1
|
Wang K, Zhang N. miR-634 Mediated Aquaporin 5 Expression Regulates the Inflammatory Response and Apoptosis in Lipopolysaccharide-Induced Human Nasal Epithelial Cells. Cell Biochem Biophys 2025:10.1007/s12013-025-01689-3. [PMID: 39953353 DOI: 10.1007/s12013-025-01689-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 02/17/2025]
Abstract
To investigate the effects and potential mechanism of miR-634 that regulates aquaporin 5 (AQP5) to regulate the inflammatory response and apoptosis in LPS-induced human nasal epithelial cells (HNEpCs). The mRNA expressions of miR-634 and AQP5 in the tissues of patients with chronic rhinosinusitis (CRS) and LPS-induced HNEpCs were detected by qRT-PCR. Western blotting was performed to detect the protein expression of AQP5 in HNEpCs. The apoptosis was assessed by flow cytometry. The cell viability was detected by CCK-8 kit. Combined with bioinformatics analysis, dual-luciferase reporter and western blotting, the interaction between AQP5 and miR-634 were predicted and verified. It proved that the mRNA expression of miR-634 in CRS group was significantly up-regulated, while AQP5 was down-regulated. And the expression of AQP5 in CRS group was down-regulated compared with control group. In vitro experiments indicated that the expression of miR-634 increased gradually, while AQP5 decreased gradually with the increase of LPS concentration. The cell viability was inhibited and apoptosis was promoted in LPS-induced group. In addition, it was found that miR-634 could inhibit cell viability and promote apoptosis. QRT-PCR results implied that miR-634 up-regulated the expression of inflammatory factor-related mRNA in LPS-induced HNEpCs. Combined with bioinformatics analysis and qRT-PCR, it was confirmed that AQP5 was the direct target of miR-634. MiR-634 directly targeted AQP5 to regulate CRS progression, including inhibiting cell viability, promoting apoptosis and aggravating inflammatory response, which may provide theoretical basis for its use as a biomarker for CRS treatment.
Collapse
Affiliation(s)
- Kai Wang
- Department of Otolaryngology, Head and Neck Surgery, Southern University of Science and Technology Hospital, Shenzhen, China.
- Department of Otolaryngology, Head and Neck Surgery, Shenzhen University General Hospital, Shenzhen, China.
| | - Nan Zhang
- Department of Otolaryngology, Head and Neck Surgery, Shenzhen University General Hospital, Shenzhen, China
| |
Collapse
|
2
|
Ameri S, Stang J, Walsted E, Price OJ. Mechanisms and Biomarkers of Exercise-induced Bronchoconstriction: Current Insights and Future Directions. Immunol Allergy Clin North Am 2025; 45:63-75. [PMID: 39608880 DOI: 10.1016/j.iac.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Exercise-induced bronchoconstriction (EIB) refers to temporary lower airway narrowing that occurs during or after vigorous physical exertion, with a high incidence in athletes and individuals with pre-existing asthma. The pathophysiology of EIB is not completely understood, but it is thought to involve a complex interplay among airway epithelial changes, immune responses, and environmental interactions. Phenotypic differences are apparent among those affected by EIB. This clinical review aims to summarize the complex mechanisms underlying EIB, explore the role of biomarkers in the diagnosis and management, and identify current gaps in knowledge to pave the way for future scientific discoveries.
Collapse
Affiliation(s)
- Sammy Ameri
- Department of Respiratory Medicine, Bispebjerg Hospital, Bispebjerg Bakke 23, Building 66, København NV 2400, Denmark.
| | - Julie Stang
- Department of Sports Medicine, Norwegian School of Sport Sciences, Sognsveien 220, Oslo 0863, Norway
| | - Emil Walsted
- Department of Respiratory Medicine, Bispebjerg Hospital, Bispebjerg Bakke 23, Building 66, København NV 2400, Denmark
| | - Oliver J Price
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Department of Respiratory Medicine, Leeds Teaching Hospitals NHS Trust, UK
| |
Collapse
|
3
|
Kemény KK, Kozinszky Z, Altorjay ÁT, Kolcsár B, Surányi A, Ducza E. Effect of Obesity on Aquaporin5 Expression in Human Placental and Uterus Tissues. J Clin Med 2024; 13:4490. [PMID: 39124758 PMCID: PMC11312882 DOI: 10.3390/jcm13154490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Background: Obesity and overweight are also becoming more prevalent among women of childbearing age and pregnant women. In maternal obesity, the activation of metabolic, inflammatory, and oxidative stress pathways is proven, which appears to be a key step in the pathological changes observed in placental and uterine function. Several recent studies have evidenced that aquaporins (AQPs) are critical players in adipose tissue biology and are involved in the onset of obesity. Methods: Our studies aimed to investigate the changes in placental volume and vascularization and measure the AQP5 expression and total antioxidant capacity (TAC) in the placenta and uterus tissues in obese and typical-weight mothers. We also aim to measure the AQP5 plasma concentration. Results: We found AQP5 dominance in the uterus and plasma at 34 weeks of normal pregnancy. The placental volume increased and the vascularization decreased in obese mothers compared to the control. The AQP5 expression increased in the uterus of the obese group and did not change in the placenta. The TAC decreased in the plasma of overweight mothers. Conclusions: We hypothesize that increased AQP5 expression prolongs the length of pregnancy and inhibits the onset of contractions. Based on our findings, we can develop diagnostic tests and provide new targets for tocolytic drug development.
Collapse
Affiliation(s)
- Kata Kira Kemény
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6726 Szeged, Hungary;
| | - Zoltan Kozinszky
- Department of Obstetrics and Gynecology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary; (Z.K.); (Á.T.A.); (B.K.); (A.S.)
- Capio Specialized Center for Gynecology, Solna, 171 45 Stockholm, Sweden
| | - Ábel T. Altorjay
- Department of Obstetrics and Gynecology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary; (Z.K.); (Á.T.A.); (B.K.); (A.S.)
| | - Bálint Kolcsár
- Department of Obstetrics and Gynecology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary; (Z.K.); (Á.T.A.); (B.K.); (A.S.)
| | - Andrea Surányi
- Department of Obstetrics and Gynecology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary; (Z.K.); (Á.T.A.); (B.K.); (A.S.)
| | - Eszter Ducza
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6726 Szeged, Hungary;
| |
Collapse
|
4
|
Edamana S, Login FH, Riishede A, Dam VS, Tramm T, Nejsum LN. The cell polarity protein Scribble is downregulated by the water channel aquaporin-5 in breast cancer cells. Am J Physiol Cell Physiol 2023; 324:C307-C319. [PMID: 36468842 DOI: 10.1152/ajpcell.00311.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Breast carcinomas originate from cells in the terminal duct-lobular unit. Carcinomas are associated with increased cell proliferation and migration, altered cellular adhesion, as well as loss of epithelial polarity. In breast cancer, aberrant and high levels of aquaporin-5 (AQP5) are associated with increased metastasis, poor prognosis, and cancer recurrence. AQP5 increases the proliferation and migration of cancer cells, and ectopic expression of AQP5 in normal epithelial cells reduces cell-cell adhesion and increases cell detachment and dissemination from migrating cell sheets, the latter via AQP5-mediated activation of the Ras pathway. Here, we investigated if AQP5 also affects cellular polarity by examining the relationship between the essential polarity protein Scribble and AQP5. In tissue samples from invasive lobular and ductal carcinomas, the majority of cells with high AQP5 expression displayed low Scribble levels, indicating an inverse relationship. Probing for interactions via a Glutathione S-transferase pull-down experiment revealed that AQP5 and Scribble interacted. Moreover, overexpression of AQP5 in the breast cancer cell line MCF7 reduced both size and circularity of three-dimensional (3-D) spheroids and induced cell detachment and dissemination from migrating cell sheets. In addition, Scribble levels were reduced. An AQP5 mutant cell line, which cannot activate Ras (AQP5S156A) signaling, displayed unchanged spheroid size and circularity and an intermediate level of Scribble, indicating that the effect of AQP5 on Scribble is, at least in part, dependent on AQP5-mediated activation of Ras. Thus, our results suggest that high AQP5 expression negatively regulates the essential polarity protein Scribble and thus, can affect cellular polarity in breast cancer.
Collapse
Affiliation(s)
- Sarannya Edamana
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Frédéric H Login
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Andreas Riishede
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Vibeke S Dam
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Trine Tramm
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Al-Samir S, Yildirim AÖ, Sidhaye VK, King LS, Breves G, Conlon TM, Stoeger C, Gailus-Durner V, Fuchs H, Hrabé de Angelis M, Gros G, Endeward V. Aqp5 -/- mice exhibit reduced maximal body O 2 consumption under cold exposure, normal pulmonary gas exchange, and impaired formation of brown adipose tissue. Am J Physiol Regul Integr Comp Physiol 2023; 324:R109-R119. [PMID: 36409022 DOI: 10.1152/ajpregu.00130.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The fundamental body functions that determine maximal O2 uptake (V̇o2max) have not been studied in Aqp5-/- mice (aquaporin 5, AQP5). We measured V̇o2max to globally assess these functions and then investigated why it was found altered in Aqp5-/- mice. V̇o2max was measured by the Helox technique, which elicits maximal metabolic rate by intense cold exposure of the animals. We found V̇o2max reduced in Aqp5-/- mice by 20%-30% compared with wild-type (WT) mice. As AQP5 has been implicated to act as a membrane channel for respiratory gases, we studied whether this is caused by the known lack of AQP5 in the alveolar epithelial membranes of Aqp5-/- mice. Lung function parameters as well as arterial O2 saturation were normal and identical between Aqp5-/- and WT mice, indicating that AQP5 does not contribute to pulmonary O2 exchange. The cause for the decreased V̇o2max thus might be found in decreased O2 consumption of an intensely O2-consuming peripheral organ such as activated brown adipose tissue (BAT). We found indeed that absence of AQP5 greatly reduces the amount of interscapular BAT formed in response to 4 wk of cold exposure, from 63% in WT to 25% in Aqp5-/- animals. We conclude that lack of AQP5 does not affect pulmonary O2 exchange, but greatly inhibits transformation of white to brown adipose tissue. As under cold exposure, BAT is a major source of the animals' heat production, reduction of BAT likely causes the decrease in V̇o2max under this condition.
Collapse
Affiliation(s)
- Samer Al-Samir
- Zentrum Physiologie, AG Vegetative Physiologie, Medizinische Hochschule, Hannover, Germany
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), München, Germany
| | - Venkataramana K Sidhaye
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Landon S King
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Gerhard Breves
- Institut für Physiologie und Zellbiologie, Tierärztliche Hochschule Hannover, Hannover, Germany
| | - Thomas M Conlon
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), München, Germany
| | - Claudia Stoeger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, GmbH, Neuherberg, Germany
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, GmbH, Neuherberg, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, GmbH, Neuherberg, Germany
| | - Martin Hrabé de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, GmbH, Neuherberg, Germany.,German Center for Diabetes Research, Neuherberg, Germany.,Chair of Experimental Genetics, Technische Universität München School of Life Sciences, Technische Universität München, Freising, Germany
| | - Gerolf Gros
- Zentrum Physiologie, AG Vegetative Physiologie, Medizinische Hochschule, Hannover, Germany
| | - Volker Endeward
- Zentrum Physiologie, AG Vegetative Physiologie, Medizinische Hochschule, Hannover, Germany
| |
Collapse
|
6
|
Wang L, Wang J, Zhu X, Bai C, Song Y. Aquaporins in Respiratory System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:137-144. [PMID: 36717491 DOI: 10.1007/978-981-19-7415-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aquaporins (AQPs) are water channel proteins facilitating fluid transport in alveolar space, airway humidification, pleural fluid absorption, and submucosal gland secretion. In this chapter, we mainly focus on the expression of four AQPs in the lungs, which include AQP1, AQP2, AQP4, and AQP5 in normal and disease status, and the experience of AQPs function from various model and transgenic mice were summarized in detail to improve our understanding of the role of AQPs in fluid balance of respiratory system. It has been suggested that AQPs play important roles in various physiology and pathophysiology conditions of different lung diseases. There still remains unclear the exact role of AQPs in lung diseases, and thus continuous efforts on elucidating the roles of AQPs in lung physiological and pathophysiological processes are warranted.
Collapse
Affiliation(s)
- Linlin Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaodan Zhu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunxue Bai
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China.
- Shanghai Respiratory Research Institute, Shanghai, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- Jinshan Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Dehmel S, Weiss KJ, El-Merhie N, Callegari J, Konrad B, Mutze K, Eickelberg O, Königshoff M, Krauss-Etschmann S. microRNA Expression Profile of Purified Alveolar Epithelial Type II Cells. Genes (Basel) 2022; 13:1420. [PMID: 36011331 PMCID: PMC9407429 DOI: 10.3390/genes13081420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/28/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022] Open
Abstract
Alveolar type II (ATII) cells are essential for the maintenance of the alveolar homeostasis. However, knowledge of the expression of the miRNAs and miRNA-regulated networks which control homeostasis and coordinate diverse functions of murine ATII cells is limited. Therefore, we asked how miRNAs expressed in ATII cells might contribute to the regulation of signaling pathways. We purified "untouched by antibodies" ATII cells using a flow cytometric sorting method with a highly autofluorescent population of lung cells. TaqMan® miRNA low-density arrays were performed on sorted cells and intersected with miRNA profiles of ATII cells isolated according to a previously published protocol. Of 293 miRNAs expressed in both ATII preparations, 111 showed equal abundances. The target mRNAs of bona fide ATII miRNAs were used for pathway enrichment analysis. This analysis identified nine signaling pathways with known functions in fibrosis and/or epithelial-to-mesenchymal transition (EMT). In particular, a subset of 19 miRNAs was found to target 21 components of the TGF-β signaling pathway. Three of these miRNAs (miR-16-5p, -17-5p and -30c-5p) were down-modulated by TGF-β1 stimulation in human A549 cells, and concomitant up-regulation of associated mRNA targets (BMPR2, JUN, RUNX2) was observed. These results suggest an important role for miRNAs in maintaining the homeostasis of the TGF-β signaling pathway in ATII cells under physiological conditions.
Collapse
Affiliation(s)
- Stefan Dehmel
- Institute for Lung Biology and Disease, Ludwig-Maximilians University Hospital Munich, Asklepios Clinic Gauting and Helmholtz Zentrum München, Comprehensive Pneumology Center Munich, Max-Lebsche-Platz 31, 81377 Munich, Germany
- Helmholtz Zentrum München, Department Strategy, Programs, Resources, Helmholtz Zentrum München German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Katharina J. Weiss
- Institute for Lung Biology and Disease, Ludwig-Maximilians University Hospital Munich, Asklepios Clinic Gauting and Helmholtz Zentrum München, Comprehensive Pneumology Center Munich, Max-Lebsche-Platz 31, 81377 Munich, Germany
- Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany
| | - Natalia El-Merhie
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, Member of the German Center for Lung Research (DZL) and the Airway Research Center North (ARCN), 23845 Borstel, Germany
| | - Jens Callegari
- Helmholtz Zentrum Munich, Lung Repair and Regeneration, Comprehensive Pneumology Center, Member of the German Center for Lung Research, 81377 Munich, Germany
- Evangelisches Krankenhaus Bergisch Gladbach, Ferrenbergstraße, 51465 Bergisch Gladbach, Germany
| | - Birte Konrad
- Institute for Lung Biology and Disease, Ludwig-Maximilians University Hospital Munich, Asklepios Clinic Gauting and Helmholtz Zentrum München, Comprehensive Pneumology Center Munich, Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - Kathrin Mutze
- Helmholtz Zentrum Munich, Lung Repair and Regeneration, Comprehensive Pneumology Center, Member of the German Center for Lung Research, 81377 Munich, Germany
| | - Oliver Eickelberg
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Melanie Königshoff
- Helmholtz Zentrum Munich, Lung Repair and Regeneration, Comprehensive Pneumology Center, Member of the German Center for Lung Research, 81377 Munich, Germany
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Susanne Krauss-Etschmann
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, Member of the German Center for Lung Research (DZL) and the Airway Research Center North (ARCN), 23845 Borstel, Germany
- Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| |
Collapse
|
8
|
Flanagan T, Billac GB, Landry AN, Sebastian MN, Cormier SA, Nichols CD. Structure-Activity Relationship Analysis of Psychedelics in a Rat Model of Asthma Reveals the Anti-Inflammatory Pharmacophore. ACS Pharmacol Transl Sci 2021; 4:488-502. [PMID: 33860179 PMCID: PMC8033619 DOI: 10.1021/acsptsci.0c00063] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Indexed: 12/20/2022]
Abstract
Psychedelic drugs can exert potent anti-inflammatory effects. However, anti-inflammatory effects do not appear to correlate with behavioral activity, suggesting different underlying mechanisms. We hypothesized that the distinct structural features of psychedelics underlie functionally selective mechanisms at the target 5-HT2A receptor to elicit maximal anti-inflammatory effects. In order to test this hypothesis, we developed a new rat-based screening platform for allergic asthma. Next, we investigated 21 agonists at the 5-HT2A receptor from the three primary chemotypes (phenylalkylamine, ergoline, and tryptamine) for their ability to prevent airways hyperresponsiveness as a measure of pulmonary inflammation. Furthermore, we assessed each drug for in vitro activation of the canonical signaling pathway, calcium mobilization, from the 5-HT2A receptor. We find that the drug 2,5-dimethoxyphenethylamine (2C-H) represents the pharmacophore for anti-inflammatory activity and identify structural modifications that are either permissive or detrimental to anti-inflammatory activity. Additionally, there is no correlation between the ability of a particular psychedelic to activate intracellular calcium mobilization and to prevent the symptoms of asthma or with behavioral potencies. Our results support the notions that specific structural features mediate functional selectivity underlying anti-inflammatory activity and that relevant receptor activated pathways necessary for anti-inflammatory activity are different from canonical signaling pathways. Our results inform on the nature of interactions between ligands at the 5-HT2A receptor as they relate to anti-inflammatory activity and are crucial for the development of new 5-HT2A receptor agonists for anti-inflammatory therapeutics in the clinic that may be devoid of behavioral activity.
Collapse
Affiliation(s)
- Thomas
W. Flanagan
- Department
of Pharmacology and Experimental Therapeutics, Louisiana Stat University Health Sciences Center, New Orleans, Louisiana 70112, United States
| | - Gerald B. Billac
- Department
of Pharmacology and Experimental Therapeutics, Louisiana Stat University Health Sciences Center, New Orleans, Louisiana 70112, United States
| | - Alexus N. Landry
- Department
of Pharmacology and Experimental Therapeutics, Louisiana Stat University Health Sciences Center, New Orleans, Louisiana 70112, United States
| | - Melaine N. Sebastian
- Department
of Pharmacology and Experimental Therapeutics, Louisiana Stat University Health Sciences Center, New Orleans, Louisiana 70112, United States
| | - Stephania A. Cormier
- Department
of Biological Sciences Louisiana State University, 202 Life Sciences Building, Baton Rouge, Louisiana 70803, United States
| | - Charles D. Nichols
- Department
of Pharmacology and Experimental Therapeutics, Louisiana Stat University Health Sciences Center, New Orleans, Louisiana 70112, United States
| |
Collapse
|
9
|
Wang L, Huo D, Zhu H, Xu Q, Gao C, Chen W, Zhang Y. Deciphering the structure, function, expression and regulation of aquaporin-5 in cancer evolution. Oncol Lett 2021; 21:309. [PMID: 33732385 DOI: 10.3892/ol.2021.12571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/08/2021] [Indexed: 11/06/2022] Open
Abstract
In recent years, the morbidity rate resulting from numerous types of malignant tumor has increased annually, and the treatment of tumors has been attracting an increasing amount of attention. A number of recent studies have revealed that the water channel protein aquaporin-5 (AQP5) has become a major player in multiple types of cancer. AQP5 is abnormally expressed in a variety of tumor tissues or cells and has multiple effects on certain biological functions of tumors, such as regulating the proliferation, apoptosis and migration of tumor cells. It has been suggested that AQP5 may play an important role in the process of tumor development, opening up a new field of tumor research. The present review highlighted the structure of AQP5 and its role in tumor progression. Furthermore, the expression of AQP5 in different malignant neoplasms was summarized. In addition, the influence of not only drugs, but also different compounds on AQP5 were summarized. In conclusion, according to the findings in the present review, AQP5 has potential as a novel therapeutic target in human cancer, and other AQPs should be similarly investigated.
Collapse
Affiliation(s)
- Liping Wang
- Department of Oncology, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Da Huo
- Department of Oncology, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Haiyan Zhu
- Department of Oncology, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Qian Xu
- Department of Oncology, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Chengpeng Gao
- Department of Respiratory, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Wenfeng Chen
- Department of Science and Education, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Yixiang Zhang
- Department of Respiratory, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
10
|
Horie M, Castaldi A, Sunohara M, Wang H, Ji Y, Liu Y, Li F, Wilkinson TA, Hung L, Shen H, Kage H, Offringa IA, Marconett CN, Flodby P, Zhou B, Borok Z. Integrated Single-Cell RNA-Sequencing Analysis of Aquaporin 5-Expressing Mouse Lung Epithelial Cells Identifies GPRC5A as a Novel Validated Type I Cell Surface Marker. Cells 2020; 9:cells9112460. [PMID: 33187367 PMCID: PMC7697677 DOI: 10.3390/cells9112460] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 12/01/2022] Open
Abstract
Molecular and functional characterization of alveolar epithelial type I (AT1) cells has been challenging due to difficulty in isolating sufficient numbers of viable cells. Here we performed single-cell RNA-sequencing (scRNA-seq) of tdTomato+ cells from lungs of AT1 cell-specific Aqp5-Cre-IRES-DsRed (ACID);R26tdTomato reporter mice. Following enzymatic digestion, CD31-CD45-E-cadherin+tdTomato+ cells were subjected to fluorescence-activated cell sorting (FACS) followed by scRNA-seq. Cell identity was confirmed by immunofluorescence using cell type-specific antibodies. After quality control, 92 cells were analyzed. Most cells expressed ‘conventional’ AT1 cell markers (Aqp5, Pdpn, Hopx, Ager), with heterogeneous expression within this population. The remaining cells expressed AT2, club, basal or ciliated cell markers. Integration with public datasets identified three robust AT1 cell- and lung-enriched genes, Ager, Rtkn2 and Gprc5a, that were conserved across species. GPRC5A co-localized with HOPX and was not expressed in AT2 or airway cells in mouse, rat and human lung. GPRC5A co-localized with AQP5 but not pro-SPC or CC10 in mouse lung epithelial cell cytospins. We enriched mouse AT1 cells to perform molecular phenotyping using scRNA-seq. Further characterization of putative AT1 cell-enriched genes revealed GPRC5A as a conserved AT1 cell surface marker that may be useful for AT1 cell isolation.
Collapse
Affiliation(s)
- Masafumi Horie
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (M.H.); (A.C.); (M.S.); (H.W.); (Y.J.); (Y.L.); (H.S.); (P.F.); (B.Z.)
| | - Alessandra Castaldi
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (M.H.); (A.C.); (M.S.); (H.W.); (Y.J.); (Y.L.); (H.S.); (P.F.); (B.Z.)
| | - Mitsuhiro Sunohara
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (M.H.); (A.C.); (M.S.); (H.W.); (Y.J.); (Y.L.); (H.S.); (P.F.); (B.Z.)
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;
- Division for Health Service Promotion, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hongjun Wang
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (M.H.); (A.C.); (M.S.); (H.W.); (Y.J.); (Y.L.); (H.S.); (P.F.); (B.Z.)
| | - Yanbin Ji
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (M.H.); (A.C.); (M.S.); (H.W.); (Y.J.); (Y.L.); (H.S.); (P.F.); (B.Z.)
| | - Yixin Liu
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (M.H.); (A.C.); (M.S.); (H.W.); (Y.J.); (Y.L.); (H.S.); (P.F.); (B.Z.)
| | - Fan Li
- Single-Cell, Sequencing, and CyTOF Core (SC2), Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (F.L.); (T.A.W.); (L.H.)
| | - Thomas A. Wilkinson
- Single-Cell, Sequencing, and CyTOF Core (SC2), Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (F.L.); (T.A.W.); (L.H.)
| | - Long Hung
- Single-Cell, Sequencing, and CyTOF Core (SC2), Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (F.L.); (T.A.W.); (L.H.)
| | - Hua Shen
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (M.H.); (A.C.); (M.S.); (H.W.); (Y.J.); (Y.L.); (H.S.); (P.F.); (B.Z.)
| | - Hidenori Kage
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;
| | - Ite A. Offringa
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (I.A.O.); (C.N.M.)
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Crystal N. Marconett
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (I.A.O.); (C.N.M.)
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Per Flodby
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (M.H.); (A.C.); (M.S.); (H.W.); (Y.J.); (Y.L.); (H.S.); (P.F.); (B.Z.)
| | - Beiyun Zhou
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (M.H.); (A.C.); (M.S.); (H.W.); (Y.J.); (Y.L.); (H.S.); (P.F.); (B.Z.)
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Zea Borok
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (M.H.); (A.C.); (M.S.); (H.W.); (Y.J.); (Y.L.); (H.S.); (P.F.); (B.Z.)
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Correspondence: ; Tel.: +323-409-7184; Fax: +323-226-2738
| |
Collapse
|
11
|
Expression, Distribution and Role of Aquaporins in Various Rhinologic Conditions. Int J Mol Sci 2020; 21:ijms21165853. [PMID: 32824013 PMCID: PMC7461600 DOI: 10.3390/ijms21165853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 01/13/2023] Open
Abstract
Aquaporins (AQPs) are water-specific membrane channel proteins that regulate cellular and organismal water homeostasis. The nose, an organ with important respiratory and olfactory functions, is the first organ exposed to external stimuli. Nose-related topics such as allergic rhinitis (AR) and chronic rhinosinusitis (CRS) have been the subject of extensive research. These studies have reported that mechanisms that drive the development of multiple inflammatory diseases that occur in the nose and contribute to the process of olfactory recognition of compounds entering the nasal cavity involve the action of water channels such as AQPs. In this review, we provide a comprehensive overview of the relationship between AQPs and rhinologic conditions, focusing on the current state of knowledge and mechanisms that link AQPs and rhinologic conditions. Key conclusions include the following: (1) Various AQPs are expressed in both nasal mucosa and olfactory mucosa; (2) the expression of AQPs in these tissues is different in inflammatory diseases such as AR or CRS, as compared with that in normal tissues; (3) the expression of AQPs in CRS differs depending on the presence or absence of nasal polyps; and (4) the expression of AQPs in tissues associated with olfaction is different from that in the respiratory epithelium.
Collapse
|
12
|
Zając D, Russjan E, Kostrzon M, Kaczyńska K. Inhalations with Brine Solution from the 'Wieliczka' Salt Mine Diminish Airway Hyperreactivity and Inflammation in a Murine Model of Non-Atopic Asthma. Int J Mol Sci 2020; 21:E4798. [PMID: 32645931 PMCID: PMC7370210 DOI: 10.3390/ijms21134798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023] Open
Abstract
Inhalations with brine solutions are old but underestimated add-ons to pharmacological treatments of inflammatory lung diseases. Although widely used, not all features underlying their action on the respiratory system have been explored. The aim of the present study was to elucidate the mechanism of the beneficial action of inhalations of brine solution from the 'Wieliczka' Salt Mine, a Polish health resort, in a murine model of non-atopic asthma. Asthma was induced in BALB/c mice by skin sensitization with dinitrofluorobenzene followed by an intratracheal challenge of cognate hapten. All animals underwent 12 inhalation sessions with brine solution, pure water or physiological saline. Control mice were not inhaled. We found that brine inhalations reduced, as compared to non-inhaled mice, the typical asthma-related symptoms, like airway hyperreactivity (AHR), the infiltration of pro-inflammatory cells into the bronchial tree, and the inflammation of the airways at the level of pro-inflammatory cytokines IL-1α, IL-1β and IL-6. The level of the anti-inflammatory IL-10 was elevated in brine-inhaled mice. Inhalations with pure water increased AHR, whereas saline had no influence, either on AHR or cytokine concentrations. These observations indicate that inhalations with a brine solution from the 'Wieliczka' Salt Mine diminish the asthma-related symptoms, mostly by reducing the inflammatory status and by decreasing AHR.
Collapse
Affiliation(s)
- Dominika Zając
- Department of Respiration Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Ewelina Russjan
- Department of Respiration Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | | | - Katarzyna Kaczyńska
- Department of Respiration Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
13
|
Zhang J, Li S, Liu J, Li L, Deng F, Baikeli B, Li L, Ma X, Liu G. Higher expression levels of aquaporin (AQP)1 and AQP5 in the lungs of arid-desert living Lepus yarkandensis. J Anim Physiol Anim Nutr (Berl) 2019; 104:1186-1195. [PMID: 31828851 DOI: 10.1111/jpn.13272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/10/2019] [Accepted: 11/19/2019] [Indexed: 12/01/2022]
Abstract
Water transport across epithelial cells that line the airways and alveoli is a crucial component of lung physiology. Aquaporins (AQPs) facilitate water transport across the air space-capillary barrier in the distal lung. However, the roles of lung AQPs in desert animal adaptation to dry airstream environments are still unclear. A hare (Lepus yarkandensis) only lives in the Tarim Basin, and its living environment is an arid climate with rare precipitation. We studied cellular localization and expression levels of AQP1, AQP3, AQP4 and AQP5 in L. yarkandensis lungs by immunohistochemistry, quantitative real-time polymerase chain reaction and Western blot. The lung of rabbits (Oryctolagus cuniculus) that inhabit in mesic environment was similarly studied. Obtained results in two species of animals were compared to investigate whether AQPs in the lung altered expression in the animal living in arid region. AQP1 was localized to the endothelial cells in capillaries and venules surrounding terminal bronchioles and alveoli. AQP5 was localized to the ciliated columnar cells in terminal bronchioles and the alveolar type I cells in the alveolus. Quantitative real-time PCR analysis showed higher AQP1 and AQP5 mRNA levels in L. yarkandensis compared to O. cuniculus. Similar results were obtained by Western blot. These results revealed that the higher expression levels of AQP1 and AQP5 played a significant role in water transport in the lungs of arid-desert living L. yarkandensis and might accelerate water transport from capillary compartments to the airspace.
Collapse
Affiliation(s)
- Jianping Zhang
- College of Life Science, Tarim University, Alar, China.,Key Lab of Biological Resources Protection and Utilization in Tarim Basin, Tarim University, Alar, China.,Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Shuwei Li
- College of Life Science, Tarim University, Alar, China.,Key Lab of Biological Resources Protection and Utilization in Tarim Basin, Tarim University, Alar, China
| | - Jie Liu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Lexing Li
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Fang Deng
- College of Life Science, Tarim University, Alar, China
| | | | - Linrui Li
- Department of Basic Veterinary Medicine, Key Lab of Swine Genetics and Breeding and Agricultural Animal Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xuanye Ma
- Department of Basic Veterinary Medicine, Key Lab of Swine Genetics and Breeding and Agricultural Animal Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Guoquan Liu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China.,Department of Basic Veterinary Medicine, Key Lab of Swine Genetics and Breeding and Agricultural Animal Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
14
|
Liu SC, Huang CM, Chang YL, Bamodu OA, Yeh CT, Wang HW, Lee FP, Lin CS. Ovatodiolide suppresses inflammatory response in BEAS-2B cells by regulating the CREB/AQP5 pathway, and sensitizes nasopharyngeal carcinoma cells to radiation therapy. Eur J Pharmacol 2019; 859:172548. [PMID: 31323224 DOI: 10.1016/j.ejphar.2019.172548] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022]
Abstract
Due to the radiosensitivity of the airway epithelium, radiation-induced sinusitis or bronchitis is not uncommon, and makes mitigation of resulting inflammatory airway diseases a principal goal of many investigations. This study examined whether Ovatodiolide (Ova) sensitizes the human metastatic nasopharyngeal cancer (NPC) cell line, NPC-BM2, to irradiation using viability, clonogenicity and Western blot assays. Concurrently, we used varying concentrations of histamine and/or Ova to determine the anti-inflammatory potential of Ovatodiolide on normal bronchus epithelial BEAS-2B cells, as well as on the subcellular distribution of Aquaporin 5 (AQP5) and expression levels of p-CREB, AQP5, p38 MAPK, NF-κB, PI3K, Akt and ERK proteins. We demonstrated that Ova in synergism with irradiation inhibited NPC-BM2 cell viability and suppressed their clonogenicity. Immunofluorescence analysis revealed low-dose (≤ 2.5 μM) Ova reversed histamine-induced suppression of AQP5 expression, and abrogated histamine-enhanced NF-κB nuclear translocation, indicating Ova modulates the p38 MAPK/NF-κB signaling pathway and elicits p-CREB/AQP5-mediated antihistamine effects. Similarly, Ova deregulates the PI3K/Akt/ERK signaling in BEAS-2B cells, suggesting its cytoprotective potential. In conclusion, this study highlights the radio-sensitizing anticancer efficacy of Ova in human metastatic NPC cells, as well as its putative cytoprotective role in normal bronchial cells, for airway surface liquid maintenance and homeostasis during or after radiotherapy.
Collapse
Affiliation(s)
- Shao-Cheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei City, 114, Taiwan
| | - Chih-Ming Huang
- Department of Otolaryngology, Taitung Mackay Memorial Hospital, Taiwan
| | - Yung-Lung Chang
- Department of Biochemistry, National Defense Medical Center, Taipei City, 114, Taiwan
| | - Oluwaseun Adebayo Bamodu
- Department of Hematology and Oncology, Cancer Center, Taipei Medical University - Shuang Ho Hospital, New Taipei City, 235, Taiwan; Department of Medical Research & Education, Taipei Medical University - Shuang Ho Hospital, New Taipei City, 235, Taiwan
| | - Chi-Tai Yeh
- Department of Hematology and Oncology, Cancer Center, Taipei Medical University - Shuang Ho Hospital, New Taipei City, 235, Taiwan; Department of Medical Research & Education, Taipei Medical University - Shuang Ho Hospital, New Taipei City, 235, Taiwan
| | - Hsing-Won Wang
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei City, 114, Taiwan; Department of Otolaryngology-Head and Neck Surgery, Taipei Medical University - Shuang Ho Hospital, New Taipei City, 235, Taiwan
| | - Fei-Peng Lee
- Department of Hematology and Oncology, Cancer Center, Taipei Medical University - Shuang Ho Hospital, New Taipei City, 235, Taiwan; Department of Medical Research & Education, Taipei Medical University - Shuang Ho Hospital, New Taipei City, 235, Taiwan
| | - Chun-Shu Lin
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, 114, Taiwan.
| |
Collapse
|
15
|
Ahsan F, Shabbir A, Shahzad M, Mobashar A, Sharif M, Basheer MI, Tareen RB, Syed NIH. Amelioration of allergic asthma by Ziziphora clinopodioides via upregulation of aquaporins and downregulation of IL4 and IL5. Respir Physiol Neurobiol 2019; 266:39-46. [PMID: 31015030 DOI: 10.1016/j.resp.2019.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/29/2019] [Accepted: 04/10/2019] [Indexed: 01/26/2023]
Abstract
Ziziphora clinopodioides has been frequently used as an anti asthmatic plant in traditional medication. Recent work explores the anti-asthmatic activity of Z. clinopodioides in allergen-induced asthmatic mice. Intraperitoneal sensitization followed by intranasal challenge were given with ovalbumin (allergen) to develop allergic asthma. Investigational groups of animals were administered with drug methylprednisolone (MP) (15 mg/kg body weight), n-hexane fraction, ethylacetate fraction, and methanolic extract of Z. clinopodioides extract (500 mg/kg b.w.) for successive 07 days. Hematoxyline and eosin (H&E) and periodic acid-Schiff (PAS) stains were used to evaluate histopathological parameters on lung tissues. As an index of lungs tissues edema, wet/dry weight ratio of lungs was determined. Evaluation of expression levels of AQP1, AQP5, IL4, and IL5 was conducted by using RT-PCR. The data exhibited that both Z. clinopodioides and MP attenuated differential and total leukocyte counts in hematological examination i.e. in BALF and blood. Treatment with Z. clinopodioides also caused suppression of inflammatory cell infiltration and expression levels of IL4 and IL5, the later could have caused attenuation of pulmonary inflammation. The study also found decline in lung wet/dry ratio and goblet cellh hyperplasia in treated groups which indicates amelioration of lung edema. Treatment with Z. clinopodioides significantly increased the expression levels of aquaporin-1 and -5, which could have led to reduction in lung edema. The treatment with MP showed comparable results to Z. clinopodioides. Current investigation revealed that Z. clinopodioides possessed anti-asthmatic property which might be accredited to upregulagted AQP1 and AQP5 levels and downregulated IL4 and IL5 levels.
Collapse
Affiliation(s)
- Fatima Ahsan
- Pharmacology section, Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Arham Shabbir
- Pharmacology section, Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan; Department of Pharmacy, The University of Lahore-Gujrat Campus, Gujrat, Pakistan.
| | - Muhammad Shahzad
- Department of Pharmacology, The University of Health Sciences, Lahore, Pakistan
| | - Aisha Mobashar
- Pharmacology section, Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Marriam Sharif
- Pharmacology section, Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | | | | | | |
Collapse
|
16
|
Riemondy KA, Jansing NL, Jiang P, Redente EF, Gillen AE, Fu R, Miller AJ, Spence JR, Gerber AN, Hesselberth JR, Zemans RL. Single cell RNA sequencing identifies TGFβ as a key regenerative cue following LPS-induced lung injury. JCI Insight 2019; 5:123637. [PMID: 30913038 PMCID: PMC6538357 DOI: 10.1172/jci.insight.123637] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 03/07/2019] [Indexed: 12/12/2022] Open
Abstract
Many lung diseases result from a failure of efficient regeneration of damaged alveolar epithelial cells (AECs) after lung injury. During regeneration, AEC2s proliferate to replace lost cells, after which proliferation halts and some AEC2s transdifferentiate into AEC1s to restore normal alveolar structure and function. Although the mechanisms underlying AEC2 proliferation have been studied, the mechanisms responsible for halting proliferation and inducing transdifferentiation are poorly understood. To identify candidate signaling pathways responsible for halting proliferation and inducing transdifferentiation, we performed single cell RNA sequencing on AEC2s during regeneration in a murine model of lung injury induced by intratracheal LPS. Unsupervised clustering revealed distinct subpopulations of regenerating AEC2s: proliferating, cell cycle arrest, and transdifferentiating. Gene expression analysis of these transitional subpopulations revealed that TGFβ signaling was highly upregulated in the cell cycle arrest subpopulation and relatively downregulated in transdifferentiating cells. In cultured AEC2s, TGFβ was necessary for cell cycle arrest but impeded transdifferentiation. We conclude that during regeneration after LPS-induced lung injury, TGFβ is a critical signal halting AEC2 proliferation but must be inactivated to allow transdifferentiation. This study provides insight into the molecular mechanisms regulating alveolar regeneration and the pathogenesis of diseases resulting from a failure of regeneration.
Collapse
Affiliation(s)
- Kent A. Riemondy
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Nicole L. Jansing
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Peng Jiang
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Elizabeth F. Redente
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Austin E. Gillen
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Rui Fu
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alyssa J. Miller
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason R. Spence
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Anthony N. Gerber
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Jay R. Hesselberth
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Rachel L. Zemans
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colorado, USA
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
17
|
Downregulation of Aquaporins (AQP1 and AQP5) and Na,K-ATPase in Porcine Reproductive and Respiratory Syndrome Virus-Infected Pig Lungs. Inflammation 2018. [PMID: 29532265 DOI: 10.1007/s10753-018-0762-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Aquaporins (AQPs) and Na,K-ATPase control water transport across the air space-capillary barrier in the distal lung and play an important role in the formation and resolution of lung edema. Porcine reproductive and respiratory syndrome virus (PRRSV) infection usually causes pulmonary inflammation and edema in the infected pig lungs. To investigate the possibility that PRRSV infection may cause altered expression of AQPs and Na,K-ATPase messenger RNA (mRNA) levels and protein expression of AQP1, AQP5, and Na,K-ATPase in the PRRSV-infected pig lungs were detected. Quantitative real-time PCR (qRT-PCR) analysis showed markedly decreased mRNA levels of AQP1 and AQP5 and Na,K-ATPase in the PRRSV-infected pig lungs compared to those of uninfected pig lungs. Western blot studies also revealed significantly reduced levels of AQP1, AQP5, and Na,K-ATPase proteins in the PRRSV-infected pig lungs. In addition, immunohistochemical (IHC) analysis showed decreased protein expression of AQP1 and AQP5 in the endothelial cells of the capillaries and venules and secretory cells of terminal bronchiole and the alveolar type I cells, respectively. The expression of Na,K-ATPase in the basolateral membrane of alveolar type II cells presented great reduction in the PRRSV-infected pig lungs. To further understand the reduction of these proteins, the ubiquitination of AQP1 and Na,K-ATPase was examined in uninfected and PRRSV-infected pig lungs. The results showed that there is no difference of ubiquitination for these proteins. Thus, our results suggest that PRRSV infection may induce downregulation of these proteins and cause impairment of edema resolution by failed water clearance in the infected pig lungs.
Collapse
|
18
|
Aquaporins in Respiratory System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 969:115-122. [PMID: 28258569 DOI: 10.1007/978-94-024-1057-0_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Aquaporins (AQPs ) are water channel proteins supposed to facilitating fluid transport in alveolar space, airway humidification, pleural fluid absorption, and submucosal gland secretion . In this chapter, we mainly focus on the expression of 4 AQPs in the lungs which include AQP1, AQP2 , AQP4 and AQP5 in normal and disease status, and the experience of AQPs function from various model and transgenic mice were summarized in detail to improve our understanding of the role of AQPs in fluid balance of respiratory system. It has been suggested that AQPs play important roles in various physiology and pathophysiology conditions of different lung diseases. There still remains unclear the exact role of AQPs in lung diseases, and thus continuous efforts on elucidating the roles of AQPs in lung physiological and pathophysilogical processes are warranted.
Collapse
|
19
|
Zhen G, Upur H, Jing W, Jing J, Zheng L, Dan X, Fengsen L. Effect of Abnormal Savda Munziq, a Traditional Uighur Herbal Medicine, on Pulmonary Function and Aquaporins of COPD Rat Model with Abnormal Savda Syndrome. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:7176263. [PMID: 28630635 PMCID: PMC5467312 DOI: 10.1155/2017/7176263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/16/2017] [Accepted: 04/09/2017] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To investigate the effect of abnormal savda munziq (ASM) on the pulmonary function and expression of lung-specific aquaporins in the rat model of chronic obstructive pulmonary disease with abnormal savda syndrome (ASSCOPD). METHODS Eighty male rats were randomized into ASSCOPD, COPD, and control groups. ASSCOPD was further categorized into ASM and non-ASM groups. COPD model was established by combining fumigation with airway instillation of elastase; ASSCOPD model was developed based on COPD by induction with dry cold diet, cold dry environment, and plantar electric stimulation. ASM was administered twice daily. The pulmonary function was evaluated based on respiration. The mRNA and protein levels of AQPs were estimated by real-time PCR and Western blot, respectively. RESULTS MV, TV, the mRNA level of AQP5, and the protein expression of AQP1, AQP4, and AQP5 were increased in ASMCOPD compared to ASSCOPD. CONCLUSION The pulmonary function was impaired in ASSCOPD group; the expression of AQP1, AQP4, and AQP5 was decreased at protein and mRNA levels in ASSCOPD group. ASM can improve the pulmonary function in ASSCOPD for MV and TV. ASM could elevate the protein expression of AQP1, AQP4, and AQP5 and the mRNA level of AQP5 in lung tissue.
Collapse
Affiliation(s)
- Gao Zhen
- National Clinical Research Base of Traditional Chinese Medicine, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China
| | - Halmurat Upur
- National Clinical Research Base of Traditional Chinese Medicine, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China
| | - Wang Jing
- National Clinical Research Base of Traditional Chinese Medicine, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China
| | - Jing Jing
- National Clinical Research Base of Traditional Chinese Medicine, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China
| | - Li Zheng
- National Clinical Research Base of Traditional Chinese Medicine, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China
| | - Xu Dan
- National Clinical Research Base of Traditional Chinese Medicine, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China
| | - Li Fengsen
- National Clinical Research Base of Traditional Chinese Medicine, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China
| |
Collapse
|
20
|
Indoxyl Sulfate as a Mediator Involved in Dysregulation of Pulmonary Aquaporin-5 in Acute Lung Injury Caused by Acute Kidney Injury. Int J Mol Sci 2016; 18:ijms18010011. [PMID: 28025487 PMCID: PMC5297646 DOI: 10.3390/ijms18010011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/10/2016] [Accepted: 12/12/2016] [Indexed: 01/11/2023] Open
Abstract
High mortality of acute kidney injury (AKI) is associated with acute lung injury (ALI), which is a typical complication of AKI. Although it is suggested that dysregulation of lung salt and water channels following AKI plays a pivotal role in ALI, the mechanism of its dysregulation has not been elucidated. Here, we examined the involvement of a typical oxidative stress-inducing uremic toxin, indoxyl sulfate (IS), in the dysregulation of the pulmonary predominant water channel, aquaporin 5 (AQP-5), in bilateral nephrectomy (BNx)-induced AKI model rats. BNx evoked AKI with the increases in serum creatinine (SCr), blood urea nitrogen (BUN) and serum IS levels and exhibited thickening of interstitial tissue in the lung. Administration of AST-120, clinically-used oral spherical adsorptive carbon beads, resulted in a significant decrease in serum IS level and thickening of interstitial tissue, which was accompanied with the decreases in IS accumulation in various tissues, especially lung. Interestingly, a significant decrease in AQP-5 expression of lung was observed in BNx rats. Moreover, the BNx-induced decrease in pulmonary AQP-5 protein expression was markedly restored by oral administration of AST-120. These results suggest that BNx-induced AKI causes dysregulation of pulmonary AQP-5 expression, in which IS could play a toxico-physiological role as a mediator involved in renopulmonary crosstalk.
Collapse
|
21
|
Rump K, Unterberg M, Bergmann L, Bankfalvi A, Menon A, Schäfer S, Scherag A, Bazzi Z, Siffert W, Peters J, Adamzik M. AQP5-1364A/C polymorphism and the AQP5 expression influence sepsis survival and immune cell migration: a prospective laboratory and patient study. J Transl Med 2016; 14:321. [PMID: 27871297 PMCID: PMC5117689 DOI: 10.1186/s12967-016-1079-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 11/08/2016] [Indexed: 12/12/2022] Open
Abstract
Background The C-allele of the aquaporin (AQP5) -1364A/C polymorphism is associated with decreased AQP5 expression but increased 30-day survival in patients with severe sepsis. AQP5 expression might affect survival via an impact on cell migration. Consequently, we tested the hypothesis that (1) Aqp5 knockout (KO) compared to wild type (WT) mice show an increased survival following lipopolysaccharide (LPS) administration, and that (2) AQP5 expression and the AQP5 -1364A/C polymorphism alters immune cell migration. Methods We investigated Aqp5-KO and wild type mice after intraperitoneal injection of either E.coli lipopolysaccharide (LPS, serotype O127:B8, 20 mg/kg) or saline. Furthermore, neutrophils of volunteers with the AA-AQP5 or AC/CC-AQP5- genotype were incubated with 10−8 M Chemotactic peptide (fMLP) and their migration was assessed by a filter migration assay. Additionally, AQP5 expression after fMLP incubation was analyzed by RT-PCR and Western blot. Moreover, migration of AQP5 overexpressing Jurkat cells was studied after SDF-1α-stimulation. We used exact Wilcoxon–Mann–Whitney tests; exact Wilcoxon signed-rank tests and the Kaplan–Meier estimator for statistical analysis. Results Fifty-six percent of Aqp5-KO but only 22% of WT mice survived following LPS-injection. WT mice showed increased neutrophil migration into peritoneum and lung compared to Aqp5-KO mice. Target-oriented migration of neutrophils was seen after 0.5 h in AA-genotype cells but only after 1.5 h in AC/CC-genotype cells, with a threefold lower migrating cell count. AQP5 overexpressing Jurkat cells showed a 2.4 times stronger migration compared to native Jurkat cells. Conclusion The AQP5 genotype may influence survival following LPS by altering neutrophil cell migration. Trial registration DRKS00010437. Retrospectively registered 26 April 2016 Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-1079-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katharina Rump
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum-Langendreer, In der Schornau 55, 45882, Bochum, Germany. .,Institut für Pharmakogenetik, Universität Duisburg-Essen, Duisburg, Germany. .,Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum and Universität Duisburg-Essen, Essen, Germany.
| | - Matthias Unterberg
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum-Langendreer, In der Schornau 55, 45882, Bochum, Germany
| | - Lars Bergmann
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum-Langendreer, In der Schornau 55, 45882, Bochum, Germany
| | - Agnes Bankfalvi
- Institut für Pathologie, Universitätsklinikum and Universität Duisburg-Essen, Essen, Germany
| | - Anil Menon
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, OH, USA
| | - Simon Schäfer
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum and Universität Duisburg-Essen, Essen, Germany.,Klinik für Anästhesiologie, LMU, Munich, Germany
| | - André Scherag
- Clinical Epidemiology, Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Zainab Bazzi
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum-Langendreer, In der Schornau 55, 45882, Bochum, Germany
| | - Winfried Siffert
- Institut für Pharmakogenetik, Universität Duisburg-Essen, Duisburg, Germany
| | - Jürgen Peters
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum and Universität Duisburg-Essen, Essen, Germany
| | - Michael Adamzik
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum-Langendreer, In der Schornau 55, 45882, Bochum, Germany.,Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum and Universität Duisburg-Essen, Essen, Germany
| |
Collapse
|
22
|
Rana S, Shahzad M, Shabbir A. Pistacia integerrima ameliorates airway inflammation by attenuation of TNF-α, IL-4, and IL-5 expression levels, and pulmonary edema by elevation of AQP1 and AQP5 expression levels in mouse model of ovalbumin-induced allergic asthma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:838-845. [PMID: 27288919 DOI: 10.1016/j.phymed.2016.04.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 02/11/2016] [Accepted: 04/24/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Natural products are considered as an essential source for the search of new drugs. Pistacia integerrima galls (PI) have been used for the treatment of asthma and cough in traditional system of medicine. AIM/HYPOTHESIS Current study investigates the immunomodulatory and anti-inflammatory activities of P. integerrima in mouse model of ovalbumin-induced allergic asthma. METHODS Mice were intraperitoneally sensitized and subsequently challenged intranasally with ovalbumin to induce allergic asthma. Experimental group mice were treated with methanol extract of P. integerrima extract (200mg/kg b. w.) and Methylprednisolone (MP) (15mg/kg b. w.) for 07 consecutive days, alongside intranasal challenge. Lung tissues were stained with Hematoxyline and Eosin (H & E), and Periodic Acid-Schiff (PAS) stains for histopathological evaluation. Lung wet/dry weight ratio was measured as an index of lung tissue edema. Albumin was injected in the right ear 24h before sacrificing the mice and difference of weight was taken as a degree of delayed type hypersensitivity (DTH). mRNA expression levels of TNF-α, IL-4, IL-5, Aquaporin-1 (AQP1), and AQP5 were evaluated using reverse transcription polymerase chain reaction (RT-PCR) followed by gel electrophoresis. RESULTS The data showed both PI extract and MP significantly alleviated DTH and nearly normalized total leukocyte count and differential leukocyte count in both blood and BALF. We found significantly suppressed goblet cell hyperplasia and inflammatory cell infiltration after treatment with both PI extract and MP. Expression levels of TNF-α, IL-4, and IL-5 were also found significantly reduced after treatment with both PI extract and MP, which might have resulted in the amelioration of airway inflammation. Current study displayed that both PI extract and MP significantly decreased lung wet/dry ratio, suggesting reduction in pulmonary edema. RT-PCR analysis showed significant increase in AQP1 and AQP5 expression levels after treatment with both PI extract and MP, which might have caused the alleviation of pulmonary edema. CONCLUSION Our study displays that P. integerrima possesses significant anti-asthmatic activity which may be attributed to reduction in TNF-α, IL-4, and IL-5 expression levels, and increase in AQP1 and AQP5 expression levels.
Collapse
Affiliation(s)
- Shazana Rana
- Department of Pharmacology, University of Health Sciences, Lahore, Pakistan
| | - Muhammad Shahzad
- Department of Pharmacology, University of Health Sciences, Lahore, Pakistan.
| | - Arham Shabbir
- Department of Pharmacology, University of Health Sciences, Lahore, Pakistan
| |
Collapse
|
23
|
Rump K, Siffert W, Peters J, Adamzik M. The Transcription Factor NMP4 Binds to the AQP5 Promoter and Is a Novel Transcriptional Regulator of the AQP5 Gene. DNA Cell Biol 2016; 35:322-7. [PMID: 27058007 DOI: 10.1089/dna.2015.3110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aquaporin 5 (AQP5) is a water channel that regulates water transport, cell migration, and proliferation. Therefore, knowledge of its genetic regulation could be relevant to study these mechanisms. The AQP5 promoter region containing the AQP5-1364 A/C single-nucleotide polymorphism (SNP) might be an important regulatory region because the SNP is associated with the etiopathology of several diseases. The aim of this study was to identify a transcription factor that binds to this AQP5 promoter region and to investigate its potential impact upon AQP5 expression. In silico analysis revealed nuclear matrix protein 4 (NMP4) as a putative candidate. Electrophoretic mobility shift assays showed specific binding of NMP4 to the AQP5 promoter region of nt -1370 to nt -1329. Overexpression of NMP4 increased AQP5 promoter activity of the analyzed promoter constructs from nt -469 to nt -1979. Furthermore, an additional NMP4 binding site at position nt -592/nt -602 of the AQP5 promoter was identified. NMP4 overexpression increased AQP5 mRNA expression by 2.5-fold in HEK293 cells. Summarizing, we identified NMP4 as a novel transcriptional regulator of AQP5 expression, which binds to two AQP5 promoter regions. Both regions appear to impact AQP5 expression significantly.
Collapse
Affiliation(s)
- Katharina Rump
- 1 Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum-Langendreer der Ruhr-Universität Bochum , Bochum, Germany .,2 Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen , Essen, Germany .,3 Institut für Pharmakogenetik, Universität Duisburg-Essen, Universitätsklinikum Essen , Essen, Germany
| | - Winfried Siffert
- 3 Institut für Pharmakogenetik, Universität Duisburg-Essen, Universitätsklinikum Essen , Essen, Germany
| | - Jürgen Peters
- 2 Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen , Essen, Germany
| | - Michael Adamzik
- 1 Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum-Langendreer der Ruhr-Universität Bochum , Bochum, Germany .,2 Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen , Essen, Germany
| |
Collapse
|
24
|
Vukićević T, Schulz M, Faust D, Klussmann E. The Trafficking of the Water Channel Aquaporin-2 in Renal Principal Cells-a Potential Target for Pharmacological Intervention in Cardiovascular Diseases. Front Pharmacol 2016; 7:23. [PMID: 26903868 PMCID: PMC4749865 DOI: 10.3389/fphar.2016.00023] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/25/2016] [Indexed: 01/13/2023] Open
Abstract
Arginine-vasopressin (AVP) stimulates the redistribution of water channels, aquaporin-2 (AQP2) from intracellular vesicles into the plasma membrane of renal collecting duct principal cells. By this AVP directs 10% of the water reabsorption from the 170 L of primary urine that the human kidneys produce each day. This review discusses molecular mechanisms underlying the AVP-induced redistribution of AQP2; in particular, it provides an overview over the proteins participating in the control of its localization. Defects preventing the insertion of AQP2 into the plasma membrane cause diabetes insipidus. The disease can be acquired or inherited, and is characterized by polyuria and polydipsia. Vice versa, up-regulation of the system causing a predominant localization of AQP2 in the plasma membrane leads to excessive water retention and hyponatremia as in the syndrome of inappropriate antidiuretic hormone secretion (SIADH), late stage heart failure or liver cirrhosis. This article briefly summarizes the currently available pharmacotherapies for the treatment of such water balance disorders, and discusses the value of newly identified mechanisms controlling AQP2 for developing novel pharmacological strategies. Innovative concepts for the therapy of water balance disorders are required as there is a medical need due to the lack of causal treatments.
Collapse
Affiliation(s)
- Tanja Vukićević
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association Berlin, Germany
| | - Maike Schulz
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association Berlin, Germany
| | - Dörte Faust
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association Berlin, Germany
| | - Enno Klussmann
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz AssociationBerlin, Germany; German Centre for Cardiovascular ResearchBerlin, Germany
| |
Collapse
|
25
|
Physiological role of aquaporin 5 in salivary glands. Pflugers Arch 2015; 468:519-39. [DOI: 10.1007/s00424-015-1749-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 12/18/2022]
|
26
|
Zhang J, Gong L, Hasan B, Wang J, Luo J, Ma H, Li F. Use of aquaporins 1 and 5 levels as a diagnostic marker in mild-to-moderate adult-onset asthma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:14206-14213. [PMID: 26823734 PMCID: PMC4713520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 10/23/2015] [Indexed: 06/05/2023]
Abstract
Characteristic features of asthma include airway inflammation and hyperactivity, mucus hypersecretion, mucosal edema, and airway remodeling. These features could be due to pathological water transport across pulmonary epithelia and aquaporins (AQPs) have recently been isolated as key proteins in fluid transportation in the human respiratory tract. We aimed to evaluate the role of aquaporins in the pathogenesis of asthma and their possible use a diagnostic marker of the disease. A total of 110 hospitalized and outpatients with mild to moderate adult-onset asthma were invited to participate in this study and 34 submitted an induced sputum sample adequate for analysis. The amount of AQP1, AQP5 and MUC5AC were measured with ELISA assay. The amount of IL-2, IL-4, IL-6, IL-10, TNF-α, IFN-γ and IL-17 in both serum and sputum were measured with Cytometry Bead Array (CBA kit). Our results suggest that sputum AQP5, AQP1 and MUC5AC are all in a good correlation (r=0.498 between AQP5 and AQP1, r=0.529 and r=0.661 between MUC5AC and AQP5 or AQP1, respectively, all P<0.05). The AUC value for AQP1 and AQP5 to diagnose asthma were 0.729 and 0.745, respectively. In conclusion, water homeostasis plays an important role in maintaining adequate fluid transportation within the lung and is involved in the pathogenesis of asthma. Our results suggest that AQP may influence pulmonary physiology that their dysfunction can contribute to pulmonary pathogenesis, such as asthma. Moreover, their quantification could serve as biomarkers for the diagnosis of asthma.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Respiratory Medicine, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical UniversityUrumqi 830000, China
| | - Li Gong
- Department of Respiratory Medicine, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical UniversityUrumqi 830000, China
| | - Bilal Hasan
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical UniversityUrumqi 830000, China
| | - Jing Wang
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical UniversityUrumqi 830000, China
| | - Jianjiang Luo
- Department of Respiratory Medicine, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical UniversityUrumqi 830000, China
| | - Huan Ma
- Department of Respiratory Medicine, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical UniversityUrumqi 830000, China
| | - Fengsen Li
- Department of Respiratory Medicine, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical UniversityUrumqi 830000, China
| |
Collapse
|
27
|
Chen LY. Computing membrane-AQP5-phosphatidylserine binding affinities with hybrid steered molecular dynamics approach. Mol Membr Biol 2015; 32:19-25. [PMID: 25955791 DOI: 10.3109/09687688.2015.1006275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In order to elucidate how phosphatidylserine (PS6) interacts with AQP5 in a cell membrane, we developed a hybrid steered molecular dynamics (hSMD) method that involved: (1) Simultaneously steering two centers of mass of two selected segments of the ligand, and (2) equilibrating the ligand-protein complex with and without biasing the system. Validating hSMD, we first studied vascular endothelial growth factor receptor 1 (VEGFR1) in complex with N-(4-Chlorophenyl)-2-((pyridin-4-ylmethyl)amino)benzamide (8ST), for which the binding energy is known from in vitro experiments. In this study, our computed binding energy well agreed with the experimental value. Knowing the accuracy of this hSMD method, we applied it to the AQP5-lipid-bilayer system to answer an outstanding question relevant to AQP5's physiological function: Will the PS6, a lipid having a single long hydrocarbon tail that was found in the central pore of the AQP5 tetramer crystal, actually bind to and inhibit AQP5's central pore under near-physiological conditions, namely, when AQP5 tetramer is embedded in a lipid bilayer? We found, in silico, using the CHARMM 36 force field, that binding PS6 to AQP5 was a factor of 3 million weaker than "binding" it in the lipid bilayer. This suggests that AQP5's central pore will not be inhibited by PS6 or a similar lipid in a physiological environment.
Collapse
Affiliation(s)
- Liao Y Chen
- Department of Physics, University of Texas at San Antonio , One UTSA Circle, San Antonio, Texas , USA
| |
Collapse
|
28
|
Wang W, Wang X, Ma L, Zhang R. Histamine downregulates aquaporin 5 in human nasal epithelial cells. Am J Rhinol Allergy 2015; 29:188-92. [PMID: 25781725 DOI: 10.2500/ajra.2015.29.4181] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Aquaporin 5 (AQP5) is a water-specific channel protein. It is thought to be a key participant in fluid secretion and a rate-limiting barrier to the secretion seen during allergic inflammation. We sought to determine the effect of histamine on AQP5 expression in human nasal epithelial cells (HNEpC). METHODS HNEpC cells were cultured with four concentrations of histamine in vitro. The phosphorylation of cyclic adenosine monophosphate-responsive element binding protein (CREB) at serine 133 and the AQP5 protein were measured by using immunocytochemistry and Western blotting. Real-time polymerase chain reaction was used to detect AQP5 messenger ribonucleic acid (mRNA). RESULTS Concentration-dependent histamine induced-inhibition of CREB phosphorylation at serine 133 in HNEpC cells was observed, and AQP5 mRNA and protein were also downregulated in a concentration-dependent fashion. CONCLUSION Histamine downregulates AQP5 production in HNEpC cells by inhibiting CREB phosphorylation at serine 133.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Anatomy, Schools of Medicine and Nursing Sciences, Huzhou University, China
| | | | | | | |
Collapse
|
29
|
Ricanek P, Lunde LK, Frye SA, Støen M, Nygård S, Morth JP, Rydning A, Vatn MH, Amiry-Moghaddam M, Tønjum T. Reduced expression of aquaporins in human intestinal mucosa in early stage inflammatory bowel disease. Clin Exp Gastroenterol 2015; 8:49-67. [PMID: 25624769 PMCID: PMC4296881 DOI: 10.2147/ceg.s70119] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objectives The aim of this study was to investigate the relationship between aquaporin (AQP) water channel expression and the pathological features of early untreated inflammatory bowel disease (IBD) in humans. Methods Patients suspected to have IBD on the basis of predefined symptoms, including abdominal pain, diarrhea, and/or blood in stool for more than 10 days, were examined at the local hospital. Colonoscopy with biopsies was performed and blood samples were taken. Patients who did not meet the diagnostic criteria for IBD and who displayed no evidence of infection or other pathology in the gut were included as symptomatic non-IBD controls. AQP1, 3, 4, 5, 7, 8, and 9 messenger RNA (mRNA) levels were quantified in biopsies from the distal ileum and colon by quantitative real-time polymerase chain reaction. Protein expression of selected AQPs was assessed by confocal microscopy. Through multiple alignments of the deduced amino acid sequences, the putative three-dimensional structures of AQP1, 3, 7, and 8 were modeled. Results AQP1, 3, 7, and 8 mRNAs were detected in all parts of the intestinal mucosa. Notably, AQP1 and AQP3 mRNA levels were reduced in the ileum of patients with Crohn’s disease, and AQP7 and AQP8 mRNA levels were reduced in the ileum and the colon of patients with ulcerative colitis. Immunofluorescence confocal microscopy showed localization of AQP3, 7, and 8 at the mucosal epithelium, whereas the expression of AQP1 was mainly confined to the endothelial cells and erythrocytes. The reduction in the level of AQP3, 7, and 8 mRNA was confirmed by immunofluorescence, which also indicated a reduction of apical immunolabeling for AQP8 in the colonic surface epithelium and crypts of the IBD samples. This could indicate loss of epithelial polarity in IBD, leading to disrupted barrier function. Conclusion AQPs 1 and 8 and the aquaglyceroporins AQPs 3 and 7 are the AQPs predominantly expressed in the lower intestinal tract of humans. Their expression is significantly reduced in patients with IBD, and they are differentially expressed in specific bowel segments in patients with Crohn’s disease and ulcerative colitis. The data present a link between gut inflammation and water/solute homeostasis, suggesting that AQPs may play a significant role in IBD pathophysiology.
Collapse
Affiliation(s)
- Petr Ricanek
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway ; Department of Gastroenterology, Akershus University Hospital, Lørenskog and Campus Ahus, Institute of Clinical Medicine, University of Oslo, Lørenskog, Norway
| | - Lisa K Lunde
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Stephan A Frye
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Mari Støen
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Ståle Nygård
- Bioinformatics Core Facility, Institute for Medical Informatics, Oslo University Hospital and University of Oslo, Norway
| | - Jens P Morth
- Centre for Molecular Medicine, Nordic EMBL Partnership, University of Oslo, Norway ; Institute for Experimental Research, Oslo University Hospital (Ullevaal), Oslo, Norway
| | - Andreas Rydning
- Department of Gastroenterology, Akershus University Hospital, Lørenskog and Campus Ahus, Institute of Clinical Medicine, University of Oslo, Lørenskog, Norway
| | - Morten H Vatn
- EpiGen Institute, Campus Ahus, Institute of Clinical Medicine, University of Oslo, Lørenskog, Norway ; Section of Gastroenterology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | | | - Tone Tønjum
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway ; Department of Microbiology, University of Oslo, Oslo, Norway
| |
Collapse
|
30
|
Kaisani A, Delgado O, Fasciani G, Kim SB, Wright WE, Minna JD, Shay JW. Branching morphogenesis of immortalized human bronchial epithelial cells in three-dimensional culture. Differentiation 2014; 87:119-26. [PMID: 24830354 DOI: 10.1016/j.diff.2014.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 02/06/2014] [Accepted: 02/06/2014] [Indexed: 10/25/2022]
Abstract
While mouse models have contributed in our understanding of lung development, repair and regeneration, inherent differences between the murine and human airways requires the development of new models using human airway epithelial cells. In this study, we describe a three-dimensional model system using human bronchial epithelial cells (HBECs) cultured on reconstituted basement membrane. HBECs form complex budding and branching structures on reconstituted basement membrane when co-cultured with human lung fetal fibroblasts. These structures are reminiscent of the branching epithelia during lung development. The HBECs also retain markers indicative of epithelial cell types from both the central and distal airways suggesting their multipotent potential. In addition, we illustrate how the model can be utilized to understand respiratory diseases such as lung cancer. The 3D novel cell culture system recapitulates stromal-epithelial interactions in vitro that can be utilized to understand important aspects of lung development and diseases.
Collapse
Affiliation(s)
- Aadil Kaisani
- Department of Cell Biology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Oliver Delgado
- Department of Cell Biology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Gail Fasciani
- Department of Cell Biology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Sang Bum Kim
- Department of Cell Biology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Woodring E Wright
- Department of Cell Biology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - John D Minna
- Hamon Center for Therapeutic Oncology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA; Department of Internal Medicine, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA; Department of Pharmacology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Jerry W Shay
- Department of Cell Biology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA; Center for Excellence in Genomics Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
31
|
Jin Y, Yu G, Peng P, Zhang Y, Xin X. Down-regulated expression of AQP5 on lung in rat DIC model induced by LPS and its effect on the development of pulmonary edema. Pulm Pharmacol Ther 2013; 26:661-5. [DOI: 10.1016/j.pupt.2013.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 03/13/2013] [Accepted: 03/18/2013] [Indexed: 11/29/2022]
|
32
|
Cataldi M, Sblendorio V, Leo A, Piazza O. Biofilm-dependent airway infections: a role for ambroxol? Pulm Pharmacol Ther 2013; 28:98-108. [PMID: 24252805 DOI: 10.1016/j.pupt.2013.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/31/2013] [Accepted: 11/11/2013] [Indexed: 11/16/2022]
Abstract
Biofilms are a key factor in the development of both acute and chronic airway infections. Their relevance is well established in ventilator associated pneumonia, one of the most severe complications in critically ill patients, and in cystic fibrosis, the most common lethal genetic disease in Caucasians. Accumulating evidence suggests that biofilms could have also a role in chronic obstructive pulmonary disease and their involvement in bronchiectasis has been proposed as well. When they grow in biofilms, microorganisms become multidrug-resistant. Therefore the treatment of biofilm-dependent airway infections is problematic. Indeed, it still largely based on measures aiming to prevent the formation of biofilms or remove them once that they are formed. Here we review recent evidence suggesting that the mucokinetic drug ambroxol has specific anti-biofilm properties. We also discuss how additional pharmacological properties of this drug could be beneficial in biofilm-dependent airway infections. Specifically, we review the evidence showing that: 1-ambroxol exerts anti-inflammatory effects by inhibiting at multiple levels the activity of neutrophils, and 2-it improves mucociliary clearance by interfering with the activity of airway epithelium ion channels and transporters including sodium/bicarbonate and sodium/potassium/chloride cotransporters, cystic fibrosis transmembrane conductance regulator and aquaporins. As a whole, the data that we review here suggest that ambroxol could be helpful in biofilm-dependent airway infections. However, considering the limited clinical evidence available up to date, further clinical studies are required to support the use of ambroxol in these diseases.
Collapse
Affiliation(s)
- M Cataldi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, Federico II University of Naples, Via Pansini 5, 80131 Napoli, Italy.
| | - V Sblendorio
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, Federico II University of Naples, Via Pansini 5, 80131 Napoli, Italy
| | - A Leo
- Department of Health Sciences, University Magna Græcia of Catanzaro, University Campus "Salvatore Venuta", Viale Europa, I-88100 Catanzaro, Italy
| | - O Piazza
- University of Salerno, Via Allende, 84081 Baronissi, Italy
| |
Collapse
|
33
|
Kippelen P, Anderson SD. Pathogenesis of exercise-induced bronchoconstriction. Immunol Allergy Clin North Am 2013; 33:299-312, vii. [PMID: 23830126 DOI: 10.1016/j.iac.2013.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This article presents the various potential mechanisms responsible for the development of exercise-induced bronchoconstriction (EIB). Although the etiology of EIB is multifactorial, and the physiologic processes involved may vary between individuals (especially between those with and without asthma), drying of the small airways with an associated inflammatory response seems prerequisite for EIB. Dysregulated repair processes following exercise-induced airway epithelial injury may also serve as basis for EIB development/progression.
Collapse
Affiliation(s)
- Pascale Kippelen
- Centre for Sports Medicine & Human Performance, Brunel University, Uxbridge, Middlesex UB8 3PH, UK.
| | | |
Collapse
|
34
|
Ablimit A, Hasan B, Lu W, Qin W, Wushouer Q, Zhong N, Upur H. Changes in water channel aquaporin 1 and aquaporin 5 in the small airways and the alveoli in a rat asthma model. Micron 2012. [PMID: 23199524 DOI: 10.1016/j.micron.2012.10.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVES To examine changes in aquaporin 1 (AQP1) and aquaporin 5 (AQP5) in the small airways and alveoli in a rat asthma model. METHOD Forty Wistar rats were randomly divided into a control group and an ovalbumin (OVA) sensitization asthma model group. The distribution and expression of AQP1 and AQP5 in lung tissues were analyzed using immunohistochemistry (IHC), quantified the staining intensity by assessing integrated optical densities (IOD), and Western blotting (WB). RESULTS IHC showed AQP1 was mainly distributed in sub-epithelial microvascular endothelial cells (MECs) and red blood cells. IOD values showed, in the asthma model group, the expression of AQP1 in alveolar MECs was lower than that in the control group (P<0.05); However, AQP1 expression in small airways sub-epithelial was higher than in the control group (P<0.05). The WB indicated that AQP1 expression in the asthma model group was 57% lower than in the control group (P<0.05). AQP5 was mainly distributed in the non-ciliated epithelial cells of the small airways and the apical membranes of type I and type II epithelial cells. IOD values showed, in asthma model group, the expression of AQP5 increased in small airways epithelium (P<0.05), and decreased in alveolar epithelium (P<0.05). The WB showed a 36% reduction in AQP5 expression compared with the control group (P<0.05). CONCLUSION AQP1 and AQP5 increased in small airways in rats with experimentally induced asthma, indicating that they may be involved in the formation of submucosal edema and mucus hypersecretion. Decreased AQP1 and AQP5 in pulmonary alveoli may be related to increased alveolar liquid viscosity and the formation of mucus plugs.
Collapse
Affiliation(s)
- Abduxukur Ablimit
- Department of Histology and Embryology, Basic Medical College, Xinjiang Medical University, Urumqi 830011, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Aquaporin Changes in Compound 48/80 Induced Inflammatory Sublaryngeal Edema in Rat. J Voice 2012; 26:815.e17-23. [DOI: 10.1016/j.jvoice.2012.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 04/26/2012] [Indexed: 11/23/2022]
|
36
|
Zhang YB, Chen LY. In silico study of Aquaporin V: Effects and affinity of the central pore-occluding lipid. Biophys Chem 2012. [PMID: 23176748 DOI: 10.1016/j.bpc.2012.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Because of its roles in human physiology, Aquaporin V (AQP5), a major intrinsic protein, has been a subject of many in vitro studies. In particular, a 2008 experiment produced its crystal structure at 2.0Å resolution, which is in a tetrameric conformation consisting of four protomers. Each protomer forms an amphipathic pore that is fit for water permeation. The tetramer has a pore along its quasi-symmetry axis formed by quadruplets of hydrophobic residues (every protomer contributes equally to the quadruplets). A lipid, phosphatidylserine (PS6), is bound to AQP5 in the central pore, totally occluding it. A 2009 experiment showed that AQP5 facilitates not only permeation of water but also permeation of hydrophobic gas molecules across the cell membrane. In this article, we present an in silico study of AQP5 to elucidate the effects of PS6's binding to and dissociating from AQP5's central pore. Computing the lipid's chemical-potential along its dissociation path, we find that PS6 inhibits the function of the central pore with an IC(50) in the micromolar range. Examining the central pore and the interstices between two adjacent protomers, we propose that nonpolar gas molecules (O(2)) permeate through AQP5's hydrophobic central pore when un-occluded.
Collapse
Affiliation(s)
- Y B Zhang
- Department of Physics, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | | |
Collapse
|
37
|
Semenov I, Herlihy JT, Brenner R. In vitro measurements of tracheal constriction using mice. J Vis Exp 2012:3703. [PMID: 22760068 DOI: 10.3791/3703] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Transgenic and knockout mice have been powerful tools for the investigation of the physiology and pathophysiology of airways(1,2). In vitro tensometry of isolated tracheal preparations has proven to be a useful assay of airway smooth muscle (ASM) contractile response in genetically modified mice. These in vitro tracheal preparations are relatively simple, provide a robust response, and retain both functional cholinergic nerve endings and muscle responses, even after long incubations. Tracheal tensometry also provides a functional assay to study a variety of second messenger signaling pathways that affect contraction of smooth muscle. Contraction in trachea is primarily mediated by parasympathetic, cholinergic nerves that release acetylcholine onto ASM (Figure 1). The major ASM acetylcholine receptors are muscarinic M2 and M3 which are G(i/o ;)and Gq coupled receptors, respectively(3,4,5). M3 receptors evoke contraction by coupling to Gq to activate phospholipase C, increase IP3 production and IP3-mediated calcium release from the sarcoplasmic reticulum(3,6,7). M2/G(i/o ;)signaling is believed to enhance contractions by inhibition of adenylate cyclase leading to a decrease in cAMP levels(5,8,9,10). These pathways constitute the so called "pharmaco-contraction coupling" of airway smooth muscle(11). In addition, cholinergic signaling through M2 receptors (and modulated by M3 signaling) involves pathways that depolarize the ASM which in turn activate L-type, voltage-dependent calcium channels (Figure 1) and calcium influx (so called "excitation-contraction coupling")(4,7). More detailed reviews on signaling pathways controlling airway constriction can be found(4,12). The above pathways appear to be conserved between mice and other species. However, mouse tracheas differ from other species in some signaling pathways. Most prominent is their lack of contractile response to histamine and adenosine(13,14), both well-known ASM modulators in humans and other species(5,15). Here we present protocols for the isolation of murine tracheal rings and the in vitro measurement of their contractile output. Included are descriptions of the equipment configuration, trachea ring isolation and contractile measurements. Examples are given for evoking contractions indirectly using high potassium stimulation of nerves and directly by depolarization of ASM muscle to activate voltage-dependent calcium influx (1. high K(+), Figure 1). In addition, methods are presented for stimulations of nerves alone using electric field stimulation (2. EFS, Figure 1), or for direct stimulation of ASM muscle using exogenous neurotransmitter applied to the bath (3. exogenous ACH, Figure 1). This flexibility and ease of preparation renders the isolated trachea ring model a robust and functional assay for a number of signaling cascades involved in airway smooth muscle contraction.
Collapse
Affiliation(s)
- Iurii Semenov
- Department of Physiology, UT Health Science Center, San Antonio, TX, USA
| | | | | |
Collapse
|
38
|
Wooldridge AA, Dillon AR, Tillson DM, Zhong Q, Barney SR. Isometric responses of isolated intrapulmonary bronchioles from cats with and without adult heartworm infection. Am J Vet Res 2012; 73:439-46. [DOI: 10.2460/ajvr.73.3.439] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Dong C, Wang G, Li B, Xiao K, Ma Z, Huang H, Wang X, Bai C. Anti-asthmatic agents alleviate pulmonary edema by upregulating AQP1 and AQP5 expression in the lungs of mice with OVA-induced asthma. Respir Physiol Neurobiol 2011; 181:21-8. [PMID: 22226856 DOI: 10.1016/j.resp.2011.12.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 12/13/2011] [Accepted: 12/13/2011] [Indexed: 01/26/2023]
Abstract
Ovalbumin (OVA)-induced asthma in mouse lungs causes changes in the mRNA and protein levels of aquaporins (AQPs). AQP expression was examined in the presence of various anti-asthmatic agents, including dexamethasone, ambroxol, and terbutaline. The influence of these agents on OVA-induced airway inflammation was also evaluated. The mRNA expression levels of AQP1, 4, and 5 were significantly reduced and that of AQP3 was significantly increased 24h after the last OVA exposure. The protein levels of AQP1, 3, and 5 mirrored the mRNA expression profiles, but AQP4 did not exhibit any changes. Only the mRNA and protein expression levels of AQP1 and AQP5 were significantly increased by these three anti-asthmatic agents. Dexamethasone and ambroxol improved the eosinophil infiltration, mucus secretion, and pulmonary edema caused by OVA, but terbutaline only alleviated pulmonary edema. These results indicate that AQP1 and AQP5 are closely related to pulmonary edema but not to eosinophil infiltration or mucus secretion during asthma. Anti-asthmatic agents could alleviate pulmonary edema through upregulating the expression of AQP1 and AQP5 in mouse lungs that have OVA-induced asthma.
Collapse
Affiliation(s)
- Chunling Dong
- Department of Pulmonary Medicine, Research Institute of Respiratory Disease, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Rawlins EL, Perl AK. The a"MAZE"ing world of lung-specific transgenic mice. Am J Respir Cell Mol Biol 2011; 46:269-82. [PMID: 22180870 DOI: 10.1165/rcmb.2011-0372ps] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The purpose of this review is to give a comprehensive overview of transgenic mouse lines suitable for studying gene function and cellular lineage relationships in lung development, homeostasis, injury, and repair. Many of the mouse strains reviewed in this Perspective have been widely shared within the lung research community, and new strains are continuously being developed. There are many transgenic lines that target subsets of lung cells, but it remains a challenge for investigators to select the correct transgenic modules for their experiment. This review covers the tetracycline- and tamoxifen-inducible systems and focuses on conditional lines that target the epithelial cells. We point out the limitations of each strain so investigators can choose the system that will work best for their scientific question. Current mesenchymal and endothelial lines are limited by the fact that they are not lung specific. These lines are summarized in a brief overview. In addition, useful transgenic reporter mice for studying lineage relationships, promoter activity, and signaling pathways will complete our lung-specific conditional transgenic mouse shopping list.
Collapse
Affiliation(s)
- Emma L Rawlins
- Children's Hospital Medical Center, Divisions of Neonatology and Pulmonary Biology, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | | |
Collapse
|
41
|
Procino G, Mastrofrancesco L, Sallustio F, Costantino V, Barbieri C, Pisani F, Schena FP, Svelto M, Valenti G. AQP5 is expressed in type-B intercalated cells in the collecting duct system of the rat, mouse and human kidney. Cell Physiol Biochem 2011; 28:683-92. [PMID: 22178880 DOI: 10.1159/000335762] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2011] [Indexed: 12/27/2022] Open
Abstract
We screened human kidney-derived multipotent CD133+/CD24+ ARPCs for the possible expression of all 13 aquaporin isoforms cloned in humans. Interestingly, we found that ARPCs expressed both AQP5 mRNA and mature protein. This novel finding prompted us to investigate the presence of AQP5 in situ in kidney. We report here the novel finding that AQP5 is expressed in human, rat and mouse kidney at the apical membrane of type-B intercalated cells. AQP5 is expressed in the renal cortex and completely absent from the medulla. Immunocytochemical analysis using segment- and cell type-specific markers unambiguously indicated that AQP5 is expressed throughout the collecting system at the apical membrane of type-B intercalated cells, where it co-localizes with pendrin. No basolateral AQPs were detected in type-B intercalated cells, suggesting that AQP5 is unlikely to be involved in the net trans-epithelial water reabsorption occurring in the distal tubule. An intriguing hypothesis is that AQP5 may serve an osmosensor for the composition of the fluid coming from the thick ascending limb. Future studies will unravel the physiological role of AQP5 in the kidney.
Collapse
Affiliation(s)
- Giuseppe Procino
- Department of General and Environmental Physiology, University of Bari, Via Amendola 165/A, Bari, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hadchouel J, Büsst C, Procino G, Valenti G, Chambrey R, Eladari D. Regulation of extracellular fluid volume and blood pressure by pendrin. Cell Physiol Biochem 2011; 28:505-12. [PMID: 22116364 DOI: 10.1159/000335116] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2011] [Indexed: 01/11/2023] Open
Abstract
Na(+) is commonly designed as the culprit of salt-sensitive hypertension but several studies suggest that abnormal Cl(-) transport is in fact the triggering mechanism. This review focuses on the regulation of blood pressure (BP) by pendrin, an apical Cl(-)/HCO(3)(-) exchanger which mediates HCO(3)(-) secretion and transcellular Cl(-) transport in type B intercalated cells (B-ICs) of the distal nephron. Studies in mice showed that it is required not only for acid-base regulation but also for BP regulation as pendrin knock-out mice develop hypotension when submitted to NaCl restriction and are resistant to aldosterone-induced hypertension. Pendrin contributes to these processes by two mechanisms. First, pendrin-mediated Cl(-) transport is coupled with Na(+) reabsorption by the Na(+)-dependent Cl(-)/HCO(3)(-) exchanger NDCBE to mediate NaCl reabsorption in B-ICs. Second, pendrin activity regulates Na(+) reabsorption by the adjacent principal cells, possibly by interaction with the ATP-mediated paracrine signalling recently identified between ICs and principal cells. Interestingly, the water channel AQP5 was recently found to be expressed at the apical side of B-ICs, in the absence of a basolateral water channel, and pendrin and AQP5 membrane expressions are both inhibited by K(+) depletion, suggesting that pendrin and AQP5 could cooperate to regulate cell volume, a potent stimulus of ATP release.
Collapse
Affiliation(s)
- Juliette Hadchouel
- INSERM UMRS 970-Paris Cardiovascular Research Center (PARCC), Paris, France
| | | | | | | | | | | |
Collapse
|
43
|
Delgado O, Kaisani AA, Spinola M, Xie XJ, Batten KG, Minna JD, Wright WE, Shay JW. Multipotent capacity of immortalized human bronchial epithelial cells. PLoS One 2011; 6:e22023. [PMID: 21760947 PMCID: PMC3131301 DOI: 10.1371/journal.pone.0022023] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 06/12/2011] [Indexed: 12/18/2022] Open
Abstract
While the adult murine lung utilizes multiple compartmentally restricted progenitor cells during homeostasis and repair, much less is known about the progenitor cells from the human lung. Translating the murine stem cell model to humans is hindered by anatomical differences between species. Here we show that human bronchial epithelial cells (HBECs) display characteristics of multipotent stem cells of the lung. These HBECs express markers indicative of several epithelial types of the adult lung when experimentally tested in cell culture. When cultured in three different three-dimensional (3D) systems, subtle changes in the microenvironment result in unique responses including the ability of HBECs to differentiate into multiple central and peripheral lung cell types. These new findings indicate that the adult human lung contains a multipotent progenitor cell whose differentiation potential is primarily dictated by the microenvironment. The HBEC system is not only important in understanding mechanisms for specific cell lineage differentiation, but also for examining changes that correlate with human lung diseases including lung cancer.
Collapse
Affiliation(s)
- Oliver Delgado
- Department of Cell Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Aadil A. Kaisani
- Department of Cell Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Monica Spinola
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Xian-Jin Xie
- Department of Clinical Sciences, University of Texas Southwestern Medical Center at Dallas, Dallas Texas, United States of America
| | - Kimberly G. Batten
- Department of Cell Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - John D. Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Woodring E. Wright
- Department of Cell Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Jerry W. Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
44
|
Skowronski MT, Skowronska A, Nielsen S. Fluctuation of aquaporin 1, 5, and 9 expression in the pig oviduct during the estrous cycle and early pregnancy. J Histochem Cytochem 2011; 59:419-27. [PMID: 21411812 DOI: 10.1369/0022155411400874] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Thirteen mammalian aquaporin (AQPs) isoforms with a unique tissue-specific pattern of expression have been identified. To date, 11 isoforms of AQP have been reported to be expressed in female and male reproductive systems. The purpose of our study was to determine the localization and quantitative changes in the expression of AQP1, 5 and 9 within the pig oviduct during different stages of the estrous cycle and early pregnancy. The results demonstrated that AQP1, 5, and 9 were clearly detected in all studied stages of the estrous cycle and pregnancy. AQP1 was localized within oviductal blood vessels. In cyclic gilts, the expression of AQP1 protein did not change significantly between days 10-12 and 14-16 but increased on days 2-4 and 18-20. AQP5 was localized in smooth muscle cells and oviductal epithelial cells. The expression of AQP5 protein did not change significantly between days 10-12 and 14-16 of the estrous cycle but increased on days 2-4 and 18-20. The anti-AQP9 antibody labeled epithelial cells of the oviduct. The expression of AQP9 did not change significantly between days 10-12 and 14-16 of the estrous cycle but increased on days 2-4 and 18-20. In pregnant gilts, expression of AQP1, 5, and 9 did not change significantly in comparison with the estrous cycle. Therefore, a functional and distinctive collaboration seems to exist among diverse AQPs in water handling during the different oviductal phases in the estrous cycle and early pregnancy.
Collapse
Affiliation(s)
- Mariusz T Skowronski
- Department of Animal Physiology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718 Olsztyn, Poland.
| | | | | |
Collapse
|
45
|
Hansel NN, Sidhaye V, Rafaels NM, Gao L, Gao P, Williams R, Connett JE, Beaty TH, Mathias RA, Wise RA, King LS, Barnes KC. Aquaporin 5 polymorphisms and rate of lung function decline in chronic obstructive pulmonary disease. PLoS One 2010; 5:e14226. [PMID: 21151978 PMCID: PMC2997058 DOI: 10.1371/journal.pone.0014226] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 10/30/2010] [Indexed: 12/14/2022] Open
Abstract
RATIONALE Aquaporin-5 (AQP5) can cause mucus overproduction and lower lung function. Genetic variants in the AQP5 gene might be associated with rate of lung function decline in chronic obstructive pulmonary disease (COPD). METHODS Five single nucleotide polymorphisms (SNPs) in AQP5 were genotyped in 429 European American individuals with COPD randomly selected from the NHLBI Lung Health Study. Mean annual decline in FEV(1) % predicted, assessed over five years, was calculated as a linear regression slope, adjusting for potential covariates and stratified by smoking status. Constructs containing the wildtype allele and risk allele of the coding SNP N228K were generated using site-directed mutagenesis, and transfected into HBE-16 (human bronchial epithelial cell line). AQP5 abundance and localization were assessed by immunoblots and confocal immunofluorescence under control, shear stress and cigarette smoke extract (CSE 10%) exposed conditions to test for differential expression or localization. RESULTS Among continuous smokers, three of the five SNPs tested showed significant associations (0.02>P>0.004) with rate of lung function decline; no associations were observed among the group of intermittent or former smokers. Haplotype tests revealed multiple association signals (0.012>P>0.0008) consistent with the single-SNP results. In HBE16 cells, shear stress and CSE led to a decrease in AQP5 abundance in the wild-type, but not in the N228K AQP5 plasmid. CONCLUSIONS Polymorphisms in AQP5 were associated with rate of lung function decline in continuous smokers with COPD. A missense mutation modulates AQP-5 expression in response to cigarette smoke extract and shear stress. These results suggest that AQP5 may be an important candidate gene for COPD.
Collapse
Affiliation(s)
- Nadia N. Hansel
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Venkataramana Sidhaye
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Nicholas M. Rafaels
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Li Gao
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Peisong Gao
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Renaldo Williams
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - John E. Connett
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Terri H. Beaty
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Rasika A. Mathias
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Robert A. Wise
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Landon S. King
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Kathleen C. Barnes
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
46
|
Shen Y, Wang Y, Chen Z, Wang D, Wang X, Jin M, Bai C. Role of aquaporin 5 in antigen-induced airway inflammation and mucous hyperproduction in mice. J Cell Mol Med 2010; 15:1355-63. [PMID: 20550619 PMCID: PMC4373335 DOI: 10.1111/j.1582-4934.2010.01103.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Airway inflammation and mucus hyperproduction play the central role in the development of asthma, although the mechanisms remain unclear. The aquaporin (AQP)-5 may be involved in the process due to its contribution to the volume of liquid secreted from the airways. The present study firstly found the overexpression of AQP5 in the airway epithelium and submucosal glands of asthmatics. Furthermore, we aimed at evaluating the role of AQP5 in airway inflammation and mucous hyperproductions during chronic allergic responses to house dust mite (HDM). Bronchoalveolar lavage levels of interleukin (IL)-2, IL-4, IL-10, interferon-γ and Mucin 5AC (MUC5AC), and number of peribronchial and perivascular cells were measured in AQP5 wild-type and AQP5 knockout (KO) mice. We found that HDM induced airway inflammation, lung Th2 cell accumulation and mucin hypersecretion in C57BL/6 mice rather than AQP5 KO mice. Expression of MUC5AC and MUC5B proteins and genes in the lung tissue was significantly lower in AQP5 KO mice. Thus, our results implicate involvement of AQP5 in the development of airway inflammation and mucous hyperproduction during chronic asthma.
Collapse
Affiliation(s)
- Yao Shen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Pradhan S, Zhang C, Jia X, Carson DD, Witt R, Farach-Carson MC. Perlecan domain IV peptide stimulates salivary gland cell assembly in vitro. Tissue Eng Part A 2010; 15:3309-20. [PMID: 19382872 DOI: 10.1089/ten.tea.2008.0669] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Treatment of xerostomia would benefit from development of a functional implantable artificial salivary gland. Salivary gland tissue from surgical patients was assessed by histology and immunohistochemistry to establish the phenotype of normal salivary gland cells including the native basement membranes. Ductal and acinar cells were identified in tissue and cultured cells from dispersed tissue. High levels of laminin and perlecan/HSPG2 (heparan sulfate proteoglycan 2) were noted in basement membranes, and perlecan also was secreted and organized by cultured acinar populations, which formed lobular structures that mimicked intact glands when cultured on Matrigel or a bioactive peptide derived from domain IV of perlecan. On either matrix, large acini-like lobular structures grew and formed connections between the lobes. alpha-Amylase secretion was confirmed by staining and activity assay. Biomarkers, including tight junction protein E-cadherin and water channel protein aquaporin 5 found in tissue, were expressed in cultured acinar cells. Cells cultured on Matrigel or domain IV of perlecan peptide organized stress fibers and activated focal adhesion kinase. We report a novel technique to isolate acinar cells from human salivary gland and identify a human peptide sequence in perlecan that triggers differentiation of salivary gland cells into self-assembling acini-like structures that express essential biomarkers and which secrete alpha-amylase.
Collapse
Affiliation(s)
- Swati Pradhan
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | | | | | | | | | | |
Collapse
|
48
|
Flodby P, Borok Z, Banfalvi A, Zhou B, Gao D, Minoo P, Ann DK, Morrisey EE, Crandall ED. Directed expression of Cre in alveolar epithelial type 1 cells. Am J Respir Cell Mol Biol 2009; 43:173-8. [PMID: 19767448 DOI: 10.1165/rcmb.2009-0226oc] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pulmonary alveolar epithelium is comprised of two morphologically and functionally distinct cell types, alveolar epithelial type (AT) I and AT2 cells. Genetically modified mice with cell-specific Cre/loxP-mediated knockouts of relevant genes in each respective cell type would be useful to help elucidate the relative contributions of AT1 versus AT2 cells to alveolar homeostasis. Cre has previously been efficiently expressed in AT2 cells in mouse lung with the surfactant protein (SP)-C promoter; however, no transgenic mouse expressing Cre in AT1 cells has so far been available. To develop an AT1 cell-specific transgenic Cre mouse, we generated a knockin of a Cre-IRES-DsRed cassette into exon 1 of the endogenous aquaporin 5 (Aqp5) gene, a gene expressed specifically in AT1 cells in the distal lung epithelium, resulting in the mouse line, Aqp5-Cre-IRES-DsRed (ACID). Endogenous Aqp5 and transgenic Cre in ACID mice showed a very similar pattern of tissue distribution by RT-PCR. To analyze Cre activity, ACID was crossed to two Cre reporter strains, R26LacZ and mT/mG. Double-transgenic offspring demonstrated reporter gene expression in a very high fraction of AT1 cells in the distal lung, whereas AT2 cells were negative. As expected, variable reporter expression was detected in several other tissues where endogenous Aqp5 is expressed (e.g., submandibular salivary gland and stomach). ACID mice should be of major utility in analyzing the functional contribution of AT1 cells to alveolar epithelial properties in vivo with Cre/loxP-mediated gene deletion technology.
Collapse
Affiliation(s)
- Per Flodby
- Will Rogers Institute Pulmonary Research Center, Department of Medicine, University of Southern California, Los Angeles, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Loughlin CE, Esther CR, Lazarowski ER, Alexis NE, Peden DB. Neutrophilic inflammation is associated with altered airway hydration in stable asthmatics. Respir Med 2009; 104:29-33. [PMID: 19646854 DOI: 10.1016/j.rmed.2009.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 06/30/2009] [Accepted: 07/03/2009] [Indexed: 11/15/2022]
Abstract
BACKGROUND Airway dehydration is a potential trigger of bronchoconstriction in exercise-induced asthma; however, its role in stable asthma has not been explored. Using sputum percent solids, as an indicator of airway hydration, we sought relationships between airway hydration and other known markers of neutrophilic (TH1) and allergic (TH2) inflammation in stable asthma. METHODS Thirty-seven atopic subjects with stable asthma and 15 healthy controls underwent sputum induction. Sputum was analyzed for percent solids, cell counts, cellular and biochemical markers of inflammation and purines. RESULTS Sputum percent solids was significantly elevated in stable asthmatics vs. controls and positively correlated with markers of neutrophilic/TH1-type inflammation (neutrophils, IL-8 and AMP). Sputum percent solids were not correlated with markers of allergic/TH2-type inflammation. These data suggest a direct relationship between neutrophil inflammation and airway hydration in stable asthmatics.
Collapse
Affiliation(s)
- Ceila E Loughlin
- Department of Pediatrics, Division of Pediatric Pulmonology, The School of Medicine, University of North Carolina, 130 Mason Farm Road, 5th floor Bioinformatics Bldg., CB #7217, Chapel Hill, NC 27599-7217, USA.
| | | | | | | | | |
Collapse
|
50
|
Rapp UR, Korn C, Ceteci F, Karreman C, Luetkenhaus K, Serafin V, Zanucco E, Castro I, Potapenko T. MYC is a metastasis gene for non-small-cell lung cancer. PLoS One 2009; 4:e6029. [PMID: 19551151 PMCID: PMC2696940 DOI: 10.1371/journal.pone.0006029] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 05/25/2009] [Indexed: 11/19/2022] Open
Abstract
Background Metastasis is a process by which cancer cells learn to form satellite tumors in distant organs and represents the principle cause of death of patients with solid tumors. NSCLC is the most lethal human cancer due to its high rate of metastasis. Methodology/Principal Findings Lack of a suitable animal model has so far hampered analysis of metastatic progression. We have examined c-MYC for its ability to induce metastasis in a C-RAF-driven mouse model for non-small-cell lung cancer. c-MYC alone induced frank tumor growth only after long latency at which time secondary mutations in K-Ras or LKB1 were detected reminiscent of human NSCLC. Combination with C-RAF led to immediate acceleration of tumor growth, conversion to papillary epithelial cells and angiogenic switch induction. Moreover, addition of c-MYC was sufficient to induce macrometastasis in liver and lymph nodes with short latency associated with lineage switch events. Thus we have generated the first conditional model for metastasis of NSCLC and identified a gene, c-MYC that is able to orchestrate all steps of this process. Conclusions/Significance Potential markers for detection of metastasis were identified and validated for diagnosis of human biopsies. These markers may represent targets for future therapeutic intervention as they include genes such as Gata4 that are exclusively expressed during lung development.
Collapse
Affiliation(s)
- Ulf R Rapp
- Department of Molecular Biology, Max-Planck-Institute of Biochemistry, München, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|