1
|
Wu H, Kren BT, Lane AN, Cassel TA, Higashi RM, Fan TWM, Scaria GS, Shekels LL, Klein MA, Albrecht JH. Cyclin D1 extensively reprograms metabolism to support biosynthetic pathways in hepatocytes. J Biol Chem 2023; 299:105407. [PMID: 38152849 PMCID: PMC10687208 DOI: 10.1016/j.jbc.2023.105407] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 12/29/2023] Open
Abstract
Cell proliferation requires metabolic reprogramming to accommodate biosynthesis of new cell components, and similar alterations occur in cancer cells. However, the mechanisms linking the cell cycle machinery to metabolism are not well defined. Cyclin D1, along with its main partner cyclin-dependent kinase 4 (Cdk4), is a pivotal cell cycle regulator and driver oncogene that is overexpressed in many cancers. Here, we examine hepatocyte proliferation to define novel effects of cyclin D1 on biosynthetic metabolism. Metabolomic studies reveal that cyclin D1 broadly promotes biosynthetic pathways including glycolysis, the pentose phosphate pathway, and the purine and pyrimidine nucleotide synthesis in hepatocytes. Proteomic analyses demonstrate that overexpressed cyclin D1 binds to numerous metabolic enzymes including those involved in glycolysis and pyrimidine synthesis. In the glycolysis pathway, cyclin D1 activates aldolase and GAPDH, and these proteins are phosphorylated by cyclin D1/Cdk4 in vitro. De novo pyrimidine synthesis is particularly dependent on cyclin D1. Cyclin D1/Cdk4 phosphorylates the initial enzyme of this pathway, carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD), and metabolomic analysis indicates that cyclin D1 depletion markedly reduces the activity of this enzyme. Pharmacologic inhibition of Cdk4 along with the downstream pyrimidine synthesis enzyme dihydroorotate dehydrogenase synergistically inhibits proliferation and survival of hepatocellular carcinoma cells. These studies demonstrate that cyclin D1 promotes a broad network of biosynthetic pathways in hepatocytes, and this model may provide insights into potential metabolic vulnerabilities in cancer cells.
Collapse
Affiliation(s)
- Heng Wu
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, Minnesota, USA
| | - Betsy T Kren
- Research Service, Minneapolis VA Health Care System, Minneapolis, Minnesota, USA
| | - Andrew N Lane
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, and Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Teresa A Cassel
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, and Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Richard M Higashi
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, and Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Teresa W M Fan
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, and Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - George S Scaria
- Hematology and Oncology Division, Minneapolis VA Health Care System, Minneapolis, Minnesota, USA
| | - Laurie L Shekels
- Research Service, Minneapolis VA Health Care System, Minneapolis, Minnesota, USA
| | - Mark A Klein
- Hematology and Oncology Division, Minneapolis VA Health Care System, Minneapolis, Minnesota, USA
| | - Jeffrey H Albrecht
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
2
|
Piazza VG, Cicconi NS, Martinez CS, Dominici FP, Miquet JG, Sotelo AI. Liver impact of growth hormone (GH) intermittent treatment during the growth period in mice. Mol Cell Endocrinol 2023; 566-567:111911. [PMID: 36905979 DOI: 10.1016/j.mce.2023.111911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/08/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
Liver impact of prolonged GH-treatment given to non-GH-deficient growing mice between the third and eighth week of life was evaluated in both sexes. Tissues were collected 6 h after last dose or four weeks later. Somatometric, biochemical, histological, immunohistochemical, RT-qPCR and immunoblotting determinations were performed. Five-week GH intermittent administration induced body weight gain and body and bone length increase, augmented organ weight, higher hepatocellular size and proliferation, and increased liver IGF1 gene expression. Phosphorylation of signaling mediators and expression of GH-induced proliferation-related genes was decreased in GH-treated mice liver 6h after last injection, reflecting active sensitization/desensitization cycles. In females, GH elicited EGFR expression, associated to higher EGF-induced STAT3/5 phosphorylation. Four weeks after treatment, increased organ weight concomitant to body weight gain was still observed, whereas hepatocyte enlargement reverted. However, basal signaling for critical mediators was lower in GH-treated animals and in male controls compared to female ones, suggesting signaling declination.
Collapse
Affiliation(s)
- Verónica G Piazza
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nadia S Cicconi
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina S Martinez
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fernando P Dominici
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Johanna G Miquet
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana I Sotelo
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Liu S, Tan C, Tyers M, Zetterberg A, Kafri R. What programs the size of animal cells? Front Cell Dev Biol 2022; 10:949382. [PMID: 36393871 PMCID: PMC9665425 DOI: 10.3389/fcell.2022.949382] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/07/2022] [Indexed: 01/19/2023] Open
Abstract
The human body is programmed with definite quantities, magnitudes, and proportions. At the microscopic level, such definite sizes manifest in individual cells - different cell types are characterized by distinct cell sizes whereas cells of the same type are highly uniform in size. How do cells in a population maintain uniformity in cell size, and how are changes in target size programmed? A convergence of recent and historical studies suggest - just as a thermostat maintains room temperature - the size of proliferating animal cells is similarly maintained by homeostatic mechanisms. In this review, we first summarize old and new literature on the existence of cell size checkpoints, then discuss additional advances in the study of size homeostasis that involve feedback regulation of cellular growth rate. We further discuss recent progress on the molecules that underlie cell size checkpoints and mechanisms that specify target size setpoints. Lastly, we discuss a less-well explored teleological question: why does cell size matter and what is the functional importance of cell size control?
Collapse
Affiliation(s)
- Shixuan Liu
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, United States
| | - Ceryl Tan
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, University of Montréal, Montréal, QC, Canada
| | - Anders Zetterberg
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ran Kafri
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
4
|
Øvrebø JI, Ma Y, Edgar BA. Cell growth and the cell cycle: New insights about persistent questions. Bioessays 2022; 44:e2200150. [PMID: 36222263 DOI: 10.1002/bies.202200150] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/08/2022]
Abstract
Before a cell divides into two daughter cells, it typically doubles not only its DNA, but also its mass. Numerous studies in cells ranging from yeast to mammals have shown that cellular growth, stimulated by nutrients and/or growth factor signaling, is a prerequisite for cell cycle progression in most types of cells. The textbook view of growth-regulated cell cycles is that growth signaling activates the transcription of G1 Cyclin genes to induce cell proliferation, and also stimulates anabolic metabolism and cell growth in parallel. However, genetic knockout tests in model organisms indicate that this is not the whole story, and new studies show that additional, "smarter" mechanisms help to coordinate the cell cycle with growth itself. Here we summarize recent advances in this field, and discuss current models in which growth signaling regulates cell proliferation by targeting core cell cycle regulators via non-transcriptional mechanisms.
Collapse
Affiliation(s)
- Jan Inge Øvrebø
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Yiqin Ma
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Bruce A Edgar
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
5
|
Bhattacharya A, Wei J, Song W, Gao B, Tian C, Wu SA, Wang J, Chen L, Fang D, Qi L. SEL1L-HRD1 ER-associated degradation suppresses hepatocyte hyperproliferation and liver cancer. iScience 2022; 25:105183. [PMID: 36238898 PMCID: PMC9550610 DOI: 10.1016/j.isci.2022.105183] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/15/2022] [Accepted: 09/20/2022] [Indexed: 11/02/2022] Open
Abstract
Endoplasmic reticulum (ER) homeostasis has been implicated in the pathogenesis of various forms of cancer; however, our understanding of the role of ER quality control mechanisms in tumorigenesis remains incomplete. Here, we show that the SEL1L-HRD1 complex of ER-associated degradation (ERAD) suppresses hepatocyte proliferation and tumorigenesis in mice. Hepatocyte-specific deletion of Sel1L or Hrd1 predisposed mice to diet/chemical-induced tumors. Proteomics screen from SEL1L-deficient livers revealed WNT5A, a tumor suppressor, as an ERAD substrate. Indeed, nascent WNT5A was misfolding prone and degraded by SEL1L-HRD1 ERAD in a quality control capacity. In the absence of ERAD, WNT5A misfolds is largely retained in the ER and forms high-molecular weight aggregates, thereby depicting a loss-of-function effect and attenuating WNT5A-mediated suppression of hepatocyte proliferation. In humans, SEL1L-HRD1 ERAD expression correlated positively with survival time for patients with liver cancer. Overall, our data reveal a key role of SEL1L-HRD1 ERAD in suppressing hepatocyte proliferation and liver cancer.
Collapse
Affiliation(s)
- Asmita Bhattacharya
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
- Graduate Program of Genetics, Genomics and Development, Cornell University, Ithaca, NY 14853, USA
| | - Juncheng Wei
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Wenxin Song
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Beixue Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Chunyan Tian
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Shuangcheng Alivia Wu
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Jian Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Ligong Chen
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ling Qi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| |
Collapse
|
6
|
Alshehade S, Alshawsh MA, Murugaiyah V, Asif M, Alshehade O, Almoustafa H, Al Zarzour RH. The role of protein kinases as key drivers of metabolic dysfunction-associated fatty liver disease progression: New insights and future directions. Life Sci 2022; 305:120732. [PMID: 35760093 DOI: 10.1016/j.lfs.2022.120732] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 02/07/2023]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD), proposed in 2020 is a novel term for non-alcoholic fatty liver disease (NAFLD) which was coined for the first time in 1980. It is a leading cause of the most chronic liver disease and hepatic failure all over the world, and unfortunately, with no licensed drugs for treatment yet. The progress of the disease is driven by the triggered inflammatory process, oxidative stress, and insulin resistance in many pathways, starting with simple hepatic steatosis to non-alcoholic steatohepatitis, fibrosis, cirrhosis, and liver cancer. Protein kinases (PKs), such as MAPK, ErbB, PKC, PI3K/Akt, and mTOR, govern most of the pathological pathways by acting on various downstream key points in MAFLD and regulating both hepatic gluco- lipo-neogenesis and inflammation. Therefore, modulating the function of those potential protein kinases that are effectively involved in MAFLD might be a promising therapeutic approach for tackling this disease. In the current review, we have discussed the key role of protein kinases in the pathogenesis of MAFLD and performed a protein-protein interaction (PPI) network among the main proteins of each kinase pathway with MAFLD-related proteins to predict the most likely targets of the PKs in MAFLD. Moreover, we have reported the experimental, pre-clinical, and clinical data for the most recent investigated molecules that are activating p38-MAPK and AMPK proteins and inhibiting the other PKs to improve MAFLD condition by regulating oxidation and inflammation signalling.
Collapse
Affiliation(s)
- Salah Alshehade
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia; Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Vikneswaran Murugaiyah
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Muhammad Asif
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Punjab, Pakistan
| | - Omayma Alshehade
- Department of Paediatrics, Faculty of Medicine, Damascus University, Damascus, Syria
| | - Hassan Almoustafa
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Raghdaa Hamdan Al Zarzour
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia; Department of Pharmacology, Faculty of Pharmacy, Arab International University, Damascus, Syria.
| |
Collapse
|
7
|
Laouari D, Vergnaud P, Hirose T, Zaidan M, Rabant M, Nguyen C, Burtin M, Legendre C, Codogno P, Friedlander G, Anglicheau D, Terzi F. The sexual dimorphism of kidney growth in mice and humans. Kidney Int 2022; 102:78-95. [PMID: 35337891 DOI: 10.1016/j.kint.2022.02.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 02/02/2022] [Accepted: 02/16/2022] [Indexed: 10/18/2022]
Abstract
Kidney mass and function are sexually determined, but the cellular events and the molecular mechanisms involved in this dimorphism are poorly characterized. By combining female and male mice with castration/replacement experiments, we showed that male mice exhibited kidney overgrowth from five weeks of age. This effect was organ specific, since liver and heart weight were comparable between males and females, regardless of age. Consistently, the androgen receptor was found to be expressed in the kidneys of males, but not in the liver. In growing mice, androgens led to kidney overgrowth by first inducing a burst of cell proliferation and then an increase of cell size. Remarkably, androgens were also required to maintain cell size in adults. In fact, orchiectomy resulted in smaller kidneys in a matter of few weeks. These changes paralleled the changes of the expression of ornithine decarboxylase and cyclin D1, two known mediators of kidney growth, whereas, unexpectedly, mTORC1 and Hippo pathways did not seem to be involved. Androgens also enhanced kidney autophagy, very likely by increasing transcription factor EB nuclear translocation. Functionally, the increase of tubular mass resulted in increased sodium/phosphate transport. These findings were relevant to humans. Remarkably, by studying living gender-paired kidney donors-recipients, we showed that tubular cell size increased three months after transplantation in men as compared to women, regardless of the donor gender. Thus, our results identify novel signaling pathways that may be involved in androgen-induced kidney growth and homeostasis, and suggest that androgens determine kidney size after transplantation.
Collapse
Affiliation(s)
- Denise Laouari
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département « Croissance et Signalisation », F-75006 Paris, France
| | - Paul Vergnaud
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département « Croissance et Signalisation », F-75006 Paris, France; Service de Néphrologie Pédiatrique-Hémodialyse-Transplantation, AP-HP, Hôpital Necker, Paris, France
| | - Takuo Hirose
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département « Croissance et Signalisation », F-75006 Paris, France
| | - Mohamad Zaidan
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département « Croissance et Signalisation », F-75006 Paris, France; Service de Néphrologie-Transplantation, AP-HP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Marion Rabant
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département « Croissance et Signalisation », F-75006 Paris, France; Service d'Anatomo-Pathologie, AP-HP, Hôpital Necker, Paris, France
| | - Clément Nguyen
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département « Croissance et Signalisation », F-75006 Paris, France
| | - Martine Burtin
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département « Croissance et Signalisation », F-75006 Paris, France
| | - Christophe Legendre
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département « Croissance et Signalisation », F-75006 Paris, France; Service de Néphrologie-Transplantation, AP-HP, Hôpital Necker, Paris, France
| | - Patrice Codogno
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département « Croissance et Signalisation », F-75006 Paris, France
| | - Gerard Friedlander
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département « Croissance et Signalisation », F-75006 Paris, France
| | - Dany Anglicheau
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département « Croissance et Signalisation », F-75006 Paris, France; Service de Néphrologie-Transplantation, AP-HP, Hôpital Necker, Paris, France
| | - Fabiola Terzi
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département « Croissance et Signalisation », F-75006 Paris, France.
| |
Collapse
|
8
|
Translational control of E2f1 regulates the Drosophila cell cycle. Proc Natl Acad Sci U S A 2022; 119:2113704119. [PMID: 35074910 PMCID: PMC8795540 DOI: 10.1073/pnas.2113704119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
E2F transcription factors are master regulators of the eukaryotic cell cycle. In Drosophila, the sole activating E2F, E2F1, is both required for and sufficient to promote G1→S progression. E2F1 activity is regulated both by binding to RB Family repressors and by posttranscriptional control of E2F1 protein levels by the EGFR and TOR signaling pathways. Here, we investigate cis-regulatory elements in the E2f1 messenger RNA (mRNA) that enable E2f1 translation to respond to these signals and promote mitotic proliferation of wing imaginal disc and intestinal stem cells. We show that small upstream open reading frames (uORFs) in the 5' untranslated region (UTR) of the E2f1 mRNA limit its translation, impacting rates of cell proliferation. E2f1 transgenes lacking these 5'UTR uORFs caused TOR-independent expression and excess cell proliferation, suggesting that TOR activity can bypass uORF-mediated translational repression. EGFR signaling also enhanced translation but through a mechanism less dependent on 5'UTR uORFs. Further, we mapped a region in the E2f1 mRNA that contains a translational enhancer, which may also be targeted by TOR signaling. This study reveals translational control mechanisms through which growth signaling regulates cell cycle progression.
Collapse
|
9
|
Liang R, Lin YH, Zhu H. Genetic and Cellular Contributions to Liver Regeneration. Cold Spring Harb Perspect Biol 2021; 14:a040832. [PMID: 34750173 PMCID: PMC9438780 DOI: 10.1101/cshperspect.a040832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The regenerative capabilities of the liver represent a paradigm for understanding tissue repair in solid organs. Regeneration after partial hepatectomy in rodent models is well understood, while regeneration in the context of clinically relevant chronic injuries is less studied. Given the growing incidence of fatty liver disease, cirrhosis, and liver cancer, interest in liver regeneration is increasing. Here, we will review the principles, genetics, and cell biology underlying liver regeneration, as well as new approaches being used to study heterogeneity in liver tissue maintenance and repair.
Collapse
Affiliation(s)
- Roger Liang
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Yu-Hsuan Lin
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Hao Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
10
|
Daks A, Mamontova V, Fedorova O, Petukhov A, Shuvalov O, Parfenyev S, Netsvetay S, Venina A, Kizenko A, Imyanitov E, Barlev N. Set7/9 controls proliferation and genotoxic drug resistance of NSCLC cells. Biochem Biophys Res Commun 2021; 572:41-48. [PMID: 34343833 DOI: 10.1016/j.bbrc.2021.07.086] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/18/2022]
Abstract
The SET domain containing lysine-specific methyltransferase, Set7/9, covalently attaches methyl moieties to a variety of histone and non-histone substrates. Among the substrates of Set7/9 are: p53, NF-kB, PARP1, E2F1, and other transcription factors that regulate many vital processes in the cell. Through the post-translational regulation of these critical master-regulators Set7/9 is involved in regulation of cell proliferation, cancer progression, and DNA damage response. Noteworthy, the role of Set7/9 in tumorigenesis is contradictory and apparently depends on the cellular context. In this study, we investigated the effect of Set7/9 on tumorigenic characteristics of lung cancer cells. We showed that CRISPR/Cas9-mediated knock-out of Set7/9 in A549 and its shRNA-mediated knock-down in H1299 NSCLC cell lines both augment the proliferation rate of tumor cells compared to the matching wild-type cells. Mechanistically, ablation of Set7/9 increased the expression of cyclin A2 and D1 genes thereby promoting the accumulation of cells in S phase. Furthermore, knockout of Set7/9 decreased the expression of E-cadherin, whose product is critical for cell-cell interactions. Accordingly, this led to the increased migration of lung cancer cells. Finally, both ablation or pharmacological inhibition of Set7/9 enzymatic methyltransferase activity by the selective inhibitor (R)-PFI-2 sensitized NSCLC cells to genotoxic drug, doxorubicin. This effect was also recapitulated on patients-derived NSCLC cell lines. Taken together, our results suggest that Set7/9 plays anti-proliferative and DNA damage-protective roles in NSCLC cells and hence represents an attractive target for anti-cancer chemotherapy.
Collapse
Affiliation(s)
- Alexandra Daks
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation.
| | - Victoria Mamontova
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation
| | - Olga Fedorova
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation
| | - Alexey Petukhov
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation; Almazov National Medical Research Centre, Institute of Hematology, 197341, St Petersburg, Russian Federation
| | - Oleg Shuvalov
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation
| | - Sergey Parfenyev
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation
| | - Sofia Netsvetay
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation
| | - Aigul Venina
- N.N. Petrov Institute of Oncology, 197758, Saint-Petersburg, Russian Federation
| | - Alena Kizenko
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation
| | - Evgeny Imyanitov
- N.N. Petrov Institute of Oncology, 197758, Saint-Petersburg, Russian Federation
| | - Nickolai Barlev
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation; Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Moscow Region, Russian Federation.
| |
Collapse
|
11
|
A negative reciprocal regulatory axis between cyclin D1 and HNF4α modulates cell cycle progression and metabolism in the liver. Proc Natl Acad Sci U S A 2020; 117:17177-17186. [PMID: 32631996 DOI: 10.1073/pnas.2002898117] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hepatocyte nuclear factor 4α (HNF4α) is a master regulator of liver function and a tumor suppressor in hepatocellular carcinoma (HCC). In this study, we explore the reciprocal negative regulation of HNF4α and cyclin D1, a key cell cycle protein in the liver. Transcriptomic analysis of cultured hepatocyte and HCC cells found that cyclin D1 knockdown induced the expression of a large network of HNF4α-regulated genes. Chromatin immunoprecipitation-sequencing (ChIP-seq) demonstrated that cyclin D1 inhibits the binding of HNF4α to thousands of targets in the liver, thereby diminishing the expression of associated genes that regulate diverse metabolic activities. Conversely, acute HNF4α deletion in the liver induces cyclin D1 and hepatocyte cell cycle progression; concurrent cyclin D1 ablation blocked this proliferation, suggesting that HNF4α maintains proliferative quiescence in the liver, at least, in part, via repression of cyclin D1. Acute cyclin D1 deletion in the regenerating liver markedly inhibited hepatocyte proliferation after partial hepatectomy, confirming its pivotal role in cell cycle progression in this in vivo model, and enhanced the expression of HNF4α target proteins. Hepatocyte cyclin D1 gene ablation caused markedly increased postprandial liver glycogen levels (in a HNF4α-dependent fashion), indicating that the cyclin D1-HNF4α axis regulates glucose metabolism in response to feeding. In AML12 hepatocytes, cyclin D1 depletion led to increased glucose uptake, which was negated if HNF4α was depleted simultaneously, and markedly elevated glycogen synthesis. To summarize, mutual repression by cyclin D1 and HNF4α coordinately controls the cell cycle machinery and metabolism in the liver.
Collapse
|
12
|
He J, Chen J, Wei X, Leng H, Mu H, Cai P, Luo L. Mammalian Target of Rapamycin Complex 1 Signaling Is Required for the Dedifferentiation From Biliary Cell to Bipotential Progenitor Cell in Zebrafish Liver Regeneration. Hepatology 2019; 70:2092-2106. [PMID: 31136010 DOI: 10.1002/hep.30790] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 05/18/2019] [Indexed: 12/11/2022]
Abstract
The liver has a high regenerative capacity. Upon two-thirds partial hepatectomy, the hepatocytes proliferate and contribute to liver regeneration. After severe liver injury, when the proliferation of residual hepatocytes is blocked, the biliary epithelial cells (BECs) lose their morphology and express hepatoblast and endoderm markers, dedifferentiate into bipotential progenitor cells (BP-PCs), then proliferate and redifferentiate into mature hepatocytes. Little is known about the mechanisms involved in the formation of BP-PCs after extreme liver injury. Using a zebrafish liver extreme injury model, we found that mammalian target of rapamycin complex 1 (mTORC1) signaling regulated dedifferentiation of BECs and proliferation of BP-PCs. mTORC1 signaling was up-regulated in BECs during extreme hepatocyte ablation and continuously expressed in later liver regeneration. Inhibition of mTORC1 by early chemical treatment before hepatocyte ablation blocked the dedifferentiation from BECs into BP-PCs. Late mTORC1 inhibition after liver injury reduced the proliferation of BP-PC-derived hepatocytes and BECs but did not affect BP-PC redifferentiation. mTOR and raptor mutants exhibited defects in BEC transdifferentiation including dedifferentiation, BP-PC proliferation, and redifferentiation, similar to the chemical inhibition. Conclusion: mTORC1 signaling governs BEC-driven liver regeneration by regulating the dedifferentiation of BECs and the proliferation of BP-PC-derived hepatocytes and BECs.
Collapse
Affiliation(s)
- Jianbo He
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Jingying Chen
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Xiangyong Wei
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Hui Leng
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Hongliang Mu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Pengcheng Cai
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Lingfei Luo
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
13
|
Li Y, Cao Y, Wang J, Fu S, Cheng J, Ma L, Zhang Q, Guo W, Kan X, Liu J. Kp-10 promotes bovine mammary epithelial cell proliferation by activating GPR54 and its downstream signaling pathways. J Cell Physiol 2019; 235:4481-4493. [PMID: 31621904 DOI: 10.1002/jcp.29325] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/30/2019] [Indexed: 12/24/2022]
Abstract
It has been reported that the proliferation and apoptosis of mammary epithelial cells affect milk production. Therefore, ensuring adequate mammary epithelial cells is expected to enhance milk production. This study is devoted to studying the effects of kisspeptin-10 (Kp-10), a peptide hormone composed of 10 amino acids, on bovine mammary epithelial cell (bMEC) proliferation and exploring the underlying mechanism of its action. bMECs were treated with various concentrations of Kp-10 (1, 10, 100, and 1,000 nM), and 100 nM Kp-10 promoted the proliferation of the bMECs. Kp-10 promoted the cell cycle transition from G1 to the S and G2 phases, increased the protein levels of Cyclin D1 and Cyclin D3, and reduced the expression levels of the p21 gene. This study also showed that inhibition of G protein-coupled receptor 54 (GPR54), AKT, mTOR, and ERK1/2 reduced the proliferation of the bMECs that had been induced by Kp-10. In addition, Kp-10 decreased the complexes formed by Rb and E2F1 and increased the expression levels of the E2F1 target genes. These results indicate that Kp-10 promotes bMEC proliferation by activating GPR54 and its downstream signaling pathways.
Collapse
Affiliation(s)
- Yanwei Li
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Yu Cao
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Jiaxin Wang
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Shoupeng Fu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Ji Cheng
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Lijun Ma
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Qing Zhang
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Wenjin Guo
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xingchi Kan
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Juxiong Liu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| |
Collapse
|
14
|
Chang YW, Singh KP. Nicotine-induced oxidative stress contributes to EMT and stemness during neoplastic transformation through epigenetic modifications in human kidney epithelial cells. Toxicol Appl Pharmacol 2019; 374:65-76. [PMID: 31047982 DOI: 10.1016/j.taap.2019.04.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/09/2019] [Accepted: 04/26/2019] [Indexed: 01/03/2023]
Abstract
Nicotine is a component of cigarette smoke and mounting evidence suggests toxicity and carcinogenicity of tobacco smoke in kidney. Carcinogenicity of nicotine itself in kidney and the underlying molecular mechanisms are not well-understood. Hence, the objective of this study was to determine the carcinogenic effects of chronic nicotine exposure in Hk-2 human kidney epithelial cells. The effects of nicotine exposure on the expression of genes for cellular reprogramming, redox status, and growth signaling pathways were also evaluated to understand the molecular mechanisms. Results revealed that chronic exposure to nicotine induced growth and neoplastic transformation in HK-2 cells. Increased levels of intracellular reactive oxygen species (ROS), acquired stem cell-like sphere formation, and epithelial-mesenchymal-transition (EMT) changes were observed in nicotine exposed cells. Treatment with antioxidant N-acetyl cysteine (NAC) resulted in abrogation of EMT and stemness in HK-2 cells, indicating the role of nicotine-induced ROS in these morphological changes. The result also suggests that ROS controls the stemness through regulation of AKT pathway during early stages of carcinogenesis. Additionally, the expression of epigenetic regulatory genes was altered in nicotine-exposed cells and the changes were reversed by NAC. The epigenetic therapeutics 5-aza-2'-deoxycytidine and Trichostatin A also abrogated the stemness. This suggests the nicotine-induced oxidative stress caused epigenetic alterations contributing to stemness during neoplastic transformation. To our knowledge, this is the first report showing the ROS-mediated epigenetic modifications as the underlying mechanism for carcinogenicity of nicotine in human kidney epithelial cells. This study further suggests the potential of epigenetic therapeutics for pharmacological intervention in nicotine-induced kidney cancer.
Collapse
Affiliation(s)
- Yu-Wei Chang
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, TX, USA
| | - Kamaleshwar P Singh
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
15
|
Wu H, Ploeger JM, Kamarajugadda S, Mashek DG, Mashek MT, Manivel JC, Shekels LL, Lapiro JL, Albrecht JH. Evidence for a Novel Regulatory Interaction Involving Cyclin D1, Lipid Droplets, Lipolysis, and Cell Cycle Progression in Hepatocytes. Hepatol Commun 2019; 3:406-422. [PMID: 30859152 PMCID: PMC6396375 DOI: 10.1002/hep4.1316] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/22/2018] [Indexed: 12/12/2022] Open
Abstract
During normal proliferation, hepatocytes accumulate triglycerides (TGs) in lipid droplets (LDs), but the underlying mechanisms and functional significance of this steatosis are unknown. In the current study, we examined the coordinated regulation of cell cycle progression and LD accumulation. As previously shown, hepatocytes develop increased LD content after mitogen stimulation. Cyclin D1, in addition to regulating proliferation, was both necessary and sufficient to promote LD accumulation in response to mitogens. Interestingly, cyclin D1 promotes LD accumulation by inhibiting the breakdown of TGs by lipolysis through a mechanism involving decreased lipophagy, the autophagic degradation of LDs. To examine whether inhibition of lipolysis is important for cell cycle progression, we overexpressed adipose TG lipase (ATGL), a key enzyme involved in TG breakdown. As expected, ATGL reduced LD content but also markedly inhibited hepatocyte proliferation, suggesting that lipolysis regulates a previously uncharacterized cell cycle checkpoint. Consistent with this, in mitogen-stimulated cells with small interfering RNA-mediated depletion of cyclin D1 (which inhibits proliferation and stimulates lipolysis), concurrent ATGL knockdown restored progression into S phase. Following partial hepatectomy, a model of robust hepatocyte proliferation in vivo, ATGL overexpression led to decreased LD content, cell cycle inhibition, and marked liver injury, further indicating that down-regulation of lipolysis is important for normal hepatocyte proliferation. Conclusion: We suggest a new relationship between steatosis and proliferation in hepatocytes: cyclin D1 inhibits lipolysis, resulting in LD accumulation, and suppression of lipolysis is necessary for cell cycle progression.
Collapse
Affiliation(s)
- Heng Wu
- Gastroenterology DivisionMinneapolis VA Health Care SystemMinneapolisMN
- Division of Gastroenterology, Hepatology, and NutritionUniversity of MinnesotaMinneapolisMN
| | - Jonathan M. Ploeger
- Department of Biochemistry, Molecular Biology, and BiophysicsUniversity of MinnesotaMinneapolisMN
| | | | - Douglas G. Mashek
- Department of Biochemistry, Molecular Biology, and BiophysicsUniversity of MinnesotaMinneapolisMN
| | - Mara T. Mashek
- Department of Biochemistry, Molecular Biology, and BiophysicsUniversity of MinnesotaMinneapolisMN
| | - Juan C. Manivel
- Department of PathologyMinneapolis VA Health Care SystemMinneapolisMN
| | - Laurie L. Shekels
- Gastroenterology DivisionMinneapolis VA Health Care SystemMinneapolisMN
| | - Jessica L. Lapiro
- Gastroenterology DivisionMinneapolis VA Health Care SystemMinneapolisMN
- Division of Gastroenterology, Hepatology, and NutritionUniversity of MinnesotaMinneapolisMN
| | - Jeffrey H. Albrecht
- Gastroenterology DivisionMinneapolis VA Health Care SystemMinneapolisMN
- Division of Gastroenterology, Hepatology, and NutritionUniversity of MinnesotaMinneapolisMN
| |
Collapse
|
16
|
Moustafa S, Joseph DN, Taylor RN, Whirledge S. New models of lipopolysaccharide-induced implantation loss reveal insights into the inflammatory response. Am J Reprod Immunol 2019; 81:e13082. [PMID: 30604526 DOI: 10.1111/aji.13082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022] Open
Abstract
PROBLEM Chronic endometritis, inflammation of the uterizzvvne lining caused by common gram-negative bacterial strains or mycoplasma, has been associated with unexplained implantation failure and infertility. However, limited models of bacteria-induced implantation loss exist to study the molecular changes that occur in vivo. The goal of this study was to provide a new resource to study the process of bacteria-induced inflammation and implantation loss utilizing common experimental models: C57Bl/6 mice and primary human endometrial stromal cells. METHOD OF STUDY Prior to implantation, mated C57Bl/6 females were administered vehicle (saline) or gram-negative bacterial lipopolysaccharide (LPS) at a range of concentrations by intraperitoneal injection. Implantation sites were counted, and uteri were harvested to evaluate the molecular changes that accompany LPS-mediated implantation loss. Primary human endometrial stromal cells were decidualized in vitro in the presence and absence of LPS. Total RNA and conditioned media were harvested to evaluate the expression of known decidualization-associated genes and various cytokines and chemokines. RESULTS Lipopolysaccharide treatment resulted in fewer implantation sites in mice, decreased expression of decidualization-associated genes, and altered expression and release of cytokines and chemokines. Immunohistological analysis of the uterus from LPS-exposed mice demonstrated increased apoptosis and decreased proliferation during decidualization. CONCLUSION Lipopolysaccharide exposure disrupted implantation and decidualization in mice and human endometrial stromal cells. This model could be used to study the pathophysiology of implantation failure in patients with chronic endometritis or to test potential therapeutic interventions.
Collapse
Affiliation(s)
- Sarah Moustafa
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Dana N Joseph
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Robert N Taylor
- Utah Center for Reproductive Health, University of Utah Health, Salt Lake City, Utah
| | - Shannon Whirledge
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
17
|
Gopalan PK, Villegas AG, Cao C, Pinder-Schenck M, Chiappori A, Hou W, Zajac-Kaye M, Ivey AM, Kaye FJ. CDK4/6 inhibition stabilizes disease in patients with p16-null non-small cell lung cancer and is synergistic with mTOR inhibition. Oncotarget 2018; 9:37352-37366. [PMID: 30647837 PMCID: PMC6324768 DOI: 10.18632/oncotarget.26424] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/16/2018] [Indexed: 12/24/2022] Open
Abstract
Aberrant activation of CDK4/6 kinase is the most common somatic event in non-small cell lung cancer (NSCLC). Palbociclib is a highly specific CDK4/6 inhibitor shown to inhibit cell cycle progression and promote cellular senescence. We conducted a phase 2 clinical trial of palbociclib in 19 previously-treated patients with advanced NSCLC. Only patients with p16-null staining by immunohistochemistry and documented tumor progression were eligible. The primary endpoint was tumor response rate. Palbociclib therapy alone was well-tolerated. Of 16 evaluable patients who received > 1 month of therapy, there were no objective responses. However, 8 patients (50%) with previously progressive NSCLC had stable disease (SD) lasting a range of 4-10.5 months. Median overall survival (OS) for all cases was 5.1 months, and median overall survival for the subset of patients with SD was 16.6 months. We also performed preclinical testing of palbociclib in combination with 13 different targeted or cytotoxic chemotherapeutic agents using a cell viability assay. Only the combination of palbociclib and mTOR inhibitors resulted in synergistic growth inhibition, particularly in tumors carrying RAS mutations. Our findings warrant further clinical investigation of the combination of palbociclib and mTOR inhibitors, especially in patients carrying activated RAS mutations.
Collapse
Affiliation(s)
- Priya K Gopalan
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Andres Gordillo Villegas
- Department of Medicine, University of Florida, Gainesville, FL, USA.,Current address: Sangamo Therapeutics, Richmond, CA, USA
| | - Chunxia Cao
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Mary Pinder-Schenck
- Moffitt Cancer Center, Tampa, FL, USA.,Current address: Merck, Philadelphia, PA, USA
| | | | - Wei Hou
- Department of Biostatistics, University of Florida, Gainesville, FL, USA.,Current address: Division of Epidemiology and Biostatistics, Stony Brook University, Stony Brook, NY, USA
| | - Maria Zajac-Kaye
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL, USA
| | - Alison M Ivey
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Frederic J Kaye
- Department of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
18
|
Willet SG, Lewis MA, Miao ZF, Liu D, Radyk MD, Cunningham RL, Burclaff J, Sibbel G, Lo HYG, Blanc V, Davidson NO, Wang ZN, Mills JC. Regenerative proliferation of differentiated cells by mTORC1-dependent paligenosis. EMBO J 2018; 37:e98311. [PMID: 29467218 PMCID: PMC5881627 DOI: 10.15252/embj.201798311] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/18/2022] Open
Abstract
In 1900, Adami speculated that a sequence of context-independent energetic and structural changes governed the reversion of differentiated cells to a proliferative, regenerative state. Accordingly, we show here that differentiated cells in diverse organs become proliferative via a shared program. Metaplasia-inducing injury caused both gastric chief and pancreatic acinar cells to decrease mTORC1 activity and massively upregulate lysosomes/autophagosomes; then increase damage associated metaplastic genes such as Sox9; and finally reactivate mTORC1 and re-enter the cell cycle. Blocking mTORC1 permitted autophagy and metaplastic gene induction but blocked cell cycle re-entry at S-phase. In kidney and liver regeneration and in human gastric metaplasia, mTORC1 also correlated with proliferation. In lysosome-defective Gnptab-/- mice, both metaplasia-associated gene expression changes and mTORC1-mediated proliferation were deficient in pancreas and stomach. Our findings indicate differentiated cells become proliferative using a sequential program with intervening checkpoints: (i) differentiated cell structure degradation; (ii) metaplasia- or progenitor-associated gene induction; (iii) cell cycle re-entry. We propose this program, which we term "paligenosis", is a fundamental process, like apoptosis, available to differentiated cells to fuel regeneration following injury.
Collapse
Affiliation(s)
- Spencer G Willet
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mark A Lewis
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhi-Feng Miao
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Dengqun Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Megan D Radyk
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Rebecca L Cunningham
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph Burclaff
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Greg Sibbel
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Hei-Yong G Lo
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Valerie Blanc
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Nicholas O Davidson
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhen-Ning Wang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jason C Mills
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
19
|
Kamarajugadda S, Becker JR, Hanse EA, Mashek DG, Mashek MT, Hendrickson AM, Mullany LK, Albrecht JH. Cyclin D1 represses peroxisome proliferator-activated receptor alpha and inhibits fatty acid oxidation. Oncotarget 2018; 7:47674-47686. [PMID: 27351284 PMCID: PMC5216970 DOI: 10.18632/oncotarget.10274] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/04/2016] [Indexed: 01/27/2023] Open
Abstract
Cyclin D1 is a cell cycle protein that promotes proliferation by mediating progression through key checkpoints in G1 phase. It is also a proto-oncogene that is commonly overexpressed in human cancers. In addition to its canonical role in controlling cell cycle progression, cyclin D1 affects other aspects of cell physiology, in part through transcriptional regulation. In this study, we find that cyclin D1 inhibits the activity of a key metabolic transcription factor, peroxisome proliferator-activated receptor α (PPARα), a member of nuclear receptor family that induces fatty acid oxidation and may play an anti-neoplastic role. In primary hepatocytes, cyclin D1 inhibits PPARα transcriptional activity and target gene expression in a cdk4-independent manner. In liver and breast cancer cells, knockdown of cyclin D1 leads to increased PPARα transcriptional activity, expression of PPARα target genes, and fatty acid oxidation. Similarly, cyclin D1 depletion enhances binding of PPARα to target sequences by chromatin immunoprecipitation. In proliferating hepatocytes and regenerating liver in vivo, induction of endogenous cyclin D1 is associated with diminished PPARα activity. Cyclin D1 expression is both necessary and sufficient for growth factor-mediated repression of fatty acid oxidation in proliferating hepatocytes. These studies indicate that in addition to playing a pivotal role in cell cycle progression, cyclin D1 represses PPARα activity and inhibits fatty acid oxidation. Our findings establish a new link between cyclin D1 and metabolism in both tumor cells and physiologic hepatocyte proliferation.
Collapse
Affiliation(s)
- Sushama Kamarajugadda
- Gastroenterology Division, Minneapolis VA Health Care System, Minneapolis, MN 55417, USA
| | - Jennifer R Becker
- Minneapolis Medical Research Foundation, Minneapolis, MN, 55404, USA
| | - Eric A Hanse
- Minneapolis Medical Research Foundation, Minneapolis, MN, 55404, USA
| | - Douglas G Mashek
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mara T Mashek
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Lisa K Mullany
- Minneapolis Medical Research Foundation, Minneapolis, MN, 55404, USA
| | - Jeffrey H Albrecht
- Gastroenterology Division, Minneapolis VA Health Care System, Minneapolis, MN 55417, USA
| |
Collapse
|
20
|
Li P, Wei J, Gao X, Wei B, Lin H, Huang R, Niu Y, Lim K, Jing K, Chu J. Insulin Promotes the Proliferation of Human Umbilical Cord Matrix-Derived Mesenchymal Stem Cells by Activating the Akt-Cyclin D1 Axis. Stem Cells Int 2017; 2017:7371615. [PMID: 28484496 PMCID: PMC5412176 DOI: 10.1155/2017/7371615] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/19/2017] [Accepted: 03/14/2017] [Indexed: 02/07/2023] Open
Abstract
Background. The functions of insulin in mesenchymal stem cells (MSC) remain poorly understood. Methods. MSC from human umbilical cord matrix (UCM) cultured in serum-free media (SFM) with or without insulin were subjected to various molecular biological analyses to determine their proliferation and growth states, expression levels of Akt-cyclin D1 signaling molecules, and in vitro differentiation capacities. Results. Insulin accelerated the G1-S cell cycle progression of UCM-MSC and significantly stimulated their proliferation and growth in SFM. The pro-proliferative action of insulin was associated with augmented cyclin D1 and phosphorylated Akt expression levels. Akt inactivation remarkably abrogated insulin-induced increases in cyclin D1 expression and cell proliferation, indicating that insulin enhances the proliferation of UCM-MSC via acceleration of the G1-S transition mediated by the Akt-cyclin D1 pathway. Additionally, the UCM-MSC propagated in SFM supplemented with insulin exhibited similar specific surface antigen profiles and differentiation capacities as those generated in conventional media containing fetal bovine serum. Conclusions. These findings suggest that insulin acts solely to promote UCM-MSC proliferation without affecting their immunophenotype and differentiation potentials and thus have important implications for utilizing insulin to expand clinical-grade MSC in vitro.
Collapse
Affiliation(s)
- Peng Li
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jinsong Wei
- Department of Spinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiang Gao
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bo Wei
- Department of Spinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hao Lin
- Department of Spinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Rui Huang
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yanru Niu
- Laboratory Institute of Minimally Invasive Orthopedic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Kyu Lim
- Department of Biochemistry, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Kaipeng Jing
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Laboratory Institute of Minimally Invasive Orthopedic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiaqi Chu
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Spinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
21
|
Moris D, Vernadakis S, Papalampros A, Vailas M, Dimitrokallis N, Petrou A, Dimitroulis D. Mechanistic insights of rapid liver regeneration after associating liver partition and portal vein ligation for stage hepatectomy. World J Gastroenterol 2016; 22:7613-7624. [PMID: 27672282 PMCID: PMC5011675 DOI: 10.3748/wjg.v22.i33.7613] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/09/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To highlight the potential mechanisms of regeneration in the Associating Liver Partition and Portal vein ligation for Stage hepatectomy models (clinical and experimental) that could unlock the myth behind the extraordinary capability of the liver for regeneration, which would help in designing new therapeutic options for the regenerative drive in difficult setup, such as chronic liver diseases. Associating Liver Partition and Portal vein ligation for Stage hepatectomy has been recently advocated to induce rapid future liver remnant hypertrophy that significantly shortens the time for the second stage hepatectomy. The introduction of Associating Liver Partition and Portal vein ligation for Stage hepatectomy in the surgical armamentarium of therapeutic tools for liver surgeons represented a real breakthrough in the history of liver surgery. METHODS A comprehensive literature review of Associating Liver Partition and Portal vein ligation for Stage hepatectomy and its utility in liver regeneration is performed. RESULTS Liver regeneration after Associating Liver Partition and Portal vein ligation for Stage hepatectomy is a combination of portal flow changes and parenchymal transection that generate a systematic response inducing hepatocyte proliferation and remodeling. CONCLUSION Associating Liver Partition and Portal vein ligation for Stage hepatectomy represents a real breakthrough in the history of liver surgery because it offers rapid liver regeneration potential that facilitate resection of liver tumors that were previously though unresectable. The jury is still out though in terms of safety, efficacy and oncological outcomes. As far as Associating Liver Partition and Portal vein ligation for Stage hepatectomy -induced liver regeneration is concerned, further research on the field should focus on the role of non-parenchymal cells in liver regeneration as well as on the effect of Associating Liver Partition and Portal vein ligation for Stage hepatectomy in liver regeneration in the setup of parenchymal liver disease.
Collapse
|
22
|
Huang J, Schriefer AE, Yang W, Cliften PF, Rudnick DA. Identification of an epigenetic signature of early mouse liver regeneration that is disrupted by Zn-HDAC inhibition. Epigenetics 2015; 9:1521-31. [PMID: 25482284 DOI: 10.4161/15592294.2014.983371] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Liver regeneration has been well studied with hope of discovering strategies to improve liver disease outcomes. Nevertheless, the signals that initiate such regeneration remain incompletely defined, and translation of mechanism-based pro-regenerative interventions into new treatments for hepatic diseases has not yet been achieved. We previously reported the isoform-specific regulation and essential function of zinc-dependent histone deacetylases (Zn-HDACs) during mouse liver regeneration. Those data suggest that epigenetically regulated anti-proliferative genes are deacetylated and transcriptionally suppressed by Zn-HDAC activity or that pro-regenerative factors are acetylated and induced by such activity in response to partial hepatectomy (PH). To investigate these possibilities, we conducted genome-wide interrogation of the liver histone acetylome during early PH-induced liver regeneration in mice using acetyL-histone chromatin immunoprecipitation and next generation DNA sequencing. We also compared the findings of that study to those seen during the impaired regenerative response that occurs with Zn-HDAC inhibition. The results reveal an epigenetic signature of early liver regeneration that includes both hyperacetylation of pro-regenerative factors and deacetylation of anti-proliferative and pro-apoptotic genes. Our data also show that administration of an anti-regenerative regimen of the Zn-HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) not only disrupts gene-specific pro-regenerative changes in liver histone deacetylation but also reverses PH-induced effects on histone hyperacetylation. Taken together, these studies offer new insight into and suggest novel hypotheses about the epigenetic mechanisms that regulate liver regeneration.
Collapse
Affiliation(s)
- Jiansheng Huang
- a Department of Pediatrics ; Washington University School of Medicine ; St. Louis , MO USA
| | | | | | | | | |
Collapse
|
23
|
Elucidating Metabolic and Epigenetic Mechanisms that Regulate Liver Regeneration. CURRENT PATHOBIOLOGY REPORTS 2015. [DOI: 10.1007/s40139-015-0065-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Phosphorylation of ribosomal protein S6 mediates compensatory renal hypertrophy. Kidney Int 2014; 87:543-56. [PMID: 25229342 PMCID: PMC4344886 DOI: 10.1038/ki.2014.302] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 07/11/2014] [Accepted: 07/24/2014] [Indexed: 01/15/2023]
Abstract
The molecular mechanism underlying renal hypertrophy and progressive nephron damage remains poorly understood. Here we generated congenic ribosomal protein S6 (rpS6) knockin mice expressing non-phosphorylatable rpS6 and found that uninephrectomy-induced renal hypertrophy was significantly blunted in these knockin mice. Uninephrectomy-induced increases in cyclin D1 and decreases in cyclin E in the remaining kidney were attenuated in the knockin mice compared to their wild-type littermates. Uninephrectomy induced rpS6 phosphorylation in the wild type mice; however, no rpS6 phosphorylation was detected in uninephrectomized or sham-operated knockin mice. Nonetheless, uninephrectomy stimulated comparable 4E-BP1 phosphorylation in both knockin and wild type mice, indicating that mTORC1 was still activated in the knockin mice. Moreover, the mTORC1 inhibitor rapamycin prevented both rpS6 and 4E-BP1 phosphorylation, significantly blunted uninephrectomy-induced renal hypertrophy in wild type mice, but did not prevent residual renal hypertrophy despite inhibiting 4E-BP1 phosphorylation in uninephrectomized knockin mice. Thus, both genetic and pharmacological approaches unequivocally demonstrate that phosphorylated rpS6 is a downstream effector of the mTORC1-S6K1 signaling pathway mediating renal hypertrophy. Hence, rpS6 phosphorylation facilitates the increase in cyclin D1 and decrease in cyclin E1 that underlie the hypertrophic nature of uninephrectomy-induced kidney growth.
Collapse
|
25
|
Kawada JI, Ito Y, Iwata S, Suzuki M, Kawano Y, Kanazawa T, Siddiquey MNA, Kimura H. mTOR Inhibitors Induce Cell-Cycle Arrest and Inhibit Tumor Growth in Epstein–Barr Virus–Associated T and Natural Killer Cell Lymphoma Cells. Clin Cancer Res 2014; 20:5412-22. [DOI: 10.1158/1078-0432.ccr-13-3172] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Toderke EL, Baretta GAP, Gama Filho OP, Matias JEF. Sirolimus influence on hepatectomy-induced liver regeneration in rats. Rev Col Bras Cir 2014; 41:203-7. [DOI: 10.1590/s0100-69912014000300012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 07/25/2013] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE: To evaluate the influence of sirolimus on liver regeneration triggered by resection of 70% of the liver of adult rats. METHODS: we used 40 Wistar rats randomly divided into two groups (study and control), each group was divided into two equal subgroups according to the day of death (24 hours and seven days). Sirolimus was administered at a dose of 1mg/kg in the study group and the control group was given 1 ml of saline. The solutions were administered daily since three days before hepatectomy till the rats death to removal of the regenerated liver, conducted in 24 hours or 7 days after hepatectomy. Liver regeneration was measured by the KWON formula, by thenumber of mitotic figures (hematoxylin-eosin staining) and by the immunohistochemical markers PCNA and Ki-67. RESULTS: there was a statistically significant difference between the 24h and the 7d groups. When comparing the study and control groups in the same period, there was a statistically significant variation only for Ki-67, in which there were increased numbers of hepatocytes in cell multiplication in the 7d study group compared with the 7d control group (p = 0.04). CONCLUSION: there was no negative influence of sirolimus in liver regeneration and there was a positive partial effect at immunohistochemistry with Ki-67.
Collapse
|
27
|
Peng HS, Xu XH, Zhang R, He XY, Wang XX, Wang WH, Xu TY, Xiao XR. Multiple low doses of erythropoietin delay the proliferation of hepatocytes but promote liver function in a rat model of subtotal hepatectomy. Surg Today 2014; 44:1109-15. [PMID: 24691936 DOI: 10.1007/s00595-014-0889-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 03/04/2013] [Indexed: 02/08/2023]
Abstract
PURPOSE The impact of various doses of erythropoietin (EPO) on liver regeneration after partial hepatectomy (PH) in different animal models is still under debate. We investigated the impact of low doses of EPO on liver regeneration in a rat model of subtotal hepatectomy. METHODS We established a 90 % PH rat model with perioperative injections of low-dose EPO (1,000 IU/kg). We analyzed survival and hepatocyte proliferation in animals treated with or without EPO and assessed liver function by blood ammonia measurement and the indocyanine green 15-min retention test. RESULTS Low doses of EPO treatment improved the survival of rats after 90 % PH. Unexpectedly, during the first 24 h after the operation, liver regeneration in the EPO-treated rats was inhibited. DNA synthesis, cell proliferation, and the expression of cyclins and p-STAT3 peaked 48 h after PH, which was delayed by about 24 h vs. the control rats. Furthermore, EPO treatment increased the serum level of IL-6 and protected the hepatocytes from apoptosis. CONCLUSION Low doses of EPO do not stimulate early hepatocyte proliferation in the regenerating liver, but contribute to liver protection by inducing IL-6 and inhibiting apoptosis.
Collapse
Affiliation(s)
- Hua-sheng Peng
- Department of Geriatrics, Chengdu Military General Hospital, Chengdu, 610083, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Wang Y, Hu Z, Liu Z, Chen R, Peng H, Guo J, Chen X, Zhang H. MTOR inhibition attenuates DNA damage and apoptosis through autophagy-mediated suppression of CREB1. Autophagy 2013; 9:2069-86. [PMID: 24189100 DOI: 10.4161/auto.26447] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Hyperactivation of mechanistic target of rapamycin (MTOR) is a common feature of human cancers, and MTOR inhibitors, such as rapamycin, are thus becoming therapeutics in targeting certain cancers. However, rapamycin has also been found to compromise the efficacy of chemotherapeutics to cells with hyperactive MTOR. Here, we show that loss of TSC2 or PTEN enhanced etoposide-induced DNA damage and apoptosis, which was blunted by suppression of MTOR with either rapamycin or RNA interference. cAMP response element-binding protein 1 (CREB1), a nuclear transcription factor that regulates genes involved in survival and death, was positively regulated by MTOR in mouse embryonic fibroblasts (MEFs) and cancer cell lines. Silencing Creb1 expression with siRNA protected MTOR-hyperactive cells from DNA damage-induced apoptosis. Furthermore, loss of TSC2 or PTEN impaired either etoposide or nutrient starvation-induced autophagy, which in turn, leads to CREB1 hyperactivation. We further elucidated an inverse correlation between autophagy activity and CREB1 activity in the kidney tumor tissue obtained from a TSC patient and the mouse livers with hepatocyte-specific knockout of PTEN. CREB1 induced DNA damage and subsequent apoptosis in response to etoposide in autophagy-defective cells. Reactivation of CREB1 or inhibition of autophagy not only improved the efficacy of rapamycin but also alleviated MTOR inhibition-mediated chemoresistance. Therefore, autophagy suppression of CREB1 may underlie the MTOR inhibition-mediated chemoresistance. We suggest that inhibition of MTOR in combination with CREB1 activation may be used in the treatment of cancer caused by an abnormal PI3K-PTEN-AKT-TSC1/2-MTOR signaling pathway. CREB1 activators should potentiate the efficacy of chemotherapeutics in treatment of these cancers.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Medical Molecular Biology; Department of Physiology; Institute of Basic Medical Sciences and School of Basic Medicine; Graduate School of Peking Union Medical College; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Elucidating the metabolic regulation of liver regeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:309-21. [PMID: 24139945 DOI: 10.1016/j.ajpath.2013.04.034] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/26/2013] [Accepted: 04/01/2013] [Indexed: 02/08/2023]
Abstract
The regenerative capability of liver is well known, and the mechanisms that regulate liver regeneration are extensively studied. Such analyses have defined general principles that govern the hepatic regenerative response and implicated specific extracellular and intracellular signals as regulated during and essential for normal liver regeneration. Nevertheless, the most proximal events that stimulate liver regeneration and the distal signals that terminate this process remain incompletely understood. Recent data suggest that the metabolic response to hepatic insufficiency might be the proximal signal that initiates regenerative hepatocellular proliferation. This review provides an overview of the data in support of a metabolic model of liver regeneration and reflects on the clinical implications and areas for further study suggested by these findings.
Collapse
|
30
|
Fouraschen SMG, de Ruiter PE, Kwekkeboom J, de Bruin RWF, Kazemier G, Metselaar HJ, Tilanus HW, van der Laan LJW, de Jonge J. mTOR signaling in liver regeneration: Rapamycin combined with growth factor treatment. World J Transplant 2013; 3:36-47. [PMID: 24255881 PMCID: PMC3832859 DOI: 10.5500/wjt.v3.i3.36] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/28/2013] [Accepted: 06/19/2013] [Indexed: 02/05/2023] Open
Abstract
AIM: To investigate the effects of mammalian target of rapamycin (mTOR) inhibition on liver regeneration and autophagy in a surgical resection model.
METHODS: C57BL/6 mice were subjected to a 70% partial hepatectomy (PH) and treated intraperitoneally every 24 h with a combination of the mTOR inhibitor rapamycin (2.5 mg/kg per day) and the steroid dexamethasone (2.0 mg/kg per day) in phosphate buffered saline (PBS) or with PBS alone as vehicle control. In the immunosuppressant group, part of the group was treated subcutaneously 4 h prior to and 24 h after PH with a combination of human recombinant interleukin 6 (IL-6; 500 μg/kg per day) and hepatocyte growth factor (HGF; 100 μg/kg per day) in PBS. Animals were sacrificed 2, 3 or 5 d after PH and liver tissue and blood were collected for further analysis. Immunohistochemical staining for 5-Bromo-2’-deoxyuridine (BrdU) was used to quantify hepatocyte proliferation. Western blotting was used to detect hepatic microtubule-associated protein 1 light chain 3 (LC3)-II protein expression as a marker for autophagy. Hepatic gene expression levels of proliferation-, inflammation- and angiogenesis-related genes were examined by real-time reverse transcription-polymerase chain reaction and serum bilirubin and transaminase levels were analyzed at the clinical chemical core facility of the Erasmus MC-University Medical Center.
RESULTS: mTOR inhibition significantly suppressed regeneration, shown by decreased hepatocyte proliferation (2% vs 12% BrdU positive hepatocyte nuclei at day 2, P < 0.01; 0.8% vs 1.4% at day 5, P = 0.02) and liver weight reconstitution (63% vs 76% of initial total liver weight at day 3, P = 0.04), and furthermore increased serum transaminase levels (aspartate aminotransferase 641 U/L vs 185 U/L at day 2, P = 0.02). Expression of the autophagy marker LC3-II, which was reduced during normal liver regeneration, increased after mTOR inhibition (46% increase at day 2, P = 0.04). Hepatic gene expression showed an increased inflammation-related response [tumor necrosis factor (TNF)-α 3.2-fold upregulation at day 2, P = 0.03; IL-1Ra 6.0-fold upregulation at day 2 and 42.3-fold upregulation at day 5, P < 0.01] and a reduced expression of cell cycle progression and angiogenesis-related factors (HGF 40% reduction at day 2; vascular endothelial growth factor receptor 2 50% reduction at days 2 and 5; angiopoietin 1 60% reduction at day 2, all P≤ 0.01). Treatment with the regeneration stimulating cytokine IL-6 and growth factor HGF could overcome the inhibitory effect on liver weight (75% of initial total liver weight at day 3, P = 0.02 vs immunosuppression alone and P = 0.90 vs controls) and partially reversed gene expression changes caused by rapamycin (TNF-α and IL-1Ra levels at day 2 were restored to control levels). However, no significant changes in hepatocyte proliferation, serum injury markers or autophagy were found.
CONCLUSION: mTOR inhibition severely impairs liver regeneration and increases autophagy after PH. These effects are partly reversed by stimulation of the IL-6 and HGF pathways.
Collapse
|
31
|
Michelotti GA, Xie G, Swiderska M, Choi SS, Karaca G, Krüger L, Premont R, Yang L, Syn WK, Metzger D, Diehl AM. Smoothened is a master regulator of adult liver repair. J Clin Invest 2013; 123:2380-94. [PMID: 23563311 DOI: 10.1172/jci66904] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 02/12/2013] [Indexed: 12/16/2022] Open
Abstract
When regenerative processes cannot keep pace with cell death, functional epithelia are replaced by scar. Scarring is characterized by both excessive accumulation of fibrous matrix and persistent outgrowth of cell types that accumulate transiently during successful wound healing, including myofibroblasts (MFs) and progenitors. This suggests that signaling that normally directs these cells to repair injured epithelia is deregulated. To evaluate this possibility, we examined liver repair during different types of liver injury after Smoothened (SMO), an obligate intermediate in the Hedgehog (Hh) signaling pathway, was conditionally deleted in cells expressing the MF-associated gene, αSMA. Surprisingly, blocking canonical Hh signaling in MFs not only inhibited liver fibrosis but also prevented accumulation of liver progenitors. Hh-sensitive, hepatic stellate cells (HSCs) were identified as the source of both MFs and progenitors by lineage-tracing studies in 3 other strains of mice, coupled with analysis of highly pure HSC preparations using flow cytometry, immunofluorescence confocal microscopy, RT-PCR, and in situ hybridization. The results identify SMO as a master regulator of hepatic epithelial regeneration based on its ability to promote mesenchymal-to-epithelial transitions in a subpopulation of HSC-derived MFs with features of multipotent progenitors.
Collapse
Affiliation(s)
- Gregory A Michelotti
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
MEK drives cyclin D1 hyperelevation during geroconversion. Cell Death Differ 2013; 20:1241-9. [PMID: 23852369 DOI: 10.1038/cdd.2013.86] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/06/2013] [Accepted: 06/07/2013] [Indexed: 12/26/2022] Open
Abstract
When the cell cycle becomes arrested, MTOR (mechanistic Target of Rapamycin) converts reversible arrest into senescence (geroconversion). Hyperexpression of cyclin D1 is a universal marker of senescence along with hypertrophy, beta-Gal staining and loss of replicative/regenerative potential (RP), namely, the ability to restart proliferation when the cell cycle is released. Inhibition of MTOR decelerates geroconversion, although only partially decreases cyclin D1. Here we show that in p21- and p16-induced senescence, inhibitors of mitogen-activated/extracellular signal-regulated kinase (MEK) (U0126, PD184352 and siRNA) completely prevented cyclin D1 accumulation, making it undetectable. We also used MEL10 cells in which MEK inhibitors do not inhibit MTOR. In such cells, U0126 by itself induced senescence that was remarkably cyclin D1 negative. In contrast, inhibition of cyclin-dependent kinase (CDK) 4/6 by PD0332991 caused cyclin D1-positive senescence in MEL10 cells. Both types of senescence were suppressed by rapamycin, converting it into reversible arrest. We confirmed that the inhibitor of CDK4/6 caused cyclin D1 positive senescence in normal RPE cells, whereas U0126 prevented cyclin D1 expression. Elimination of cyclin D1 by siRNA did not prevent other markers of senescence that are consistent with the lack of its effect on MTOR. Our data confirmed that a mere inhibition of the cell cycle was sufficient to cause senescence, providing MTOR was active, and inhibition of MEK partially inhibited MTOR in a cell-type-dependent manner. Second, hallmarks of senescence may be dissociated, and hyperelevated cyclin D1, a marker of hyperactivation of senescent cells, did not necessarily determine other markers of senescence. Third, inhibition of MEK was sufficient to eliminate cyclin D1, regardless of MTOR.
Collapse
|
33
|
Kirstein MM, Boukouris AE, Pothiraju D, Buitrago-Molina LE, Marhenke S, Schütt J, Orlik J, Kühnel F, Hegermann J, Manns MP, Vogel A. Activity of the mTOR inhibitor RAD001, the dual mTOR and PI3-kinase inhibitor BEZ235 and the PI3-kinase inhibitor BKM120 in hepatocellular carcinoma. Liver Int 2013; 33:780-93. [PMID: 23489999 DOI: 10.1111/liv.12126] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 01/06/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most deadly cancers worldwide with only few therapeutic options for patients with advanced disease. There is growing evidence indicating that activation of the PI3K/Akt/mTOR pathway plays an important role in HCC and therefore represents a promising target for novel therapeutic approaches. The aim of this study was to evaluate and compare the antitumour activity of the mTOR inhibitor RAD001, the dual mTOR and PI3-kinase inhibitor BEZ235 and the PI3-kinase inhibitor BKM120 in vitro and in vivo. EXPERIMENTAL DESIGN The antitumour effects of RAD001, BEZ235 and BKM120 were analysed in seven hepatoma cell lines as mono and combination therapy with Doxorubicin, Cisplatin, Irinotecan or 5-Flourouracil in vitro and in xenografts. Cell-cycle progression, apoptosis, and autophagy were analysed. Furthermore, effects on mitochondrial respiration and glycolysis were assessed. RESULTS Treatment with RAD001, BEZ235 and BKM120 markedly reduced tumour cell viability. Combination of PI3K inhibitors with chemotherapy was most effective. RAD001, BEZ235 and BKM120 reduced tumour growth mainly by inhibiting cell-cycle progression rather than by inducing apoptosis. Interestingly, the antitumour effects were strongly associated with a reduction of mitochondrial respiration. BKM120, which exhibited the strongest antiproliferative effect, most strongly impaired oxidative phosphorylation compared with the other drugs. CONCLUSIONS In this study, BKM120 showed the strongest antitumour activity. Our findings suggest impairment of mitochondrial function as a relevant mechanism of BKM120. Moreover, combination of PI3K and mTOR inhibitors with cytotoxic agents could be promising option for non-cirrhotic HCC patients.
Collapse
Affiliation(s)
- Martha M Kirstein
- Department of Hepatology, Gastroenterology and Endocrinology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Miquet JG, Freund T, Martinez CS, González L, Díaz ME, Micucci GP, Zotta E, Boparai RK, Bartke A, Turyn D, Sotelo AI. Hepatocellular alterations and dysregulation of oncogenic pathways in the liver of transgenic mice overexpressing growth hormone. Cell Cycle 2013; 12:1042-57. [PMID: 23428905 DOI: 10.4161/cc.24026] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Growth hormone (GH) overexpression throughout life in transgenic mice is associated with the development of liver tumors at old ages. The preneoplastic pathology observed in the liver of young adult GH-overexpressing mice is similar to that present in humans at high risk of hepatic cancer. To elucidate the molecular pathogenesis underlying the pro-oncogenic liver pathology induced by prolonged exposure to elevated GH levels, the activation and expression of several components of signal transduction pathways that have been implicated in hepatocellular carcinogenesis were evaluated in the liver of young adult GH-transgenic mice. In addition, males and females were analyzed in parallel in order to evaluate sexual dimorphism. Transgenic mice from both sexes exhibited hepatocyte hypertrophy with enlarged nuclear size and exacerbated hepatocellular proliferation, which were higher in males. Dysregulation of several oncogenic pathways was observed in the liver of GH-overexpressing transgenic mice. Many signaling mediators and effectors were upregulated in transgenic mice compared with normal controls, including Akt2, NFκB, GSK3β, β-catenin, cyclin D1, cyclin E, c-myc, c-jun and c-fos. The molecular alterations described did not exhibit sexual dimorphism in transgenic mice except for higher gene expression and nuclear localization of cyclin D1 in males. We conclude that prolonged exposure to GH induces in the liver alterations in signaling pathways involved in cell growth, proliferation and survival that resemble those found in many human tumors.
Collapse
Affiliation(s)
- Johanna G Miquet
- Department of Biological Chemistry-IQUIFIB (CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Leontieva OV, Lenzo F, Demidenko ZN, Blagosklonny MV. Hyper-mitogenic drive coexists with mitotic incompetence in senescent cells. Cell Cycle 2012. [PMID: 23187803 PMCID: PMC3562309 DOI: 10.4161/cc.22937] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
When the cell cycle is arrested, even though growth-promoting pathways such as mTOR are still active, then cells senesce. For example, induction of either p21 or p16 arrests the cell cycle without inhibiting mTOR, which, in turn, converts p21/p16-induced arrest into senescence (geroconversion). Here we show that geroconversion is accompanied by dramatic accumulation of cyclin D1 followed by cyclin E and replicative stress. When p21 was switched off, senescent cells (despite their loss of proliferative potential) progressed through S phase, and levels of cyclins D1 and E dropped. Most cells entered mitosis and then died, either during mitotic arrest or after mitotic slippage, or underwent endoreduplication. Next, we investigated whether inhibition of mTOR would prevent accumulation of cyclins and loss of mitotic competence in p21-arrested cells. Both nutlin-3, which inhibits mTOR in these cells, and rapamycin suppressed geroconversion during p21-induced arrest, decelerated accumulation of cyclins D1 and E and decreased replicative stress. When p21 was switched off, cells successfully progressed through both S phase and mitosis. Also, senescent mouse embryonic fibroblasts (MEFs) overexpressed cyclin D1. After release from cell cycle arrest, senescent MEFs entered S phase but could not undergo mitosis and did not proliferate. We conclude that cellular senescence is characterized by futile hyper-mitogenic drive associated with mTOR-dependent mitotic incompetence.
Collapse
Affiliation(s)
- Olga V Leontieva
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | | | | |
Collapse
|
36
|
Inactivation of the enzyme GSK3α by the kinase IKKi promotes AKT-mTOR signaling pathway that mediates interleukin-1-induced Th17 cell maintenance. Immunity 2012; 37:800-12. [PMID: 23142783 DOI: 10.1016/j.immuni.2012.08.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 08/15/2012] [Indexed: 12/23/2022]
Abstract
Interleukin-1 (IL-1)-induced activation of the mTOR kinase pathway has major influences on Th17 cell survival, proliferation, and effector function. Via biochemical and genetic approaches, the kinases IKKi and GSK3α were identified as the critical intermediate signaling components for IL-1-induced AKT activation, which in turn activated mTOR. Although insulin-induced AKT activation is known to phosphorylate and inactivate GSK3α and GSK3β, we found that GSK3α but not GSK3β formed a constitutive complex to phosphorylate and suppress AKT activation, showing that a reverse action from GSK to AKT can take place. Upon IL-1 stimulation, IKKi was activated to mediate GSK3α phosphorylation at S21, thereby inactivating GSK3α to promote IL-1-induced AKT-mTOR activation. Thus, IKKi has a critical role in Th17 cell maintenance and/or proliferation through the GSK-AKT-mTOR pathway, implicating the potential of IKKi as a therapeutic target.
Collapse
|
37
|
Corlu A, Loyer P. Regulation of the g1/s transition in hepatocytes: involvement of the cyclin-dependent kinase cdk1 in the DNA replication. Int J Hepatol 2012; 2012:689324. [PMID: 23091735 PMCID: PMC3471441 DOI: 10.1155/2012/689324] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/29/2012] [Indexed: 12/16/2022] Open
Abstract
A singular feature of adult differentiated hepatocytes is their capacity to proliferate allowing liver regeneration. This review emphasizes the literature published over the last 20 years that established the most important pathways regulating the hepatocyte cell cycle. Our article also aimed at illustrating that many discoveries in this field benefited from the combined use of in vivo models of liver regeneration and in vitro models of primary cultures of human and rodent hepatocytes. Using these models, our laboratory has contributed to decipher the different steps of the progression into the G1 phase and the commitment to S phase of proliferating hepatocytes. We identified the mitogen dependent restriction point located at the two-thirds of the G1 phase and the concomitant expression and activation of both Cdk1 and Cdk2 at the G1/S transition. Furthermore, we demonstrated that these two Cdks contribute to the DNA replication. Finally, we provided strong evidences that Cdk1 expression and activation is correlated to extracellular matrix degradation upon stimulation by the pro-inflammatory cytokine TNFα leading to the identification of a new signaling pathway regulating Cdk1 expression at the G1/S transition. It also further confirms the well-orchestrated regulation of liver regeneration via multiple extracellular signals and pathways.
Collapse
Affiliation(s)
- Anne Corlu
- Inserm UMR S 991, Foie Métabolismes et Cancer, Université de Rennes 1, Hôpital Pontchaillou, 35033 Rennes Cedex, France
| | - Pascal Loyer
- Inserm UMR S 991, Foie Métabolismes et Cancer, Université de Rennes 1, Hôpital Pontchaillou, 35033 Rennes Cedex, France
| |
Collapse
|
38
|
Dehydrocostuslactone suppresses angiogenesis in vitro and in vivo through inhibition of Akt/GSK-3β and mTOR signaling pathways. PLoS One 2012; 7:e31195. [PMID: 22359572 PMCID: PMC3281050 DOI: 10.1371/journal.pone.0031195] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 01/03/2012] [Indexed: 01/04/2023] Open
Abstract
The traditional Chinese medicine component dehydrocostuslactone (DHC) isolated from Saussurea costus (Falc.) Lipschitz, has been shown to have anti-cancer activity. Angiogenesis is an essential process in the growth and progression of cancer. In this study, we demonstrated, for the first time, the anti-angiogenic mechanism of action of DHC to be via the induction of cell cycle progression at the G0/G1 phase due to abrogation of the Akt/glycogen synthase kinase-3β (GSK-3β)/cyclin D1 and mTOR signaling pathway. First, we demonstrated that DHC has an anti-angiogenic effect in the matrigel-plug nude mice model and an inhibitory effect on human umbilical vein endothelial cell (HUVEC) proliferation and capillary-like tube formation in vitro. DHC caused G0/G1 cell cycle arrest, which was associated with the down-regulation of cyclin D1 expression, leading to the suppression of retinoblastoma protein phosphorylation and subsequent inhibition of cyclin A and cdk2 expression. With respect to the molecular mechanisms underlying the DHC-induced cyclin D1 down-regulation, this study demonstrated that DHC significantly inhibits Akt expression, resulting in the suppression of GSK-3β phosphorylation and mTOR expression. These effects are capable of regulating cyclin D1 degradation, but they were significantly reversed by constitutively active myristoylated (myr)-Akt. Furthermore, the abrogation of tube formation induced by DHC was also reversed by overexpression of Akt. And the co-treatment with LiCl and DHC significantly reversed the growth inhibition induced by DHC. Taken together, our study has identified Akt/GSK-3β and mTOR as important targets of DHC and has thus highlighted its potential application in angiogenesis-related diseases, such as cancer.
Collapse
|
39
|
Ng R, Song G, Roll GR, Frandsen NM, Willenbring H. A microRNA-21 surge facilitates rapid cyclin D1 translation and cell cycle progression in mouse liver regeneration. J Clin Invest 2012; 122:1097-108. [PMID: 22326957 DOI: 10.1172/jci46039] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 01/04/2012] [Indexed: 12/12/2022] Open
Abstract
MicroRNA-21 (miR-21) is thought to be an oncomir because it promotes cancer cell proliferation, migration, and survival. miR-21 is also expressed in normal cells, but its physiological role is poorly understood. Recently, it has been found that miR-21 expression is rapidly induced in rodent hepatocytes during liver regeneration after two-thirds partial hepatectomy (2/3 PH). Here, we investigated the function of miR-21 in regenerating mouse hepatocytes by inhibiting it with an antisense oligonucleotide. To maintain normal hepatocyte viability and function, we antagonized the miR-21 surge induced by 2/3 PH while preserving baseline expression. We found that knockdown of miR-21 impaired progression of hepatocytes into S phase of the cell cycle, mainly through a decrease in levels of cyclin D1 protein, but not Ccnd1 mRNA. Mechanistically, we discovered that increased miR-21 expression facilitated cyclin D1 translation in the early phase of liver regeneration by relieving Akt1/mTOR complex 1 signaling (and thus eIF-4F-mediated translation initiation) from suppression by Rhob. Our findings reveal that miR-21 enables rapid hepatocyte proliferation during liver regeneration by accelerating cyclin D1 translation.
Collapse
Affiliation(s)
- Raymond Ng
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, California 94143, USA
| | | | | | | | | |
Collapse
|
40
|
Huang J, Glauber M, Qiu Z, Gazit V, Dietzen DJ, Rudnick DA. The influence of skeletal muscle on the regulation of liver:body mass and liver regeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:575-82. [PMID: 22155110 DOI: 10.1016/j.ajpath.2011.10.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 09/29/2011] [Accepted: 10/31/2011] [Indexed: 12/14/2022]
Abstract
The relationship between liver and body mass is exemplified by the precision with which the liver:body mass ratio is restored after partial hepatic resection. Nevertheless, the compartments, against which liver mass is so exquisitely regulated, currently remain undefined. In the studies reported here, we investigated the role of skeletal muscle mass in the regulation of liver:body mass ratio and liver regeneration via the analysis of myostatin-null mice, in which skeletal muscle is hypertrophied. The results showed that liver mass is comparable and liver:body mass significantly diminished in the null animals compared to age-, sex-, and strain-matched controls. In association with these findings, basal hepatic Akt signaling is decreased, and the expression of the target genes of the constitutive androstane receptor and the integrin-linked kinase are dysregulated in the myostatin-null mice. In addition, the baseline expression levels of the regulators of the G1-S phase cell cycle progression in liver are suppressed in the null mice. The initiation of liver regeneration is not impaired in the null animals, although it progresses toward the lower liver:body mass set point. The data show that skeletal muscle is not the body component against which liver mass is positively regulated, and thus they demonstrate a previously unrecognized systemic compartmental specificity for the regulation of liver:body mass ratio.
Collapse
Affiliation(s)
- Jiansheng Huang
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
41
|
Cohen JD, Gard JMC, Nagle RB, Dietrich JD, Monks TJ, Lau SS. ERK crosstalks with 4EBP1 to activate cyclin D1 translation during quinol-thioether-induced tuberous sclerosis renal cell carcinoma. Toxicol Sci 2011; 124:75-87. [PMID: 21813464 DOI: 10.1093/toxsci/kfr203] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase signaling cascades have been implicated in a number of human cancers. The tumor suppressor gene tuberous sclerosis-2 (Tsc-2) functions as a negative regulator of mTOR. Critical proteins in both pathways are activated following treatment of Eker rats (Tsc-2(EK/+)) with the nephrocarcinogen 2,3,5-tris-(glutathion-S-yl)hydroquinone (TGHQ), which also results in loss of the wild-type allele of Tsc-2 in renal preneoplastic lesions and tumors. Western blot analysis of kidney tumors formed following treatment of Tsc-2(EK/+) rats with TGHQ for 8 months revealed increases in B-Raf, Raf-1, pERK, cyclin D1, 4EBP1, and p-4EBP1-Ser65, -Thr70, and -Thr37/46 expression. Similar changes are observed following TGHQ-mediated transformation of primary renal epithelial cells derived from Tsc-2(EK/+) rats (quinol-thioether rat renal epithelial [QTRRE] cells) that are also null for tuberin. These cells exhibit high ERK, B-Raf, and Raf-1 kinase activity and increased expression of all p-4EBP1s and cyclin D1. Treatment of the QTRRE cells with the Raf kinase inhibitor, sorafenib, or the MEK1/2 kinase inhibitor, PD 98059, produced a significant decrease in the protein expression of all p-4EBP1s and cyclin D1. Following siRNA knockdown of Raf-1, Western blot analysis revealed a significant decrease in Raf-1, cyclin D1, and all p-4EBP1 forms noted above. In contrast, siRNA knockdown of B-Raf resulted in a nominal change in these proteins. The data indicate that Raf-1/MEK/ERK participates in crosstalk with 4EBP1, which represents a novel pathway interaction leading to increased protein synthesis, cell growth, and kidney tumor formation.
Collapse
Affiliation(s)
- Jennifer D Cohen
- Southwest Environmental Health Sciences Center, Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
This article highlights the current knowledge of mTOR biology and provides new insights into the role of mTOR in different cancers. An active mTOR coordinates a response in cell growth directly through its effects on cell cycle regulators and indirectly by sustaining nutrient supply into the cell through the production of nutrient transporters and also through the promotion of angiogenesis. A primary way that mTOR exerts its regulatory effects on cell proliferation is by controlling the production of cyclin D1. mTOR increases the translation of hypoxia-inducible factor 1 (HIF-1)/HIF-2. The HIF transcription factors drive the expression of hypoxic stress response genes, including angiogenic growth factors such as vascular endothelial growth factor (VEGF), platelet-derived growth factor β (PDGF-β), and transforming growth factor a (TGF-α). mTOR also increases the surface expression of nutrient transporters proteins. An increase in these proteins results in greater uptake of amino acids and other nutrients by the cell leading to adequate nutrient support to abnormal cell growth and survival. There is also emerging evidence that mTOR activation may play a role in promoting cell survival through the activation of antiapoptotic proteins that contribute to tumor progression. Given that the mTOR pathway is deregulated in a number of cancers, it is anticipated that mTOR inhibitors will have broad therapeutic application across many tumor types. Until now, no treatment demonstrated Phase III evidence after disease progression on an initial VEGF-targeted therapy in advanced renal cell carcinoma. Everolimus is the first and only therapy with Phase III evidence after failure of VEGF-targeted therapy. Everolimus is a once-daily, oral inhibitor of mTOR (mammalian target of rapamycin) indicated for the treatment of advanced renal cell carcinoma in patients, whose disease has progressed on or after treatment with VEGF-targeted therapy.
Collapse
Affiliation(s)
- S H Advani
- Jaslok Hospital and Research Centre, Mumbai, Maharashtra, India
| |
Collapse
|
43
|
Espeillac C, Mitchell C, Celton-Morizur S, Chauvin C, Koka V, Gillet C, Albrecht JH, Desdouets C, Pende M. S6 kinase 1 is required for rapamycin-sensitive liver proliferation after mouse hepatectomy. J Clin Invest 2011; 121:2821-32. [PMID: 21633171 PMCID: PMC3223822 DOI: 10.1172/jci44203] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 04/13/2011] [Indexed: 01/23/2023] Open
Abstract
Rapamycin is an antibiotic inhibiting eukaryotic cell growth and proliferation by acting on target of rapamycin (TOR) kinase. Mammalian TOR (mTOR) is thought to work through 2 independent complexes to regulate cell size and cell replication, and these 2 complexes show differential sensitivity to rapamycin. Here we combine functional genetics and pharmacological treatments to analyze rapamycin-sensitive mTOR substrates that are involved in cell proliferation and tissue regeneration after partial hepatectomy in mice. After hepatectomy, hepatocytes proliferated rapidly, correlating with increased S6 kinase phosphorylation, while treatment with rapamycin derivatives impaired regeneration and blocked S6 kinase activation. In addition, genetic deletion of S6 kinase 1 (S6K1) caused a delay in S phase entry in hepatocytes after hepatectomy. The proliferative defect of S6K1-deficient hepatocytes was cell autonomous, as it was also observed in primary cultures and hepatic overexpression of S6K1-rescued proliferation. We found that S6K1 controlled steady-state levels of cyclin D1 (Ccnd1) mRNA in liver, and cyclin D1 expression was required to promote hepatocyte cell cycle. Notably, in vivo overexpression of cyclin D1 was sufficient to restore the proliferative capacity of S6K-null livers. The identification of an S6K1-dependent mechanism participating in cell proliferation in vivo may be relevant for cancer cells displaying high mTOR complex 1 activity and cyclin D1 accumulation.
Collapse
Affiliation(s)
- Catherine Espeillac
- Inserm, U845, Paris, France.
Université Paris Descartes, Faculté de Médecine, UMRS-845, Paris, France.
Inserm, U1016, Paris, France.
Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France.
Division of Gastroenterology, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| | - Claudia Mitchell
- Inserm, U845, Paris, France.
Université Paris Descartes, Faculté de Médecine, UMRS-845, Paris, France.
Inserm, U1016, Paris, France.
Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France.
Division of Gastroenterology, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| | - Séverine Celton-Morizur
- Inserm, U845, Paris, France.
Université Paris Descartes, Faculté de Médecine, UMRS-845, Paris, France.
Inserm, U1016, Paris, France.
Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France.
Division of Gastroenterology, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| | - Céline Chauvin
- Inserm, U845, Paris, France.
Université Paris Descartes, Faculté de Médecine, UMRS-845, Paris, France.
Inserm, U1016, Paris, France.
Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France.
Division of Gastroenterology, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| | - Vonda Koka
- Inserm, U845, Paris, France.
Université Paris Descartes, Faculté de Médecine, UMRS-845, Paris, France.
Inserm, U1016, Paris, France.
Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France.
Division of Gastroenterology, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| | - Cynthia Gillet
- Inserm, U845, Paris, France.
Université Paris Descartes, Faculté de Médecine, UMRS-845, Paris, France.
Inserm, U1016, Paris, France.
Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France.
Division of Gastroenterology, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| | - Jeffrey H. Albrecht
- Inserm, U845, Paris, France.
Université Paris Descartes, Faculté de Médecine, UMRS-845, Paris, France.
Inserm, U1016, Paris, France.
Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France.
Division of Gastroenterology, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| | - Chantal Desdouets
- Inserm, U845, Paris, France.
Université Paris Descartes, Faculté de Médecine, UMRS-845, Paris, France.
Inserm, U1016, Paris, France.
Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France.
Division of Gastroenterology, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| | - Mario Pende
- Inserm, U845, Paris, France.
Université Paris Descartes, Faculté de Médecine, UMRS-845, Paris, France.
Inserm, U1016, Paris, France.
Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France.
Division of Gastroenterology, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| |
Collapse
|
44
|
Gran P, Cameron-Smith D. The actions of exogenous leucine on mTOR signalling and amino acid transporters in human myotubes. BMC PHYSIOLOGY 2011; 11:10. [PMID: 21702994 PMCID: PMC3141572 DOI: 10.1186/1472-6793-11-10] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 06/25/2011] [Indexed: 01/18/2023]
Abstract
Background The branched-chain amino acid (BCAA) leucine has been identified to be a key regulator of skeletal muscle anabolism. Activation of anabolic signalling occurs via the mammalian target of rapamycin (mTOR) through an undefined mechanism. System A and L solute carriers transport essential amino acids across plasma membranes; however it remains unknown whether an exogenous supply of leucine regulates their gene expression. The aim of the present study was to investigate the effects of acute and chronic leucine stimulation of anabolic signalling and specific amino acid transporters, using cultured primary human skeletal muscle cells. Results Human myotubes were treated with leucine, insulin or co-treated with leucine and insulin for 30 min, 3 h or 24 h. Activation of mTOR signalling kinases were examined, together with putative nutrient sensor human vacuolar protein sorting 34 (hVps34) and gene expression of selected amino acid transporters. Phosphorylation of mTOR and p70S6K was transiently increased following leucine exposure, independently to insulin. hVps34 protein expression was also significantly increased. However, genes encoding amino acid transporters were differentially regulated by insulin and not leucine. Conclusions mTOR signalling is transiently activated by leucine within human myotubes independently of insulin stimulation. While this occurred in the absence of changes in gene expression of amino acid transporters, protein expression of hVps34 increased.
Collapse
Affiliation(s)
- Petra Gran
- Molecular Nutrition Unit, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| | | |
Collapse
|
45
|
Cytostatic effect of the hypothalamic cytokine PRP-1 is mediated by mTOR and cMyc inhibition in high grade chondrosarcoma. Neurochem Res 2011; 36:812-8. [PMID: 21243426 DOI: 10.1007/s11064-011-0406-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2011] [Indexed: 12/18/2022]
Abstract
This study aimed to further elucidate the molecular mechanisms of antiproliferative action of proline rich polypeptide 1 (PRP-1) cytokine, produced by neurosecretory cells of the hypothalamus to be considered as alternative adjuvant therapy for metastatic chondrosarcoma, which does not respond to chemotherapy or radiation and currently without any effective treatment. Rapid cell proliferation assay of human primary cultures from high grade chondrosarcoma patients biopsies and human chondrosarcoma JJ012 cell line indicated 50 and 80% inhibition in PRP-1 treated samples correspondingly. Videomicroscopy detected that despite the treatment there are still dividing cells, meaning that cells are not in the state of dormancy, rather PRP-1 repressed the cell cycle progression, exhibited cytostatic effect. The mammalian target of rapamycin (mTOR) is an intracellular serine/threonine protein kinase that has a crucial role in a nutrient sensitive signaling pathway that regulates cell growth. Experiments with mTOR pathway after PRP-1 (10 μg/ml) treatment indicated statistically significant 30% inhibition of mTOR activity and its 56% inhibition in immunoprecipitates with PRP-1 concentrations effective for cell proliferation inhibition. Treatment with PRP- caused inhibition of mTOR and downstream target cMyc oncogenic transcription factor sufficient to trigger the cytostatic effect in high grade, but not in low grade chondrosarcomas. The fact that lower concentrations than 10 μg/ml peptide with cytostatic effect did not inhibit mTOR, but inhibited cMyc prompted us to assume that PRP-1 binds to two different receptors facilitating the antiproliferative effect.
Collapse
|
46
|
Couderc C, Poncet G, Villaume K, Blanc M, Gadot N, Walter T, Lepinasse F, Hervieu V, Cordier-Bussat M, Scoazec JY, Roche C. Targeting the PI3K/mTOR pathway in murine endocrine cell lines: in vitro and in vivo effects on tumor cell growth. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 178:336-44. [PMID: 21224070 DOI: 10.1016/j.ajpath.2010.11.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 08/13/2010] [Accepted: 09/09/2010] [Indexed: 11/29/2022]
Abstract
The mammalian target of rapamycin (mTOR) inhibitors, such as rapalogues, are a promising new tool for the treatment of metastatic gastroenteropancreatic endocrine tumors. However, their mechanisms of action remain to be established. We used two murine intestinal endocrine tumoral cell lines, STC-1 and GLUTag, to evaluate the antitumor effects of rapamycin in vitro and in vivo in a preclinical model of liver endocrine metastases. In vitro, rapamycin inhibited the proliferation of cells in the basal state and after stimulation by insulin-like growth factor-1. Simultaneously, p70S6 kinase and 4EBP1 phosphorylation was inhibited. In vivo, rapamycin substantially inhibited the intrahepatic growth of STC-1 cells, irrespectively of the timing of its administration and even when the treatment was administered after cell intrahepatic engraftment. In addition, treated animals had significantly prolonged survival (mean survival time: 47.7 days in treated animals versus 31.8 days in controls) and better clinical status. Rapamycin treatment was associated with a significant decrease in mitotic index and in intratumoral vascular density within STC-1 tumors. Furthermore, the antitumoral effect obtained after treatment with a combination of rapamycin and phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 was more significant than with rapamycin alone in both cell lines. Our results suggest that the antitumor efficacy of rapamycin in neuroendocrine tumors results from a combination of antiproliferative and antiangiogenic effects. Interestingly, a more potent antitumor efficiency could be obtained by simultaneously targeting several levels of the PI3K/mTOR pathway.
Collapse
Affiliation(s)
- Christophe Couderc
- INSERM, U865, Faculté Laënnec, Université Claude Bernard Lyon 1, Lyon, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Mullany LK, Hanse EA, Romano A, Blomquist CH, Mason JI, Delvoux B, Anttila C, Albrecht JH. Cyclin D1 regulates hepatic estrogen and androgen metabolism. Am J Physiol Gastrointest Liver Physiol 2010; 298:G884-95. [PMID: 20338923 PMCID: PMC2907223 DOI: 10.1152/ajpgi.00471.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cyclin D1 is a cell cycle control protein that plays an important role in regenerating liver and many types of cancer. Previous reports have shown that cyclin D1 can directly enhance estrogen receptor activity and inhibit androgen receptor activity in a ligand-independent manner and thus may play an important role in hormone-responsive malignancies. In this study, we examine a distinct mechanism by which cyclin D1 regulates sex steroid signaling, via altered metabolism of these hormones at the tissue and cellular level. In male mouse liver, ectopic expression of cyclin D1 regulated genes involved in the synthesis and degradation of sex steroid hormones in a pattern that would predict increased estrogen and decreased androgen levels. Indeed, hepatic expression of cyclin D1 led to increased serum estradiol levels, increased estrogen-responsive gene expression, and decreased androgen-responsive gene expression. Cyclin D1 also regulated the activity of several key enzymatic reactions in the liver, including increased oxidation of testosterone to androstenedione and decreased conversion of estradiol to estrone. Similar findings were seen in the setting of physiological cyclin D1 expression in regenerating liver. Knockdown of cyclin D1 in HuH7 cells produced reciprocal changes in steroid metabolism genes compared with cyclin D1 overexpression in mouse liver. In conclusion, these studies establish a novel link between the cell cycle machinery and sex steroid metabolism and provide a distinct mechanism by which cyclin D1 may regulate hormone signaling. Furthermore, these results suggest that increased cyclin D1 expression, which occurs in liver regeneration and liver diseases, may contribute to the feminization seen in these settings.
Collapse
Affiliation(s)
- Lisa K. Mullany
- 1Division of Gastroenterology, Hennepin County Medical Center, Minneapolis; ,2Minneapolis Medical Research Foundation, Minneapolis;
| | - Eric A. Hanse
- 2Minneapolis Medical Research Foundation, Minneapolis;
| | - Andrea Romano
- 3Department Obstetrics and Gynaecology GROW-School for Oncology and Developmental Biology, University Hospital of Maastricht, Maastricht, The Netherlands;
| | - Charles H. Blomquist
- 4Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota; and
| | - J. Ian Mason
- 5Division of Reproductive Developmental Sciences, University of Edinburgh Centre for Reproductive Biology, Edinburgh, United Kingdom
| | - Bert Delvoux
- 3Department Obstetrics and Gynaecology GROW-School for Oncology and Developmental Biology, University Hospital of Maastricht, Maastricht, The Netherlands;
| | | | - Jeffrey H. Albrecht
- 1Division of Gastroenterology, Hennepin County Medical Center, Minneapolis; ,2Minneapolis Medical Research Foundation, Minneapolis;
| |
Collapse
|
48
|
Arakawa-Takeuchi S, Kobayashi K, Park JH, Uranbileg B, Yamamoto H, Jinno S, Okayama H. Mammalian target of rapamycin complex 1 signaling opposes the effects of anchorage loss, leading to activation of Cdk4 and Cdc6 stabilization. FEBS Lett 2010; 584:2779-85. [PMID: 20466002 DOI: 10.1016/j.febslet.2010.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 04/29/2010] [Accepted: 05/01/2010] [Indexed: 11/25/2022]
Abstract
When deprived of an anchorage to the extracellular matrix, fibroblasts arrest in the G(1) phase with inactivation of Cdk4/6 and Cdk2 and destruction of Cdc6, the assembler of prereplicative complexes essential for S phase onset. How cellular anchorages control these kinases and Cdc6 stability is poorly understood. Here, we report that in rat embryonic fibroblasts, activation of mammalian target of rapamycin complex 1 by a Tsc2 mutation or overexpression of a constitutively active mutant Rheb overrides the absence of the anchorage and stabilizes Cdc6 at least partly via activating Cdk4/6 that induces Emi1, an APC/C(Cdh1) ubiquitin ligase inhibitor.
Collapse
Affiliation(s)
- Shiho Arakawa-Takeuchi
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Xu CR, Lee S, Ho C, Bommi P, Huang SA, Cheung ST, Dimri GP, Chen X. Bmi1 functions as an oncogene independent of Ink4A/Arf repression in hepatic carcinogenesis. Mol Cancer Res 2009; 7:1937-45. [PMID: 19934271 DOI: 10.1158/1541-7786.mcr-09-0333] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bmi1 is a polycomb group proto-oncogene that has been implicated in multiple tumor types. However, its role in hepatocellular carcinoma (HCC) development has not been well studied. In this article, we report that Bmi1 is overexpressed in human HCC samples. When Bmi1 expression is knocked down in human HCC cell lines, it significantly inhibits cell proliferation and perturbs cell cycle regulation. To investigate the role of Bmi1 in promoting liver cancer development in vivo, we stably expressed Bmi1 and/or an activated form of Ras (RasV12) in mouse liver. We found that while Bmi1 or RasV12 alone is not sufficient to promote liver cancer development, coexpression of Bmi1 and RasV12 promotes HCC formation in mice. Tumors induced by Bmi1/RasV12 resemble human HCC by deregulation of genes involved in cell proliferation, apoptosis, and angiogenesis. Intriguingly, we found no evidence that Bmi1 regulates Ink4A/Arf expression in both in vitro and in vivo systems of liver tumor development. In summary, our study shows that Bmi1 can cooperate with other oncogenic signals to promote hepatic carcinogenesis in vivo. Yet Bmi1 functions independent of Ink4A/Arf repression in liver cancer development.
Collapse
Affiliation(s)
- Chuan-Rui Xu
- Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Bridle KR, Popa C, Morgan ML, Sobbe AL, Clouston AD, Fletcher LM, Crawford DHG. Rapamycin inhibits hepatic fibrosis in rats by attenuating multiple profibrogenic pathways. Liver Transpl 2009; 15:1315-24. [PMID: 19790156 DOI: 10.1002/lt.21804] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hepatic stellate cell transdifferentiation, epithelial-mesenchymal cell transition, and the ductular reaction each contribute to the development of hepatic fibrosis in cholestatic liver diseases. Inhibitors of mammalian target of rapamycin have antifibrotic properties. We evaluated the hypothesis that the antifibrotic action of rapamycin is due to attenuated myofibroblast proliferation in addition to an inhibitory effect on epithelial-mesenchymal transition and the ductular reaction. Hepatic fibrosis was induced by bile duct ligation, and rodents received 1.5 mg/kg/day rapamycin by subcutaneous infusion for 21 days. The expression of various markers of hepatic fibrosis, stellate cell transactivation, epithelial-mesenchymal transition, and the ductular reaction was compared between treated and untreated animals. Hepatic fibrosis, hepatic procollagen type 1 messenger RNA, and alpha-smooth muscle actin expression were significantly reduced in treated animals. Hepatic stellate cell procollagen expression and proliferation were also reduced by rapamycin. The following markers of epithelial-mesenchymal transition--vimentin protein expression, S100 calcium binding protein A4 and transforming growth factor beta 1 messenger RNA, and the mothers against decapentaplegic homolog signaling pathway--were all reduced after rapamycin treatment. The intensity of the ductular reaction was reduced by rapamycin as assessed by histopathological scoring and by reduced cytokeratin 19 expression. Rapamycin caused a reduction in hepatic progenitor cell proliferation. Together, these data show that multiple profibrogenic pathways are activated in an animal model of cholestasis and that rapamycin attenuates epithelial-mesenchymal transition and the ductular reaction as well as hepatic stellate cell activation.
Collapse
Affiliation(s)
- Kim R Bridle
- School of Medicine, University of Queensland, Gallipoli Research Centre, Greenslopes Private Hospital, Brisbane, Queensland, Australia.
| | | | | | | | | | | | | |
Collapse
|