1
|
Chu ZY, Zi XJ. Network toxicology and molecular docking for the toxicity analysis of food contaminants: A case of Aflatoxin B 1. Food Chem Toxicol 2024; 188:114687. [PMID: 38663764 DOI: 10.1016/j.fct.2024.114687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
The present study aims to promote network toxicology and molecular docking strategies for the efficient evaluation of the toxicity of food contaminants. With the example of liver injury induced by the food contaminant Aflatoxin B1(AFB1), this study effectively investigated the putative toxicity of food contaminants and the potentially molecular mechanisms. The study found that AFB1 regulates multiple signalling pathways by modulating core targets such as AKT1, BCL2, TNF, CASP3, SRC and EGFR. These pathways encompass Pathways in cancer, PI3K-Akt signalling pathway, Endocrine resistance, Lipid and atherosclerosis, Apoptosis and other pathways, subsequently impacting immunotoxicity, inflammatory responses, apoptosis, cytogenetic mutations, and ultimately leading to liver injury. We provide a theoretical basis for understanding the molecular mechanisms of AFB1 hepatotoxicity and for the prevention and treatment of cancers caused by the food contaminant AFB1. Furthermore, our network toxicology and molecular docking methods also provide an effective method for the rapid evaluation of the toxicity of food contaminants, which effectively solves the cost and ethical problems associated with the use of experimental animals.
Collapse
Affiliation(s)
- Zi-Yong Chu
- College of Life Science and Technology, Xinjiang University, Urumqi, 830046, Xinjiang, PR China.
| | - Xue-Jiao Zi
- College of Life Science and Technology, Tarim University, Alaer, 843300, Xinjiang, PR China
| |
Collapse
|
2
|
Peng Y, Zhou T, Wang S, Bahetjan Y, Li X, Yang X. Dehydrocostus lactone inhibits the proliferation of esophageal cancer cells in vivo and in vitro through ROS-mediated apoptosis and autophagy. Food Chem Toxicol 2022; 170:113453. [DOI: 10.1016/j.fct.2022.113453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022]
|
3
|
Song P, Huang H, Ma Y, Wu C, Yang X, Choi HY. Davidone C Induces the Death of Hepatocellular Carcinoma Cells by Promoting Apoptosis and Autophagy. Molecules 2021; 26:molecules26175219. [PMID: 34500653 PMCID: PMC8434093 DOI: 10.3390/molecules26175219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 01/04/2023] Open
Abstract
Davidone C is a newly discovered flavonoid compound purified from the ethyl acetate-soluble fraction of Sophora davidii (Franch.) Skeels. This study explored the anti-tumor activity of davidone C on hepatocellular carcinoma HepG2 and Bel-7402 cells and its mechanism through MTT method, morphological observation, flow cytometry and Western blotting. The results showed that davidone C significantly inhibited the proliferation of HepG2 and Bel-7402 cells in a time- and dose-dependent manner. The morphological changes of apoptotic cells can be observed under an inverted microscope, such as cell floating, chromosome condensation, apoptotic bodies, and other phenomena. The expressions of Bax, cleaved caspase-9, cleaved caspase-3 and cleaved PARP increased with the increase of dosage while Bcl-2 decreased, suggesting that the apoptotic mechanism might be related to the mitochondrial apoptotic pathway. Moreover, davidone C administration can down-regulate the expression of Grp78, and simultaneously up-regulate the expression of caspase-7 and caspase-12, indicating that the apoptotic mechanism might be related to the ERS pathway. In addition, davidone C can down-regulate the expression of p62, and simultaneously up-regulate the expression of LC3-I and LC3-II with a quantitative dependence, suggesting that the mechanism of apoptosis may be related to the autophagy signal pathway. All these results showed davidone C has potential effects on hepatocellular carcinoma.
Collapse
Affiliation(s)
- Ping Song
- School of Chemistry and Chemical Engineering, Qinghai University for Nationalities, Xining 810007, China;
| | - Huiqi Huang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (H.H.); (Y.M.); (C.W.)
| | - Yuanren Ma
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (H.H.); (Y.M.); (C.W.)
| | - Chaoqun Wu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (H.H.); (Y.M.); (C.W.)
| | - Xinzhou Yang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (H.H.); (Y.M.); (C.W.)
- Correspondence: (X.Y.); (H.-Y.C.); Tel.: +86-27-6784-1196 (X.Y.); +82-2-9619372 (H.-Y.C.)
| | - Ho-Young Choi
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (X.Y.); (H.-Y.C.); Tel.: +86-27-6784-1196 (X.Y.); +82-2-9619372 (H.-Y.C.)
| |
Collapse
|
4
|
Wu C, Huang H, Choi HY, Ma Y, Zhou T, Peng Y, Pang K, Shu G, Yang X. Anti-esophageal Cancer Effect of Corilagin Extracted from Phmllanthi Fructus via the Mitochondrial and Endoplasmic Reticulum Stress Pathways. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113700. [PMID: 33346026 DOI: 10.1016/j.jep.2020.113700] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/07/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
HEADINGS ETHNOPHARMACOLOGICAL RELEVANCE Corilagin (β-1-O-galloyl-3,6-(R)-hexahydroxydiphenoyl-d-glucose) is a tannin isolated from the traditional ethnopharmacological plant Phmllanthi Fructus, which is widely used in not only traditional Chinese medicine but also tropical and subtropical medicine to ameliorate various diseases. AIM OF THE STUDY This study was designed to isolate the potential anti-esophageal cancer (EC) component corilagin from Phmllanthi Fructus and explain its anti-EC mechanism. MATERIALS AND METHODS Corilagin was isolated from Phmllanthi Fructus by extraction and chromatographic procedures, and its anti-esophageal cancer effect was evaluated by in vitro and in vivo experiments. In vitro experiments included MTT analysis, flow cytometry, and the Transwell assay and were used to observe corilagin-mediated inhibition of EC cell growth. Western blotting was used to analyze the apoptotic pathway of EC cells. In vivo experiments used tumor-bearing nude mice to evaluate the antitumor effect of corilagin, and its potential mechanism was explored by Western blotting. RESULTS Corilagin showed significant anti-EC activity in vitro and in vivo. Corilagin was significantly cytotoxic to EC cells and induced apoptosis in EC cells. Corilagin induced G0/G1 phase arrest by altering key G0/G1 cell cycle regulatory markers and significantly reducing the migration of EC cells and the number of cells in a time- and dose-dependent manner. Additionally, corilagin inhibited the growth of transplanted tumors in nude mice without significant toxicity. Regarding the anticancer mechanism of corilagin, the results showed that corilagin inhibited esophageal cancer progression by activating mitochondrial and endoplasmic reticulum stress signaling pathways. CONCLUSIONS Corilagin shows significant anti-EC activity in vitro and in vivo. The mechanism of the anti-EC activity of corilagin may be due to activating mitochondrial and endoplasmic reticulum stress signaling pathways.
Collapse
Affiliation(s)
- Chaoqun Wu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Huiqi Huang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Ho-Young Choi
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Yuanren Ma
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Tongxi Zhou
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Yu Peng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Kejian Pang
- Hotian Uygur Pharmaceutical Co., Ltd, Hotian, 848200, China
| | - Guangwen Shu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China.
| | - Xinzhou Yang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China.
| |
Collapse
|
5
|
Wu C, Shu G, Huang H, Pang K, Yang X, Yang G. Methylgerambullin derived from plant Glyccsmis pentaphylla (Retz) correa. Mediates anti-hepatocellular carcinoma cancer effect by activating mitochondrial and endoplasmic reticulum stress signaling and inhibiting AKT and STAT3 pathways. Food Chem Toxicol 2021; 149:112031. [PMID: 33529679 DOI: 10.1016/j.fct.2021.112031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/17/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common fatal malignant tumors. Glycosmis pentaphylla is used by traditional medical practitioners worldwide to treat various diseases. We isolated and identified a chemical component with potential anti-hepatocellular carcinoma (HCC) effects. Methylgerambullin is a sulfur containing amine and has significant antihepatoma activity in vitro and in vivo. Methylgerambullin was significantly cytotoxic to HCC cells and induces apoptosis in HCC cells. In addition, methylgerambullin is able to inhibit the growth of transplanted tumors in nude mice without significant toxicity. Regarding the anti-cancer mechanism of methylgerambullin, treatment with methylgerambullin increased the expression of caspase-3, caspase-9 and Bax in vitro and in vivo and reduce the expression of B-cell lymphoma-2 (Bcl-2). Simultaneously, methylgerambullin can also affect ERS-related proteins, inhibit Protein Kinase B (Akt) activity, cause dephosphorylation of downstream Bad, and inhibit the expression of the Signal Transducer and Activator of Transcription 3 (STAT3) protein to inhibit HCC cells proliferation. Overall, these results suggest that methylgerambullin can inhibit HCC cells proliferation by inducing mitochondrial apoptosis, activating ERS signaling pathways and inhibiting the Akt and STAT3 pathways.
Collapse
Affiliation(s)
- Chaoqun Wu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Guangwen Shu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Huiqi Huang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Kejian Pang
- Hotian Uygur Pharmaceutical Co., Ltd, Hotian, 848200, China
| | - Xinzhou Yang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China.
| | - Guangzhong Yang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China.
| |
Collapse
|
6
|
Liu C, Liu H, Huang H, Hao J, Lv Y, Zhang J, Ma Y, Wu C, Qin R, Yang X. Corilagin induces laryngeal cancer antiproliferation and inhibits growth factor and cytokine signaling pathways in vitro and in vivo. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
7
|
Koohsari M, Ahangar N, Mohammadi E, Shaki F. Ameliorative Effect of Melatonin Against Reproductive Toxicity of Tramadol in Rats via the Regulation of Oxidative Stress, Mitochondrial Dysfunction, and Apoptosis-related Gene Expression Signaling Pathway. ADDICTION & HEALTH 2020; 12:118-129. [PMID: 32782734 PMCID: PMC7395930 DOI: 10.22122/ahj.v12i2.265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/22/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND The aim of the present study was to investigate the protective properties of melatonin (MT) against oxidative stress, mitochondrial dysfunction, and apoptosis induced by tramadol-reproductive toxicity in male rats. METHODS The rats were divided into the 7 groups of control, melatonin (1.5 mg/kg), tramadol (50 mg/kg), and melatonin (1, 1.5 and 2.5 mg/kg) administered 30 minutes before tramadol and vitamin C group (100 mg/kg). All injections were performed intraperitoneally. After administration for 3 consecutive weeks, the animals were killed and testis tissues were used for assessment of oxidative stress markers including lipid peroxidation (LPO), glutathione (GSH) content and protein carbonyl (PrC), and sperm analysis. Mitochondria were isolated from rat's testis using differential centrifugation technique and were studied in terms of mitochondrial viability, mitochondrial membrane potential (MMP), and mitochondrial swelling. The other part of the tissue sample was placed in RNA protector solution for assessment of Bax and Bcl-2 gene expression through real-time polymerase chain reaction (real-time PCR) assay. FINDINGS Tramadol caused a significant decline in epidermal sperm count, motility, and morphology, as well as a significant decrease in GSH level and mitochondrial function, and a significant evaluation of LPO, PrC, MMP, and mitochondrial swelling. In addition, tramadol induced a significant decrease in Bcl-2 gene expression, and increase in Bax gene expression. However, pretreatment of rats with MT improved sperm analysis, and testicular antioxidative status, and mitochondrial function. Furthermore, MT pretreatment regulated testicular Bcl-2 and Bax expressions. CONCLUSION Considering the protective effects of MT against reproductive toxicity induced by tramadol, this compound can be used as a possible agent for the prevention and treatment of tramadol-induced reproductive toxicity.
Collapse
Affiliation(s)
- Motahareh Koohsari
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute AND Department of Toxicology and Pharmacology, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nematollah Ahangar
- Department of Pharmacology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ebrahim Mohammadi
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Fatemeh Shaki
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute AND Department of Toxicology and Pharmacology, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
8
|
Bumbat M, Wang M, Liang W, Ye P, Sun W, Liu B. Effects of Me 2SO and Trehalose on the Cell Viability, Proliferation, and Bcl-2 Family Gene ( BCL-2, BAX, and BAD) Expression in Cryopreserved Human Breast Cancer Cells. Biopreserv Biobank 2019; 18:33-40. [PMID: 31800305 DOI: 10.1089/bio.2019.0082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Long-term cryopreservation of the viability and metabolic state of cells in cancer cell/tissue specimens has significant implications for diagnostic verification of disease progression in cancer patients and selection of effective treatment options via development of the patient-derived xenograft (PDX) models for drug screening. The purpose of this study is to investigate the effects of cryoprotectant agents (CPAs) on the expression of BCL-2 family genes (BCL-2, BAX, and BAD) that are involved in the growth and development of breast cancers. MCF-7 cells were cryopreserved in Dulbecco's modified Eagle's medium (DMEM) with 20% (v/v) fetal bovine serum, using 10% (v/v) Me2SO (dimethyl sulfoxide, DMSO) or 7.5% (v/v) Me2SO with 100is-300 mM trehalose as cryoprotectant solutions. After storage at -80°C for 7 days, the cells were thawed for evaluation. The use of Me2SO and trehalose has affected cell survival, proliferation, apoptotic state, as well as BCL-2 family gene expression. The conventional 10% (v/v) Me2SO method yields ∼80% post-thaw cell survival and good cell proliferation, but it drastically alters the pattern of the BCL-2 family gene expression. The antiapoptotic gene BCL-2 is downregulated, whereas two proapoptotic genes BAX and BAD are upregulated. The partial substitution of Me2SO with 200 or 300 mM trehalose enhances cell proliferation of survived cells after cryopreservation. The presence of trehalose upregulates the expression of both the antiapoptotic gene BCL-2 and proapoptotic genes BAX and BAD. Cryopreservation could tip off the checkpoint of the apoptotic pathway regulated by the BCL-2 family members, and the effect may be protectant dependent. The findings of this study demonstrate the importance of paying attention to the potential change of gene expression and metabolic state of cancer cells after cryopreservation in an attempt to development of the PDX models from cryopreserved cancer cells or tissue specimens.
Collapse
Affiliation(s)
- Myagmarjav Bumbat
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Meixia Wang
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Wei Liang
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Ping Ye
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Wendell Sun
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Baolin Liu
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
9
|
Wang D, Liu H, Ren C, Wang L. High Expression of ABRACL Is Associated with Tumorigenesis and Affects Clinical Outcome in Gastric Cancer. Genet Test Mol Biomarkers 2019; 23:91-97. [PMID: 30676103 DOI: 10.1089/gtmb.2018.0195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The ABRA C-terminal like (ABRACL) protein belongs to a novel family of low-molecular weight proteins that increase actin dynamics and cell motility. It is involved in various diseases including cancer; however, its role in gastric cancer is unclear. In this study, the expression of ABRACL in gastric cancer and its relationships with patients' clinicopathological features and survival are examined. METHODS Sample expression profiles were downloaded from the Gene Expression Omnibus database and the Cancer Genome Atlas. ABRACL expression at the protein level in normal gastric and gastric cancer tissues was compared by using immunohistochemistry staining data provided by the Human Protein Atlas. Correlations between ABRACL expression and clinicopathological features are analyzed by chi-square tests. Patient survival was evaluated by Kaplan-Meier analysis. RESULTS ABRACL expression is upregulated in gastric cancer tissues than in normal tissues. High ABRACL levels indicated a poor prognosis. ABRACL expression (low ABRACL, n = 96; high ABRACL, n = 96) in gastric cancer tissues (primary data from GSE15459) is significantly correlated with poor overall survival (χ2 = 4.078, p = 0.043; log-rank test). ABRACL protein levels (low ABRACL, n = 172, high ABRACL, n = 171) in gastric cancer tissues (primary data from www.kmplot.com ) are significantly correlated with poor overall survival (χ2 = 4.305, p = 0.038, log-rank test). CONCLUSIONS Our results indicate that ABRACL is highly expressed in gastric cancer and is a potential prognostic marker and therapeutic target for this disease.
Collapse
Affiliation(s)
- Dazhi Wang
- 1 Pharmacy Department, Qingdao Municipal Hospital, Qingdao, China.,2 Cheeloo College of Medicine, Shandong University, Jinan, China
| | - HuaQiang Liu
- 1 Pharmacy Department, Qingdao Municipal Hospital, Qingdao, China
| | - Chunling Ren
- 3 Pharmacy Department, Qingdao Women and Children's Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Lanying Wang
- 1 Pharmacy Department, Qingdao Municipal Hospital, Qingdao, China
| |
Collapse
|
10
|
Rodrigues FS, de Zorzi VN, Funghetto MP, Haupental F, Cardoso AS, Marchesan S, Cardoso AM, Schinger MRC, Machado AK, da Cruz IBM, Duarte MMMF, Xavier LL, Furian AF, Oliveira MS, Santos ARS, Royes LFF, Fighera MR. Involvement of the Cholinergic Parameters and Glial Cells in Learning Delay Induced by Glutaric Acid: Protection by N-Acetylcysteine. Mol Neurobiol 2018; 56:4945-4959. [PMID: 30421167 DOI: 10.1007/s12035-018-1395-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 10/11/2018] [Indexed: 12/18/2022]
Abstract
Dysfunction of basal ganglia neurons is a characteristic of glutaric acidemia type I (GA-I), an autosomal recessive inherited neurometabolic disease characterized by deficiency of glutaryl-CoA dehydrogenase (GCDH) and accumulation of glutaric acid (GA). The affected patients present clinical manifestations such as motor dysfunction and memory impairment followed by extensive striatal neurodegeneration. Knowing that there is relevant striatal dysfunction in GA-I, the purpose of the present study was to verify the performance of young rats chronically injected with GA in working and procedural memory test, and whether N-acetylcysteine (NAC) would protect against impairment induced by GA. Rat pups were injected with GA (5 μmol g body weight-1, subcutaneously; twice per day; from the 5th to the 28th day of life) and were supplemented with NAC (150 mg/kg/day; intragastric gavage; for the same period). We found that GA injection caused delay procedural learning; increase of cytokine concentration, oxidative markers, and caspase levels; decrease of antioxidant defenses; and alteration of acetylcholinesterase (AChE) activity. Interestingly, we found an increase in glial cell immunoreactivity and decrease in the immunoreactivity of nuclear factor-erythroid 2-related factor 2 (Nrf2), nicotinic acetylcholine receptor subunit alpha 7 (α7nAChR), and neuronal nuclei (NeuN) in the striatum. Indeed, NAC administration improved the cognitive performance, ROS production, neuroinflammation, and caspase activation induced by GA. NAC did not prevent neuronal death, however protected against alterations induced by GA on Iba-1 and GFAP immunoreactivities and AChE activity. Then, this study suggests possible therapeutic strategies that could help in GA-I treatment and the importance of the striatum in the learning tasks.
Collapse
Affiliation(s)
- Fernanda Silva Rodrigues
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Laboratório de Neuropsiquiatria Experimental e Clínico, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
- Centro de Educação Física e Desportos, Departamento de Métodos e Técnicas Desportivas, Laboratório de Bioquímica do Exercício (BIOEX), Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Centro de Ciências Biológicas, Laboratório de Neurobiologia da Dor e Inflamação, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- Centro de Ciências Biológicas, Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Viviane Nogueira de Zorzi
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Laboratório de Neuropsiquiatria Experimental e Clínico, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
- Centro de Educação Física e Desportos, Departamento de Métodos e Técnicas Desportivas, Laboratório de Bioquímica do Exercício (BIOEX), Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Marla Parizzi Funghetto
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Laboratório de Neuropsiquiatria Experimental e Clínico, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
- Centro de Educação Física e Desportos, Departamento de Métodos e Técnicas Desportivas, Laboratório de Bioquímica do Exercício (BIOEX), Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Fernanda Haupental
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Laboratório de Neuropsiquiatria Experimental e Clínico, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
- Centro de Educação Física e Desportos, Departamento de Métodos e Técnicas Desportivas, Laboratório de Bioquímica do Exercício (BIOEX), Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Alexandra Seide Cardoso
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Laboratório de Neuropsiquiatria Experimental e Clínico, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
- Centro de Educação Física e Desportos, Departamento de Métodos e Técnicas Desportivas, Laboratório de Bioquímica do Exercício (BIOEX), Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan
- Centro de Ciências Naturais e Exatas, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Andréia M Cardoso
- Centro de Ciências Naturais e Exatas, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Maria Rosa C Schinger
- Centro de Ciências Naturais e Exatas, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Alencar Kolinski Machado
- Centro de Ciências da Saúde Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Ivana Beatrice Mânica da Cruz
- Centro de Ciências da Saúde Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Marta Maria Medeiros Frescura Duarte
- Centro de Ciências da Saúde Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Léder L Xavier
- Faculdade de Biociências, Laboratório Central de Microscopia e Microanálise, Departamento de Ciências Fisiológica, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, 90610-000, Brazil
| | - Ana Flavia Furian
- Centro de Ciências da Saúde Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Mauro Schneider Oliveira
- Centro de Ciências da Saúde Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Adair Roberto Soares Santos
- Centro de Ciências Biológicas, Laboratório de Neurobiologia da Dor e Inflamação, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- Centro de Ciências Biológicas, Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Luiz Fernando Freire Royes
- Centro de Educação Física e Desportos, Departamento de Métodos e Técnicas Desportivas, Laboratório de Bioquímica do Exercício (BIOEX), Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Centro de Ciências Biológicas, Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
- Centro de Ciências Naturais e Exatas, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
- Centro de Ciências da Saúde Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Michele Rechia Fighera
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Laboratório de Neuropsiquiatria Experimental e Clínico, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil.
- Centro de Educação Física e Desportos, Departamento de Métodos e Técnicas Desportivas, Laboratório de Bioquímica do Exercício (BIOEX), Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
- Centro de Ciências Biológicas, Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
- Centro de Ciências Naturais e Exatas, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil.
- Centro de Ciências da Saúde Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
11
|
Bak DH, Na J, Choi MJ, Lee BC, Oh CT, Kim JY, Han HJ, Kim MJ, Kim TH, Kim BJ. Anti‑apoptotic effects of human placental hydrolysate against hepatocyte toxicity in vivo and in vitro. Int J Mol Med 2018; 42:2569-2583. [PMID: 30132515 PMCID: PMC6192762 DOI: 10.3892/ijmm.2018.3830] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023] Open
Abstract
Apoptosis and oxidative stress are essential for the pathogenesis of acute liver failure and fulminant hepatic failure. Human placental hydrolysate (hPH) has been reported to possess antioxidant and anti-inflammatory properties. In the present study, the protective effects of hPH against D-galactosamine (D-GalN)- and lipopolysaccharide (LPS)-induced hepatocyte apoptosis were investigated in vivo. In addition, the molecular mechanisms underlying the anti-apoptotic activities of hPH against D-GalN-induced cell death in vitro were examined. Male Sprague-Dawley rats were injected with D-GaIN/LPS with or without the administration of hPH. Rats were sacrificed 24 h after D-GaIN/LPS intraperitoneal injection, and the blood and liver samples were collected for future inflammation and hepatotoxicity analyses. Changes in cell viability, apoptosis protein expression, mitochondrial mass, mitochondrial membrane potential, reactive oxygen species generation, and the levels of proteins and mRNA associated with a protective mechanism were determined in HepG2 cells pretreated with hPH for 2 h prior to D-GalN exposure. The findings suggested that hPH treatment effectively protected against D-GalN/LPS-induced hepatocyte apoptosis by reducing the levels of alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, interleukin-6, and tumor necrosis factor-α, and increasing the level of proliferating cell nuclear antigen. It was also found that hPH inhibited the apoptotic cell death induced by D-GalN. hPH activated the expression of antioxidant enzymes, including superoxide dismutase, glutathione peroxidase, and catalase, which were further upregulated by the Kelch-like ECH2-associated protein 1-p62-nuclear factor-erythroid 2-related factor 2 pathway, a component of oxidative stress defense mechanisms. Furthermore, hPH markedly reduced cytosolic and mitochondrial reactive oxygen species and rescued mitochondrial loss and dysfunction through the reduction of damage-regulated autophagy modulator, p53, and C/EBP homologous protein. Collectively, hPH exhibited a protective role in hepatocyte apoptosis by inhibiting oxidative stress and maintaining cell homeostasis. The underlying mechanisms may be associated with the inhibition of endoplasmic reticulum stress and minimization of the autophagy progress.
Collapse
Affiliation(s)
- Dong-Ho Bak
- Department of Dermatology, College of Medicine, Chung‑Ang University, Seoul 06973, Republic of Korea
| | - Jungtae Na
- Department of Dermatology, College of Medicine, Chung‑Ang University, Seoul 06973, Republic of Korea
| | - Mi Ji Choi
- Department of Dermatology, College of Medicine, Chung‑Ang University, Seoul 06973, Republic of Korea
| | - Byung Chul Lee
- Department of Dermatology, College of Medicine, Chung‑Ang University, Seoul 06973, Republic of Korea
| | - Chang Taek Oh
- Research and Development Center, Green Cross WellBeing Corporation, Seongnam, Gyeonggi 13595, Republic of Korea
| | - Jeom-Yong Kim
- Research and Development Center, Green Cross WellBeing Corporation, Seongnam, Gyeonggi 13595, Republic of Korea
| | - Hae Jung Han
- Research and Development Center, Green Cross WellBeing Corporation, Seongnam, Gyeonggi 13595, Republic of Korea
| | | | - Tae Ho Kim
- Division of Gastroenterology, Department of Internal Medicine, Bucheon St. Mary's Hospital, The Catholic University of Korea, Bucheon‑si, Gyeonggi 14647, Republic of Korea
| | - Beom Joon Kim
- Department of Dermatology, College of Medicine, Chung‑Ang University, Seoul 06973, Republic of Korea
| |
Collapse
|
12
|
Gabbi P, Ribeiro LR, Jessié Martins G, Cardoso AS, Haupental F, Rodrigues FS, Machado AK, Sperotto Brum J, Medeiros Frescura Duarte MM, Schetinger MRC, da Cruz IBM, Flávia Furian A, Oliveira MS, Dos Santos ARS, Royes LFF, Fighera MR, de Freitas ML. Methylmalonate Induces Inflammatory and Apoptotic Potential: A Link to Glial Activation and Neurological Dysfunction. J Neuropathol Exp Neurol 2017; 76:160-178. [PMID: 28395089 DOI: 10.1093/jnen/nlw121] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Methylmalonic acid (MMA) accumulates in tissues in methylmalonic acidemia, a heterogeneous group of inherited childhood diseases characterized by neurological dysfunction, oxidative stress and neuroinflammation; it is associated with degeneration of striatal neurons and cerebral cortical atrophy. It is presently unknown, however, whether transient exposure to MMA in the neonatal period is sufficient to trigger inflammatory and apoptotic processes that lead to brain structural damage. Here, newborn mice were given a single intracerebroventricular dose of MMA at 12 hours after birth. Maze testing of 21- and 40-day-old mice showed that MMA-injected animals exhibited deficit in the working memory test but not in the reference test. MMA-injected mice showed increased levels of the reactive oxygen species marker 2',7'-dichlorofluorescein diacetate, tumor necrosis factor, interleukin-1β, caspases 1, 3, and 8, and increased acetylcholinesterase activity in the cortex, hippocampus and striatum. This was associated with increased astrocyte and microglial immunoreactivity in all brain regions. These findings suggest that transient exposure to MMA may alter the redox state and cause neuroinflammatory/apoptotic processes and glial activation during critical periods of brain development. Similar processes may underlie brain dysfunction and cognitive impairment in patients with methylmalonic acidemia.
Collapse
Affiliation(s)
- Patricia Gabbi
- Programa de Pós-Graduação em Farmacologia, Centro, de, Departamento Fisiologia e Farmacologia, de Ciências da Saúde.,Laboratório de Bioquímica do Exercício, Centro, de, Departamento Métodos e Técnicas Desportivas, de Educação Física e Desportos, UFSM.,Centro, de Departamento Neuropsiquiatria; de Ciências da Saúde, UFSM
| | - Leandro Rodrigo Ribeiro
- Programa de Pós-Graduação em Farmacologia, Centro, de, Departamento Fisiologia e Farmacologia, de Ciências da Saúde.,Laboratório de Bioquímica do Exercício, Centro, de, Departamento Métodos e Técnicas Desportivas, de Educação Física e Desportos, UFSM
| | | | - Alexandra Seide Cardoso
- Programa de Pós-Graduação em Farmacologia, Centro, de, Departamento Fisiologia e Farmacologia, de Ciências da Saúde.,Laboratório de Bioquímica do Exercício, Centro, de, Departamento Métodos e Técnicas Desportivas, de Educação Física e Desportos, UFSM.,Centro, de Departamento Neuropsiquiatria; de Ciências da Saúde, UFSM
| | - Fernanda Haupental
- Programa de Pós-Graduação em Farmacologia, Centro, de, Departamento Fisiologia e Farmacologia, de Ciências da Saúde.,Laboratório de Bioquímica do Exercício, Centro, de, Departamento Métodos e Técnicas Desportivas, de Educação Física e Desportos, UFSM.,Centro, de Departamento Neuropsiquiatria; de Ciências da Saúde, UFSM
| | - Fernanda Silva Rodrigues
- Laboratório de Bioquímica do Exercício, Centro, de, Departamento Métodos e Técnicas Desportivas, de Educação Física e Desportos, UFSM.,Centro, de Departamento Neuropsiquiatria; de Ciências da Saúde, UFSM.,de Programa Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica
| | - Alencar Kolinski Machado
- Programa de Pós-Graduação em Farmacologia, Centro, de, Departamento Fisiologia e Farmacologia, de Ciências da Saúde
| | | | | | | | | | - Ana Flávia Furian
- Programa de Pós-Graduação em Farmacologia, Centro, de, Departamento Fisiologia e Farmacologia, de Ciências da Saúde
| | - Mauro Schneider Oliveira
- Programa de Pós-Graduação em Farmacologia, Centro, de, Departamento Fisiologia e Farmacologia, de Ciências da Saúde
| | - Adair Roberto Soares Dos Santos
- Programa de Pós-Graduação em Farmacologia, Centro, de, Departamento Fisiologia e Farmacologia, de Ciências da Saúde.,de Programa Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica.,Universidade Federal de Santa Catarina, Centro, de Programa Pós-graduação em Neurociências, de Ciências Biológicas
| | - Luiz Fernando Freire Royes
- Programa de Pós-Graduação em Farmacologia, Centro, de, Departamento Fisiologia e Farmacologia, de Ciências da Saúde.,Laboratório de Bioquímica do Exercício, Centro, de, Departamento Métodos e Técnicas Desportivas, de Educação Física e Desportos, UFSM.,de Programa Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica
| | - Michele Rechia Fighera
- Programa de Pós-Graduação em Farmacologia, Centro, de, Departamento Fisiologia e Farmacologia, de Ciências da Saúde.,Laboratório de Bioquímica do Exercício, Centro, de, Departamento Métodos e Técnicas Desportivas, de Educação Física e Desportos, UFSM.,Centro, de Departamento Neuropsiquiatria; de Ciências da Saúde, UFSM.,de Programa Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica
| | | |
Collapse
|
13
|
Pascotini ET, Flores AE, Kegler A, Gabbi P, Bochi GV, Algarve TD, Prado ALC, Duarte MM, da Cruz IB, Moresco RN, Royes LFF, Fighera MR. Apoptotic markers and DNA damage are related to late phase of stroke: Involvement of dyslipidemia and inflammation. Physiol Behav 2015; 151:369-78. [DOI: 10.1016/j.physbeh.2015.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/30/2015] [Accepted: 08/01/2015] [Indexed: 12/01/2022]
|
14
|
Hernández-Corbacho MJ, Canals D, Adada MM, Liu M, Senkal CE, Yi JK, Mao C, Luberto C, Hannun YA, Obeid LM. Tumor Necrosis Factor-α (TNFα)-induced Ceramide Generation via Ceramide Synthases Regulates Loss of Focal Adhesion Kinase (FAK) and Programmed Cell Death. J Biol Chem 2015; 290:25356-73. [PMID: 26318452 DOI: 10.1074/jbc.m115.658658] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Indexed: 11/06/2022] Open
Abstract
Ceramide synthases (CerS1-CerS6), which catalyze the N-acylation of the (dihydro)sphingosine backbone to produce (dihydro)ceramide in both the de novo and the salvage or recycling pathway of ceramide generation, have been implicated in the control of programmed cell death. However, the regulation of the de novo pathway compared with the salvage pathway is not fully understood. In the current study, we have found that late accumulation of multiple ceramide and dihydroceramide species in MCF-7 cells treated with TNFα occurred by up-regulation of both pathways of ceramide synthesis. Nevertheless, fumonisin B1 but not myriocin was able to protect from TNFα-induced cell death, suggesting that ceramide synthase activity is crucial for the progression of cell death and that the pool of ceramide involved derives from the salvage pathway rather than de novo biosynthesis. Furthermore, compared with control cells, TNFα-treated cells exhibited reduced focal adhesion kinase and subsequent plasma membrane permeabilization, which was blocked exclusively by fumonisin B1. In addition, exogenously added C6-ceramide mimicked the effects of TNFα that lead to cell death, which were inhibited by fumonisin B1. Knockdown of individual ceramide synthases identified CerS6 and its product C16-ceramide as the ceramide synthase isoform essential for the regulation of cell death. In summary, our data suggest a novel role for CerS6/C16-ceramide as an upstream effector of the loss of focal adhesion protein and plasma membrane permeabilization, via the activation of caspase-7, and identify the salvage pathway as the critical mechanism of ceramide generation that controls cell death.
Collapse
Affiliation(s)
| | - Daniel Canals
- From the Stony Brook Cancer Center, the Department of Medicine, and
| | - Mohamad M Adada
- From the Stony Brook Cancer Center, the Department of Medicine, and
| | - Mengling Liu
- From the Stony Brook Cancer Center, the Department of Medicine, and
| | - Can E Senkal
- From the Stony Brook Cancer Center, the Department of Medicine, and
| | - Jae Kyo Yi
- From the Stony Brook Cancer Center, the Department of Medicine, and
| | - Cungui Mao
- From the Stony Brook Cancer Center, the Department of Medicine, and
| | - Chiara Luberto
- From the Stony Brook Cancer Center, the Department of Physiology and Biophysics, Stony Brook University, Health Sciences Center, Stony Brook, New York 11794 and
| | - Yusuf A Hannun
- From the Stony Brook Cancer Center, the Department of Medicine, and
| | - Lina M Obeid
- From the Stony Brook Cancer Center, the Department of Medicine, and the Northport Veterans Affairs Medical Center, Northport, New York 11768
| |
Collapse
|
15
|
Francés DEA, Ingaramo PI, Mayoral R, Través P, Casado M, Valverde ÁM, Martín-Sanz P, Carnovale CE. Cyclooxygenase-2 over-expression inhibits liver apoptosis induced by hyperglycemia. J Cell Biochem 2013; 114:669-80. [PMID: 23059845 DOI: 10.1002/jcb.24409] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/24/2012] [Indexed: 12/22/2022]
Abstract
Increased expression of COX-2 has been linked to inflammation and carcinogenesis. Constitutive expression of COX-2 protects hepatocytes from several pro-apoptotic stimuli. Increased hepatic apoptosis has been observed in experimental models of diabetes. Our present aim was to analyze the role of COX-2 as a regulator of apoptosis in diabetic mouse liver. Mice of C57BL/6 strain wild type (Wt) and transgenic in COX-2 (hCOX-2 Tg) were separated into Control (vehicle) and SID (streptozotocin induced diabetes, 200 mg/kg body weight, i.p.). Seven days post-injection, Wt diabetic animals showed a decrease in PI3K activity and P-Akt levels, an increase of P-JNK, P-p38, pro-apoptotic Bad and Bax, release of cytochrome c and activities of caspases-3 and -9, leading to an increased apoptotic index. This situation was improved in diabetic COX-2 Tg. In addition, SID COX-2 Tg showed increased expression of anti-apoptotic Mcl-1 and XIAP. Pro-apoptotic state in the liver of diabetic animals was improved by over-expression of COX-2. We also analyzed the roles of high glucose-induced apoptosis and hCOX-2 in vitro. Non-transfected and hCOX-2-transfected cells were cultured at 5 and 25 mM of glucose by 72 h. At 25 mM there was an increase in apoptosis in non-transfected cells versus those exposed to 5 mM. This increase was partly prevented in transfected cells at 25 mM. Moreover, the protective effect observed in hCOX-2-transfected cells was suppressed by addition of DFU (COX-2 selective inhibitor), and mimicked by addition of PGE(2) in non-transfected cells. Taken together, these results demonstrate that hyperglycemia-induced hepatic apoptosis is protected by hCOX-2 expression.
Collapse
Affiliation(s)
- Daniel E A Francés
- Instituto de Fisiología Experimental (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Bhattacharya S, Gachhui R, Sil PC. The prophylactic role of D-saccharic acid-1,4-lactone against hyperglycemia-induced hepatic apoptosis via inhibition of both extrinsic and intrinsic pathways in diabetic rats. Food Funct 2013; 4:283-296. [PMID: 23138840 DOI: 10.1039/c2fo30145h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Sustained hyperglycemia and increased oxidative stress play major roles in the development of secondary complications in diabetes including liver injury. Dietary supplement of antioxidants is effective in preventing oxidative stress mediated tissue damage in diabetic pathophysiology. D-Saccharic acid 1,4-lactone (DSL), a derivative of D-glucaric acid, is present in many dietary plants and is known for its detoxifying and antioxidant properties. Our early investigation showed that DSL can ameliorate alloxan (ALX) induced diabetes mellitus and oxidative stress in rats by inhibiting pancreatic β-cell apoptosis. In the present study we investigated the protective role of DSL against hepatic dysfunction in ALX induced diabetic rats. ALX exposure elevated the blood glucose, serum ALP and ALT levels, the production of reactive oxygen species (ROS), and disturbed the intra-cellular antioxidant machineries. Oral administration of DSL restored all these alterations close to normal. By investigating the mechanism of its protective activity, we observed that DSL prevented hyperglycemia induced hepatic apoptosis by inhibiting both extrinsic and intrinsic pathways. Results showed that in the liver tissue, diabetes promoted a significant increase of TNF-α/TNF-R1 and led to the activation of caspase-8 and t-Bid. In addition, ALX exposure reciprocally regulated Bcl-2 family protein expression, disturbed mitochondrial membrane potential, and subsequently released cytochrome c from mitochondria to cytosol. As a consequence, a significant increase in caspase-3 expression was observed in the liver of diabetic animals. However, treatment of diabetic rats with DSL counteracted these changes, making it a promising approach in lessening diabetes mediated tissue damage.
Collapse
|
17
|
Zinkel SS, Yin XM, Gross A. Rejuvenating Bi(d)ology. Oncogene 2012; 32:3213-3219. [PMID: 23069655 DOI: 10.1038/onc.2012.454] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 08/14/2012] [Accepted: 08/14/2012] [Indexed: 12/25/2022]
Abstract
The BH3-only Bid protein is a critical sentinel of cellular stress in the liver and the hematopoietic system. Bid's initial 'claim to fame' came from its ability-as a caspase-truncated product-to trigger the mitochondrial apoptotic program following death receptor activation. Today we know that Bid can response to multiple types of proteases, which are activated under different conditions such as T-cell activation, ischemical reperfusion injury and lysosomal injury. Activation of the mitochondrial apoptotic program by Bid-via its recently identified receptor mitochondrial carrier homolog 2-involves multiple mechanisms, including release of cytochrome c and second mitochondria-derived activator of caspase (Smac), alteration of mitochondrial cristae organization, generation of reactive oxygen species and engagement of the permeability transition pore. Bid is also emerging-in its full-length form-as a pivotal sentinel of DNA damage in the bone marrow regulated by the ataxia telangiectasia mutated (ATM)/ataxia telangiectasia and Rad3-related (ATR) kinases. The ATM/ATR-Bid pathway is critically involved in preserving the quiescence and survival of hematopoietic stem cells both in the absence and presence of external stress, and a large part of this review will be dedicated to recent advances in this area of research.
Collapse
Affiliation(s)
- S S Zinkel
- Departments of Medicine, Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - X M Yin
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A Gross
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
18
|
The caspase pathway of linoelaidic acid (9t, 12t-c18:2)-induced apoptosis in human umbilical vein endothelial cells. Lipids 2012; 48:115-26. [PMID: 23065354 DOI: 10.1007/s11745-012-3728-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 09/25/2012] [Indexed: 10/27/2022]
Abstract
Trans fatty acids (TFA) are reported to contribute to inflammation and coronary heart disease. The study aim was to investigate the proapoptotic effects of two double bond TFA (TDTFA) on human umbilical vein endothelial cells (HUVEC). The HUVEC were grown in media supplied with linoelaidic acid (9t,12t-C18:2) at 50, 100, 200, 400 μmol/l for 24 or 48 h to examine the effects of TDTFA on the viability and apoptosis of these cells. Flow cytometry analysis and confocal scanning were used to measure apoptosis, cell binding of Annexin V and propidium iodide uptake. Colorimetric assay and RT-PCR were used to analyze enzyme activities and mRNA expression of caspase-3, -8 and -9 in HUVEC. Results showed that 9t,12t-C18:2 inhibited the viability of HUVEC in a dose-dependent and time-dependent manner. The percentages of 9t,12t-C18:2 induced apoptotic and necrotic cells significantly increased compared with that of the control. The activities and mRNA expression of caspase-8, -9 and -3 were significantly increased in 9t,12t-C18:2 treated cells compared to that of the control. Addition of specific inhibitors of caspase-8 (z-IETD-fmk) and caspase-9 (z-LEHD-fmk) to HUVEC was found to completely inhibit 9t,12t-C18:2-induced activation of caspase-3, and z-IETD-fmk inhibited the activation of caspase-9. Meanwhile, it was found that mRNA expression of Bid, Smac/DIABLO and the release of mitochondrial cytochrome c were significantly elevated by 9t,12t-C18:2 treatment. These results suggest that 9t,12t-C18:2 may induce apoptosis of HUVEC through activating caspase-8, -9 and -3. Both the death receptor pathway and the mitochondrial pathway may be involved in the apoptosis induced by 9t,12t-C18:2.
Collapse
|
19
|
Canová NK, Martínek J, Kmonícková E, Zídek Z, Kameníková L, Farghali H. Modulation of spontaneous and lipopolysaccharide-induced nitric oxide production and apoptosis by d-galactosamine in rat hepatocyte culture: the significance of combinations of different methods. Toxicol Mech Methods 2012; 18:63-74. [PMID: 20020892 DOI: 10.1080/15376510701738421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
ABSTRACT Apoptotic markers and signals produced by xenobiotics as hepatotoxic D-galactosamine (D-GalN) and lipopolysaccharide (LPS) are extensively investigated in vivo. The contribution of various cells and factors as nitric oxide (NO) in mediating hepatocyte apoptosis in a rat model of systemic endotoxemia was reported. Therefore, the aim of the present work was to study the in vitro effect of D-GalN on nonstimulated or LPS-treated rat hepatocytes in culture and the potential involvement of NO in this process. Our results showed that the spontaneous and LPS-induced NO production was completely blocked by D-GalN during 0 to 24 hours. However, D-GalN slightly enhanced NO production during 24 to 48 hours. D-GalN was more potent to induce hepatocyte apoptosis and necrosis during 24 to 48 than 0 to 24 hours as evidenced morphologically (Annexin V/propidium iodide staining) and biochemically (caspase-3-like activity, alanine-aminotransferase leakage, MTT test). Interestingly, D-GalN treatment suppressed mitochondrial cytochrome C release throughout the study. LPS addition to D-GalN considerably aggravated apoptotic/necrotic markers only during 0 to 24 hours. Surprisingly, a share of apoptotic cells was distinctly lower after LPS + GalN treatment than after LPS alone during 0 to 24 hours, while 24- to 48-hour incubation produced massive apoptotic/necrotic hepatocytes. It may be concluded that there is a significant modulation of NO production by D-GalN. Because the role of NO is only partly decisive in the apoptotic/necrotic events, and considering the fraction of the cells completing apoptosis while others that turn toward necrosis (aponecrosis), caution should be exercised in apoptosis data interpretation and combinations of different test methods should be applied.
Collapse
Affiliation(s)
- Nikolina Kutinová Canová
- Institute of Pharmacology, 1st Faculty of Medicine, Charles University in Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
20
|
Mentha piperita as a pivotal neuro-protective agent against gamma irradiation induced DNA fragmentation and apoptosis : Mentha extract as a neuroprotective against gamma irradiation. Cytotechnology 2012; 65:145-56. [PMID: 23011739 DOI: 10.1007/s10616-012-9470-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 05/29/2012] [Indexed: 12/17/2022] Open
Abstract
Ionizing radiation is classified as a potent carcinogen, and its injury to living cells, in particular to DNA, is due to oxidative stress enhancing apoptotic cell death. Our present study aimed to characterize and semi-quantify the radiation-induced apoptosis in CNS and the activity of Mentha extracts as neuron-protective agent. Our results through flow cytometry exhibited the significant disturbance and arrest in cell cycle in % of M1: SubG1 phase, M2: G0/1 phase of diploid cycle, M3: S phase and M4: G2/M phase of cell cycle in brain tissue (p < 0.05). Significant increase in % of apoptosis and P53 protein expression as apoptotic biomarkers were coincided with significant decrease in Bcl(2) as an anti-apoptotic marker. The biochemical analysis recorded a significant decrease in the levels of reduced glutathione, superoxide dismutase, deoxyribonucleic acid (DNA) and ribonucleic acid contents. Moreover, numerous histopathological alterations were detected in brain tissues of gamma irradiated mice such as signs of chromatolysis in pyramidal cells of cortex, nuclear vacuolation, numerous apoptotic cell, and neural degeneration. On the other hand, gamma irradiated mice pretreated with Mentha extract showed largely an improvement in all the above tested parameters through a homeostatic state for the content of brain apoptosis and stabilization of DNA cycle with a distinct improvement in cell cycle analysis and antioxidant defense system. Furthermore, the aforementioned effects of Mentha extracts through down-regulation of P53 expression and up-regulation of Bcl(2) domain protected brain structure from extensive damage. Therefore, Mentha extract seems to have a significant role to ameliorate the neuronal injury induced by gamma irradiation.
Collapse
|
21
|
Smith JA, Das A, Ray SK, Banik NL. Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull 2012; 87:10-20. [PMID: 22024597 PMCID: PMC9827422 DOI: 10.1016/j.brainresbull.2011.10.004] [Citation(s) in RCA: 777] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 10/02/2011] [Accepted: 10/10/2011] [Indexed: 01/11/2023]
Abstract
Microglia are activated in response to a number of different pathological states within the CNS including injury, ischemia, and infection. Microglial activation results in their production of pro-inflammatory cytokines such as IL-1, IL-6, and TNF-α. While release of these factors is typically intended to prevent further damage to CNS tissue, they may also be toxic to neurons and other glial cells. Mounting evidence indicates that chronic microglial activation may also contribute to the development and progression of neurodegenerative disorders. Unfortunately, determining the role of pro-inflammatory cytokines in these disorders has been complicated by their dual roles in neuroprotection and neurodegeneration. The purpose of this review is to summarize current understanding of the involvement of cytokines in neurodegenerative disorders and their potential signaling mechanisms in this context. Taken together, recent findings suggest that microglial activation and pro-inflammatory cytokines merit interest as targets in the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Joshua A. Smith
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 309 CSB, P.O. Box 250606, Charleston, SC 29425, USA
| | - Arabinda Das
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 309 CSB, P.O. Box 250606, Charleston, SC 29425, USA
| | - Swapan K. Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Naren L. Banik
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 309 CSB, P.O. Box 250606, Charleston, SC 29425, USA,Corresponding author. Tel.: +1 843 792 7594; fax: +1 843 792 5137. (N.L. Banik)
| |
Collapse
|
22
|
Abdel-Hamid NM, Nazmy MH, Abdel-Ghany MI, Nazmy WH. Cytokines as important playmakers of experimental hepatocarcinogenesis confounded by diabetes. Ann Hepatol 2012; 11:118-127. [DOI: 10.1016/s1665-2681(19)31495-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
|
23
|
Abstract
Fas (also called CD95 or APO-1), a member of a subgroup of the tumour necrosis factor receptor superfamily that contain an intracellular death domain, can initiate apoptosis signalling and has a critical role in the regulation of the immune system. Fas-induced apoptosis requires recruitment and activation of the initiator caspase, caspase-8 (in humans also caspase-10), within the death-inducing signalling complex. In so-called type 1 cells, proteolytic activation of effector caspases (-3 and -7) by caspase-8 suffices for efficient apoptosis induction. In so-called type 2 cells, however, killing requires amplification of the caspase cascade. This can be achieved through caspase-8-mediated proteolytic activation of the pro-apoptotic Bcl-2 homology domain (BH)3-only protein BH3-interacting domain death agonist (Bid), which then causes mitochondrial outer membrane permeabilisation. This in turn leads to mitochondrial release of apoptogenic proteins, such as cytochrome c and, pertinent for Fas death receptor (DR)-induced apoptosis, Smac/DIABLO (second mitochondria-derived activator of caspase/direct IAP binding protein with low Pi), an antagonist of X-linked inhibitor of apoptosis (XIAP), which imposes a brake on effector caspases. In this review, written in honour of Juerg Tschopp who contributed so much to research on cell death and immunology, we discuss the functions of Bid and XIAP in the control of Fas DR-induced apoptosis signalling, and we speculate on how this knowledge could be exploited to develop novel regimes for treatment of cancer.
Collapse
|
24
|
Gambino R, Musso G, Cassader M. Redox balance in the pathogenesis of nonalcoholic fatty liver disease: mechanisms and therapeutic opportunities. Antioxid Redox Signal 2011; 15:1325-65. [PMID: 20969475 DOI: 10.1089/ars.2009.3058] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is currently the most common liver disease in the world. It encompasses a histological spectrum, ranging from simple, nonprogressive steatosis to nonalcoholic steatohepatitis (NASH), which may progress to cirrhosis and hepatocellular carcinoma. While liver-related complications are confined to NASH, emerging evidence suggests both simple steatosis and NASH predispose to type 2 diabetes and cardiovascular disease. The pathogenesis of NAFLD is currently unknown, but accumulating data suggest that oxidative stress and altered redox balance play a crucial role in the pathogenesis of steatosis, steatohepatitis, and fibrosis. We will examine intracellular mechanisms, including mitochondrial dysfunction and impaired oxidative free fatty acid metabolism, leading to reactive oxygen species generation; additionally, the potential pathogenetic role of extracellular sources of reactive oxygen species in NAFLD, including increased myeloperoxidase activity and oxidized low density lipoprotein accumulation, will be reviewed. We will discuss how these mechanisms converge to determine the whole pathophysiological spectrum of NAFLD, including hepatocyte triglyceride accumulation, hepatocyte apoptosis, hepatic inflammation, hepatic stellate cell activation, and fibrogenesis. Finally, available animal and human data on treatment opportunities with older and newer antioxidant will be presented.
Collapse
Affiliation(s)
- Roberto Gambino
- Department of Internal Medicine, University of Turin, Turin, Italy
| | | | | |
Collapse
|
25
|
Abdel-Hamid NM, Nazmy MH, Mahmoud AW, Fawzy MA, Youssof M. A survey on herbal management of hepatocellular carcinoma. World J Hepatol 2011; 3:175-183. [PMID: 21866249 PMCID: PMC3158906 DOI: 10.4254/wjh.v3.i7.175] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 05/06/2011] [Accepted: 05/13/2011] [Indexed: 02/06/2023] Open
Abstract
In this review we outline the different mechanisms mediating hepatocarcinogenesis. We also discuss possible targets of bioactive herbal agents at different stages of hepatocarcinogenesis and highlight their role at each individual stage. We gathered information on the most common herbal prescriptions and extracts thought to be useful in prevention or sensitization for chemotherapy in management of hepatocellular carcinoma (HCC). The value of this topic may seem questionable compared to the promise offered for HCC management by chemotherapy and radiation. However, we would recommend the use of herbal preparations not as alternatives to common chemo /and or radiotherapy, but rather for prevention among at-risk individuals, given that drug/herb interactions are still in need of extensive clarification. The bioactive constituents of various herbs seem to be promising targets for isolation, cancer activity screening and clinical evaluation. Finally, herbal preparations may offer a cost effective protective alternative to individuals known to have a high risk for HCC and possibly other cancers, through maintaining cell integrity, reversing oxidative stress and modulating different molecular pathways in preventing carcinogenesis.
Collapse
Affiliation(s)
- Nabil Mohie Abdel-Hamid
- Nabil Mohie Abdel-Hamid, Maiiada Hasan Nazmy, Ahmed Wahid Mahmoud, Michael Atef Fawzy, Marco Youssof, Biochemistry Department, Unit of Liver cancer research, Faulty of Pharmacy, Minia University, Minia 002086, Egypt
| | | | | | | | | |
Collapse
|
26
|
Eum HA, Vallabhaneni R, Wang Y, Loughran PA, Stolz DB, Billiar TR. Characterization of DISC formation and TNFR1 translocation to mitochondria in TNF-α-treated hepatocytes. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1221-9. [PMID: 21741934 DOI: 10.1016/j.ajpath.2011.05.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 05/10/2011] [Accepted: 05/17/2011] [Indexed: 11/18/2022]
Abstract
Tumor necrosis factor receptor 1 (TNFR1) activation in hepatocytes can trigger apoptotic or inflammatory signaling. The factors that determine which signaling pathway dominates are not clear and are thought to relate to the efficiency of death-inducing signaling complex (DISC) formation. However, the steps involved in DISC formation in hepatocytes are poorly understood. In characterizing DISC formation within cultured hepatocytes, we demonstrated that TNF-α exposure leads to the rapid formation of a DISC involving TNF-α, the TNFR-associated death domain adaptor molecule (TRADD), the Fas-associated death domain adaptor molecule (FADD), caspase-8, TNFR-associated factor 2 (TRAF2), and receptor-interacting protein (RIP). The inclusion of the sensitizing agent actinomycin D both accelerated and amplified the appearance of the DISC. Notably, TNFR1 along with some DISC components also appeared within mitochondria within 30 minutes. Whereas TNFR1 consistently co-localized with the TRADD, FADD, the caspase-8, and TRAF2 in the cytosolic fraction, TNFR1 in the mitochondria was associated only with caspase-8 after TNF-α exposure. Similar observations were made in vivo using TNF-α with D-galactosamine. Actinomycin D alone also enhanced the appearance of DISC components in both cytosol and the mitochondria. Thus the DISC that includes TNFR1 forms in the cytosol of hepatocytes under both survival and pro-apoptotic conditions. The observations also suggest that TNF-α-mediated signaling includes the translocation of TNFR1 to mitochondria.
Collapse
Affiliation(s)
- Hyun-Ae Eum
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
27
|
Ingaramo PI, Ronco MT, Francés DEA, Monti JA, Pisani GB, Ceballos MP, Galleano M, Carrillo MC, Carnovale CE. Tumor necrosis factor alpha pathways develops liver apoptosis in type 1 diabetes mellitus. Mol Immunol 2011; 48:1397-407. [PMID: 21481476 DOI: 10.1016/j.molimm.2011.03.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/15/2011] [Accepted: 03/18/2011] [Indexed: 01/04/2023]
Abstract
We analyzed the contribution of TNF-α intracellular pathway in the development of apoptosis in the liver of streptozotocin-induced diabetic rats. In liver tissue, diabetes promoted a significant increase of TNF-α/TNF-R1, and led to the activation of caspase-8, of nuclear factor kappa B (NFκB), and JNK signaling pathways. The activation of NFκB led to an induction of iNOS and consequent increase in NO production. As a consequence of such changes a significant increase of caspase-3 activity and of apoptotic index were observed in the liver of diabetic animals. Importantly, the treatment in vivo of diabetic rats with etanercept (TNF-α blocking antibody) or aminoguanidine (selective iNOS inhibitor) significantly attenuated the induction of apoptosis by reduction of caspase-3 activity. Overall, we demonstrated that in the diabetes enhances TNF-α in the liver, which may be a fundamental key leading to apoptotic cell death, through activation of caspase-8, NFκB and JNK pathways.
Collapse
Affiliation(s)
- Paola I Ingaramo
- Institute of Experimental Physiology (CONICET), Faculty of Biochemical and Pharmaceutical Sciences (National University of Rosario), Rosario, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Weng SY, Yang CY, Li CC, Sun TP, Tung SY, Yen JJY, Tsai TF, Chen CM, Chen SH, Hsiao M, Huang PH, Yang-Yen HF. Synergism between p53 and Mcl-1 in protecting from hepatic injury, fibrosis and cancer. J Hepatol 2011; 54:685-94. [PMID: 21146511 DOI: 10.1016/j.jhep.2010.07.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 07/21/2010] [Accepted: 07/23/2010] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Mcl-1-deficient hepatocytes are prone to undergo apoptosis. The tumor suppressor protein p53 plays an important role in apoptosis control as well as other cellular responses. This study was initially aimed to examine whether p53 was involved in Mcl-1 deficiency-induced apoptosis of hepatocytes. METHODS Hepatocyte-specific Mcl-1 knockout (Alb-Mcl-1(-/-)) mice and Alb-Mcl-1(-/-) mice in wild-type or p53-deficient background were generated and characterized. RESULTS Alb-Mcl-1(-/-) mice were viable, but their liver cells were prone to undergo apoptosis and manifested a slightly elevated level of p53. To examine the role of p53 in Alb-Mcl-1(-/-) livers, Alb-Mcl-1(-/-) mice without p53 (DKO mice) were characterized. Unexpectedly, although p53-deficient mice appeared to be developmentally normal, DKO mice were highly susceptible to neonatal death (∼60%). Further analysis revealed that such an early lethality was likely due to hepatic failure caused by a marked reduction of fully-differentiated hepatocytes at the perinatal/neonatal stage. Moreover, those DKO mice that did survive to adulthood manifested more severe liver damage than Alb-Mcl-1(-/-) mice, suggesting that p53 was activated in Alb-Mcl-1(-/-) livers to promote cell survival. Microarray followed by quantitative PCR analysis suggested that p21(Waf1/Cip1), one p53 target gene with apoptosis-inhibitory function, is likely involved in the protective role of p53 in Alb-Mcl-1(-/-) livers. Moreover, we demonstrated that loss of p53 promoted liver fibrosis and tumor development in Alb-Mcl-1(-/-) mice. CONCLUSIONS This study revealed an unexpected synergism between Mcl-1 and p53 in protecting from hepatic injury, fibrosis, and cancer.
Collapse
Affiliation(s)
- Shih-Yen Weng
- Institute of Molecular Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Eum HA, Billiar TR. TNF/TNF receptor 1-mediated apoptosis in hepatocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 691:617-24. [PMID: 21153368 DOI: 10.1007/978-1-4419-6612-4_65] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Hyun-Ae Eum
- Department of Surgery, F-1200 PUH, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15217, USA
| | | |
Collapse
|
30
|
Schattenberg JM, Schuchmann M, Galle PR. Cell death and hepatocarcinogenesis: Dysregulation of apoptosis signaling pathways. J Gastroenterol Hepatol 2011; 26 Suppl 1:213-9. [PMID: 21199533 DOI: 10.1111/j.1440-1746.2010.06582.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hepatocellular carcinoma (HCC) remains a disease with a poor prognosis despite recent advances in the pathophysiology and treatment. Although the disease is biologically heterogeneous, dysregulation of cellular proliferation and apoptosis both occur frequently and contribute to the malignant phenotype. Chronic liver disease is associated with intrahepatic inflammation which promotes dysregulation of cellular signaling pathways; this triggers proliferation and thus lays the ground for expansion of premalignant cells. Cancer emerges when immunological control fails and transformed cells develop resistance against cell death signaling pathways. The same mechanisms underlie the poor responsiveness of HCC towards chemotherapy. Only recently advances in understanding the signaling pathways involved has led to the development of an effective pharmacological therapy for advanced disease. The current review will discuss apoptosis signaling pathways and focus on apoptosis resistance of HCC involving derangements in cell death receptors (e.g. tumor necrosis factor-alpha [TNF], CD95/Apo-1, TNF-related apoptosis-inducing ligand [TRAIL]) and associated adapter molecules (e.g. FADD and FLIP) of apoptotic signaling pathways. In addition, the role of the transcription factor nuclear factor-kappaB (NFκB) and members of the B cell leukemia-2 (Bcl-2) family that contribute to the regulation of apoptosis in hepatocytes are discussed. Eventually, the delineation of cell death signaling pathways could contribute to the implementation of new therapeutic strategies to treat HCC.
Collapse
Affiliation(s)
- Jorn Markus Schattenberg
- Department of Medicine, University Medical Center, Johannes Gutenberg University Mainz, Germany.
| | | | | |
Collapse
|
31
|
Wang Y, Singh R, Xiang Y, Greenbaum LE, Czaja MJ. Nuclear factor κB up-regulation of CCAAT/enhancer-binding protein β mediates hepatocyte resistance to tumor necrosis factor α toxicity. Hepatology 2010; 52:2118-26. [PMID: 20979051 PMCID: PMC2991433 DOI: 10.1002/hep.23929] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 08/10/2010] [Indexed: 12/17/2022]
Abstract
UNLABELLED The sensitization of hepatocytes to cell death from tumor necrosis factor α (TNFα) underlies many forms of hepatic injury, including that from toxins. Critical for hepatocyte resistance to TNFα toxicity is activation of nuclear factor κB (NF-κB) signaling, which prevents TNFα-induced death by the up-regulation of protective proteins. To further define the mechanisms of hepatocyte sensitization to TNFα killing, immunoblot analysis comparing livers from mice treated with lipopolysaccharide (LPS) alone or LPS together with the hepatotoxin galactosamine (GalN) was performed to identify TNFα-induced protective proteins blocked by GalN. Levels of CCAAT/enhancer-binding protein β (C/EBPβ) were increased after LPS treatment but not GalN/LPS treatment. In a nontransformed rat hepatocyte cell line, TNFα-induced increases in C/EBPβ protein levels were dependent on NF-κB-mediated inhibition of proteasomal degradation. Pharmacological inhibition of c-Jun N-terminal kinase (JNK) did not affect C/EBPβ degradation, indicating that the process was JNK-independent. C/EBPβ functioned to prevent cell death as adenoviral C/EBPβ overexpression blocked TNFα-induced apoptosis in cells sensitized to TNFα toxicity by NF-κB inhibition. C/EBPβ inhibited TNFα-induced caspase 8 activation and downstream mitochondrial cytochrome c release and caspase 3 and caspase 7 activation. Studies in primary hepatocytes from c/ebpβ(-/-) mice confirmed that loss of C/EBPβ increased death from TNFα. c/ebpβ(-/-) mice were also sensitized to liver injury from a nontoxic dose of LPS or TNFα. The absence of jnk2 failed to reverse the GalN-induced block in C/EBPβ induction by LPS, again demonstrating that C/EBPβ degradation was JNK-independent. CONCLUSION C/EBPβ is up-regulated by TNFα and mediates hepatocyte resistance to TNFα toxicity by inhibiting caspase-dependent apoptosis. In the absence of NF-κB signaling, proteasomal degradation of C/EBPβ is increased by a JNK-independent mechanism and promotes death from TNFα.
Collapse
Affiliation(s)
- Yongjun Wang
- Department of Medicine and Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Rajat Singh
- Department of Medicine and Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Youqing Xiang
- Department of Medicine and Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Linda E. Greenbaum
- Departments of Cancer Biology and Medicine, Jefferson Medical College, Philadelphia, PA 19107
| | - Mark J. Czaja
- Department of Medicine and Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
32
|
Abstract
The hepatocyte is especially vulnerable to injury due to its central role in xenobiotic metabolism including drugs and alcohol, participation in lipid and fatty acid metabolism, its unique role in the enterohepatic circulation of bile acids, the widespread prevalence of hepatotropic viruses, and its existence within a milieu of innate immune responding cells. Apoptosis and necrosis are the most widely recognized forms of hepatocyte cell death. The hepatocyte displays many unique features regarding cell death by apoptosis. It is quite susceptible to death receptor-mediated injury, and its death receptor signaling pathways involve the mitochondrial pathway for efficient cell killing. Also, death receptors can trigger lysosomal disruption in hepatocytes which further promote cell and tissue injury. Interestingly, hepatocytes are protected from cell death by only two anti-apoptotic proteins, Bcl-x(L) and Mcl-1, which have nonredundant functions. Endoplasmic reticulum stress or the unfolded protein response contributes to hepatocyte cell death during alterations of lipid and fatty acid metabolism. Finally, the current information implicating RIP kinases in necrosis provides an approach to more fully address this mode of cell death in hepatocyte injury. All of these processes contributing to hepatocyte injury are discussed in the context of potential therapeutic strategies.
Collapse
Affiliation(s)
- Harmeet Malhi
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
33
|
Corazza N, Kassahn D, Jakob S, Badmann A, Brunner T. TRAIL-induced apoptosis: between tumor therapy and immunopathology. Ann N Y Acad Sci 2009; 1171:50-8. [PMID: 19723037 DOI: 10.1111/j.1749-6632.2009.04905.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The death ligand members of the tumor necrosis factor (TNF) family are potent inducers of apoptosis in a variety of cell types. In particular, TNF-related apoptosis-inducing ligand (TRAIL) has recently received much scientific and commercial attention because of its potent tumor cell-killing activity while leaving normal untransformed cells mostly unaffected. Furthermore, TRAIL strongly synergizes with conventional chemotherapeutic drugs in inducing tumor cell apoptosis, making it a most promising candidate for future cancer therapy. Increasing evidence indicates, however, that TRAIL may also induce or modulate apoptosis in primary cells. A particular concern is the potential side effect of TRAIL-based tumor therapies in the liver. In this review we summarize some of the recent findings on the role of TRAIL in tumor cell and hepatocyte apoptosis.
Collapse
Affiliation(s)
- Nadia Corazza
- Division of Immunopathology, Institute of Pathology, University of Bern, Bern, Switzerland.
| | | | | | | | | |
Collapse
|
34
|
Significance of increased expression of decoy receptor 3 in chronic liver disease. Dig Liver Dis 2009; 41:591-8. [PMID: 19195939 PMCID: PMC3305787 DOI: 10.1016/j.dld.2008.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 11/19/2008] [Accepted: 11/20/2008] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIMS Considerable evidence has indicated that apoptosis plays an important role in hepatocyte death in chronic liver disease. However, the cellular and molecular mechanisms underlying liver regeneration in these diseases are largely unknown. Plausibly, certain molecules expressed to counteract apoptosis might provide survival advantage of certain liver cells. Therefore, we investigated a possible expression of decoy receptor 3 of the tumour necrosis factor receptor family in chronic liver diseases since decoy receptor 3 is known to inhibit apoptosis mediated by pro-apoptotic tumour necrosis factor family ligands including Fas ligand. METHODS A series of liver biopsies from patients with different stages of fibrosis were subjected to immunohistochemistry and in situ hybridization. RESULTS Both decoy receptor 3 protein and mRNA were mainly expressed in biliary epithelial cells and infiltrating lymphocytes in the diseased livers. Most noticeably, intense decoy receptor 3 expression was observed in newly developing biliary ductules in regenerative nodules as well as dysplastic nodules of cirrhotic livers. In addition, decoy receptor 3 secretion in hepatocellular carcinoma cells in culture was via the activation of mitogen-activated protein kinases. CONCLUSION Decoy receptor 3 was specifically expressed in chronic liver diseases and hepatocellular carcinoma cells, and decoy receptor 3 might facilitate the survival of liver cells by exerting its anti-apoptotic activity during the progression of liver cirrhosis and hepatocarcinogenesis.
Collapse
|
35
|
Corazza N, Badmann A, Lauer C. Immune cell-mediated liver injury. Semin Immunopathol 2009; 31:267-77. [DOI: 10.1007/s00281-009-0168-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 05/27/2009] [Indexed: 02/07/2023]
|
36
|
Kaufmann T, Jost PJ, Pellegrini M, Puthalakath H, Gugasyan R, Gerondakis S, Cretney E, Smyth MJ, Silke J, Hakem R, Bouillet P, Mak TW, Dixit VM, Strasser A. Fatal hepatitis mediated by tumor necrosis factor TNFalpha requires caspase-8 and involves the BH3-only proteins Bid and Bim. Immunity 2009; 30:56-66. [PMID: 19119023 DOI: 10.1016/j.immuni.2008.10.017] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 09/26/2008] [Accepted: 10/20/2008] [Indexed: 12/13/2022]
Abstract
Apoptotic death of hepatocytes, a contributor to many chronic and acute liver diseases, can be a consequence of overactivation of the immune system and is often mediated by TNFalpha. Injection with lipopolysaccharide (LPS) plus the transcriptional inhibitor D(+)-galactosamine (GalN) or mitogenic T cell activation causes fatal hepatocyte apoptosis in mice, which is mediated by TNFalpha, but the effector mechanisms remain unclear. Our analysis of gene-targeted mice showed that caspase-8 is essential for hepatocyte killing in both settings. Loss of Bid, the proapoptotic BH3-only protein activated by caspase-8 and essential for Fas ligand-induced hepatocyte killing, resulted only in a minor reduction of liver damage. However, combined loss of Bid and another BH3-only protein, Bim, activated by c-Jun N-terminal kinase (JNK), protected mice from LPS+GalN-induced hepatitis. These observations identify caspase-8 and the BH3-only proteins Bid and Bim as potential therapeutic targets for treatment of inflammatory liver diseases.
Collapse
Affiliation(s)
- Thomas Kaufmann
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ni HM, Chen X, Shi YH, Liao Y, Beg AA, Fan J, Yin XM. Genetic delineation of the pathways mediated by bid and JNK in tumor necrosis factor-alpha-induced liver injury in adult and embryonic mice. J Biol Chem 2008; 284:4373-82. [PMID: 19060338 DOI: 10.1074/jbc.m807259200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor-alpha (TNFalpha)-induced hepatocyte death and liver injury can be mediated by multiple mechanisms, which could be evaluated by different animal models. Previous studies have defined the importance of Bid in mitochondrial apoptosis activation in adult mice treated with lipopolysaccharides in the presence of galactosamine (GalN), which suppresses NF-kappaB activation, but not in embryonic mice in which NF-kappaB activation is suppressed by genetic deletion of p65RelA. JNK has also been found important in TNFalpha-induced mitochondria activation and liver injury in the lipopolysaccharide/GalN and concanavalin A (ConA)/GalN models, but not in a ConA-only model in which NF-kappaB activation was not suppressed. To determine the mechanistic relationship of pathways mediated by Bid and JNK, we investigated these two molecules in TNFalpha injury models that had not been previously examined. Most importantly, we created and studied mice deficient in both Bid and JNK. We found that, like JNK, Bid was also required for TNFalpha-induced injury induced by concanavalin A/GalN but not by ConA alone. Furthermore, our results indicate that these two molecules function in a largely overlapped manner, with Bid being downstream of JNK in the adult livers. However, JNK, but not Bid, was able to contribute to the TNFalpha-induced liver apoptosis in RelA-deficient embryos. The Bid-independent role of JNK was also observed in the adult mice, mainly in the promotion of the lethal progression of the TNFalpha injury. This work defined both linear and parallel relationships of Bid and JNK in TNFalpha-induced hepatocyte apoptosis and liver injury.
Collapse
Affiliation(s)
- Hong-Min Ni
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Li X, Zhang Q, Cai L, Wang Y, Wang Q, Huang X, Fu S, Bai J, Liu J, Zhang G, Qi J. Inhibitor of growth 4 induces apoptosis in human lung adenocarcinoma cell line A549 via Bcl-2 family proteins and mitochondria apoptosis pathway. J Cancer Res Clin Oncol 2008; 135:829-35. [PMID: 19034511 DOI: 10.1007/s00432-008-0519-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2008] [Accepted: 11/10/2008] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Inhibitor of growth 4 (ING4) is considered to be a tumor suppressor implicated in several human malignancies by tumor growth inhibition and apoptosis enhancement. In present study, the effects of ING4 on apoptosis and its mechanisms were investigated through the transduction of ING4 cDNA into lung adenocarcinoma cell line A549. METHODS The effects of ING4 on A549 apoptosis were observed by FCM analysis, TUNEL assay, and electron microscopy. Simultaneously, the effects of ING4 on the expression of several apoptosis-related proteins in cell line A549 were evaluated by Western blot analysis. RESULTS Both Annexin-V FITC analysis by FCM and TUNEL assay revealed more apoptotic cells in A549 cells with exogenous ING4 gene. For electron microscopy, A549 cells with exogenous ING4 gene showed typical morphological changes of apoptosis. The deregulation of Bcl-2 family proteins (Bcl-2, Bcl-xl, Bax, Bak, Bid) and the major apoptotic executioners of mitochondria pathway (Cyt-c, caspase3, PARP) were also observed. CONCLUSION Our findings suggest that exogenous ING4 can enhance A549 apoptosis via regulating the expression of Bcl-2 family proteins and the activation of mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Xiaomei Li
- Department of Pathology, The Affiliated Tumor Hospital of Harbin Medical University, Harbin 150040, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
McCoy MK, Tansey MG. TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J Neuroinflammation 2008; 5:45. [PMID: 18925972 PMCID: PMC2577641 DOI: 10.1186/1742-2094-5-45] [Citation(s) in RCA: 634] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 10/17/2008] [Indexed: 12/31/2022] Open
Abstract
The role of tumor necrosis factor (TNF) as an immune mediator has long been appreciated but its function in the brain is still unclear. TNF receptor 1 (TNFR1) is expressed in most cell types, and can be activated by binding of either soluble TNF (solTNF) or transmembrane TNF (tmTNF), with a preference for solTNF; whereas TNFR2 is expressed primarily by microglia and endothelial cells and is preferentially activated by tmTNF. Elevation of solTNF is a hallmark of acute and chronic neuroinflammation as well as a number of neurodegenerative conditions including ischemic stroke, Alzheimer's (AD), Parkinson's (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). The presence of this potent inflammatory factor at sites of injury implicates it as a mediator of neuronal damage and disease pathogenesis, making TNF an attractive target for therapeutic development to treat acute and chronic neurodegenerative conditions. However, new and old observations from animal models and clinical trials reviewed here suggest solTNF and tmTNF exert different functions under normal and pathological conditions in the CNS. A potential role for TNF in synaptic scaling and hippocampal neurogenesis demonstrated by recent studies suggest additional in-depth mechanistic studies are warranted to delineate the distinct functions of the two TNF ligands in different parts of the brain prior to large-scale development of anti-TNF therapies in the CNS. If inactivation of TNF-dependent inflammation in the brain is warranted by additional pre-clinical studies, selective targeting of TNFR1-mediated signaling while sparing TNFR2 activation may lessen adverse effects of anti-TNF therapies in the CNS.
Collapse
Affiliation(s)
- Melissa K McCoy
- Department of Physiology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9040, USA.
| | | |
Collapse
|
40
|
Ni HM, Chen X, Ding WX, Schuchmann M, Yin XM. Differential roles of JNK in ConA/GalN and ConA-induced liver injury in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:962-72. [PMID: 18772342 DOI: 10.2353/ajpath.2008.080358] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Tumor necrosis factor-alpha-mediated liver injury can be induced by several different means; however, the signaling events and mechanisms of cell death are likely different. We investigated the mechanism of both apoptotic and necrotic hepatocyte cell death as well as the role of c-Jun NH2-terminal kinase (JNK) in the ConA and ConA/D-galactosamine (GalN) models of murine liver injury. ConA alone induced primarily necrotic cell death with no caspase activation, whereas ConA/GalN induced apoptosis in addition to necrotic cell death. The bi-modal death pattern in the ConA/GalN model was confirmed by the use of transgenic mice expressing a dominant-negative form of Fas-associated death domain in which the mice were resistant to apoptotic but not necrotic cell death. JNK1 and, more significantly, JNK2 participated in the induction of hepatocyte apoptosis in response to ConA/GalN. Deletion of JNK led to the stabilization of FLIP L, reduced caspase-8 activation, decreased Bid cleavage, and inhibition of the mitochondrial apoptosis pathway. In contrast, JNK did not participate in necrotic death induced by ConA either alone or in combination with GalN. As such, JNK-deficient mice remained susceptible to necrotic liver injury in both model systems. Thus, ConA and ConA/GalN mouse models induce liver injury with different mechanisms of cell death, and JNK contributes to apoptotic but not necrotic cell death. These findings further elucidate the specific pathways involved in tumor necrosis factor-alpha-mediated liver injury.
Collapse
Affiliation(s)
- Hong-Min Ni
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
41
|
Ni HM, Chen X, Chen L, DiFrancesca D, Harada H, Yin XM. The impact of genetic background and Bid on the phenotype of Bcl-2-deficiency in mice. Apoptosis 2008; 13:53-62. [PMID: 17955375 DOI: 10.1007/s10495-007-0147-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
How a central apoptosis mechanism could be modulated during a specific developmental or homeostatic process to comply with the specific needs of a particular tissue is poorly understood. Bcl-2 is a key anti-apoptosis regulator and its deletion resulted in multiple defects in mice, indicating its broad involvement in development and homeostasis of various tissues. We found that the severity and extensiveness of the defects could be greatly influenced by the genetic background of the mice. Hence, Bcl-2-deficient mice predominantly on C57BL/6 background had the most severe presentation with increased embryonic lethality, whereas Bcl-2-deficient mice predominantly on 129/SvJ background had a significantly minor phenotype. In particular, the 129/SvJ background could almost completely rescue the polycystic kidney disease phenotype of the Bcl-2 deficiency, resulting in normal renal functions. These observations would be consistent with the assumption that the C57BL/6 background is more pro-death while the 129/SvJ background is more pro-survival. Concurrent deletion of Bid, a BH3-only molecule, in either genetic background, could significantly increase the birth rate of the Bcl-2 deficient progenies and lessen lymphocytopenia, although the double knockout mice still developed the polycystic kidney diseases. Overall, our work indicates that the phenotype of Bcl-2 deficiency can be affected by multiple genetic elements, resulting in tissue-specific modulations of the cell death program during development and cellular homeostasis.
Collapse
Affiliation(s)
- Hong-Min Ni
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Deoxycholic acid can induce apoptosis in the human colon cancer cell line HCT116 in the absence of Bax. Nutr Cancer 2008; 60:91-6. [PMID: 18444140 DOI: 10.1080/01635580701525893] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the human colon cancer cells HCT116, deoxycholic acid (DCA) induces apoptosis via the mitochondrial pathway by triggering the release of mitochondrial factors such as cytochrome c. To elucidate if Bax, a proapoptotic member of the Bcl-2 family known to trigger cytochrome c release in response to various types of apoptotic stimuli, is involved in DCA-induced apoptosis in HCT116 cells, we analyzed DCA-induced apoptosis in Bax-knockout (Bax(-/-)) HCT116 cells. Cytochrome c release and caspase-9 activation were detectable after 5 min in both Bax(-/-) and Bax(+/-) HCT116 cells. Caspase-3 and caspase-8 activation was observed after 15 and 30 min, respectively. Bax(-/-) cells were protected from apoptosis by treating them with ursodeoxycholic acid for 12 h prior to DCA treatment. These results are consistent with our previous observations that were obtained by using wild-type HCT116 cells and suggest that Bax is not indispensable for DCA-induced apoptosis in HCT116 cells.
Collapse
|
43
|
Du F, Wang L, Zhang Y, Jiang W, Sheng H, Cao Q, Wu J, Shen B, Shen T, Zhang JZ, Bao C, Li D, Li N. Role of GADD45 beta in the regulation of synovial fluid T cell apoptosis in rheumatoid arthritis. Clin Immunol 2008; 128:238-47. [PMID: 18501677 DOI: 10.1016/j.clim.2008.03.523] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2007] [Revised: 03/18/2008] [Accepted: 03/29/2008] [Indexed: 01/29/2023]
Abstract
Rheumatoid arthritis (RA) is characterized by persistent Th1 cell infiltration and production of inflammatory cytokines in the location of joint lesion. It is known that infiltrated Th1 cells in the synovial fluid (SF) of RA patients are resistant to apoptosis. Here we demonstrate that Th1 cells accumulated in patient SF expressed a high level of GADD45 beta (Growth Arrest and DNA Damage-inducible 45 beta) which further inhibited Th1 cell apoptosis. Interestingly, in vitro culture of T cells with SF from RA patients increased GADD45 beta expression in Th1 cells and inhibited their apoptosis. Silencing of GADD45 beta by RNAi abolished the anti-apoptotic effect of RA SF, which was accompanied by down-regulation of Bcl-2 and up-regulation of Bax. Further analysis showed that TNF-alpha and IL-12 in RA SF could stimulate GADD45 beta expression in Th1 cells and inhibit their apoptosis. Taken together, our results suggest a novel mechanism by which specific cytokines in the RA SF elevate GADD45 beta expression in local Th1 cells and subsequently leading to the enhanced T cell survival.
Collapse
Affiliation(s)
- Fang Du
- Shanghai Institute of Immunology, Institute of Medical Sciences, Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Droga-Mazovec G, Bojic L, Petelin A, Ivanova S, Romih R, Repnik U, Salvesen GS, Stoka V, Turk V, Turk B. Cysteine cathepsins trigger caspase-dependent cell death through cleavage of bid and antiapoptotic Bcl-2 homologues. J Biol Chem 2008; 283:19140-50. [PMID: 18469004 DOI: 10.1074/jbc.m802513200] [Citation(s) in RCA: 299] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
As a model for defining the role of lysosomal cathepsins in apoptosis, we characterized the action of the lysosomotropic agent LeuLeuOMe using distinct cellular models. LeuLeuOMe induces lysosomal membrane permeabilization, resulting in release of lysosomal cathepsins that cleave the proapoptotic Bcl-2 family member Bid and degrade the antiapoptotic member Bcl-2, Bcl-xL, or Mcl-1. The papain-like cysteine protease inhibitor E-64d largely prevented apoptosis, Bid cleavage, and Bcl-2/Bcl-xL/Mcl-1 degradation. The pancaspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp(OMe)fluoromethyl ketone failed to prevent Bid cleavage and degradation of anti-apoptotic Bcl-2 homologues but substantially decreased cell death, suggesting that cathepsin-mediated apoptosis in these cellular models mostly follows a caspase-dependent pathway. Moreover, in vitro experiments showed that one or more of the cysteine cathepsins B, L, S, K, and H could cleave Bcl-2, Bcl-xL, Mcl-1, Bak, and BimEL, whereas no Bax cleavage was observed. On the basis of inhibitor studies, we demonstrate that lysosomal disruption triggered by LeuLeuOMe occurs before mitochondrial damage. We propose that degradation of anti-apoptotic Bcl-2 family members by lysosomal cathepsins synergizes with cathepsin-mediated activation of Bid to trigger a mitochondrial pathway to apoptosis. Moreover, XIAP (X-chromosome-linked inhibitor of apoptosis) was also found to be a target of cysteine cathepsins, suggesting that cathepsins can mediate caspase-dependent apoptosis also downstream of mitochondria.
Collapse
Affiliation(s)
- Gabriela Droga-Mazovec
- Department of Biochemistry, Molecular and Structural Biology, J. Stefan Institute, Sl-1000 Ljubljana, Slovenia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wang Y, Singh R, Massey AC, Kane SS, Kaushik S, Grant T, Xiang Y, Cuervo AM, Czaja MJ. Loss of macroautophagy promotes or prevents fibroblast apoptosis depending on the death stimulus. J Biol Chem 2008; 283:4766-77. [PMID: 18073215 PMCID: PMC2754125 DOI: 10.1074/jbc.m706666200] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Macroautophagy has been implicated as a mechanism of cell death. However, the relationship between this degradative pathway and cell death is unclear as macroautophagy has been shown recently to protect against apoptosis. To better define the interplay between these two critical cellular processes, we determined whether inhibition of macroautophagy could have both pro-apoptotic and anti-apoptotic effects in the same cell. Embryonic fibroblasts from mice with a knock-out of the essential macroautophagy gene atg5 were treated with activators of the extrinsic and intrinsic death pathways. Loss of macroautophagy sensitized these cells to caspase-dependent apoptosis from the death receptor ligands Fas and tumor necrosis factor-alpha (TNF-alpha). Atg5-/- mouse embryonic fibroblasts had increased activation of the mitochondrial death pathway in response to Fas/TNF-alpha in concert with decreased ATP levels. Fas/TNF-alpha treatment failed to up-regulate macroautophagy, and in fact, decreased activity at late time points. In contrast to their sensitization to Fas/TNF-alpha, Atg5-/- cells were resistant to death from menadione and UV light. In the absence of macroautophagy, an up-regulation of chaperone-mediated autophagy induced resistance to these stressors. These results demonstrate that inhibition of macroautophagy can promote or prevent apoptosis in the same cell and that the response is governed by the nature of the death stimulus and compensatory changes in other forms of autophagy. Experimental findings that an inhibition of macroautophagy blocks apoptosis do not prove that autophagy mediates cell death as this effect may result from the protective up-regulation of other autophagic pathways such as chaperone-mediated autophagy.
Collapse
Affiliation(s)
- Yongjun Wang
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, 10461
- Department of Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York, 10461
| | - Rajat Singh
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, 10461
- Department of Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York, 10461
| | - Ashish C. Massey
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, 10461
- Department of Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York, 10461
| | - Saul S. Kane
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, 10461
- Department of Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York, 10461
| | - Susmita Kaushik
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, 10461
- Department of Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York, 10461
| | - Taneisha Grant
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, 10461
- Department of Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York, 10461
| | - Youqing Xiang
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, 10461
- Department of Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York, 10461
| | - Ana Maria Cuervo
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, 10461
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, 10461
- Department of Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York, 10461
| | - Mark J. Czaja
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, 10461
- Department of Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York, 10461
| |
Collapse
|
46
|
Zhang M, Marshall B, Atherton SS. Murine cytomegalovirus infection and apoptosis in organotypic retinal cultures. Invest Ophthalmol Vis Sci 2008; 49:295-303. [PMID: 18172106 DOI: 10.1167/iovs.07-0612] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
PURPOSE An organotypic retinal culture model was used to determine the pattern of murine cytomegalovirus (MCMV) infection and whether apoptosis is induced in MCMV-infected cultured retinas. METHODS Retinas harvested from C57BL/6 mice were individually cultured at 37 degrees C on 3-microm filter inserts placed in 24-well plates. Some retinas were infected with MCMV (5 x 10(5) PFU/well). At days 4, 7, and 11 after infection (pi), the culture medium and cultured retinas were collected for examination. RESULTS Replicating virus was recovered and viral early antigen (EA)- and late antigen (LA)-positive cells were observed in the MCMV-infected retinal cultures. Most MCMV-infected cells were glia and horizontal cells. Infection resulted in atrophy of the photoreceptor cells and cytomegaly. Apoptosis of uninfected bystander cells, including photoreceptor cells and horizontal cells, was observed. TNF-alpha was produced by activated microglia during MCMV infection of the retina. Mouse apoptosis microarray studies, caspase activity studies, and RT-PCR studies showed that the genes involved in both the death receptor-mediated apoptotic pathway and the mitochondrial pathway were upregulated. CONCLUSIONS Many aspects of MCMV infection of retinal cultures parallel those observed during MCMV retinitis in mice. Thus, this in vitro system may be used to explore the role of apoptosis of uninfected retinal cells and the contribution of cytokines and other modulators to the pathogenesis of CMV retinitis.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | |
Collapse
|
47
|
ZHAO YONGGE, DIFRANCESCA DANIELL, WANG XUE, ZARNEGAR REZA, MICHALOPOULOS GEORGEK, YIN XIAOMING. Promotion of Fas-mediated apoptosis in Type II cells by high doses of hepatocyte growth factor bypasses the mitochondrial requirement. J Cell Physiol 2008; 213:556-63. [PMID: 17620325 PMCID: PMC2636794 DOI: 10.1002/jcp.21136] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The death receptor pathway is coupled to the mitochondria apoptosis pathway. However, mitochondrial participation, which is stimulated by Bid but suppressed by Bcl-2/Bcl-x(L), is required in certain cells (Type II), but not in others (Type I). While these differences were originally characterized in the lymphoid cell lines, the typical Type II cells are represented by hepatocytes in vivo. The molecular mechanisms that distinguish Type II from Type I cells and the regulation are not fully understood. Fas can be sequestered by the HGF receptor c-Met and high doses of HGF can promote cell death by freeing Fas from c-Met complex. We thus reasoned that treatment of the Type II cells with high doses of HGF could enhance Fas-mediated apoptosis and spare the mitochondria amplification. Indeed, such treatment led to increased apoptosis in Type II lymphoid cells, which could not be blocked by Bcl-x(L). Moreover, significant hepatocyte apoptosis was induced by this scheme in the absence of Bid with increased dissociation of Fas from c-Met. These findings indicate that high doses of HGF could be used to promote apoptosis in Type II cells bypassing the requirement for mitochondria activation.
Collapse
Affiliation(s)
- YONGGE ZHAO
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - DANIELL DIFRANCESCA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - XUE WANG
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - REZA ZARNEGAR
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - GEORGE K. MICHALOPOULOS
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - XIAO-MING YIN
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Correspondence to: Xiao-Ming Yin, Department of Pathology, University of Pittsburgh School of Medicine, 7th Floor, Scaife Hall, Room S739, 3550 Terrace Street, Pittsburgh, PA 15261. E-mail:
| |
Collapse
|
48
|
Sass G, Shembade ND, Haimerl F, Lamoureux N, Hashemolhosseini S, Tannapfel A, Tiegs G. TNF pretreatment interferes with mitochondrial apoptosis in the mouse liver by A20-mediated down-regulation of Bax. THE JOURNAL OF IMMUNOLOGY 2007; 179:7042-9. [PMID: 17982095 DOI: 10.4049/jimmunol.179.10.7042] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pretreatment with low doses of the proinflammatory cytokine TNF has been shown to prevent hepatocellular apoptosis and liver damage in inflammatory as well as in ischemia/reperfusion-induced liver injury. The underlying mechanisms of protection have not been elucidated so far. In this study, these mechanisms were investigated in murine hepatocyte cultures as well as in a mouse model of TNF-dependent apoptotic liver damage (galactosamine/TNF model). Our results show that pretreatment with TNF, or application of small-interfering RNA directed against the proapoptotic Bcl2 family member Bax, interfered with the onset of mitochondrial apoptosis in vivo. Knockdown of TNF-alpha-induced-protein 3 (A20) restored mitochondrial apoptosis, Bax expression, and liver damage. The underlying mechanism of protection seems to involve a cascade of events, where TNF induces the expression of A20 in hepatocytes, A20 down-modulates Bax expression by interference with transcriptional activation, and the reduced availability of Bax interferes with the onset of mitochondrial apoptosis and the ensuing apoptotic liver damage. In conclusion, we identified Bax and A20 as key players in TNF-induced protection from apoptotic liver damage. Because treatment with TNF itself might be a risk factor for patients, we propose that overexpression of A20 might represent an alternative approach for protection from inflammation related apoptotic liver damage, as well as for TNF preconditioning during transplantation.
Collapse
Affiliation(s)
- Gabriele Sass
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
49
|
Tansey MG, McCoy MK, Frank-Cannon TC. Neuroinflammatory mechanisms in Parkinson's disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp Neurol 2007; 208:1-25. [PMID: 17720159 PMCID: PMC3707134 DOI: 10.1016/j.expneurol.2007.07.004] [Citation(s) in RCA: 420] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 07/02/2007] [Accepted: 07/05/2007] [Indexed: 12/11/2022]
Abstract
Most acute and chronic neurodegenerative conditions are accompanied by neuroinflammation; yet the exact nature of the inflammatory processes and whether they modify disease progression is not well understood. In this review, we discuss the key epidemiological, clinical, and experimental evidence implicating inflammatory processes in the progressive degeneration of the dopaminergic (DA) nigrostriatal pathway and their potential contribution to the pathophysiology of Parkinson's disease (PD). Given that interplay between genetics and environment are likely to contribute to risk for development of idiopathic PD, recent data showing interactions between products of genes linked to heritable PD that function to protect DA neurons against oxidative or proteolytic stress and inflammation pathways will be discussed. Cellular mechanisms activated or enhanced by inflammatory processes that may contribute to mitochondrial dysfunction, oxidative stress, or apoptosis of dopaminergic (DA) neurons will be reviewed, with special emphasis on tumor necrosis factor (TNF) and interleukin-1-beta (IL-1beta) signaling pathways. Epigenetic factors which have the potential to trigger neuroinflammation, including environmental exposures and age-associated chronic inflammatory conditions, will be discussed as possible 'second-hit' triggers that may affect disease onset or progression of idiopathic PD. If inflammatory processes have an active role in nigrostriatal pathway degeneration, then evidence should exist to indicate that such processes begin in the early stages of disease and that they contribute to neuronal dysfunction and/or hasten neurodegeneration of the nigrostriatal pathway. Therapeutically, if anti-inflammatory interventions can be shown to rescue nigral DA neurons from degeneration and lower PD risk, then timely use of anti-inflammatory therapies should be investigated further in well-designed clinical trials for their ability to prevent or delay the progressive loss of nigral DA neurons in genetically susceptible populations.
Collapse
Affiliation(s)
- Malú G Tansey
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA.
| | | | | |
Collapse
|
50
|
Abstract
Drug-induced liver injury is a frequent cause of hepatic dysfunction. Reliably establishing whether the liver disease was caused by a drug requires the exclusion of other plausible causes and the search for a clinical drug signature. The drug signature consists of the pattern of liver test abnormality, the duration of latency to symptomatic presentation, the presence or absence of immune-mediated hypersensitivity and the response to drug withdrawal. Determination of causality also includes an evaluation of individual susceptibility to drug-induced liver injury. This susceptibility is governed by both genetic and environmental factors. Components of the drug signature in conjunction with certain risk factors have been incorporated into formal scoring systems that are predictive of the likelihood of drug-induced liver injury. The most validated scoring system is the Roussel-Uclaf causality assessment method, which nonetheless retains certain imperfections. Mitigating the potential for drug-induced liver injury is achieved by the identification of toxicity signals during clinical trials and the monitoring of liver tests in clinical practice. There are three signals of liver toxicity in clinical trials: (i) a statistically significant doubling (or more) in the incidence of serum alanine aminotransferase (ALT) elevation >3 x the upper limit of normal (ULN); (ii) any incidence of serum ALT elevation >8-10 x ULN; and (iii) any incidence of serum ALT elevation >3 x ULN accompanied by a serum bilirubin elevation >2 x ULN. Monitoring of liver tests in clinical practice has shown unconvincing efficacy, but where a benefit-risk analysis would favour continued therapy, monthly monitoring may have some benefit compared with no monitoring at all. With rare exception, treatment of drug-induced liver injury is principally supportive. Drug toxicity is the most common cause of acute liver failure, defined as a prolonged prothrombin time (international normalised ratio > or =1.5) and any degree of mental alteration occurring <26 weeks after the onset of illness in a patient without pre-existing cirrhosis. A patient who meets these criteria must be evaluated for liver transplantation. The pathogenesis of drug-induced liver injury can be examined on the basis of the two principal patterns of injury. The hepatocellular pattern is characterised by a predominant rise in the level of transaminases and results from the demise of hepatocytes by means of either apoptosis or necrosis. The cholestatic pattern is characterised by a predominant rise of the serum alkaline phosphatase level and usually results from injury to the bile ductular cells either directly by the drug or its metabolite, or indirectly by an adaptive immune response.
Collapse
Affiliation(s)
- Gebran Abboud
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | | |
Collapse
|