1
|
Gari MK, Lee HJ, Inman DR, Burkel BM, Highland MA, Kwon GS, Gupta N, Ponik SM. Inhibiting fibronectin assembly in the breast tumor microenvironment increases cell death and improves response to doxorubicin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637963. [PMID: 40161788 PMCID: PMC11952368 DOI: 10.1101/2025.02.12.637963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Purpose Effective therapies for solid tumors, including breast cancers, are hindered by several roadblocks that can be largely attributed to the fibrotic extracellular matrix (ECM). Fibronectin (FN) is a highly upregulated ECM component in the fibrotic tumor stroma and is associated with poor patient prognosis. This study aimed to investigate the therapeutic potential of an anti-fibrotic peptide that specifically targets FN and blocks the fibrillar assembly of FN. Methods To target FN, we used PEGylated Functional Upstream Domain (PEG-FUD), which binds to the 70 kDa N-terminal region of FN with high affinity, localizes to mammary tumors, and potently inhibits FN assembly in vitro and in vivo. Here, we used the 4T1 tumor model to investigate the efficacy and mechanisms of PEG-FUD to inhibit tumor growth. Results Our data demonstrates that PEG-FUD monotherapy reduces tumor growth without systemic toxicity. Analysis of the tumor microenvironment revealed that PEG-FUD effectively inhibited FN matrix assembly within tumors and reduced adhesion-mediated signaling through α5 integrin and FAK leading to enhanced tumor cell death. Notably, signaling through FAK has been associated with resistance mechanisms to doxorubicin (DOX). Therefore, we tested the combination of PEG-FUD and Dox, which significantly reduced tumor growth by 60% compared to vehicle control and 30% compared to Dox monotherapy. Conclusions Our findings demonstrate that PEG-FUD significantly modifies the peritumoral ECM of breast cancer, leading to increased tumor cell death, and potentiates the efficacy of conventional breast cancer therapy.
Collapse
Affiliation(s)
- Metti K. Gari
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Hye Jin Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - David R. Inman
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Brian M. Burkel
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Margaret A. Highland
- Wisconsin Veterinary Diagnostic Laboratory, University of Wisconsin - Madison, WI, USA
| | - Glen S. Kwon
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin - Madison, WI, USA
| | - Nikesh Gupta
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin - Madison, WI, USA
| | - Suzanne M. Ponik
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
2
|
Bhattacharya S, He Y, Chen Y, Mohanty A, Grishaev A, Kulkarni P, Salgia R, Orban J. Conformational dynamics and multi-modal interaction of Paxillin with the Focal Adhesion Targeting Domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.01.630265. [PMID: 39803547 PMCID: PMC11722443 DOI: 10.1101/2025.01.01.630265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Paxillin (PXN) and focal adhesion kinase (FAK) are two major components of the focal adhesion complex, a multiprotein structure linking the intracellular cytoskeleton to the cell exterior. PXN interacts directly with the C-terminal targeting domain of FAK (FAT) via its intrinsically disordered N-terminal domain. This interaction is necessary and sufficient for localizing FAK to focal adhesions. Furthermore, PXN serves as a platform for recruiting other proteins that together control the dynamic changes needed for cell migration and survival. Here, we show that the PXN disordered region undergoes large-scale conformational restriction upon binding to FAT, forming a 48-kDa multi-modal complex consisting of four major interconverting states. Although the complex is flexible, each state has unique sets of contacts involving disordered regions that are both highly represented in ensembles and conserved. Moreover, conserved intramolecular contacts from glutamine-rich regions in PXN contribute to high entropy and thus stability of the FAT bound complex. As PXN is a hub protein, the results provide a structural basis for understanding how perturbations that lead to cellular network rewiring, such as ligand binding and phosphorylation, may lead to shifts in the multi-state equilibrium and phenotypic switching.
Collapse
Affiliation(s)
- Supriyo Bhattacharya
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte National Medical Center, CA 91010-3000, USA
- These authors contributed equally
| | - Yanan He
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- These authors contributed equally
| | - Yihong Chen
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- These authors contributed equally
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010-3000, USA
| | - Alexander Grishaev
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- National Institute of Standards and Technology, Gaithersburg, MD, 20850 USA
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010-3000, USA
- Department of Systems Biology, City of Hope National Medical Center, Duarte, CA 91010-3000, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010-3000, USA
| | - John Orban
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
3
|
Diaz JA, Gianesini S, Khalil RA. Glycocalyx disruption, endothelial dysfunction and vascular remodeling as underlying mechanisms and treatment targets of chronic venous disease. INT ANGIOL 2024; 43:563-590. [PMID: 39873224 PMCID: PMC11839207 DOI: 10.23736/s0392-9590.24.05339-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The glycocalyx is an essential structural and functional component of endothelial cells. Extensive hemodynamic changes cause endothelial glycocalyx disruption and vascular dysfunction, leading to multiple arterial and venous disorders. Chronic venous disease (CVD) is a common disorder of the lower extremities with major health and socio-economic implications, but complex pathophysiology. Genetic aberrations accentuated by environmental factors, behavioral tendencies, and hormonal disturbances promote venous reflux, valve incompetence, and venous blood stasis. Increased venous hydrostatic pressure and changes in shear-stress cause glycocalyx injury, endothelial dysfunction, secretion of adhesion molecules, leukocyte recruitment/activation, and release of cytokines, chemokines, and hypoxia-inducible factor, causing smooth muscle cell switch from contractile to synthetic proliferative phenotype, imbalance in matrix metalloproteinases (MMPs), degradation of collagen and elastin, and venous tissue remodeling, leading to venous dilation and varicose veins. In the advanced stages of CVD, leukocyte infiltration of the vein wall causes progressive inflammation, fibrosis, disruption of junctional proteins, accumulation of tissue metabolites and reactive oxygen and nitrogen species, and iron deposition, leading to skin changes and venous leg ulcer (VLU). CVD management includes compression stockings, venotonics, and surgical intervention. In addition to its antithrombotic and fibrinolytic properties, literature suggests sulodexide benefits in reducing inflammation, promoting VLU healing, improving endothelial function, exhibiting venotonic properties, and inhibiting MMP-9. Understanding the role of glycocalyx, endothelial dysfunction, and vascular remodeling should help delineate the underlying mechanisms and develop improved biomarkers and targeted therapy for CVD and VLU.
Collapse
Affiliation(s)
- Jose A. Diaz
- Division of Surgical Research, Light Surgical Research and Training Laboratory, Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sergio Gianesini
- Vascular Diseases Center, Translational Surgery Unit, University of Ferrara, Ferrara, Italy, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Raouf A. Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Pifer PM, Yang L, Kumar M, Xie T, Frederick M, Hefner A, Beadle B, Molkentine D, Molkentine J, Dhawan A, Abdelhakiem M, Osman AA, Leibowitz BJ, Myers JN, Pickering CR, Sandulache VC, Heymach J, Skinner HD. FAK Drives Resistance to Therapy in HPV-Negative Head and Neck Cancer in a p53-Dependent Manner. Clin Cancer Res 2024; 30:187-197. [PMID: 37819945 PMCID: PMC10767302 DOI: 10.1158/1078-0432.ccr-23-0964] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/21/2023] [Accepted: 10/09/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE Radiation and platinum-based chemotherapy form the backbone of therapy in human papillomavirus (HPV)-negative head and neck squamous cell carcinoma (HNSCC). We have correlated focal adhesion kinase (FAK/PTK2) expression with radioresistance and worse outcomes in these patients. However, the importance of FAK in driving radioresistance and its effects on chemoresistance in these patients remains unclear. EXPERIMENTAL DESIGN We performed an in vivo shRNA screen using targetable libraries to identify novel therapeutic sensitizers for radiation and chemotherapy. RESULTS We identified FAK as an excellent target for both radio- and chemosensitization. Because TP53 is mutated in over 80% of HPV-negative HNSCC, we hypothesized that mutant TP53 may facilitate FAK-mediated therapy resistance. FAK inhibitor increased sensitivity to radiation, increased DNA damage, and repressed homologous recombination and nonhomologous end joining repair in mutant, but not wild-type, TP53 HPV-negative HNSCC cell lines. The mutant TP53 cisplatin-resistant cell line had increased FAK phosphorylation compared with wild-type, and FAK inhibition partially reversed cisplatin resistance. To validate these findings, we utilized an HNSCC cohort to show that FAK copy number and gene expression were associated with worse disease-free survival in mutant TP53, but not wild-type TP53, HPV-negative HNSCC tumors. CONCLUSIONS FAK may represent a targetable therapeutic sensitizer linked to a known genomic marker of resistance.
Collapse
Affiliation(s)
- Phillip M. Pifer
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Liangpeng Yang
- Department of Experimental Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Manish Kumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Bilaspur, Himachal Pradesh, India
| | - Tongxin Xie
- Department of Head and Neck Surgery, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Mitchell Frederick
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas
| | - Andrew Hefner
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Beth Beadle
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - David Molkentine
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Jessica Molkentine
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Annika Dhawan
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Mohamed Abdelhakiem
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Abdullah A. Osman
- Department of Head and Neck Surgery, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Brian J. Leibowitz
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Jeffrey N. Myers
- Department of Head and Neck Surgery, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Curtis R. Pickering
- Department of Head and Neck Surgery, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Vlad C. Sandulache
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas
| | - John Heymach
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Heath D. Skinner
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| |
Collapse
|
5
|
Katasho R, Nagano T, Iwasaki T, Kamada S. Nectin-4 regulates cellular senescence-associated enlargement of cell size. Sci Rep 2023; 13:21602. [PMID: 38062106 PMCID: PMC10703872 DOI: 10.1038/s41598-023-48890-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Cellular senescence is defined as irreversible growth arrest induced by various stress, such as DNA damage and oxidative stress. Senescent cells exhibit various characteristic morphological changes including enlarged morphology. In our recent study, we identified Nectin-4 to be upregulated in cellular senescence by comparative transcriptomic analysis. However, there are few reports on the relationship between Nectin-4 and senescence. Therefore, we analyzed the function of Nectin-4 in senescence and its biological significance. When overexpressed with Nectin-4, the cells exhibited the enlarged cell morphology closely resembling senescent cells. In addition, the cell size enlargement during DNA damage-induced senescence was suppressed by knockdown of Nectin-4, while there were no significant changes in senescence induction. These results suggest that Nectin-4 is not involved in the regulation of senescence itself but contributes to the senescence-associated cell size increase. Furthermore, the Nectin-4-dependent cell size increase was found to be mediated by Src family kinase (SFK)/PI3 kinase (PI3K)/Rac1 pathway. To explore the functional consequences of cell size enlargement, we analyzed cell survival in Nectin-4-depleted senescent cells. Single-cell tracking experiments revealed that Nectin-4 knockdown induced apoptosis in senescent cells, and there is a strong positive correlation between cell size and survival rate. These results collectively indicate that Nectin-4 plays a causative role in the senescence-associated cell size enlargement via SFK/PI3K/Rac1, which can contribute to survival of senescent cells.
Collapse
Affiliation(s)
- Ryoko Katasho
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, 657-8501, Japan
| | - Taiki Nagano
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, 657-8501, Japan
| | - Tetsushi Iwasaki
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, 657-8501, Japan
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, 657-8501, Japan
| | - Shinji Kamada
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, 657-8501, Japan.
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, 657-8501, Japan.
| |
Collapse
|
6
|
Sobhi Amjad Z, Shojaeian A, Sadri Nahand J, Bayat M, Taghizadieh M, Rostamian M, Babaei F, Moghoofei M. Oncoviruses: Induction of cancer development and metastasis by increasing anoikis resistance. Heliyon 2023; 9:e22598. [PMID: 38144298 PMCID: PMC10746446 DOI: 10.1016/j.heliyon.2023.e22598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
The phenomenon of cell death is a vital aspect in the regulation of aberrant cells such as cancer cells. Anoikis is a kind of cell death that occurs when cells get separated from the extracellular matrix. Some cancer cells can inhibit anoikis in order to progress metastasis. One of the key variables that might be implicated in anoikis resistance (AR) is viral infections. The most important viruses involved in this process are Epstein-Barr virus, human papillomavirus, hepatitis B virus, human herpes virus 8, human T-cell lymphotropic virus type 1, and hepatitis C virus. A better understanding of how carcinogenic viruses suppress anoikis might be helpful in developing an effective treatment for virus-associated cancers. In the current study, we review the role of the mentioned viruses and their gene products in anoikis inhibition.
Collapse
Affiliation(s)
- Zahra Sobhi Amjad
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mosayeb Rostamian
- Nosocomial Infections Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farhad Babaei
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Infectious Diseases Research Center, Health Research Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
7
|
Pal A, Gonzalez-Malerva L, Eaton S, Xu C, Zhang Y, Grief D, Sakala L, Nwekwo L, Zeng J, Christensen G, Gupta C, Streitwieser E, Singharoy A, Park JG, LaBaer J. Multidimensional quantitative phenotypic and molecular analysis reveals neomorphic behaviors of p53 missense mutants. NPJ Breast Cancer 2023; 9:78. [PMID: 37773066 PMCID: PMC10541912 DOI: 10.1038/s41523-023-00582-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/13/2023] [Indexed: 09/30/2023] Open
Abstract
Mutations in the TP53 tumor suppressor gene occur in >80% of the triple-negative or basal-like breast cancer. To test whether neomorphic functions of specific TP53 missense mutations contribute to phenotypic heterogeneity, we characterized phenotypes of non-transformed MCF10A-derived cell lines expressing the ten most common missense mutant p53 proteins and observed a wide spectrum of phenotypic changes in cell survival, resistance to apoptosis and anoikis, cell migration, invasion and 3D mammosphere architecture. The p53 mutants R248W, R273C, R248Q, and Y220C are the most aggressive while G245S and Y234C are the least, which correlates with survival rates of basal-like breast cancer patients. Interestingly, a crucial amino acid difference at one position-R273C vs. R273H-has drastic changes on cellular phenotype. RNA-Seq and ChIP-Seq analyses show distinct DNA binding properties of different p53 mutants, yielding heterogeneous transcriptomics profiles, and MD simulation provided structural basis of differential DNA binding of different p53 mutants. Integrative statistical and machine-learning-based pathway analysis on gene expression profiles with phenotype vectors across the mutant cell lines identifies quantitative association of multiple pathways including the Hippo/YAP/TAZ pathway with phenotypic aggressiveness. Further, comparative analyses of large transcriptomics datasets on breast cancer cell lines and tumors suggest that dysregulation of the Hippo/YAP/TAZ pathway plays a key role in driving the cellular phenotypes towards basal-like in the presence of more aggressive p53 mutants. Overall, our study describes distinct gain-of-function impacts on protein functions, transcriptional profiles, and cellular behaviors of different p53 missense mutants, which contribute to clinical phenotypic heterogeneity of triple-negative breast tumors.
Collapse
Affiliation(s)
- Anasuya Pal
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Laura Gonzalez-Malerva
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Seron Eaton
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Chenxi Xu
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Yining Zhang
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Dustin Grief
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- The School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Lydia Sakala
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Lilian Nwekwo
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Jia Zeng
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Grant Christensen
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Chitrak Gupta
- The Biodesign Center for Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Ellen Streitwieser
- The Biodesign Center for Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Abhishek Singharoy
- The Biodesign Center for Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Jin G Park
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.
| | - Joshua LaBaer
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
8
|
Sarvestani FS, Tamaddon AM, Yaghoobi R, Geramizadeh B, Azarpira N. Biocompatible scaffolds based on collagen and oxidized dextran for endothelial cell survival and function in tissue engineering. Eng Life Sci 2023; 23:2200140. [PMID: 37408870 PMCID: PMC10317976 DOI: 10.1002/elsc.202200140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 07/07/2023] Open
Abstract
Angiogenesis is a vital step in tissue regeneration. Hence, the current study aimed to prepare oxidized dextran (Odex)/collagen (Col)-hydrogels with laminin (LMN), as an angiogenic extracellular matrix (ECM) component, for promoting human umbilical vein endothelial cell (HUVEC) proliferation and function. Odex/Col scaffolds were constructed at various concentrations and temperatures. Using oscillatory rheometry, scanning electron microscopy (SEM), and cell viability testing, the scaffolds were characterized, and then HUVEC proliferation and function was compared with or without LMN. The gelation time could be modified by altering the Odex/Col mass ratio as well as the temperature. SEM showed that Odex/Col hydrogels had a more regular three-dimensional (3D) porous structure than the Col hydrogels. Moreover, HUVECs grew faster in the Col scaffold (12 mg/mL), whereas the Odex (30 mg/mL)/Col (6 mg/mL) scaffold exhibited the lowest apoptosis index. Furthermore, the expression level of vascular endothelial growth factor (VEGF) mRNA in the group without LMN was higher than that with LMN, and the Odex (30 mg/mL)/Col (6 mg/mL) scaffold without LMN had the highest VEGF protein secretion, allowing the cells to survive and function effectively. Odex/Col scaffolds, with or without LMN, are proposed as a tissue engineering construct to improve HUVEC survival and function for angiogenesis.
Collapse
Affiliation(s)
| | - Ali-Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology and Center for Nanotechnology in Drug Delivery School of Pharmacy Shiraz University of Medical Sciences Shiraz Iran
| | - Ramin Yaghoobi
- Transplant Research Center Shiraz University of Medical Sciences Shiraz Iran
| | - Bita Geramizadeh
- Transplant Research Center Shiraz University of Medical Sciences Shiraz Iran
| | - Negar Azarpira
- Transplant Research Center Shiraz University of Medical Sciences Shiraz Iran
| |
Collapse
|
9
|
Lee SJ, Kim JE, Jung JW, Choi YJ, Gong JE, Douangdeuane B, Souliya O, Choi YW, Seo SB, Hwang DY. Novel role of Dipterocarpus tuberculatus as a stimulator of focal cell adhesion through the regulation of MLC2/FAK/Akt signaling pathway. Cell Adh Migr 2022; 16:72-93. [PMID: 35615953 PMCID: PMC9154806 DOI: 10.1080/19336918.2022.2073002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
To investigate a novel function of Dipterocarpus tuberculatus on focal cell adhesion stimulation, alterations to the regulation of focal cell adhesion-related factors were analyzed in NHDF cells and a calvarial defect rat model after treatment with methanol extracts of D. tuberculatus (MED). MED contained gallic acid, caffeic acid, ellagic acid, and naringenin in high concentrations. The proliferation activity, focal cell adhesion ability, adhesion receptors-mediated signaling pathway in NHDF cells were increased by MED. Also, a dense adhered tissue layer and adherent cells on MED-coated titanium plate (MEDTiP) surfaces were detected during regeneration of calvarial bone. The results of the present study provide novel evidence that MED may stimulate focal cell adhesion in NHDF cells and a calvarial defect rat model.
Collapse
Affiliation(s)
- Su Jin Lee
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang, Republic of Korea
| | - Ji Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang, Republic of Korea
| | - Jae Won Jung
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang, Republic of Korea
| | - Yun Ju Choi
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang, Republic of Korea
| | - Jeong Eun Gong
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang, Republic of Korea
| | - Bounleuane Douangdeuane
- Department of products development, Institute of Traditional Medicine, Ministry of Health, Vientiane, Lao PDR
| | - Onevilay Souliya
- Department of products development, Institute of Traditional Medicine, Ministry of Health, Vientiane, Lao PDR
| | - Young Whan Choi
- Department of Horticultural Bioscience, Pusan National University, Miryang, Republic of Korea
| | - Sung Baek Seo
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang, Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang, Republic of Korea
| |
Collapse
|
10
|
Shi M, Cao L, Ding D, Shi L, Hu Y, Qi G, Zhan L, Zhu Y, Yu W, Lv P, Yu N. Acute Noise Causes Down-Regulation of ECM Protein Expression in Guinea Pig Cochlea. Mol Biotechnol 2022; 65:774-785. [PMID: 36209333 DOI: 10.1007/s12033-022-00557-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 09/05/2022] [Indexed: 11/24/2022]
Abstract
Proteomics technology reveals the marker proteins, potential pathogenesis, and intervention targets after noise-induced hearing loss. To study the differences in cochlea protein expression before and after noise exposure using proteomics to reveal the pathological mechanism of noise-induced hearing loss (NIHL). A guinea pig NIHL model was established to test the ABR thresholds before and after noise exposure. The proteomics technology was used to study the mechanism of differential protein expression in the cochlea by noise stimulation. The average hearing threshold of guinea pigs on the first day after noise exposure was 57.00 ± 6.78 dB Sound pressure level (SPL); the average hearing threshold on the seventh day after noise exposure was 45.83 ± 6.07 dB SPL. The proteomics technology identified 3122 different inner ear proteins, of which six proteins related to the hearing were down-regulation: Tenascin C, Collagen Type XI alpha two chains, Collagen Type II alpha one chain, Thrombospondin 2, Collagen Type XI alpha one chain and Ribosomal protein L38, and are enriched in protein absorption, focal adhesion, and extracellular matrix receptor pathways. Impulse noise can affect the expression of differential proteins through focal adhesion pathways. This data can provide an experimental basis for the research on the prevention and treatment of NIHL.
Collapse
Affiliation(s)
- Min Shi
- Senior Department of Otolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Beijing, 100853, China.,Suining Central Hospital, Suining, 629000, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
| | - Lei Cao
- The First Clinical Medical College of Gansu University of Traditional Chinese Medicine, Lanzhou, 730000, China
| | - Daxiong Ding
- Department of Otorhinolaryngology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Lei Shi
- Senior Department of Otolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Beijing, 100853, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
| | - Yiyong Hu
- Senior Department of Otolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Beijing, 100853, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
| | - Guowei Qi
- Senior Department of Otolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Beijing, 100853, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
| | - Li Zhan
- Senior Department of Otolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Beijing, 100853, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
| | - Yuhua Zhu
- Senior Department of Otolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Beijing, 100853, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
| | - Wenxing Yu
- Suining Central Hospital, Suining, 629000, China
| | - Ping Lv
- Department of Otorhinolaryngology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Ning Yu
- Senior Department of Otolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Beijing, 100853, China. .,National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China.
| |
Collapse
|
11
|
Górska A, Mazur AJ. Integrin-linked kinase (ILK): the known vs. the unknown and perspectives. Cell Mol Life Sci 2022; 79:100. [PMID: 35089438 PMCID: PMC8799556 DOI: 10.1007/s00018-021-04104-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/29/2021] [Accepted: 12/17/2021] [Indexed: 02/08/2023]
Abstract
Integrin-linked kinase (ILK) is a multifunctional molecular actor in cell-matrix interactions, cell adhesion, and anchorage-dependent cell growth. It combines functions of a signal transductor and a scaffold protein through its interaction with integrins, then facilitating further protein recruitment within the ILK-PINCH-Parvin complex. ILK is involved in crucial cellular processes including proliferation, survival, differentiation, migration, invasion, and angiogenesis, which reflects on systemic changes in the kidney, heart, muscle, skin, and vascular system, also during the embryonal development. Dysfunction of ILK underlies the pathogenesis of various diseases, including the pro-oncogenic activity in tumorigenesis. ILK localizes mostly to the cell membrane and remains an important component of focal adhesion. We do know much about ILK but a lot still remains either uncovered or unclear. Although it was initially classified as a serine/threonine-protein kinase, its catalytical activity is now questioned due to structural and functional issues, leaving the exact molecular mechanism of signal transduction by ILK unsolved. While it is known that the three isoforms of ILK vary in length, the presence of crucial domains, and modification sites, most of the research tends to focus on the main isoform of this protein while the issue of functional differences of ILK2 and ILK3 still awaits clarification. The activity of ILK is regulated on the transcriptional, protein, and post-transcriptional levels. The crucial role of phosphorylation and ubiquitylation has been investigated, but the functions of the vast majority of modifications are still unknown. In the light of all those open issues, here we present an extensive literature survey covering a wide spectrum of latest findings as well as a past-to-present view on controversies regarding ILK, finishing with pointing out some open questions to be resolved by further research.
Collapse
Affiliation(s)
- Agata Górska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wrocław, Poland.
| | - Antonina Joanna Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wrocław, Poland.
| |
Collapse
|
12
|
Bui T, Gu Y, Ancot F, Sanguin-Gendreau V, Zuo D, Muller WJ. Emergence of β1 integrin-deficient breast tumours from dormancy involves both inactivation of p53 and generation of a permissive tumour microenvironment. Oncogene 2021; 41:527-537. [PMID: 34782719 PMCID: PMC8782722 DOI: 10.1038/s41388-021-02107-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 01/11/2023]
Abstract
The molecular and cellular mechanisms underlying mammary tumour dormancy and cancer recurrence are unclear and remain to be elucidated. Here, we report that mammary epithelial-specific disruption of β1 integrin in a murine model of Luminal B human breast cancer drastically impairs tumour growth with proliferation block, apoptosis induction and cellular senescence. β1 integrin-deficient dormant lesions show activation of the tumour suppressor p53, and tumours that circumvent dormancy possess p53 mutation analogous to those in human disease. We further demonstrate that mammary epithelial deletion of p53 in β1 integrin-deficient mice fully rescues tumour dormancy and bypasses cellular senescence. Additionally, recurrent β1 integrin-deficient tumours exhibit fibrosis with increased cancer-associated fibroblast infiltration and extracellular matrix deposition, absent in fast-growing β1 integrin/p53-deficient lesions. Taken together, these observations argue that β1 integrin modulates p53-dependent cellular senescence resulting in tumour dormancy and that pro-tumourigenic stromal cues and intrinsic genetic mutation are required for dormancy exit.
Collapse
Affiliation(s)
- Tung Bui
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, H3A 1A3, Canada.,Department of Biochemistry, McGill University, Montreal, H3G 1Y6, Canada
| | - Yu Gu
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, H3A 1A3, Canada.,Department of Biochemistry, McGill University, Montreal, H3G 1Y6, Canada
| | - Frédéric Ancot
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, H3A 1A3, Canada
| | | | - Dongmei Zuo
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, H3A 1A3, Canada
| | - William J Muller
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, H3A 1A3, Canada. .,Department of Biochemistry, McGill University, Montreal, H3G 1Y6, Canada. .,Faculty of Medicine, McGill University, Montreal, H3G 2M1, Canada.
| |
Collapse
|
13
|
Afriyie-Asante A, Dabla A, Dagenais A, Berton S, Smyth R, Sun J. Mycobacterium tuberculosis Exploits Focal Adhesion Kinase to Induce Necrotic Cell Death and Inhibit Reactive Oxygen Species Production. Front Immunol 2021; 12:742370. [PMID: 34745115 PMCID: PMC8564185 DOI: 10.3389/fimmu.2021.742370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/04/2021] [Indexed: 01/25/2023] Open
Abstract
Tuberculosis is a deadly, contagious respiratory disease that is caused by the pathogenic bacterium Mycobacterium tuberculosis (Mtb). Mtb is adept at manipulating and evading host immunity by hijacking alveolar macrophages, the first line of defense against inhaled pathogens, by regulating the mode and timing of host cell death. It is established that Mtb infection actively blocks apoptosis and instead induces necrotic-like modes of cell death to promote disease progression. This survival strategy shields the bacteria from destruction by the immune system and antibiotics while allowing for the spread of bacteria at opportunistic times. As such, it is critical to understand how Mtb interacts with host macrophages to manipulate the mode of cell death. Herein, we demonstrate that Mtb infection triggers a time-dependent reduction in the expression of focal adhesion kinase (FAK) in human macrophages. Using pharmacological perturbations, we show that inhibition of FAK (FAKi) triggers an increase in a necrotic form of cell death during Mtb infection. In contrast, genetic overexpression of FAK (FAK+) completely blocked macrophage cell death during Mtb infection. Using specific inhibitors of necrotic cell death, we show that FAK-mediated cell death during Mtb infection occurs in a RIPK1-depedent, and to a lesser extent, RIPK3-MLKL-dependent mechanism. Consistent with these findings, FAKi results in uncontrolled replication of Mtb, whereas FAK+ reduces the intracellular survival of Mtb in macrophages. In addition, we demonstrate that enhanced control of intracellular Mtb replication by FAK+ macrophages is a result of increased production of antibacterial reactive oxygen species (ROS) as inhibitors of ROS production restored Mtb burden in FAK+ macrophages to same levels as in wild-type cells. Collectively, our data establishes FAK as an important host protective response during Mtb infection to block necrotic cell death and induce ROS production, which are required to restrict the survival of Mtb.
Collapse
Affiliation(s)
- Afrakoma Afriyie-Asante
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Ankita Dabla
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Amy Dagenais
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Stefania Berton
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Robin Smyth
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Jim Sun
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
14
|
Raffetto JD, Khalil RA. Mechanisms of Lower Extremity Vein Dysfunction in Chronic Venous Disease and Implications in Management of Varicose Veins. VESSEL PLUS 2021; 5. [PMID: 34250453 DOI: 10.20517/2574-1209.2021.16] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Chronic venous disease (CVD) is a common venous disorder of the lower extremities. CVD can be manifested as varicose veins (VVs), with dilated and tortuous veins, dysfunctional valves and venous reflux. If not adequately treated, VVs could progress to chronic venous insufficiency (CVI) and lead to venous leg ulcer (VLU). Predisposing familial and genetic factors have been implicated in CVD. Additional environmental, behavioral and dietary factors including sedentary lifestyle and obesity may also contribute to CVD. Alterations in the mRNA expression, protein levels and proteolytic activity of matrix metalloproteinases (MMPs) have been detected in VVs and VLU. MMP expression/activity can be modulated by venous hydrostatic pressure, hypoxia, tissue metabolites, and inflammation. MMPs in turn increase proteolysis of different protein substrates in the extracellular matrix particularly collagen and elastin, leading to weakening of the vein wall. MMPs could also promote venous dilation by increasing the release of endothelium-derived vasodilators and activating potassium channels, leading to smooth muscle hyperpolarization and relaxation. Depending on VVs severity, management usually includes compression stockings, sclerotherapy and surgical removal. Venotonics have also been promoted to decrease the progression of VVs. Sulodexide has also shown benefits in VLU and CVI, and recent data suggest that it could improve venous smooth muscle contraction. Other lines of treatment including induction of endogenous tissue inhibitors of metalloproteinases (TIMPs) and administration of exogenous synthetic inhibitors of MMPs are being explored, and could provide alternative strategies in the treatment of CVD.
Collapse
Affiliation(s)
- Joseph D Raffetto
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA
| |
Collapse
|
15
|
Kanno Y, Chen CY, Lee HL, Chiou JF, Chen YJ. Molecular Mechanisms of Chemotherapy Resistance in Head and Neck Cancers. Front Oncol 2021; 11:640392. [PMID: 34026617 PMCID: PMC8138159 DOI: 10.3389/fonc.2021.640392] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy resistance is a huge barrier for head and neck cancer (HNC) patients and therefore requires close attention to understand its underlay mechanisms for effective strategies. In this review, we first summarize the molecular mechanisms of chemotherapy resistance that occur during the treatment with cisplatin, 5-fluorouracil, and docetaxel/paclitaxel, including DNA/RNA damage repair, drug efflux, apoptosis inhibition, and epidermal growth factor receptor/focal adhesion kinase/nuclear factor-κB activation. Next, we describe the potential approaches to combining conventional therapies with previous cancer treatments such as immunotherapy, which may improve the treatment outcomes and prolong the survival of HNC patients. Overall, by parsing the reported molecular mechanisms of chemotherapy resistance within HNC patient’s tumors, we can improve the prediction of chemotherapeutic responsiveness, and reveal new therapeutic targets for the future.
Collapse
Affiliation(s)
- Yuzuka Kanno
- Division of Molecular Regulation of Inflammatory and Immune Disease, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan.,Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Chang-Yu Chen
- Division of Molecular Regulation of Inflammatory and Immune Disease, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan.,Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hsin-Lun Lee
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Jeng-Fong Chiou
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yin-Ju Chen
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,Translational Laboratory, Research Department, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
16
|
Jeong K, Murphy JM, Erin Ahn EY, Steve Lim ST. FAK in the nucleus prevents VSMC proliferation by promoting p27 and p21 expression via Skp2 degradation. Cardiovasc Res 2021; 118:1150-1163. [PMID: 33839758 DOI: 10.1093/cvr/cvab132] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 04/08/2021] [Indexed: 01/14/2023] Open
Abstract
AIM Vascular smooth muscle cells (VSMCs) normally exhibit a very low proliferative rate. Vessel injury triggers VSMC proliferation, in part, through focal adhesion kinase (FAK) activation, which increases transcription of cyclin D1, a key activator for cell cycle-dependent kinases (CDKs). At the same time, we also observe that FAK regulates the expression of the CDK inhibitors (CDKIs) p27 and p21. However, the mechanism of how FAK controls CDKIs in cell cycle progression is not fully understood. METHODS AND RESULTS We found that pharmacological and genetic FAK inhibition increased p27 and p21 by reducing stability of S-phase kinase-associated protein 2 (Skp2), which targets the CDKIs for degradation. FAK N-terminal domain interacts with Skp2 and an APC/C E3 ligase activator, fizzy-related 1 (Fzr1) in the nucleus, which promotes ubiquitination and degradation of both Skp2 and Fzr1. Notably, overexpression of cyclin D1 alone failed to promote proliferation of genetic FAK kinase-dead (KD) VSMCs, suggesting that the FAK-Skp2-CDKI signaling axis is distinct from the FAK-cyclin D1 pathway. However, overexpression of both cyclin D1 and Skp2 enables proliferation of FAK-KD VSMCs, implicating that FAK ought to control both activating and inhibitory switches for CDKs. In vivo, wire injury activates FAK in the cytosol and increased Skp2 and decreased p27 and p21 levels. CONCLUSIONS Both pharmacological FAK and genetic FAK inhibition reduced Skp2 expression in VSMCs upon injury, which significantly reduced intimal hyperplasia through elevated expression of p27 and p21. This study revealed that nuclear FAK-Skp2-CDKI signaling negatively regulates CDK activity in VSMC proliferation. TRANSLATIONAL PERSPECTIVE Increased VSMC proliferation contributes to pathological vessel narrowing in atherosclerosisand following vascular interventions. Blocking VSMC proliferation will reduce atherosclerosisprogression and increase patency of vascular interventions. We found that forced nuclear FAKlocalization by FAK inhibition reduced VSMC proliferation upon vessel injury. Nuclear FAKdecreased Skp2 protein expression by proteasomal degradation, thereby increasing theexpression of cell cycle inhibitors p27 and p21 and blocking cell cycle progression. This studyhas demonstrated the potential for FAK inhibitors in blocking VSMC proliferation to treat vessel narrowing diseases.
Collapse
Affiliation(s)
- Kyuho Jeong
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688
| | - James M Murphy
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688
| | - Eun-Young Erin Ahn
- Department of Pathology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ssang-Taek Steve Lim
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688
| |
Collapse
|
17
|
Zhu L, Hu S, Chen Q, Zhang H, Fu J, Zhou Y, Bai Y, Pan Y, Shao C. Macrophage contributes to radiation-induced anti-tumor abscopal effect on transplanted breast cancer by HMGB1/TNF-α signaling factors. Int J Biol Sci 2021; 17:926-941. [PMID: 33867819 PMCID: PMC8040298 DOI: 10.7150/ijbs.57445] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/13/2021] [Indexed: 02/07/2023] Open
Abstract
Objectives: The roles of innate immunity including macrophages in radiation-induced abscopal effect (RIAE) are ambiguous. In this study, we evaluated the role of macrophage in RIAE and the interaction of cytokines in tumor microenvironment after irradiation. Materials and Methods: Transplanted tumor of breast cancer cells in BalB/C mice, severe combined immunodeficiency (SCID) mice and non-obese diabetic (NOD)-SCID mice were irradiated with fractionation doses to observe anti-tumor abscopal effect. The underlying mechanism of RIAE was investigated by treating the mice with TNF-α inhibitor or macrophage depletion drug and analyzing the alteration of macrophage distribution in tumors. A co-culture system of breast cancer cells and macrophages was applied to disclose the signaling factors and related pathways involved in the RIAE. Results: The growth of nonirradiated tumor was effectively suppressed in mice with normal or infused macrophages but not in mice with insufficiency/depletion of macrophage or TNF-α inhibition, where M1-macrophage was mainly involved. Investigation of the bystander signaling factors in vitro demonstrated that HMGB1 released from irradiated breast cancer cells promoted bystander macrophages to secret TNF-α through TLR-4 pathway and further inhibited the proliferation and migration of non-irradiated cancer cells by PI3K-p110γ suppression. Conclusions: HMGB1 and TNF-α contributes to M1-macrophages facilitated systemic anti-tumor abscopal response triggered by radiotherapy in breast cancer, indicating that the combination of immunotherapy and radiotherapy may has important implication in enhancing the efficiency of tumor treatment.
Collapse
Affiliation(s)
- Lin Zhu
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Songling Hu
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qianping Chen
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Haowen Zhang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China.,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China
| | - Jiamei Fu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Yuchuan Zhou
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yang Bai
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yan Pan
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
18
|
Patra T, Bose SK, Kwon YC, Meyer K, Ray R. Inhibition of p70 isoforms of S6K1 induces anoikis to prevent transformed human hepatocyte growth. Life Sci 2021; 265:118764. [PMID: 33189822 DOI: 10.1016/j.lfs.2020.118764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 12/21/2022]
Abstract
AIMS The mTOR/S6K1 signaling axis, known for cell growth regulation, is hyper-activated in multiple cancers. In this study, we have examined the mechanisms for ribosomal protein p70-S6 kinase 1 (S6K1) associated transformed human hepatocyte (THH) growth regulation. MAIN METHODS THH were treated with p70-S6K1 inhibitor and analyzed for cell viability, cell cycle distribution, specific marker protein expression by western blot, and tumor inhibition in a xenograft mouse model. We validated our results by knockdown of p70-S6K1 using specific siRNA. KEY FINDINGS p70-S6K1 inhibitor treatment caused impairment of in vitro hepatocyte growth, and arrested cell cycle progression at the G1 phase. Further, p70-S6K1 inhibitor treatment exhibited a decrease in FAK and Erk activation, followed by altered integrin-β1 expression, caspase 8, and PARP cleavage appeared to be anoikis like growth inhibition. p70-S6K1 inhibitor also depolymerized actin microfilaments and diminished active Rac1/Cdc42 complex formation for loss of cellular attachment. Similar results were obtained with other transformed human hepatocyte cell lines. p70-S6K1 inhibition also resulted in a reduced phospho-EGFR, Slug and Twist; implicating an inhibition of epithelial-mesenchymal transition (EMT) state. A xenograft tumor model, generated from implanted THH in nude mice, following intraperitoneal injection of S6K1 inhibitor prevented further tumor growth. SIGNIFICANCE Our results suggested that p70-S6K1 inhibition alters orchestration of cell cycle progression, induces cell detachment, and sensitizes hepatocyte growth impairment. Targeting p70 isoform of S6K1 by inhibitor may prove to be a promising approach together with other therapies for hepatocellular carcinoma (HCC) treatment.
Collapse
Affiliation(s)
- Tapas Patra
- Departments of Internal Medicine, Saint Louis University, MO, USA.
| | - Sandip K Bose
- Departments of Internal Medicine, Saint Louis University, MO, USA; Molecular Microbiology & Immunology, Saint Louis University, MO, USA
| | - Young-Chan Kwon
- Departments of Internal Medicine, Saint Louis University, MO, USA
| | - Keith Meyer
- Departments of Internal Medicine, Saint Louis University, MO, USA
| | - Ranjit Ray
- Departments of Internal Medicine, Saint Louis University, MO, USA; Molecular Microbiology & Immunology, Saint Louis University, MO, USA.
| |
Collapse
|
19
|
Corpuz AD, Ramos JW, Matter ML. PTRH2: an adhesion regulated molecular switch at the nexus of life, death, and differentiation. Cell Death Discov 2020; 6:124. [PMID: 33298880 PMCID: PMC7661711 DOI: 10.1038/s41420-020-00357-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/02/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Peptidyl-tRNA hydrolase 2 (PTRH2; Bit-1; Bit1) is an underappreciated regulator of adhesion signals and Bcl2 expression. Its key roles in muscle differentiation and integrin-mediated signaling are central to the pathology of a recently identified patient syndrome caused by a cluster of Ptrh2 gene mutations. These loss-of-function mutations were identified in patients presenting with severe deleterious phenotypes of the skeletal muscle, endocrine, and nervous systems resulting in a syndrome called Infantile-onset Multisystem Nervous, Endocrine, and Pancreatic Disease (IMNEPD). In contrast, in cancer PTRH2 is a potential oncogene that promotes malignancy and metastasis. PTRH2 modulates PI3K/AKT and ERK signaling in addition to Bcl2 expression and thereby regulates key cellular processes in response to adhesion including cell survival, growth, and differentiation. In this Review, we discuss the state of the science on this important cell survival, anoikis and differentiation regulator, and opportunities for further investigation and translation. We begin with a brief overview of the structure, regulation, and subcellular localization of PTRH2. We discuss the cluster of gene mutations thus far identified which cause developmental delays and multisystem disease. We then discuss the role of PTRH2 and adhesion in breast, lung, and esophageal cancers focusing on signaling pathways involved in cell survival, cell growth, and cell differentiation.
Collapse
Affiliation(s)
- Austin D Corpuz
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, 96813, HI, USA.,Cell and Molecular Biology Graduate Program, John A. Burns School of Medicine University of Hawaii at Mānoa, Honolulu, HI, 96813, USA
| | - Joe W Ramos
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, 96813, HI, USA
| | - Michelle L Matter
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, 96813, HI, USA.
| |
Collapse
|
20
|
Antioxidant and Biological Properties of Mesenchymal Cells Used for Therapy in Retinitis Pigmentosa. Antioxidants (Basel) 2020; 9:antiox9100983. [PMID: 33066211 PMCID: PMC7602011 DOI: 10.3390/antiox9100983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/04/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Both tissue repair and regeneration are a priority in regenerative medicine. Retinitis pigmentosa (RP), a complex retinal disease characterized by the progressive loss of impaired photoreceptors, is currently lacking effective therapies: this represents one of the greatest challenges in the field of ophthalmological research. Although this inherited retinal dystrophy is still an incurable genetic disease, the oxidative damage is an important pathogenetic element that may represent a viable target of therapy. In this review, we summarize the current neuroscientific evidence regarding the effectiveness of cell therapies in RP, especially those based on mesenchymal cells, and we focus on their therapeutic action: limitation of both oxidative stress and apoptotic processes triggered by the disease and promotion of cell survival. Cell therapy could therefore represent a feasible therapeutic option in RP.
Collapse
|
21
|
Mahmoud N, Saeed MEM, Sugimoto Y, Klinger A, Fleischer E, Efferth T. Putative molecular determinants mediating sensitivity or resistance towards carnosic acid tumor cell responses. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 77:153271. [PMID: 32659679 DOI: 10.1016/j.phymed.2020.153271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/28/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Carnosic acid (CA) is one of the main constituents in rosemary extract. It possesses valuable pharmacological properties, including anti-oxidant, anti-inflammatory, anti-microbial and anti-cancer activities. Numerous in vitro and in vivo studies investigated the anticancer profile of CA and emphasized its potentiality for cancer treatment. Nevertheless, the role of multidrug-resistance (MDR) related mechanisms for CA's anticancer effect is not yet known. PURPOSE We investigated the cytotoxicity of CA against known mechanisms of anticancer drug resistance (P-gp, ABCB5, BCRP, EGFR and p53) and determined novel putative molecular factors associated with cellular response towards CA. STUDY DESIGN Cytotoxicity assays, bioinformatic analysis, flow cytometry and western blotting were performed to identify the mode of action of CA towards cancer cells. METHODS The cytotoxicity to CA was assessed using the resazurin assays in cell lines expressing the mentioned resistance mechanisms. A pharmacogenomic characterization of the NCI 60 cell line panel was applied via COMPARE, hierarchical cluster and network analyses. Flow cytometry was used to detect cellular mode of death and ROS generation. Changes in proteins-related to apoptosis were determined by Western blotting. RESULTS Cell lines expressing ABC transporters (P-gp, BCRP or ABCB5), mutant EGFR or p53 were not cross-resistant to CA compared to their parental counterparts. By pharmacogenomic approaches, we identified genes that belong to different functional groups (e.g. signal transduction, regulation of cytoskeleton and developmental regulatory system). These genes were predicted as molecular determinants that mediate CA tumor cellular responses. The top affected biofunctions included cellular development, cellular proliferation and cellular death and survival. The effect of CA-mediated apoptosis in leukemia cells, which were recognized as the most sensitive tumor type, was confirmed via flow cytometry and western blot analysis. CONCLUSION CA may provide a novel treatment option to target refractory tumors and to effectively cooperate with established chemotherapy. Using pharmacogenomic approaches and network pharmacology, the relationship between cancer complexity and multi-target potentials of CA was analyzed and many putative molecular determinants were identified. They could serve as novel targets for CA and further studies are needed to translate the possible implications to clinical cancer treatment.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Abietanes/pharmacology
- Antineoplastic Agents, Phytogenic/pharmacology
- Cell Line, Tumor
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/physiology
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Humans
- Neoplasm Proteins/metabolism
- Pharmacogenetics
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Nuha Mahmoud
- Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Mohamed E M Saeed
- Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Yoshikazu Sugimoto
- Division of Chemotherapy, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | | | | | - Thomas Efferth
- Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
22
|
Andreuzzi E, Capuano A, Poletto E, Pivetta E, Fejza A, Favero A, Doliana R, Cannizzaro R, Spessotto P, Mongiat M. Role of Extracellular Matrix in Gastrointestinal Cancer-Associated Angiogenesis. Int J Mol Sci 2020; 21:E3686. [PMID: 32456248 PMCID: PMC7279269 DOI: 10.3390/ijms21103686] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal tumors are responsible for more cancer-related fatalities than any other type of tumors, and colorectal and gastric malignancies account for a large part of these diseases. Thus, there is an urgent need to develop new therapeutic approaches to improve the patients' outcome and the tumor microenvironment is a promising arena for the development of such treatments. In fact, the nature of the microenvironment in the different gastrointestinal tracts may significantly influence not only tumor development but also the therapy response. In particular, an important microenvironmental component and a potential therapeutic target is the vasculature. In this context, the extracellular matrix is a key component exerting an active effect in all the hallmarks of cancer, including angiogenesis. Here, we summarized the current knowledge on the role of extracellular matrix in affecting endothelial cell function and intratumoral vascularization in the context of colorectal and gastric cancer. The extracellular matrix acts both directly on endothelial cells and indirectly through its remodeling and the consequent release of growth factors. We envision that a deeper understanding of the role of extracellular matrix and of its remodeling during cancer progression is of chief importance for the development of new, more efficacious, targeted therapies.
Collapse
Affiliation(s)
- Eva Andreuzzi
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Alessandra Capuano
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Eliana Pivetta
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Albina Fejza
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Andrea Favero
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Roberto Doliana
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Renato Cannizzaro
- Department of Clinical Oncology, Experimental Gastrointestinal Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy;
| | - Paola Spessotto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| |
Collapse
|
23
|
Agupitan AD, Neeson P, Williams S, Howitt J, Haupt S, Haupt Y. P53: A Guardian of Immunity Becomes Its Saboteur through Mutation. Int J Mol Sci 2020; 21:E3452. [PMID: 32414156 PMCID: PMC7278985 DOI: 10.3390/ijms21103452] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Awareness of the importance of immunity in controlling cancer development triggered research into the impact of its key oncogenic drivers on the immune response, as well as their value as targets for immunotherapy. At the heart of tumour suppression is p53, which was discovered in the context of viral infection and now emerges as a significant player in normal and cancer immunity. Wild-type p53 (wt p53) plays fundamental roles in cancer immunity and inflammation. Mutations in p53 not only cripple wt p53 immune functions but also sinisterly subvert the immune function through its neomorphic gain-of-functions (GOFs). The prevalence of mutant p53 across different types of human cancers, which are associated with inflammatory and immune dysfunction, further implicates mutant p53 in modulating cancer immunity, thereby promoting tumorigenesis, metastasis and invasion. In this review, we discuss several mutant p53 immune GOFs in the context of the established roles of wt p53 in regulating and responding to tumour-associated inflammation, and regulating innate and adaptive immunity. We discuss the capacity of mutant p53 to alter the tumour milieu to support immune dysfunction, modulate toll-like receptor (TLR) signalling pathways to disrupt innate immunity and subvert cell-mediated immunity in favour of immune privilege and survival. Furthermore, we expose the potential and challenges associated with mutant p53 as a cancer immunotherapy target and underscore existing therapies that may benefit from inquiry into cancer p53 status.
Collapse
Affiliation(s)
- Arjelle Decasa Agupitan
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne 3000, Victoria, Australia; (A.D.A.); (S.H.)
| | - Paul Neeson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia;
- Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne 3000, Victoria, Australia
| | - Scott Williams
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne 3000, Victoria, Australia;
| | - Jason Howitt
- School of Health Sciences, Swinburne University, Melbourne 3122, Victoria, Australia;
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Sue Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne 3000, Victoria, Australia; (A.D.A.); (S.H.)
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia;
| | - Ygal Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne 3000, Victoria, Australia; (A.D.A.); (S.H.)
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia;
- Department of Clinical Pathology, University of Melbourne, Parkville 3010, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne 3800, Victoria, Australia
| |
Collapse
|
24
|
Crosstalk between Epidermal Growth Factor Receptors (EGFR) and integrins in resistance to EGFR tyrosine kinase inhibitors (TKIs) in solid tumors. Eur J Cell Biol 2020; 99:151083. [PMID: 32381360 DOI: 10.1016/j.ejcb.2020.151083] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/21/2022] Open
Abstract
Cell adhesion to the extracellular matrix (ECM) is important in a variety of physiological and pathologic processes, including development, tumor invasion, and metastasis. Integrin-mediated attachment to ECM proteins has emerged to cue events primitively important for the transformed phenotype of human cancer cells. Cross-talk between integrins and growth factor receptors takes an increasingly prominent role in defining adhesion, motility, and cell growth. This functional interaction has expanded beyond to link integrins with resistance to Tyrosine kinase inhibitors (TKIs) of Epidermal Growth Factor Receptors (EGFRs). In this regard, integrin-mediated adhesion has two separate functions one as a clear collaborator with growth factor receptor signaling and the second as a basic mechanism contributing in Epithelial to Mesenchymal Transition (EMT) which affects response to chemotherapy. This review provides an overview of these mechanisms and describes treatment options for selectively targeting and disrupting integrin interaction to EGFR for cancer therapy.
Collapse
|
25
|
Urbanczyk M, Layland SL, Schenke-Layland K. The role of extracellular matrix in biomechanics and its impact on bioengineering of cells and 3D tissues. Matrix Biol 2019; 85-86:1-14. [PMID: 31805360 DOI: 10.1016/j.matbio.2019.11.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/24/2019] [Accepted: 11/24/2019] [Indexed: 12/20/2022]
Abstract
The cells and tissues of the human body are constantly exposed to exogenous and endogenous forces that are referred to as biomechanical cues. They guide and impact cellular processes and cell fate decisions on the nano-, micro- and macro-scale, and are therefore critical for normal tissue development and maintaining tissue homeostasis. Alterations in the extracellular matrix composition of a tissue combined with abnormal mechanosensing and mechanotransduction can aberrantly activate signaling pathways that promote disease development. Such processes are therefore highly relevant for disease modelling or when aiming for the development of novel therapies. In this mini review, we describe the main biomechanical cues that impact cellular fates. We highlight their role during development, homeostasis and in disease. We also discuss current techniques and tools that allow us to study the impact of biomechanical cues on cell and tissue development under physiological conditions, and we point out directions, in which in vitro biomechanics can be of use in the future.
Collapse
Affiliation(s)
- Max Urbanczyk
- Department of Women's Health, Research Institute of Women's Health, Eberhard Karls University Tübingen, Germany
| | - Shannon L Layland
- Department of Women's Health, Research Institute of Women's Health, Eberhard Karls University Tübingen, Germany
| | - Katja Schenke-Layland
- Department of Women's Health, Research Institute of Women's Health, Eberhard Karls University Tübingen, Germany; Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Reutlingen, Germany; Cluster of Excellence IFIT (EXC 2180), "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, Germany; Dept. of Medicine/Cardiology, University of California Los Angeles (UCLA), Los Angeles, CA, USA.
| |
Collapse
|
26
|
Pulmonary Endothelial Cell Apoptosis in Emphysema and Acute Lung Injury. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2019; 228:63-86. [PMID: 29288386 DOI: 10.1007/978-3-319-68483-3_4] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Apoptosis plays an essential role in homeostasis and pathogenesis of a variety of human diseases. Endothelial cells are exposed to various environmental and internal stress and endothelial apoptosis is a pathophysiological consequence of these stimuli. Pulmonary endothelial cell apoptosis initiates or contributes to progression of a number of lung diseases. This chapter will focus on the current understanding of the role of pulmonary endothelial cell apoptosis in the development of emphysema and acute lung injury (ALI) and the factors controlling pulmonary endothelial life and death.
Collapse
|
27
|
Yu W, Shin MR, Sesti F. Complexes formed with integrin-α5 and KCNB1 potassium channel wild type or epilepsy-susceptibility variants modulate cellular plasticity via Ras and Akt signaling. FASEB J 2019; 33:14680-14689. [PMID: 31682765 DOI: 10.1096/fj.201901792r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Voltage-gated potassium (K+) channel subfamily B member 1 (KCNB1, Kv2.1) and integrin-α5 form macromolecular complexes-named integrin-α5-KCNB1 complexes (IKCs)-in the human brain, but their function was poorly understood. Here we report that membrane depolarization triggered IKC intracellular signals mediated by small GTPases of the Ras subfamily and protein kinase B (Akt) to advance the development of filopodia and lamellipodia in Chinese hamster ovary cells, stimulate their motility, and enhance neurite outgrowth in mouse neuroblastoma Neuro2a cells. Five KCNB1 mutants (L211P, R312H G379R, G381R, and F416L) linked to severe infancy or early-onset epileptic encephalopathy exhibited markedly defective conduction. However, although L211P, G379R, and G381R normally engaged Ras/Akt and stimulated cell migration, R312H and F416L failed to activate Ras/Akt signaling and did not enhance cell migration. Taken together, these data suggest that IKCs modulate cellular plasticity via Ras and Akt signaling. As such, defective IKCs may cause epilepsy through mechanisms other than dysregulated excitability such as, for example, abnormal neuronal development and resulting synaptic connectivity.-Yu, W., Shin, M. R., Sesti, F. Complexes formed with integrin-α5 and KCNB1 potassium channel wild type or epilepsy-susceptibility variants modulate cellular plasticity via Ras and Akt signaling.
Collapse
Affiliation(s)
- Wei Yu
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Mi Ryung Shin
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Federico Sesti
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
28
|
Andisha NM, McMillan DC, Gujam FJA, Roseweir A, Edwards J. The relationship between phosphorylation status of focal adhesion kinases, molecular subtypes, tumour microenvironment and survival in patients with primary operable ductal breast cancer. Cell Signal 2019; 60:91-99. [PMID: 30981841 DOI: 10.1016/j.cellsig.2019.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/01/2019] [Accepted: 04/10/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Despite advances in therapies to treat breast cancer, over 100,000 patients die in the UK of this disease per year, highlighting the need to develop effect predictive and prognostic markers for patients with primary operable ductal breast cancer. Therefore, the aim of the present study was to examine the relationship between membranous, cytoplasmic and nuclear expression of focal adhesion kinase (phosphorylated at Y 397, Y 861 and Y 925), molecular subtypes, tumour microenvironment and survival in patients with primary operable ductal breast cancer. METHODS Four hundred and seventy-four patients presenting between 1995 and 1998 with primary operable ductal breast cancer were included in this study. Using tissue microarrays expression of membranous, cytoplasmic and nuclear tumour cell phosphorylation of FAK at Y397, Y861 and Y925 was assessed, and associations with clinicopathological characteristics, tumour microenvironment and cancer-specific survival (CSS) were examined. RESULTS No significant association was observed for ph-FAK Y861 with survival at all sites. However, high expression of membranous ph-FAK Y397 was associated with increased tumour grade (P < .001), molecular subtypes (P < .001), increased tumour necrosis (P < .001), high Klintrup-Mäkinen grade (P < .001), increased CD138+ plasma cells (P = .031), endocrine therapy (P = .001) and poor cancer specific survival (P = .040). Similarly, high expression of nuclear ph-FAK Y397 was associated with decreased age (P = .042), increased CD138+ plasma cells (P = .001) and poor cancer specific survival (P = .003). Furthermore, high expression of cytoplasmic ph-FAK Y925 was associated with decreased tumour grade (P < .001), less involved lymph node (P = .020), molecular subtypes (P < .001), decreased tumour necrosis (P < .001), low Klintrup-Mäkinen grade (P < .001), decreased CD4+ T-cells (P = .006), decreased CD138+ plasma cells (P = .034), endocrine therapy (P < .001), chemotherapy (P = .048), and improved cancer specific survival (P = .044). On multivariate analysis, high expression of nuclear ph-FAK Y397 was independently associated with reduced cancer specific survival (P = .017). CONCLUSION The results of the present study show that membranous and nuclear ph-FAK Y397 and cytoplasmic ph-FAK Y925 were associated with prognosis in patients with primary operable ductal breast cancer. In addition, high expression of nuclear ph-FAK Y397 was an independent prognostic factor in patients with primary operable ductal breast cancer and could be incorporated into clinical practice.
Collapse
Affiliation(s)
- Najla M Andisha
- Academic Unit of Surgery, College of Medical, Veterinary and Life Sciences-University of Glasgow, Royal Infirmary, Glasgow, UK; Unit of Gastrointestinal cancer and Molecular Pathology, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences-University of Glasgow, Glasgow, UK.
| | - Donald C McMillan
- Academic Unit of Surgery, College of Medical, Veterinary and Life Sciences-University of Glasgow, Royal Infirmary, Glasgow, UK
| | - Fadia J A Gujam
- Academic Unit of Surgery, College of Medical, Veterinary and Life Sciences-University of Glasgow, Royal Infirmary, Glasgow, UK; Unit of Gastrointestinal cancer and Molecular Pathology, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences-University of Glasgow, Glasgow, UK
| | - Antonia Roseweir
- Unit of Gastrointestinal cancer and Molecular Pathology, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences-University of Glasgow, Glasgow, UK
| | - Joanne Edwards
- Unit of Gastrointestinal cancer and Molecular Pathology, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences-University of Glasgow, Glasgow, UK
| |
Collapse
|
29
|
Kessler BE, Mishall KM, Kellett MD, Clark EG, Pugazhenthi U, Pozdeyev N, Kim J, Tan AC, Schweppe RE. Resistance to Src inhibition alters the BRAF-mutant tumor secretome to promote an invasive phenotype and therapeutic escape through a FAK>p130Cas>c-Jun signaling axis. Oncogene 2019; 38:2565-2579. [PMID: 30531837 PMCID: PMC6450711 DOI: 10.1038/s41388-018-0617-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 11/20/2018] [Accepted: 11/23/2018] [Indexed: 01/09/2023]
Abstract
Few therapy options exist for patients with advanced papillary and anaplastic thyroid cancer. We and others have previously identified c-Src as a key mediator of thyroid cancer pro-tumorigenic processes and a promising therapeutic target for thyroid cancer. To increase the efficacy of targeting Src in the clinic, we sought to define mechanisms of resistance to the Src inhibitor, dasatinib, to identify key pathways to target in combination. Using a panel of thyroid cancer cell lines expressing clinically relevant mutations in BRAF or RAS, which were previously developed to be resistant to dasatinib, we identified a switch to a more invasive phenotype in the BRAF-mutant cells as a potential therapy escape mechanism. This phenotype switch is driven by FAK kinase activity, and signaling through the p130Cas>c-Jun signaling axis. We have further shown this more invasive phenotype is accompanied by alterations in the secretome through the increased expression of pro-inflammatory cytokines, including IL-1β, and the pro-invasive metalloprotease, MMP-9. Furthermore, IL-1β signals via a feedforward autocrine loop to promote invasion through a FAK>p130Cas>c-Jun>MMP-9 signaling axis. We further demonstrate that upfront combined inhibition of FAK and Src synergistically inhibits growth and invasion, and induces apoptosis in a panel of BRAF- and RAS-mutant thyroid cancer cell lines. Together our data demonstrate that acquired resistance to single-agent Src inhibition promotes a more invasive phenotype through an IL-1β>FAK>p130Cas>c-Jun >MMP signaling axis, and that combined inhibition of FAK and Src has the potential to block this inhibitor-induced phenotype switch.
Collapse
Affiliation(s)
- Brittelle E Kessler
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Katie M Mishall
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Meghan D Kellett
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Erin G Clark
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Umarani Pugazhenthi
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Nikita Pozdeyev
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Division of Bioinformatics and Personalized Medicine, Aurora, CO, 80045, USA
| | - Jihye Kim
- University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Aik Choon Tan
- University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Rebecca E Schweppe
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
30
|
Romagnoli M, Cagnet S, Chiche A, Bresson L, Baulande S, de la Grange P, De Arcangelis A, Kreft M, Georges-Labouesse E, Sonnenberg A, Deugnier MA, Raymond K, Glukhova MA, Faraldo MM. Deciphering the Mammary Stem Cell Niche: A Role for Laminin-Binding Integrins. Stem Cell Reports 2019; 12:831-844. [PMID: 30905738 PMCID: PMC6450809 DOI: 10.1016/j.stemcr.2019.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/15/2022] Open
Abstract
Integrins, which bind laminin, a major component of the mammary basement membrane, are strongly expressed in basal stem cell-enriched populations, but their role in controlling mammary stem cell function remains unclear. We found that stem cell activity, as evaluated in transplantation and mammosphere assays, was reduced in mammary basal cells depleted of laminin receptors containing α3- and α6-integrin subunits. This was accompanied by low MDM2 levels, p53 stabilization, and diminished proliferative capacity. Importantly, disruption of p53 function restored the clonogenicity of α3/α6-integrin-depleted mammary basal stem cells, while inhibition of RHO or myosin II, leading to decreased p53 activity, rescued the mammosphere formation. These data suggest that α3/α6-integrin-mediated adhesion plays an essential role in controlling the proliferative potential of mammary basal stem/progenitor cells through myosin II-mediated regulation of p53 and indicate that laminins might be important components of the mammary stem cell niche.
α3- and α6-integrins are required for mammary basal stem cell function p53 is activated in mammary basal cells depleted of α3- and α6-integrins RHO and myosin II mediate p53 activation in α3- and α6-integrin-depleted cells
Collapse
Affiliation(s)
- Mathilde Romagnoli
- Institut Curie, PSL Research University, CNRS, UMR144, 26 Rue d'Ulm, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France
| | - Stéphanie Cagnet
- Institut Curie, PSL Research University, CNRS, UMR144, 26 Rue d'Ulm, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France
| | - Aurélie Chiche
- Institut Curie, PSL Research University, CNRS, UMR144, 26 Rue d'Ulm, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France
| | - Laura Bresson
- Institut Curie, PSL Research University, CNRS, UMR144, 26 Rue d'Ulm, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France
| | - Sylvain Baulande
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie, 75005 Paris, France
| | | | - Adèle De Arcangelis
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104/INSERM U1258/Université de Strasbourg, 67404 Illkirch, France
| | - Maaike Kreft
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Elisabeth Georges-Labouesse
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104/INSERM U1258/Université de Strasbourg, 67404 Illkirch, France
| | - Arnoud Sonnenberg
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Marie-Ange Deugnier
- Institut Curie, PSL Research University, CNRS, UMR144, 26 Rue d'Ulm, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France; Inserm, Paris, 75013 Paris, France
| | - Karine Raymond
- Institut Curie, PSL Research University, CNRS, UMR144, 26 Rue d'Ulm, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France; Inserm, Paris, 75013 Paris, France
| | - Marina A Glukhova
- Institut Curie, PSL Research University, CNRS, UMR144, 26 Rue d'Ulm, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France; Inserm, Paris, 75013 Paris, France
| | - Marisa M Faraldo
- Institut Curie, PSL Research University, CNRS, UMR144, 26 Rue d'Ulm, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France; Inserm, Paris, 75013 Paris, France.
| |
Collapse
|
31
|
Yuan L, Du X, Tang S, Wu S, Wang L, Xiang Y, Qu X, Liu H, Qin X, Liu C. ITGB4 deficiency induces senescence of airway epithelial cells through p53 activation. FEBS J 2019; 286:1191-1203. [PMID: 30636108 DOI: 10.1111/febs.14749] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/20/2018] [Accepted: 01/10/2019] [Indexed: 12/29/2022]
Abstract
Aging is characterized by a progressive loss of physiological integrity, leading to impaired organ function and, ultimately, increased vulnerability to death. Many complex diseases are related to aging, including asthma. In the lung, the airway epithelium serves as the first barrier to prevent the access of inspired external stimuli and dictates the initial stress responses. Notably, in the airway mucosa of asthma patients, an increase in senescent airway epithelial cells has been detected. Although it has been speculated that the senescence of airway epithelial cells could increase asthma susceptibility and aggravate asthma severity, the role of cell senescence in the development of asthma remains unclear. Integrin β4 (ITGB4) is a structural adhesion molecule with complex physiological functions that is downregulated in airway epithelial cells of asthma patients. This study demonstrates that the expression of ITGB4 in airway epithelial cells is downregulated significantly under oxidative stress or upon inflammatory stimulation. Moreover, we show that ITGB4 deficiency induces the senescence of airway epithelial cells through the activation of the p53 pathway both in vitro and in vivo. Together, our results demonstrate that airway epithelial senescence induced by ITGB4 deficiency after oxidative stress or inflammatory stimulation may be involved in the pathogenesis of asthma. Understanding the contribution of ITGB4 deficiency to the senescence of airway epithelial cells in asthma patients may provide new therapeutic approaches for the treatment of asthma.
Collapse
Affiliation(s)
- Lin Yuan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xizi Du
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Sha Tang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Shuangyan Wu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Leyuan Wang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yang Xiang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiangping Qu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Huijun Liu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiaoqun Qin
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Chi Liu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
32
|
Lin YT, Liang SM, Wu YJ, Wu YJ, Lu YJ, Jan YJ, Ko BS, Chuang YJ, Shyue SK, Kuo CC, Liou JY. Cordycepin Suppresses Endothelial Cell Proliferation, Migration, Angiogenesis, and Tumor Growth by Regulating Focal Adhesion Kinase and p53. Cancers (Basel) 2019; 11:cancers11020168. [PMID: 30717276 PMCID: PMC6406613 DOI: 10.3390/cancers11020168] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/28/2019] [Indexed: 01/08/2023] Open
Abstract
Focal adhesion kinase (FAK) plays an important role in vascular development, including the regulation of endothelial cell (EC) adhesion, migration, proliferation, and survival. 3'-deoxyadenosine (cordycepin) is known to suppress FAK expression, cell migration, and the epithelial⁻mesenchymal transition in hepatocellular carcinoma (HCC). However, whether cordycepin affects FAK expression and cellular functions in ECs and the specific molecular mechanism remain unclear. In this study, we found that cordycepin suppressed FAK expression and the phosphorylation of FAK (p-FAK) at Tyr397 in ECs. Cordycepin inhibited the proliferation, wound healing, transwell migration, and tube formation of ECs. Confocal microscopy revealed that cordycepin significantly reduced FAK expression and decreased focal adhesion number of ECs. The suppressed expression of FAK was accompanied by induced p53 and p21 expression in ECs. Finally, we demonstrated that cordycepin suppressed angiogenesis in an in vivo angiogenesis assay and reduced HCC tumor growth in a xenograft nude mice model. Our study indicated that cordycepin could attenuate cell proliferation and migration and may result in the impairment of the angiogenesis process and tumor growth via downregulation of FAK and induction of p53 and p21 in ECs. Therefore, cordycepin may be used as a potential adjuvant for cancer therapy.
Collapse
Affiliation(s)
- Yi-Ting Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350, Taiwan.
- Institute of Bioinformatics and Structure Biology, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Shu-Man Liang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350, Taiwan.
| | - Ya-Ju Wu
- Department of Pathology, Taichung Veterans General Hospital, Chiayi Branch, Chiayi City 600, Taiwan.
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan.
| | - Yi-Ju Wu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350, Taiwan.
| | - Yi-Jhu Lu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350, Taiwan.
| | - Yee-Jee Jan
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan.
| | - Bor-Sheng Ko
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan.
| | - Yung-Jen Chuang
- Institute of Bioinformatics and Structure Biology, National Tsing Hua University, Hsinchu 300, Taiwan.
- Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Song-Kun Shyue
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan. .
| | - Cheng-Chin Kuo
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350, Taiwan.
| | - Jun-Yang Liou
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
33
|
Chai AWY, Cheung AKL, Dai W, Ko JMY, Ip JCY, Chan KW, Kwong DLW, Ng WT, Lee AWM, Ngan RKC, Yau CC, Tung SY, Lee VHF, Lam AKY, Pillai S, Law S, Lung ML. Metastasis-suppressing NID2, an epigenetically-silenced gene, in the pathogenesis of nasopharyngeal carcinoma and esophageal squamous cell carcinoma. Oncotarget 2018; 7:78859-78871. [PMID: 27793011 PMCID: PMC5346683 DOI: 10.18632/oncotarget.12889] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/19/2016] [Indexed: 12/13/2022] Open
Abstract
Nidogen-2 (NID2) is a key component of the basement membrane that stabilizes the extracellular matrix (ECM) network. The aim of the study is to analyze the functional roles of NID2 in the pathogenesis of nasopharyngeal carcinoma (NPC) and esophageal squamous cell carcinoma (ESCC). We performed genome-wide methylation profiling of NPC and ESCC and validated our findings using the methylation-sensitive high-resolution melting (MS-HRM) assay. Results showed that promoter methylation of NID2 was significantly higher in NPC and ESCC samples than in their adjacent non-cancer counterparts. Consistently, down-regulation of NID2 was observed in the clinical samples and cell lines of both NPC and ESCC. Re-expression of NID2 suppresses clonogenic survival and migration abilities of transduced NPC and ESCC cells. We showed that NID2 significantly inhibits liver metastasis. Mechanistic studies of signaling pathways also confirm that NID2 suppresses the EGFR/Akt and integrin/FAK/PLCγ metastasis-related pathways. This study provides novel insights into the crucial tumor metastasis suppression roles of NID2 in cancers.
Collapse
Affiliation(s)
- Annie Wai Yeeng Chai
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong (SAR), People's Republic of China
| | - Arthur Kwok Leung Cheung
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong (SAR), People's Republic of China
| | - Wei Dai
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong (SAR), People's Republic of China
| | - Josephine Mun Yee Ko
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong (SAR), People's Republic of China
| | - Joseph Chok Yan Ip
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong (SAR), People's Republic of China
| | - Kwok Wah Chan
- Center for Cancer Research, The University of Hong Kong, Hong Kong (SAR), People's Republic of China.,Department of Pathology, The University of Hong Kong, Hong Kong (SAR), People's Republic of China
| | - Dora Lai-Wan Kwong
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong (SAR), People's Republic of China.,Center for Nasopharyngeal Carcinoma Research, The University of Hong Kong, Hong Kong (SAR), People's Republic of China
| | - Wai Tong Ng
- Center for Nasopharyngeal Carcinoma Research, The University of Hong Kong, Hong Kong (SAR), People's Republic of China.,Department of Clinical Oncology, Pamela Youde Nethersole Eastern Hospital, Hong Kong (SAR), People's Republic of China
| | - Anne Wing Mui Lee
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong (SAR), People's Republic of China.,Center for Nasopharyngeal Carcinoma Research, The University of Hong Kong, Hong Kong (SAR), People's Republic of China
| | - Roger Kai Cheong Ngan
- Center for Nasopharyngeal Carcinoma Research, The University of Hong Kong, Hong Kong (SAR), People's Republic of China.,Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong (SAR), People's Republic of China
| | - Chun Chung Yau
- Center for Nasopharyngeal Carcinoma Research, The University of Hong Kong, Hong Kong (SAR), People's Republic of China.,Department of Oncology, Princess Margaret Hospital, Hong Kong (SAR), People's Republic of China
| | - Stewart Yuk Tung
- Center for Nasopharyngeal Carcinoma Research, The University of Hong Kong, Hong Kong (SAR), People's Republic of China.,Department of Clinical Oncology, Tuen Mun Hospital, Hong Kong (SAR), People's Republic of China
| | - Victor Ho Fun Lee
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong (SAR), People's Republic of China.,Center for Nasopharyngeal Carcinoma Research, The University of Hong Kong, Hong Kong (SAR), People's Republic of China
| | - Alfred King-Yin Lam
- Department of Cancer Molecular Pathology, Griffith Medical School and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Suja Pillai
- Department of Cancer Molecular Pathology, Griffith Medical School and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Simon Law
- Center for Cancer Research, The University of Hong Kong, Hong Kong (SAR), People's Republic of China.,Department of Surgery, The University of Hong Kong, Hong Kong (SAR), People's Republic of China
| | - Maria Li Lung
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong (SAR), People's Republic of China.,Center for Cancer Research, The University of Hong Kong, Hong Kong (SAR), People's Republic of China.,Center for Nasopharyngeal Carcinoma Research, The University of Hong Kong, Hong Kong (SAR), People's Republic of China
| |
Collapse
|
34
|
Mechanosensitive adhesion complexes in epithelial architecture and cancer onset. Curr Opin Cell Biol 2018; 50:42-49. [PMID: 29454273 DOI: 10.1016/j.ceb.2018.01.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/10/2018] [Accepted: 01/30/2018] [Indexed: 01/09/2023]
Abstract
Mechanical signals from the extracellular space are paramount to coordinate tissue morphogenesis and homeostasis. Although there is a wide variety of cellular mechanisms involved in transducing extracellular forces, recent literature emphasizes the central role of two main adhesion complexes in epithelial mechanosensitive processes: focal adhesions and adherens junctions. These biomechanical sensors can decode physical signals such as matrix stiffness or intercellular tension into a wide range of coordinated cellular responses, which can impact cell differentiation, migration, and proliferation. Communication between cells and their microenvironment plays a pivotal role both in physiological and pathological conditions. Here we summarize the most recent findings on the biology of these mechanotransduction pathways in epithelial cells, highlighting the extensive amount of biological processes coordinated by cell-matrix and cell-cell adhesion complexes.
Collapse
|
35
|
Saemisch M, Nickmann M, Riesinger L, Edelman ER, Methe H. 3D matrix-embedding inhibits cycloheximide-mediated sensitization to TNF-alpha-induced apoptosis of human endothelial cells. J Tissue Eng Regen Med 2017; 12:1085-1096. [PMID: 29131527 DOI: 10.1002/term.2609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 10/23/2017] [Accepted: 10/28/2017] [Indexed: 12/30/2022]
Abstract
The programmed form of cell death (apoptosis) is essential for normal development of multicellular organisms. Dysregulation of apoptosis has been linked with embryonal death and is involved in the pathophysiology of various diseases. Others and we previously demonstrated endothelial biology being intertwined with biochemical and structural composition of the subendothelial basement membrane. We now demonstrate that a three-dimensional growing environment significantly shields endothelial cells from cytokine-induced apoptosis. Detailed analysis reveals differences in intracellular signaling pathways in naive endothelial cells and cytokine-stimulated endothelial cells when cells are grown within a three-dimensional collagen-based matrix compared to cells grown on two-dimensional tissue culture plates. Main findings are significantly reduced p53 expression and level of p38-phosphorylation in three-dimensional grown endothelial cells. Despite similar concentrations of focal adhesion kinase, three-dimensional matrix-embedded endothelial cells express significantly less tyrosine-phosphorylated focal adhesion kinase. Pretreatment with antibodies against integrin αv β3 partially reversed the protective effect of three-dimensional matrix-embedding on endothelial apoptosis. Our findings provide detailed insights into the mechanisms of endothelial apoptosis with respect to the spatial matrix environment. These results enhance our understanding of endothelial biology and may otherwise help in the design of tissue-engineered materials. Furthermore, findings on focal adhesion kinase phosphorylation might enhance our understanding of clinical studies with tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Michael Saemisch
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany.,Department of Cardiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Lisa Riesinger
- Department of Cardiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Elazer R Edelman
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Heiko Methe
- Department of Cardiology, Ludwig-Maximilians-University Munich, Munich, Germany.,Kliniken an der Paar, Aichach, Germany.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
36
|
Katoh K. Activation of Rho-kinase and focal adhesion kinase regulates the organization of stress fibers and focal adhesions in the central part of fibroblasts. PeerJ 2017; 5:e4063. [PMID: 29158989 PMCID: PMC5694213 DOI: 10.7717/peerj.4063] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 10/29/2017] [Indexed: 12/12/2022] Open
Abstract
Specific regulation and activation of focal adhesion kinase (FAK) are thought to be important for focal adhesion formation, and activation of Rho-kinase has been suggested to play a role in determining the effects of FAK on the formation of stress fibers and focal adhesions. To clarify the role of FAK in stress fiber formation and focal adhesion organization, the author examined the formation of new stress fibers and focal adhesions by activation of Rho-kinase in FAK knockout (FAK–/–) fibroblasts. FAK–/– cells were elliptical in shape, and showed reduced numbers of stress fibers and focal adhesions in the central part of the cells along with large focal adhesions in the peripheral regions. Activation of Rho-kinase in FAK–/– cells transiently increased the actin filaments in the cell center, but these did not form typical thick stress fibers. Moreover, only plaque-like structures as the origins of newly formed focal adhesions were observed in the center of the cell. Furthermore, introduction of an exogenous GFP-labeled FAK gene into FAK–/– cells resulted in increased numbers of stress fibers and focal adhesions in the center of the cells, which showed typical fibroblast morphology. These results indicated that FAK plays an important role in the formation of stress fibers and focal adhesions as well as in regulation of cell shape and morphology with the activation of Rho-kinase.
Collapse
Affiliation(s)
- Kazuo Katoh
- Laboratory of Human Anatomy and Cell Biology, Faculty of Health Sciences, Tsukuba University of Technology, Tsukuba-city, Ibaraki, Japan
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW Human pluripotent stem cells (hPSCs) are anchorage-dependent cells that can be cultured on a variety of matrices and express integrins and the machinery for integrin signaling. Until recently, there has been limited understanding of exactly how integrin signaling regulates pluripotent stem cell (PSC) behavior. This review summarizes our knowledge of how integrins and focal adhesion kinase (FAK) regulate different aspects of hPSC biology. RECENT FINDINGS The latest research suggests that mouse and human embryonic stem cells utilize similar integrin signaling players but with different biological outcomes, reflecting the known developmental difference in their pluripotent status. Notably, attachment cues via FAK signaling are crucial for hPSCs survival and pluripotency maintenance. FAK may be found cortically but also in the nucleus of hPSCs intersecting core pluripotency networks. SUMMARY Integrins and FAK have been consigned to the conventional role of cell adhesion receptor systems in PSCs. This review highlights data indicating that they are firmly integrated in pluripotency circuits, with implications for both research PSC culture and scale up and use in clinical applications.
Collapse
Affiliation(s)
- Loriana Vitillo
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, University of Manchester, Michael Smith Building, Oxford Rd, Manchester, M13 9PT UK
| | - Susan J. Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, University of Manchester, Michael Smith Building, Oxford Rd, Manchester, M13 9PT UK
| |
Collapse
|
38
|
Wang X, Khalil RA. Matrix Metalloproteinases, Vascular Remodeling, and Vascular Disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 81:241-330. [PMID: 29310800 DOI: 10.1016/bs.apha.2017.08.002] [Citation(s) in RCA: 388] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that degrade various proteins in the extracellular matrix (ECM). Typically, MMPs have a propeptide sequence, a catalytic metalloproteinase domain with catalytic zinc, a hinge region or linker peptide, and a hemopexin domain. MMPs are commonly classified on the basis of their substrates and the organization of their structural domains into collagenases, gelatinases, stromelysins, matrilysins, membrane-type (MT)-MMPs, and other MMPs. MMPs are secreted by many cells including fibroblasts, vascular smooth muscle (VSM), and leukocytes. MMPs are regulated at the level of mRNA expression and by activation through removal of the propeptide domain from their latent zymogen form. MMPs are often secreted in an inactive proMMP form, which is cleaved to the active form by various proteinases including other MMPs. MMPs degrade various protein substrates in ECM including collagen and elastin. MMPs could also influence endothelial cell function as well as VSM cell migration, proliferation, Ca2+ signaling, and contraction. MMPs play a role in vascular tissue remodeling during various biological processes such as angiogenesis, embryogenesis, morphogenesis, and wound repair. Alterations in specific MMPs could influence arterial remodeling and lead to various pathological disorders such as hypertension, preeclampsia, atherosclerosis, aneurysm formation, as well as excessive venous dilation and lower extremity venous disease. MMPs are often regulated by endogenous tissue inhibitors of metalloproteinases (TIMPs), and the MMP/TIMP ratio often determines the extent of ECM protein degradation and tissue remodeling. MMPs may serve as biomarkers and potential therapeutic targets for certain vascular disorders.
Collapse
Affiliation(s)
- Xi Wang
- Vascular Surgery Research Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
39
|
Kakavandi E, Shahbahrami R, Goudarzi H, Eslami G, Faghihloo E. Anoikis resistance and oncoviruses. J Cell Biochem 2017; 119:2484-2491. [DOI: 10.1002/jcb.26363] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/15/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Ehsan Kakavandi
- Department of VirologySchool of Public HealthTehran University of Medical SciencesTehranIran
- Students’ Scientific Research CenterTehran University of Medical SciencesTehranIran
| | - Ramin Shahbahrami
- Department of VirologySchool of Public HealthTehran University of Medical SciencesTehranIran
| | - Hossein Goudarzi
- Department of MicrobiologySchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Gita Eslami
- Department of MicrobiologySchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Ebrahim Faghihloo
- Department of MicrobiologySchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
40
|
Makhlough A, Shekarchian S, Moghadasali R, Einollahi B, Hosseini SE, Jaroughi N, Bolurieh T, Baharvand H, Aghdami N. Safety and tolerability of autologous bone marrow mesenchymal stromal cells in ADPKD patients. Stem Cell Res Ther 2017; 8:116. [PMID: 28535817 PMCID: PMC5442691 DOI: 10.1186/s13287-017-0557-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 01/06/2023] Open
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) is a genetic ciliopathy disease characterized by progressive formation and enlargement of cysts in multiple organs. The kidneys are particularly affected and patients may eventually develop end-stage renal disease (ESRD). We hypothesize that bone marrow mesenchymal stromal cells (BMMSCs) are renotropic and may improve kidney function via anti-apoptotic, anti-fibrotic, and anti-inflammatory effects. In this study, we aim to assess the safety and tolerability of a BMMSC infusion in ADPKD patients. Methods We performed a single-arm phase I clinical trial with a 12-month follow-up. This study enrolled six eligible ADPKD patients with an estimated glomerular filtration rate (eGFR) of 25–60 ml/min/1.73 m2. Patients received autologous cultured BMMSCs (2 × 106 cells/kg) through the cubital vein according to our infusion protocol. We investigated safety issues and kidney function during the follow-up visits, and compared the findings to baseline and 1 year prior to the intervention. Results There were no patients lost to follow-up. We observed no cell-related adverse events (AE) and serious adverse events (SAE) after 12 months of follow-up. The mean eGFR value of 33.8 ± 5.3 ml/min/1.73 m2 1 year before cell infusion declined to 26.7 ± 3.1 ml/min/1.73 m2 at baseline (P = 0.03) and 25.8 ± 6.2 ml/min/1.73 m2 at the 12-month follow-up visit (P = 0.62). The mean serum creatinine (SCr) level of 2 ± 0.3 mg/dl 1 year before the infusion increased to 2.5 ± 0.4 mg/dl at baseline (P = 0.04) and 2.5 ± 0.6 mg/dl at the 12-month follow-up (P = 0.96). This indicated significant changes between the differences of these two periods (12 months before infusion to baseline, and 12 months after infusion to baseline) in SCr (P = 0.05), but not eGFR (P = 0.09). Conclusions This trial demonstrated the safety and tolerability of an intravenous transplantation of autologous BMMSCs. BMMSC efficacy in ADPKD patients should be investigated in a randomized placebo-controlled trial with a larger population, which we intend to perform. Trial registration ClinicalTrials.gov, NCT02166489. Registered on June 14, 2014. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0557-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Atieh Makhlough
- Department of Nephrology, Molecular and Cell Biology Research Center, Sari University of Medical Sciences, Sari, Iran
| | - Soroosh Shekarchian
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Reza Moghadasali
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Behzad Einollahi
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Baqiyatallah Hospital, Tehran, Iran
| | - Seyedeh Esmat Hosseini
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Neda Jaroughi
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Tina Bolurieh
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nasser Aghdami
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
41
|
Matrix Metalloproteinase Inhibitors as Investigational and Therapeutic Tools in Unrestrained Tissue Remodeling and Pathological Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 148:355-420. [PMID: 28662828 DOI: 10.1016/bs.pmbts.2017.04.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent proteolytic enzymes that degrade various proteins in the extracellular matrix (ECM). MMPs may also regulate the activity of membrane receptors and postreceptor signaling mechanisms and thereby affect cell function. The MMP family includes collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs, and other MMPs. Inactive proMMPs are cleaved by other MMPs or proteases into active MMPs, which interact with various protein substrates in ECM and cell surface. MMPs regulate important biological processes such as vascular remodeling and angiogenesis and may be involved in the pathogenesis of cardiovascular disorders such as hypertension, atherosclerosis, and aneurysm. The role of MMPs is often assessed by measuring their mRNA expression, protein levels, and proteolytic activity using gel zymography. MMP inhibitors are also used to assess the role of MMPs in different biological processes and pathological conditions. MMP activity is regulated by endogenous tissue inhibitors of metalloproteinases (TIMPs), and the MMP/TIMP balance could determine the net MMP activity, ECM turnover, and tissue remodeling. Also, several synthetic MMP inhibitors have been developed. Synthetic MMP inhibitors include a large number of zinc-binding globulins (ZBGs), in addition to non-ZBGs and mechanism-based inhibitors. MMP inhibitors have been proposed as potential tools in the management of osteoarthritis, cancer, and cardiovascular disorders. However, most MMP inhibitors have broad-spectrum actions on multiple MMPs and could cause undesirable musculoskeletal side effects. Currently, doxycycline is the only MMP inhibitor approved by the Food and Drug Administration. New generation biological and synthetic MMP inhibitors may show greater MMP specificity and fewer side effects and could be useful in targeting specific MMPs, reducing unrestrained tissue remodeling, and the management of MMP-related pathological disorders.
Collapse
|
42
|
Li CL, Yang D, Cao X, Wang F, Hong DY, Wang J, Shen XC, Chen Y. Fibronectin induces epithelial-mesenchymal transition in human breast cancer MCF-7 cells via activation of calpain. Oncol Lett 2017; 13:3889-3895. [PMID: 28521486 DOI: 10.3892/ol.2017.5896] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 01/17/2017] [Indexed: 01/15/2023] Open
Abstract
Fibronectin (FN) is a primary component of the mammary mesenchymal compartment and undergoes dramatic changes during breast cancer development. Increased FN expression is associated with an invasive and metastatic breast cancer phenotype. The present study demonstrated that FN causes an epithelial-mesenchymal transition (EMT)-like morphological change in MCF-7 breast cancer cells. FN stimulation caused the downregulation of epithelial markers E-cadherin and tight junction protein ZO-1, and the upregulation of mesenchymal markers N-cadherin and vimentin. Additionally, FN promoted cell migration and invasion in MCF-7 cells, with increased expression of calpain-2 and proteolysis of focal adhesion kinase 1 (FAK), indicating calpain activation. Notably, the FN induced changes in morphology and EMT markers were reversed with the treatment of calpain-specific inhibitors, calpain inhibitor I (N-acetyl-L-leucyl-L-leucyl-L-norleucinal), calpeptin and calpain inhibitor IV. Meanwhile, the effects of FN on cell migration and invasion, as well as FAK proteolysis were markedly suppressed by calpain inhibitors. Taken together, the results of the present study indicate that calpain plays an essential role in FN-induced EMT response, and that targeting calpain signaling may be a potential strategy to reduce breast cancer metastasis.
Collapse
Affiliation(s)
- Cheng-Lin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for The Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Dan Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for The Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Xin Cao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for The Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Fan Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for The Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Duan-Yang Hong
- Key Laboratory of Optimal Utilization of Natural Medicine Resources, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China.,Department of Pharmacology of Chinese Material Medica, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Jing Wang
- Key Laboratory of Optimal Utilization of Natural Medicine Resources, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China.,Department of Pharmacology of Chinese Material Medica, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Xiang-Chun Shen
- Key Laboratory of Optimal Utilization of Natural Medicine Resources, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China.,Department of Pharmacology of Chinese Material Medica, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Yan Chen
- Key Laboratory of Optimal Utilization of Natural Medicine Resources, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China.,Department of Pharmacology of Chinese Material Medica, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| |
Collapse
|
43
|
Large-scale gene network analysis reveals the significance of extracellular matrix pathway and homeobox genes in acute myeloid leukemia: an introduction to the Pigengene package and its applications. BMC Med Genomics 2017; 10:16. [PMID: 28298217 PMCID: PMC5353782 DOI: 10.1186/s12920-017-0253-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 03/08/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The distinct types of hematological malignancies have different biological mechanisms and prognoses. For instance, myelodysplastic syndrome (MDS) is generally indolent and low risk; however, it may transform into acute myeloid leukemia (AML), which is much more aggressive. METHODS We develop a novel network analysis approach that uses expression of eigengenes to delineate the biological differences between these two diseases. RESULTS We find that specific genes in the extracellular matrix pathway are underexpressed in AML. We validate this finding in three ways: (a) We train our model on a microarray dataset of 364 cases and test it on an RNA Seq dataset of 74 cases. Our model showed 95% sensitivity and 86% specificity in the training dataset and showed 98% sensitivity and 91% specificity in the test dataset. This confirms that the identified biological signatures are independent from the expression profiling technology and independent from the training dataset. (b) Immunocytochemistry confirms that MMP9, an exemplar protein in the extracellular matrix, is underexpressed in AML. (c) MMP9 is hypermethylated in the majority of AML cases (n=194, Welch's t-test p-value <10-138), which complies with its low expression in AML. Our novel network analysis approach is generalizable and useful in studying other complex diseases (e.g., breast cancer prognosis). We implement our methodology in the Pigengene software package, which is publicly available through Bioconductor. CONCLUSIONS Eigengenes define informative biological signatures that are robust with respect to expression profiling technology. These signatures provide valuable information about the underlying biology of diseases, and they are useful in predicting diagnosis and prognosis.
Collapse
|
44
|
Wang J, Song J, Gao Z, Huo X, Zhang Y, Wang W, Qi J, Zheng S. Analysis of gene expression profiles of non-small cell lung cancer at different stages reveals significantly altered biological functions and candidate genes. Oncol Rep 2017; 37:1736-1746. [PMID: 28098899 DOI: 10.3892/or.2017.5380] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/10/2016] [Indexed: 11/06/2022] Open
Abstract
We attempt to dissect the pathology of non-small cell lung cancer (NSCLC) patients at different stages and discover the novel candidate genes. Microarray data (GSE21933) were retrieved from the Gene Expression Omnibus database. The differential expression profiles of lung tumor tissues during different stages were analyzed. The significantly altered functions and pathways were assessed and the key nodes in a protein-protein interaction (PPI) network were screened out. Then, the coexpression gene pairs and tumor-related genes were assessed. RT-PCR analysis was performed to validate the candidate gene, natural killer-tumor recognition sequence (NKTR). The number of differentially expressed genes (DEGs) for stage IB, IIB, IIIA and IV tumors were 499, 602, 592 and 457, respectively. Most of the DEGs were NSCLC-related genes identified through literature research. A few genes were commonly downregulated in all the 4 stages of tumors, such as CNTN6 and LBX2. The DEGs in early‑stage tumors were closely related with the negative regulation of signal transduction, the apoptosis pathway and the p53 signaling pathway. DEGs in late-stage tumors were significantly enriched in transcription, response to organic substances and synapse regulation-related biological processes. A total of 16 genes (including NKTR) made up the significant coexpression network. NKTR was a key node in the PPI network and was significantly upregulated in lung cancer cells. The mechanism of NSCLC progression in different tumor stages may be different. NKTR may be the target candidate for NSCLC prevention and treatment.
Collapse
Affiliation(s)
- Jin Wang
- Department of Cardiothoracic Surgery, Yancheng Hospital, Medical School of Southeast University, The Third People's Hospital, Yancheng, Jiangsu 224001, P.R. China
| | - Jianxiang Song
- Department of Cardiothoracic Surgery, Yancheng Hospital, Medical School of Southeast University, The Third People's Hospital, Yancheng, Jiangsu 224001, P.R. China
| | - Zhengya Gao
- Department of Cardiothoracic Surgery, Yancheng Hospital, Medical School of Southeast University, The Third People's Hospital, Yancheng, Jiangsu 224001, P.R. China
| | - Xudong Huo
- Department of Cardiothoracic Surgery, Yancheng Hospital, Medical School of Southeast University, The Third People's Hospital, Yancheng, Jiangsu 224001, P.R. China
| | - Yajun Zhang
- Department of Cardiothoracic Surgery, Yancheng Hospital, Medical School of Southeast University, The Third People's Hospital, Yancheng, Jiangsu 224001, P.R. China
| | - Wencai Wang
- Department of Cardiothoracic Surgery, Yancheng Hospital, Medical School of Southeast University, The Third People's Hospital, Yancheng, Jiangsu 224001, P.R. China
| | - Jianwei Qi
- Department of Cardiothoracic Surgery, Yancheng Hospital, Medical School of Southeast University, The Third People's Hospital, Yancheng, Jiangsu 224001, P.R. China
| | - Shiying Zheng
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Suzhou University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
45
|
Ou WB, Lu M, Eilers G, Li H, Ding J, Meng X, Wu Y, He Q, Sheng Q, Zhou HM, Fletcher JA. Co-targeting of FAK and MDM2 triggers additive anti-proliferative effects in mesothelioma via a coordinated reactivation of p53. Br J Cancer 2016; 115:1253-1263. [PMID: 27736841 PMCID: PMC5104897 DOI: 10.1038/bjc.2016.331] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/12/2016] [Accepted: 09/21/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Improved mesothelioma patient survival will require development of novel and more effective pharmacological interventions. TP53 genomic mutations are uncommon in mesothelioma, and recent data indicate that p53 remains functional, and therefore is a potential therapeutic target in these cancers. In addition, the tumour suppressor NF2 is inactivated by genomic mechanisms in more than 80% of mesothelioma, causing upregulation of FAK activity. Because FAK is a negative regulator of p53, NF2 regulation of FAK-p53-MDM2 signalling loops were evaluated. METHODS Interactions of FAK-p53 or NF2-FAK were evaluated by phosphotyrosine-p53 immunoaffinity purification and tandem mass spectrometry, and p53, FAK, and NF2 immunoprecipitations. Activation and/or expression of FAK, p53, and NF2 were also evaluated in mesotheliomas. Effects of combination MDM2 and FAK inhibitors/shRNAs were assessed by measuring mesothelioma cell viability/growth, expression of cell cycle checkpoints, and cell cycle alterations. RESULTS We observed constitutive activation of FAK, a known negative regulator of p53, in each of 10 mesothelioma cell lines and each of nine mesothelioma surgical specimens, and FAK was associated with p53 in five of five mesothelioma cell lines. In four mesotheliomas with wild-type p53, FAK silencing by RNAi induced expression and phosphorylation of p53. However, FAK regulation of mesothelioma proliferation was not restricted to p53-dependent pathways, as demonstrated by immunoblots after FAK knockdown in JMN1B mesothelioma cells, which have mutant/inactivated p53, compared with four mesothelioma cell lines with nonmutant p53. Additive effects were obtained through a coordinated reactivation of p53, by FAK knockdown/inhibition and MDM2 inhibition, as demonstrated by immunoblots, cell viability, and cell-cycle analyses, showing increased p53 expression, apoptosis, anti-proliferative effects, and cell-cycle arrest, as compared with either intervention alone. Our results also indicate that NF2 regulates the interaction of FAK-p53 and MDM2-p53. CONCLUSIONS These findings highlight novel therapeutic opportunities in mesothelioma.
Collapse
Affiliation(s)
- Wen-Bin Ou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang, China
| | - Minmin Lu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Grant Eilers
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Hailong Li
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang, China
| | - Jiongyan Ding
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xuli Meng
- Department of Breast Cancer Surgery, Zhejiang Cancer Hospital, Hangzhou, China
| | - Yuehong Wu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Quan He
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qing Sheng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hai-Meng Zhou
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang, China
| | - Jonathan A Fletcher
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
46
|
Zöller N, König A, Butting M, Kaufmann R, Bernd A, Valesky E, Kippenberger S. Water-filtered near-infrared influences collagen synthesis of keloid-fibroblasts in contrast to normal foreskin fibroblasts. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 163:194-202. [DOI: 10.1016/j.jphotobiol.2016.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/13/2016] [Indexed: 01/24/2023]
|
47
|
Roy-Luzarraga M, Hodivala-Dilke K. Molecular Pathways: Endothelial Cell FAK-A Target for Cancer Treatment. Clin Cancer Res 2016; 22:3718-24. [PMID: 27262114 PMCID: PMC5386133 DOI: 10.1158/1078-0432.ccr-14-2021] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/13/2016] [Indexed: 01/28/2023]
Abstract
The nonreceptor protein tyrosine kinase, focal adhesion kinase (FAK, also known as PTK2), is a key mediator of signal transduction downstream of integrins and growth factor receptors in a variety of cells, including endothelial cells. FAK is upregulated in several advanced-stage solid tumors and has been described to promote tumor progression and metastasis through effects on both tumor cells and stromal cells. This observation has led to the development of several FAK inhibitors, some of which have entered clinical trials (GSK2256098, VS-4718, VS-6062, VS-6063, and BI853520). Resistance to chemotherapy is a serious limitation of cancer treatment and, until recently, most studies were restricted to tumor cells, excluding the possible roles performed by the tumor microenvironment. A recent report identified endothelial cell FAK (EC-FAK) as a major regulator of chemosensitivity. By dysregulating endothelial cell-derived paracrine (also known as angiocrine) signals, loss of FAK solely in the endothelial cell compartment is able to induce chemosensitization to DNA-damaging therapies in the malignant cell compartment and thereby reduce tumor growth. Herein, we summarize the roles of EC-FAK in cancer and development and review the status of FAK-targeting anticancer strategies. Clin Cancer Res; 22(15); 3718-24. ©2016 AACR.
Collapse
Affiliation(s)
- Marina Roy-Luzarraga
- Adhesion and Angiogenesis Laboratory, Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Kairbaan Hodivala-Dilke
- Adhesion and Angiogenesis Laboratory, Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
48
|
Xanthine Oxidase-Derived ROS Display a Biphasic Effect on Endothelial Cells Adhesion and FAK Phosphorylation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9346242. [PMID: 27528888 PMCID: PMC4978831 DOI: 10.1155/2016/9346242] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/21/2016] [Accepted: 06/29/2016] [Indexed: 11/17/2022]
Abstract
In pathological situations such as ischemia-reperfusion and acute respiratory distress syndrome, reactive oxygen species (ROS) are produced by different systems which are involved in endothelial cells injury, ultimately leading to severe organ dysfunctions. The aim of this work was to study the effect of ROS produced by hypoxanthine-xanthine oxidase (Hx-XO) on the adhesion of human umbilical vein endothelial cells (HUVEC) and on the signaling pathways involved. Results show that Hx-XO-derived ROS induced an increase in HUVEC adhesion in the early stages of the process (less than 30 min), followed by a decrease in adhesion in the later stages of the process. Interestingly, Hx-XO-derived ROS induced the same biphasic effect on the phosphorylation of the focal adhesion kinase (FAK), a nonreceptor tyrosine kinase critical for cell adhesion, but not on ERK1/2 phosphorylation. The biphasic effect was not seen with ERK1/2 where a decrease in phosphorylation only was observed. Wortmannin, a PI3-kinase inhibitor, inhibited ROS-induced cell adhesion and FAK phosphorylation. Orthovanadate, a protein tyrosine phosphatase inhibitor, and Resveratrol (Resv), an antioxidant agent, protected FAK and ERK1/2 from dephosphorylation and HUVEC from ROS-induced loss of adhesion. This study shows that ROS could have both stimulatory and inhibitory effects on HUVEC adhesion and FAK phosphorylation and suggests that PI3-kinase and tyrosine phosphatase control these effects.
Collapse
|
49
|
Hall AP, Westwood FR, Wadsworth PF. Review of the Effects of Anti-Angiogenic Compounds on the Epiphyseal Growth Plate. Toxicol Pathol 2016; 34:131-47. [PMID: 16537292 DOI: 10.1080/01926230600611836] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The formation of new blood vessels from a pre-existing vascular bed, termed “angiogenesis,” is of critical importance for the growth and development of the animal since it is required for the growth of the skeleton during endochondral ossification, development and cycling of the corpus luteum and uterus, and for the repair of tissues during wound healing. “Vasculogenesis,” the de novo formation of blood vessels is also important for the proper function and development of the vascular system in the embryo. New blood vessel formation is a prominent feature and permissive factor in the relentless progression of many human diseases, one of the most important examples of which is neoplasia. It is for this reason that angiogenesis is considered to be one of the hallmarks of cancer. The development of new classes of drugs that inhibit the growth and proper functioning of new blood vessels in vivo is likely to provide significant therapeutic benefit in the treatment of cancer, as well as other conditions where angiogenesis is a strong driver to the disease process. During the preclinical safety testing of these drugs, it is becoming increasingly clear that their in vivo efficacy is reflected in the profile of “expected toxicity” (resulting from pharmacology) observed in laboratory animals, so much so, that this profile of “desired” toxicity may act as a signature for their anti-angiogenic effect. In this article we review the major mechanisms controlling angiogenesis and its role during endochondral ossification. We also review the effects of perturbation of endochondral ossification through four mechanisms—inhibition of vascular endothelial growth factor (VEGF), pp60 c-Src kinase and matrix metalloproteinases as well as disruption of the blood supply with vascular targeting agents. Inhibition through each of these mechanisms appears to have broadly similar effects on the epiphyseal growth plate characterised by thickening due to the retention of hypertrophic chondrocytes resulting from the inhibition of angiogenesis. In contrast, in the metaphysis there are differing effects reflecting the specific role of these targets at this site.
Collapse
Affiliation(s)
- Anthony P Hall
- AstraZeneca, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, England.
| | | | | |
Collapse
|
50
|
NG2 expression in microglial cells affects the expression of neurotrophic and proinflammatory factors by regulating FAK phosphorylation. Sci Rep 2016; 6:27983. [PMID: 27306838 PMCID: PMC4910048 DOI: 10.1038/srep27983] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/27/2016] [Indexed: 12/01/2022] Open
Abstract
Neural/glial antigen 2 (NG2), a chondroitin sulfate proteoglycan, is significantly upregulated in a subset of glial cells in the facial motor nucleus (FMN) following CNS injury. NG2 is reported to promote the resulting inflammatory reaction, however, the mechanism by which NG2 mediates these effects is yet to be determined. In this study, we examined the changes in NG2 expressing microglial cells in the FMN in response to facial nerve axotomy (FNA) in mice. Our findings indicated that NG2 expression was progressively induced and upregulated specifically in the ipsilateral facial nucleus following FNA. To further investigate the effects of NG2 expression, in vivo studies in NG2-knockout mice and in vitro studies in rat microglial cells transfected with NG2 shRNAs were performed. Abolition of NG2 expression both in vitro and in vivo resulted in increased expression of neurotrophic factors (nerve growth factor and glial derived neurotrophic factor), decreased expression of inflammatory mediators (tumor necrosis factor-α and interleukin-1β) and decreased apoptosis in the ipsilateral facial nucleus in response to FNA. Furthermore, we demonstrated the role of FAK in these NG2-induced effects. Taken together, our findings suggest that NG2 expression mediates inflammatory reactions and neurodegeneration in microglial cells in response to CNS injury, potentially by regulating FAK phosphorylation.
Collapse
|