1
|
Chen KY, De Giovanni M, Xu Y, An J, Kirthivasan N, Lu E, Jiang K, Brooks S, Ranucci S, Yang J, Kanameishi S, Kabashima K, Brulois K, Bscheider M, Butcher EC, Cyster JG. Inflammation switches the chemoattractant requirements for naive lymphocyte entry into lymph nodes. Cell 2025; 188:1019-1035.e22. [PMID: 39708807 PMCID: PMC11845304 DOI: 10.1016/j.cell.2024.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 08/27/2024] [Accepted: 11/19/2024] [Indexed: 12/23/2024]
Abstract
Sustained lymphocyte migration from blood into lymph nodes (LNs) is important for immune responses. The CC-chemokine receptor-7 (CCR7) ligand CCL21 is required for LN entry but is downregulated during inflammation, and it has been unclear how recruitment is maintained. Here, we show that the oxysterol biosynthetic enzyme cholesterol-25-hydroxylase (Ch25h) is upregulated in LN high endothelial venules during viral infection. Lymphocytes become dependent on oxysterols, generated through a transcellular endothelial-fibroblast metabolic pathway, and the receptor EBI2 for inflamed LN entry. Additionally, Langerhans cells are an oxysterol source. Ch25h is also expressed in inflamed peripheral endothelium, and EBI2 mediates B cell recruitment in a tumor model. Finally, we demonstrate that LN CCL19 is critical in lymphocyte recruitment during inflammation. Thus, our work explains how naive precursor trafficking is sustained in responding LNs, identifies a role for oxysterols in cell recruitment into inflamed tissues, and establishes a logic for the CCR7 two-ligand system.
Collapse
Affiliation(s)
- Kevin Y Chen
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Marco De Giovanni
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ying Xu
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jinping An
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nikhita Kirthivasan
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Erick Lu
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kan Jiang
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen Brooks
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Serena Ranucci
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jiuling Yang
- Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shuto Kanameishi
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Kevin Brulois
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - Michael Bscheider
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - Eugene C Butcher
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - Jason G Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
2
|
Cardona CI, Rodriguez A, Torres VC, Sanchez A, Torres A, Vazquez AE, Wagler AE, Brissette MA, Bill CA, Vines CM. C-C Chemokine Receptor 7 Promotes T-Cell Acute Lymphoblastic Leukemia Invasion of the Central Nervous System via β2-Integrins. Int J Mol Sci 2024; 25:9649. [PMID: 39273598 PMCID: PMC11395280 DOI: 10.3390/ijms25179649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
C-C Chemokine Receptor 7 (CCR7) mediates T-cell acute lymphoblastic leukemia (T-ALL) invasion of the central nervous system (CNS) mediated by chemotactic migration to C-C chemokine ligand 19 (CCL19). To determine if a CCL19 antagonist, CCL198-83, could inhibit CCR7-induced chemotaxis and signaling via CCL19 but not CCL21, we used transwell migration and Ca2+ mobilization signaling assays. We found that in response to CCL19, human T-ALL cells employ β2 integrins to invade human brain microvascular endothelial cell monolayers. In vivo, using an inducible mouse model of T-ALL, we found that we were able to increase the survival of the mice treated with CCL198-83 when compared to non-treated controls. Overall, our results describe a targetable cell surface receptor, CCR7, which can be inhibited to prevent β2-integrin-mediated T-ALL invasion of the CNS and potentially provides a platform for the pharmacological inhibition of T-ALL cell entry into the CNS.
Collapse
Affiliation(s)
- Cesar I. Cardona
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79936, USA (C.A.B.)
| | - Alondra Rodriguez
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79936, USA (C.A.B.)
| | - Vivian C. Torres
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79936, USA (C.A.B.)
| | - Anahi Sanchez
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79936, USA (C.A.B.)
| | - Angel Torres
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79936, USA (C.A.B.)
| | - Aaron E. Vazquez
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79936, USA (C.A.B.)
| | - Amy E. Wagler
- Public Health Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA;
| | - Michael A. Brissette
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79936, USA (C.A.B.)
| | - Colin A. Bill
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79936, USA (C.A.B.)
| | - Charlotte M. Vines
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79936, USA (C.A.B.)
| |
Collapse
|
3
|
Torres-Arévalo Á, Nahuelpán Y, Muñoz K, Jara C, Cappelli C, Taracha-Wiśniewska A, Quezada-Monrás C, Martín RS. A2BAR Antagonism Decreases the Glomerular Expression and Secretion of Chemoattractants for Monocytes and the Pro-Fibrotic M2 Macrophages Polarization during Diabetic Nephropathy. Int J Mol Sci 2023; 24:10829. [PMID: 37446007 DOI: 10.3390/ijms241310829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
Some chemoattractants and leukocytes such as M1 and M2 macrophages are known to be involved in the development of glomerulosclerosis during diabetic nephropathy (DN). In the course of diabetes, an altered and defective cellular metabolism leads to the increase in adenosine levels, and thus to changes in the polarity (M1/M2) of macrophages. MRS1754, a selective antagonist of the A2B adenosine receptor (A2BAR), attenuated glomerulosclerosis and decreased macrophage-myofibroblast transition in DN rats. Therefore, we aimed to investigate the effect of MRS1754 on the glomerular expression/secretion of chemoattractants, the intraglomerular infiltration of leukocytes, and macrophage polarity in DN rats. Kidneys/glomeruli of non-diabetic, DN, and MRS1754-treated DN rats were processed for transcriptomic analysis, immunohistopathology, ELISA, and in vitro macrophage migration assays. The transcriptomic analysis identified an upregulation of transcripts and pathways related to the immune system in the glomeruli of DN rats, which was attenuated using MRS1754. The antagonism of the A2BAR decreased glomerular expression/secretion of chemoattractants (CCL2, CCL3, CCL6, and CCL21), the infiltration of macrophages, and their polarization to M2 in DN rats. The in vitro macrophages migration induced by conditioned-medium of DN glomeruli was significantly decreased using neutralizing antibodies against CCL2, CCL3, and CCL21. We concluded that the pharmacological blockade of the A2BAR decreases the transcriptional expression of genes/pathways related to the immune response, protein expression/secretion of chemoattractants, as well as the infiltration of macrophages and their polarization toward the M2 phenotype in the glomeruli of DN rats, suggesting a new mechanism implicated in the antifibrotic effect of MRS1754.
Collapse
Affiliation(s)
- Ángelo Torres-Arévalo
- Escuela de Medicina Veterinaria, Facultad de Medicina Veterinaria Y Recursos Naturales, Sede Talca, Universidad Santo Tomás, Talca 347-3620, Chile
| | - Yéssica Nahuelpán
- Laboratorio de Patología Molecular, Instituto de Bioquímica Y Microbiología, Universidad Austral de Chile, Valdivia 511-0566, Chile
| | - Katherin Muñoz
- Laboratorio de Patología Molecular, Instituto de Bioquímica Y Microbiología, Universidad Austral de Chile, Valdivia 511-0566, Chile
| | - Claudia Jara
- Laboratorio de Patología Molecular, Instituto de Bioquímica Y Microbiología, Universidad Austral de Chile, Valdivia 511-0566, Chile
| | - Claudio Cappelli
- Laboratorio de Patología Molecular, Instituto de Bioquímica Y Microbiología, Universidad Austral de Chile, Valdivia 511-0566, Chile
| | | | - Claudia Quezada-Monrás
- Tumor Biology Laboratory, Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 511-0566, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia 511-0566, Chile
| | - Rody San Martín
- Laboratorio de Patología Molecular, Instituto de Bioquímica Y Microbiología, Universidad Austral de Chile, Valdivia 511-0566, Chile
| |
Collapse
|
4
|
C-C Chemokine Receptor 7 in Cancer. Cells 2022; 11:cells11040656. [PMID: 35203305 PMCID: PMC8870371 DOI: 10.3390/cells11040656] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
C-C chemokine receptor 7 (CCR7) was one of the first two chemokine receptors that were found to be upregulated in breast cancers. Chemokine receptors promote chemotaxis of cells and tissue organization. Since under homeostatic conditions, CCR7 promotes migration of immune cells to lymph nodes, questions immediately arose regarding the ability of CCR7 to direct migration of cancer cells to lymph nodes. The literature since 2000 was examined to determine to what extent the expression of CCR7 in malignant tumors promoted migration to the lymph nodes. The data indicated that in different cancers, CCR7 plays distinct roles in directing cells to lymph nodes, the skin or to the central nervous system. In certain tumors, it may even serve a protective role. Future studies should focus on defining mechanisms that differentially regulate the unfavorable or beneficial role that CCR7 plays in cancer pathophysiology, to be able to improve outcomes in patients who harbor CCR7-positive cancers.
Collapse
|
5
|
CXCL12-stimulated lymphocytes produce secondary stimulants that affect the surrounding cell chemotaxis. Biochem Biophys Rep 2021; 28:101128. [PMID: 34527817 PMCID: PMC8430269 DOI: 10.1016/j.bbrep.2021.101128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 11/23/2022] Open
Abstract
Chemotactic factors locally secreted from tissues regulate leukocyte migration via cell membrane receptors that induce intracellular signals. It has been suggested that neutrophils stimulated by bacterial peptides secrete a secondary stimulant that enhances the chemotactic cell migration of the surrounding cells. This paracrine mechanism contributes to chemokine-dependent neutrophil migration, however, it has not yet been extensively studied in lymphocytes. In this study, we provide evidence that lymphocytes stimulated by the chemokine, CXCL12, affect the CXCR4-independent chemotactic response of the surrounding cells. We found that CXCR4-expressing lymphocytes or the conditioned medium from CXCL12-stimulated cells promoted CXCR4-deficient cell chemotaxis. In contrast, the conditioned medium from CXCL12-stimulated cells suppressed CCR7 ligand-dependent directionality and the cell migration speed of CXCR4-deficient cells. These results suggest that paracrine factors from CXCL12-stimulated cells navigate surrounding cells to CXCL12 by controlling the responsiveness to CCR7 ligand chemokines and CXCL12.
CXCL12-stimulated lymphocytes affect the CXCR4-independent chemotactic response of the surrounding cells. The conditioned medium from CXCL12-stimulated cells promoted CXCR4-deficient cell chemotaxis, whereas it suppresses CCR7 ligand-dependent directionality and the cell migration speed. The CXCL12/CXCR4 axis causes the production of a signal-relay molecule that contributes to chemokine-dependent lymphocyte migration.
Collapse
|
6
|
Kandikattu HK, Venkateshaiah SU, Mishra A. Chronic Pancreatitis and the Development of Pancreatic Cancer. Endocr Metab Immune Disord Drug Targets 2021; 20:1182-1210. [PMID: 32324526 DOI: 10.2174/1871530320666200423095700] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/31/2019] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
Abstract
Pancreatitis is a fibro-inflammatory disorder of the pancreas that can occur acutely or chronically as a result of the activation of digestive enzymes that damage pancreatic cells, which promotes inflammation. Chronic pancreatitis with persistent fibro-inflammation of the pancreas progresses to pancreatic cancer, which is the fourth leading cause of cancer deaths across the globe. Pancreatic cancer involves cross-talk of inflammatory, proliferative, migratory, and fibrotic mechanisms. In this review, we discuss the role of cytokines in the inflammatory cell storm in pancreatitis and pancreatic cancer and their role in the activation of SDF1α/CXCR4, SOCS3, inflammasome, and NF-κB signaling. The aberrant immune reactions contribute to pathological damage of acinar and ductal cells, and the activation of pancreatic stellate cells to a myofibroblast-like phenotype. We summarize several aspects involved in the promotion of pancreatic cancer by inflammation and include a number of regulatory molecules that inhibit that process.
Collapse
Affiliation(s)
- Hemanth K Kandikattu
- Department of Medicine, Tulane Eosinophilic Disorders Centre (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Sathisha U Venkateshaiah
- Department of Medicine, Tulane Eosinophilic Disorders Centre (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Anil Mishra
- Department of Medicine, Tulane Eosinophilic Disorders Centre (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA 70112, United States
| |
Collapse
|
7
|
Mitoma S, Carr BV, Harvey Y, Moffat K, Sekiguchi S, Charleston B, Norimine J, Seago J. The detection of long-lasting memory foot-and-mouth disease (FMD) virus serotype O-specific CD4 + T cells from FMD-vaccinated cattle by bovine major histocompatibility complex class II tetramer. Immunology 2021; 164:266-278. [PMID: 34003490 PMCID: PMC8442236 DOI: 10.1111/imm.13367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 11/27/2022] Open
Abstract
Foot‐and‐mouth disease (FMD) is a highly contagious, economically devastating disease of cloven‐hooved animals. The development of long‐lasting effective FMD vaccines would greatly benefit the global FMD control programme. Deep analysis of adaptive immunity in cattle vaccinated against FMD is technically challenging due to the lack of species‐specific tools. In this study, we aimed to identify CD4+ T‐cell epitopes in the FMD virus (FMDV) capsid and to phenotype the CD4+ T cells that recognize them using bovine major histocompatibility complex (BoLA) class II tetramer. A BoLA class II tetramer based on the DRA/DRB3*020:02 allele and FMDV antigen‐stimulated PBMCs from bovine vaccinates were used to successfully identify four epitopes in the FMDV capsid, three of which have not been previously reported; two epitopes were identified in the structural protein VP1, one in VP3 and one in VP4. Specificity of the three novel epitopes was confirmed by proliferation assay. All epitope‐expanded T‐cell populations produced IFN‐γ in vitro, indicating a long‐lasting Th1 cell phenotype after FMD vaccination. VP3‐specific CD4+ T cells exhibited the highest frequency amongst the identified epitopes, comprising >0·004% of the CD4+ T‐cell population. CD45RO+CCR7+ defined central memory CD4+ T‐cell subpopulations were present in higher frequency in FMDV‐specific CD4+ T‐cell populations from FMD‐vaccinated cattle ex vivo. This indicates an important role in maintaining cell adaptive immunity after FMD vaccination. Notably, FMDV epitope‐loaded tetramers detected the presence of FMDV‐specific CD4+ T cells in bovine PBMC more than four years after vaccination. This work contributes to our understanding of vaccine efficacy.
Collapse
Affiliation(s)
- Shuya Mitoma
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | | | | | | | - Satoshi Sekiguchi
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | | | - Junzo Norimine
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | | |
Collapse
|
8
|
In Sickness and in Health: The Immunological Roles of the Lymphatic System. Int J Mol Sci 2021; 22:ijms22094458. [PMID: 33923289 PMCID: PMC8123157 DOI: 10.3390/ijms22094458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 02/06/2023] Open
Abstract
The lymphatic system plays crucial roles in immunity far beyond those of simply providing conduits for leukocytes and antigens in lymph fluid. Endothelial cells within this vasculature are distinct and highly specialized to perform roles based upon their location. Afferent lymphatic capillaries have unique intercellular junctions for efficient uptake of fluid and macromolecules, while expressing chemotactic and adhesion molecules that permit selective trafficking of specific immune cell subsets. Moreover, in response to events within peripheral tissue such as inflammation or infection, soluble factors from lymphatic endothelial cells exert “remote control” to modulate leukocyte migration across high endothelial venules from the blood to lymph nodes draining the tissue. These immune hubs are highly organized and perfectly arrayed to survey antigens from peripheral tissue while optimizing encounters between antigen-presenting cells and cognate lymphocytes. Furthermore, subsets of lymphatic endothelial cells exhibit differences in gene expression relating to specific functions and locality within the lymph node, facilitating both innate and acquired immune responses through antigen presentation, lymph node remodeling and regulation of leukocyte entry and exit. This review details the immune cell subsets in afferent and efferent lymph, and explores the mechanisms by which endothelial cells of the lymphatic system regulate such trafficking, for immune surveillance and tolerance during steady-state conditions, and in response to infection, acute and chronic inflammation, and subsequent resolution.
Collapse
|
9
|
Eiger DS, Boldizsar N, Honeycutt CC, Gardner J, Rajagopal S. Biased agonism at chemokine receptors. Cell Signal 2020; 78:109862. [PMID: 33249087 DOI: 10.1016/j.cellsig.2020.109862] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/07/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
In the human chemokine system, interactions between the approximately 50 known endogenous chemokine ligands and 20 known chemokine receptors (CKRs) regulate a wide range of cellular functions and biological processes including immune cell activation and homeostasis, development, angiogenesis, and neuromodulation. CKRs are a family of G protein-coupled receptors (GPCR), which represent the most common and versatile class of receptors in the human genome and the targets of approximately one third of all Food and Drug Administration-approved drugs. Chemokines and CKRs bind with significant promiscuity, as most CKRs can be activated by multiple chemokines and most chemokines can activate multiple CKRs. While these ligand-receptor interactions were previously regarded as redundant, it is now appreciated that many chemokine:CKR interactions display biased agonism, the phenomenon in which different ligands binding to the same receptor signal through different pathways with different efficacies, leading to distinct biological effects. Notably, these biased responses can be modulated through changes in ligand, receptor, and or the specific cellular context (system). In this review, we explore the biochemical mechanisms, functional consequences, and therapeutic potential of biased agonism in the chemokine system. An enhanced understanding of biased agonism in the chemokine system may prove transformative in the understanding of the mechanisms and consequences of biased signaling across all GPCR subtypes and aid in the development of biased pharmaceuticals with increased therapeutic efficacy and safer side effect profiles.
Collapse
Affiliation(s)
| | - Noelia Boldizsar
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA.
| | | | - Julia Gardner
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA.
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
10
|
Yan J, Hedl M, Abraham C. Myeloid Cell-Intrinsic IRF5 Promotes T Cell Responses through Multiple Distinct Checkpoints In Vivo, and IRF5 Immune-Mediated Disease Risk Variants Modulate These Myeloid Cell Functions. THE JOURNAL OF IMMUNOLOGY 2020; 205:1024-1038. [PMID: 32690658 DOI: 10.4049/jimmunol.1900743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 06/16/2020] [Indexed: 12/19/2022]
Abstract
Common IRF5 genetic risk variants associated with multiple immune-mediated diseases are a major determinant of interindividual variability in pattern-recognition receptor (PRR)-induced cytokines in myeloid cells. However, how myeloid cell-intrinsic IRF5 regulates the multiple distinct checkpoints mediating T cell outcomes in vivo and IRF5-dependent mechanisms contributing to these distinct checkpoints are not well defined. Using an in vivo Ag-specific adoptive T cell transfer approach into Irf5-/- mice, we found that T cell-extrinsic IRF5 regulated T cell outcomes at multiple critical checkpoints, including chemokine-mediated T cell trafficking into lymph nodes and PDK1-dependent soluble Ag uptake, costimulatory molecule upregulation, and secretion of Th1 (IL-12)- and Th17 (IL-23, IL-1β, and IL-6)-conditioning cytokines by myeloid cells, which then cross-regulated Th2 and regulatory T cells. IRF5 was required for PRR-induced MAPK and NF-κB activation, which, in turn, regulated these key outcomes in myeloid cells. Importantly, mice with IRF5 deleted from myeloid cells demonstrated T cell outcomes similar to those observed in Irf5-/- mice. Complementation of IL-12 and IL-23 was able to restore T cell differentiation both in vitro and in vivo in the context of myeloid cell-deficient IRF5. Finally, human monocyte-derived dendritic cells from IRF5 disease-associated genetic risk carriers leading to increased IRF5 expression demonstrated increased Ag uptake and increased PRR-induced costimulatory molecule expression and chemokine and cytokine secretion compared with monocyte-derived dendritic cells from low-expressing IRF5 genetic variant carriers. These data establish that myeloid cell-intrinsic IRF5 regulates multiple distinct checkpoints in T cell activation and differentiation and that these are modulated by IRF5 disease risk variants.
Collapse
Affiliation(s)
- Jie Yan
- Department of Internal Medicine, Yale University, New Haven, CT 06520
| | - Matija Hedl
- Department of Internal Medicine, Yale University, New Haven, CT 06520
| | - Clara Abraham
- Department of Internal Medicine, Yale University, New Haven, CT 06520
| |
Collapse
|
11
|
Nakamura Y, Miyagawa S, Yoshida S, Sasawatari S, Toyofuku T, Toda K, Sawa Y. Natural killer cells impede the engraftment of cardiomyocytes derived from induced pluripotent stem cells in syngeneic mouse model. Sci Rep 2019; 9:10840. [PMID: 31346220 PMCID: PMC6658523 DOI: 10.1038/s41598-019-47134-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 07/11/2019] [Indexed: 02/06/2023] Open
Abstract
Transplantation of cardiomyocytes derived from induced pluripotent stem cell (iPSC-CMs) is a promising approach for increasing functional CMs during end-stage heart failure. Although major histocompatibility complex (MHC) class I matching between donor cells and recipient could reduce acquired immune rejection, innate immune responses may have negative effects on transplanted iPSC-CMs. Here, we demonstrated that natural killer cells (NKCs) infiltrated in iPSC-CM transplants even in a syngeneic mouse model. The depletion of NKCs using an anti-NKC antibody rescued transplanted iPSC-CMs, suggesting that iPSC-CMs activated NKC-mediated innate immunity. Surprisingly, iPSC-CMs lost inhibitory MHCs but not activating ligands for NKCs. Re-expression of MHC class I induced by IFN-γ as well as suppression of activating ligands by an antibody rescued the transplanted iPSC-CMs. Thus, NKCs impede the engraftment of transplanted iPSC-CMs because of lost MHC class I, and our results provide a basis for an approach to improve iPSC-CM engraftment.
Collapse
Affiliation(s)
- Yuki Nakamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Shohei Yoshida
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Shigemi Sasawatari
- Department of Immunology and Regenerative Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Toshihiko Toyofuku
- Department of Immunology and Regenerative Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Koichi Toda
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
12
|
Obi IE, McPherson KC, Pollock JS. Childhood adversity and mechanistic links to hypertension risk in adulthood. Br J Pharmacol 2019; 176:1932-1950. [PMID: 30656638 PMCID: PMC6534788 DOI: 10.1111/bph.14576] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/17/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023] Open
Abstract
Adverse childhood experiences (ACEs), defined as traumatic events in childhood that range from various forms of abuse to household challenges and dysfunction, have devastating consequences on adult health. Epidemiological studies in humans and animal models of early life stress (ELS) have revealed a strong association and insight into the mechanistic link between ACEs and increased risk of cardiovascular disease (CVD). This review focuses on the mechanistic links of ACEs in humans and ELS in mice and rats to vasoactive factors and immune mediators associated with CVD and hypertension risk, as well as sex differences in these phenomena. Major topics of discussion in this review are as follows: (a) epidemiological associations between ACEs and CVD risk focusing on hypertension, (b) evidence for association of ACE exposures to immune-mediated and/or vasoactive pathways, (c) rodent models of ELS-induced hypertension risk, (d) proinflammatory mediators and vasoactive factors as mechanisms of ELS-induced hypertension risk. We also provide some overall conclusions and directions of further research. LINKED ARTICLES: This article is part of a themed section on Immune Targets in Hypertension. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.12/issuetoc.
Collapse
Affiliation(s)
- Ijeoma E. Obi
- CardioRenal Physiology and Medicine Section, Division of Nephrology, Department of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUnited States
| | - Kasi C. McPherson
- CardioRenal Physiology and Medicine Section, Division of Nephrology, Department of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUnited States
| | - Jennifer S. Pollock
- CardioRenal Physiology and Medicine Section, Division of Nephrology, Department of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUnited States
| |
Collapse
|
13
|
Goedhart M, Gessel S, van der Voort R, Slot E, Lucas B, Gielen E, Hoogenboezem M, Rademakers T, Geerman S, van Buul JD, Huveneers S, Dolstra H, Anderson G, Voermans C, Nolte MA. CXCR4, but not CXCR3, drives CD8 + T-cell entry into and migration through the murine bone marrow. Eur J Immunol 2019; 49:576-589. [PMID: 30707456 DOI: 10.1002/eji.201747438] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/03/2019] [Accepted: 01/28/2019] [Indexed: 01/08/2023]
Abstract
The BM serves as a blood-forming organ, but also supports the maintenance and immune surveillance function of many T cells. Yet, in contrast to other organs, little is known about the molecular mechanisms that drive T-cell migration to and localization inside the BM. As BM accumulates many CXCR3-expressing memory CD8+ T cells, we tested the involvement of this chemokine receptor, but found that CXCR3 is not required for BM entry. In contrast, we could demonstrate that CXCR4, which is highly expressed on both naive and memory CD8+ T cells in BM, is critically important for homing of all CD8+ T-cell subsets to the BM in mice. Upon entry into the BM parenchyma, both naïve and memory CD8+ T cells locate close to sinusoidal vessels. Intravital imaging experiments revealed that CD8 T cells are surprisingly immobile and we found that they interact with ICAM-1+VCAM-1+BP-1+ perivascular stromal cells. These cells are the major source of CXCL12, but also express key survival factors and maintenance cytokines IL-7 and IL-15. We therefore conclude that CXCR4 is not only crucial for entry of CD8+ T cells into the BM, but also controls their subsequent localization toward BM niches that support their survival.
Collapse
Affiliation(s)
- Marieke Goedhart
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Stephanie Gessel
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Robbert van der Voort
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Edith Slot
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Beth Lucas
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Ellis Gielen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mark Hoogenboezem
- Department of Plasma Proteins, Laboratory for Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Timo Rademakers
- Department of Plasma Proteins, Laboratory for Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sulima Geerman
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaap D van Buul
- Department of Plasma Proteins, Laboratory for Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Stephan Huveneers
- Department of Plasma Proteins, Laboratory for Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Harry Dolstra
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Graham Anderson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Carlijn Voermans
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Martijn A Nolte
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Nakanishi Y, Ikebuchi R, Chtanova T, Kusumoto Y, Okuyama H, Moriya T, Honda T, Kabashima K, Watanabe T, Sakai Y, Tomura M. Regulatory T cells with superior immunosuppressive capacity emigrate from the inflamed colon to draining lymph nodes. Mucosal Immunol 2018; 11:437-448. [PMID: 28766553 DOI: 10.1038/mi.2017.64] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 06/03/2017] [Indexed: 02/04/2023]
Abstract
Foxp3+ Regulatory T cells (Tregs) play a critical role in the maintenance of colon homeostasis. Here we utilized photoconvertible KikGR mice to track immune cells from the caecum and ascending (proximal) colon in the steady state and DSS-induced colitis. We found that Tregs from the proximal colon (colonic migratory Tregs) migrated exclusively to the distal part of mesenteric lymph nodes (dMLN) in an S1PR1-dependent process. In the steady state, colonic migratory CD25+ Tregs expressed higher levels of CD103, ICOS, LAG3 and CTLA-4 in comparison with pre-existing LN Tregs. Intestinal inflammation led to accelerated Treg replacement in the colon, bidirectional Treg migration from the colon to dMLN and vice versa, as well as increases in Treg number, proliferation and expression of immunosuppressive molecules. This was especially apparent for CD25 very high Tregs induced in colitis. Furthermore, colonic migratory Tregs from the inflamed colon included more interleukin (IL)-10 producing cells, and demonstrated greater inhibition of T-cell proliferation in comparison with pre-existing LN Tregs. Thus, our results suggest that Tregs with superior immunosuppressive capacity are increased both in the colon and dMLN upon inflammation. These Tregs recirculate between the colon and dMLN, and are likely to contribute to the downregulation of intestinal inflammation.
Collapse
Affiliation(s)
- Y Nakanishi
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan.,Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - R Ikebuchi
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan.,Research Fellow of Japan Society for the Promotion of Science, Japan
| | - T Chtanova
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Darlinghurst, New South Wales, Australia
| | - Y Kusumoto
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - H Okuyama
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - T Moriya
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - T Honda
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - K Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - T Watanabe
- The Tazuke-Kofukai Medical Research Institute/Kitano Hospital, Kita-ku, Osaka, Japan
| | - Y Sakai
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - M Tomura
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| |
Collapse
|
15
|
Yin X, Yu H, Jin X, Li J, Guo H, Shi Q, Yin Z, Xu Y, Wang X, Liu R, Wang S, Zhang L. Human Blood CD1c+ Dendritic Cells Encompass CD5high and CD5low Subsets That Differ Significantly in Phenotype, Gene Expression, and Functions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:1553-1564. [PMID: 28087664 DOI: 10.4049/jimmunol.1600193] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 12/09/2016] [Indexed: 12/16/2023]
Abstract
There are three major dendritic cell (DC) subsets in both humans and mice, that is, plasmacytoid DCs and two types of conventional DCs (cDCs), cDC1s and cDC2s. cDC2s are important for polarizing CD4+ naive T cells into different subsets, including Th1, Th2, Th17, Th22, and regulatory T cells. In mice, cDC2s can be further divided into phenotypically and functionally distinct subgroups. However, subsets of human cDC2s have not been reported. In the present study, we showed that human blood CD1c+ cDCs (cDC2s) can be further separated into two subpopulations according to their CD5 expression status. Comparative transcriptome analyses showed that the CD5high DCs expressed higher levels of cDC2-specific genes, including IFN regulatory factor 4, which is essential for the cDC2 development and its migration to lymph nodes. In contrast, CD5low DCs preferentially expressed monocyte-related genes, including the lineage-specific transcription factor MAFB. Furthermore, compared with the CD5low subpopulation, the CD5high subpopulation showed stronger migration toward CCL21 and overrepresentation among migratory DCs in lymph nodes. Additionally, the CD5high DCs induced naive T cell proliferation more potently than did the CD5low DCs. Moreover, CD5high DCs induced higher levels of IL-10-, IL-22-, and IL-4-producing T cell formation, whereas CD5low DCs induced higher levels of IFN-γ-producing T cell formation. Thus, we show that human blood CD1c+ cDC2s encompass two subsets that differ significantly in phenotype, that is, gene expression and functions. We propose that these two subsets of human cDC2s could potentially play contrasting roles in immunity or tolerance.
Collapse
Affiliation(s)
- Xiangyun Yin
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100080, China
| | - Haisheng Yu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100080, China
| | - Xiaoyang Jin
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100080, China
| | - Jingyun Li
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hao Guo
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Quanxing Shi
- Department of Cardiology, 306th Hospital of Chinese People's Liberation Army, Beijing 100101, China; and
| | - Zhao Yin
- Department of Cardiology, 306th Hospital of Chinese People's Liberation Army, Beijing 100101, China; and
| | - Yong Xu
- Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Xuefei Wang
- Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Rong Liu
- Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Shouli Wang
- Department of Cardiology, 306th Hospital of Chinese People's Liberation Army, Beijing 100101, China; and
| | - Liguo Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China;
| |
Collapse
|
16
|
Effect of PD-1: PD-L1 in Invariant Natural Killer T-Cell Emigration and Chemotaxis Following Sepsis. Shock 2017; 45:534-9. [PMID: 26717105 DOI: 10.1097/shk.0000000000000553] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Invariant natural killer T-cells (iNKT) are a subset of T-cells that play a regulatory role in sepsis. Following cecal ligation and puncture (CLP), iNKT cells emigrate from the liver and into the circulation and peritoneum in a manner dependent upon coinhibitory molecule Programmed Cell Death Receptor 1 (PD-1). We hypothesized that the effect of PD-1 on iNKT-cell emigration was dependent upon the direct PD-1:PD-L1 interaction, and that PD-1 and PD-L1 would play a role in chemotaxis and chemokine receptor expression. Adoptive transfer of Vybrant-labeled wild-type (WT) cells showed the donor iNKT cells migrated from the liver to the peritoneum following CLP, but PD-L1 deficient donor iNKT cells did not. In a chemotaxis assay, WT-iNKT cells chemotaxed to CXCL12, but PD-1 and PD-L1 deficient iNKT cells did not. Using flow cytometry to evaluate chemokine receptor expression, peritoneal iNKT expression of CXCR4 increased following CLP in the WT, PD-1, and PD-L1 deficient animals, and CXCR6 increased in the WT and PD-1 deficient animals. In conclusion here we document that the hepatic emigration of iNKT cells following CLP to the peritoneum appears dependent upon the direct PD-1:PD-L1 interaction; however, although PD-1 and PD-L1 appear to play a role in chemotaxis, this is unlikely a reflection of iNKT-cell chemokine receptor expression changes.
Collapse
|
17
|
Altered T cell phenotypes associated with clinical relapse of multiple sclerosis patients receiving fingolimod therapy. Sci Rep 2016; 6:35314. [PMID: 27752051 PMCID: PMC5082790 DOI: 10.1038/srep35314] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/27/2016] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is a T cell-mediated autoimmune disease. Fingolimod, a highly effective disease-modifying drug for MS, retains CCR7+ central memory T cells in which autoaggressive T cells putatively exist, in secondary lymphoid organs, although relapse may still occur in some patients. Here, we analyzed the T cell phenotypes of fingolimod-treated, fingolimod-untreated patients, and healthy subjects. The frequency of CD56+ T cells and granzyme B-, perforin-, and Fas ligand-positive T cells significantly increased during fingolimod treatment. Each T cell subpopulation further increased during relapse. Interestingly, T cells from fingolimod-treated patients exhibited interferon-γ biased production, and more myelin basic protein-reactive cells was noted in CD56+ than in CD56− T cells. It is likely that the altered T cell phenotypes play a role in MS relapse in fingolimod-treated patients. Further clinical studies are necessary to investigate whether altered T cell phenotypes are a biomarker for relapse under fingolimod therapy.
Collapse
|
18
|
Schulz O, Hammerschmidt SI, Moschovakis GL, Förster R. Chemokines and Chemokine Receptors in Lymphoid Tissue Dynamics. Annu Rev Immunol 2016; 34:203-42. [DOI: 10.1146/annurev-immunol-041015-055649] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Olga Schulz
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany;
| | | | | | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany;
| |
Collapse
|
19
|
Zhao B, Cui K, Wang CL, Wang AL, Zhang B, Zhou WY, Zhao WH, Li S. The chemotactic interaction between CCL21 and its receptor, CCR7, facilitates the progression of pancreatic cancer via induction of angiogenesis and lymphangiogenesis. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2016; 18:821-8. [PMID: 21594558 DOI: 10.1007/s00534-011-0395-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND In this study, we report the influence of CCL21 and its receptor, CCR7, on the progression of pancreatic cancer and illuminates the correlation between the CCL21/CCR7 axis and the angiogenesis and lymphangiogenesis of pancreatic adenocarcinoma (PAC). METHODS A total of 30 patients with pancreatic cancer was involved in the current study. The expression of CCL21 and CCR7 in cancerous tissues, paracancerous tissues and normal pancreas were investigated using real-time PCR, Western blot and immunohistochemistry, respectively. In addition, we assessed microvessel density (MVD) and microlymphatic vessel density (MLVD) in tumor tissues using immunohistochemistry. RESULTS Compared to paracancerous tissues and normal pancreas, CCL21 expression in cancerous tissues was detected at a significantly low level. In contrast, the CCR7 expression was considerably higher in cancerous tissues than in normal pancreas and paracancerous tissues. Additionally, a significant correlation between the expression pattern of the CCL21/CCR7 axis and clinicopathological features, such as lymph node metastasis, was identified. Furthermore, we found that CCL21 expression was significantly associated with MVD but not significantly associated with MLVD, while CCR7 expression was significantly associated with MLVD but not significantly associated with MVD. CONCLUSIONS The chemotactic interaction between CCR7 and its ligand, CCL21, may be a critical event during progression in pancreatic cancer, and its underlying mechanism may be induction of angiogenesis and lymphangiogenesis regulated by this chemotactic interaction.
Collapse
Affiliation(s)
- Bin Zhao
- Shandong University, Ji'nan, 250011, China
| | - Kai Cui
- Shandong Tumor Hospital, Ji'nan, 250117, Shandong, China
| | | | - Ai-Liang Wang
- Affiliated Hospital of Jining Medical College, Ji'ning, 272111, China
| | - Bo Zhang
- Shandong Tumor Hospital, Ji'nan, 250117, Shandong, China
| | - Wu-Yuan Zhou
- Shandong Tumor Hospital, Ji'nan, 250117, Shandong, China
| | - Wen-Hua Zhao
- Shandong Qianfoshan Hospital, Ji'nan, 250014, Shandong, China.
| | - Sheng Li
- Shandong Tumor Hospital, Ji'nan, 250117, Shandong, China.
| |
Collapse
|
20
|
Bill CA, Soto OB, Vines CM. C-C Chemokine Receptor Seven (CCR7): Coming of Age In Vaccines. VACCINATION RESEARCH : OPEN JOURNAL 2016; 1:7-9. [PMID: 33511380 PMCID: PMC7839828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
| | | | - Charlotte M. Vines
- Corresponding author Charlotte M. Vines, PhD Assistant Professor, Department of Biological Sciences, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA,
| |
Collapse
|
21
|
Kim S, Han S, Lee YE, Jung WJ, Lee HS, Kim YS, Choi EK, Kim MY. Prion protein-deficient mice exhibit decreased CD4 T and LTi cell numbers and impaired spleen structure. Immunobiology 2016; 221:94-102. [DOI: 10.1016/j.imbio.2015.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/13/2015] [Accepted: 07/23/2015] [Indexed: 11/16/2022]
|
22
|
Wu J, Montaniel KRC, Saleh MA, Xiao L, Chen W, Owens GK, Humphrey JD, Majesky MW, Paik DT, Hatzopoulos AK, Madhur MS, Harrison DG. Origin of Matrix-Producing Cells That Contribute to Aortic Fibrosis in Hypertension. Hypertension 2015; 67:461-8. [PMID: 26693821 DOI: 10.1161/hypertensionaha.115.06123] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/08/2015] [Indexed: 11/16/2022]
Abstract
Various hypertensive stimuli lead to exuberant adventitial collagen deposition in large arteries, exacerbating blood pressure elevation and end-organ damage. Collagen production is generally attributed to resident fibroblasts; however, other cells, including resident and bone marrow-derived stem cell antigen positive (Sca-1(+)) cells and endothelial and vascular smooth muscle cells, can produce collagen and contribute to vascular stiffening. Using flow cytometry and immunofluorescence, we found that adventitial Sca-1(+) progenitor cells begin to produce collagen and acquire a fibroblast-like phenotype in hypertension. We also found that bone marrow-derived cells represent more than half of the matrix-producing cells in hypertension, and that one-third of these are Sca-1(+). Cell sorting and lineage-tracing studies showed that cells of endothelial origin contribute to no more than one fourth of adventitial collagen I(+) cells, whereas those of vascular smooth muscle lineage do not contribute. Our findings indicate that Sca-1(+) progenitor cells and bone marrow-derived infiltrating fibrocytes are major sources of arterial fibrosis in hypertension. Endothelial to mesenchymal transition likely also contributes, albeit to a lesser extent and pre-existing resident fibroblasts represent a minority of aortic collagen-producing cells in hypertension. This study shows that vascular stiffening represents a complex process involving recruitment and transformation of multiple cells types that ultimately elaborate adventitial extracellular matrix.
Collapse
Affiliation(s)
- Jing Wu
- From the Division of Clinical Pharmacology, Department of Medicine (J.W., K.R.C.M., M.A.S., L.X., W.C., M.S.M., D.G.H.), Department of Molecular Physiology and Biophysics (K.R.C.M., M.S.M., D.G.H.), Division of Cardiovascular Medicine, Department of Medicine (D.T.P., A.K.H.), and Department of Cell and Developmental Biology (D.T.P., A.K.H.), School of Medicine, Vanderbilt University, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Robert M. Berne Cardiovascular Research Center, Department of Physiology, University of Virginia, Charlottesville (G.K.O.); Department of Biomedical Engineering, Yale University, New Haven, CT (J.D.H.); Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT (J.D.H.); Seattle Children's Research Institute, WA (M.W.M.)
| | - Kim Ramil C Montaniel
- From the Division of Clinical Pharmacology, Department of Medicine (J.W., K.R.C.M., M.A.S., L.X., W.C., M.S.M., D.G.H.), Department of Molecular Physiology and Biophysics (K.R.C.M., M.S.M., D.G.H.), Division of Cardiovascular Medicine, Department of Medicine (D.T.P., A.K.H.), and Department of Cell and Developmental Biology (D.T.P., A.K.H.), School of Medicine, Vanderbilt University, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Robert M. Berne Cardiovascular Research Center, Department of Physiology, University of Virginia, Charlottesville (G.K.O.); Department of Biomedical Engineering, Yale University, New Haven, CT (J.D.H.); Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT (J.D.H.); Seattle Children's Research Institute, WA (M.W.M.)
| | - Mohamed A Saleh
- From the Division of Clinical Pharmacology, Department of Medicine (J.W., K.R.C.M., M.A.S., L.X., W.C., M.S.M., D.G.H.), Department of Molecular Physiology and Biophysics (K.R.C.M., M.S.M., D.G.H.), Division of Cardiovascular Medicine, Department of Medicine (D.T.P., A.K.H.), and Department of Cell and Developmental Biology (D.T.P., A.K.H.), School of Medicine, Vanderbilt University, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Robert M. Berne Cardiovascular Research Center, Department of Physiology, University of Virginia, Charlottesville (G.K.O.); Department of Biomedical Engineering, Yale University, New Haven, CT (J.D.H.); Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT (J.D.H.); Seattle Children's Research Institute, WA (M.W.M.)
| | - Liang Xiao
- From the Division of Clinical Pharmacology, Department of Medicine (J.W., K.R.C.M., M.A.S., L.X., W.C., M.S.M., D.G.H.), Department of Molecular Physiology and Biophysics (K.R.C.M., M.S.M., D.G.H.), Division of Cardiovascular Medicine, Department of Medicine (D.T.P., A.K.H.), and Department of Cell and Developmental Biology (D.T.P., A.K.H.), School of Medicine, Vanderbilt University, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Robert M. Berne Cardiovascular Research Center, Department of Physiology, University of Virginia, Charlottesville (G.K.O.); Department of Biomedical Engineering, Yale University, New Haven, CT (J.D.H.); Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT (J.D.H.); Seattle Children's Research Institute, WA (M.W.M.)
| | - Wei Chen
- From the Division of Clinical Pharmacology, Department of Medicine (J.W., K.R.C.M., M.A.S., L.X., W.C., M.S.M., D.G.H.), Department of Molecular Physiology and Biophysics (K.R.C.M., M.S.M., D.G.H.), Division of Cardiovascular Medicine, Department of Medicine (D.T.P., A.K.H.), and Department of Cell and Developmental Biology (D.T.P., A.K.H.), School of Medicine, Vanderbilt University, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Robert M. Berne Cardiovascular Research Center, Department of Physiology, University of Virginia, Charlottesville (G.K.O.); Department of Biomedical Engineering, Yale University, New Haven, CT (J.D.H.); Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT (J.D.H.); Seattle Children's Research Institute, WA (M.W.M.)
| | - Gary K Owens
- From the Division of Clinical Pharmacology, Department of Medicine (J.W., K.R.C.M., M.A.S., L.X., W.C., M.S.M., D.G.H.), Department of Molecular Physiology and Biophysics (K.R.C.M., M.S.M., D.G.H.), Division of Cardiovascular Medicine, Department of Medicine (D.T.P., A.K.H.), and Department of Cell and Developmental Biology (D.T.P., A.K.H.), School of Medicine, Vanderbilt University, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Robert M. Berne Cardiovascular Research Center, Department of Physiology, University of Virginia, Charlottesville (G.K.O.); Department of Biomedical Engineering, Yale University, New Haven, CT (J.D.H.); Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT (J.D.H.); Seattle Children's Research Institute, WA (M.W.M.)
| | - Jay D Humphrey
- From the Division of Clinical Pharmacology, Department of Medicine (J.W., K.R.C.M., M.A.S., L.X., W.C., M.S.M., D.G.H.), Department of Molecular Physiology and Biophysics (K.R.C.M., M.S.M., D.G.H.), Division of Cardiovascular Medicine, Department of Medicine (D.T.P., A.K.H.), and Department of Cell and Developmental Biology (D.T.P., A.K.H.), School of Medicine, Vanderbilt University, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Robert M. Berne Cardiovascular Research Center, Department of Physiology, University of Virginia, Charlottesville (G.K.O.); Department of Biomedical Engineering, Yale University, New Haven, CT (J.D.H.); Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT (J.D.H.); Seattle Children's Research Institute, WA (M.W.M.)
| | - Mark W Majesky
- From the Division of Clinical Pharmacology, Department of Medicine (J.W., K.R.C.M., M.A.S., L.X., W.C., M.S.M., D.G.H.), Department of Molecular Physiology and Biophysics (K.R.C.M., M.S.M., D.G.H.), Division of Cardiovascular Medicine, Department of Medicine (D.T.P., A.K.H.), and Department of Cell and Developmental Biology (D.T.P., A.K.H.), School of Medicine, Vanderbilt University, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Robert M. Berne Cardiovascular Research Center, Department of Physiology, University of Virginia, Charlottesville (G.K.O.); Department of Biomedical Engineering, Yale University, New Haven, CT (J.D.H.); Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT (J.D.H.); Seattle Children's Research Institute, WA (M.W.M.)
| | - David T Paik
- From the Division of Clinical Pharmacology, Department of Medicine (J.W., K.R.C.M., M.A.S., L.X., W.C., M.S.M., D.G.H.), Department of Molecular Physiology and Biophysics (K.R.C.M., M.S.M., D.G.H.), Division of Cardiovascular Medicine, Department of Medicine (D.T.P., A.K.H.), and Department of Cell and Developmental Biology (D.T.P., A.K.H.), School of Medicine, Vanderbilt University, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Robert M. Berne Cardiovascular Research Center, Department of Physiology, University of Virginia, Charlottesville (G.K.O.); Department of Biomedical Engineering, Yale University, New Haven, CT (J.D.H.); Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT (J.D.H.); Seattle Children's Research Institute, WA (M.W.M.)
| | - Antonis K Hatzopoulos
- From the Division of Clinical Pharmacology, Department of Medicine (J.W., K.R.C.M., M.A.S., L.X., W.C., M.S.M., D.G.H.), Department of Molecular Physiology and Biophysics (K.R.C.M., M.S.M., D.G.H.), Division of Cardiovascular Medicine, Department of Medicine (D.T.P., A.K.H.), and Department of Cell and Developmental Biology (D.T.P., A.K.H.), School of Medicine, Vanderbilt University, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Robert M. Berne Cardiovascular Research Center, Department of Physiology, University of Virginia, Charlottesville (G.K.O.); Department of Biomedical Engineering, Yale University, New Haven, CT (J.D.H.); Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT (J.D.H.); Seattle Children's Research Institute, WA (M.W.M.)
| | - Meena S Madhur
- From the Division of Clinical Pharmacology, Department of Medicine (J.W., K.R.C.M., M.A.S., L.X., W.C., M.S.M., D.G.H.), Department of Molecular Physiology and Biophysics (K.R.C.M., M.S.M., D.G.H.), Division of Cardiovascular Medicine, Department of Medicine (D.T.P., A.K.H.), and Department of Cell and Developmental Biology (D.T.P., A.K.H.), School of Medicine, Vanderbilt University, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Robert M. Berne Cardiovascular Research Center, Department of Physiology, University of Virginia, Charlottesville (G.K.O.); Department of Biomedical Engineering, Yale University, New Haven, CT (J.D.H.); Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT (J.D.H.); Seattle Children's Research Institute, WA (M.W.M.)
| | - David G Harrison
- From the Division of Clinical Pharmacology, Department of Medicine (J.W., K.R.C.M., M.A.S., L.X., W.C., M.S.M., D.G.H.), Department of Molecular Physiology and Biophysics (K.R.C.M., M.S.M., D.G.H.), Division of Cardiovascular Medicine, Department of Medicine (D.T.P., A.K.H.), and Department of Cell and Developmental Biology (D.T.P., A.K.H.), School of Medicine, Vanderbilt University, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Robert M. Berne Cardiovascular Research Center, Department of Physiology, University of Virginia, Charlottesville (G.K.O.); Department of Biomedical Engineering, Yale University, New Haven, CT (J.D.H.); Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT (J.D.H.); Seattle Children's Research Institute, WA (M.W.M.).
| |
Collapse
|
23
|
del Molino del Barrio I, Kirby J, Ali S. The Role of Chemokine and Glycosaminoglycan Interaction in Chemokine-Mediated Migration In Vitro and In Vivo. Methods Enzymol 2015; 570:309-33. [PMID: 26921953 DOI: 10.1016/bs.mie.2015.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chemokines have a range of functions, including the activation and promotion of the vectorial migration of leukocytes. They mediate their biological effects by binding to their cognate G-protein-coupled receptors. Upon activation of the heterotrimeric G proteins, the Gα subunit exchanges GDP for GTP and dissociates from the receptor and from the Gβγ subunits, and both G-protein complexes go on to activate other downstream signaling events. In addition, chemokines interact with cell-surface glycosaminoglycans (GAGs). This potential for binding GAG components of proteoglycans on the cell surface or within the extracellular matrix allows the formation of the stable chemokine gradients necessary for leukocyte chemotaxis. In this chapter, we describe techniques for studying chemotaxis both in vivo and in vitro, as well as the creation of chemokine receptor-expressing cell lines, in order to examine this process in isolation.
Collapse
Affiliation(s)
| | - John Kirby
- Institute of Cellular Medicine, Medical Faculty, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Simi Ali
- Institute of Cellular Medicine, Medical Faculty, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
24
|
Blunt L, Hogarth PJ, Kaveh DA, Webb P, Villarreal-Ramos B, Vordermeier HM. Phenotypic characterization of bovine memory cells responding to mycobacteria in IFNγ enzyme linked immunospot assays. Vaccine 2015; 33:7276-7282. [PMID: 26549366 DOI: 10.1016/j.vaccine.2015.10.113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 10/14/2015] [Accepted: 10/27/2015] [Indexed: 12/25/2022]
Abstract
Bovine tuberculosis (bTB) remains a globally significant veterinary health problem. Defining correlates of protection can accelerate the development of novel vaccines against TB. As the cultured IFNγ ELISPOT (cELISPOT) assay has been shown to predict protection and duration of immunity in vaccinated cattle, we sought to characterize the phenotype of the responding T-cells. Using expression of CD45RO and CD62L we purified by cytometric cell sorting four distinct CD4(+) populations: CD45RO(+)CD62L(hi), CD45RO(+)CD62L(lo), CD45RO(-)CD62L(hi) and CD45RO(-)CD62L(lo) (although due to low and inconsistent cell recovery, this population was not considered further in this study), in BCG vaccinated and Mycobacterium bovis infected cattle. These populations were then tested in the cELISPOT assay. The main populations contributing to production of IFNγ in the cELISPOT were of the CD45RO(+)CD62L(hi) and CD45RO(+)CD62L(lo) phenotypes. These cell populations have been described in other species as central and effector memory cells, respectively. Following in vitro culture and flow cytometry we observed plasticity within the bovine CD4(+) T-cell phenotype. Populations switched phenotype, increasing or decreasing expression of CD45RO and CD62L within 24h of in vitro stimulation. After 14 days all IFNγ producing CD4(+) T cells expressed CD45RO regardless of the original phenotype of the sorted population. No differences were detected in behavior of cells derived from BCG-vaccinated animals compared to cells derived from naturally infected animals. In conclusion, although multiple populations of CD4(+) T memory cells from both BCG vaccinated and M. bovis infected animals contributed to cELISPOT responses, the dominant contributing population consists of central-memory-like T cells (CD45RO(+)CD62L(hi)).
Collapse
Affiliation(s)
- Laura Blunt
- Bovine TB Research Group, Animal and Plant Health Agency, Weybridge, Surrey, KT15 3NB, UK
| | - Philip J Hogarth
- Bovine TB Research Group, Animal and Plant Health Agency, Weybridge, Surrey, KT15 3NB, UK; Flow Cytometry Facility, Animal and Plant Health Agency, Weybridge, Surrey KT15 3NB, UK
| | - Daryan A Kaveh
- Bovine TB Research Group, Animal and Plant Health Agency, Weybridge, Surrey, KT15 3NB, UK; Flow Cytometry Facility, Animal and Plant Health Agency, Weybridge, Surrey KT15 3NB, UK
| | - Paul Webb
- Bovine TB Research Group, Animal and Plant Health Agency, Weybridge, Surrey, KT15 3NB, UK; Flow Cytometry Facility, Animal and Plant Health Agency, Weybridge, Surrey KT15 3NB, UK
| | | | | |
Collapse
|
25
|
Pizzurro GA, Tapia IJ, Sganga L, Podhajcer OL, Mordoh J, Barrio MM. Cytokine-enhanced maturation and migration to the lymph nodes of a human dying melanoma cell-loaded dendritic cell vaccine. Cancer Immunol Immunother 2015; 64:1393-406. [PMID: 26197849 PMCID: PMC11028647 DOI: 10.1007/s00262-015-1743-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 07/11/2015] [Indexed: 11/28/2022]
Abstract
Dendritic cells (DCs) are professional APCs used for the development of cancer vaccines because of their ability to activate adaptive immune responses. Previously, we designed the DC/Apo-Nec vaccine using human DCs loaded with dying melanoma cells that primed Ag-specific cytotoxic T cells. Here, we evaluate the effect of a standard pro-inflammatory cytokine cocktail (CC) and adjuvants on DC/Apo-Nec maturation and migration. CC addition to the vaccine coculture allowed efficient Ag uptake while attaining strong vaccine maturation with an immunostimulatory profile. The use of CC not only increased CCR7 expression and the vaccine chemokine responsiveness but also upregulated matrix metalloproteinase-9 secretion, which regulated its invasive migration in vitro. Neither IL-6 nor prostaglandin E2 had a negative effect on vaccine preparation. In fact, all CC components were necessary for complete vaccine maturation. Subcutaneously injected DC/Apo-Nec vaccine migrated rapidly to draining LNs in nude mice, accumulating regionally after 48 h. The migrating cells of the CC-matured vaccine augmented in proportion and range of distribution, an effect that increased further with the topical administration of imiquimod cream. The migrating proportion of human DCs was detected in draining LNs for at least 9 days after injection. The addition of CC during DC/Apo-Nec preparation enhanced vaccine performance by improving maturation and response to LN signals and by conferring a motile and invasive vaccine phenotype both in vitro and in vivo. More importantly, the vaccine could be combined with different adjuvants. Therefore, this DC-based vaccine design shows great potential value for clinical translation.
Collapse
Affiliation(s)
- Gabriela A Pizzurro
- Centro de Investigaciones Oncológicas - Fundación Cáncer (FUCA), Cramer 1180, CP 1426, Buenos Aires, Argentina
| | - Ivana J Tapia
- Centro de Investigaciones Oncológicas - Fundación Cáncer (FUCA), Cramer 1180, CP 1426, Buenos Aires, Argentina
| | - Leonardo Sganga
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Osvaldo L Podhajcer
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - José Mordoh
- Centro de Investigaciones Oncológicas - Fundación Cáncer (FUCA), Cramer 1180, CP 1426, Buenos Aires, Argentina
- Laboratorio de Cancerología, Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto Alexander Fleming, Buenos Aires, Argentina
| | - María M Barrio
- Centro de Investigaciones Oncológicas - Fundación Cáncer (FUCA), Cramer 1180, CP 1426, Buenos Aires, Argentina.
| |
Collapse
|
26
|
Dominguez GA, Hammer DA. Effect of adhesion and chemokine presentation on T-lymphocyte haptokinesis. Integr Biol (Camb) 2015; 6:862-73. [PMID: 25012074 DOI: 10.1039/c4ib00094c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Motility is critical for the function of T-lymphocytes. Motility in T-lymphocytes is driven by the occupancy of chemokine receptors by chemokines, and modulated by adhesive interactions. However, it is not well understood how the combination of adhesion and chemokine binding affects T-lymphocyte migration. We used microcontact printing on polymeric substrates to measure how lymphocyte migration is quantitatively controlled by adhesion and chemokine ligation. Focusing only on random motion, we found that T-lymphocytes exhibit biphasic motility in response to the substrate concentration of either ICAM-1 or VCAM-1, and generally display more active motion on ICAM-1 surfaces. Furthermore, we examined how the combination of the homeostatic chemokines CCL19 and CCL21 contribute to motility. By themselves, CCL19 and CCL21, ligands for CCR7, elicit biphasic motility, but their combination synergistically increases CCR7 mediated chemokinesis on ICAM-1. By presenting CCL21 with ICAM-1 on the surface with soluble CCL19, we observed random motion that is greater than what is observed with soluble chemokines alone. These data suggest that ICAM-1 has a greater contribution to motility than VCAM-1 and that both adhesive interactions and chemokine ligation work in concert to control T-lymphocyte motility.
Collapse
Affiliation(s)
- George A Dominguez
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd St, Philadelphia, PA 19104, USA
| | | |
Collapse
|
27
|
Thome JJC, Yudanin N, Ohmura Y, Kubota M, Grinshpun B, Sathaliyawala T, Kato T, Lerner H, Shen Y, Farber DL. Spatial map of human T cell compartmentalization and maintenance over decades of life. Cell 2015; 159:814-28. [PMID: 25417158 DOI: 10.1016/j.cell.2014.10.026] [Citation(s) in RCA: 439] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 08/08/2014] [Accepted: 09/24/2014] [Indexed: 01/01/2023]
Abstract
Mechanisms for human memory T cell differentiation and maintenance have largely been inferred from studies of peripheral blood, though the majority of T cells are found in lymphoid and mucosal sites. We present here a multidimensional, quantitative analysis of human T cell compartmentalization and maintenance over six decades of life in blood, lymphoid, and mucosal tissues obtained from 56 individual organ donors. Our results reveal that the distribution and tissue residence of naive, central, and effector memory, and terminal effector subsets is contingent on both their differentiation state and tissue localization. Moreover, T cell homeostasis driven by cytokine or TCR-mediated signals is different in CD4+ or CD8+ T cell lineages, varies with their differentiation stage and tissue localization, and cannot be inferred from blood. Our data provide an unprecedented spatial and temporal map of human T cell compartmentalization and maintenance, supporting distinct pathways for human T cell fate determination and homeostasis.
Collapse
Affiliation(s)
- Joseph J C Thome
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Naomi Yudanin
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Yoshiaki Ohmura
- Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - Masaru Kubota
- Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - Boris Grinshpun
- Department of Systems Biology and Biomedical Informatics, and the JP Sulzberger Columbia Genome Center, Columbia University, New York, NY 10032, USA
| | - Taheri Sathaliyawala
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Tomoaki Kato
- Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - Harvey Lerner
- The New York Organ Donor Network (NYODN), New York, NY 10001, USA
| | - Yufeng Shen
- Department of Systems Biology and Biomedical Informatics, and the JP Sulzberger Columbia Genome Center, Columbia University, New York, NY 10032, USA
| | - Donna L Farber
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA; Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
28
|
Hayasaka H, Kobayashi D, Yoshimura H, Nakayama EE, Shioda T, Miyasaka M. The HIV-1 Gp120/CXCR4 axis promotes CCR7 ligand-dependent CD4 T cell migration: CCR7 homo- and CCR7/CXCR4 hetero-oligomer formation as a possible mechanism for up-regulation of functional CCR7. PLoS One 2015; 10:e0117454. [PMID: 25688986 PMCID: PMC4331524 DOI: 10.1371/journal.pone.0117454] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 12/24/2014] [Indexed: 11/29/2022] Open
Abstract
During human immunodeficiency virus (HIV) infection, enhanced migration of infected cells to lymph nodes leads to efficient propagation of HIV-1. The selective chemokine receptors, including CXCR4 and CCR7, may play a role in this process, yet the viral factors regulating chemokine-dependent T cell migration remain relatively unclear. The functional cooperation between the CXCR4 ligand chemokine CXCL12 and the CCR7 ligand chemokines CCL19 and CCL21 enhances CCR7-dependent T cell motility in vitro as well as cell trafficking into the lymph nodes in vivo. In this study, we report that a recombinant form of a viral CXCR4 ligand, X4-tropic HIV-1 gp120, enhanced the CD4 T cell response to CCR7 ligands in a manner dependent on CXCR4 and CD4, and that this effect was recapitulated by HIV-1 virions. HIV-1 gp120 significantly enhanced CCR7-dependent CD4 T cell migration from the footpad of mice to the draining lymph nodes in in vivo transfer experiments. We also demonstrated that CXCR4 expression is required for stable CCR7 expression on the CD4 T cell surface, whereas CXCR4 signaling facilitated CCR7 ligand binding to the cell surface and increased the level of CCR7 homo- as well as CXCR4/CCR7 hetero-oligomers without affecting CCR7 expression levels. Our findings indicate that HIV-evoked CXCR4 signaling promotes CCR7-dependent CD4 T cell migration by up-regulating CCR7 function, which is likely to be induced by increased formation of CCR7 homo- and CXCR4/CCR7 hetero-oligomers on the surface of CD4 T cells.
Collapse
Affiliation(s)
- Haruko Hayasaka
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- * E-mail:
| | - Daichi Kobayashi
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Hiromi Yoshimura
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Emi E. Nakayama
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Tatsuo Shioda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Masayuki Miyasaka
- Institute for Academic Initiatives, Osaka University, Suita, Osaka, Japan
- MediCity Laboratory, University of Turku, Tykistökatu 6A, 20520, Turku, Finland
| |
Collapse
|
29
|
Ma S, Shi Y, Pang Y, Dong F, Cheng H, Hao S, Xu J, Zhu X, Yuan W, Cheng T, Zheng G. Notch1-induced T cell leukemia can be potentiated by microenvironmental cues in the spleen. J Hematol Oncol 2014; 7:71. [PMID: 25366136 PMCID: PMC4229605 DOI: 10.1186/s13045-014-0071-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 09/21/2014] [Indexed: 01/10/2023] Open
Abstract
Background Leukemia is a systemic malignancy originated from hematopoietic cells. The extracellular environment has great impacts on the survival, proliferation and dissemination of leukemia cells. The spleen is an important organ for extramedullary hematopoiesis and a common infiltration site in lymphoid malignancies. Splenomegaly, frequently observed in T cell acute lymphoblastic leukemia (T-ALL), is associated with poor prognosis. However, how the spleen microenvironment distinctly affects T-ALL cells as opposed to bone marrow (BM) microenvironment has not been addressed. Methods A Notch1-induced mouse T-ALL model was applied in this study. Flow cytometry and two-photon fluorescence microscopy were used to analyze early distribution of T-ALL cells. MILLIPLEX® MAP Multiplex Immunoassay was performed to measure cytokine/chemokine levels in different microenvironments. Transwell and co-culture experiments were used to test the effects of splenic microenvironment in vitro. Splenectomy was performed to assess the organ specific impact on the survival of T-ALL-bearing mice. Results More leukemia cells were detected in the spleen than in the BM after injection of T-ALL cells by flow cytometry and two-photon fluorescence microscopy analysis. By screening a panel of cytokines/chemokines, a higher level of MIP-3β was found in the splenic microenvironment than BM microenvironment. In vitro transwell experiment further confirmed that MIP-3β recruits T-ALL cells which express a high level of MIP-3β receptor, CCR7. Furthermore, the splenic microenvironment stimulates T-ALL cells to express a higher level of MIP-3β, which further recruits T-ALL cells to the spleen. Co-culture experiment found that the splenic microenvironment more potently stimulated the proliferation and migration of T-ALL cells than BM. Moreover, the mice transplanted with T-ALL cells from the spleen had a shorter life span than those transplanted from BM, suggesting increased potency of the T-ALL cells induced by the splenic microenvironment. In addition, splenectomy prolonged the survival of leukemic mice. Conclusions Our study demonstrates an organ specific effect on leukemia development. Specifically, T-ALL cells can be potentiated by splenic microenvironment and thus spleen may serve as a target organ for the treatment of some types of leukemia. Electronic supplementary material The online version of this article (doi:10.1186/s13045-014-0071-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shihui Ma
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China.
| | - Yingxu Shi
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China. .,Current address of Yingxu Shi: Affiliated Hospital Clinical Laboratory, Inner Mongolian Medical University, Hohhot, China.
| | - Yakun Pang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China.
| | - Fang Dong
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China.
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China.
| | - Sha Hao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China.
| | - Jing Xu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China.
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China. .,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China. .,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China. .,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Guoguang Zheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China. .,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
30
|
Shetty S, Adams DH, Hubscher SG. Post-transplant liver biopsy and the immune response: lessons for the clinician. Expert Rev Clin Immunol 2014; 8:645-61. [DOI: 10.1586/eci.12.65] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadiere C, Farber JM, Graham GJ, Horuk R, Sparre-Ulrich AH, Locati M, Luster AD, Mantovani A, Matsushima K, Murphy PM, Nibbs R, Nomiyama H, Power CA, Proudfoot AEI, Rosenkilde MM, Rot A, Sozzani S, Thelen M, Yoshie O, Zlotnik A. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev 2013; 66:1-79. [PMID: 24218476 PMCID: PMC3880466 DOI: 10.1124/pr.113.007724] [Citation(s) in RCA: 691] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sixteen years ago, the Nomenclature Committee of the International Union of Pharmacology approved a system for naming human seven-transmembrane (7TM) G protein-coupled chemokine receptors, the large family of leukocyte chemoattractant receptors that regulates immune system development and function, in large part by mediating leukocyte trafficking. This was announced in Pharmacological Reviews in a major overview of the first decade of research in this field [Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, and Power CA (2000) Pharmacol Rev 52:145-176]. Since then, several new receptors have been discovered, and major advances have been made for the others in many areas, including structural biology, signal transduction mechanisms, biology, and pharmacology. New and diverse roles have been identified in infection, immunity, inflammation, development, cancer, and other areas. The first two drugs acting at chemokine receptors have been approved by the U.S. Food and Drug Administration (FDA), maraviroc targeting CCR5 in human immunodeficiency virus (HIV)/AIDS, and plerixafor targeting CXCR4 for stem cell mobilization for transplantation in cancer, and other candidates are now undergoing pivotal clinical trials for diverse disease indications. In addition, a subfamily of atypical chemokine receptors has emerged that may signal through arrestins instead of G proteins to act as chemokine scavengers, and many microbial and invertebrate G protein-coupled chemokine receptors and soluble chemokine-binding proteins have been described. Here, we review this extended family of chemokine receptors and chemokine-binding proteins at the basic, translational, and clinical levels, including an update on drug development. We also introduce a new nomenclature for atypical chemokine receptors with the stem ACKR (atypical chemokine receptor) approved by the Nomenclature Committee of the International Union of Pharmacology and the Human Genome Nomenclature Committee.
Collapse
Affiliation(s)
- Francoise Bachelerie
- Chair, Subcommittee on Chemokine Receptors, Nomenclature Committee-International Union of Pharmacology, Bldg. 10, Room 11N113, NIH, Bethesda, MD 20892.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
CD4 and CD8 T cells participate in the immune memory response against Vaccinia virus after a previous natural infection. RESULTS IN IMMUNOLOGY 2013; 3:104-13. [PMID: 24600565 DOI: 10.1016/j.rinim.2013.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 10/25/2013] [Accepted: 10/28/2013] [Indexed: 11/23/2022]
Abstract
The present study evaluates the immune response of memory CD4(+) and CD8(+) T cells from patients following a natural Vaccinia virus (VACV) infection. A total of 42 individuals were involved in the study being: 22 previously infected individuals (vaccinated or not against smallpox) and 20 non-infected individuals (vaccinated or not). A short-term in vitro stimulation with UV-inactivated VACV of whole blood cells was performed. Our study showed that previously infected individuals have a lower percentage of CD4(+) T cells expressing lymph-node homing receptors (CD4(+)CD62L(+)CCR7(+)) and higher percentage of memory CD4(+) T cells subsets (CD4(+)CD45RO(High)) when compared with non-infected subjects, after in vitro viral stimulation. We also showed that infected individuals presented higher percentages of CD4(+) and CD8(+) memory T lymphocytes expressing IFN-γ when compared to non-infected individuals. We verified that the percentage of CD4(+) and CD8(+) T memory cells expressing TNF-α was higher in infected and non-infected vaccinated subjects when compared with non-infected unvaccinated individual. We also observed that previously infected individuals have higher percentages of CD8(+) T cells expressing lymph-node homing receptors (CCR7(+) and CD62L(+)) and that the memory T cells expressing IFN-γ and TNF-α were at higher percentages in the whole blood cells from infected and non-infected vaccinated individuals, when compared to unvaccinated non-infected subjects. Thus, our findings suggest that CD4(+) and CD8(+) T cells are involved in the immune memory response against Vaccinia virus natural infection.
Collapse
|
33
|
Plasmodium vivax infection induces expansion of activated naïve/memory T cells and differentiation into a central memory profile. Microbes Infect 2013; 15:837-43. [DOI: 10.1016/j.micinf.2013.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 07/13/2013] [Accepted: 07/25/2013] [Indexed: 02/02/2023]
|
34
|
Li R, Hu H, Ma H, Chen L, Zhou S, Liu B, Liu Y, Liang C. The anti-tumor effect and increased tregs infiltration mediated by rAAV-SLC vector. Mol Biol Rep 2013; 40:5615-23. [PMID: 24078089 PMCID: PMC3824217 DOI: 10.1007/s11033-013-2663-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 09/14/2013] [Indexed: 11/05/2022]
Abstract
To explore the anti-tumor effect and immune mechanism mediated by a new recombinant adeno-associated virus (rAAV) encoding secondary lymphoid tissue chemokine (SLC) mature peptide gene. AAV Helper-Free system was used for rAAV-SLC package. The anti-tumor effect of SLC was detected by bearing tumor established from Hepal-6 cells both in C57BL/6J and nude mice. Flow cytometry analysis and IHC for Tumor-infiltrating T cells and CD11c+DCs were also investigated to explore the immunological mechanism. rAAV-SLC was successfully packaged in AAV293 cells and transfected Hepal-6 tumor cells at high efficiency. The anti-tumor effect was demonstrated by less tumor weight and longer survival outcome. Coincident with the anti-tumor response, local elaboration of SLC within the tumor bed elicited a heavy infiltration of CD4+, CD8+T cells and CD11c+ dendritic cells into the tumor sites. More importantly, there was higher infiltration of Foxp3+ regulatory T cells (Tregs). Local elaboration of SLC mediated by rAAV-SLC has strong T cell mediated anti-tumor effect. The study also suggested that Tregs in the tumor microenvironment tampered the anti-tumor effect.
Collapse
Affiliation(s)
- Rilun Li
- Department of Anatomy and Histology & Embryology, Shanghai Medical College of Fudan University, 138 Yixueyuan Road, Shanghai, 200032 People’s Republic of China
| | - Heng Hu
- Department of Anatomy and Histology & Embryology, Shanghai Medical College of Fudan University, 138 Yixueyuan Road, Shanghai, 200032 People’s Republic of China
| | - Huiying Ma
- Department of Anatomy and Histology & Embryology, Shanghai Medical College of Fudan University, 138 Yixueyuan Road, Shanghai, 200032 People’s Republic of China
| | - Long Chen
- Department of Anatomy and Histology & Embryology, Shanghai Medical College of Fudan University, 138 Yixueyuan Road, Shanghai, 200032 People’s Republic of China
| | - Shuang Zhou
- Department of Anatomy and Histology & Embryology, Shanghai Medical College of Fudan University, 138 Yixueyuan Road, Shanghai, 200032 People’s Republic of China
| | - Binbin Liu
- Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Yinkun Liu
- Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Chunmin Liang
- Department of Anatomy and Histology & Embryology, Shanghai Medical College of Fudan University, 138 Yixueyuan Road, Shanghai, 200032 People’s Republic of China
| |
Collapse
|
35
|
Vander Lugt B, Tubo NJ, Nizza ST, Boes M, Malissen B, Fuhlbrigge RC, Kupper TS, Campbell JJ. CCR7 plays no appreciable role in trafficking of central memory CD4 T cells to lymph nodes. THE JOURNAL OF IMMUNOLOGY 2013; 191:3119-27. [PMID: 23935190 DOI: 10.4049/jimmunol.1200938] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CCR7⁻/⁻ mice exhibit profound anomalies in lymph node and spleen architecture, which complicates the study of CCR7-mediated T cell trafficking in vivo. To circumvent this problem, we established in vivo models in which wild-type and CCR7⁻/⁻ populations coexist within mice possessing normal lymphoid organs and must compete for developmental niches within the tissues of these mice. Under the conditions we have created in vivo, we find the entry of memory CD4 T cells into lymph nodes from the blood to be independent of CCR7. Thus, the central memory CD4 T cells that traffic though lymph nodes, which are often defined by their expression of CCR7, do not appear to gain any competitive homing advantage by expressing this receptor. Furthermore, in contrast to cutaneous dendritic cell populations, we found that CCR7 deficiency had no appreciable effect on the exit of CD4 T cells from inflamed skin. Finally, we found that wild-type and CCR7⁻/⁻ precursors were equally represented within the major thymic subpopulations, despite previous findings that CCR7 plays a role in seeding the thymus from bone marrow-derived T cell precursors.
Collapse
Affiliation(s)
- Bryan Vander Lugt
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Bellelis P, Barbeiro DF, Rizzo LV, Baracat EC, Abrão MS, Podgaec S. Transcriptional changes in the expression of chemokines related to natural killer and T-regulatory cells in patients with deep infiltrative endometriosis. Fertil Steril 2013; 99:1987-93. [DOI: 10.1016/j.fertnstert.2013.02.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 02/18/2013] [Accepted: 02/20/2013] [Indexed: 10/27/2022]
|
37
|
Moro-García MA, Alonso-Arias R, López-Larrea C. When Aging Reaches CD4+ T-Cells: Phenotypic and Functional Changes. Front Immunol 2013; 4:107. [PMID: 23675374 PMCID: PMC3650461 DOI: 10.3389/fimmu.2013.00107] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/25/2013] [Indexed: 12/30/2022] Open
Abstract
Beyond midlife, the immune system shows aging features and its defensive capability becomes impaired, by a process known as immunosenescence that involves many changes in the innate and adaptive responses. Innate immunity seems to be better preserved globally, while the adaptive immune response exhibits profound age-dependent modifications. Elderly people display a decline in numbers of naïve T-cells in peripheral blood and lymphoid tissues, while, in contrast, their proportion of highly differentiated effector and memory T-cells, such as the CD28null T-cells, increases markedly. Naïve and memory CD4+ T-cells constitute a highly dynamic system with constant homeostatic and antigen-driven proliferation, influx, and loss of T-cells. Thymic activity dwindles with age and essentially ceases in the later decades of life, severely constraining the generation of new T-cells. Homeostatic control mechanisms are very effective at maintaining a large and diverse subset of naïve CD4+ T-cells throughout life, but although later than in CD8 + T-cell compartment, these mechanisms ultimately fail with age.
Collapse
|
38
|
Chen EJH, Shaffer MH, Williamson EK, Huang Y, Burkhardt JK. Ezrin and moesin are required for efficient T cell adhesion and homing to lymphoid organs. PLoS One 2013; 8:e52368. [PMID: 23468835 PMCID: PMC3585410 DOI: 10.1371/journal.pone.0052368] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/12/2012] [Indexed: 01/13/2023] Open
Abstract
T cell trafficking between the blood and lymphoid organs is a complex, multistep process that requires several highly dynamic and coordinated changes in cyto-architecture. Members of the ezrin, radixin and moesin (ERM) family of actin-binding proteins have been implicated in several aspects of this process, but studies have yielded conflicting results. Using mice with a conditional deletion of ezrin in CD4+ cells and moesin-specific siRNA, we generated T cells lacking ERM proteins, and investigated the effect on specific events required for T cell trafficking. ERM-deficient T cells migrated normally in multiple in vitro and in vivo assays, and could undergo efficient diapedesis in vitro. However, these cells were impaired in their ability to adhere to the β1 integrin ligand fibronectin, and to polarize appropriately in response to fibronectin and VCAM-1 binding. This defect was specific for β1 integrins, as adhesion and polarization in response to ICAM-1 were normal. In vivo, ERM-deficient T cells showed defects in homing to lymphoid organs. Taken together, these results show that ERM proteins are largely dispensable for T cell chemotaxis, but are important for β1 integrin function and homing to lymphoid organs.
Collapse
Affiliation(s)
- Emily J. H. Chen
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Meredith H. Shaffer
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Edward K. Williamson
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yanping Huang
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Janis K. Burkhardt
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
39
|
Lu IN, Chiang BL, Lou KL, Huang PT, Yao CCJ, Wang JS, Lin LD, Jeng JH, Chang BE. Cloning, expression and characterization of CCL21 and CCL25 chemokines in zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 38:203-214. [PMID: 22842207 DOI: 10.1016/j.dci.2012.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 07/04/2012] [Accepted: 07/05/2012] [Indexed: 06/01/2023]
Abstract
Chemokines are a large group of proteins implicated in migration, activation, and differentiation of leukocytes. They are well-surveyed in mammals, but less is known in lower vertebrates about their spatiotemporal expressions and functions. From an evolutionary point of view, comparative analyses may provide some fundamental insights into these molecules. In mammals, CCL21 and CCL25 are crucial for thymocyte homing. Herein, we identified and cloned the zebrafish orthologues of CCL21 and CCL25, and analyzed their expression in embryos and adult fish by in situ hybridization. We found that CCL21 was expressed in the craniofacial region, pharynx, and blood vessels in embryos. In adult fish, CCL21 transcripts were located in the kidney, spinal cord, and blood cells. In contrast, expression of CCL25 was only detected in the thymus primordia in embryos. In adult fish, transcripts of CCL25 were maintained in the thymus, and they were also found in the brain and oocytes. Furthermore, we performed an antisense oligonucleotide experiment to evaluate the biological function of CCL25. Results showed that the recruitment of thymocytes was impeded by morpholino-mediated knockdown of CCL25, suggesting that CCL25 is essential for colonization of T-cells in the thymus in early development. Together, our results demonstrate the basic profiles of two CCL chemokines in zebrafish. The tissue-specific expression patterns may pave the way for further genetic dissection in this model organism.
Collapse
Affiliation(s)
- I-Na Lu
- Graduate Institute of Oral Biology, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hara-Chikuma M, Chikuma S, Sugiyama Y, Kabashima K, Verkman AS, Inoue S, Miyachi Y. Chemokine-dependent T cell migration requires aquaporin-3-mediated hydrogen peroxide uptake. ACTA ACUST UNITED AC 2012; 209:1743-52. [PMID: 22927550 PMCID: PMC3457725 DOI: 10.1084/jem.20112398] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The water/glycerol channel aquaporin-3 is required for chemokine-dependent T cell migration during immune responses. Chemokine-dependent trafficking is indispensable for the effector function of antigen-experienced T cells during immune responses. In this study, we report that the water/glycerol channel aquaporin-3 (AQP3) is expressed on T cells and regulates their trafficking in cutaneous immune reactions. T cell migration toward chemokines is dependent on AQP3-mediated hydrogen peroxide (H2O2) uptake but not the canonical water/glycerol transport. AQP3-mediated H2O2 transport is essential for the activation of the Rho family GTPase Cdc42 and the subsequent actin dynamics. Coincidentally, AQP3-deficient mice are defective in the development of hapten-induced contact hypersensitivity, which is attributed to the impaired trafficking of antigen-primed T cells to the hapten-challenged skin. We therefore suggest that AQP3-mediated H2O2 uptake is required for chemokine-dependent T cell migration in sufficient immune response.
Collapse
Affiliation(s)
- Mariko Hara-Chikuma
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
41
|
Lee LS, Banks PA, Bellizzi AM, Sainani NI, Kadiyala V, Suleiman S, Conwell DL, Paulo JA. Inflammatory protein profiling of pancreatic cyst fluid using EUS-FNA in tandem with cytokine microarray differentiates between branch duct IPMN and inflammatory cysts. J Immunol Methods 2012; 382:142-149. [PMID: 22683544 DOI: 10.1016/j.jim.2012.05.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/29/2012] [Accepted: 05/30/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND Diagnosis of pancreatic cystic neoplasms remains problematic. We hypothesize that inflammatory mediator proteins in pancreatic cyst fluid can differentiate branch duct intraductal papillary mucinous neoplasms (BD-IPMNs) and pancreatic inflammatory cysts. We aim to 1) detect inflammatory mediator proteins (IMPs) using a multiplexed IMP-targeted microarray in pancreatic cyst fluid obtained during endoscopic ultrasound fine needle aspiration (EUS-FNA) and 2) compare IMP profiles in pancreatic cyst fluid from BD-IPMNs and inflammatory cysts. Pancreatic cyst fluid from ten patients (5 BD-IPMN and 5 inflammatory cysts) was obtained by EUS-FNA and analyzed directly with a multiplexed microarray assay to determine concentrations of 89 IMPs. Statistical analysis was performed using non-parametric methods. RESULTS Eighty-three of the 89 assayed IMPs were detected in at least one of the 10 patient samples. Seven IMPs were detected in BD-IPMN but not inflammatory cysts, while eleven IMPs were identified in inflammatory cysts but not BD-IPMN. Notably, granulocyte-macrophage colony-stimulating factor (GM-CSF) expression was present in all five inflammatory cyst samples. Hepatocyte growth factor (HGF) was present in significantly higher concentrations in inflammatory cysts compared to BD-IPMN. CONCLUSION Our exploratory analysis reveals that GM-CSF and HGF in EUS-FNA-collected pancreatic cyst fluid can distinguish between BD-IPMN and inflammatory cyst. Coupling microarray molecular techniques to EUS-FNA may represent a major step forward to our understanding complex pancreatic disease.
Collapse
Affiliation(s)
- Linda S Lee
- Center for Pancreatic Disease, Division of Gastroenterology Hepatology and Endoscopy, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Peter A Banks
- Center for Pancreatic Disease, Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Andrew M Bellizzi
- Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Nisha I Sainani
- Department of Radiology, Brigham and Women's Hospital, Boston, MA
| | - Vivek Kadiyala
- Center for Pancreatic Disease, Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Shadeah Suleiman
- Center for Pancreatic Disease, Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Darwin L Conwell
- Center for Pancreatic Disease, Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Joao A Paulo
- Department of Pathology, Children's Hospital Boston, Boston, MA Proteomics Center at Children's Hospital Boston, Boston, MA Center for Pancreatic Disease, Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
42
|
Shannon LA, McBurney TM, Wells MA, Roth ME, Calloway PA, Bill CA, Islam S, Vines CM. CCR7/CCL19 controls expression of EDG-1 in T cells. J Biol Chem 2012; 287:11656-64. [PMID: 22334704 DOI: 10.1074/jbc.m111.310045] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
T lymphocytes circulate between the blood, tissues, and lymph. These T cells carry out immune functions, using the C-C chemokine receptor 7 (CCR7) and its cognate ligands, CCL19 and CCL21, to enter and travel through the lymph nodes. Distinct roles for each ligand in regulating T lymphocyte trafficking have remained elusive. We report that in the human T cell line HuT78 and in primary murine T lymphocytes, signaling from CCR7/CCL19 leads to increased expression and phosphorylation of extracellular signal-regulated kinase 5 (ERK5) within eight hours of stimulation. Within 48-72 h we observed peak levels of endothelial differentiation gene 1 (EDG-1), which mediates the egress of T lymphocytes from lymph nodes. The increased expression of EDG-1 was preceded by up-regulation of its transcription factor, Krüppel-like factor 2 (KLF-2). To determine the cellular effect of disrupting ERK5 signaling from CCR7, we examined the migration of ERK5(flox/flox)/Lck-Cre murine T cells to EDG-1 ligands. While CCL19-stimulated ERK5(flox/flox) naïve T cells showed increased migration to EDG-1 ligands at 48 h, the migration of ERK5(flox/flox)/Lck-Cre T cells remained at a basal level. Accordingly, we define a novel signaling pathway that controls EDG-1 up-regulation following stimulation of T cells by CCR7/CCL19. This is the first report to link the two signaling events that control migration through the lymph nodes: CCR7 mediates entry into the lymph nodes and EDG-1 signaling controls their subsequent exit.
Collapse
Affiliation(s)
- Laura A Shannon
- Department of Microbiology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Burrell BE, Ding Y, Nakayama Y, Park KS, Xu J, Yin N, Bromberg JS. Tolerance and lymphoid organ structure and function. Front Immunol 2011; 2:64. [PMID: 22566853 PMCID: PMC3342028 DOI: 10.3389/fimmu.2011.00064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 11/07/2011] [Indexed: 12/11/2022] Open
Abstract
This issue of Frontiers in Immunologic Tolerance explores barriers to tolerance from a variety of views of cells, molecules, and processes of the immune system. Our laboratory has spent over a decade focused on the migration of the cells of the immune system, and dissecting the signals that determine how and where effector and suppressive regulatory T cells traffic from one site to another in order to reject or protect allografts. These studies have led us to a greater appreciation of the anatomic structure of the immune system, and the realization that the path taken by lymphocytes during the course of the immune response to implanted organs determines the final outcome. In particular, the structures, microanatomic domains, and the cells and molecules that lymphocytes encounter during their transit through blood, tissues, lymphatics, and secondary lymphoid organs are powerful determinants for whether tolerance is achieved. Thus, the understanding of complex cellular and molecular processes of tolerance will not come from “96-well plate immunology,” but from an integrated understanding of the temporal and spatial changes that occur during the response to the allograft. The study of the precise positioning and movement of cells in lymphoid organs has been difficult since it is hard to visualize cells within their three-dimensional setting; instead techniques have tended to be dominated by two-dimensional renderings, although advanced confocal and two-photon systems are changing this view. It is difficult to precisely modify key molecules and events in lymphoid organs, so that existing knockouts, transgenics, inhibitors, and activators have global and pleiotropic effects, rather than precise anatomically restricted influences. Lastly, there are no well-defined postal codes or tracking systems for leukocytes, so that while we can usually track cells from point A to point B, it is exponentially more difficult or even impossible to track them to point C and beyond. We believe this represents one of the fundamental barriers to understanding the immune system and devising therapeutic approaches that take into account anatomy and structure as major controlling principles of tolerance.
Collapse
Affiliation(s)
- Bryna E Burrell
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Wendland M, Willenzon S, Kocks J, Davalos-Misslitz A, Hammerschmidt S, Schumann K, Kremmer E, Sixt M, Hoffmeyer A, Pabst O, Förster R. Lymph Node T Cell Homeostasis Relies on Steady State Homing of Dendritic Cells. Immunity 2011; 35:945-57. [DOI: 10.1016/j.immuni.2011.10.017] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 09/16/2011] [Accepted: 10/25/2011] [Indexed: 11/30/2022]
|
45
|
Hornung M, Werner JM, Farkas S, Schlitt HJ, Geissler EK. Migration and chemokine receptor pattern of colitis-preventing DX5+NKT cells. Int J Colorectal Dis 2011; 26:1423-33. [PMID: 21647599 DOI: 10.1007/s00384-011-1249-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/30/2011] [Indexed: 02/04/2023]
Abstract
PURPOSE DX5(+)NKT cells are a subpopulation of NKT cells expressing both T cell receptor and NK cell markers that show an immune-regulating function. Transferred DX5(+)NKT cells from immune competent Balb/c mice can prevent or reduce induced colitis in severe combined immunodeficient (SCID) mice. Here, we investigated the in vivo migration of DX5(+)NKT cells and their corresponding chemokine receptor patterns. METHODS DX5(+)NKT cells were isolated from spleens of Balb/c mice and transferred into Balb/c SCID mice. After 2 and 8 days, in vivo migration was examined using in vivo microscopy. In addition, the chemokine receptor pattern was analyzed with fluorescence-activated cell sorting (FACS) and the migration assay was performed. RESULTS Our results show that labeled DX5(+)NKT cells were primarily detectable in mesenteric lymph nodes and spleen after transfer. After 8 days, DX5(+)NKT cells were observed in the colonic tissues, especially the appendix. FACS analysis of chemokine receptors in DX5(+)NKT cells revealed expression of CCR3, CCR6, CCR9, CXCR3, CXCR4, and CXCR6, but no CCR5, CXCR5, or the lymphoid homing receptor CCR7. Stimulation upregulated especially CCR7 expression, and chemokine receptor patterns were different between splenic and liver DX5(+)NKT cells. CONCLUSIONS These data indicate that colitis-preventing DX5(+)NKT cells need to traffic through lymphoid organs to execute their immunological function at the site of inflammation. Furthermore, DX5(+)NKT cells express a specific chemokine receptor pattern with an upregulation of the lymphoid homing receptor CCR7 after activation.
Collapse
Affiliation(s)
- Matthias Hornung
- Department of Surgery, University Hospital Regensburg, University of Regensburg, 93042, Regensburg, Germany.
| | | | | | | | | |
Collapse
|
46
|
Thaiss CA, Semmling V, Franken L, Wagner H, Kurts C. Chemokines: a new dendritic cell signal for T cell activation. Front Immunol 2011; 2:31. [PMID: 22566821 PMCID: PMC3342358 DOI: 10.3389/fimmu.2011.00031] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 07/20/2011] [Indexed: 11/19/2022] Open
Abstract
Dendritic cells (DCs) are the main inducers and regulators of cytotoxic T lymphocyte (CTL) responses against viruses and tumors. One checkpoint to avoid misguided CTL activation, which might damage healthy cells of the body, is the necessity for multiple activation signals, involving both antigenic as well as additional signals that reflect the presence of pathogens. DCs provide both signals when activated by ligands of pattern recognition receptors and “licensed” by helper lymphocytes. Recently, it has been established that such T cell licensing can be facilitated by CD4+ T helper cells (“classical licensing”) or by natural killer T cells (“alternative licensing”). Licensing regulates the DC/CTL cross-talk at multiple layers. Direct recruitment of CTLs through chemokines released by licensed DCs has recently emerged as a common theme and has a crucial impact on the efficiency of CTL responses. Here, we discuss recent advances in our understanding of DC licensing for cross-priming and implications for the temporal and spatial regulation underlying this process. Future vaccination strategies will benefit from a deeper insight into the mechanisms that govern CTL activation.
Collapse
Affiliation(s)
- Christoph A Thaiss
- Institutes of Molecular Medicine and Experimental Immunology, Rheinische Friedrich-Wilhelms-University Bonn, Germany
| | | | | | | | | |
Collapse
|
47
|
Yang S, Liu F, Wang QJ, Rosenberg SA, Morgan RA. The shedding of CD62L (L-selectin) regulates the acquisition of lytic activity in human tumor reactive T lymphocytes. PLoS One 2011; 6:e22560. [PMID: 21829468 PMCID: PMC3145643 DOI: 10.1371/journal.pone.0022560] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/27/2011] [Indexed: 01/13/2023] Open
Abstract
CD62L/L-selectin is a marker found on naïve T cells and further distinguishes central memory (Tcm, CD62L+) from effector memory (Tem, CD62L-) T cells. The regulation of CD62L plays a pivotal role in controlling the traffic of T lymphocytes to and from peripheral lymph nodes. CD62L is shed from the cell membrane following T cell activation, however, the physiological significance of this event remains to be elucidated. In this study, we utilized in vitro generated anti-tumor antigen T cells and melanoma lines as a model to evaluate the dynamics of CD62L shedding and expression of CD107a as a marker of lytic activity. Upon encounter, with matched tumor lines, antigen reactive T cells rapidly lose CD62L expression and this was associated with the acquisition of CD107a. By CD62L ELISA, we confirmed that this transition was mediated by the shedding of CD62L when T cells encountered specific tumor antigen. The introduction of a shedding resistant mutant of CD62L into the tumor antigen-reactive T cell line JKF6 impaired CD107a acquisition following antigen recognition and this was correlated with decreased lytic activity as measured by (51)Cr release assays. The linkage of the shedding of CD62L from the surface of anti-tumor T cells and acquisition of lytic activity, suggests a new function for CD62L in T cell effector functions and anti-tumor activity.
Collapse
Affiliation(s)
- Shicheng Yang
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Fang Liu
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Qiong J. Wang
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Steven A. Rosenberg
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richard A. Morgan
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
48
|
Wang Y, Irvine DJ. Engineering chemoattractant gradients using chemokine-releasing polysaccharide microspheres. Biomaterials 2011; 32:4903-13. [PMID: 21463892 PMCID: PMC3139910 DOI: 10.1016/j.biomaterials.2011.03.027] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 03/10/2011] [Indexed: 01/16/2023]
Abstract
Spatial and temporal concentration gradients of chemoattractants direct many biological processes, especially the guidance of immune cells to tissue sites during homeostasis and responses to infection. Such gradients are ultimately generated by secretion of attractant proteins from single cells or collections of cells. Here we describe cell-sized chemoattractant-releasing polysaccharide microspheres, capable of mimicking chemokine secretion by host cells and generating sustained bioactive chemokine gradients in their local microenvironment. Exploiting the common characteristic of net cationic charge and reversible glycosaminoglycan binding exhibited by many chemokines, we synthesized alginate hydrogel microspheres that could be loaded with several different chemokines (including CCL21, CCL19, CXCL12, and CXCL10) by electrostatic adsorption. These polysaccharide microspheres subsequently released the attractants over periods ranging from a few hours to at least 1 day when placed in serum-containing medium or collagen gels. The generated gradients were able to attract cells more than hundreds of microns away to make contact with individual microspheres. This versatile system for chemoattractant delivery could find applications in immunotherapy, vaccines and fundamental chemotaxis studies in vivo and in vitro.
Collapse
Affiliation(s)
- Yana Wang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | |
Collapse
|
49
|
Dendritic cell chemotaxis in 3D under defined chemokine gradients reveals differential response to ligands CCL21 and CCL19. Proc Natl Acad Sci U S A 2011; 108:5614-9. [PMID: 21422278 DOI: 10.1073/pnas.1014920108] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Dendritic cell (DC) homing to the lymphatics and positioning within the lymph node is important for adaptive immunity, and is regulated by gradients of CCL19 and CCL21, ligands for CCR7. Despite the importance of DC chemotaxis, it is not well understood how DCs interpret gradients of these chemokines in a complex 3D microenvironment. Here, we use a microfluidic device that allows rapid establishment of stable gradients in 3D matrices to show that DC chemotaxis in 3D can respond to CCR7 ligand gradients as small as 0.4%, which helps explain how DCs sense lymphatic vessels in an environment where broadcast distance for chemokine diffusion is hindered by convective flows into the vessel. Interestingly, DCs displayed similar sensitivities to both chemokines at small gradients (≤ 60 nM/mm), but migrated more efficiently towards higher gradients of CCL21, which unlike CCL19 binds strongly to matrix proteoglycans and signals without the need for internalization. Furthermore, cells preferentially migrated towards CCL21 when exposed to equal and opposite gradients of CCL21 and CCL19 simultaneously, even when matrix-binding of CCL21 was prevented. Although these ligands have similar binding affinity to CCR7, our results demonstrate that, in a 3D environment, CCL21 is a more potent directional cue for DC migration than CCL19. These findings provide new quantitative insight into DC chemotaxis in a physiological 3D environment and suggest how CCL19 and CCL21 may signal differently to fine-tune DC homing and positioning within the lymphatic system. These results also have broad relevance to other systems of cell chemotaxis, which remain poorly understood in the 3D context.
Collapse
|
50
|
Abstract
The directed migration of cells in response to chemical cues is known as chemoattraction, and plays a key role in the temporal and spatial positioning of cells in lower- and higher-order life forms. Key molecules in this process are the chemotactic cytokines, or chemokines, which, in humans, constitute a family of approx. 40 molecules. Chemokines exert their effects by binding to specific GPCRs (G-protein-coupled receptors) which are present on a wide variety of mature cells and their progenitors, notably leucocytes. The inappropriate or excessive generation of chemokines is a key component of the inflammatory response observed in several clinically important diseases, notably allergic diseases such as asthma. Consequently, much time and effort has been directed towards understanding which chemokine receptors and ligands are important in the allergic response with a view to therapeutic intervention. Such strategies can take several forms, although, as the superfamily of GPCRs has historically proved amenable to blockade by small molecules, the development of specific antagonists has been has been a major focus of several groups. In the present review, I detail the roles of chemokines and their receptors in allergic disease and also highlight current progress in the development of relevant chemokine receptor antagonists.
Collapse
|