1
|
Tilg H, Ianiro G, Gasbarrini A, Adolph TE. Adipokines: masterminds of metabolic inflammation. Nat Rev Immunol 2025; 25:250-265. [PMID: 39511425 DOI: 10.1038/s41577-024-01103-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 11/15/2024]
Abstract
Adipose tissue is an immunologically active organ that controls host physiology, partly through the release of mediators termed adipokines. In obesity, adipocytes and infiltrating leukocytes produce adipokines, which include the hormones adiponectin and leptin and cytokines such as tumour necrosis factor and IL-1β. These adipokines orchestrate immune responses that are collectively referred to as metabolic inflammation. Consequently, metabolic inflammation characterizes metabolic disorders and promotes distinct disease aspects, such as insulin resistance, metabolic dysfunction-associated liver disease and cardiovascular complications. In this unifying concept, adipokines participate in the immunological cross-talk that occurs between metabolically active organs in metabolic diseases, highlighting the fundamental role of adipokines in obesity and their potential for therapeutic intervention. Here, we summarize how adipokines shape metabolic inflammation in mice and humans, focusing on their contribution to metabolic disorders in the setting of obesity and discussing their value as therapeutic targets.
Collapse
Affiliation(s)
- Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| | - Gianluca Ianiro
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
2
|
Miyake G, Nagasaka A, Bando Y, Sakiyama K, Iseki S, Sakashita H, Amano O. Expression and localization of adiponectin in myoepithelial cells in sublingual glands of normal and diabetic rats. J Oral Biosci 2025; 67:100590. [PMID: 39613095 DOI: 10.1016/j.job.2024.100590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
OBJECTIVES Adiponectin is a hormone produced by adipocytes with anti-atherosclerotic and anti-diabetic properties. We previously discovered that adiponectin is specifically localized in the myoepithelial cells of rat sublingual glands. This study aims to investigate the localization of adiponectin and its receptors, AdipoR1 and AdipoR2, in adult rats, postnatally developing rats, and diabetic model rats. METHODS We examined the localization and expression of adiponectin and its receptors by immunohistochemistry and RT-PCR in the sublingual glands of adult rats and in two diabetic rat models: Streptozotocin (STZ)-treated rats for type 1 diabetes and GK rats for type 2 diabetes. RESULTS In rat sublingual glands, adiponectin was localized in the cytoplasm of myoepithelial cells, while AdipoR1 and AdipoR2 were localized in the basolateral membrane of mucous acinar cells. In GK rats, there was a significant decrease in the immunoreactivity and mRNA levels of adiponectin, while both AdipoR1 and AdipoR2 expression levels were upregulated. In STZ-treated rats, both adiponectin and its receptors showed reduced expression. CONCLUSIONS Adiponectin acts as a paracrine factor in sublingual myoepithelial cells, influencing salivary secretion through upregulated receptors in acinar cells, particularly in type 2 diabetes. This process is associated with a reduction in myoepithelial adiponectin levels.
Collapse
MESH Headings
- Animals
- Adiponectin/metabolism
- Rats
- Receptors, Adiponectin/metabolism
- Receptors, Adiponectin/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Male
- Sublingual Gland/metabolism
- Sublingual Gland/pathology
- Epithelial Cells/metabolism
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/genetics
- Immunohistochemistry
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/genetics
- Rats, Wistar
Collapse
Affiliation(s)
- Genki Miyake
- Division of Histology, Meikai University School of Dentistry, Sakado, Saitama, Japan; Division of Oral and Maxillofacial Surgery, Meikai University School of Dentistry, Sakado, Saitama, Japan
| | - Arata Nagasaka
- Division of Histology, Meikai University School of Dentistry, Sakado, Saitama, Japan
| | - Yasuhiko Bando
- Division of Histology, Meikai University School of Dentistry, Sakado, Saitama, Japan
| | - Koji Sakiyama
- Division of Anatomy, Meikai University School of Dentistry, Sakado, Saitama, Japan
| | - Shoichi Iseki
- Faculty of Health Sciences Department of Clinical Engineering, Komatsu University, Komatsu, Ishikawa, Japan
| | - Hideaki Sakashita
- Division of Oral and Maxillofacial Surgery, Meikai University School of Dentistry, Sakado, Saitama, Japan; Department of Oral and Maxillofacial Surgery, Abiko Seijinkai Hospital, Abiko, Chiba, Japan
| | - Osamu Amano
- Division of Histology, Meikai University School of Dentistry, Sakado, Saitama, Japan.
| |
Collapse
|
3
|
Qian Y, Qi Y, Lin J, Zhang T, Mo L, Xue Q, Zheng N, Niu Y, Dong X, Shi Y, Jiang Y. AdipoRon ameliorates chronic ethanol induced cardiac necroptosis by reducing ceramide mediated mtROS. Free Radic Biol Med 2025; 229:237-250. [PMID: 39805512 DOI: 10.1016/j.freeradbiomed.2025.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/30/2024] [Accepted: 01/11/2025] [Indexed: 01/16/2025]
Abstract
Chronic ethanol (EtOH) consumption has been widely recognized as a significant contributor to cardiotoxicity. However, no specific treatment is currently available to ameliorate chronic ethanol induced cardiotoxicity. Adiponectin receptor agonist AdipoRon exerts protective effects in multiple organs through alleviating lipotoxicity. Our previous study showed that chronic ethanol consumption increased de novo ceramide synthesis and necroptosis in myocardium. In this study, we investigated the role of AdipoRon on ceramide metabolism and necroptosis in chronic ethanol-treated myocardium. Eight-week-old C57/BL6J mice were fed with a Lieber-Decarli diet containing vehicle or AdipoRon for 12 weeks. Cardiac function, histology and oxidative stress were assessed. We found that chronic ethanol treatment decreased expression of AdipoR2 in myocardium and H9c2 cells, whereas AdipoRon improved cardiac function, reduced myocardium ceramide levels and suppressed necroptosis. By pharmacological interventions, RNA interference and point mutations in AdipoR2, we demonstrated that AdipoRon reduced ceramide levels through PPARα mediated lipid metabolism rather than AdipoR2's ceramidase activity. Using transmission electron microscope and reactive oxygen species (ROS) staining, we showed that chronic ethanol induced myocardium mitochondria damage and mitochondrial reactive oxygen species (mtROS) accumulation. Meanwhile, we found that AdipoRon ameliorated chronic ethanol induced cardiac necroptosis via the SIRT3-SOD2-mtROS pathway. Moreover, C6 ceramide treatment recapitulated chronic ethanol in inducing mtROS and necroptosis, whereas the ceramide synthesis inhibitors myriocin (MYR) and fumonisin B1 (FB1) attenuated chronic ethanol induced mtROS and necroptosis. Collectively, AdipoRon ameliorates chronic ethanol induced cardiac necroptosis by reducing ceramide de novo synthesis and mtROS, which highlights the therapeutic potential of targeting ceramide metabolism and oxidative stress pathways in treating ethanol induced cardiotoxicity.
Collapse
Affiliation(s)
- Yile Qian
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yanyu Qi
- School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Junyi Lin
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Tianyi Zhang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Lingjie Mo
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Qiupeng Xue
- Forensic Science and Information Technology Research Centre of Supreme People's Procuratorate, Beijing, 100726, China
| | - Nianchang Zheng
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yaqin Niu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiaoru Dong
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yan Shi
- Academy of Forensic Science Shanghai Key Laboratory of Forensic Medicine, Shanghai, 200063, China.
| | - Yan Jiang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Hu C, Chen Y, Yin X, Xu R, Yin C, Wang C, Zhao Y. Pancreatic endocrine and exocrine signaling and crosstalk in physiological and pathological status. Signal Transduct Target Ther 2025; 10:39. [PMID: 39948335 PMCID: PMC11825823 DOI: 10.1038/s41392-024-02098-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/20/2024] [Accepted: 12/03/2024] [Indexed: 02/16/2025] Open
Abstract
The pancreas, an organ with dual functions, regulates blood glucose levels through the endocrine system by secreting hormones such as insulin and glucagon. It also aids digestion through the exocrine system by secreting digestive enzymes. Complex interactions and signaling mechanisms between the endocrine and exocrine functions of the pancreas play a crucial role in maintaining metabolic homeostasis and overall health. Compelling evidence indicates direct and indirect crosstalk between the endocrine and exocrine parts, influencing the development of diseases affecting both. From a developmental perspective, the exocrine and endocrine parts share the same origin-the "tip-trunk" domain. In certain circumstances, pancreatic exocrine cells may transdifferentiate into endocrine-like cells, such as insulin-secreting cells. Additionally, several pancreatic diseases, including pancreatic cancer, pancreatitis, and diabetes, exhibit potential relevance to both endocrine and exocrine functions. Endocrine cells may communicate with exocrine cells directly through cytokines or indirectly by regulating the immune microenvironment. This crosstalk affects the onset and progression of these diseases. This review summarizes the history and milestones of findings related to the exocrine and endocrine pancreas, their embryonic development, phenotypic transformations, signaling roles in health and disease, the endocrine-exocrine crosstalk from the perspective of diseases, and potential therapeutic targets. Elucidating the regulatory mechanisms of pancreatic endocrine and exocrine signaling and provide novel insights for the understanding and treatment of diseases.
Collapse
Grants
- National High Level Hospital Clinical Research Funding (2022, 2022-PUMCH-D-001, to YZ), CAMS Innovation Fund for Medical Sciences (2021, 2021-I2M-1-002, to YZ), National Nature Science Foundation of China (2021, 82102810, to CW, the Fundamental Research Funds for the Central Universities(3332023123)
- cNational High Level Hospital Clinical Research Funding (2022, 2022-PUMCH-D-001, to YZ), CAMS Innovation Fund for Medical Sciences (2021, 2021-I2M-1-002, to YZ), National Nature Science Foundation of China (2021, 82102810, to CW, the Fundamental Research Funds for the Central Universities(3332023123)
Collapse
Affiliation(s)
- Chenglin Hu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Chenxue Yin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Chengcheng Wang
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China.
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China.
- National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing, PR China.
- Institute of Clinical Medicine, Peking Union Medical College Hospital, Beijing, PR China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China.
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China.
- National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing, PR China.
| |
Collapse
|
5
|
Wang N, Zhu S, Chen S, Zou J, Zeng P, Tan S. Neurological mechanism-based analysis of the role and characteristics of physical activity in the improvement of depressive symptoms. Rev Neurosci 2025:revneuro-2024-0147. [PMID: 39829004 DOI: 10.1515/revneuro-2024-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/22/2024] [Indexed: 01/22/2025]
Abstract
Depression is a common mental disorder characterized by a high prevalence and significant adverse effects, making the searching for effective interventions an urgent priority. In recent years, physical activity (PA) has increasingly been recognized as a standard adjunctive treatment for mental disorders owing to its low cost, easy application, and high efficiency. Epidemiological data shows positive preventive and therapeutic effects of PA on mental illnesses such as depression. This article systematically describes the prophylactic and therapeutic effects of PA on depression and its biological basis. A comprehensive literature analysis reveals that PA significantly improves depressive symptoms by upregulating the expression of "exerkines" such as irisin, adiponectin, and BDNF to positively impacting neuropsychiatric conditions. In particular, lactate could also play a critical role in the ameliorating effects of PA on depression due to the findings about protein lactylation as a novel protein post-transcriptional modification. The literature also suggests that in terms of brain structure, PA may improve hippocampal volume, basal ganglia (neostriatum, caudate-crustal nucleus) and PFC density in patients with MDD. In summary, this study elucidates the multifaceted positive effects of PA on depression and its potential biological mechanisms with a particular emphasis on the roles of various exerkines. Future research may further investigate the effects of different types, intensities, and durations of PA on depression, as well as how to better integrate PA interventions into existing treatment strategies to achieve optimal outcomes in mental health interventions.
Collapse
Affiliation(s)
- Nan Wang
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, 34706 University of South China , Hengyang 421001, China
| | - Shanshan Zhu
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, 34706 University of South China , Hengyang 421001, China
| | - Shuyang Chen
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, 34706 University of South China , Hengyang 421001, China
| | - Ju Zou
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, 34706 University of South China , Hengyang 421001, China
| | - Peng Zeng
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, 34706 University of South China , Hengyang 421001, China
| | - Sijie Tan
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, 34706 University of South China , Hengyang 421001, China
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang 330115, China
| |
Collapse
|
6
|
Oh T, Woo Y, Kim G, Koo BS, Baek SH, Hwang EH, An YJ, Kim Y, Kim DY, Hong JJ. Spatiotemporal Cellular Dynamics of Germinal Center Reaction in Coronavirus Disease 2019 Lung-Draining Lymph Node Based on Imaging-Based Spatial Transcriptomics. J Transl Med 2025; 105:102180. [PMID: 39522760 DOI: 10.1016/j.labinv.2024.102180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Although lymph node structures may be compromised in severe SARS-CoV-2 infection, the extent and parameters of recovery in convalescing patients remain unclear. Therefore, this study aimed to elucidate the nuances of lymphoid structural recovery and their implications for immunologic memory in nonhuman primates infected with SARS-CoV-2. To do so, we utilized imaging-based spatial transcriptomics to delineate immune cell composition and tissue architecture formation in the lung-draining lymph nodes during primary infection, convalescence, and reinfection from COVID-19. We noted the establishment of a germinal center with memory B cell differentiation within lymphoid follicles during convalescence accompanied by contrasting transcriptome patterns indicative of the acquisition of follicular helper T cells versus the loss of regulatory T cells. Additionally, repopulation of germinal center-like B cells was observed in the medullary niche with accumulating plasma cells along with enhanced transcriptional expression of B cell-activating factor receptor over the course of reinfection. The spatial transcriptome atlas produced herein enhances our understanding of germinal center formation with immune cell dynamics during COVID-19 convalescence and lymphoid structural recovery with transcriptome dynamics following reinfection. These findings have the potential to inform the optimization of vaccine strategies and the development of precise therapeutic interventions in the spatial context.
Collapse
Affiliation(s)
- Taehwan Oh
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
| | - YoungMin Woo
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea; KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Green Kim
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
| | - Bon-Sang Koo
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
| | - Seung Ho Baek
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
| | - Eun-Ha Hwang
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
| | - You Jung An
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
| | - Yujin Kim
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
| | - Dong-Yeon Kim
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
| | - Jung Joo Hong
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea; KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, Republic of Korea.
| |
Collapse
|
7
|
Bacchetti T, Morresi C, Simonetti O, Ferretti G. Effect of Diet on HDL in Obesity. Molecules 2024; 29:5955. [PMID: 39770044 PMCID: PMC11677490 DOI: 10.3390/molecules29245955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/05/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
Alterations of plasma lipoprotein levels and oxidative stress are frequently observed in obese patients, including low high-density lipoprotein (HDL) cholesterol (HDL-C) levels and alterations of HDL composition. Dysfunctional HDL with lower antioxidant and anti-inflammatory properties have also been demonstrated in obesity. There is increasing evidence that white adipose tissue (WAT) participates in several metabolic activities and modulates HDL-C levels and function. In obese subjects, the changes in morphology and function of adipose tissue lead to impaired regulatory function and are associated with a state of low-grade chronic inflammation, with increased release of pro-inflammatory adipokines and cytokines. These alterations may affect HDL metabolism and functions; thus, adipose tissue is considered a potential target for the prevention and treatment of obesity. A cornerstone of obesity prevention and therapy is lifestyle modification through dietary changes, which is reflected in the modulation of plasma lipoprotein metabolism. Some dietary components and metabolites directly affect the composition and structure of HDL and modulate its anti-inflammatory and vasoprotective properties. The aims of the review are to summarize the crosstalk between adipocytes and HDL dysfunction in human obesity and to highlight recent discoveries on beneficial dietary patterns as well as nutritional components on inflammation and HDL function in human obesity.
Collapse
Affiliation(s)
- Tiziana Bacchetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Camilla Morresi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Oriana Simonetti
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy;
| | - Gianna Ferretti
- Department of Clinical Experimental Science and Odontostomatology, Research Center of Health Education and Health Promotion and Research Center of Obesity, Polytechnic University of Marche, 60126 Ancona, Italy;
| |
Collapse
|
8
|
Abubakar M, Irfan U, Abdelkhalek A, Javed I, Khokhar MI, Shakil F, Raza S, Salim SS, Altaf MM, Habib R, Ahmed S, Ahmed F. Comprehensive Quality Analysis of Conventional and Novel Biomarkers in Diagnosing and Predicting Prognosis of Coronary Artery Disease, Acute Coronary Syndrome, and Heart Failure, a Comprehensive Literature Review. J Cardiovasc Transl Res 2024; 17:1258-1285. [PMID: 38995611 DOI: 10.1007/s12265-024-10540-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024]
Abstract
Coronary artery disease (CAD), acute coronary syndrome (ACS), and heart failure (HF) are major global health issues with high morbidity and mortality rates. Biomarkers like cardiac troponins (cTn) and natriuretic peptides (NPs) are crucial tools in cardiology, but numerous new biomarkers have emerged, proving increasingly valuable in CAD/ACS. These biomarkers are classified based on their mechanisms, such as fibrosis, metabolism, inflammation, and congestion. The integration of established and emerging biomarkers into clinical practice is an ongoing process, and recognizing their strengths and limitations is crucial for their accurate interpretation, incorporation into clinical settings, and improved management of CVD patients. We explored established biomarkers like cTn, NPs, and CRP, alongside newer biomarkers such as Apo-A1, IL-17E, IgA, Gal-3, sST2, GDF-15, MPO, H-FABP, Lp-PLA2, and ncRNAs; provided evidence of their utility in CAD/ACS diagnosis and prognosis; and empowered clinicians to confidently integrate these biomarkers into clinical practice based on solid evidence.
Collapse
Affiliation(s)
- Muhammad Abubakar
- Department of Internal Medicine, Ameer-Ud-Din Medical College, 6 Birdwood Road, Jinnah Town, Lahore, 54000, Punjab, Pakistan.
| | - Umema Irfan
- Department of Internal Medicine, Deccan College of Medical Sciences, Hyderabad, India
| | - Ahmad Abdelkhalek
- Department of Internal Medicine, Zhejiang University, Zhejiang, China
| | - Izzah Javed
- Department of Internal Medicine, Ameer-Ud-Din Medical College, 6 Birdwood Road, Jinnah Town, Lahore, 54000, Punjab, Pakistan
| | | | - Fraz Shakil
- Department of Emergency Medicine, Mayo Hospital, Lahore, Pakistan
| | - Saud Raza
- Department of Anesthesia, Social Security Teaching Hospital, Lahore, Punjab, Pakistan
| | - Siffat Saima Salim
- Department of Surgery, Holy Family Red Crescent Medical College Hospital, Dhaka, Bangladesh
| | - Muhammad Mahran Altaf
- Department of Internal Medicine, Ameer-Ud-Din Medical College, 6 Birdwood Road, Jinnah Town, Lahore, 54000, Punjab, Pakistan
| | - Rizwan Habib
- Department of Internal Medicine and Emergency, Indus Hospital, Lahore, Pakistan
| | - Simra Ahmed
- Department of Internal Medicine, Ziauddin Medical College, Karachi, Pakistan
| | - Farea Ahmed
- Department of Internal Medicine, Ziauddin Medical College, Karachi, Pakistan
| |
Collapse
|
9
|
Bai X, Zhu Q, Combs M, Wabitsch M, Mack CP, Taylor JM. GRAF1 deficiency leads to defective brown adipose tissue differentiation and thermogenic response. Sci Rep 2024; 14:28692. [PMID: 39562682 PMCID: PMC11577055 DOI: 10.1038/s41598-024-79301-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
Adipose tissue, which is crucial for the regulation of energy within the body, contains both white and brown adipocytes. White adipose tissue (WAT) primarily stores energy, while brown adipose tissue (BAT) plays a critical role in energy dissipation as heat, offering potential for therapies aimed at enhancing metabolic health. Regulation of the RhoA/ROCK pathway is crucial for appropriate specification, differentiation and maturation of both white and brown adipocytes. However, our knowledge of how this pathway is controlled within specific adipose depots remains unclear, and to date a RhoA regulator that selectively controls adipocyte browning has not been identified. Our study shows that GRAF1, a RhoGAP, is highly expressed in metabolically active tissues, and closely correlates with brown adipocyte differentiation in culture and in vivo. Mice with either global or adipocyte-specific GRAF1 deficiency exhibit impaired BAT maturation and compromised cold-induced thermogenesis. Moreover, defects in differentiation of human GRAF1-deficient brown preadipocytes can be rescued by treatment with a Rho kinase inhibitor. Collectively, these studies indicate that GRAF1 can selectively induce brown adipocyte differentiation and suggest that manipulating GRAF1 activity may hold promise for the future treatment of diseases related to metabolic dysfunction.
Collapse
Affiliation(s)
- Xue Bai
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Qiang Zhu
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Matthew Combs
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Martin Wabitsch
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075, Ulm, Germany
| | - Christopher P Mack
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- McAllister Heart Institute, University of North Carolina, 160 North Medical Drive, 501 Brinkhous-Bullitt, CB# 7525, Chapel Hill, NC, 27599, USA
| | - Joan M Taylor
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA.
- McAllister Heart Institute, University of North Carolina, 160 North Medical Drive, 501 Brinkhous-Bullitt, CB# 7525, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
10
|
Osborne B, Patel RS, Krause-Hauch M, Lui A, Vidyarthi G, Patel NA. Small Molecule Inhibitor of Protein Kinase C DeltaI (PKCδI) Decreases Inflammatory Pathways and Gene Expression and Improves Metabolic Function in Diet-Induced Obese Mouse Model. BIOLOGY 2024; 13:943. [PMID: 39596898 PMCID: PMC11591907 DOI: 10.3390/biology13110943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Obesity promotes metabolic diseases such as type 2 diabetes and cardiovascular disease. PKCδI is a serine/threonine kinase which regulates cell growth, differentiation, and survival. Caspase-3 cleavage of PKCδI releases the C-terminal catalytic fragment (PKCδI_C), which promotes inflammation and apoptosis. We previously demonstrated an increase in PKCδI_C in human obese adipose tissue (AT) and adipocytes. Subsequently, we designed a small molecule drug called NP627 and demonstrated that NP627 specifically inhibited the release of PKCδI_C in vitro. Here, we evaluate the in vivo safety and efficacy of NP627 in a diet-induced obese (DIO) mouse model. The results demonstrate that NP627 treatment in DIO mice increased glucose uptake and inhibited the cleavage of PKCδI_C in the AT as well as in the kidney, spleen, and liver. Next, RNAseq analysis was performed on the AT from the NP627-treated DIO mice. The results show increases in ADIPOQ and CIDEC, upregulation of AMPK, PI3K-AKT, and insulin signaling pathways, while inflammatory pathways were decreased post-NP627 administration. Further, levels of lncRNAs associated with metabolic pathways were affected by NP627 treatment. In conclusion, the study demonstrates that NP627, a small-molecule inhibitor of PKCδI activity, is not toxic and that it improves the metabolic function of DIO mice in vivo.
Collapse
Affiliation(s)
- Brenna Osborne
- Research Service, James A. Haley Veteran’s Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.O.); (R.S.P.); (M.K.-H.); (G.V.)
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Rekha S. Patel
- Research Service, James A. Haley Veteran’s Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.O.); (R.S.P.); (M.K.-H.); (G.V.)
| | - Meredith Krause-Hauch
- Research Service, James A. Haley Veteran’s Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.O.); (R.S.P.); (M.K.-H.); (G.V.)
| | - Ashley Lui
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Gitanjali Vidyarthi
- Research Service, James A. Haley Veteran’s Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.O.); (R.S.P.); (M.K.-H.); (G.V.)
| | - Niketa A. Patel
- Research Service, James A. Haley Veteran’s Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.O.); (R.S.P.); (M.K.-H.); (G.V.)
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
11
|
Han R, Huang H, Zhu J, Jin X, Wang Y, Xu Y, Xia Z. Adipokines and their potential impacts on susceptibility to myocardial ischemia/reperfusion injury in diabetes. Lipids Health Dis 2024; 23:372. [PMID: 39538244 PMCID: PMC11558907 DOI: 10.1186/s12944-024-02357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Coronary artery disease has a high mortality rate and is a striking public health concern, affecting a substantial portion of the global population. On the early onset of myocardial ischemia, thrombolytic therapy and coronary revascularization could promptly restore the bloodstream and nutrient supply to the ischemic tissue, efficiently preserving less severely injured myocardium. However, the abrupt re-establishment of blood flow triggers the significant discharge of previously accumulated oxidative substances and inflammatory cytokines, leading to further harm referred to as ischemia/reperfusion (I/R) injury. Diabetes significantly raises the vulnerability of the heart to I/R injury due to disrupted glucose and lipid processing, impaired insulin sensitivity and metabolic signaling, and increased inflammatory responses. Numerous studies have indicated that adipokines are crucial in the etiology and pathogenesis of obesity, diabetes, hyperlipidemia, hypertension, and coronary artery disease. Adipokines such as adiponectin, adipsin, visfatin, chemerin, omentin, and apelin, which possess protective properties against inflammatory activity and insulin resistance, have been shown to confer myocardial protection in conditions such as atherosclerosis, myocardial hypertrophy, myocardial I/R injury, and diabetic complications. On the other hand, adipokines such as leptin and resistin, known for their pro-inflammatory characteristics, have been linked to elevated cardiac lipid deposition, insulin resistance, and fibrosis. Meteorin-like (metrnl) exhibits opposite effects in various pathological conditions. However, the data on adipokines in myocardial I/R, especially in diabetes, is still incomplete and controversial. This review focuses on recent research regarding the categorization and function of adipokines in the heart muscle, and the identification of different signaling pathways involved in myocardial I/R injury under diabetic conditions, aiming to facilitate the exploration of therapeutic strategies against myocardial I/R injury in diabetes.
Collapse
Affiliation(s)
- Ronghui Han
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, PR, China
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Hemeng Huang
- Department of Emergency, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Jianyu Zhu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Xiaogao Jin
- Department of Anesthesiology, The Second Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Yongyan Wang
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, PR, China
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Youhua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, PR, China.
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute, Hengqin, Zhuhai, People's Republic of China.
- Faculty of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, People's Republic of China.
| | - Zhengyuan Xia
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, PR, China.
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
12
|
Guo C, He S, Le Barz M, Binda S, Wang H. A Mix of Probiotic Strains Prevents Hepatic Steatosis, and Improves Oxidative Stress Status and Gut Microbiota Composition in Obese Mice. Mol Nutr Food Res 2024; 68:e2300672. [PMID: 39420712 DOI: 10.1002/mnfr.202300672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 08/23/2024] [Indexed: 10/19/2024]
Abstract
SCOPE The gut microbiota plays a role in fat accumulation and energy homeostasis. Therefore, probiotic supplementation may improve metabolic parameters and control body weight. METHODS AND RESULTS In this study, mice are fed either a high-fat diet (HFD) or an HFD supplemented with oral gavage of a mixture of three probiotic strains, Bifidobacterium lactis Lafti B94, Lactobacillus plantarum HA-119, and Lactobacillus helveticus Lafti L10 for 7 weeks. It finds that probiotic supplementation modulates body weight gain, food energy efficiency, and fat accumulation caused by the HFD. This probiotic mix prevents liver damage and lipid metabolic disorders in HFD-fed obese mice. The probiotic supplementation significantly downregulates the expression of the proinflammatory cytokines interleukin-1β, tumor necrosis factor-α, and malondialdehyde (MDA) in the liver and upregulated catalase (CAT), superoxide dismutase (SOD), and nuclear respiratory factor 1 (Nrf1) expression. Mice supplemented with the probiotic mix also show different microbiota compositions, with an increase in Clostridia_UCG-014 and Lachnospiraceae_nk4a136_group and a decrease in the Dubosiella genus compared with those in mice fed only an HFD. Finally, the amounts of fecal pentanoic acid and the three bile acid species increase in mice with probiotic supplementation. CONCLUSION Treatment with a combination of a mixture of three probiotic strains, B. lactis Lafti B94, L. plantarum HA-119, and L. helveticus Lafti L10 for 7 weeks, ameliorates the effects of HFD induced obesity in mice.
Collapse
Affiliation(s)
- Chenglin Guo
- Peking University First Hospital, Beijing, China
| | - Shengduo He
- Peking University First Hospital, Beijing, China
| | - Mélanie Le Barz
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions, Montreal, QC, Canada
| | - Sylvie Binda
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions, Montreal, QC, Canada
| | - Huahong Wang
- Peking University First Hospital, Beijing, China
| |
Collapse
|
13
|
Ru Q, Li Y, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects. Signal Transduct Target Ther 2024; 9:271. [PMID: 39396974 PMCID: PMC11486532 DOI: 10.1038/s41392-024-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Iron, an essential mineral in the body, is involved in numerous physiological processes, making the maintenance of iron homeostasis crucial for overall health. Both iron overload and deficiency can cause various disorders and human diseases. Ferroptosis, a form of cell death dependent on iron, is characterized by the extensive peroxidation of lipids. Unlike other kinds of classical unprogrammed cell death, ferroptosis is primarily linked to disruptions in iron metabolism, lipid peroxidation, and antioxidant system imbalance. Ferroptosis is regulated through transcription, translation, and post-translational modifications, which affect cellular sensitivity to ferroptosis. Over the past decade or so, numerous diseases have been linked to ferroptosis as part of their etiology, including cancers, metabolic disorders, autoimmune diseases, central nervous system diseases, cardiovascular diseases, and musculoskeletal diseases. Ferroptosis-related proteins have become attractive targets for many major human diseases that are currently incurable, and some ferroptosis regulators have shown therapeutic effects in clinical trials although further validation of their clinical potential is needed. Therefore, in-depth analysis of ferroptosis and its potential molecular mechanisms in human diseases may offer additional strategies for clinical prevention and treatment. In this review, we discuss the physiological significance of iron homeostasis in the body, the potential contribution of ferroptosis to the etiology and development of human diseases, along with the evidence supporting targeting ferroptosis as a therapeutic approach. Importantly, we evaluate recent potential therapeutic targets and promising interventions, providing guidance for future targeted treatment therapies against human diseases.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
14
|
Madikyzy M, Durmanova A, Trofimov A, Akbay B, Tokay T. Evaluation of Biochemical Serum Markers for the Diagnosis of Polycystic Ovary Syndrome (PCOS) in Obese Women in Kazakhstan: Is Anti-Müllerian Hormone a Potential Marker? Biomedicines 2024; 12:2333. [PMID: 39457645 PMCID: PMC11504444 DOI: 10.3390/biomedicines12102333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Polycystic Ovarian Syndrome (PCOS) is a common endocrine condition that affects 8-13% of women of reproductive age. In Kazakhstan, the prevalence of this syndrome is particularly high compared with other countries and the global average. Currently, the diagnosis of PCOS is based on internationally established Rotterdam criteria, using hyperandrogenism as a key parameter. These criteria are applied to diagnose PCOS in all female patients, although obese patients may have excess testosterone produced by adipose tissue. To avoid possible misdiagnosis, an additional criterion, especially for the diagnosis of PCOS in obese women, could be considered. The aim of this study was to identify whether anti-Müllerian hormone (AMH) or other biochemical criteria can be used for this purpose. Methods: A total of 138 women were recruited for this study and grouped into control (n = 46), obese subjects without PCOS (n = 67), and obese patients with PCOS (n = 25). The health status, anthropometric parameters, and serum indicators for glucose, glycosylated hemoglobin, and hormone levels were examined for all subjects. Statistical data were analyzed using GraphPad Prism 10 software for interpretation of the data. Results: Serum AMH, testosterone, and LH were positively correlated in obese PCOS patients, while AMH and FSH were negatively correlated. Compared with other biochemical indicators, the serum AMH and testosterone levels in obese PCOS patients were significantly higher than those in non-PCOS patients (regardless of obesity), and AMH was also positively correlated with testosterone. Conclusions: AMH appears to be a reliable criterion in addition to testosterone for the diagnosis of PCOS in obese women.
Collapse
Affiliation(s)
- Malika Madikyzy
- Department of Internal Medicine, University Medical Center, 46 Syganak St., Astana 010000, Kazakhstan; (M.M.); (A.D.)
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan; (A.T.); (B.A.)
| | - Aigul Durmanova
- Department of Internal Medicine, University Medical Center, 46 Syganak St., Astana 010000, Kazakhstan; (M.M.); (A.D.)
| | - Alexander Trofimov
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan; (A.T.); (B.A.)
| | - Burkitkan Akbay
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan; (A.T.); (B.A.)
| | - Tursonjan Tokay
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan; (A.T.); (B.A.)
| |
Collapse
|
15
|
Kim MH, Kim SJ, Park WJ, Lee DH, Kim KK. GR113808, a serotonin receptor 4 antagonist, prevents high-fat-diet-induced obesity, fatty liver formation, and insulin resistance in C57BL/6J mice. BMC Pharmacol Toxicol 2024; 25:76. [PMID: 39394150 PMCID: PMC11470721 DOI: 10.1186/s40360-024-00800-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND The burden of nonalcoholic fatty liver disease is increasing, and limited therapeutic drugs are available for its treatment. Serotonin binds to approximately 14 serotonin receptors (HTR) and plays diverse roles in obesity and metabolic complications. In this study, we focused on the function of HTR4 on nonalcoholic fatty liver disease using GR113808, a selective HTR4 antagonist. METHODS Male C57BL/6J mice were fed high-fat diet for 12 weeks with intraperitoneal GR113808 injection, and HTR expression, weight changes, glucose and lipid metabolism, hepatic fat accumulation, changes in adipose tissue, the changes in transcriptional factors of signaling pathways, and inflammations were assessed. Hep3B cells and 3T3-L1 cells were treated with siRNA targeting HTR4 to downregulate its expression and then cultured with palmitate to mimic a high-fat diet. The changes in transcriptional factors of signaling pathways, and inflammations were assessed in those cells. RESULTS After feeding a high-fat diet to male C57BL/6J mice, HTR4 expression in the liver and adipose tissues decreased. GR113808 suppressed body weight gain and improved glucose intolerance. Furthermore, GR113808 not only decreased fatty liver formation but also reduced adipose tissue size. Additionally, GR113808 reduced inflammatory cytokine serum levels and inflammasome complex formation in both tissues. Palmitate treatment in HTR4-downregulated Hep3B cells, also reduced peroxisome proliferator-activated receptor γ and sterol regulatory element-binding protein-1 pathway induction as well as inflammasome complex formation, thus decreasing inflammatory cytokine levels. HTR4 downregulation in 3T3-L1 cells also reduced palmitate-induced inflammasome complex formation and inflammatory cytokine production. Palmitate-induced insulin resistance in Hep3B cells, but not in 3T3-L1 cells, was improved by HTR4 downregulation. CONCLUSIONS In summary, GR113808 protected against fatty liver formation and improved inflammation in the liver and adipose tissue. Downregulation of HTR4 ameliorated insulin resistance in the liver. These results suggest that HTR4 could serve as a promising therapeutic target for metabolic diseases.
Collapse
Affiliation(s)
- Min Hee Kim
- Department of Biochemistry, Ewha Womans University College of Medicine, Seoul, 07084, Republic of Korea
- Department of Biochemistry, Gachon University College of Medicine, Incheon, 21565, Republic of Korea
| | - Su-Jeong Kim
- Department of Biochemistry, Gachon University College of Medicine, Incheon, 21565, Republic of Korea
| | - Woo-Jae Park
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul, 06974, Republic of Korea.
| | - Dae Ho Lee
- Department of Internal Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, 21565, Republic of Korea
| | - Kyoung-Kon Kim
- Department of Family Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, 21565, Republic of Korea.
| |
Collapse
|
16
|
Wang F, Huynh PM, An YA. Mitochondrial Function and Dysfunction in White Adipocytes and Therapeutic Implications. Compr Physiol 2024; 14:5581-5640. [PMID: 39382163 DOI: 10.1002/cphy.c230009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
For a long time, white adipocytes were thought to function as lipid storages due to the sizeable unilocular lipid droplet that occupies most of their space. However, recent discoveries have highlighted the critical role of white adipocytes in maintaining energy homeostasis and contributing to obesity and related metabolic diseases. These physiological and pathological functions depend heavily on the mitochondria that reside in white adipocytes. This article aims to provide an up-to-date overview of the recent research on the function and dysfunction of white adipocyte mitochondria. After briefly summarizing the fundamental aspects of mitochondrial biology, the article describes the protective role of functional mitochondria in white adipocyte and white adipose tissue health and various roles of dysfunctional mitochondria in unhealthy white adipocytes and obesity. Finally, the article emphasizes the importance of enhancing mitochondrial quantity and quality as a therapeutic avenue to correct mitochondrial dysfunction, promote white adipocyte browning, and ultimately improve obesity and its associated metabolic diseases. © 2024 American Physiological Society. Compr Physiol 14:5581-5640, 2024.
Collapse
Affiliation(s)
- Fenfen Wang
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Phu M Huynh
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Yu A An
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
17
|
Rehman IU, Park JS, Choe K, Park HY, Park TJ, Kim MO. Overview of a novel osmotin abolishes abnormal metabolic-associated adiponectin mechanism in Alzheimer's disease: Peripheral and CNS insights. Ageing Res Rev 2024; 100:102447. [PMID: 39111409 DOI: 10.1016/j.arr.2024.102447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/19/2024] [Accepted: 08/03/2024] [Indexed: 08/16/2024]
Abstract
Alzheimer's disease (AD) is a degenerative brain disease that affects millions of people worldwide. It is caused by abnormalities in cholinergic neurons, oxidative stress, and inflammatory cascades. The illness is accompanied by personality changes, memory issues, and dementia. Metabolic signaling pathways help with fundamental processes like DNA replication and RNA transcription. Being adaptable is essential for both surviving and treating illness. The body's metabolic signaling depends on adipokines, including adiponectin (APN) and other adipokines secreted by adipose tissues. Energy homeostasis is balanced by adipokines, and nutrients. Overconsumption of nutrients messes with irregular signaling of adipokines, such as APN in both peripheral and brain which leads to neurodegeneration, such as AD. Despite the failure of traditional treatments like memantine and cholinesterase inhibitors, natural plant bioactive substances like Osmotin (OSM) have been given a focus as potential therapeutics due to their antioxidant properties, better blood brain barrier (BBB) permeability, excellent cell viability, and especially nanoparticle approaches. The review highlights the published preclinical literature regarding the role of OSM in AD pathology while there is a need for more research to investigate the hidden therapeutic potential of OSM which may open a new gateway and further strengthen its healing role in the pathogenesis of neurodegeneration, especially AD.
Collapse
Affiliation(s)
- Inayat Ur Rehman
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
| | - Jun Sung Park
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
| | - Kyonghwan Choe
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht 6229 ER, the Netherlands.
| | - Hyun Young Park
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht 6229 ER, the Netherlands; Department of Pediatrics, Maastricht University Medical Center (MUMC+), Maastricht 6202 AZ, the Netherlands.
| | - Tae Ju Park
- Haemato-oncology/Systems Medicine Group, Paul O'Gorman Leukemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences (MVLS), University of Glasgow, Glasgow G12 0ZD, United Kingdom.
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; Alz-Dementia Korea Co., Jinju 52828, Republic of Korea.
| |
Collapse
|
18
|
You H, Chang F, Chen H, Wang Y, Han W. Exploring the role of CBLB in acute myocardial infarction: transcriptomic, microbiomic, and metabolomic analyses. J Transl Med 2024; 22:654. [PMID: 39004726 PMCID: PMC11247792 DOI: 10.1186/s12967-024-05425-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Specific alterations in gut microbiota and metabolites have been linked to AMI, with CBLB potentially playing an essential role. However, the precise interactions remain understudied, creating a significant gap in our understanding. This study aims to address this by exploring these interactions in CBLB-intervened AMI mice using transcriptome sequencing, 16 S rDNA, and non-targeted metabolite analysis. METHODS To probe the therapeutic potential and mechanistic underpinnings of CBLB overexpression in AMI, we utilized an integrative multi-omics strategy encompassing transcriptomics, metabolomics, and 16s rDNA sequencing. We selected these particular methods as they facilitate a holistic comprehension of the intricate interplay between the host and its microbiota, and the potential effects on the host's metabolic and gene expression profiles. The uniqueness of our investigation stems from utilizing a multi-omics approach to illuminate the role of CBLB in AMI, an approach yet unreported to the best of our knowledge. Our experimental protocol encompassed transfection of CBLB lentivirus-packaged vectors into 293T cells, followed by subsequent intervention in AMI mice. Subsequently, we conducted pathological staining, fecal 16s rDNA sequencing, and serum non-targeted metabolome sequencing. We applied differential expression analysis to discern differentially expressed genes (DEGs), differential metabolites, and differential microbiota. We performed protein-protein interaction analysis to identify core genes, and conducted correlation studies to clarify the relationships amongst these core genes, paramount metabolites, and key microbiota. RESULTS Following the intervention of CBLB in AMI, we observed a significant decrease in inflammatory cell infiltration and collagen fiber formation in the infarcted region of mice hearts. We identified key changes in microbiota, metabolites, and DEGs that were associated with this intervention. The findings revealed that CBLB has a significant correlation with DEGs, differential metabolites and microbiota, respectively. This suggests it could play a pivotal role in the regulation of AMI. CONCLUSION This study confirmed the potential of differentially expressed genes, metabolites, and microbiota in AMI regulation post-CBLB intervention. Our findings lay groundwork for future exploration of CBLB's role in AMI, suggesting potential therapeutic applications and novel research directions in AMI treatment strategies.
Collapse
Affiliation(s)
- Hongjun You
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, No.256 Youyi West Road, Beilin District, Xi'an City, 710068, Shaanxi Province, China
| | - Fengjun Chang
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, No.256 Youyi West Road, Beilin District, Xi'an City, 710068, Shaanxi Province, China
| | - Haichao Chen
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, No.256 Youyi West Road, Beilin District, Xi'an City, 710068, Shaanxi Province, China
| | - Yi Wang
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, No.256 Youyi West Road, Beilin District, Xi'an City, 710068, Shaanxi Province, China
| | - Wenqi Han
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, No.256 Youyi West Road, Beilin District, Xi'an City, 710068, Shaanxi Province, China.
| |
Collapse
|
19
|
Staller DW, Bennett RG, Mahato RI. Therapeutic perspectives on PDE4B inhibition in adipose tissue dysfunction and chronic liver injury. Expert Opin Ther Targets 2024; 28:545-573. [PMID: 38878273 PMCID: PMC11305103 DOI: 10.1080/14728222.2024.2369590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
INTRODUCTION Chronic liver disease (CLD) is a complex disease associated with profound dysfunction. Despite an incredible burden, the first and only pharmacotherapy for metabolic-associated steatohepatitis was only approved in March of this year, indicating a gap in the translation of preclinical studies. There is a body of preclinical work on the application of phosphodiesterase 4 inhibitors in CLD, none of these molecules have been successfully translated into clinical use. AREAS COVERED To design therapies to combat CLD, it is essential to consider the dysregulation of other tissues that contribute to its development and progression. As such, proper therapies must combat this throughout the body rather than focusing only on the liver. To detail this, literature characterizing the pathogenesis of CLD was pulled from PubMed, with a particular focus placed on the role of PDE4 in inflammation and metabolism. Then, the focus is shifted to detailing the available information on existing PDE4 inhibitors. EXPERT OPINION This review gives a brief overview of some of the pathologies of organ systems that are distinct from the liver but contribute to disease progression. The demonstrated efficacy of PDE4 inhibitors in other human inflammatory diseases should earn them further examination for the treatment of CLD.
Collapse
Affiliation(s)
- Dalton W. Staller
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Robert G. Bennett
- Department of Internal Medicine, Division of Diabetes Endocrinology and Metabolism, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Ram I. Mahato
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
20
|
Maylem ERS, Schütz LF, Spicer LJ. The role of asprosin in regulating ovarian granulosa- and theca-cell steroidogenesis: a review with comparisons to other adipokines. Reprod Fertil Dev 2024; 36:RD24027. [PMID: 39074236 DOI: 10.1071/rd24027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/04/2024] [Indexed: 07/31/2024] Open
Abstract
Adipose tissues produce a variety of biologically active compounds, including cytokines, growth factors and adipokines. Adipokines are important as they function as endocrine hormones that are related to various metabolic and reproductive diseases. The goal of this review was to summarise the role of asprosin, a recently discovered adipokine, and compare its role in ovarian steroidogenesis with that of other adipokines including adiponectin, leptin, resistin, apelin, visfatin, chemerin, irisin, and gremlin 1. The summary of concentrations of these adipokines in humans, rats and other animals will help researchers identify appropriate doses to test in future studies. Review of the literature indicated that asprosin increases androstenedione production in theca cells (Tc), and when cotreated with FSH increases oestradiol production in granulosa cells (Gc). In comparison, other adipokines (1) stimulate Gc oestradiol production but inhibit Tc androgen production (adiponectin), (2) inhibit Gc oestradiol production and Tc androstenedione production (leptin and chemerin), (3) inhibit Gc steroidogenesis with no effect on Tc (resistin), (4) inhibit Gc oestradiol production but stimulate Tc androgen production (gremlin 1), and (5) increase steroid secretion by Gc, with unknown effects on Tc steroidogenesis (apelin and visfatin). Irisin has direct effects on Gc but its precise role (inhibitory or stimulatory) may be species dependent and its effects on Tc will require additional research. Thus, most adipokines have direct effects (either positive or negative) on steroid production in ovarian cells, but how they all work together to create a cumulative effect or disease will require further research.
Collapse
Affiliation(s)
- Excel Rio S Maylem
- Philippine Carabao Center, National Headquarters and Gene Pool, Science City of Munoz, Nueva Ecija, Philippines
| | - Luis Fernando Schütz
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA
| | - Leon J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
21
|
Ozcan M, Ayar A. Endocrine Aspects of Pain Pathophysiology: Focus on Adipose Tissue. Neuroendocrinology 2024; 114:894-906. [PMID: 38801814 DOI: 10.1159/000539531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Multiple factors, including neurobiological, hormonal, psychological, and social/cultural norms, influence the manner in which individuals experience pain. Adipose tissue, once considered solely an energy storage site, has been recognized as a significant endocrine organ that produces and releases a range of hormones and cytokines. In recent years, research has highlighted the role of adipose tissue and its endocrine factors in the pathophysiology of pain. SUMMARY This narrative review aimed to provide a comprehensive overview of the current knowledge on the endocrine aspects of pain pathophysiology, with a specific focus on adipose tissue. We examine the role of adipokines released by adipose tissue, such as leptin, adiponectin, resistin, visfatin, asprosin in pain perception and response. We also explore the clinical implications of these findings, including the potential for personalized pain management based on endocrine factors and adipose tissue. KEY MESSAGES Overall, given this background, this review intended to highlight the importance of understanding the endocrine aspects of pain pathophysiology, particularly focusing on the role of adipose tissue, in the development of chronic pain and adipokines. Better understanding the role of adipokines in pain modulation might have therapeutic implications by providing novel targets for addressing underlying mechanism rather than directly focusing on symptoms for chronic pain, particularly in obese individuals.
Collapse
Affiliation(s)
- Mete Ozcan
- Department of Biophysics, Firat University Medical Faculty, Elazig, Turkey
| | - Ahmet Ayar
- Department of Physiology, Karadeniz Technical University Medical Faculty, Trabzon, Turkey
| |
Collapse
|
22
|
Ma Y, Luo Y, Li W, Wang D, Ning Z. White Isthmus Transcriptome Analysis Reveals the Mechanism of Translucent Eggshell Formation. Animals (Basel) 2024; 14:1477. [PMID: 38791694 PMCID: PMC11117225 DOI: 10.3390/ani14101477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The presence of translucent eggshells is a type of egg quality issue that impacts egg sales. While many researchers have studied them, the exact mechanisms behind their formation remain unclear. In this study, we conducted a transcriptomic differential expression analysis of the isthmus region of the oviduct in both normal egg- and translucent egg-laying hens. The analysis revealed that differentially expressed gene pathways were predominantly concentrated in the synthesis, modification, and transport of eggshell membrane proteins, particularly collagen proteins, which provide structural support. These findings suggest that variations in the physical structure of the eggshell membrane, resulting from changes in its chemical composition, are the fundamental cause of translucent eggshell formation. This research provides a theoretical reference for reducing the occurrence of translucent eggs.
Collapse
Affiliation(s)
- Ying Ma
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.M.); (Y.L.); (W.L.)
| | - Yuxing Luo
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.M.); (Y.L.); (W.L.)
| | - Wen Li
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.M.); (Y.L.); (W.L.)
| | - Dehe Wang
- Department of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China;
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.M.); (Y.L.); (W.L.)
| |
Collapse
|
23
|
Zhao YQ, Ren YF, Li BB, Wei C, Yu B. The mysterious association between adiponectin and endometriosis. Front Pharmacol 2024; 15:1396616. [PMID: 38813109 PMCID: PMC11133721 DOI: 10.3389/fphar.2024.1396616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Adiponectin is a pleiotropic cytokine predominantly derived from adipose tissue. In addition to its role in regulating energy metabolism, adiponectin may also be related to estrogen-dependent diseases, and many studies have confirmed its involvement in mediating diverse biological processes, including apoptosis, autophagy, inflammation, angiogenesis, and fibrosis, all of which are related to the pathogenesis of endometriosis. Although many researchers have reported low levels of adiponectin in patients with endometriosis and suggested that it may serve as a protective factor against the development of the disease. Therefore, the purpose of this review was to provide an up-to-date summary of the roles of adiponectin and its downstream cytokines and signaling pathways in the aforementioned biological processes. Further systematic studies on the molecular and cellular mechanisms of action of adiponectin may provide novel insights into the pathophysiology of endometriosis as well as potential therapeutic targets.
Collapse
Affiliation(s)
| | | | - Bing-Bing Li
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, Shandong Province, China
| | | | | |
Collapse
|
24
|
Hyun Boo K, Woo Kim J, Song M. Isolation and purification of high molecular weight adiponectin from human plasma fraction. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1238:124111. [PMID: 38603890 DOI: 10.1016/j.jchromb.2024.124111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/24/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024]
Abstract
Adiponectin, a crucial protein hormone originating from adipose tissue, regulates key metabolic processes, including lipid metabolism, mitochondrial activity, and insulin sensitivity. These pleiotropic roles of adiponectin, along with its inverse correlation with metabolic disorders such as obesity, type II diabetes, and atherosclerosis, establish this protein as a potential therapeutic target. However, due to this complexity, challenges have arisen in its production with a natural conformation in bacterial or mammalian expression systems, hindering clinical translation. Furthermore, while inducers for adiponectin secretion or chemical agonists targeting adiponectin receptors have shown promise in laboratory settings, clinical studies with these agents have not yet been conducted. This study proposes a method for isolating and purifying natural high molecular weight (HMW) adiponectin from discarded plasma fractions during the conventional pharmaceutical protein manufacturing process. The process involved Cohn-Oncley fractionation, initial chromatography using reduced cellufine formyl, and subsequent purification via DEAE Sepharose chromatography. Characterization involved gel electrophoresis and biological assays on a hepatocyte cell-line. The purification process effectively captured adiponectin from the I + III paste, demonstrating that this fraction contained a significant portion of total plasma adiponectin. The two-step chromatography led to highly purified HMW adiponectin, confirmed by native-PAGE showing a 780 kDa multimeric complex. Biological assessments demonstrated normal downstream signaling, with HMW adiponectin inducing AMPK phosphorylation. This study demonstrates the feasibility of obtaining purified HMW adiponectin by repurposing plasma fractionation processes. It offers a promising avenue for the HMW adiponectin production, tapping into HMW adiponectin's therapeutic potential against metabolic disorders while optimizing plasma resource utilization in healthcare.
Collapse
Affiliation(s)
- Kyung Hyun Boo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea; ECO lab, SK plasma, Seongnam 13494, Republic of Korea
| | - Jin Woo Kim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Minkyung Song
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
25
|
Meyer M, Schwärzler J, Jukic A, Tilg H. Innate Immunity and MASLD. Biomolecules 2024; 14:476. [PMID: 38672492 PMCID: PMC11048298 DOI: 10.3390/biom14040476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has emerged as the most common liver disease worldwide in recent years. MASLD commonly presents as simple hepatic steatosis, but ~25% of patients develop liver inflammation, progressive fibrosis, liver cirrhosis and related hepatocellular carcinoma. Liver inflammation and the degree of fibrosis are key determinants of the prognosis. The pathophysiology of liver inflammation is incompletely understood and involves diverse factors and specifically innate and adaptive immune responses. More specifically, diverse mediators of innate immunity such as proinflammatory cytokines, adipokines, inflammasomes and various cell types like mononuclear cells, macrophages and natural killer cells are involved in directing the inflammatory process in MASLD. The activation of innate immunity is driven by various factors including excess lipids and lipotoxicity, insulin resistance and molecular patterns derived from gut commensals. Targeting pathways of innate immunity might therefore appear as an attractive therapeutic strategy in the future management of MASLD and possibly its complications.
Collapse
Affiliation(s)
| | | | | | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.M.); (A.J.)
| |
Collapse
|
26
|
Kobori T, Iwabu M, Okada-Iwabu M, Ohuchi N, Kikuchi A, Yamauchi N, Kadowaki T, Yamauchi T, Kasuga M. Decreased AdipoR1 signaling and its implications for obesity-induced male infertility. Sci Rep 2024; 14:5701. [PMID: 38459078 PMCID: PMC10923778 DOI: 10.1038/s41598-024-56290-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/05/2024] [Indexed: 03/10/2024] Open
Abstract
Obesity is among the risk factors for male infertility. Although several mechanisms underlying obesity-induced male subfertility have been reported, the entire mechanism of obesity-induced male infertility still remains unclear. Here, we show that sperm count, sperm motility and sperm fertilizing ability were decreased in male mice fed a high-fat diet and that the expression of the AdipoR1 gene and protein was decreased, and the expression of pro-apoptotic genes and protein increased, in the testis from mice fed a high-fat diet. Moreover, we demonstrate that testes weight, sperm count, sperm motility and sperm fertilizing ability were significantly decreased in AdipoR1 knockout mice compared to those in wild-type mice; furthermore, the phosphorylation of AMPK was decreased, and the expression of pro-apoptotic genes and proteins, caspase-6 activity and pathologically apoptotic seminiferous tubules were increased, in the testis from AdipoR1 knockout mice. Furthermore, study findings show that orally administrated AdipoRon decreased caspase-6 activity and apoptotic seminiferous tubules in the testis, thus ameliorating sperm motility in male mice fed a high-fat diet. This was the first study to demonstrate that decreased AdipoR1/AMPK signaling led to increased caspase-6 activity/increased apoptosis in the testis thus likely accounting for male infertility.
Collapse
Affiliation(s)
- Toshiko Kobori
- Division of Diabetes and Metabolism, The Institute of Medical Science, Asahi Life Foundation, Chuo-Ku, Tokyo, 103-0002, Japan
| | - Masato Iwabu
- Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School, Bunkyo-Ku, Tokyo, 113-8603, Japan.
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| | - Miki Okada-Iwabu
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
- Laboratory for Advanced Research on Pathophysiology of Metabolic Diseases, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| | - Nozomi Ohuchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Akiko Kikuchi
- Division of Diabetes and Metabolism, The Institute of Medical Science, Asahi Life Foundation, Chuo-Ku, Tokyo, 103-0002, Japan
| | - Naoko Yamauchi
- Digital Pathology Center, Asahi General Hospital, Asahi-Shi, Chiba, 289-2511, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-8655, Japan
- Toranomon Hospital, Minato-Ku, Tokyo, 105-8470, Japan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Masato Kasuga
- Division of Diabetes and Metabolism, The Institute of Medical Science, Asahi Life Foundation, Chuo-Ku, Tokyo, 103-0002, Japan
| |
Collapse
|
27
|
Jung KM, Lin L, Piomelli D. Overactivation of the Endocannabinoid System in Adolescence Disrupts Adult Adipose Organ Function in Mice. Cells 2024; 13:461. [PMID: 38474425 PMCID: PMC10930932 DOI: 10.3390/cells13050461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
Cannabis use stimulates calorie intake, but epidemiological studies show that people who regularly use it are leaner than those who don't. Two explanations have been proposed for this paradoxical finding. One posits that Δ9-tetrahydrocannabinol (THC) in cannabis desensitizes adipose CB1 cannabinoid receptors, stopping their stimulating effects on lipogenesis and adipogenesis. Another explanation is that THC exposure in adolescence, when habitual cannabis use typically starts, produces lasting changes in the developing adipose organ, which impacts adult systemic energy use. Here, we consider these possibilities in the light of a study which showed that daily THC administration in adolescent mice produces an adult metabolic phenotype characterized by reduced fat mass, partial resistance to obesity and dyslipidemia, and impaired thermogenesis and lipolysis. The phenotype, whose development requires activation of CB1 receptors in differentiated adipocytes, is associated with overexpression of myocyte proteins in the adipose organ with unchanged CB1 expression. We propose that adolescent exposure to THC causes lasting adipocyte dysfunction and the consequent emergence of a metabolic state that only superficially resembles healthy leanness. A corollary of this hypothesis, which should be addressed in future studies, is that CB1 receptors and their endocannabinoid ligands may contribute to the maintenance of adipocyte differentiation during adolescence.
Collapse
Affiliation(s)
- Kwang-Mook Jung
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA; (K.-M.J.); (L.L.)
| | - Lin Lin
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA; (K.-M.J.); (L.L.)
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA; (K.-M.J.); (L.L.)
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| |
Collapse
|
28
|
Romero-Becera R, Santamans AM, Arcones AC, Sabio G. From Beats to Metabolism: the Heart at the Core of Interorgan Metabolic Cross Talk. Physiology (Bethesda) 2024; 39:98-125. [PMID: 38051123 DOI: 10.1152/physiol.00018.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/26/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023] Open
Abstract
The heart, once considered a mere blood pump, is now recognized as a multifunctional metabolic and endocrine organ. Its function is tightly regulated by various metabolic processes, at the same time it serves as an endocrine organ, secreting bioactive molecules that impact systemic metabolism. In recent years, research has shed light on the intricate interplay between the heart and other metabolic organs, such as adipose tissue, liver, and skeletal muscle. The metabolic flexibility of the heart and its ability to switch between different energy substrates play a crucial role in maintaining cardiac function and overall metabolic homeostasis. Gaining a comprehensive understanding of how metabolic disorders disrupt cardiac metabolism is crucial, as it plays a pivotal role in the development and progression of cardiac diseases. The emerging understanding of the heart as a metabolic and endocrine organ highlights its essential contribution to whole body metabolic regulation and offers new insights into the pathogenesis of metabolic diseases, such as obesity, diabetes, and cardiovascular disorders. In this review, we provide an in-depth exploration of the heart's metabolic and endocrine functions, emphasizing its role in systemic metabolism and the interplay between the heart and other metabolic organs. Furthermore, emerging evidence suggests a correlation between heart disease and other conditions such as aging and cancer, indicating that the metabolic dysfunction observed in these conditions may share common underlying mechanisms. By unraveling the complex mechanisms underlying cardiac metabolism, we aim to contribute to the development of novel therapeutic strategies for metabolic diseases and improve overall cardiovascular health.
Collapse
Affiliation(s)
| | | | - Alba C Arcones
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| |
Collapse
|
29
|
Athar F, Karmani M, Templeman N. Metabolic hormones are integral regulators of female reproductive health and function. Biosci Rep 2024; 44:BSR20231916. [PMID: 38131197 PMCID: PMC10830447 DOI: 10.1042/bsr20231916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/29/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023] Open
Abstract
The female reproductive system is strongly influenced by nutrition and energy balance. It is well known that food restriction or energy depletion can induce suppression of reproductive processes, while overnutrition is associated with reproductive dysfunction. However, the intricate mechanisms through which nutritional inputs and metabolic health are integrated into the coordination of reproduction are still being defined. In this review, we describe evidence for essential contributions by hormones that are responsive to food intake or fuel stores. Key metabolic hormones-including insulin, the incretins (glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1), growth hormone, ghrelin, leptin, and adiponectin-signal throughout the hypothalamic-pituitary-gonadal axis to support or suppress reproduction. We synthesize current knowledge on how these multifaceted hormones interact with the brain, pituitary, and ovaries to regulate functioning of the female reproductive system, incorporating in vitro and in vivo data from animal models and humans. Metabolic hormones are involved in orchestrating reproductive processes in healthy states, but some also play a significant role in the pathophysiology or treatment strategies of female reproductive disorders. Further understanding of the complex interrelationships between metabolic health and female reproductive function has important implications for improving women's health overall.
Collapse
Affiliation(s)
- Faria Athar
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Muskan Karmani
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Nicole M. Templeman
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
30
|
Tadiotto MC, Corazza PRP, de Menezes-Junior FJ, Tozo TAA, de Moraes-Junior FB, Brand C, Purim KSM, Mota J, Leite N. Moderating role of 1-minute abdominal test in the relationship between cardiometabolic risk factors and adiponectin concentration in adolescents. BMC Pediatr 2024; 24:75. [PMID: 38263075 PMCID: PMC10804517 DOI: 10.1186/s12887-024-04554-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Adiponectin is an anti-inflammatory cytokine secreted by adipose tissue, has been associated with adiposity and cardiometabolic risk, and has controversial results with muscular fitness. The aim of this study was to analyze the interaction of 1-minute abdominal test in the relationship between adiposity, body composition, cardiometabolic risk and adiponectin concentration in adolescents. METHODS This is a cross-sectional study conducted with 62 adolescents of both sexes, aged 11 to 16 years, approved by the Ethics Committee of Research in Humans (CAEE: 62963916.0.0000.5223). Body mass, height, abdominal circumference (AC), waist circumference (WC), fat mass (FM), fat-free mass (FFM), high density lipoprotein (HDL-c), low density lipoprotein (LDL-c), triglycerides (TG), adiponectin, systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean blood pressure (MBP), 1-minute abdominal test (ABD) were measured. Body mass index (BMI), z-score BMI (BMI-z), triponderal mass index (TMI), and waist-to-height ratio (WHtR) were calculated. The macro PROCESS for SPSS v.24.0 was used for moderation analyses, with linear regression models. RESULTS Inverse interactions were found for adiposity (BMI, BMI-z, TMI, AC, WC, WHtR), body composition (FM, FFM) and CMRF (SBP, DBP, MBP, TG) versus 1-minute abdominal test with adiponectin concentration, demonstrating that abdominal test is a moderator in these relationships. CONCLUSION We conclude that 1-minute abdominal test may play an important role in the relationship between obesity and cardiometabolic risk. We found that muscular fitness can confer a protective effect on adolescents with high levels of abdominal test.
Collapse
Affiliation(s)
- Maiara Cristina Tadiotto
- Department of Physical Education, Federal University of Paraná, Street Col. Francisco H. dos Santos, 100, Jardim das Americas, Curitiba, Paraná, 81531-980, Brazil.
| | - Patricia Ribeiro Paes Corazza
- Department of Physical Education, Federal University of Paraná, Street Col. Francisco H. dos Santos, 100, Jardim das Americas, Curitiba, Paraná, 81531-980, Brazil
| | - Francisco José de Menezes-Junior
- Department of Physical Education, Federal University of Paraná, Street Col. Francisco H. dos Santos, 100, Jardim das Americas, Curitiba, Paraná, 81531-980, Brazil
| | - Tatiana Aparecida Affornali Tozo
- Department of Physical Education, Federal University of Paraná, Street Col. Francisco H. dos Santos, 100, Jardim das Americas, Curitiba, Paraná, 81531-980, Brazil
| | - Frederico Bento de Moraes-Junior
- Department of Physical Education, Federal University of Paraná, Street Col. Francisco H. dos Santos, 100, Jardim das Americas, Curitiba, Paraná, 81531-980, Brazil
| | - Caroline Brand
- Physical Education School, IRyS Group, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | | - Jorge Mota
- Faculty of Sport, University of Porto, Porto, Portugal
| | - Neiva Leite
- Department of Physical Education, Federal University of Paraná, Street Col. Francisco H. dos Santos, 100, Jardim das Americas, Curitiba, Paraná, 81531-980, Brazil
- Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
31
|
Kaminska B, Kurowicka B, Kiezun M, Dobrzyn K, Kisielewska K, Gudelska M, Kopij G, Szymanska K, Zarzecka B, Koker O, Zaobidna E, Smolinska N, Kaminski T. The Role of Adipokines in the Control of Pituitary Functions. Animals (Basel) 2024; 14:353. [PMID: 38275812 PMCID: PMC10812442 DOI: 10.3390/ani14020353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
The pituitary gland is a key endocrine gland in all classes of vertebrates, including mammals. The pituitary gland is an important component of hypothalamus-pituitary-target organ hormonal regulatory axes and forms a functional link between the nervous system and the endocrine system. In response to hypothalamic stimuli, the pituitary gland secretes a number of hormones involved in the regulation of metabolism, stress reactions and environmental adaptation, growth and development, as well as reproductive processes and lactation. In turn, hormones secreted by target organs at the lowest levels of the hormonal regulatory axes regulate the functions of the pituitary gland in the process of hormonal feedback. The pituitary also responds to other peripheral signals, including adipose-tissue-derived factors. These substances are a broad group of peptides known as adipocytokines or adipokines that act as endocrine hormones mainly involved in energy homeostasis. Adipokines, including adiponectin, resistin, apelin, chemerin, visfatin, and irisin, are also expressed in the pituitary gland, and they influence the secretory functions of this gland. This review is an overview of the existing knowledge of the relationship between chosen adipose-derived factors and endocrine functions of the pituitary gland, with an emphasis on the pituitary control of reproductive processes.
Collapse
Affiliation(s)
- Barbara Kaminska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Beata Kurowicka
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Kamil Dobrzyn
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Katarzyna Kisielewska
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (K.K.); (M.G.)
| | - Marlena Gudelska
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (K.K.); (M.G.)
| | - Grzegorz Kopij
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Karolina Szymanska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Barbara Zarzecka
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Oguzhan Koker
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Ewa Zaobidna
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| |
Collapse
|
32
|
Li H, Pei X, Yu H, Wang W, Mao D. Autophagic and apoptotic proteins in goat corpus luteum and the effect of Adiponectin/AdipoRon on luteal cell autophagy and apoptosis. Theriogenology 2024; 214:245-256. [PMID: 37944429 DOI: 10.1016/j.theriogenology.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
The most abundant adipokine Adiponectin (APN) is present in ovaries. AdipoRon is a small molecule oral APN receptor agonist that binds and activates APN receptors. However, the function of APN/AdipoRon in regulation of luteal cell processes has not been elucidated. To investigate autophagic and apoptotic proteins in goat CLs and effects of APN/AdipoRon on goat luteal autophagy and apoptosis, goat CLs were collected during the early, mid and late luteal stages of the estrous cycle to evaluate autophagic and apoptotic protein patterns. LC3B, Beclin 1, Caspase-3 and Bax/Bcl-2 as well as p-AMPK were differentially abundant at different stages of CL development. All these proteins were primarily localized in large and small luteal steroidogenic cells. Then, isolated luteal steroidogenic cells were evaluated to ascertain the functions and mechanism of APN/AdipoRon in luteal autophagy and apoptosis. Treatment with AdipoRon (25 and 50 μM) and APN (1 μg/mL) for 48 h resulted in a decrease in cell viability and P4 level, increased autophagic and apoptotic proteins. Treatment with AdipoRon (25 μM) led to rapid and transient p-AMPK activation, with p-AMPK elevated at 30 min to 1 h with there being a return to a basal concentration at 2 h post-treatment. Moreover, treatment with AdipoRon led to an increase in autophagy by activating AMPK, which was markedly reduced with treatment with an AMPK inhibitor Compound C and siAMPK, however, abundances of apoptotic proteins were not affected by these treatments. In conclusion, autophagy and apoptosis are involved in the structural regression of goat CL. APN/AdipoRon led to a lesser cell viability and P4 concentration, and activated autophagy through induction of the AMPK while there was induction of apoptosis through an AMPK - independent pathway in goat luteal cells.
Collapse
Affiliation(s)
- Haolin Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiaomeng Pei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Hao Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Wei Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Dagan Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
33
|
Engin A. Adiponectin Resistance in Obesity: Adiponectin Leptin/Insulin Interaction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:431-462. [PMID: 39287861 DOI: 10.1007/978-3-031-63657-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The adiponectin (APN) levels in obesity are negatively correlated with chronic subclinical inflammation markers. The hypertrophic adipocytes cause obesity-linked insulin resistance and metabolic syndrome. Furthermore, macrophage polarization is a key determinant regulating adiponectin receptor (AdipoR1/R2) expression and differential adiponectin-mediated macrophage inflammatory responses in obese individuals. In addition to decrease in adiponectin concentrations, the decline in AdipoR1/R2 messenger ribonucleic acid (mRNA) expression leads to a decrement in adiponectin binding to cell membrane, and this turns into attenuation in the adiponectin effects. This is defined as APN resistance, and it is linked with insulin resistance in high-fat diet-fed subjects. The insulin-resistant group has a significantly higher leptin-to-APN ratio. The leptin-to-APN ratio is more than twofold higher in obese individuals. An increase in expression of AdipoRs restores insulin sensitivity and β-oxidation of fatty acids via triggering intracellular signal cascades. The ratio of high molecular weight to total APN is defined as the APN sensitivity index (ASI). This index is correlated to insulin sensitivity. Homeostasis model of assessment (HOMA)-APN and HOMA-estimated insulin resistance (HOMA-IR) are the most suitable methods to estimate the metabolic risk in metabolic syndrome. While morbidly obese patients display a significantly higher plasma leptin and soluble (s)E-selectin concentrations, leptin-to-APN ratio, there is a significant negative correlation between leptin-to-APN ratio and sP-selectin in obese patients. When comparing the metabolic dysregulated obese group with the metabolically healthy obese group, postprandial triglyceride clearance, insulin resistance, and leptin resistance are significantly delayed following the oral fat tolerance test in the first group. A neuropeptide, Spexin (SPX), is positively correlated with the quantitative insulin sensitivity check index (QUICKI) and APN. APN resistance together with insulin resistance forms a vicious cycle. Despite normal or high APN levels, an impaired post-receptor signaling due to adaptor protein-containing pleckstrin homology domain, phosphotyrosine-binding domain, and leucine zipper motif 1 (APPL1)/APPL2 may alter APN efficiency and activity. However, APPL2 blocks adiponectin signaling through AdipoR1 and AdipoR2 because of the competitive inhibition of APPL1. APPL1, the intracellular binding partner of AdipoRs, is also an important mediator of adiponectin-dependent insulin sensitization. The elevated adiponectin levels with adiponectin resistance are compensatory responses in the condition of an unusual discordance between insulin resistance and APN unresponsiveness. Hypothalamic recombinant adeno-associated virus (rAAV)-leptin (Lep) gene therapy reduces serum APN levels, and it is a more efficient strategy for long-term weight maintenance.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
34
|
Oliveras-Cañellas N, Moreno-Navarrete JM, Lorenzo PM, Garrido-Sánchez L, Becerril S, Rangel O, Latorre J, de la Calle Vargas E, Pardo M, Valentí V, Romero-Cabrera JL, Oliva-Olivera W, Silva C, Diéguez C, Villarroya F, López M, Crujeiras AB, Seoane LM, López-Miranda J, Frühbeck G, Tinahones FJ, Fernández-Real JM. Downregulated Adipose Tissue Expression of Browning Genes With Increased Environmental Temperatures. J Clin Endocrinol Metab 2023; 109:e145-e154. [PMID: 37560997 DOI: 10.1210/clinem/dgad469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/11/2023]
Abstract
CONTEXT Climate change and global warming have been hypothesized to influence the increased prevalence of obesity worldwide. However, the evidence is scarce. OBJECTIVE We aimed to investigate how outside temperature might affect adipose tissue physiology and metabolic traits. METHODS The expression of genes involved in thermogenesis/browning and adipogenesis were evaluated (through quantitative polymerase chain reaction) in the subcutaneous adipose tissue (SAT) from 1083 individuals recruited in 5 different regions of Spain (3 in the North and 2 in the South). Plasma biochemical variables and adiponectin (enzyme-linked immunosorbent assay) were collected through standardized protocols. Mean environmental outdoor temperatures were obtained from the National Agency of Meteorology. Univariate, multivariate, and artificial intelligence analyses (Boruta algorithm) were performed. RESULTS The SAT expression of genes associated with browning (UCP1, PRDM16, and CIDEA) and ADIPOQ were significantly and negatively associated with minimum, average, and maximum temperatures. The latter temperatures were also negatively associated with the expression of genes involved in adipogenesis (FASN, SLC2A4, and PLIN1). Decreased SAT expression of UCP1 and ADIPOQ messenger RNA and circulating adiponectin were observed with increasing temperatures in all individuals as a whole and within participants with obesity in univariate, multivariate, and artificial intelligence analyses. The differences remained statistically significant in individuals without type 2 diabetes and in samples collected during winter. CONCLUSION Decreased adipose tissue expression of genes involved in browning and adiponectin with increased environmental temperatures were observed. Given the North-South gradient of obesity prevalence in these same regions, the present observations could have implications for the relationship of the obesity pandemic with global warming.
Collapse
Affiliation(s)
- Núria Oliveras-Cañellas
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona 17007, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona 17003, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid 28029, Spain
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona 17007, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona 17003, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid 28029, Spain
| | - Paula M Lorenzo
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid 28029, Spain
- Epigenomics in Endocinology and Nutrition Group, Epigenomics Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela 15706, Spain
| | - Lourdes Garrido-Sánchez
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid 28029, Spain
- Servicio de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Virgen de la Victoria, Universidad de Málaga, Málaga 29590, Spain
| | - Sara Becerril
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid 28029, Spain
- Obesity Area, Clínica Universidad de Navarra, University of Navarra, Pamplona 31009, Spain
| | - Oriol Rangel
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid 28029, Spain
- Nutrigenomics, Metabolic Syndrome Department, Servicio de Medicina Interna, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Córdoba 14004, Spain
| | - Jèssica Latorre
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona 17007, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona 17003, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid 28029, Spain
| | - Elena de la Calle Vargas
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona 17007, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona 17003, Spain
| | - Maria Pardo
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid 28029, Spain
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (IDIS/SERGAS), Santiago de Compostela 15706, Spain
| | - Victor Valentí
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid 28029, Spain
- Obesity Area, Clínica Universidad de Navarra, University of Navarra, Pamplona 31009, Spain
| | - Juan L Romero-Cabrera
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid 28029, Spain
- Nutrigenomics, Metabolic Syndrome Department, Servicio de Medicina Interna, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Córdoba 14004, Spain
| | - Wilfredo Oliva-Olivera
- Servicio de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Virgen de la Victoria, Universidad de Málaga, Málaga 29590, Spain
| | - Camilo Silva
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid 28029, Spain
- Obesity Area, Clínica Universidad de Navarra, University of Navarra, Pamplona 31009, Spain
| | - Carlos Diéguez
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid 28029, Spain
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain
| | - Francesc Villarroya
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid 28029, Spain
- Department of Biochemistry and Molecular Biomedicine, Insitut de Biomedicina (IBUB), University of Barcelona, Barcelona 08028, Spain
| | - Miguel López
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid 28029, Spain
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain
| | - Ana B Crujeiras
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid 28029, Spain
- Epigenomics in Endocinology and Nutrition Group, Epigenomics Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela 15706, Spain
| | - Luisa-Maria Seoane
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid 28029, Spain
- Endocrine Physiopathology Group, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela 15706, Spain
| | - José López-Miranda
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid 28029, Spain
- Nutrigenomics, Metabolic Syndrome Department, Servicio de Medicina Interna, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Córdoba 14004, Spain
| | - Gema Frühbeck
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid 28029, Spain
- Obesity Area, Clínica Universidad de Navarra, University of Navarra, Pamplona 31009, Spain
| | - Francisco José Tinahones
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid 28029, Spain
- Servicio de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Virgen de la Victoria, Universidad de Málaga, Málaga 29590, Spain
| | - José-Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona 17007, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona 17003, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid 28029, Spain
| |
Collapse
|
35
|
Bai X, Zhu Q, Combs M, Wabitsch M, Mack CP, Taylor JM. GRAF1 Regulates Brown and Beige Adipose Differentiation and Function. RESEARCH SQUARE 2023:rs.3.rs-3740465. [PMID: 38196614 PMCID: PMC10775368 DOI: 10.21203/rs.3.rs-3740465/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Adipose tissue, which is crucial for the regulation of energy within the body, contains both white and brown adipocytes. White adipose tissue (WAT) primarily stores energy, while brown adipose tissue (BAT) plays a critical role in energy dissipation as heat, offering potential for therapies aimed at enhancing metabolic health. Regulation of the RhoA/ROCK pathway is crucial for appropriate specification, differentiation and maturation of both white and brown adipocytes. However, our knowledge of how this pathway is controlled within specific adipose depots remains unclear, and to date a RhoA regulator that selectively controls adipocyte browning has not been identified. Our study shows that expression of GRAF1, a RhoGAP highly expressed in metabolically active tissues, closely correlates with brown adipocyte differentiation in culture and in vivo. Mice with either global or adipocyte-specific GRAF1 deficiency exhibit impaired BAT maturation, reduced capacity for WAT browning, and compromised cold-induced thermogenesis. Moreover, defects in differentiation of mouse or human GRAF1-deficient brown preadipocytes can be rescued by treatment with a Rho kinase inhibitor. Collectively, these studies indicate that GRAF1 can selectively induce brown and beige adipocyte differentiation and suggest that manipulating GRAF1 activity may hold promise for the future treatment of diseases related to metabolic dysfunction.
Collapse
Affiliation(s)
- Xue Bai
- University of North Carolina at Chapel Hill
| | - Qiang Zhu
- University of North Carolina at Chapel Hill
| | | | | | | | | |
Collapse
|
36
|
de Luis Roman D, Izaola Jauregui O, Primo Martin D. The Polymorphism rs17300539 in the Adiponectin Promoter Gene Is Related to Metabolic Syndrome, Insulin Resistance, and Adiponectin Levels in Caucasian Patients with Obesity. Nutrients 2023; 15:5028. [PMID: 38140287 PMCID: PMC10746109 DOI: 10.3390/nu15245028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Background and Aims: The present study was designed to investigate SNP rs17300539 in the ADIPOQ gene and its relationships with obesity, metabolic syndrome (MS), and serum circulating adiponectin. Methods: The present design involved a Caucasian population of 329 subjects with obesity. Anthropometric and adiposity parameters, blood pressure, biochemical parameters, and the percentage of patients with metabolic syndrome were recorded. The ADIPOQ gene variant (rs17300539) genotype was evaluated. Results: The percentage of patients with different genotypes of the rs17300539 polymorphism in this sample was 86.0% (n = 283) (GG), 11.2% (n = 37) (GA), and 2.7% (n = 9) (AA). The allele frequency was G (0.76) and A (0.24). Applying the dominant genetic model (GG vs. GA + AA), we reported differences between genotype GG and genotype GA + AA for serum adiponectin levels (Delta: 7.5 ± 1.4 ng/mL; p = 0.03), triglycerides (Delta: 41.1 ± 3.4 mg/dL; p = 0.01), fastingcirculating insulin (Delta: 4.9 ± 1.1 mUI/L; p = 0.02), and insulin resistance as HOMA-IR (Delta: 1.4 ± 0.1 units; p = 0.02). The remaining biochemical parameters were not related to the genotype of obese patients. The percentages of individuals with MS (OR = 2.07, 95% CI = 1.3-3.88; p = 0.01), hypertriglyceridaemia (OR = 2.66, 95% CI = 1.43-5.01; p = 0.01), and hyperglycaemia (OR = 3.31, 95% CI = 1.26-8.69; p = 0.02) were higher in GG subjects than patients with A allele. Logistic regression analysis reported an important risk of the presence of metabolic syndrome in GG subjects (OR = 1.99, 95% CI = 1.21-4.11; p = 0.02) after adjusting for adiponectin, dietary energy intakes, gender, weight, and age. Conclusions: The GG genotype of rs17300539 is associated with hypertriglyceridaemia, insulin resistance, low adiponectin levels, and a high risk of metabolic syndrome and its components.
Collapse
Affiliation(s)
- Daniel de Luis Roman
- Endocrinology and Nutrition Research Center, School of Medicine, Department of Endocrinology and Nutrition, Hospital Clinico Universitario, University of Valladolid, 47130 Valladolid, Spain; (O.I.J.); (D.P.M.)
| | | | | |
Collapse
|
37
|
Al Zein M, Zein O, Diab R, Dimachkie L, Sahebkar A, Al-Asmakh M, Kobeissy F, Eid AH. Intermittent fasting favorably modulates adipokines and potentially attenuates atherosclerosis. Biochem Pharmacol 2023; 218:115876. [PMID: 37871879 DOI: 10.1016/j.bcp.2023.115876] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Adipose tissue is now recognized as an endocrine organ that secretes bioactive molecules called adipokines. These biomolecules regulate key physiological functions, including insulin sensitivity, energy metabolism, appetite regulation, endothelial function and immunity. Dysregulated secretion of adipokines is intimately associated with obesity, and translates into increased risk of obesity-related cardiovasculo-metabolic diseases. In particular, emerging evidence suggests that adipokine imbalance contributes to the pathogenesis of atherosclerosis. One of the promising diet regimens that is beneficial in the fight against obesity and cardiometabolic disorders is intermittent fasting (IF). Indeed, IF robustly suppresses inflammation, meditates weight loss and mitigates many aspects of the cardiometabolic syndrome. In this paper, we review the main adipokines and their role in atherosclerosis, which remains a major contributor to cardiovascular-associated morbidity and mortality. We further discuss how IF can be employed as an effective management modality for obesity-associated atherosclerosis. By exploring a plethora of the beneficial effects of IF, particularly on inflammatory markers, we present IF as a possible intervention to help prevent atherosclerosis.
Collapse
Affiliation(s)
- Mohammad Al Zein
- Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Omar Zein
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rawan Diab
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Lina Dimachkie
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maha Al-Asmakh
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar; Biomedical Research Center, Qatar University, Doha, Qatar
| | - Firas Kobeissy
- Department of Neurobiology and Neuroscience, Morehouse School of Medicine, Atlanta, GA, USA
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
38
|
Choubey M, Tirumalasetty MB, Bora NS, Bora PS. Linking Adiponectin and Its Receptors to Age-Related Macular Degeneration (AMD). Biomedicines 2023; 11:3044. [PMID: 38002042 PMCID: PMC10668948 DOI: 10.3390/biomedicines11113044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/26/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, there has been a captivating focus of interest in elucidating the intricate crosstalk between adiponectin (APN), a versatile fat-associated adipokine and ocular pathologies. Unveiling the intricate relationship between adipocytokine APN and its receptors (AdipoRs) with aging eye disorders has emerged as a fascinating frontier in medical research. This review article delves into this connection, illuminating the hidden influence of APN on retinal health. This comprehensive review critically examines the latest findings and breakthroughs that underscore the pivotal roles of APN/AdipoRs signaling in maintaining ocular homeostasis and protecting against eye ailments. Here, we meticulously explore the intriguing mechanisms by which APN protein influences retinal function and overall visual acuity. Drawing from an extensive array of cutting-edge studies, the article highlights APN's multifaceted functions, ranging from anti-inflammatory properties and oxidative stress reduction to angiogenic regulation within retinal and macula tissues. The involvement of APN/AdipoRs in mediating these effects opens up novel avenues for potential therapeutic interventions targeting prevalent aging eye conditions. Moreover, this review unravels the interplay between APN signaling pathways and age-related macular degeneration (AMD). The single-cell RNA-seq results validate the expression of both the receptor isoforms (AdipoR1/R2) in retinal cells. The transcriptomic analysis showed lower expression of AdipoR1/2 in dry AMD pathogenesis compared to healthy subjects. The inhibitory adiponectin peptide (APN1) demonstrated over 75% suppression of CNV, whereas the control peptide did not exert any inhibitory effect on choroidal neovascularization (CNV). The elucidation of these relationships fosters a deeper understanding of adipose tissue's profound influence on ocular health, presenting new prospects for personalized treatments and preventative measures. Because APN1 inhibits CNV and leakage, it can be used to treat human AMD, although the possibility to treat human AMD is in the early stage and more clinical research is needed. In conclusion, this review provides a captivating journey into the enthralling world of APN, intertwining the realms of adipose biology and ophthalmology in aging.
Collapse
Affiliation(s)
- Mayank Choubey
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (M.C.); (M.B.T.)
| | - Munichandra B. Tirumalasetty
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (M.C.); (M.B.T.)
| | - Nalini S. Bora
- Department of Ophthalmology, Jones Eye Institute, Pat & Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR 72205, USA;
| | - Puran S. Bora
- Department of Ophthalmology, Jones Eye Institute, Pat & Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR 72205, USA;
| |
Collapse
|
39
|
Asahara N, Okada-Iwabu M, Iwabu M, Wada K, Oka K, Yamauchi T, Kadowaki T. A monoclonal antibody activating AdipoR for type 2 diabetes and nonalcoholic steatohepatitis. SCIENCE ADVANCES 2023; 9:eadg4216. [PMID: 37948516 PMCID: PMC10637737 DOI: 10.1126/sciadv.adg4216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
Abstract
Adiponectin receptors, AdipoR1 and AdipoR2 are promising targets for the prevention and treatment of metabolic diseases. In this study, we aimed to establish agonistic antibodies against AdipoR1 and AdipoR2 with a long enough half-life to provide a means of improving poor medication adherence associated with preclinical small-molecule AdipoR agonists or existing antidiabetic drugs. Monoclonal antibodies were obtained by immunizing AdipoR knockout mice with human AdipoR-expressing cells. Of the antibodies shown to bind to both, an agonist antibody was obtained, which exhibited adenosine 5'-monophosphate-activated protein kinase-activating properties such as adiponectin and was named AdipoR-activating monoclonal antibody (AdipoRaMab). AdipoRaMab ameliorated glucose intolerance in high-fat diet-fed mice, which was not observed in AdipoR1·AdipoR2 double knockout mice. AdipoRaMab exhibited anti-inflammatory and antifibrotic effects in the nonalcoholic steatohepatitis (NASH) model, indicating its therapeutic potential in diabetes and in NASH. In addition, the results of this study indicated that AdipoRaMab may exert therapeutic effects even in a once-monthly dosing regimen through its humanization.
Collapse
Affiliation(s)
- Naomi Asahara
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Miki Okada-Iwabu
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Laboratory for Advanced Research on Pathophysiology of Metabolic Diseases, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masato Iwabu
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Kouichi Wada
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Shonan Health Innovation Park, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Kozo Oka
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Shonan Health Innovation Park, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Laboratory for Advanced Research on Pathophysiology of Metabolic Diseases, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Laboratory for Advanced Research on Pathophysiology of Metabolic Diseases, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan
| |
Collapse
|
40
|
Ruiz CF, Garcia C, Jacox JB, Lawres L, Muzumdar MD. Decoding the obesity-cancer connection: lessons from preclinical models of pancreatic adenocarcinoma. Life Sci Alliance 2023; 6:e202302228. [PMID: 37648285 PMCID: PMC10474221 DOI: 10.26508/lsa.202302228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
Obesity is a metabolic state of energy excess and a risk factor for over a dozen cancer types. Because of the rising worldwide prevalence of obesity, decoding the mechanisms by which obesity promotes tumor initiation and early progression is a societal imperative and could broadly impact human health. Here, we review results from preclinical models that link obesity to cancer, using pancreatic adenocarcinoma as a paradigmatic example. We discuss how obesity drives cancer development by reprogramming the pretumor or tumor cell and its micro- and macro-environments. Specifically, we describe evidence for (1) altered cellular metabolism, (2) hormone dysregulation, (3) inflammation, and (4) microbial dysbiosis in obesity-driven pancreatic tumorigenesis, denoting variables that confound interpretation of these studies, and highlight remaining gaps in knowledge. Recent advances in preclinical modeling and emerging unbiased analytic approaches will aid in further unraveling the complex link between obesity and cancer, informing novel strategies for prevention, interception, and therapy in pancreatic adenocarcinoma and other obesity-associated cancers.
Collapse
Affiliation(s)
- Christian F Ruiz
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Cathy Garcia
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Jeremy B Jacox
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
- Department of Medicine (Section of Medical Oncology), Yale University School of Medicine, New Haven, CT, USA
| | - Lauren Lawres
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Mandar D Muzumdar
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
- Department of Medicine (Section of Medical Oncology), Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale University, New Haven, CT, USA
| |
Collapse
|
41
|
Rafaqat S. Adipokines and Their Role in Heart Failure: A Literature Review. J Innov Card Rhythm Manag 2023; 14:5657-5669. [PMID: 38058391 PMCID: PMC10697129 DOI: 10.19102/icrm.2023.14111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/12/2023] [Indexed: 12/08/2023] Open
Abstract
Obesity is a major risk factor for heart failure (HF). The relationship between adipokines and HF has been implicated in many previous studies and reviews. However, this review article summarizes the basic role of major adipokines, such as apelin, adiponectin, chemerin, resistin, retinol-binding protein 4 (RBP4), vaspin, visfatin, plasminogen activator inhibitor-1, monocyte chemotactic protein-1, nesfatin-1, progranulin, leptin, omentin-1, lipocalin-2, and follistatin-like 1 (FSTL1), in the pathogenesis of HF. Apelin is reduced in patients with HF and upregulated following favorable left ventricular (LV) remodeling. Higher levels of adiponectin have been found in patients with HF compared to in control patients. Also, high plasma chemerin levels are linked to a higher risk of HF. Serum resistin is related to the severity of HF and associated with a high risk for adverse cardiac events. Evidence indicates that RBP4 can contribute to inflammation and damage heart muscle cells, potentially leading to HF. Vaspin might stop the progression of cardiac degeneration, fibrosis, and HF according to experiments on rats with experimental isoproterenol-induced chronic HF. The serum concentrations of visfatin are significantly lower in patients with systolic HF. Leptin levels were found to be correlated with low LV mass and myocardial stiffness, both of which are significant risk factors for the development of HF with preserved ejection fraction (HFpEF). Measuring serum omentin-1 levels appears to be a novel prognostic indicator for risk stratification in HF patients. Increased expression of neutrophil gelatinase-associated lipocalin in both systemic circulation and myocardium in clinical and experimental HF suggests that innate immune responses may contribute to the development of HF. FSTL1 was elevated in patients with HF with reduced ejection fraction and associated with an increase in the size of the left ventricle of the heart. However, other adipokines, such as plasminogen activator inhibitor-1, monocyte chemotactic protein-1, nesfatin-1, and progranulin, have not yet been studied for HF.
Collapse
Affiliation(s)
- Saira Rafaqat
- Department of Zoology (Molecular Physiology), Lahore College for Women University, Lahore, Pakistan
| |
Collapse
|
42
|
Shakeri F, Mohamadynejad P, Moghanibashi M. Identification of autophagy and angiogenesis modulators in colorectal cancer based on bioinformatics analysis. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:340-355. [PMID: 37791824 DOI: 10.1080/15257770.2023.2259431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/11/2023] [Indexed: 10/05/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer and the fourth leading cause of cancer-related death worldwide. The purpose of this study was to discover novel molecular pathways and potential prognosis biomarkers. To achieve this, we acquired five microarray datasets from the Gene Expression Omnibus (GEO) database. We identified differentially expressed genes between CRC and adjacent normal tissue samples and further validated them using The Cancer Genome Atlas (TCGA) database. Using various analytical approaches, including the construction of a competing endogenous RNA (ceRNA) network, Gene Ontology term and Kyoto Encyclopedia of Genes and Genomes pathway analyses, as well as survival analysis, we identified key genes and pathways associated with the diagnosis and prognosis of CRC. We obtained a total of 185 differentially expressed genes, comprising 17 lncRNAs, 30 miRNAs, and 138 mRNAs. The ceRNA network consisted of 17 lncRNAs, 25 miRNAs, and 7 mRNAs. Among the 7 mRNAs involved in the ceRNA network, SLC7A5 and KRT80 were found to be upregulated, while ADIPOQ, CCBE1, KCNB1, CADM2, and CHRDL1 were downregulated in CRC. Further analysis revealed that ADIPOQ and SLC7A5 are involved in the AMPK and mTOR signaling pathway, respectively. In addition, survival analysis demonstrated a statistically significant relationship between ADIPOQ, SLC7A5, and overall survival rates in CRC patients. In conclusion, our findings suggest that downregulation of ADIPOQ and upregulation of SLC7A5 in tumor cells lead to increased mTORC1 activity, reduced autophagy, enhanced angiogenesis, and ultimately contribute to cancer progression and decreased survival in CRC patients.
Collapse
Affiliation(s)
- Fariba Shakeri
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Parisa Mohamadynejad
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mehdi Moghanibashi
- Department of Genetics, Faculty of Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| |
Collapse
|
43
|
Dhiman D, Kumar A, Shukla S. Association of preoperative serum adipokines, insulin, and sex steroid hormones with breast cancer risk in the Indian women. Indian J Cancer 2023; 60:548-555. [PMID: 38206077 DOI: 10.4103/ijc.ijc_727_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 03/17/2021] [Indexed: 01/12/2024]
Abstract
BACKGROUND Obesity-related factors such as adipokines, insulin, insulin-like growth factors, and sex steroid hormones have been reported to be involved in breast carcinogenesis. Studies across the world suggest an important, but still controversial, role of obesity in breast cancer risk. This study aims to evaluate the association of obesity-related factors such as adipokines, insulin, insulin resistance, and sex steroid hormones with breast cancer risk in the Indian population. MATERIALS AND METHODS Anthropometric and biochemical measurements were taken in 60 newly diagnosed and histologically confirmed breast cancer patients and 50 healthy controls. Preoperative serum levels of adiponectin, leptin, insulin, estrogen, and testosterone were measured using ELISA (enzyme-linked immunosorbent assay). The data were analyzed and compared. RESULTS The mean serum total cholesterol (T.CHOL) and leptin levels were significantly higher ( P = 0.047), whereas testosterone levels were significantly lower in patients than in controls. Waist circumference (WC) and leptin levels showed a significant positive association with breast cancer risk. Association of serum leptin levels with breast cancer risk persisted after adjusting for age, body mass index (BMI), and WC parameters (odds ratio [ OR ] = 1.042, P = 0.03). Leptin levels positively correlated with WC and triglycerides (TG), whereas insulin and insulin resistance positively correlated with BMI, WC, TG, and T.CHOL ( P < 0.05). Among the tumor characteristics, serum adiponectin showed a positive correlation with lymph node involvement, whereas serum estradiol levels were positively correlated with ER (estrogen receptor) and PR (progesterone receptor) status. CONCLUSION Together, our study supports the association of obesity (WC) with breast cancer risk and also suggests the potential role of leptin as a biomarker for breast cancer risk, independent of obesity.
Collapse
Affiliation(s)
- Deepshikha Dhiman
- Lady Hardinge Medical College, New Delhi, India
- Dr. Y.S. Parmar Govt. Medical College, Nahan, Himachal Pradesh, India
| | - Ashish Kumar
- Institute of Biotechnology, HiLIFE, University of Helsinki, Finland
| | | |
Collapse
|
44
|
Kim J, Oh CM, Kim H. The Interplay of Adipokines and Pancreatic Beta Cells in Metabolic Regulation and Diabetes. Biomedicines 2023; 11:2589. [PMID: 37761031 PMCID: PMC10526203 DOI: 10.3390/biomedicines11092589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
The interplay between adipokines and pancreatic beta cells, often referred to as the adipo-insular axis, plays a crucial role in regulating metabolic homeostasis. Adipokines are signaling molecules secreted by adipocytes that have profound effects on several physiological processes. Adipokines such as adiponectin, leptin, resistin, and visfatin influence the function of pancreatic beta cells. The reciprocal communication between adipocytes and beta cells is remarkable. Insulin secreted by beta cells affects adipose tissue metabolism, influencing lipid storage and lipolysis. Conversely, adipokines released from adipocytes can influence beta cell function and survival. Chronic obesity and insulin resistance can lead to the release of excess fatty acids and inflammatory molecules from the adipose tissue, contributing to beta cell dysfunction and apoptosis, which are key factors in developing type 2 diabetes. Understanding the complex interplay of the adipo-insular axis provides insights into the mechanisms underlying metabolic regulation and pathogenesis of metabolic disorders. By elucidating the molecular mediators involved in this interaction, new therapeutic targets and strategies may emerge to reduce the risk and progression of diseases, such as type 2 diabetes and its associated complications. This review summarizes the interactions between adipokines and pancreatic beta cells, and their roles in the pathogenesis of diabetes and metabolic diseases.
Collapse
Affiliation(s)
- Joon Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea;
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea;
| | - Hyeongseok Kim
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35105, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35105, Republic of Korea
| |
Collapse
|
45
|
Seramur ME, Sink S, Cox AO, Furdui CM, Key CCC. ABHD4 regulates adipocyte differentiation in vitro but does not affect adipose tissue lipid metabolism in mice. J Lipid Res 2023; 64:100405. [PMID: 37352974 PMCID: PMC10400869 DOI: 10.1016/j.jlr.2023.100405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/02/2023] [Accepted: 06/10/2023] [Indexed: 06/25/2023] Open
Abstract
Alpha/beta hydrolase domain-containing protein 4 (ABHD4) catalyzes the deacylation of N-acyl phosphatidyl-ethanolamine (NAPE) and lyso-NAPE to produce glycerophospho-N-acyl ethanolamine (GP-NAE). Through a variety of metabolic enzymes, NAPE, lyso-NAPE, and GP-NAE are ultimately converted into NAE, a group of bioactive lipids that control many physiological processes including inflammation, cognition, food intake, and lipolysis (i.e., oleoylethanolamide or OEA). In a diet-induced obese mouse model, adipose tissue Abhd4 gene expression positively correlated with adiposity. However, it is unknown whether Abhd4 is a causal or a reactive gene to obesity. To fill this knowledge gap, we generated an Abhd4 knockout (KO) 3T3-L1 pre-adipocyte. During adipogenic stimulation, Abhd4 KO pre-adipocytes had increased adipogenesis and lipid accumulation, suggesting Abhd4 is responding to (a reactive gene), not contributing to (not a causal gene), adiposity, and may serve as a mechanism for protecting against obesity. However, we did not observe any differences in adiposity and metabolic outcomes between whole-body Abhd4 KO or adipocyte-specific Abhd4 KO mice and their littermate control mice (both male and female) on chow or a high-fat diet. This might be because we found that deletion of Abhd4 did not affect NAE such as OEA production, even though Abhd4 was highly expressed in adipose tissue and correlated with fasting adipose OEA levels and lipolysis. These data suggest that ABHD4 regulates adipocyte differentiation in vitro but does not affect adipose tissue lipid metabolism in mice despite nutrient overload, possibly due to compensation from other NAPE and NAE metabolic enzymes.
Collapse
Affiliation(s)
- Mary E Seramur
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Sandy Sink
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Anderson O Cox
- Wake Forest Baptist Comprehensive Cancer Center Proteomics and Metabolomics Shared Resource, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Chia-Chi Chuang Key
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA.
| |
Collapse
|
46
|
Lin L, Jung KM, Lee HL, Le J, Colleluori G, Wood C, Palese F, Squire E, Ramirez J, Su S, Torrens A, Fotio Y, Tang L, Yu C, Yang Q, Huang L, DiPatrizio N, Jang C, Cinti S, Piomelli D. Adolescent exposure to low-dose THC disrupts energy balance and adipose organ homeostasis in adulthood. Cell Metab 2023; 35:1227-1241.e7. [PMID: 37267956 PMCID: PMC10524841 DOI: 10.1016/j.cmet.2023.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 02/07/2023] [Accepted: 05/05/2023] [Indexed: 06/04/2023]
Abstract
One of cannabis' most iconic effects is the stimulation of hedonic high-calorie eating-the "munchies"-yet habitual cannabis users are, on average, leaner than non-users. We asked whether this phenotype might result from lasting changes in energy balance established during adolescence, when use of the drug often begins. We found that daily low-dose administration of cannabis' intoxicating constituent, Δ9-tetrahydrocannabinol (THC), to adolescent male mice causes an adult metabolic phenotype characterized by reduced fat mass, increased lean mass and utilization of fat as fuel, partial resistance to diet-induced obesity and dyslipidemia, enhanced thermogenesis, and impaired cold- and β-adrenergic receptor-stimulated lipolysis. Further analyses revealed that this phenotype is associated with molecular anomalies in the adipose organ, including ectopic overexpression of muscle-associated proteins and heightened anabolic processing. Thus, adolescent exposure to THC may promote an enduring "pseudo-lean" state that superficially resembles healthy leanness but might in fact be rooted in adipose organ dysfunction.
Collapse
Affiliation(s)
- Lin Lin
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | - Kwang-Mook Jung
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | - Hye-Lim Lee
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | - Johnny Le
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Georgia Colleluori
- Department of Clinical and Experimental Medicine, Center of Obesity, Marche Polytechnic University, Ancona 600126, Italy
| | - Courtney Wood
- Department of Biomedical Sciences, University of California, Riverside, Riverside, CA 92697, USA
| | - Francesca Palese
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | - Erica Squire
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | - Jade Ramirez
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | - Shiqi Su
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | - Alexa Torrens
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | - Yannick Fotio
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | - Lingyi Tang
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Clinton Yu
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Qin Yang
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Nicholas DiPatrizio
- Department of Biomedical Sciences, University of California, Riverside, Riverside, CA 92697, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Saverio Cinti
- Department of Clinical and Experimental Medicine, Center of Obesity, Marche Polytechnic University, Ancona 600126, Italy
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
47
|
Li J, Jin C, Gustafsson S, Rao A, Wabitsch M, Park CY, Quertermous T, Knowles JW, Bielczyk-Maczynska E. Single-cell transcriptome dataset of human and mouse in vitro adipogenesis models. Sci Data 2023; 10:387. [PMID: 37328521 PMCID: PMC10275883 DOI: 10.1038/s41597-023-02293-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023] Open
Abstract
Adipogenesis is a process in which fat-specific progenitor cells (preadipocytes) differentiate into adipocytes that carry out the key metabolic functions of the adipose tissue, including glucose uptake, energy storage, and adipokine secretion. Several cell lines are routinely used to study the molecular regulation of adipogenesis, in particular the immortalized mouse 3T3-L1 line and the primary human Simpson-Golabi-Behmel syndrome (SGBS) line. However, the cell-to-cell variability of transcriptional changes prior to and during adipogenesis in these models is not well understood. Here, we present a single-cell RNA-Sequencing (scRNA-Seq) dataset collected before and during adipogenic differentiation of 3T3-L1 and SGBS cells. To minimize the effects of experimental variation, we mixed 3T3-L1 and SGBS cells and used computational analysis to demultiplex transcriptomes of mouse and human cells. In both models, adipogenesis results in the appearance of three cell clusters, corresponding to preadipocytes, early and mature adipocytes. These data provide a groundwork for comparative studies on these widely used in vitro models of human and mouse adipogenesis, and on cell-to-cell variability during this process.
Collapse
Affiliation(s)
- Jiehan Li
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Christopher Jin
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Stefan Gustafsson
- Clinical Epidemiology Unit, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Abhiram Rao
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Martin Wabitsch
- Department of Pediatrics and Adolescent Medicine, Center for Rare Endocrine Diseases, Division of Pediatric Endocrinology and Diabetes, Ulm University Medical Centre, Ulm, 89075, Germany
| | - Chong Y Park
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Thomas Quertermous
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Joshua W Knowles
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Stanford Prevention Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Ewa Bielczyk-Maczynska
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
48
|
Choubey M, Bora P. Emerging Role of Adiponectin/AdipoRs Signaling in Choroidal Neovascularization, Age-Related Macular Degeneration, and Diabetic Retinopathy. Biomolecules 2023; 13:982. [PMID: 37371562 DOI: 10.3390/biom13060982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/15/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Age-related macular degeneration (AMD), a leading cause of irreversible blindness in adults, may result in poor central vision, making it difficult to see, read, and drive. AMD is generally classified in either dry or wet types. Milder cases of dry AMD may progress to geographic atrophy (GA), leading to significant visual disability; wet, or neovascular AMD, which involves choroidal neovascularization (CNV), can lead to complete loss of central vision. Adiponectin (APN) discovery in the mid-1990's and, subsequently, its two cognate receptors (AdipoRs) in the early 2000s have led to a remarkable progress in better understanding metabolic disorders, as well as metabolism-associated ocular pathology. APN/AdipoRs signaling plays a central role in a variety of molecular and cellular physiological events, including glucose and lipid metabolism, whole-body energy regulation, immune and inflammation responses, insulin sensitivity and retinal cell biological functions. This review is an amalgamation of recent information related to APN/AdipoRs in the pathophysiology of retinal diseases and furthers its association with AMD and diabetic retinopathy. Additionally, we present our original research, where we designed control peptide and CNV inhibitory peptide from the globular region of APN to see the effect of these peptides on the mouse model of laser-induced CNV. The inhibitory peptide (APN1) inhibited CNV by more than 75% while the control peptide did not inhibit CNV.
Collapse
Affiliation(s)
- Mayank Choubey
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY 11501, USA
| | - Puran Bora
- Pat & Willard Walker Eye Research Center, Department of Ophthalmology, Jones Eye Institute, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR 72205, USA
| |
Collapse
|
49
|
Caliskan A, Caliskan D, Rasbach L, Yu W, Dandekar T, Breitenbach T. Optimized cell type signatures revealed from single-cell data by combining principal feature analysis, mutual information, and machine learning. Comput Struct Biotechnol J 2023; 21:3293-3314. [PMID: 37333862 PMCID: PMC10276237 DOI: 10.1016/j.csbj.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023] Open
Abstract
Machine learning techniques are excellent to analyze expression data from single cells. These techniques impact all fields ranging from cell annotation and clustering to signature identification. The presented framework evaluates gene selection sets how far they optimally separate defined phenotypes or cell groups. This innovation overcomes the present limitation to objectively and correctly identify a small gene set of high information content regarding separating phenotypes for which corresponding code scripts are provided. The small but meaningful subset of the original genes (or feature space) facilitates human interpretability of the differences of the phenotypes including those found by machine learning results and may even turn correlations between genes and phenotypes into a causal explanation. For the feature selection task, the principal feature analysis is utilized which reduces redundant information while selecting genes that carry the information for separating the phenotypes. In this context, the presented framework shows explainability of unsupervised learning as it reveals cell-type specific signatures. Apart from a Seurat preprocessing tool and the PFA script, the pipeline uses mutual information to balance accuracy and size of the gene set if desired. A validation part to evaluate the gene selection for their information content regarding the separation of the phenotypes is provided as well, binary and multiclass classification of 3 or 4 groups are studied. Results from different single-cell data are presented. In each, only about ten out of more than 30000 genes are identified as carrying the relevant information. The code is provided in a GitHub repository at https://github.com/AC-PHD/Seurat_PFA_pipeline.
Collapse
|
50
|
Wu G, Baumeister R, Heimbucher T. Molecular Mechanisms of Lipid-Based Metabolic Adaptation Strategies in Response to Cold. Cells 2023; 12:1353. [PMID: 37408188 PMCID: PMC10216534 DOI: 10.3390/cells12101353] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 07/07/2023] Open
Abstract
Temperature changes and periods of detrimental cold occur frequently for many organisms in their natural habitats. Homeothermic animals have evolved metabolic adaptation strategies to increase mitochondrial-based energy expenditure and heat production, largely relying on fat as a fuel source. Alternatively, certain species are able to repress their metabolism during cold periods and enter a state of decreased physiological activity known as torpor. By contrast, poikilotherms, which are unable to maintain their internal temperature, predominantly increase membrane fluidity to diminish cold-related damage from low-temperature stress. However, alterations of molecular pathways and the regulation of lipid-metabolic reprogramming during cold exposure are poorly understood. Here, we review organismal responses that adjust fat metabolism during detrimental cold stress. Cold-related changes in membranes are detected by membrane-bound sensors, which signal to downstream transcriptional effectors, including nuclear hormone receptors of the PPAR (peroxisome proliferator-activated receptor) subfamily. PPARs control lipid metabolic processes, such as fatty acid desaturation, lipid catabolism and mitochondrial-based thermogenesis. Elucidating the underlying molecular mechanisms of cold adaptation may improve beneficial therapeutic cold treatments and could have important implications for medical applications of hypothermia in humans. This includes treatment strategies for hemorrhagic shock, stroke, obesity and cancer.
Collapse
Affiliation(s)
- Gang Wu
- Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Ralf Baumeister
- Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Center for Biochemistry and Molecular Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Thomas Heimbucher
- Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|