-ODN solutions at low concentrations may evoke a long-lasting macrophage-TLR9-mediated pro-inflammatory, rather than anti-inflammatory, response in the dental pulp to modulate the repair process and hard tissue formation. Further studies are needed to determine the effects of current immunomodulatory agents in vitro and in vivo and develop treatment strategies for dental tissue regeneration.
Collapse
Affiliation(s)
- Angela Quispe-Salcedo
- Division of Anatomy and Cell Biology of the Hard Tissue, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan;
| | - Tomohiko Yamazaki
- Research Center for Macromolecules and Biomaterials, National Institute of Material Sciences (NIMS), Tsukuba 305-0047, Japan;
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan;
| |
Collapse
|
16
|
Diallo A, Overman G, Sah P, Liechti GW. Recognition of Chlamydia trachomatis by Toll-like receptor 9 is altered during persistence. Infect Immun 2024; 92:e0006324. [PMID: 38899879 PMCID: PMC11238561 DOI: 10.1128/iai.00063-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Toll-like receptor 9 (TLR9) is an innate immune receptor that localizes to endosomes in antigen presenting cells and recognizes single stranded unmethylated CpG sites on bacterial genomic DNA (gDNA). Previous bioinformatic studies have demonstrated that the genome of the human pathogen Chlamydia trachomatis contains TLR9 stimulatory motifs, and correlative studies have implied a link between human TLR9 (hTLR9) genotype variants and susceptibility to infection. Here, we present our evaluation of the stimulatory potential of C. trachomatis gDNA and its recognition by hTLR9- and murine TLR9 (mTLR9)-expressing cells. Utilizing reporter cell lines, we demonstrate that purified gDNA from C. trachomatis can stimulate hTLR9 signaling, albeit at lower levels than gDNA prepared from other Gram-negative bacteria. Interestingly, we found that while C. trachomatis is capable of signaling through hTLR9 and mTLR9 during live infections in HEK293 reporter cell lines, signaling only occurs at later developmental time points. Chlamydia-specific induction of hTLR9 is blocked when protein synthesis is inhibited prior to the RB-to-EB conversion, exacerbated by the inhibition of lipooligosaccharide biosynthesis, and is significantly altered during the induction of aberrance/persistence. Our observations support the hypothesis that chlamydial gDNA is released during the conversion between the pathogen's replicative and infectious forms and during treatment with antibiotics targeting peptidoglycan assembly. Given that C. trachomatis inclusions do not co-localize with TLR9-containing vacuoles in the pro-monocytic cell line U937, our findings also hint that chlamydial gDNA is capable of egress from the inclusion, and traffics to TLR9-containing vacuoles via an as yet unknown pathway.
Collapse
Affiliation(s)
- Aissata Diallo
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Grace Overman
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Prakash Sah
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - George W. Liechti
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Kilroy JM, Leal AA, Henderson AJ. Chronic HIV Transcription, Translation, and Persistent Inflammation. Viruses 2024; 16:751. [PMID: 38793632 PMCID: PMC11125830 DOI: 10.3390/v16050751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
People with HIV exhibit persistent inflammation that correlates with HIV-associated comorbidities including accelerated aging, increased risk of cardiovascular disease, and neuroinflammation. Mechanisms that perpetuate chronic inflammation in people with HIV undergoing antiretroviral treatments are poorly understood. One hypothesis is that the persistent low-level expression of HIV proviruses, including RNAs generated from defective proviral genomes, drives the immune dysfunction that is responsible for chronic HIV pathogenesis. We explore factors during HIV infection that contribute to the generation of a pool of defective proviruses as well as how HIV-1 mRNA and proteins alter immune function in people living with HIV.
Collapse
Affiliation(s)
- Jonathan M. Kilroy
- Department of Virology, Immunology, Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA; (J.M.K.); (A.A.L.)
| | - Andrew A. Leal
- Department of Virology, Immunology, Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA; (J.M.K.); (A.A.L.)
| | - Andrew J. Henderson
- Department of Virology, Immunology, Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA; (J.M.K.); (A.A.L.)
- Department of Medicine and Virology, Immunology, Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
18
|
Shehab M, Hussein H, Fadlallah S, Rahal EA. An IL-17A-centric response to Epstein-Barr virus DNA mediated by dendritic Cell-T cell interactions. Front Mol Biosci 2024; 11:1243366. [PMID: 38638687 PMCID: PMC11024278 DOI: 10.3389/fmolb.2024.1243366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 03/20/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction: The Epstein-Barr virus has been associated with a considerable number of autoimmune diseases. We have previously demonstrated that EBV DNA enhances the production of IL-17A, a pro-inflammatory cytokine, via endosomal Toll-like receptor signalling. Methods: We used RNA-seq to analyze the transcriptional profile of mouse immune cells treated with EBV DNA. Results: We observed that EBV DNA upregulates an IL-17A-centric network of mediators. Ensemble Gene Set Enrichment Analysis (EGSEA) showed enriched expression of sets involved in inflammatory responses including IFNγ and TNF-α-associated pathways as well as proinflammatory diseases. On the other hand, while macrophages and B cells were somewhat able to induce an IL-17A response from T cells to EBV DNA, they were less potent than dendritic cells. EBV virions were also capable of eliciting the production of inflammatory mediators from dendritic cell-T cell cultures largely mirroring responses to the viral DNA. Conclusions: Given the wide prevalence of EBV in the population, our analyses reveal a network of mediators and cell types that may serve as therapeutic targets in a large proportion of people affected by autoimmune diseases.
Collapse
Affiliation(s)
- Marwa Shehab
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
| | - Hadi Hussein
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Sukayna Fadlallah
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Elias A. Rahal
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
19
|
Su C, Kim SK, Wang CX, Kirsch DG, Monjazeb AM. Radiotherapy Combined with Intralesional Immunostimulatory Agents for Soft Tissue Sarcomas. Semin Radiat Oncol 2024; 34:243-257. [PMID: 38508788 PMCID: PMC11216412 DOI: 10.1016/j.semradonc.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Immunotherapy has shifted the treatment paradigm for many types of cancer. Unfortunately, the most commonly used immunotherapies, such as immune checkpoint inhibitors (ICI), have yielded limited benefit for most types of soft tissue sarcoma (STS). Radiotherapy (RT) is a mainstay of sarcoma therapy and can induce immune modulatory effects. Combining immunotherapy and RT in STS may be a promising strategy to improve sarcoma response to RT and increase the efficacy of immunotherapy. Most combination strategies have employed immunotherapies, such as ICI, that derepress immune suppressive networks. These have yielded only modest results, possibly due to the limited immune stimulatory effects of RT. Combining RT with immune stimulatory agents has yielded promising preclinical and clinical results but can be limited by the toxic nature of systemic administration of immune stimulants. Using intralesional immune stimulants may generate stronger RT immune modulation and less systemic toxicity, which may be a feasible strategy in accessible tumors such as STS. In this review, we summarize the immune modulatory effects of RT, the mechanism of action of various immune stimulants, including toll-like receptor agonists, and data for combinatorial strategies utilizing these agents.
Collapse
Affiliation(s)
- Chang Su
- Department of Radiation Oncology, Duke University, Durham, NC
| | - Soo Kyoung Kim
- Department of Radiation Oncology, UC Davis Comprehensive Cancer Center, UC Davis Health, Davis, CA
| | - Charles X Wang
- Department of Radiation Oncology, UC Davis Comprehensive Cancer Center, UC Davis Health, Davis, CA
| | - David G Kirsch
- Department of Radiation Oncology, Duke University, Durham, NC; Department of Radiation Oncology, Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Arta M Monjazeb
- Department of Radiation Oncology, UC Davis Comprehensive Cancer Center, UC Davis Health, Davis, CA.
| |
Collapse
|
20
|
Li G, Zhao X, Zheng Z, Zhang H, Wu Y, Shen Y, Chen Q. cGAS-STING pathway mediates activation of dendritic cell sensing of immunogenic tumors. Cell Mol Life Sci 2024; 81:149. [PMID: 38512518 PMCID: PMC10957617 DOI: 10.1007/s00018-024-05191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/09/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
Type I interferons (IFN-I) play pivotal roles in tumor therapy for three decades, underscoring the critical importance of maintaining the integrity of the IFN-1 signaling pathway in radiotherapy, chemotherapy, targeted therapy, and immunotherapy. However, the specific mechanism by which IFN-I contributes to these therapies, particularly in terms of activating dendritic cells (DCs), remains unclear. Based on recent studies, aberrant DNA in the cytoplasm activates the cyclic GMP-AMP synthase (cGAS)- stimulator of interferon genes (STING) signaling pathway, which in turn produces IFN-I, which is essential for antiviral and anticancer immunity. Notably, STING can also enhance anticancer immunity by promoting autophagy, inflammation, and glycolysis in an IFN-I-independent manner. These research advancements contribute to our comprehension of the distinctions between IFN-I drugs and STING agonists in the context of oncology therapy and shed light on the challenges involved in developing STING agonist drugs. Thus, we aimed to summarize the novel mechanisms underlying cGAS-STING-IFN-I signal activation in DC-mediated antigen presentation and its role in the cancer immune cycle in this review.
Collapse
Affiliation(s)
- Guohao Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Xiangqian Zhao
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Zuda Zheng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Hucheng Zhang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Yundi Wu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Yangkun Shen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China.
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China.
| |
Collapse
|
21
|
Shvets Y, Khranovska N, Senchylo N, Ostapchenko D, Tymoshenko I, Onysenko S, Kobyliak N, Falalyeyeva T. Microbiota substances modulate dendritic cells activity: A critical view. Heliyon 2024; 10:e27125. [PMID: 38444507 PMCID: PMC10912702 DOI: 10.1016/j.heliyon.2024.e27125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024] Open
Abstract
Contemporary research in the field of microbiota shows that commensal bacteria influence physiological activity of different organs and systems of a human organism, such as brain, lungs, immune and metabolic systems. This influence is realized by various processes. One of them is trough modulation of immune mechanisms. Interactions between microbiota and the human immune system are known to be complex and ambiguous. Dendritic cells (DCs) are unique cells, which initiate the development and polarization of adaptive immune response. These cells also interconnect native and specific immune reactivity. A large set of biochemical signals from microbiota in the form of different microbiota associated molecular patterns (MAMPs) and bacterial metabolites that act locally and distantly in the human organism. As a result, commensal bacteria influence the maturity and activity of dendritic cells and affect the overall immune reactivity of the human organism. It then determines the response to pathogenic microorganisms, inflammation, associated with different pathological conditions and even affects the effectiveness of vaccination.
Collapse
Affiliation(s)
- Yuliia Shvets
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., Kyiv, Ukraine
| | - Natalia Khranovska
- National Cancer Institute of Ukraine, 33/43 Yuliia Zdanovska Str., Kyiv, Ukraine
| | - Natalia Senchylo
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., Kyiv, Ukraine
| | - Danylo Ostapchenko
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., Kyiv, Ukraine
| | - Iryna Tymoshenko
- Bogomolets National Medical University, 13 Shevchenka Blvd., Kyiv, Ukraine
| | - Svitlana Onysenko
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., Kyiv, Ukraine
| | - Nazarii Kobyliak
- Bogomolets National Medical University, 13 Shevchenka Blvd., Kyiv, Ukraine
- Medical Laboratory CSD, 22b Zhmerynska Str., Kyiv, Ukraine
| | - Tetyana Falalyeyeva
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., Kyiv, Ukraine
- Medical Laboratory CSD, 22b Zhmerynska Str., Kyiv, Ukraine
| |
Collapse
|
22
|
Diallo A, Overman G, Sah P, Liechti GW. Recognition of Chlamydia trachomatis by Toll-Like Receptor 9 is altered during persistence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579186. [PMID: 38370826 PMCID: PMC10871208 DOI: 10.1101/2024.02.06.579186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Toll-like receptor 9 (TLR9) is an innate immune receptor that localizes to endosomes in antigen presenting cells and recognizes single stranded unmethylated CpG sites on bacterial genomic DNA. Previous bioinformatic studies have indicated that the genome of the human pathogen Chlamydia trachomatis contains TLR9 stimulatory motifs, and correlative studies have implied a link between human TLR9 (hTLR9) genotype variants and susceptibility to infection. Here we present our evaluation of the stimulatory potential of C. trachomatis gDNA and its recognition by hTLR9- and murine TLR9 (mTLR9)-expressing cells. We confirm that hTLR9 colocalizes with chlamydial inclusions in the pro-monocytic cell line, U937. Utilizing HEK293 reporter cell lines, we demonstrate that purified genomic DNA from C. trachomatis can stimulate hTLR9 signaling, albeit at lower levels than gDNA prepared from other Gram-negative bacteria. Interestingly, we found that while C. trachomatis is capable of signaling through hTLR9 and mTLR9 during live infections in non-phagocytic HEK293 reporter cell lines, signaling only occurs at later developmental time points. Chlamydia-specific induction of hTLR9 is blocked when protein synthesis is inhibited prior to the RB-to-EB conversion and exacerbated by the inhibition of lipooligosaccharide biosynthesis. The induction of aberrance / persistence also significantly alters Chlamydia-specific TLR9 signaling. Our observations support the hypothesis that chlamydial gDNA is released at appreciable levels by the bacterium during the conversion between its replicative and infectious forms and during treatment with antibiotics targeting peptidoglycan assembly.
Collapse
Affiliation(s)
- Aissata Diallo
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States of America
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Grace Overman
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States of America
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Prakash Sah
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States of America
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - George W. Liechti
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States of America
| |
Collapse
|
23
|
Shiloh R, Lubin R, David O, Geron I, Okon E, Hazan I, Zaliova M, Amarilyo G, Birger Y, Borovitz Y, Brik D, Broides A, Cohen-Kedar S, Harel L, Kristal E, Kozlova D, Ling G, Shapira Rootman M, Shefer Averbuch N, Spielman S, Trka J, Izraeli S, Yona S, Elitzur S. Loss of function of ENT3 drives histiocytosis and inflammation through TLR-MAPK signaling. Blood 2023; 142:1740-1751. [PMID: 37738562 DOI: 10.1182/blood.2023020714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/11/2023] [Accepted: 08/24/2023] [Indexed: 09/24/2023] Open
Abstract
Histiocytoses are inflammatory myeloid neoplasms often driven by somatic activating mutations in mitogen-activated protein kinase (MAPK) cascade genes. H syndrome is an inflammatory genetic disorder caused by germ line loss-of-function mutations in SLC29A3, encoding the lysosomal equilibrative nucleoside transporter 3 (ENT3). Patients with H syndrome are predisposed to develop histiocytosis, yet the mechanism is unclear. Here, through phenotypic, molecular, and functional analysis of primary cells from a cohort of patients with H syndrome, we reveal the molecular pathway leading to histiocytosis and inflammation in this genetic disorder. We show that loss of function of ENT3 activates nucleoside-sensing toll-like receptors (TLR) and downstream MAPK signaling, inducing cytokine secretion and inflammation. Importantly, MEK inhibitor therapy led to resolution of histiocytosis and inflammation in a patient with H syndrome. These results demonstrate a yet-unrecognized link between a defect in a lysosomal transporter and pathological activation of MAPK signaling, establishing a novel pathway leading to histiocytosis and inflammation.
Collapse
Affiliation(s)
- Ruth Shiloh
- The Rina Zaizov Division of Pediatric Hematology-Oncology, Schneider Children's Medical Center, Petach Tikva, Israel
- Felsenstein Medical Research Center, Faculty of Medicine, Tel Aviv University, Petach Tikva, Israel
| | - Ruth Lubin
- The Institute of Biomedical and Oral Research, Hebrew University, Jerusalem, Israel
| | - Odeya David
- Pediatric Endocrinology Unit, Soroka University Medical Center, Beer Sheva, Israel
- Pediatric Ambulatory Center, Soroka University Medical Center, Beer Sheva, Israel
- Joyce and Irving Goldman Medical School, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Ifat Geron
- The Rina Zaizov Division of Pediatric Hematology-Oncology, Schneider Children's Medical Center, Petach Tikva, Israel
- Felsenstein Medical Research Center, Faculty of Medicine, Tel Aviv University, Petach Tikva, Israel
| | - Elimelech Okon
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Idit Hazan
- The Institute of Biomedical and Oral Research, Hebrew University, Jerusalem, Israel
| | - Marketa Zaliova
- Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine of Charles University Prague and University Hospital Motol, Prague, Czech Republic
| | - Gil Amarilyo
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Rheumatology Unit, Schneider Children's Medical Center, Petach Tikva, Israel
| | - Yehudit Birger
- The Rina Zaizov Division of Pediatric Hematology-Oncology, Schneider Children's Medical Center, Petach Tikva, Israel
- Felsenstein Medical Research Center, Faculty of Medicine, Tel Aviv University, Petach Tikva, Israel
| | - Yael Borovitz
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Nephrology, Schneider Children's Medical Center, Petach Tikva, Israel
| | - Dafna Brik
- The Rina Zaizov Division of Pediatric Hematology-Oncology, Schneider Children's Medical Center, Petach Tikva, Israel
| | - Arnon Broides
- Pediatric Ambulatory Center, Soroka University Medical Center, Beer Sheva, Israel
- Joyce and Irving Goldman Medical School, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
- Pediatric Immunology Clinic, Soroka University Medical Center, Beer Sheva, Israel
| | - Sarit Cohen-Kedar
- Felsenstein Medical Research Center, Faculty of Medicine, Tel Aviv University, Petach Tikva, Israel
- Division of Gastroenterology, Rabin Medical Center, Petach Tikva, Israel
| | - Liora Harel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Rheumatology Unit, Schneider Children's Medical Center, Petach Tikva, Israel
| | - Eyal Kristal
- Pediatric Ambulatory Center, Soroka University Medical Center, Beer Sheva, Israel
- Joyce and Irving Goldman Medical School, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
- Pediatric Immunology Clinic, Soroka University Medical Center, Beer Sheva, Israel
| | - Daria Kozlova
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Pathology, Rabin Medical Center, Beilinson Campus, Petach Tikva, Israel
| | - Galina Ling
- Pediatric Ambulatory Center, Soroka University Medical Center, Beer Sheva, Israel
- Joyce and Irving Goldman Medical School, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | - Noa Shefer Averbuch
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Genetics Clinic, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- The Jesse and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Shiri Spielman
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Pediatrics A, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Jan Trka
- Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine of Charles University Prague and University Hospital Motol, Prague, Czech Republic
| | - Shai Izraeli
- The Rina Zaizov Division of Pediatric Hematology-Oncology, Schneider Children's Medical Center, Petach Tikva, Israel
- Felsenstein Medical Research Center, Faculty of Medicine, Tel Aviv University, Petach Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Beckman Research Institute, City of Hope, Duarte, CA
| | - Simon Yona
- The Institute of Biomedical and Oral Research, Hebrew University, Jerusalem, Israel
| | - Sarah Elitzur
- The Rina Zaizov Division of Pediatric Hematology-Oncology, Schneider Children's Medical Center, Petach Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
24
|
Small C, Mukerjee S, Jangam D, Gollapudi S, Singh K, Jaye DL, Aung PP, Querfeld C, Yao K, Chisholm KM, Pullarkat S, Wang S, Gru A, Hussaini M, George TI, Ohgami RS. Profiling endogenous, environmental, and infectious disease mutational signatures in blastic plasmacytoid dendritic cell neoplasms. Int J Lab Hematol 2023; 45:726-734. [PMID: 37282364 DOI: 10.1111/ijlh.14108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/17/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare hematopoietic disease derived from plasmacytoid dendritic lineage cells. The disease typically shows skin as well as frequent bone marrow and peripheral blood involvement. However, the pathogenesis of this disease is still not well understood. While somatic point mutations and genetic rearrangements have been described in BPDCN, the types and origins of these mutations and relationships to other cancer types is not well understood. MATERIALS AND METHODS To probe the origins of BPDCN, we analyzed the exome sequence data of 9 tumor-normal pair cases of BPDCN. We utilized SignatureAnalyzer, SigProfiler and a custom microbial analysis pipeline to understand the relevance of endogenous and environmental mutagenic processes. RESULTS Our results identified a significant tobacco exposure and aging genetic signature as well as signatures related to nucleotide excision repair deficiency, ultra violet (UV) exposure, and endogenous deamination in BPDCN. We also assessed the samples for microbial infectious disease organisms but did not find a link to a microbial etiology. CONCLUSION The identification of a tobacco exposure and aging genetic signature in patients with BPDCN suggests that environmental and endogenous genetic changes may be central to the oncogenesis of BPDCN.
Collapse
Affiliation(s)
- Corinn Small
- Department of Pathology, University of California, San Francisco, California, USA
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Soham Mukerjee
- Department of Pathology, University of California, San Francisco, California, USA
| | - Diwash Jangam
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Sumanth Gollapudi
- Department of Pathology, University of California, San Francisco, California, USA
| | - Kunwar Singh
- Department of Pathology, University of California, San Francisco, California, USA
| | - David L Jaye
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| | - Phyu P Aung
- Department of Pathology and Dermatopathology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Christiane Querfeld
- Department of Pathology, City of Hope and Beckman Research Institute, Duarte, California, USA
| | - Keluo Yao
- Department of Pathology, City of Hope and Beckman Research Institute, Duarte, California, USA
- Department of Pathology, Cedar-Sinai, Los Angeles, California, USA
| | - Karen M Chisholm
- Department of Laboratories, Seattle Children's Hospital, Seattle, Washington, USA
| | - Sheeja Pullarkat
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Sa Wang
- Department of Hematopathology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Alejandro Gru
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Tracy I George
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Robert S Ohgami
- Department of Pathology, University of California, San Francisco, California, USA
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
25
|
AlDaif BA, Mercer AA, Fleming SB. The parapoxvirus Orf virus inhibits dsDNA-mediated type I IFN expression via STING-dependent and STING-independent signalling pathways. J Gen Virol 2023; 104. [PMID: 37882657 DOI: 10.1099/jgv.0.001912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023] Open
Abstract
Type I interferons (IFNs) are critical in the host defence against viruses. They induce hundreds of interferon-stimulated genes (ISGs) many of which have an antiviral role. Poxviruses induce IFNs via their pathogen-associated molecular patterns, in particular, their genomic DNA. In a majority of cell types, dsDNA is detected by a range of cytoplasmic DNA sensors that mediate type I IFN expression via stimulator of interferon genes (STING). Orf virus (ORFV) induces cutaneous pustular skin lesions and is the type species of the Parapoxvirus genus within the Poxviridae family. The aim of this study was to investigate whether ORFV modulates dsDNA-induced type I IFN expression via STING-dependent signalling pathways in human dermal fibroblasts (hNDF) and THP-1 cells. We showed that ORFV infection of these cell types treated with poly(dA:dT) resulted in strong inhibition of expression of IFN-β. In hNDFs, we showed using siRNA knock-down that STING was essential for type I IFN induction. IFN-β expression was further reduced when both STING and RIG-I were knocked down. In addition, HEK293 cells that do not express STING or Toll-like receptors also produce IFN-β following stimulation with poly(dA:dT). The 5' triphosphate dsRNA produced by RNA polymerase III specifically results in the induction of type I IFNs through the RIG-I receptor. We showed that ORFV infection resulted in strong inhibition of IFN-β expression in HEK293 cells stimulated with poly(dA:dT). Overall, this study shows that ORFV potently counteracts the STING-dependent and STING-independent IFN response by antagonizing dsDNA-activated IFN signalling pathways.
Collapse
Affiliation(s)
- Basheer A AlDaif
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Andrew A Mercer
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Stephen B Fleming
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
26
|
Li Y, Zhen S, Cao L, Sun F, Wang L. Effects of Lactobacillus plantarum Postbiotics on Growth Performance, Immune Status, and Intestinal Microflora of Growing Minks. Animals (Basel) 2023; 13:2958. [PMID: 37760358 PMCID: PMC10526065 DOI: 10.3390/ani13182958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
The present experiment was conducted to investigate the effects of Lactobacillus plantarum postbiotics on growth performance, immune status, and intestinal microflora of growing minks. A total of 80 minks (40 males and 40 females) were divided into four groups, each group contained 20 minks (10 males and 10 females). The minks in the four groups were fed a basal diet supplemented with 0, 0.15%, 0.3%, and 0.45% Lactobacillus plantarum postbiotics (PLP), respectively. After one week of adaptation, the experiment ran for eight weeks. The results showed that Lactobacillus plantarum postbiotics tended to have effects on average daily again (ADG) during the first 4 wk of the study (p < 0.1), and had effects on immune status (p < 0.05). Lactobacillus plantarum postbiotics also affected the abundance of intestinal bacteria at genus level (p < 0.05), but had no effects on α diversity of growing minks (p > 0.05). Compared to the minks in the control group, minks in 0.30% PLP group tended to have greater ADG, and IgA and IgM content in serum as well as SIgA content in jejunal mucosa (p < 0.05), and had less jejunal mucosal TNF-α and IL-8 levels, while minks in 0.45% PLP group had less IL-2 (p < 0.05). Compared to the control, Lactobacillus plantarum postbiotics decreased the relative abundances of Bacteroides_vulgatus and Luteimonas_sp. in male minks, and the relative abundances of Streptococcus_halotolerans in female minks (p < 0.05), respectively. Males grew faster and ate more associated with less F/G than females (p < 0.05). Males also had greater serum IgA and IgG content (p < 0.05), and males had less jejunal mucosal IL-1β, IL-8, IL-2, IL-6, IL-12, IL-10, TNF-α, and IFN-γ levels (p < 0.05). These results suggest that dietary supplementation of 0.3% postbiotics harvested from Lactobacillus plantarum could improve growth performance and immune status, and modulated the intestinal bacteria abundance of growing minks.
Collapse
Affiliation(s)
| | | | | | | | - Lihua Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (Y.L.); (S.Z.); (L.C.); (F.S.)
| |
Collapse
|
27
|
Bentler M, Hardet R, Ertelt M, Rudolf D, Kaniowska D, Schneider A, Vondran FW, Schoeder CT, Delphin M, Lucifora J, Ott M, Hacker UT, Adriouch S, Büning H. Modifying immune responses to adeno-associated virus vectors by capsid engineering. Mol Ther Methods Clin Dev 2023; 30:576-592. [PMID: 37693943 PMCID: PMC10485635 DOI: 10.1016/j.omtm.2023.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 08/18/2023] [Indexed: 09/12/2023]
Abstract
De novo immune responses are considered major challenges in gene therapy. With the aim to lower innate immune responses directly in cells targeted by adeno-associated virus (AAV) vectors, we equipped the vector capsid with a peptide known to interfere with Toll-like receptor signaling. Specifically, we genetically inserted in each of the 60 AAV2 capsid subunits the myeloid differentiation primary response 88 (MyD88)-derived peptide RDVLPGT, known to block MyD88 dimerization. Inserting the peptide neither interfered with capsid assembly nor with vector production yield. The novel capsid variant, AAV2.MB453, showed superior transduction efficiency compared to AAV2 in human monocyte-derived dendritic cells and in primary human hepatocyte cultures. In line with our hypothesis, AAV2.MB453 and AAV2 differed regarding innate immune response activation in primary human cells, particularly for type I interferons. Furthermore, mice treated with AAV2.MB453 showed significantly reduced CD8+ T cell responses against the transgene product for different administration routes and against the capsid following intramuscular administration. Moreover, humoral responses against the capsid were mitigated as indicated by delayed IgG2a antibody formation and an increased NAb50. To conclude, insertion of the MyD88-derived peptide into the AAV2 capsid improved early steps of host-vector interaction and reduced innate and adaptive immune responses.
Collapse
Affiliation(s)
- Martin Bentler
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Romain Hardet
- University of Rouen, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie University, 76000 Rouen, France
| | - Moritz Ertelt
- Institute for Drug Discovery, University of Leipzig Medical Center, 04103 Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Dresden/Leipzig, Germany
| | - Daniela Rudolf
- Laboratory for Vector Based Immunotherapy, Fraunhofer Institute for Cell Therapy and Immunology (IZI), 04103 Leipzig, Germany
| | - Dorota Kaniowska
- Laboratory for Vector Based Immunotherapy, Fraunhofer Institute for Cell Therapy and Immunology (IZI), 04103 Leipzig, Germany
- Department of Medicine II, University Cancer Center Leipzig (UCCL), University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Andreas Schneider
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Florian W.R. Vondran
- ReMediES, Department of General, Visceral and Transplant Surgery, Hannover Medical School, 30625 Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Clara T. Schoeder
- Institute for Drug Discovery, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Marion Delphin
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Julie Lucifora
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Michael Ott
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | - Ulrich T. Hacker
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Laboratory for Vector Based Immunotherapy, Fraunhofer Institute for Cell Therapy and Immunology (IZI), 04103 Leipzig, Germany
- Department of Medicine II, University Cancer Center Leipzig (UCCL), University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Sahil Adriouch
- University of Rouen, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie University, 76000 Rouen, France
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| |
Collapse
|
28
|
Crouse B, Miller SM, Muelken P, Hicks L, Vigliaturo JR, Marker CL, Guedes AGP, Pentel PR, Evans JT, LeSage MG, Pravetoni M. A TLR7/8 agonist increases efficacy of anti-fentanyl vaccines in rodent and porcine models. NPJ Vaccines 2023; 8:107. [PMID: 37488109 PMCID: PMC10366150 DOI: 10.1038/s41541-023-00697-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/22/2023] [Indexed: 07/26/2023] Open
Abstract
Opioid use disorders (OUD) and overdose are public health threats worldwide. Widespread access to highly potent illicit synthetic opioids such as fentanyl is driving the recent rise in fatal overdoses. Vaccines containing fentanyl-based haptens conjugated to immunogenic carrier proteins offer a long-lasting, safe, and cost-effective strategy to protect individuals from overdose upon accidental or deliberate exposure to fentanyl and its analogs. Prophylactic or therapeutic active immunization with an anti-fentanyl vaccine induces the production of fentanyl-specific antibodies that bind the drug in the blood and prevent its distribution to the brain, which reduces its reinforcing effects and attenuates respiratory depression and bradycardia. To increase the efficacy of a lead anti-fentanyl vaccine, this study tested whether the incorporation of synthetic toll-like receptor (TLR) 4 and TLR7/8 agonists as vaccine adjuvants would increase vaccine efficacy against fentanyl challenge, overdose, and self-administration in either rats or Hanford miniature pigs. Formulation of the vaccine with a nucleolipid TLR7/8 agonist enhanced its immunogenicity and efficacy in preventing fentanyl-induced respiratory depression, analgesia, bradycardia, and self-administration in either rats or mini-pigs. These studies support the use of TLR7/8 adjuvants in vaccine formulations to improve their clinical efficacy against OUD and potentially other substance use disorders (SUD).
Collapse
Affiliation(s)
- Bethany Crouse
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
- HealthPartners Institute, Research and Evaluation Division, 8170 33rd Ave S, Bloomington, MN, 55425, USA
| | - Shannon M Miller
- Department of Biomedical and Pharmaceutical Sciences, Center for Translational Medicine, University of Montana, Missoula, MT, USA
- Inimmune Corporation, Missoula, MT, USA
| | - Peter Muelken
- Department of Medicine, Hennepin Healthcare Research Institute, Minneapolis, MN, USA
| | - Linda Hicks
- Department of Biomedical and Pharmaceutical Sciences, Center for Translational Medicine, University of Montana, Missoula, MT, USA
| | - Jennifer R Vigliaturo
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Cheryl L Marker
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
- Luvo Bioscience, 7500W. Henrietta Road, Rush, NY, 14543, USA
| | - Alonso G P Guedes
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN, USA
| | - Paul R Pentel
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, Hennepin Healthcare Research Institute, Minneapolis, MN, USA
| | - Jay T Evans
- Department of Biomedical and Pharmaceutical Sciences, Center for Translational Medicine, University of Montana, Missoula, MT, USA
- Inimmune Corporation, Missoula, MT, USA
| | - Mark G LeSage
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, Hennepin Healthcare Research Institute, Minneapolis, MN, USA
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Marco Pravetoni
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA.
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA.
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA.
- Center for Medication Development for Substance Use Disorders, Seattle, WA, USA.
| |
Collapse
|
29
|
Mantovani S, Oliviero B, Varchetta S, Renieri A, Mondelli MU. TLRs: Innate Immune Sentries against SARS-CoV-2 Infection. Int J Mol Sci 2023; 24:8065. [PMID: 37175768 PMCID: PMC10178469 DOI: 10.3390/ijms24098065] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been responsible for a devastating pandemic since March 2020. Toll-like receptors (TLRs), crucial components in the initiation of innate immune responses to different pathogens, trigger the downstream production of pro-inflammatory cytokines, interferons, and other mediators. It has been demonstrated that they contribute to the dysregulated immune response observed in patients with severe COVID-19. TLR2, TLR3, TLR4 and TLR7 have been associated with COVID-19 severity. Here, we review the role of TLRs in the etiology and pathogenesis of COVID-19, including TLR7 and TLR3 rare variants, the L412F polymorphism in TLR3 that negatively regulates anti-SARS-CoV-2 immune responses, the TLR3-related cellular senescence, the interaction of TLR2 and TLR4 with SARS-CoV-2 proteins and implication of TLR2 in NET formation by SARS-CoV-2. The activation of TLRs contributes to viral clearance and disease resolution. However, TLRs may represent a double-edged sword which may elicit dysregulated immune signaling, leading to the production of proinflammatory mediators, resulting in severe disease. TLR-dependent excessive inflammation and TLR-dependent antiviral response may tip the balance towards the former or the latter, altering the equilibrium that drives the severity of disease.
Collapse
Affiliation(s)
- Stefania Mantovani
- Department of Research, Division of Clinical Immunology—Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (B.O.); (S.V.)
| | - Barbara Oliviero
- Department of Research, Division of Clinical Immunology—Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (B.O.); (S.V.)
| | - Stefania Varchetta
- Department of Research, Division of Clinical Immunology—Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (B.O.); (S.V.)
| | - Alessandra Renieri
- Medical Genetics, University of Siena, 53100 Siena, Italy;
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Mario U. Mondelli
- Department of Research, Division of Clinical Immunology—Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (B.O.); (S.V.)
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
30
|
Amin PJ, Shankar BS. Arabinogalactan G1-4A isolated from Tinospora cordifolia induces PKC/mTOR mediated direct activation of natural killer cells and through dendritic cell cross-talk. Biochim Biophys Acta Gen Subj 2023; 1867:130312. [PMID: 36690186 DOI: 10.1016/j.bbagen.2023.130312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/08/2022] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
BACKGROUND Tinospora cordifolia polysaccharide G1-4A activates antigen-presenting cells, but its effect on natural killer (NK) cells is not known. The objective of this study is to assess the effect of G1-4A on NK cells; direct effects as well as through dendritic cell (DC) cross-talk. METHODS NK cell phenotype and function were assessed in spleen cells treated in vitro with G1-4A or isolated from mice administered with G1-4A. Following treatment with G1-4A in vitro or in cells isolated from G1-4A treated mice (in vivo), activated NK cell phenotype was characterized as CD3-NKp46+CD69+ cells by flow cytometry; NK cell function was evaluated by IFN-γ secretion (ELISA) and cytotoxicity assay (calcein release by target cells in effector: target cells co-culture assay). RESULTS Both in vitro as well as in vivoG1-4A treatment increased phenotypic and functional activation of NK cells. So, we wanted to determine if this was through NK-DC crosstalk or direct activation of NK cells. There was increased NK cell activation following co-culture with bone marrow derived DC matured withG1-4A in vitro or splenic DC isolated from G1-4A administered mice indicating crosstalk. G1-4A also increased activation of NK cells in (a) CD11c depleted splenic cells that was contact dependent and (b) purified NKp46+ cells that was abrogated by PKC/mTOR inhibitors indicating direct effects on NK cells. CONCLUSION In summary, treatment with G1-4A results in phenotypic and functional activation of NK cells directly as well as through NK-DC cross talk and has the potential to be used as an immunotherapeutic agent.
Collapse
Affiliation(s)
- Prayag J Amin
- Immunology Section, Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Bhavani S Shankar
- Immunology Section, Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India.
| |
Collapse
|
31
|
Yang Q, Wei Y, Zhu Y, Guo J, Zhang J, He Y, Li X, Liu J, Zhou W. The Interaction between Gut Microbiota and Host Amino Acids Metabolism in Multiple Myeloma. Cancers (Basel) 2023; 15:cancers15071942. [PMID: 37046603 PMCID: PMC10093363 DOI: 10.3390/cancers15071942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Although novel therapies have dramatically improved outcomes for multiple myeloma (MM) patients, relapse is inevitable and overall outcomes are heterogeneous. The gut microbiota is becoming increasingly recognized for its influence on host metabolism. To date, evidence has suggested that the gut microbiota contributes to MM, not only via the progressive activities of specific bacteria but also through the influence of the microbiota on host metabolism. Importantly, the abnormal amino acid metabolism, as well as the altered microbiome in MM, is becoming increasingly apparent, as is the influence on MM progression and the therapeutic response. Moreover, the gut-microbiota-host-amino-acid metabolism interaction in the progression of MM has been highlighted. Modulation of the gut microbiota (such as fecal microbiota transplantation, FMT) can be modified, representing a new angle in MM treatment that can improve outcomes. In this review, the relationship between gut microbiota, metabolism, and MM, together with strategies to modulate the microbiota, will be discussed, and some unanswered questions for ongoing and future research will be presented.
Collapse
Affiliation(s)
- Qin Yang
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yumou Wei
- Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha 410008, China
| | - Yinghong Zhu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008, China
- Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha 410008, China
| | - Jiaojiao Guo
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008, China
- Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha 410008, China
| | - Jingyu Zhang
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008, China
- Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha 410008, China
| | - Yanjuan He
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xin Li
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jing Liu
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Wen Zhou
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008, China
- Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha 410008, China
| |
Collapse
|
32
|
DNA Oligonucleotides as Antivirals and Vaccine Constituents against SARS Coronaviruses: A Prospective Tool for Immune System Tuning. Int J Mol Sci 2023; 24:ijms24021553. [PMID: 36675069 PMCID: PMC9862924 DOI: 10.3390/ijms24021553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/26/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The SARS-CoV-2 pandemic has demonstrated the need to create highly effective antivirals and vaccines against various RNA viruses, including SARS coronaviruses. This paper provides a short review of innovative strategies in the development of antivirals and vaccines against SARS coronaviruses, with a focus on antisense antivirals, oligonucleotide adjuvants in vaccines, and oligonucleotide vaccines. Well-developed viral genomic databases create new opportunities for the development of innovative vaccines and antivirals using a post-genomic platform. The most effective vaccines against SARS coronaviruses are those able to form highly effective memory cells for both humoral and cellular immunity. The most effective antivirals need to efficiently stop viral replication without side effects. Oligonucleotide antivirals and vaccines can resist the rapidly changing genomic sequences of SARS coronaviruses using conserved regions of their genomes to generate a long-term immune response. Oligonucleotides have been used as excellent adjuvants for decades, and increasing data show that oligonucleotides could serve as antisense antivirals and antigens in vaccine formulations, becoming a prospective tool for immune system tuning.
Collapse
|
33
|
Pietraforte I, Butera A, Gaddini L, Mennella A, Palazzo R, Campanile D, Stefanantoni K, Riccieri V, Lande R, Frasca L. CXCL4-RNA Complexes Circulate in Systemic Sclerosis and Amplify Inflammatory/Pro-Fibrotic Responses by Myeloid Dendritic Cells. Int J Mol Sci 2022; 24:ijms24010653. [PMID: 36614095 PMCID: PMC9820649 DOI: 10.3390/ijms24010653] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 01/03/2023] Open
Abstract
CXCL4 is an important biomarker of systemic sclerosis (SSc), an incurable autoimmune disease characterized by vasculopathy and skin/internal organs fibrosis. CXCL4 contributes to the type I interferon (IFN-I) signature, typical of at least half of SSc patients, and its presence is linked to an unfavorable prognosis. The mechanism implicated is CXCL4 binding to self-DNA, with the formation of complexes amplifying TLR9 stimulation in plasmacytoid dendritic cells (pDCs). Here, we demonstrate that, upon binding to self-RNA, CXCL4 protects the RNA from enzymatic degradation. As a consequence, CXCL4-RNA complexes persist in vivo. Indeed, we show for the first time that CXCL4-RNA complexes circulate in SSc plasma and correlate with both IFN-I and TNF-α. By using monocyte-derived DCs (MDDCs) pretreated with IFN-α as a model system (to mimic the SSc milieu of the IFN-I signature), we demonstrate that CXCL4-RNA complexes induce MDDC maturation and increase, in particular, pro-inflammatory TNF-α as well as IL-12, IL-23, IL-8, and pro-collagen, mainly in a TLR7/8-dependent but CXCR3-independent manner. In contrast, MDDCs produced IL-6 and fibronectin independently in their CXCL4 RNA-binding ability. These findings support a role for CXCL4-RNA complexes, besides CXCL4-DNA complexes, in immune amplification via the modulation of myeloid DC effector functions in SSc and also during normal immune responses.
Collapse
Affiliation(s)
- Immacolata Pietraforte
- Istituto Superiore di Sanità, Department of Oncology and Molecular Medicine, 00161 Rome, Italy
| | - Alessia Butera
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, 00161 Rome, Italy
| | - Lucia Gaddini
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, 00161 Rome, Italy
| | - Anna Mennella
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, 00161 Rome, Italy
| | - Raffaella Palazzo
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, 00161 Rome, Italy
| | - Doriana Campanile
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, 00161 Rome, Italy
| | - Katia Stefanantoni
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Valeria Riccieri
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Roberto Lande
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, 00161 Rome, Italy
| | - Loredana Frasca
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, 00161 Rome, Italy
- Correspondence:
| |
Collapse
|
34
|
Crow MK. Advances in lupus therapeutics: Achieving sustained control of the type I interferon pathway. Curr Opin Pharmacol 2022; 67:102291. [PMID: 36183477 DOI: 10.1016/j.coph.2022.102291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 01/25/2023]
Abstract
Achieving sustained control of disease activity in patients with systemic lupus erythematosus has been impeded by the complexity of its immunopathogenesis as well its clinical heterogeneity. In spite of these challenges, gains in understanding disease mechanisms have identified immune targets that are currently under study in trials of candidate therapeutics. Defining the type I interferon (IFN-I) pathway and autoantibodies specific for nucleic acid binding proteins as core pathogenic mediators allows an analysis of approaches that could control production of those mediators and improve patient outcomes. This review describes therapeutic targets and agents that could achieve control of the IFN-I pathway. Toll-like receptor 7, involved in IFN-I production and differentiation of B cells, and long-lived plasma cells, the producers of autoantibodies specific for RNA-binding proteins, components of the immune complex drivers of IFN-I, are particularly attractive therapeutic targets.
Collapse
Affiliation(s)
- Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery and Weill Cornell Medicine, 535 East 70th Street, New York, NY 10021, USA.
| |
Collapse
|
35
|
Zhang Y, Ma L, Dong S, Ding Q, Wang S, Wu Q, Ni P, Zhang H, Chen Y, Wu J, Wang X. TLR4 inhibition suppresses growth in oestrogen-induced prolactinoma models. Endocr Relat Cancer 2022; 29:703-716. [PMID: 36219868 DOI: 10.1530/erc-22-0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Prolactinomas have harmful effects on human health. Bromocriptine is the only commercially available drug in China, but about 25% of prolactinoma patients do not respond to it in clinic, its pathogenesis remains unknown. Thus, its pathogenesis needs to be determined to develop new therapeutic methods for prolactinomas. The expression of ERβ, TLR4, and prolactin (PRL) in the pituitary gland of C57BL/6 mice and human prolactinoma specimen was examined by immunofluorescence or immunohistochemistry. The role of TLR4 in prolactinoma was determined using estradiol-induced models of C57BL/6 wild-type and TLR4-/- mice. MMQ cells were treated with estradiol, fulvestrant, and lipopolysaccharide (LPS) or transfected with TLR4 siRNA to study the expression of ERβ, TLR4, and PRL in these cells. Furthermore, the interaction between ERβ and TLR4 was investigated by immunoprecipitation analysis. The expression of PRL and TLR4 was co-located and increased in the pituitary gland of mice and human prolactinoma specimen compared to that in the control specimen. Meanwhile, TLR4 knockout or treatment with the TLR4 inhibitor TAK242 not only significantly inhibited tumor overgrowth but also decreased the expression of PRL in estradiol-treated mice through p38 MAPK pathway regulation. However, MMQ treated with estradiol and LPS enhanced PRL expression than treated with estradiol or LPS alone. Finally, ERβ or TLR4 inhibition prevented the estradiol-induced PRL increase by regulating the TLR4/p38 MAPK pathway in vitro. Estradiol promoted prolactinoma development by activating the TLR4/p38 MAPK pathway through ERβ, and TLR4 is a potential therapeutic target for prolactinoma treatment.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pharmacy, Tongren hospital affiliated to Wuhan University (The Third Hospital of Wuhan), Wuhan, China
- Department of Pharmacy, Pulmonary Hospital of Wuhan, Wuhan, China
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Li Ma
- Department of Pharmacy, Tongren hospital affiliated to Wuhan University (The Third Hospital of Wuhan), Wuhan, China
| | - Shuguang Dong
- Department of Cardiology, Tongren Hospital affiliated to Wuhan University (The Third Hospital of Wuhan), Wuhan, China
| | - Qiaoyan Ding
- Department of Pharmacy, Pulmonary Hospital of Wuhan, Wuhan, China
| | - Shuman Wang
- Department of Pharmacy, Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine
| | - Qi Wu
- Department of Pharmacy, Tongren hospital affiliated to Wuhan University (The Third Hospital of Wuhan), Wuhan, China
| | - Ping Ni
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Hong Zhang
- Department of Pharmacy, Tongren hospital affiliated to Wuhan University (The Third Hospital of Wuhan), Wuhan, China
| | - Yonggang Chen
- Department of Pharmacy, Tongren hospital affiliated to Wuhan University (The Third Hospital of Wuhan), Wuhan, China
| | - Jinhu Wu
- Department of Pharmacy, Tongren hospital affiliated to Wuhan University (The Third Hospital of Wuhan), Wuhan, China
| | - Xiong Wang
- Department of Pharmacy, Tongren hospital affiliated to Wuhan University (The Third Hospital of Wuhan), Wuhan, China
| |
Collapse
|
36
|
Yang Y, Li H, Fotopoulou C, Cunnea P, Zhao X. Toll-like receptor-targeted anti-tumor therapies: Advances and challenges. Front Immunol 2022; 13:1049340. [PMID: 36479129 PMCID: PMC9721395 DOI: 10.3389/fimmu.2022.1049340] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors, originally discovered to stimulate innate immune reactions against microbial infection. TLRs also play essential roles in bridging the innate and adaptive immune system, playing multiple roles in inflammation, autoimmune diseases, and cancer. Thanks to the immune stimulatory potential of TLRs, TLR-targeted strategies in cancer treatment have proved to be able to regulate the tumor microenvironment towards tumoricidal phenotypes. Quantities of pre-clinical studies and clinical trials using TLR-targeted strategies in treating cancer have been initiated, with some drugs already becoming part of standard care. Here we review the structure, ligand, signaling pathways, and expression of TLRs; we then provide an overview of the pre-clinical studies and an updated clinical trial watch targeting each TLR in cancer treatment; and finally, we discuss the challenges and prospects of TLR-targeted therapy.
Collapse
Affiliation(s)
- Yang Yang
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| | - Hongyi Li
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| | - Christina Fotopoulou
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Paula Cunnea
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Xia Zhao
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
Raaijmakers TK, van den Bijgaart RJE, Scheffer GJ, Ansems M, Adema GJ. NSAIDs affect dendritic cell cytokine production. PLoS One 2022; 17:e0275906. [PMID: 36227963 PMCID: PMC9560552 DOI: 10.1371/journal.pone.0275906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Immunotherapy is now considered as the new pillar in treatment of cancer patients. Dendritic cells (DCs) play an essential role in stimulating anti-tumor immune responses, as they are capable of cross-presenting exogenous tumor antigens in MHCI complexes to activate naïve CD8+ T cells. Analgesics, like non-steroid anti-inflammatory drugs (NSAIDs), are frequently given to cancer patients to help relieve pain, however little is known about their impact on DC function. METHODS Here, we investigated the effect of the NSAIDs diclofenac, ibuprofen and celecoxib on the three key processes of DCs required for proper CD8+ cytotoxic T cell induction: antigen cross-presentation, co-stimulatory marker expression, and cytokine production. RESULTS Our results show that TLR-induced pro- and anti-inflammatory cytokine excretion by human monocyte derived and murine bone-marrow derived DCs is diminished after NSAID exposure. CONCLUSIONS These results indicate that various NSAIDs can affect DC function and warrant further investigation into the impact of NSAIDs on DC priming of T cells and cancer immunotherapy efficacy.
Collapse
Affiliation(s)
- Tonke K. Raaijmakers
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud Institute for Molecular Life Sciences, Radboud UMC, Nijmegen, The Netherlands
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud UMC, Nijmegen, The Netherlands
| | - Renske J. E. van den Bijgaart
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud Institute for Molecular Life Sciences, Radboud UMC, Nijmegen, The Netherlands
| | - Gert Jan Scheffer
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud UMC, Nijmegen, The Netherlands
| | - Marleen Ansems
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud Institute for Molecular Life Sciences, Radboud UMC, Nijmegen, The Netherlands
| | - Gosse J. Adema
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud Institute for Molecular Life Sciences, Radboud UMC, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
38
|
Bencze D, Fekete T, Pfliegler W, Szöőr Á, Csoma E, Szántó A, Tarr T, Bácsi A, Kemény L, Veréb Z, Pázmándi K. Interactions between the NLRP3-Dependent IL-1β and the Type I Interferon Pathways in Human Plasmacytoid Dendritic Cells. Int J Mol Sci 2022; 23:12154. [PMID: 36293012 PMCID: PMC9602791 DOI: 10.3390/ijms232012154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Generally, a reciprocal antagonistic interaction exists between the antiviral type I interferon (IFN) and the antibacterial nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain containing 3 (NLRP3)-dependent IL-1β pathways that can significantly shape immune responses. Plasmacytoid dendritic cells (pDCs), as professional type I IFN-producing cells, are the major coordinators of antiviral immunity; however, their NLRP3-dependent IL-1β secretory pathway is poorly studied. Our aim was to determine the functional activity of the IL-1β pathway and its possible interaction with the type I IFN pathway in pDCs. We found that potent nuclear factor-kappa B (NF-κB) inducers promote higher levels of pro-IL-1β during priming compared to those activation signals, which mainly trigger interferon regulatory factor (IRF)-mediated type I IFN production. The generation of cleaved IL-1β requires certain secondary signals in pDCs and IFN-α or type I IFN-inducing viruses inhibit IL-1β production of pDCs, presumably by promoting the expression of various NLRP3 pathway inhibitors. In line with that, we detected significantly lower IL-1β production in pDCs of psoriasis patients with elevated IFN-α levels. Collectively, our results show that the NLRP3-dependent IL-1β secretory pathway is inducible in pDCs; however, it may only prevail under inflammatory conditions, in which the type I IFN pathway is not dominant.
Collapse
Affiliation(s)
- Dóra Bencze
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Tünde Fekete
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Walter Pfliegler
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary
| | - Árpád Szöőr
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Eszter Csoma
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Antónia Szántó
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tünde Tarr
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Lajos Kemény
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Zoltán Veréb
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Kitti Pázmándi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
39
|
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has caused millions of deaths in the past two years. Although initially little was understood about this virus, recent research has significantly advanced and landed interferons (IFNs) in the spotlight. While Type I and III IFN have long been known as central to antiviral immunity, in the case of COVID-19 their role was initially controversial. However, the protective function of IFN is now well supported by the identification of human deficiencies in IFN responses as a predictor of disease severity. Here, we will review the cell types and pathways that lead to IFN production as well as the importance of IFN timing and location for disease outcome. We will further discuss the mechanisms that SARS-CoV-2 uses to evade IFN responses, and the current efforts to implement IFNs as therapeutics in the treatment of COVID-19. It is essential to understand the relationships between SARS-CoV-2 and IFN to better inform treatments that exploit IFN functions to alleviate COVID-19.
Collapse
Affiliation(s)
- Carolina Chiale
- Division of Biological SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Trever T. Greene
- Division of Biological SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Elina I. Zuniga
- Division of Biological SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
40
|
Gao F, Pang J, Lu M, Liu Z, Wang M, Ke X, Yi M, Cao J. Nile tilapia TLR3 recruits MyD88 and TRIF as adaptors and is involved in the NF-κB pathway in the immune response. Int J Biol Macromol 2022; 218:878-890. [PMID: 35908672 DOI: 10.1016/j.ijbiomac.2022.07.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/05/2022]
Abstract
TLR3 plays a crucial role in innate immunity. In the present study, OnTLR3 was identified in the Nile tilapia Oreochromis niloticus, with a conserved LRR domain and a C-terminal TIR domain. OnTLR3 was broadly expressed in all tissues tested, with the highest expression levels in the blood and the lowest in the kidney. TLR3 mRNA could be detected from pharyngula (2.5 dpf) to late larva (8.5 dpf) during embryonic and larval development. Moreover, the expression level of OnTLR3 was clearly altered in all five tissues after Streptococcus agalactiae infection in vivo and could be induced by LPS, poly(I:C), S. agalactiae WC1535 and △CPS in Nile tilapia macrophages. When OnTLR3 was overexpressed in 293 T cells, it was distributed in the cytoplasm and could significantly increase NF-κB activation. The pulldown assays showed that OnTLR3 interacted with both OnMyD88 and OnTRIF. The binding assays revealed the specificity of OnTLR3 for pathogen-associated molecular patterns (PAMPs) and bacteria that included S. agalactiae, Aeromonas hydrophila and poly(I:C), LPS and PGN. Taken together, these findings suggest that OnTLR3, as a pattern recognition receptor (PRR), might play an important role in the immune response to pathogen invasion.
Collapse
Affiliation(s)
- Fengying Gao
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China
| | - Jicai Pang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; Shandong Vocational Animal Science and Veterinary College, Weifang 261021, Shandong Province, China
| | - Maixin Lu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China.
| | - Zhigang Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China
| | - Miao Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China
| | - Xiaoli Ke
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China
| | - Mengmeng Yi
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China
| | - Jianmeng Cao
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China
| |
Collapse
|
41
|
Tai J, Kwak J, Han M, Kim TH. Different Roles of Dendritic Cells for Chronic Rhinosinusitis Treatment According to Phenotype. Int J Mol Sci 2022; 23:ijms23148032. [PMID: 35887379 PMCID: PMC9323853 DOI: 10.3390/ijms23148032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
Dendritic cells (DCs) are antigen-presenting cells derived from the bone marrow that play an important role in the association between the innate and adaptive immune responses. The onset and development of chronic rhinosinusitis (CRS) involve a serious imbalance in immune regulation and mechanical dysfunction caused by an abnormal remodeling process. Recent studies have shown that an increase in DCs in CRS and their function of shaping the nasal mucosal immune response may play an important role in the pathogenesis of CRS. In this review, we discuss DC subsets in mice and humans, as well as the function of DCs in the nasal sinus mucosa. In addition, the mechanism by which DCs can be used as targets for therapeutic intervention for CRS and potential future research directions are also discussed.
Collapse
Affiliation(s)
- Junhu Tai
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Korea; (J.T.); (J.K.); (M.H.)
| | - Jiwon Kwak
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Korea; (J.T.); (J.K.); (M.H.)
| | - Munsoo Han
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Korea; (J.T.); (J.K.); (M.H.)
- Mucosal Immunology Institute, College of Medicine, Korea University, Seoul 02841, Korea
| | - Tae Hoon Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Korea; (J.T.); (J.K.); (M.H.)
- Mucosal Immunology Institute, College of Medicine, Korea University, Seoul 02841, Korea
- Correspondence: ; Tel.: +82-02-920-5486
| |
Collapse
|
42
|
Kaur A, Baldwin J, Brar D, Salunke DB, Petrovsky N. Toll-like receptor (TLR) agonists as a driving force behind next-generation vaccine adjuvants and cancer therapeutics. Curr Opin Chem Biol 2022; 70:102172. [PMID: 35785601 DOI: 10.1016/j.cbpa.2022.102172] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/06/2022] [Accepted: 05/18/2022] [Indexed: 01/06/2023]
Abstract
Until recently, the development of new human adjuvants was held back by a poor understanding of their mechanisms of action. The field was revolutionized by the discovery of the toll-like receptors (TLRs), innate immune receptors that directly or indirectly are responsible for detecting pathogen-associated molecular patterns (PAMPs) and respond to them by activating innate and adaptive immune pathways. Hundreds of ligands targeting various TLRs have since been identified and characterized as vaccine adjuvants. This work has important implications not only for the development of vaccines against infectious diseases but also for immuno-therapies against cancer, allergy, Alzheimer's disease, drug addiction and other diseases. Each TLR has its own specific tissue localization and downstream gene signalling pathways, providing researchers the opportunity to precisely tailor adjuvants with specific immune effects. TLR agonists can be combined with other TLR or alternative adjuvants to create combination adjuvants with synergistic or modulatory effects. This review provides an introduction to the various classes of TLR adjuvants and their respective signalling pathways. It provides an overview of recent advancements in the TLR field in the past 2-3 years and discusses criteria for selecting specific TLR adjuvants based on considerations, such as disease mechanisms and correlates of protection, TLR immune biasing capabilities, route of administration, antigen compatibility, new vaccine technology platforms, and age- and species-specific effects.
Collapse
Affiliation(s)
- Arshpreet Kaur
- Department of Chemistry and Centre for Advanced Studies, Panjab University, Chandigarh, India; National Interdisciplinary Centre of Vaccines, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh, India
| | | | - Deshkanwar Brar
- Department of Chemistry and Centre for Advanced Studies, Panjab University, Chandigarh, India; National Interdisciplinary Centre of Vaccines, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh, India
| | - Deepak B Salunke
- Department of Chemistry and Centre for Advanced Studies, Panjab University, Chandigarh, India; National Interdisciplinary Centre of Vaccines, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh, India
| | - Nikolai Petrovsky
- Vaxine Pty Ltd., Bedford Park, Adelaide 5042, Australia; College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia.
| |
Collapse
|
43
|
Gomes KB, Allotey-Babington GL, D'Sa S, Kang SM, D'Souza MJ. Dendritic cell activation by a micro particulate based system containing the influenza matrix-2 protein virus-like particle (M2e VLP). Int J Pharm 2022; 622:121667. [PMID: 35304243 DOI: 10.1016/j.ijpharm.2022.121667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 01/01/2023]
Abstract
M2e VLP was previously described as a vaccine that incorporates the extracellular region of the matrix 2 protein (M2e), which is highly conserved amongst all the strains of influenza. In this study, we analyzed activation status of dendritic cells (DCs) after exposure to M2e VLP, stimulating DCs with M2e VLP and co-culturing the stimulated DCs with T cells to observe innate and adaptive immune responses. The M2e VLP microparticle was prepared by encapsulating into a polymer matrix using the one-step spray drying method. Adjuvants Alhydrogel®, MPL-A® or AddavaxTM were used to enhance the DC stimulatory effects by the M2e VLP microparticle. The M2e VLP microparticle yield was found to be 92% and the encapsulation yield was around 84% with a size of approximately 2.78 μm. There was no short-term cytotoxicity found in DCs and macrophages with concentrations up to 1500 μg/mL of M2e VLP microparticle, however long-term exposure resulted in 25% decrease in viability of cells with concentrations more than or equal to 500 μg/mL. The M2e VLP microparticle vaccine with Alhydrogel® and MPL-A® induced high levels of TNFα in both DCs and macrophages. The high levels of MHC I, II, CD28, B7-1, ICAM-1, LFA-1 expression and IL-12 release in the M2e VLP microparticle group with Alhydrogel® suggests that the M2e VLP vaccine with this adjuvant activated T cells via the Th2 pathway. The increased expression of MHC I, II, CD40, CD154, ICAM-1 and LFA-1 on DCs and the release of IL-12 in the M2e VLP microparticle culture of DCs with MPL-A® demonstrated that the M2e VLP vaccine with this adjuvant activated T cells via the Th1 pathway. The decrease in fluorescence in the Alhydrogel® and MPL-A® group illustrates the proliferation of T cells took place following exposure of DCs to the M2e VLP microparticle with these adjuvants. The M2e VLP microparticle exhibited higher stimulatory responses of DCs than the M2e VLP in suspension. Furthermore, the presence of Alhydrogel® and MPL-A® enhanced the stimulatory effects of DCs by the M2e VLP microparticle (MP) vaccine.
Collapse
Affiliation(s)
- Kimberly Braz Gomes
- Mercer University, Vaccine Nanotechnology Laboratory, Center for Drug Delivery Research, Atlanta, GA 30341, USA.
| | | | - Sucheta D'Sa
- Mercer University, Vaccine Nanotechnology Laboratory, Center for Drug Delivery Research, Atlanta, GA 30341, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Martin J D'Souza
- Mercer University, Vaccine Nanotechnology Laboratory, Center for Drug Delivery Research, Atlanta, GA 30341, USA
| |
Collapse
|
44
|
Targeting toll-like receptors on T cells as a therapeutic strategy against tumors. Int Immunopharmacol 2022; 107:108708. [DOI: 10.1016/j.intimp.2022.108708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/05/2022] [Accepted: 03/13/2022] [Indexed: 12/11/2022]
|
45
|
Duan T, Du Y, Xing C, Wang HY, Wang RF. Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity. Front Immunol 2022. [PMID: 35309296 DOI: 10.3389/fimmu.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Innate immunity is the first defense system against invading pathogens. Toll-like receptors (TLRs) are well-defined pattern recognition receptors responsible for pathogen recognition and induction of innate immune responses. Since their discovery, TLRs have revolutionized the field of immunology by filling the gap between the initial recognition of pathogens by innate immune cells and the activation of the adaptive immune response. TLRs critically link innate immunity to adaptive immunity by regulating the activation of antigen-presenting cells and key cytokines. Furthermore, recent studies also have shown that TLR signaling can directly regulate the T cell activation, growth, differentiation, development, and function under diverse physiological conditions. This review provides an overview of TLR signaling pathways and their regulators and discusses how TLR signaling, directly and indirectly, regulates cell-mediated immunity. In addition, we also discuss how TLR signaling is critically important in the host's defense against infectious diseases, autoimmune diseases, and cancer.
Collapse
Affiliation(s)
- Tianhao Duan
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yang Du
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Changsheng Xing
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Helen Y Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Rong-Fu Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
46
|
Rolig AS, Rose DC, McGee GH, Rubas W, Kivimäe S, Redmond WL. Combining bempegaldesleukin (CD122-preferential IL-2 pathway agonist) and NKTR-262 (TLR7/8 agonist) improves systemic antitumor CD8 + T cell cytotoxicity over BEMPEG+RT. J Immunother Cancer 2022; 10:jitc-2021-004218. [PMID: 35444059 PMCID: PMC9021762 DOI: 10.1136/jitc-2021-004218] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
Background Tumor cell death caused by radiation therapy (RT) triggers antitumor immunity in part because dying cells release adjuvant factors that amplify and sustain dendritic cell and T cell responses. We previously demonstrated that bempegaldesleukin (BEMPEG: NKTR-214, an immunostimulatory IL-2 cytokine prodrug) significantly enhanced the antitumor efficacy of RT through a T cell-dependent mechanism. Because RT can induce either immunogenic or tolerogenic cell death, depending on various factors (radiation dose, cell cycle phase), we hypothesized that providing a specific immunogenic adjuvant, like intratumoral therapy with a novel toll-like receptor (TLR) 7/8 agonist, NKTR-262, would improve systemic tumor-specific responses through the activation of local innate immunity. Therefore, we evaluated whether intratumoral NKTR-262 combined with systemic BEMPEG treatment would elicit improved tumor-specific immunity and survival compared with RT combined with BEMPEG. Methods Tumor-bearing mice (CT26; EMT6) received BEMPEG (0.8 mg/kg; intravenously), RT (12 Gy × 1), and/or intratumoral NKTR-262 (0.5 mg/kg). Flow cytometry was used to evaluate CD4+ and CD8+ T cell responses in the blood and tumor 7 days post-treatment. The contribution of specific immune subsets was determined by depletion of CD4+, CD8+, or NK cells. CD8+ T cell cytolytic activity was determined by an in vitro CTL assay. Data are representative of 1–2 independent experiments (n=5–14/group) and statistical significance was determined by 1-way analysis of variance (ANOVA) or repeated measures ANOVA (p value cut-off of 0.05). Results BEMPEG+NKTR-262 significantly improved survival compared with BEMPEG+RT in a CD8+ T cell-dependent manner. Response to BEMPEG+NKTR-262 was characterized by a significant expansion of activated CD8+ T cells (GzmA+; Ki-67+; ICOS+; PD-1+) in the blood, which correlated with reduced tumor size (p<0.05). In the tumor, BEMPEG+NKTR-262 induced higher frequencies of GzmA+ CD8+ T cells exhibiting reduced expression of suppressive molecules (PD-1+), compared with BEMPEG+RT (p<0.05). Further, BEMPEG+NKTR-262 treatment induced greater tumor-specific CD8+ T cell cytolytic function than BEMPEG+RT. Conclusions BEMPEG+NKTR-262 therapy elicited more robust expansion of activated CD8+ T cells compared with BEMPEG+RT, suggesting that intratumoral TLR stimulation provides superior antigen presentation and costimulatory activity compared with RT. A clinical trial of BEMPEG+NKTR-262 for patients with metastatic solid tumors is in progress (NCT03435640).
Collapse
Affiliation(s)
- Annah S Rolig
- Earle A Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Daniel C Rose
- Earle A Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Grace Helen McGee
- Earle A Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | | | | | - William L Redmond
- Earle A Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| |
Collapse
|
47
|
Lange PT, White MC, Damania B. Activation and Evasion of Innate Immunity by Gammaherpesviruses. J Mol Biol 2022; 434:167214. [PMID: 34437888 PMCID: PMC8863980 DOI: 10.1016/j.jmb.2021.167214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/20/2022]
Abstract
Gammaherpesviruses are ubiquitous pathogens that establish lifelong infections in the vast majority of adults worldwide. Importantly, these viruses are associated with numerous malignancies and are responsible for significant human cancer burden. These virus-associated cancers are due, in part, to the ability of gammaherpesviruses to successfully evade the innate immune response throughout the course of infection. In this review, we will summarize the current understanding of how gammaherpesviruses are detected by innate immune sensors, how these viruses evade recognition by host cells, and how this knowledge can inform novel therapeutic approaches for these viruses and their associated diseases.
Collapse
Affiliation(s)
- Philip T Lange
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. https://twitter.com/langept
| | - Maria C White
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. https://twitter.com/maria_c_white
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
48
|
Huérfano S, Šroller V, Bruštíková K, Horníková L, Forstová J. The Interplay between Viruses and Host DNA Sensors. Viruses 2022; 14:v14040666. [PMID: 35458396 PMCID: PMC9027975 DOI: 10.3390/v14040666] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
DNA virus infections are often lifelong and can cause serious diseases in their hosts. Their recognition by the sensors of the innate immune system represents the front line of host defence. Understanding the molecular mechanisms of innate immunity responses is an important prerequisite for the design of effective antivirotics. This review focuses on the present state of knowledge surrounding the mechanisms of viral DNA genome sensing and the main induced pathways of innate immunity responses. The studies that have been performed to date indicate that herpesviruses, adenoviruses, and polyomaviruses are sensed by various DNA sensors. In non-immune cells, STING pathways have been shown to be activated by cGAS, IFI16, DDX41, or DNA-PK. The activation of TLR9 has mainly been described in pDCs and in other immune cells. Importantly, studies on herpesviruses have unveiled novel participants (BRCA1, H2B, or DNA-PK) in the IFI16 sensing pathway. Polyomavirus studies have revealed that, in addition to viral DNA, micronuclei are released into the cytosol due to genotoxic stress. Papillomaviruses, HBV, and HIV have been shown to evade DNA sensing by sophisticated intracellular trafficking, unique cell tropism, and viral or cellular protein actions that prevent or block DNA sensing. Further research is required to fully understand the interplay between viruses and DNA sensors.
Collapse
|
49
|
Alesci A, Lauriano ER, Fumia A, Irrera N, Mastrantonio E, Vaccaro M, Gangemi S, Santini A, Cicero N, Pergolizzi S. Relationship between Immune Cells, Depression, Stress, and Psoriasis: Could the Use of Natural Products Be Helpful? MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061953. [PMID: 35335319 PMCID: PMC8954591 DOI: 10.3390/molecules27061953] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 12/13/2022]
Abstract
Psoriasis is one of the most widespread chronic inflammatory skin diseases, affecting about 2%-3% of the worldwide adult population. The pathogenesis of this disease is quite complex, but an interaction between genetic and environmental factors has been recognized with an essential modulation of inflammatory and immune responses in affected patients. Psoriatic plaques generally represent the clinical psoriatic feature resulting from an abnormal proliferation and differentiation of keratinocytes, which cause dermal hyperplasia, skin infiltration of immune cells, and increased capillarity. Some scientific pieces of evidence have reported that psychological stress may play a key role in psoriasis, and the disease itself may cause stress conditions in patients, thus reproducing a vicious cycle. The present review aims at examining immune cell involvement in psoriasis and the relationship of depression and stress in its pathogenesis and development. In addition, this review contains a focus on the possible use of natural products, thus pointing out their mechanism of action in order to counteract clinical and psychological symptoms.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 31, 98166 Messina, Italy; (E.R.L.); (S.P.)
- Correspondence: (A.A.); (A.S.); (N.C.)
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 31, 98166 Messina, Italy; (E.R.L.); (S.P.)
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, Viale Gazzi, 98147 Messina, Italy; (A.F.); (S.G.)
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine—Section of Pharmacology, University of Messina, 98125 Messina, Italy;
| | | | - Mario Vaccaro
- Department of Clinical and Experimental Medicine—Section of Dermatology, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, University of Messina, Viale Gazzi, 98147 Messina, Italy; (A.F.); (S.G.)
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy
- Correspondence: (A.A.); (A.S.); (N.C.)
| | - Nicola Cicero
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
- Correspondence: (A.A.); (A.S.); (N.C.)
| | - Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 31, 98166 Messina, Italy; (E.R.L.); (S.P.)
| |
Collapse
|
50
|
Smith CIE, Zain R, Österborg A, Palma M, Buggert M, Bergman P, Bryceson Y. Do reduced numbers of plasmacytoid dendritic cells contribute to the aggressive clinical course of COVID-19 in chronic lymphocytic leukemia? Scand J Immunol 2022; 95:e13153. [PMID: 35244285 PMCID: PMC9115357 DOI: 10.1111/sji.13153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 11/28/2022]
Abstract
Infections with SARS‐CoV‐2 have been unduly severe in patients with haematological malignancies, in particular in those with chronic lymphocytic leukaemia (CLL). Based on a series of observations, we propose that an underlying mechanism for the aggressive clinical course of COVID‐19 in CLL is a paucity of plasmacytoid dendritic cells (pDCs) in these patients. Indeed, pDCs express Toll‐like receptor 7 (TLR7), which together with interferon‐regulatory factor 7 (IRF7), enables pDCs to produce large amounts of type I interferons, essential for combating COVID‐19. Treatment of CLL with Bruton's tyrosine kinase (BTK) inhibitors increased the number of pDCs, likely secondarily to the reduction in the tumour burden.
Collapse
Affiliation(s)
- C I Edvard Smith
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Rula Zain
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Center for Rare Diseases, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Anders Österborg
- Dept of Hematology, Karolinska University Hospital Solna, Stockholm, Sweden.,Dept of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Marzia Palma
- Dept of Hematology, Karolinska University Hospital Solna, Stockholm, Sweden.,Dept of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Peter Bergman
- Department of Infectious Diseases, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Department of Laboratory Medicine, Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
| | - Yenan Bryceson
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Broegelmann Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|