1
|
Xu W, Golovchenko NB, Martínez-Vargas IU, Fong A, Rout P, Achi S, Bucar EB, Hsieh JJ, Vidmar KJ, Zhang L, Polydorides AD, Prinz I, Kollias G, Frey MR, Pizarro TT, Verzi MP, Edelblum KL. Dysregulation of γδ intraepithelial lymphocytes precedes Crohn's disease-like ileitis. Sci Immunol 2025; 10:eadk7429. [PMID: 40117343 DOI: 10.1126/sciimmunol.adk7429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/07/2024] [Accepted: 02/14/2025] [Indexed: 03/23/2025]
Abstract
Intraepithelial lymphocytes expressing the γδ T cell receptor (γδ IELs) provide immunosurveillance of the intestinal barrier but are reduced in patients with active Crohn's disease (CD). Here, we report an underappreciated role for γδ IELs in maintaining immunological tolerance during the onset and progression of CD-like ileitis using TNFΔARE/+ mice. We found that TNF-induced down-regulation of epithelial hepatocyte nuclear factor 4-gamma/butyrophilin is followed by a loss of ileal Vγ7 IELs and impaired barrier surveillance before the histological onset of disease. A reduction of immunoregulatory CD39+ γδ IELs coincided with the influx of immature, peripheral CD39neg γδ T cells into the epithelium, leading to an expansion of induced IELs, whereas an earlier depletion of γδ IELs correlated with accelerated onset of ileal inflammation. Our findings identify multiple layers of γδ IEL dysregulation before ileitis development, indicating that the loss of steady-state immunoregulatory γδ IELs may contribute to the initiation of ileal CD.
Collapse
Affiliation(s)
- Weili Xu
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Natasha B Golovchenko
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
- Department of Pathology, Molecular and Cell-Based Medicine and Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Irving U Martínez-Vargas
- Department of Pathology, Molecular and Cell-Based Medicine and Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrew Fong
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
- Department of Pathology, Molecular and Cell-Based Medicine and Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Prateeksha Rout
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
- Cancer Institute of New Jersey, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Sajan Achi
- Department of Pathology, Molecular and Cell-Based Medicine and Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edie B Bucar
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Departments of Pediatrics and Biochemistry and Molecular Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Jonathan J Hsieh
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Departments of Pediatrics and Biochemistry and Molecular Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Kaylynn J Vidmar
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Lanjing Zhang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
- Department of Pathology, Princeton Medical Center, Plainsboro, NJ, USA
| | - Alexandros D Polydorides
- Department of Pathology, Molecular and Cell-Based Medicine and Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hanover, Germany
- Institute of Systems Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - George Kollias
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming," Vari, Greece
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Mark R Frey
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Departments of Pediatrics and Biochemistry and Molecular Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Theresa T Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Michael P Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
- Cancer Institute of New Jersey, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Karen L Edelblum
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
- Department of Pathology, Molecular and Cell-Based Medicine and Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Alizadeh M, Oladokun S, Fletcher C, Boodhoo N, Fazel F, Shojadoost B, Raj S, Zheng J, Abdelaziz K, Sharif S. Evaluating the protective effects of the Toll-like receptor (TLR) 21 ligand, CpG ODN, against necrotic enteritis in broiler chickens. PLoS One 2025; 20:e0319404. [PMID: 40080496 PMCID: PMC11906054 DOI: 10.1371/journal.pone.0319404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/01/2025] [Indexed: 03/15/2025] Open
Abstract
Necrotic enteritis (NE), caused by Clostridium perfringens (C. perfringens), presents a challenge to the global broiler industry. Evidence suggests that Toll-like receptor (TLR) ligands can enhance the immune responses in chickens and protect them against infectious diseases. This study investigated the protective effects of TLR21 ligand class B CpG oligonucleotides (ODN) against NE in broiler chickens. On day 21 of age, chickens were injected with 50 or 100 μg CpG intramuscularly, and one group was injected with 50 μg CpG followed by a booster dose on day 22. Subsequently, birds were orally challenged with C. perfringens twice daily for three days, starting on day 22. On day 22, intestinal samples were collected for gene expression analysis. On day 25, all birds were euthanized, intestinal lesions were scored, and tissue samples were collected from the intestine for gene expression analysis, lymphocyte subset determination, and histomorphological analysis. Cecal contents were also collected for microbiome analysis. The results demonstrated that CpG pre-treatment, either at a single dose of 100 μg or two doses of 50 μg per bird, reduced lesion scores compared to the positive control. C. perfringens infection increased crypt depth in both the jejunum and ileum in the positive control group compared to both the CpG-treated group. At 22 days of age, CpG administration at doses of 100 μg per bird enhanced expression of TLR21, interleukin (IL)-2, CXCL8, IL-10, and interferon (IFN)-γ mRNA transcripts in both the jejunum and ileum. Additionally, at 25 days of age, the group pretreated with two doses of 50 μg of CpG per bird showed increased expression of all cytokines in both the jejunum and ileum compared to the control groups. The percentage of intestinal lymphocytes was not affected by CpG pre-treatment. However, CpG pretreatment at doses of 100 μg resulted in a higher abundance of the members of families Lactobacillaceae and Bacteroidaceae, which are crucial for maintaining gut health. In conclusion, our findings suggest that pretreatment of chickens with intramuscular administration of CpG may be effective in maintaining gut health during C. perfringens infection.
Collapse
Affiliation(s)
- Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Samson Oladokun
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Charlotte Fletcher
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Nitish Boodhoo
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Fatemeh Fazel
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | | | - Sugandha Raj
- National Centre for Foreign Animal Disease, Winnipeg, Manitoba, Canada
| | - Jiayu Zheng
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Khaled Abdelaziz
- Clemson University School of Health Research (CUSHR), Clemson, South Carolina, United States of America
- Department of Animal and Veterinary Science, Clemson University, Clemson, South Carolina, United States of America
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
3
|
Liu G, Fang Y, Zhang Y, Zhu M. Dihydroquercetin improves the proliferation of porcine intestinal epithelial cells via the Wnt/β-catenin pathway. Biochem Biophys Res Commun 2024; 734:150460. [PMID: 39083968 DOI: 10.1016/j.bbrc.2024.150460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Dihydroquercetin (DHQ), also known as Taxifolin (TA), is a flavanonol with various biological activities, such as anticancer, anti-inflammatory, and antioxidative properties. It has been found to effectively increase the viability of porcine intestinal epithelial cells (IPEC-J2). However, the precise mechanism by which DHQ increases the proliferation of IPEC-J2 cells is not entirely understood. This study aimed to explore the potential pathways through which DHQ encourages the proliferation of IPEC-J2 cells. The findings indicated that DHQ significantly improved the protein expression of tight junction proteins (ZO-1, Occludin, and Claudin1) and a molecular biomarker of proliferation (PCNA) in IPEC-J2 cells. Furthermore, DHQ was found to increase the Wnt/β-catenin pathway-associated β-catenin, c-Myc, and cyclin D1 mRNA expression, and promote the protein expression of β-catenin and TCF4. To confirm the involvement of the Wnt/β-catenin signaling pathway in the DHQ-promoted proliferation of IPEC-J2 cells, the inhibitor LF3, which targets β-catenin/TCF4 interaction, was used. It was found that LF3 inhibited the protein expressions upregulated by DHQ and blocked the promotion of cell proliferation. These results indicate that DHQ positively regulates IPEC-J2 cell proliferation through the Wnt/β-catenin pathway, providing constructive insights into the role of DHQ in regulating intestine development.
Collapse
Affiliation(s)
- Guowei Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China; Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang, 550025, China
| | - Yongxia Fang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China; Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang, 550025, China
| | - Yiyu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China; Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang, 550025, China
| | - Min Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China; Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
4
|
Tani-Ichi S, Ikuta K. γδ intraepithelial lymphocytes acquire the ability to produce IFN-γ in a different time course than αβ intraepithelial lymphocytes. Int Immunol 2024; 36:653-661. [PMID: 38835285 DOI: 10.1093/intimm/dxae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/04/2024] [Indexed: 06/06/2024] Open
Abstract
An age-dependent increase in interferon (IFN)-γ expression by intestinal intraepithelial lymphocytes (IELs) contributes to the acquisition of resistance to infection by pathogens. However, how IELs acquire the ability to produce IFN-γ remains to be elucidated. Here, we report that IELs in the small intestine acquire the ability to rapidly produce IFN-γ at two distinct life stages. TCRαβ+ IELs (αβIELs) started producing IFN-γ at 4 weeks of age, within 1 week after weaning. In contrast, TCRγδ+ IELs (γδIELs) started producing IFN-γ at 7 weeks of age. In mice lacking Eγ4, an enhancer of the TCRγ locus (Eγ4-/- mice), Thy-1+ Vγ5+ γδIELs, a major subpopulation of γδIELs, were specifically reduced and their ability to produce IFN-γ was severely impaired, whereas Vγ2+ γδIELs normally produced IFN-γ. In Eγ4-/- mice, TCR expression levels were reduced in Vγ5+ γδIEL precursors in the thymus but unchanged in the Vγ5+ IELs. Nevertheless, TCR responsiveness in Vγ5+ γδIELs was impaired in Eγ4-/- mice, suggesting that the TCR signal received in the thymus may determine TCR responsiveness and the ability to produce IFN-γ in the gut. These results suggest that αβIELs and γδIELs start producing IFN-γ at different life stages and that the ability of Vγ5+ γδIELs to produce IFN-γ in the gut may be predetermined by TCR signalling in IEL precursors in the thymus.
Collapse
MESH Headings
- Animals
- Intraepithelial Lymphocytes/immunology
- Intraepithelial Lymphocytes/metabolism
- Interferon-gamma/metabolism
- Interferon-gamma/immunology
- Mice
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Mice, Knockout
- Mice, Inbred C57BL
- Intestine, Small/immunology
Collapse
Affiliation(s)
- Shizue Tani-Ichi
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
Oliveira ICCS, Marinsek GP, Correia LVB, da Silva RCB, Castro IB, Mari RB. Tributyltin (TBT) toxicity: Effects on enteric neuronal plasticity and intestinal barrier of rats' duodenum. Auton Neurosci 2024; 253:103176. [PMID: 38669866 DOI: 10.1016/j.autneu.2024.103176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/20/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
Tributyltin (TBT) is a biocide used in the formulation of antifouling paints and it is highly harmful. Despite the ban, the compound persists in the environment, contaminating marine foodstuffs and household products. Therefore, considering the route of exposure to the contaminant, the gastrointestinal tract (GIT) acts as an important barrier against harmful substances and is a potential biomarker for understanding the consequences of these agents. This work aimed to evaluate histological and neuronal alterations in the duodenum of male Wistar rats that received 20 ng/g TBT and 600 ng/g via gavage for 30 consecutive days. After the experimental period, the animals were euthanized, and the duodenum was intended for neuronal histochemistry (total and metabolically active populations) and histological routine (morphometry and histopathology). The results showed more severe changes in neuronal density and intestinal morphometry in rats exposed to 20 ng/g, such as total neuronal density decrease and reduction of intestinal layers. In rats exposed to 600 ng/g of TBT, it was possible to observe only an increase in intraepithelial lymphocytes. We conclude that TBT can be more harmful to intestinal homeostasis when consumed in lower concentrations.
Collapse
Affiliation(s)
- I C C S Oliveira
- UNESP- São Paulo State University, Institute of Biosciences, Paulista Coast Campus (CLP), São Vicente, SP, Brazil.
| | - G P Marinsek
- UNESP- São Paulo State University, Institute of Biosciences, Paulista Coast Campus (CLP), São Vicente, SP, Brazil.
| | - L V B Correia
- UNIFESP- Federal University of São Paulo, Institute of Health and Society, Baixada Santista Campus, Santos, SP, Brazil
| | - R C B da Silva
- UNIFESP- Federal University of São Paulo, Institute of Health and Society, Baixada Santista Campus, Santos, SP, Brazil
| | - I B Castro
- UNIFESP- Federal University of São Paulo, Institute of Marine Science, Baixada Santista Campus, Santos, SP, Brazil.
| | - R B Mari
- UNESP- São Paulo State University, Institute of Biosciences, Paulista Coast Campus (CLP), São Vicente, SP, Brazil.
| |
Collapse
|
6
|
Carnevale S, Ponzetta A, Rigatelli A, Carriero R, Puccio S, Supino D, Grieco G, Molisso P, Di Ceglie I, Scavello F, Perucchini C, Pasqualini F, Recordati C, Tripodo C, Belmonte B, Mariancini A, Kunderfranco P, Sciumè G, Lugli E, Bonavita E, Magrini E, Garlanda C, Mantovani A, Jaillon S. Neutrophils Mediate Protection Against Colitis and Carcinogenesis by Controlling Bacterial Invasion and IL22 Production by γδ T Cells. Cancer Immunol Res 2024; 12:413-426. [PMID: 38349973 PMCID: PMC10985471 DOI: 10.1158/2326-6066.cir-23-0295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 12/01/2023] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
Neutrophils are the most abundant leukocytes in human blood and play a primary role in resistance against invading microorganisms and in the acute inflammatory response. However, their role in colitis and colitis-associated colorectal cancer is still under debate. This study aims to dissect the role of neutrophils in these pathologic contexts by using a rigorous genetic approach. Neutrophil-deficient mice (Csf3r-/- mice) were used in classic models of colitis and colitis-associated colorectal cancer and the role of neutrophils was assessed by histologic, cellular, and molecular analyses coupled with adoptive cell transfer. We also performed correlative analyses using human datasets. Csf3r-/- mice showed increased susceptibility to colitis and colitis-associated colorectal cancer compared with control Csf3r+/+ mice and adoptive transfer of neutrophils in Csf3r-/- mice reverted the phenotype. In colitis, Csf3r-/- mice showed increased bacterial invasion and a reduced number of healing ulcers in the colon, indicating a compromised regenerative capacity of epithelial cells. Neutrophils were essential for γδ T-cell polarization and IL22 production. In patients with ulcerative colitis, expression of CSF3R was positively correlated with IL22 and IL23 expression. Moreover, gene signatures associated with epithelial-cell development, proliferation, and antimicrobial response were enriched in CSF3Rhigh patients. Our data support a model where neutrophils mediate protection against intestinal inflammation and colitis-associated colorectal cancer by controlling the intestinal microbiota and driving the activation of an IL22-dependent tissue repair pathway.
Collapse
Affiliation(s)
| | | | - Anna Rigatelli
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Simone Puccio
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, Milan, Italy
| | | | - Giovanna Grieco
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Piera Molisso
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Milan, Italy
| | | | | | | | - Fabio Pasqualini
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Camilla Recordati
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Mouse & Animal Pathology Laboratory (MAPLab), UniMi Foundation, Milan, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Science, University of Palermo, School of Medicine, Palermo, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Health Science, University of Palermo, School of Medicine, Palermo, Italy
| | - Andrea Mariancini
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Milan, Italy
| | | | - Giuseppe Sciumè
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Enrico Lugli
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Eduardo Bonavita
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Elena Magrini
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Cecilia Garlanda
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Alberto Mantovani
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Milan, Italy
- The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Sebastien Jaillon
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Milan, Italy
| |
Collapse
|
7
|
Huang J, Zhang X, Xu H, Fu L, Liu Y, Zhao J, Huang J, Song Z, Zhu M, Fu YX, Chen YG, Guo X. Intraepithelial lymphocytes promote intestinal regeneration through CD160/HVEM signaling. Mucosal Immunol 2024; 17:257-271. [PMID: 38340986 DOI: 10.1016/j.mucimm.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Chemotherapy and radiotherapy frequently lead to intestinal damage. The mechanisms governing the repair or regeneration of intestinal damage are still not fully elucidated. Intraepithelial lymphocytes (IELs) are the primary immune cells residing in the intestinal epithelial layer. However, whether IELs are involved in intestinal epithelial injury repair remains unclear. Here, we found that IELs rapidly infiltrated the intestinal crypt region and are crucial for the recovery of the intestinal epithelium post-chemotherapy. Interestingly, IELs predominantly promoted intestinal regeneration by modulating the proliferation of transit-amplifying (TA) cells. Mechanistically, the expression of CD160 on IELs allows for interaction with herpes virus entry mediator (HVEM) on the intestinal epithelium, thereby activating downstream nuclear factor kappa (NF-κB) signaling and further promoting intestinal regeneration. Deficiency in either CD160 or HVEM resulted in reduced proliferation of intestinal progenitor cells, impaired intestinal damage repair, and increased mortality following chemotherapy. Remarkably, the adoptive transfer of CD160-sufficient IELs rescued the Rag1 deficient mice from chemotherapy-induced intestinal inflammation. Overall, our study underscores the critical role of IELs in intestinal regeneration and highlights the potential applications of targeting the CD160-HVEM axis for managing intestinal adverse events post-chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Jiaoyan Huang
- Institute for Immunology, Tsinghua University, Beijing, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China; Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Xin Zhang
- Institute for Immunology, Tsinghua University, Beijing, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China; Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Hongkai Xu
- Institute for Immunology, Tsinghua University, Beijing, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China; Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Liuhui Fu
- Institute for Immunology, Tsinghua University, Beijing, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China; Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Yuke Liu
- Institute for Immunology, Tsinghua University, Beijing, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China; Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Jie Zhao
- Institute for Immunology, Tsinghua University, Beijing, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China; Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Jida Huang
- Institute for Immunology, Tsinghua University, Beijing, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China; Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Zuodong Song
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Mingzhao Zhu
- The Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yang-Xin Fu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaohuan Guo
- Institute for Immunology, Tsinghua University, Beijing, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China; Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China.
| |
Collapse
|
8
|
Moreau GB, Naz F, Petri WA. Fecal microbiota transplantation stimulates type 2 and tolerogenic immune responses in a mouse model. Anaerobe 2024; 86:102841. [PMID: 38521227 PMCID: PMC11042976 DOI: 10.1016/j.anaerobe.2024.102841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/03/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
OBJECTIVES Clostridioides difficile infection (CDI) is the leading hospital-acquired infection in North America. While previous work on fecal microbiota transplantation (FMT), a highly effective treatment for CDI, has focused on colonization resistance mounted against C. difficile by FMT-delivered commensals, the effects of FMT on host gene expression are relatively unexplored. This study aims to identify transcriptional changes associated with FMT, particularly changes associated with protective immune responses. METHODS Gene expression was assessed on day 2 and day 7 after FMT in mice after antibiotic-induced dysbiosis. Flow cytometry was also performed on colon and mesenteric lymph nodes at day 7 to investigate changes in immune cell populations. RESULTS FMT administration after antibiotic-induced dysbiosis successfully restored microbial alpha diversity to levels of donor mice by day 7 post-FMT. Bulk RNA sequencing of cecal tissue at day 2 identified immune genes, including both pro-inflammatory and Type 2 immune pathways as upregulated after FMT. RNA sequencing was repeated on day 7 post-FMT, and expression of these immune genes was decreased along with upregulation of genes associated with restoration of intestinal homeostasis. Immunoprofiling on day 7 identified increased colonic CD45+ immune cells that exhibited dampened Type 1 and heightened regulatory and Type 2 responses. These include an increased abundance of eosinophils, alternatively activated macrophages, Th2, and T regulatory cell populations. CONCLUSION These results highlight the impact of FMT on host gene expression, providing evidence that FMT restores intestinal homeostasis after antibiotic treatment and facilitates tolerogenic and Type 2 immune responses.
Collapse
Affiliation(s)
- G Brett Moreau
- Department of Medicine, Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Farha Naz
- Department of Medicine, Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - William A Petri
- Department of Medicine, Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
9
|
Cox LM, Tatematsu BK, Guo L, LeServe DS, Mayrink J, Oliveira MG, Donnelly D, Fonseca RC, Lemos L, Lanser TB, Rosa AC, Lopes JR, Schwerdtfeger LA, Ribeiro GFC, Lobo ELC, Moreira TG, Oliveira AG, Weiner HL, Rezende RM. Gamma-delta T cells suppress microbial metabolites that activate striatal neurons and induce repetitive/compulsive behavior in mice. Brain Behav Immun 2024; 117:242-254. [PMID: 38281671 DOI: 10.1016/j.bbi.2024.01.214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/01/2023] [Accepted: 01/18/2024] [Indexed: 01/30/2024] Open
Abstract
Intestinal γδ T cells play an important role in shaping the gut microbiota, which is critical not only for maintaining intestinal homeostasis but also for controlling brain function and behavior. Here, we found that mice deficient for γδ T cells (γδ-/-) developed an abnormal pattern of repetitive/compulsive (R/C) behavior, which was dependent on the gut microbiota. Colonization of WT mice with γδ-/- microbiota induced R/C behavior whereas colonization of γδ-/- mice with WT microbiota abolished the R/C behavior. Moreover, γδ-/- mice had elevated levels of the microbial metabolite 3-phenylpropanoic acid in their cecum, which is a precursor to hippurate (HIP), a metabolite we found to be elevated in the CSF. HIP reaches the striatum and activates dopamine type 1 (D1R)-expressing neurons, leading to R/C behavior. Altogether, these data suggest that intestinal γδ T cells shape the gut microbiota and their metabolites and prevent dysfunctions of the striatum associated with behavior modulation.
Collapse
Affiliation(s)
- Laura M Cox
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bruna K Tatematsu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lydia Guo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Danielle S LeServe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Julia Mayrink
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Marilia G Oliveira
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dustin Donnelly
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Roberta C Fonseca
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Luisa Lemos
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Toby B Lanser
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ana C Rosa
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Juliana R Lopes
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Luke A Schwerdtfeger
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gabriela F C Ribeiro
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Eduardo L C Lobo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Thais G Moreira
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andre G Oliveira
- Department of Biophysics and Physiology, Biologic Institutes of Sciences, Federal University of Minas Gerais, Brazil
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rafael M Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Liu J, Joseph S, Manohar K, Lee J, Brokaw JP, Shelley WC, Markel TA. Role of innate T cells in necrotizing enterocolitis. Front Immunol 2024; 15:1357483. [PMID: 38390341 PMCID: PMC10881895 DOI: 10.3389/fimmu.2024.1357483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/16/2024] [Indexed: 02/24/2024] Open
Abstract
Necrotizing enterocolitis (NEC) is a destructive gastrointestinal disease primarily affecting preterm babies. Despite advancements in neonatal care, NEC remains a significant cause of morbidity and mortality in neonatal intensive care units worldwide and the etiology of NEC is still unclear. Risk factors for NEC include prematurity, very low birth weight, feeding with formula, intestinal dysbiosis and bacterial infection. A review of the literature would suggest that supplementation of prebiotics and probiotics prevents NEC by altering the immune responses. Innate T cells, a highly conserved subpopulation of T cells that responds quickly to stimulation, develops differently from conventional T cells in neonates. This review aims to provide a succinct overview of innate T cells in neonates, encompassing their phenotypic characteristics, functional roles, likely involvement in the pathogenesis of NEC, and potential therapeutic implications.
Collapse
Affiliation(s)
- Jianyun Liu
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sharon Joseph
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Krishna Manohar
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jasmine Lee
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - John P. Brokaw
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - W. Christopher Shelley
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Riley Hospital for Children at Indiana University Health, Indianapolis, IN, United States
| | - Troy A. Markel
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Riley Hospital for Children at Indiana University Health, Indianapolis, IN, United States
| |
Collapse
|
11
|
du Halgouet A, Bruder K, Peltokangas N, Darbois A, Obwegs D, Salou M, Thimme R, Hofmann M, Lantz O, Sagar. Multimodal profiling reveals site-specific adaptation and tissue residency hallmarks of γδ T cells across organs in mice. Nat Immunol 2024; 25:343-356. [PMID: 38177282 PMCID: PMC10834366 DOI: 10.1038/s41590-023-01710-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 11/13/2023] [Indexed: 01/06/2024]
Abstract
γδ T cells perform heterogeneous functions in homeostasis and disease across tissues. However, it is unclear whether these roles correspond to distinct γδ subsets or to a homogeneous population of cells exerting context-dependent functions. Here, by cross-organ multimodal single-cell profiling, we reveal that various mouse tissues harbor unique site-adapted γδ subsets. Epidermal and intestinal intraepithelial γδ T cells are transcriptionally homogeneous and exhibit epigenetic hallmarks of functional diversity. Through parabiosis experiments, we uncovered cellular states associated with cytotoxicity, innate-like rapid interferon-γ production and tissue repair functions displaying tissue residency hallmarks. Notably, our observations add nuance to the link between interleukin-17-producing γδ T cells and tissue residency. Moreover, transcriptional programs associated with tissue-resident γδ T cells are analogous to those of CD8+ tissue-resident memory T cells. Altogether, this study provides a multimodal landscape of tissue-adapted γδ T cells, revealing heterogeneity, lineage relationships and their tissue residency program.
Collapse
Affiliation(s)
- Anastasia du Halgouet
- Institut National de la Santé et de la Recherche Médicale U932, PSL University, Institut Curie, Paris, France
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Kerstin Bruder
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nina Peltokangas
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Aurélie Darbois
- Institut National de la Santé et de la Recherche Médicale U932, PSL University, Institut Curie, Paris, France
| | - David Obwegs
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marion Salou
- Institut National de la Santé et de la Recherche Médicale U932, PSL University, Institut Curie, Paris, France
| | - Robert Thimme
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maike Hofmann
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Olivier Lantz
- Institut National de la Santé et de la Recherche Médicale U932, PSL University, Institut Curie, Paris, France
- Laboratoire d'Immunologie Clinique, Institut Curie, Paris, France
- Centre d'Investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428) Institut Curie, Paris, France
| | - Sagar
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
12
|
Mohamed AA, al-Ramadi BK, Fernandez-Cabezudo MJ. Interplay between Microbiota and γδ T Cells: Insights into Immune Homeostasis and Neuro-Immune Interactions. Int J Mol Sci 2024; 25:1747. [PMID: 38339023 PMCID: PMC10855551 DOI: 10.3390/ijms25031747] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/12/2024] Open
Abstract
The gastrointestinal (GI) tract of multicellular organisms, especially mammals, harbors a symbiotic commensal microbiota with diverse microorganisms including bacteria, fungi, viruses, and other microbial and eukaryotic species. This microbiota exerts an important role on intestinal function and contributes to host health. The microbiota, while benefiting from a nourishing environment, is involved in the development, metabolism and immunity of the host, contributing to the maintenance of homeostasis in the GI tract. The immune system orchestrates the maintenance of key features of host-microbe symbiosis via a unique immunological network that populates the intestinal wall with different immune cell populations. Intestinal epithelium contains lymphocytes in the intraepithelial (IEL) space between the tight junctions and the basal membrane of the gut epithelium. IELs are mostly CD8+ T cells, with the great majority of them expressing the CD8αα homodimer, and the γδ T cell receptor (TCR) instead of the αβ TCR expressed on conventional T cells. γδ T cells play a significant role in immune surveillance and tissue maintenance. This review provides an overview of how the microbiota regulates γδ T cells and the influence of microbiota-derived metabolites on γδ T cell responses, highlighting their impact on immune homeostasis. It also discusses intestinal neuro-immune regulation and how γδ T cells possess the ability to interact with both the microbiota and brain.
Collapse
Affiliation(s)
- Alaa A. Mohamed
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
| | - Basel K. al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Maria J. Fernandez-Cabezudo
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
13
|
Sagar. Unraveling the secrets of γδ T cells with single-cell biology. J Leukoc Biol 2024; 115:47-56. [PMID: 38073484 DOI: 10.1093/jleuko/qiad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/16/2023] [Accepted: 09/28/2023] [Indexed: 01/07/2024] Open
Abstract
Recent technological advancements have enabled us to study the molecular features of cellular states at the single-cell level, providing unprecedented resolution for comprehending the identity and function of a cell. By applying these techniques across multiple time frames, tissues, and diseases, we can delve deeper into the mechanisms governing the development and functions of cell lineages. In this review, I focus on γδ T cells, which are a unique and functionally nonredundant T cell lineage categorized under the umbrella of unconventional T cells. I discuss how single-cell biology is providing unique insights into their development and functions. Furthermore, I explore how single-cell methods can be used to answer several key questions about their biology. These investigations will be essential to fully understand their translational potential, including their role in cytotoxicity and tissue repair in cancer and regeneration.
Collapse
Affiliation(s)
- Sagar
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstraße 55, Freiburg 79106, Germany
| |
Collapse
|
14
|
Cronin SK, Barnard AM, Dietz SJ, Lawrence M, Kramer AE, Gressley TF. Effect of short-term abomasal corn starch infusions on postruminal fermentation and blood measures. J Dairy Sci 2023; 106:8658-8669. [PMID: 37641271 DOI: 10.3168/jds.2022-23180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/15/2023] [Indexed: 08/31/2023]
Abstract
It is possible that some of the systemic responses to subacute ruminal acidosis (SARA) may be caused by increased intestinal starch fermentation. The objective of this experiment was to evaluate the effect of abomasal infusion of up to 3 g of corn starch/kg body weight (approximately 1.6 kg of starch/d) on fecal measures of fermentation, plasma acute phase proteins, and white blood cell populations. Six ruminally cannulated cows in late lactation were randomly assigned to duplicate 3 × 3 Latin squares with 21-d periods. Cows were fed a 20.6% starch TMR twice daily and during the last 7 d of each period cows were abomasally infused with corn starch at 0 (CON), 1 (ST1), or 3 (ST3) g/kg body weight split into 2 bolus infusions, provided every 12 h. Fecal samples were collected at 0, 6, 12, and 18 h following feeding on d 21 and were analyzed for pH, VFA, lactic acid, and lipopolysaccharide (LPS). Composite fecal samples were used to estimate apparent total-tract nutrient digestibility using undigested neutral detergent fiber as an internal marker. Blood samples were collected at 0 and 6 h relative to feeding on d 14, 18, and 21 of each period. Concentrations of haptoglobin and serum amyloid A in plasma were measured in all samples, 0 h samples on d 14 and 21 were used to measure white blood cell populations, and 0 h samples from d 14, 18, and 21 were used for flow cytometric analysis of γδ T cells. Data were analyzed in SAS using models that included fixed effects of treatment and period and the random effects of cow and square. For blood measures, d 14 samples collected before the initiation of abomasal infusions were included as covariates. Time (d or h) was added as a repeated measure in variables that included multiple samples during the abomasal infusion period. A contrast was used to determine the linear effect of increasing abomasal corn starch. Abomasal corn starch linearly decreased fecal pH and linearly increased fecal total VFA and LPS, but effects were modest, with fecal pH, total VFA, and LPS changing from 6.96, 57.7 mM, and 4.14 log10 endotoxin units (EU) per gram for the CON treatment to 6.69, 64.1 mM, and 4.58 log10 EU/g for the ST3 treatment, respectively. This suggests that we did not induce hindgut acidosis. There were no effects of treatment on apparent total-tract starch digestibility or fecal starch content (mean of 96.9% and 2.2%, respectively). Treatment did not affect serum acute phase proteins or most circulating white blood cells, but the proportion of circulating γδ T cells tended to linearly decrease from 6.69% for CON to 4.61% for ST3. Contrary to our hypothesis, increased hindgut starch fermentation did not induce an inflammatory response in this study.
Collapse
Affiliation(s)
- S K Cronin
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716
| | - A M Barnard
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716
| | - S J Dietz
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716
| | - M Lawrence
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716
| | - A E Kramer
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716
| | - T F Gressley
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716.
| |
Collapse
|
15
|
Muñoz-Ruiz M, Llorian M, D'Antuono R, Pavlova A, Mavrigiannaki AM, McKenzie D, García-Cassani B, Iannitto ML, Wu Y, Dart R, Davies D, Jamal-Hanjani M, Jandke A, Ushakov DS, Hayday AC. IFN-γ-dependent interactions between tissue-intrinsic γδ T cells and tissue-infiltrating CD8 T cells limit allergic contact dermatitis. J Allergy Clin Immunol 2023; 152:1520-1540. [PMID: 37562754 DOI: 10.1016/j.jaci.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/27/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Elicitation of allergic contact dermatitis (ACD), an inflammatory type 4 hypersensitivity disease, induces skin infiltration by polyclonal effector CD8 αβ T cells and precursors of tissue-resident memory T (TRM) cells. Because TRM have long-term potential to contribute to body-surface immunoprotection and immunopathology, their local regulation needs a fuller understanding. OBJECTIVE We sought to investigate how TRM-cell maturation might be influenced by innate-like T cells pre-existing within many epithelia. METHODS This study examined CD8+ TRM-cell maturation following hapten-induced ACD in wild-type mice and in strains harboring altered compartments of dendritic intraepidermal γδ T cells (DETCs), a prototypic tissue-intrinsic, innate-like T-cell compartment that reportedly regulates ACD, but by no elucidated mechanism. RESULTS In addition to eliciting CD8 TRM, ACD induced DETC activation and an intimate coregulatory association of the 2 cell types. This depended on DETC sensing IFN-γ produced by CD8 cells and involved programmed death-ligand 1 (PD-L1). Thus, in mice lacking DETC or lacking IFN-γ receptor solely on γδ cells, ACD-elicited CD8 T cells showed enhanced proliferative and effector potentials and reduced motility, collectively associated with exaggerated ACD pathology. Comparable dysregulation was elicited by PD-L1 blockade in vitro, and IFN-γ-regulated PD-L1 expression was a trait of human skin-homing and intraepithelial γδ T cells. CONCLUSIONS The size and quality of the tissue-infiltrating CD8 T-cell response during ACD can be profoundly regulated by local innate-like T cells responding to IFN-γ and involving PD-L1. Thus, interindividual and tissue-specific variations in tissue-intrinsic lymphocytes may influence responses to allergens and other challenges and may underpin inflammatory pathologies such as those repeatedly observed in γδ T-cell-deficient settings.
Collapse
Affiliation(s)
- Miguel Muñoz-Ruiz
- Immunosurveillance Laboratory, The Francis Crick Institute, London, United Kingdom; Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom; Department of Immunology, Ophthalmology and Ear, Nose and Throat, Complutense University School of Medicine and 12 de Octubre Health Research Institute, Madrid, Spain
| | - Miriam Llorian
- Bioinformatics and Biostatistics science technology platform (STP), The Francis Crick Institute, London, United Kingdom
| | - Rocco D'Antuono
- Light Microscopy STP, The Francis Crick Institute, London, United Kingdom
| | - Anna Pavlova
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Erlangen, Germany
| | | | - Duncan McKenzie
- Immunosurveillance Laboratory, The Francis Crick Institute, London, United Kingdom; Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
| | - Bethania García-Cassani
- Development and Homeostasis of the Nervous System Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Maria Luisa Iannitto
- Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
| | - Yin Wu
- Immunosurveillance Laboratory, The Francis Crick Institute, London, United Kingdom; Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom; Centre for Inflammation Biology and Cancer Immunology, King's College London, London, United Kingdom
| | - Robin Dart
- Immunosurveillance Laboratory, The Francis Crick Institute, London, United Kingdom; Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
| | - Daniel Davies
- Immunosurveillance Laboratory, The Francis Crick Institute, London, United Kingdom; Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
| | - Anett Jandke
- Immunosurveillance Laboratory, The Francis Crick Institute, London, United Kingdom; Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
| | - Dmitry S Ushakov
- Immunosurveillance Laboratory, The Francis Crick Institute, London, United Kingdom; Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom; Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Adrian C Hayday
- Immunosurveillance Laboratory, The Francis Crick Institute, London, United Kingdom; Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom; Centre for Inflammation Biology and Cancer Immunology, King's College London, London, United Kingdom.
| |
Collapse
|
16
|
von Heyl T, Klinger R, Aumann D, Zenner C, Alhussien M, Schlickenrieder A, Lengyel K, Vikkula HK, Mittermair T, Sid H, Schusser B. Loss of αβ but not γδ T cells in chickens causes a severe phenotype. Eur J Immunol 2023; 53:e2350503. [PMID: 37735713 DOI: 10.1002/eji.202350503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/18/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
The availability of genetically modified mice has facilitated the study of mammalian T cells. No model has yet been developed to study these cells in chickens, an important livestock species with a high availability of γδ T cells. To investigate the role of γδ and αβ T cell populations in birds, we generated chickens lacking these T cell populations. This was achieved by genomic deletion of the constant region of the T cell receptor γ or β chain, leading to a complete loss of either γδ or αβ T cells. Our results show that a deletion of αβ T cells but not γδ T cells resulted in a severe phenotype in KO chickens. The αβ T cell KO chickens exhibited granulomas associated with inflammation of the spleen and the proventriculus. Immunophenotyping of αβ T cell KO chickens revealed a significant increase in monocytes and expectedly the absence of CD4+ T cells including FoxP3+ regulatory T cells. Surprisingly there was no increase of γδ T cells. In addition, we observed a significant decrease in immunoglobulins, B lymphocytes, and changes in the bursa morphology. Our data reveal the consequences of T cell knockouts in chickens and provide new insights into their function in vertebrates.
Collapse
Affiliation(s)
- Theresa von Heyl
- Reproductive Biotechnology, TUM School of Life Sciences, Technische Universität München, Freising, Germany
| | - Romina Klinger
- Reproductive Biotechnology, TUM School of Life Sciences, Technische Universität München, Freising, Germany
| | - Dorothea Aumann
- Reproductive Biotechnology, TUM School of Life Sciences, Technische Universität München, Freising, Germany
| | - Christian Zenner
- Reproductive Biotechnology, TUM School of Life Sciences, Technische Universität München, Freising, Germany
| | - Mohanned Alhussien
- Reproductive Biotechnology, TUM School of Life Sciences, Technische Universität München, Freising, Germany
| | - Antonina Schlickenrieder
- Reproductive Biotechnology, TUM School of Life Sciences, Technische Universität München, Freising, Germany
| | - Kamila Lengyel
- Reproductive Biotechnology, TUM School of Life Sciences, Technische Universität München, Freising, Germany
| | - Hanna-Kaisa Vikkula
- Reproductive Biotechnology, TUM School of Life Sciences, Technische Universität München, Freising, Germany
| | - Teresa Mittermair
- Reproductive Biotechnology, TUM School of Life Sciences, Technische Universität München, Freising, Germany
| | - Hicham Sid
- Reproductive Biotechnology, TUM School of Life Sciences, Technische Universität München, Freising, Germany
| | - Benjamin Schusser
- Reproductive Biotechnology, TUM School of Life Sciences, Technische Universität München, Freising, Germany
| |
Collapse
|
17
|
Hu Y, Hu Q, Li Y, Lu L, Xiang Z, Yin Z, Kabelitz D, Wu Y. γδ T cells: origin and fate, subsets, diseases and immunotherapy. Signal Transduct Target Ther 2023; 8:434. [PMID: 37989744 PMCID: PMC10663641 DOI: 10.1038/s41392-023-01653-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 11/23/2023] Open
Abstract
The intricacy of diseases, shaped by intrinsic processes like immune system exhaustion and hyperactivation, highlights the potential of immune renormalization as a promising strategy in disease treatment. In recent years, our primary focus has centered on γδ T cell-based immunotherapy, particularly pioneering the use of allogeneic Vδ2+ γδ T cells for treating late-stage solid tumors and tuberculosis patients. However, we recognize untapped potential and optimization opportunities to fully harness γδ T cell effector functions in immunotherapy. This review aims to thoroughly examine γδ T cell immunology and its role in diseases. Initially, we elucidate functional differences between γδ T cells and their αβ T cell counterparts. We also provide an overview of major milestones in γδ T cell research since their discovery in 1984. Furthermore, we delve into the intricate biological processes governing their origin, development, fate decisions, and T cell receptor (TCR) rearrangement within the thymus. By examining the mechanisms underlying the anti-tumor functions of distinct γδ T cell subtypes based on γδTCR structure or cytokine release, we emphasize the importance of accurate subtyping in understanding γδ T cell function. We also explore the microenvironment-dependent functions of γδ T cell subsets, particularly in infectious diseases, autoimmune conditions, hematological malignancies, and solid tumors. Finally, we propose future strategies for utilizing allogeneic γδ T cells in tumor immunotherapy. Through this comprehensive review, we aim to provide readers with a holistic understanding of the molecular fundamentals and translational research frontiers of γδ T cells, ultimately contributing to further advancements in harnessing the therapeutic potential of γδ T cells.
Collapse
Affiliation(s)
- Yi Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Qinglin Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Zheng Xiang
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zhinan Yin
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany.
| | - Yangzhe Wu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China.
| |
Collapse
|
18
|
Zhao M, Kronenberg M. Innate-like T Cells: Connecting the Dots Linking Microscopic Intestinal Inflammation to Spondyloarthritis. Arthritis Rheumatol 2023; 75:1907-1909. [PMID: 37488948 PMCID: PMC10615776 DOI: 10.1002/art.42660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023]
Affiliation(s)
- Meng Zhao
- Oklahoma Medical Research Foundation, Oklahoma City
| | | |
Collapse
|
19
|
Hada A, Li L, Kandel A, Jin Y, Xiao Z. Characterization of Bovine Intraepithelial T Lymphocytes in the Gut. Pathogens 2023; 12:1173. [PMID: 37764981 PMCID: PMC10535955 DOI: 10.3390/pathogens12091173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Intraepithelial T lymphocytes (T-IELs), which constitute over 50% of the total T lymphocytes in the animal, patrol the mucosal epithelial lining to defend against pathogen invasion while maintaining gut homeostasis. In addition to expressing T cell markers such as CD4 and CD8, T-IELs display T cell receptors (TCR), including either TCRαβ or TCRγδ. Both humans and mice share similar T-IEL subsets: TCRγδ+, TCRαβ+CD8αα+, TCRαβ+CD4+, and TCRαβ+CD8αβ+. Among these subsets, human T-IELs are predominantly TCRαβ+ (over 80%), whereas those in mice are mostly TCRγδ+ (~60%). Of note, the majority of the TCRγδ+ subset expresses CD8αα in both species. Although T-IELs have been extensively studied in humans and mice, their profiles in cattle have not been well examined. Our study is the first to characterize bovine T-IELs using flow cytometry, where we identified several distinct features. The percentage of TCRγδ+ was comparable to that of TCRαβ+ T-IELs (both ~50% of CD3+), and the majority of bovine TCRγδ+ T-IELs did not express CD8 (CD8-) (above 60%). Furthermore, about 20% of TCRαβ+ T-IELs were CD4+CD8αβ+, and the remaining TCRαβ+ T-IELs were evenly distributed between CD4+ and CD8αβ+ (~40% of TCRαβ+ T-IELs each) with no TCRαβ+CD8αα+ identified. Despite these unique properties, bovine T-IELs, similar to those in humans and mice, expressed a high level of CD69, an activation and tissue-retention marker, and a low level of CD62L, a lymphoid adhesion marker. Moreover, bovine T-IELs produced low levels of inflammatory cytokines such as IFNγ and IL17A, and secreted small amounts of the immune regulatory cytokine TGFβ1. Hence, bovine T-IELs' composition largely differs from that of human and mouse, with the dominance of the CD8- population among TCRγδ+ T-IELs, the substantial presence of TCRαβ+CD4+CD8αβ+ cells, and the absence of TCRαβ+CD8αα+ T-IELs. These results provide the groundwork for conducting future studies to examine how bovine T-IELs respond to intestinal pathogens and maintain the integrity of the gut epithelial barrier in animals.
Collapse
Affiliation(s)
| | | | | | | | - Zhengguo Xiao
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (A.H.); (L.L.); (A.K.); (Y.J.)
| |
Collapse
|
20
|
Dart RJ, Zlatareva I, Vantourout P, Theodoridis E, Amar A, Kannambath S, East P, Recaldin T, Mansfield JC, Lamb CA, Parkes M, Irving PM, Prescott NJ, Hayday AC. Conserved γδ T cell selection by BTNL proteins limits progression of human inflammatory bowel disease. Science 2023; 381:eadh0301. [PMID: 37708268 PMCID: PMC7615126 DOI: 10.1126/science.adh0301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/19/2023] [Indexed: 09/16/2023]
Abstract
Murine intraepithelial γδ T cells include distinct tissue-protective cells selected by epithelial butyrophilin-like (BTNL) heteromers. To determine whether this biology is conserved in humans, we characterized the colonic γδ T cell compartment, identifying a diverse repertoire that includes a phenotypically distinct subset coexpressing T cell receptor Vγ4 and the epithelium-binding integrin CD103. This subset was disproportionately diminished and dysregulated in inflammatory bowel disease, whereas on-treatment CD103+γδ T cell restoration was associated with sustained inflammatory bowel disease remission. Moreover, CD103+Vγ4+cell dysregulation and loss were also displayed by humans with germline BTNL3/BTNL8 hypomorphism, which we identified as a risk factor for penetrating Crohn's disease (CD). Thus, BTNL-dependent selection and/or maintenance of distinct tissue-intrinsic γδ T cells appears to be an evolutionarily conserved axis limiting the progression of a complex, multifactorial, tissue-damaging disease of increasing global incidence.
Collapse
Affiliation(s)
- Robin J Dart
- Peter Gorer Dept of Immunobiology, King’s College London at Guy’s Hospital Campus, London, United Kingdom
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
- Department of Gastroenterology, Guy’s and St Thomas’ Foundation Trust, London, UK
| | - Iva Zlatareva
- Peter Gorer Dept of Immunobiology, King’s College London at Guy’s Hospital Campus, London, United Kingdom
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Pierre Vantourout
- Peter Gorer Dept of Immunobiology, King’s College London at Guy’s Hospital Campus, London, United Kingdom
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Efstathios Theodoridis
- Peter Gorer Dept of Immunobiology, King’s College London at Guy’s Hospital Campus, London, United Kingdom
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Ariella Amar
- Department of Medical and Molecular Genetics, King’s College London, London, UK
| | | | - Philip East
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, UK
| | | | - John C Mansfield
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Gastroenterology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Christopher A Lamb
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Gastroenterology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Miles Parkes
- Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
| | - Peter M Irving
- Department of Gastroenterology, Guy’s and St Thomas’ Foundation Trust, London, UK
| | - Natalie J Prescott
- Department of Medical and Molecular Genetics, King’s College London, London, UK
| | - Adrian C Hayday
- Peter Gorer Dept of Immunobiology, King’s College London at Guy’s Hospital Campus, London, United Kingdom
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
21
|
Kurioka A, Klenerman P. Aging unconventionally: γδ T cells, iNKT cells, and MAIT cells in aging. Semin Immunol 2023; 69:101816. [PMID: 37536148 PMCID: PMC10804939 DOI: 10.1016/j.smim.2023.101816] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
Unconventional T cells include γδ T cells, invariant Natural Killer T cells (iNKT) cells and Mucosal Associated Invariant T (MAIT) cells, which are distinguished from conventional T cells by their recognition of non-peptide ligands presented by non-polymorphic antigen presenting molecules and rapid effector functions that are pre-programmed during their development. Here we review current knowledge of the effect of age on unconventional T cells, from early life to old age, in both mice and humans. We then discuss the role of unconventional T cells in age-associated diseases and infections, highlighting the similarities between members of the unconventional T cell family in the context of aging.
Collapse
Affiliation(s)
- Ayako Kurioka
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| |
Collapse
|
22
|
Quintana JF, Sinton MC, Chandrasegaran P, Lestari AN, Heslop R, Cheaib B, Ogunsola J, Ngoyi DM, Kuispond Swar NR, Cooper A, Mabbott NA, Coffelt SB, MacLeod A. γδ T cells control murine skin inflammation and subcutaneous adipose wasting during chronic Trypanosoma brucei infection. Nat Commun 2023; 14:5279. [PMID: 37644007 PMCID: PMC10465518 DOI: 10.1038/s41467-023-40962-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
African trypanosomes colonise the skin to ensure parasite transmission. However, how the skin responds to trypanosome infection remains unresolved. Here, we investigate the local immune response of the skin in a murine model of infection using spatial and single cell transcriptomics. We detect expansion of dermal IL-17A-producing Vγ6+ cells during infection, which occurs in the subcutaneous adipose tissue. In silico cell-cell communication analysis suggests that subcutaneous interstitial preadipocytes trigger T cell activation via Cd40 and Tnfsf18 signalling, amongst others. In vivo, we observe that female mice deficient for IL-17A-producing Vγ6+ cells show extensive inflammation and limit subcutaneous adipose tissue wasting, independently of parasite burden. Based on these observations, we propose that subcutaneous adipocytes and Vγ6+ cells act in concert to limit skin inflammation and adipose tissue wasting. These studies provide new insights into the role of γδ T cell and subcutaneous adipocytes as homeostatic regulators of skin immunity during chronic infection.
Collapse
Affiliation(s)
- Juan F Quintana
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK.
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Lydia Becker Institute of Immunology and Inflammation. University of Manchester, Manchester, UK.
| | - Matthew C Sinton
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Praveena Chandrasegaran
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Agatha Nabilla Lestari
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Rhiannon Heslop
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Bachar Cheaib
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Translational Lung Research Center Heidelberg (TLRC), Center for Infectious Diseases, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - John Ogunsola
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Dieudonne Mumba Ngoyi
- Department of Parasitology, National Institute of Biomedical Research, Kinshasa, Democratic Republic of the Congo
| | - Nono-Raymond Kuispond Swar
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- Department of Parasitology, National Institute of Biomedical Research, Kinshasa, Democratic Republic of the Congo
| | - Anneli Cooper
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Neil A Mabbott
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Seth B Coffelt
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Annette MacLeod
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK.
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
23
|
Alonso S, Edelblum K. Metabolic regulation of γδ intraepithelial lymphocytes. DISCOVERY IMMUNOLOGY 2023; 2:kyad011. [PMID: 38179241 PMCID: PMC10766425 DOI: 10.1093/discim/kyad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Elucidating the relationship between cellular metabolism and T cell function has substantially advanced our understanding of how T cells are regulated in response to activation. The metabolic profiles of circulating or peripheral T cells have been well-described, yet less is known regarding how complex local microenvironments shape or modulate the bioenergetic profile of tissue-resident T lymphocytes. Intraepithelial lymphocytes expressing the γδ T cell receptor (γδ IEL) provide immunosurveillance of the intestinal epithelium to limit tissue injury and microbial invasion; however, their activation and effector responses occur independently of antigen recognition. In this review, we will summarize the current knowledge regarding γδ T cell and IEL metabolic profiles and how this informs our understanding of γδ IEL metabolism. We will also discuss the role of the gut microbiota in shaping the metabolic profile of these sentinel lymphocytes, and in turn, how these bioenergetics contribute to regulation of γδ IEL surveillance behavior and effector function. Improved understanding of the metabolic processes involved in γδ IEL homeostasis and function may yield novel strategies to amplify the protective functions of these cells in the context of intestinal health and disease.
Collapse
Affiliation(s)
- Sara Alonso
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Karen Edelblum
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
24
|
Hsu UH, Chiang BL. γδ T Cells and Allergic Diseases. Clin Rev Allergy Immunol 2023; 65:172-182. [PMID: 37395986 DOI: 10.1007/s12016-023-08966-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
Gamma-delta (γδ) T cells play an essential role in allergic diseases and have emerged as a potential treatment target in recent decades. To clarify the effects of γδ T cells on atopic illnesses, we reviewed the literature on the physical roles and functions of various subsets of γδ T cells, including type 1 T helper (Th1)-like, type 2 T helper- (Th2)-like, and type 17 T helper (Th17)-like γδ T cells. Mouse Vγ1 T cells increase interleukin (IL)-4 levels and trigger B cell class switching and immunoglobulin E production. Meanwhile, mouse Vγ4 T cells and human CD8lowVδ1 T cells secrete interferon-γ and exert an anti-allergy effect similar to that of Th1 cells. Moreover, mouse Vγ6 T cells produce IL-17A, while Th17-like γδ T cells enhance neutrophil and eosinophil infiltration in the acute phase of inflammation, but exert anti-inflammatory effects in the chronic phase. Human Vγ9δ2 T cells may exhibit Th1- or Th2-like characteristics in response to certain types of stimulation. In addition, the microbiota can modulate epithelial γδ T cell survival through aryl hydrocarbon receptors; these γδ T cells play crucial roles in the repair of epithelial damage, antibacterial protection, antigen tolerance, and effects of dysbiosis on allergic diseases.
Collapse
Affiliation(s)
- Uei-Hsiang Hsu
- Department of Pediatrics, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu City, Taiwan
| | - Bor-Luen Chiang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
25
|
Li GQ, Xia J, Zeng W, Luo W, Liu L, Zeng X, Cao D. The intestinal γδ T cells: functions in the gut and in the distant organs. Front Immunol 2023; 14:1206299. [PMID: 37398661 PMCID: PMC10311558 DOI: 10.3389/fimmu.2023.1206299] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Located in the frontline against the largest population of microbiota, the intestinal mucosa of mammals has evolved to become an effective immune system. γδ T cells, a unique T cell subpopulation, are rare in circulation blood and lymphoid tissues, but rich in the intestinal mucosa, particularly in the epithelium. Via rapid production of cytokines and growth factors, intestinal γδ T cells are key contributors to epithelial homeostasis and immune surveillance of infection. Intriguingly, recent studies have revealed that the intestinal γδ T cells may play novel exciting functions ranging from epithelial plasticity and remodeling in response to carbohydrate diets to the recovery of ischemic stroke. In this review article, we update regulatory molecules newly defined in lymphopoiesis of the intestinal γδ T cells and their novel functions locally in the intestinal mucosa, such as epithelial remodeling, and distantly in pathological setting, e.g., ischemic brain injury repair, psychosocial stress responses, and fracture repair. The challenges and potential revenues in intestinal γδ T cell studies are discussed.
Collapse
Affiliation(s)
- Guo-Qing Li
- Department of Gastroenterology, Clinical Research Center, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research on Gastrointestinal Tumors, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jiliang Xia
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weihong Zeng
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weijia Luo
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Logen Liu
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research on Gastrointestinal Tumors, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xi Zeng
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Deliang Cao
- Department of Gastroenterology, Clinical Research Center, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
26
|
Jha D, Al-Taie Z, Krek A, Eshghi ST, Fantou A, Laurent T, Tankelevich M, Cao X, Meringer H, Livanos AE, Tokuyama M, Cossarini F, Bourreille A, Josien R, Hou R, Canales-Herrerias P, Ungaro RC, Kayal M, Marion J, Polydorides AD, Ko HM, D’souza D, Merand R, Kim-Schulze S, Hackney JA, Nguyen A, McBride JM, Yuan GC, Colombel JF, Martin JC, Argmann C, Suárez-Fariñas M, Petralia F, Mehandru S. Myeloid cell influx into the colonic epithelium is associated with disease severity and non-response to anti-Tumor Necrosis Factor Therapy in patients with Ulcerative Colitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.542863. [PMID: 37333091 PMCID: PMC10274630 DOI: 10.1101/2023.06.02.542863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Ulcerative colitis (UC) is an idiopathic chronic inflammatory disease of the colon with sharply rising global prevalence. Dysfunctional epithelial compartment (EC) dynamics are implicated in UC pathogenesis although EC-specific studies are sparse. Applying orthogonal high-dimensional EC profiling to a Primary Cohort (PC; n=222), we detail major epithelial and immune cell perturbations in active UC. Prominently, reduced frequencies of mature BEST4+OTOP2+ absorptive and BEST2+WFDC2+ secretory epithelial enterocytes were associated with the replacement of homeostatic, resident TRDC+KLRD1+HOPX+ γδ+ T cells with RORA+CCL20+S100A4+ TH17 cells and the influx of inflammatory myeloid cells. The EC transcriptome (exemplified by S100A8, HIF1A, TREM1, CXCR1) correlated with clinical, endoscopic, and histological severity of UC in an independent validation cohort (n=649). Furthermore, therapeutic relevance of the observed cellular and transcriptomic changes was investigated in 3 additional published UC cohorts (n=23, 48 and 204 respectively) to reveal that non-response to anti-Tumor Necrosis Factor (anti-TNF) therapy was associated with EC related myeloid cell perturbations. Altogether, these data provide high resolution mapping of the EC to facilitate therapeutic decision-making and personalization of therapy in patients with UC.
Collapse
Affiliation(s)
- Divya Jha
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zainab Al-Taie
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, New York City, NY, USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
| | - Shadi Toghi Eshghi
- Biomarker Discovery, OMNI, Genentech Inc. South SanFrancisco, CA, USA
- OMNI Biomarker Development, Genentech Inc. South SanFrancisco, CA, USA
| | - Aurelie Fantou
- Université de Nantes, Inserm, CHU Nantes, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Thomas Laurent
- Université de Nantes, Inserm, CHU Nantes, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Michael Tankelevich
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xuan Cao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
| | - Hadar Meringer
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra E Livanos
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Minami Tokuyama
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Francesca Cossarini
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arnaud Bourreille
- Université de Nantes, Inserm, CHU Nantes, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Regis Josien
- Université de Nantes, Inserm, CHU Nantes, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Ruixue Hou
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, New York City, NY, USA
| | - Pablo Canales-Herrerias
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ryan C. Ungaro
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maia Kayal
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James Marion
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Huaibin M. Ko
- Department of Pathology and Cell Biology, Columbia University Medical Center-New York Presbyterian Hospital, New York, New York
| | - Darwin D’souza
- Human Immune Monitoring Core, Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raphael Merand
- Human Immune Monitoring Core, Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seunghee Kim-Schulze
- Human Immune Monitoring Core, Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jason A. Hackney
- Biomarker Discovery, OMNI, Genentech Inc. South SanFrancisco, CA, USA
- OMNI Biomarker Development, Genentech Inc. South SanFrancisco, CA, USA
| | - Allen Nguyen
- Biomarker Discovery, OMNI, Genentech Inc. South SanFrancisco, CA, USA
- OMNI Biomarker Development, Genentech Inc. South SanFrancisco, CA, USA
| | - Jacqueline M. McBride
- Biomarker Discovery, OMNI, Genentech Inc. South SanFrancisco, CA, USA
- OMNI Biomarker Development, Genentech Inc. South SanFrancisco, CA, USA
| | - Guo-Cheng Yuan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
| | - Jean Frederic Colombel
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jerome C. Martin
- Université de Nantes, Inserm, CHU Nantes, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Carmen Argmann
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, New York City, NY, USA
| | - Mayte Suárez-Fariñas
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, New York City, NY, USA
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
| | - Saurabh Mehandru
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
27
|
Dar HY, Perrien DS, Pal S, Stoica A, Uppuganti S, Nyman JS, Jones RM, Weitzmann MN, Pacifici R. Callus γδ T cells and microbe-induced intestinal Th17 cells improve fracture healing in mice. J Clin Invest 2023; 133:e166577. [PMID: 36881482 PMCID: PMC10104897 DOI: 10.1172/jci166577] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
IL-17A (IL-17), a driver of the inflammatory phase of fracture repair, is produced locally by several cell lineages including γδ T cells and Th17 cells. However, the origin of these T cells and their relevance for fracture repair are unknown. Here, we show that fractures rapidly expanded callus γδ T cells, which led to increased gut permeability by promoting systemic inflammation. When the microbiota contained the Th17 cell-inducing taxon segmented filamentous bacteria (SFB), activation of γδ T cells was followed by expansion of intestinal Th17 cells, their migration to the callus, and improved fracture repair. Mechanistically, fractures increased the S1P receptor 1-mediated (S1PR1-mediated) egress of Th17 cells from the intestine and enhanced their homing to the callus through a CCL20-mediated mechanism. Fracture repair was impaired by deletion of γδ T cells, depletion of the microbiome by antibiotics (Abx), blockade of Th17 cell egress from the gut, or Ab neutralization of Th17 cell influx into the callus. These findings demonstrate the relevance of the microbiome and T cell trafficking for fracture repair. Modifications of microbiome composition via Th17 cell-inducing bacteriotherapy and avoidance of broad-spectrum Abx may represent novel therapeutic strategies to optimize fracture healing.
Collapse
Affiliation(s)
- Hamid Y. Dar
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
| | - Daniel S. Perrien
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
| | - Subhashis Pal
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
| | - Andreea Stoica
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
| | - Sasidhar Uppuganti
- Department of Orthopedic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jeffry S. Nyman
- Department of Orthopedic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Rheinallt M. Jones
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - M. Neale Weitzmann
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
- Atlanta VA Health Care System, Department of Veterans Affairs, Decatur, Georgia, USA
| | - Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
- Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
28
|
Raftery AL, O’Brien CA, Harris NL, Tsantikos E, Hibbs ML. Development of severe colitis is associated with lung inflammation and pathology. Front Immunol 2023; 14:1125260. [PMID: 37063825 PMCID: PMC10102339 DOI: 10.3389/fimmu.2023.1125260] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
Inflammatory bowel diseases (IBD) such as Crohn’s disease and ulcerative colitis are chronic relapsing diseases that affect the gastrointestinal tract, most commonly the colon. A link between the gut and the lung is suggested since patients with IBD have an increased susceptibility for chronic inflammatory lung disease. Furthermore, in the absence of overt lung disease, IBD patients have worsened lung function and more leukocytes in sputum than healthy individuals, highlighting a conduit between the gut and lung in disease. To study the gut-lung axis in the context of IBD, we used TCRδ-/- mice, which are highly susceptible to dextran sulfate sodium (DSS) due to the importance of γδ T cells in maintenance of barrier integrity. After induction of experimental colitis using DSS, the lungs of TCRδ-/- mice exhibited signs of inflammation and mild emphysema, which was not observed in DSS-treated C57BL/6 mice. Damage to the lung tissue was accompanied by a large expansion of neutrophils in the lung parenchyma and an increase in alveolar macrophages in the lung wash. Gene expression analyses showed a significant increase in Csf3, Cxcl2, Tnfa, and Il17a in lung tissue in keeping with neutrophil infiltration. Expression of genes encoding reactive oxygen species enzymes and elastolytic enzymes were enhanced in the lungs of both C57BL/6 and TCRδ-/- mice with colitis. Similarly, surfactant gene expression was also enhanced, which may represent a protective mechanism. These data demonstrate that severe colitis in a susceptible genetic background is sufficient to induce lung inflammation and tissue damage, providing the research community with an important tool for the development of novel therapeutics aimed at reducing co-morbidities in IBD patients.
Collapse
|
29
|
Chantana W, Hu R, Buddhasiri S, Thiennimitr P, Tantipaiboonwong P, Chewonarin T. The Extract of Perilla frutescens Seed Residue Attenuated the Progression of Aberrant Crypt Foci in Rat Colon by Reducing Inflammatory Processes and Altered Gut Microbiota. Foods 2023; 12:foods12050988. [PMID: 36900505 PMCID: PMC10001385 DOI: 10.3390/foods12050988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Perilla frutescens (PF) seed residue is a waste from perilla oil production that still contains nutrients and phytochemicals. This study aimed to investigate the chemoprotective action of PF seed residue crude ethanolic extract (PCE) on the inflammatory-induced promotion stage of rat colon carcinogenesis and cell culture models. PCE 0.1 and 1 g/kg body weight were administered by oral gavage to rats after receiving dimethylhydrazine (DMH) with one week of dextran sulfate sodium (DSS) supplementation. PCE at high dose exhibited a reduction in aberrant crypt foci (ACF) number (66.46%) and decreased pro-inflammatory cytokines compared to the DMH + DSS group (p < 0.01). Additionally, PCE could either modulate the inflammation induced in murine macrophage cells by bacterial toxins or suppress the proliferation of cancer cell lines, which was induced by the inflammatory process. These results demonstrate that the active components in PF seed residue showed a preventive effect on the aberrant colonic epithelial cell progression by modulating inflammatory microenvironments from the infiltrated macrophage or inflammatory response of aberrant cells. Moreover, consumption of PCE could alter rat microbiota, which might be related to health benefits. However, the mechanisms of PCE on the microbiota, which are related to inflammation and inflammatory-induced colon cancer progression, need to be further investigated.
Collapse
Affiliation(s)
- Weerachai Chantana
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Rentong Hu
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Laboratory Medicine, The Affiliated Hospital of Youjiang Medical, Baise 533099, China
| | - Songphon Buddhasiri
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Parameth Thiennimitr
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Payungsak Tantipaiboonwong
- Division of Biochemistry and Nutrition, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Teera Chewonarin
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-53-949437 (ext. 218); Fax: +66-53-894031
| |
Collapse
|
30
|
Abstract
Mucosal associated invariant T (MAIT) cells are innate-like T lymphocytes, strikingly enriched at mucosal surfaces and characterized by a semi-invariant αβ T cell receptor (TCR) recognizing microbial derived intermediates of riboflavin synthesis presented by the MHC-Ib molecule MR1. At barrier sites MAIT cells occupy a prime position for interaction with commensal microorganisms, comprising the microbiota. The microbiota is a rich source of riboflavin derived antigens required in early life to promote intra-thymic MAIT cell development and sustain a life-long population of tissue resident cells. A symbiotic relationship is thought to be maintained in health whereby microbes promote maturation and homeostasis, and in turn MAIT cells can engage a TCR-dependent "tissue repair" program in the presence of commensal organisms conducive to sustaining barrier function and integrity of the microbial community. MAIT cell activation can be induced in a MR1-TCR dependent manner or through MR1-TCR independent mechanisms via pro-inflammatory cytokines interleukin (IL)-12/-15/-18 and type I interferon. MAIT cells provide immunity against bacterial, fungal and viral pathogens. However, MAIT cells may have deleterious effects through insufficient or exacerbated effector activity and have been implicated in autoimmune, inflammatory and allergic conditions in which microbial dysbiosis is a shared feature. In this review we summarize the current knowledge on the role of the microbiota in the development and maintenance of circulating and tissue resident MAIT cells. We also explore how microbial dysbiosis, alongside changes in intestinal permeability and imbalance between pro- and anti-inflammatory components of the immune response are together involved in the potential pathogenicity of MAIT cells. Whilst there have been significant improvements in our understanding of how the microbiota shapes MAIT cell function, human data are relatively lacking, and it remains unknown if MAIT cells can conversely influence the composition of the microbiota. We speculate whether, in a human population, differences in microbiomes might account for the heterogeneity observed in MAIT cell frequency across mucosal sites or between individuals, and response to therapies targeting T cells. Moreover, we speculate whether manipulation of the microbiota, or harnessing MAIT cell ligands within the gut or disease-specific sites could offer novel therapeutic strategies.
Collapse
Affiliation(s)
- Maisha F. Jabeen
- Respiratory Medicine Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Timothy S. C. Hinks
- Respiratory Medicine Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
31
|
Rezende RM, Cox LM, Moreira TG, Liu S, Boulenouar S, Dhang F, LeServe DS, Nakagaki BN, Lopes JR, Tatematsu BK, Lemos L, Mayrink J, Lobo ELC, Guo L, Oliveira MG, Kuhn C, Weiner HL. Gamma-delta T cells modulate the microbiota and fecal micro-RNAs to maintain mucosal tolerance. MICROBIOME 2023; 11:32. [PMID: 36814316 PMCID: PMC9948450 DOI: 10.1186/s40168-023-01478-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Gamma-delta (γδ) T cells are a major cell population in the intestinal mucosa and are key mediators of mucosal tolerance and microbiota composition. Little is known about the mechanisms by which intestinal γδ T cells interact with the gut microbiota to maintain tolerance. RESULTS We found that antibiotic treatment impaired oral tolerance and depleted intestinal γδ T cells, suggesting that the gut microbiota is necessary to maintain γδ T cells. We also found that mice deficient for γδ T cells (γδ-/-) had an altered microbiota composition that led to small intestine (SI) immune dysregulation and impaired tolerance. Accordingly, colonizing WT mice with γδ-/- microbiota resulted in SI immune dysregulation and loss of tolerance whereas colonizing γδ-/- mice with WT microbiota normalized mucosal immune responses and restored mucosal tolerance. Moreover, we found that SI γδ T cells shaped the gut microbiota and regulated intestinal homeostasis by secreting the fecal micro-RNA let-7f. Importantly, oral administration of let-7f to γδ-/- mice rescued mucosal tolerance by promoting the growth of the γδ-/--microbiota-depleted microbe Ruminococcus gnavus. CONCLUSIONS Taken together, we demonstrate that γδ T cell-selected microbiota is necessary and sufficient to promote mucosal tolerance, is mediated in part by γδ T cell secretion of fecal micro-RNAs, and is mechanistically linked to restoration of mucosal immune responses. Video Abstract.
Collapse
Affiliation(s)
- Rafael M Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Laura M Cox
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Thais G Moreira
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Shirong Liu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Selma Boulenouar
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Fyonn Dhang
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Danielle S LeServe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Brenda N Nakagaki
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Juliana R Lopes
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Bruna K Tatematsu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Luisa Lemos
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Julia Mayrink
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Eduardo L C Lobo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Lydia Guo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Marilia G Oliveira
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Chantal Kuhn
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
32
|
Interleukin 11 confers resistance to dextran sulfate sodium-induced colitis in mice. iScience 2023; 26:105934. [PMID: 36685040 PMCID: PMC9852934 DOI: 10.1016/j.isci.2023.105934] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 11/30/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Intestinal homeostasis is tightly regulated by epithelial cells, leukocytes, and stromal cells, and its dysregulation is associated with inflammatory bowel diseases. Interleukin (IL)-11, a member of the IL-6 family of cytokines, is produced by inflammatory fibroblasts during acute colitis. However, the role of IL-11 in the development of colitis is still unclear. Herein, we showed that IL-11 ameliorated DSS-induced acute colitis in mouse models. We found that deletion of Il11ra1 or Il11 rendered mice highly susceptible to DSS-induced colitis compared to the respective control mice. The number of apoptotic epithelial cells was increased in DSS-treated Il11ra1- or Il11-deficient mice. Moreover, we showed that IL-11 production was regulated by reactive oxygen species (ROS) produced by lysozyme M-positive myeloid cells. These findings indicate that fibroblast-produced IL-11 plays an important role in protecting the mucosal epithelium in acute colitis. Myeloid cell-derived ROS contribute to the attenuation of colitis through the production of IL-11.
Collapse
|
33
|
Wiarda JE, Loving CL. Intraepithelial lymphocytes in the pig intestine: T cell and innate lymphoid cell contributions to intestinal barrier immunity. Front Immunol 2022; 13:1048708. [PMID: 36569897 PMCID: PMC9772029 DOI: 10.3389/fimmu.2022.1048708] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Intraepithelial lymphocytes (IELs) include T cells and innate lymphoid cells that are important mediators of intestinal immunity and barrier defense, yet most knowledge of IELs is derived from the study of humans and rodent models. Pigs are an important global food source and promising biomedical model, yet relatively little is known about IELs in the porcine intestine, especially during formative ages of intestinal development. Due to the biological significance of IELs, global importance of pig health, and potential of early life events to influence IELs, we collate current knowledge of porcine IEL functional and phenotypic maturation in the context of the developing intestinal tract and outline areas where further research is needed. Based on available findings, we formulate probable implications of IELs on intestinal and overall health outcomes and highlight key findings in relation to human IELs to emphasize potential applicability of pigs as a biomedical model for intestinal IEL research. Review of current literature suggests the study of porcine intestinal IELs as an exciting research frontier with dual application for betterment of animal and human health.
Collapse
Affiliation(s)
- Jayne E. Wiarda
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States,Immunobiology Graduate Program, Iowa State University, Ames, IA, United States,Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Crystal L. Loving
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States,Immunobiology Graduate Program, Iowa State University, Ames, IA, United States,*Correspondence: Crystal L. Loving,
| |
Collapse
|
34
|
Gui Y, Cheng H, Zhou J, Xu H, Han J, Zhang D. Development and function of natural TCR + CD8αα + intraepithelial lymphocytes. Front Immunol 2022; 13:1059042. [PMID: 36569835 PMCID: PMC9768216 DOI: 10.3389/fimmu.2022.1059042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
The complexity of intestinal homeostasis results from the ability of the intestinal epithelium to absorb nutrients, harbor multiple external and internal antigens, and accommodate diverse immune cells. Intestinal intraepithelial lymphocytes (IELs) are a unique cell population embedded within the intestinal epithelial layer, contributing to the formation of the mucosal epithelial barrier and serving as a first-line defense against microbial invasion. TCRαβ+ CD4- CD8αα+ CD8αβ- and TCRγδ+ CD4- CD8αα+ CD8αβ- IELs are the two predominant subsets of natural IELs. These cells play an essential role in various intestinal diseases, such as infections and inflammatory diseases, and act as immune regulators in the gut. However, their developmental and functional patterns are extremely distinct, and the mechanisms underlying their development and migration to the intestine are not fully understood. One example is that Bcl-2 promotes the survival of thymic precursors of IELs. Mature TCRαβ+ CD4- CD8αα+ CD8αβ- IELs seem to be involved in immune regulation, while TCRγδ+ CD4- CD8αα+ CD8αβ- IELs might be involved in immune surveillance by promoting homeostasis of host microbiota, protecting and restoring the integrity of mucosal epithelium, inhibiting microbiota invasion, and limiting excessive inflammation. In this review, we elucidated and organized effectively the functions and development of these cells to guide future studies in this field. We also discussed key scientific questions that need to be addressed in this area.
Collapse
Affiliation(s)
- Yuanyuan Gui
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Cheng
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jingyang Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiajia Han
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China,*Correspondence: Jiajia Han, ; Dunfang Zhang,
| | - Dunfang Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Jiajia Han, ; Dunfang Zhang,
| |
Collapse
|
35
|
Hackstein CP, Costigan D, Drexhage L, Pearson C, Bullers S, Ilott N, Akther HD, Gu Y, FitzPatrick MEB, Harrison OJ, Garner LC, Mann EH, Pandey S, Friedrich M, Provine NM, Uhlig HH, Marchi E, Powrie F, Klenerman P, Thornton EE. A conserved population of MHC II-restricted, innate-like, commensal-reactive T cells in the gut of humans and mice. Nat Commun 2022; 13:7472. [PMID: 36463279 PMCID: PMC9719512 DOI: 10.1038/s41467-022-35126-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 11/20/2022] [Indexed: 12/05/2022] Open
Abstract
Interactions with commensal microbes shape host immunity on multiple levels and play a pivotal role in human health and disease. Tissue-dwelling, antigen-specific T cells are poised to respond to local insults, making their phenotype important in the relationship between host and microbes. Here we show that MHC-II restricted, commensal-reactive T cells in the colon of both humans and mice acquire transcriptional and functional characteristics associated with innate-like T cells. This cell population is abundant and conserved in the human and murine colon and endowed with polyfunctional effector properties spanning classic Th1- and Th17-cytokines, cytotoxic molecules, and regulators of epithelial homeostasis. T cells with this phenotype are increased in ulcerative colitis patients, and their presence aggravates pathology in dextran sodium sulphate-treated mice, pointing towards a pathogenic role in colitis. Our findings add to the expanding spectrum of innate-like immune cells positioned at the frontline of intestinal immune surveillance, capable of acting as sentinels of microbes and the local cytokine milieu.
Collapse
Affiliation(s)
- Carl-Philipp Hackstein
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Dana Costigan
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Linnea Drexhage
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Claire Pearson
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Samuel Bullers
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Nicholas Ilott
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Hossain Delowar Akther
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Yisu Gu
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Michael E B FitzPatrick
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Oliver J Harrison
- Center for Fundamental Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, 98101, USA
- Department of Immunology, University of Washington, 750 Republican St, Seattle, WA, 98108, USA
| | - Lucy C Garner
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Elizabeth H Mann
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Sumeet Pandey
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Matthias Friedrich
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Nicholas M Provine
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, and Biomedical Research Centre, and Department of Paediatrics, University of Oxford, Oxford, OX39DU, UK
| | - Emanuele Marchi
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Fiona Powrie
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK.
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Emily E Thornton
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK.
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
36
|
Ling S, You Z, Li Y, Zhang J, Zhao S, He Y, Chen X. The role of γδ T17 cells in cardiovascular disease. J Leukoc Biol 2022; 112:1649-1661. [PMID: 36073777 DOI: 10.1002/jlb.3mr0822-761rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/23/2022] [Accepted: 08/03/2022] [Indexed: 01/04/2023] Open
Abstract
Due to the ability of γδ T cells to bridge adaptive and innate immunity, γδ T cells can respond to a variety of molecular cues and acquire the ability to induce a variety of cytokines such as IL-17 family, IFN-γ, IL-4, and IL-10. IL-17+ γδ T cells (γδ T17 cells) populations have recently received considerable interest as they are the major early source of IL-17A in many immune response models. However, the exact mechanism of γδ T17 cells is still poorly understood, especially in the context of cardiovascular disease (CVD). CVD is the leading cause of death in the world, and it tends to be younger. Here, we offer a review of the cardiovascular inflammatory and immune functions of γδ T17 cells in order to understand their role in CVD, which may be the key to developing new clinical applications.
Collapse
Affiliation(s)
- Shaoxue Ling
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Zonghao You
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Yang Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Jian Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Shuwu Zhao
- School of Intergrative Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Yongzhi He
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Xi Chen
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| |
Collapse
|
37
|
LeBlanc G, Kreissl F, Melamed J, Sobel AL, Constantinides MG. The role of unconventional T cells in maintaining tissue homeostasis. Semin Immunol 2022; 61-64:101656. [PMID: 36306662 PMCID: PMC9828956 DOI: 10.1016/j.smim.2022.101656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/01/2022] [Accepted: 09/21/2022] [Indexed: 01/12/2023]
Affiliation(s)
- Gabrielle LeBlanc
- Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA,These authors contributed equally
| | - Felix Kreissl
- Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA,These authors contributed equally
| | - Jonathan Melamed
- Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA,These authors contributed equally
| | - Adam L. Sobel
- Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA,These authors contributed equally
| | | |
Collapse
|
38
|
Matsuzawa-Ishimoto Y, Yao X, Koide A, Ueberheide BM, Axelrad JE, Reis BS, Parsa R, Neil JA, Devlin JC, Rudensky E, Dewan MZ, Cammer M, Blumberg RS, Ding Y, Ruggles KV, Mucida D, Koide S, Cadwell K. The γδ IEL effector API5 masks genetic susceptibility to Paneth cell death. Nature 2022; 610:547-554. [PMID: 36198790 PMCID: PMC9720609 DOI: 10.1038/s41586-022-05259-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 08/22/2022] [Indexed: 01/26/2023]
Abstract
Loss of Paneth cells and their antimicrobial granules compromises the intestinal epithelial barrier and is associated with Crohn's disease, a major type of inflammatory bowel disease1-7. Non-classical lymphoid cells, broadly referred to as intraepithelial lymphocytes (IELs), intercalate the intestinal epithelium8,9. This anatomical position has implicated them as first-line defenders in resistance to infections, but their role in inflammatory disease pathogenesis requires clarification. The identification of mediators that coordinate crosstalk between specific IEL and epithelial subsets could provide insight into intestinal barrier mechanisms in health and disease. Here we show that the subset of IELs that express γ and δ T cell receptor subunits (γδ IELs) promotes the viability of Paneth cells deficient in the Crohn's disease susceptibility gene ATG16L1. Using an ex vivo lymphocyte-epithelium co-culture system, we identified apoptosis inhibitor 5 (API5) as a Paneth cell-protective factor secreted by γδ IELs. In the Atg16l1-mutant mouse model, viral infection induced a loss of Paneth cells and enhanced susceptibility to intestinal injury by inhibiting the secretion of API5 from γδ IELs. Therapeutic administration of recombinant API5 protected Paneth cells in vivo in mice and ex vivo in human organoids with the ATG16L1 risk allele. Thus, we identify API5 as a protective γδ IEL effector that masks genetic susceptibility to Paneth cell death.
Collapse
Affiliation(s)
- Yu Matsuzawa-Ishimoto
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA.,Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Xiaomin Yao
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA.,Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Akiko Koide
- Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016,Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Beatrix M. Ueberheide
- Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016,Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA,Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY, USA,Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Jordan E. Axelrad
- Division of Gastroenterology and Hepatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Bernardo S. Reis
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Roham Parsa
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Jessica A. Neil
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA.,Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Joseph C. Devlin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Eugene Rudensky
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA.,Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - M Zahidunnabi Dewan
- Experimental Pathology, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Michael Cammer
- Microscopy Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Richard S. Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Yi Ding
- Department of Laboratory Medicine, Geisinger Health, Danville, PA 17822, USA
| | - Kelly V. Ruggles
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY, USA,Division of Translational Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Daniel Mucida
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA,Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Shohei Koide
- Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016,Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA,Corresponding author: Ken Cadwell, Address: 430 East 29th street, 4th Floor, New York, NY 10016, , Phone: 212-263-8891, Fax: 212-263-5711, Shohei Koide, Address: 522 1st Avenue, Smilow Research Center, 8th floor, New York, NY 10016, , Phone: 646-501-4601
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA.,Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA.,Division of Gastroenterology and Hepatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA,Corresponding author: Ken Cadwell, Address: 430 East 29th street, 4th Floor, New York, NY 10016, , Phone: 212-263-8891, Fax: 212-263-5711, Shohei Koide, Address: 522 1st Avenue, Smilow Research Center, 8th floor, New York, NY 10016, , Phone: 646-501-4601
| |
Collapse
|
39
|
Seo GY, Takahashi D, Wang Q, Mikulski Z, Chen A, Chou TF, Marcovecchio P, McArdle S, Sethi A, Shui JW, Takahashi M, Surh CD, Cheroutre H, Kronenberg M. Epithelial HVEM maintains intraepithelial T cell survival and contributes to host protection. Sci Immunol 2022; 7:eabm6931. [PMID: 35905286 PMCID: PMC9422995 DOI: 10.1126/sciimmunol.abm6931] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Intraepithelial T cells (IETs) are in close contact with intestinal epithelial cells and the underlying basement membrane, and they detect invasive pathogens. How intestinal epithelial cells and basement membrane influence IET survival and function, at steady state or after infection, is unclear. The herpes virus entry mediator (HVEM), a member of the TNF receptor superfamily, is constitutively expressed by intestinal epithelial cells and is important for protection from pathogenic bacteria. Here, we showed that at steady-state LIGHT, an HVEM ligand, binding to epithelial HVEM promoted the survival of small intestine IETs. RNA-seq and addition of HVEM ligands to epithelial organoids indicated that HVEM increased epithelial synthesis of basement membrane proteins, including collagen IV, which bound to β1 integrins expressed by IETs. Therefore, we proposed that IET survival depended on β1 integrin binding to collagen IV and showed that β1 integrin-collagen IV interactions supported IET survival in vitro. Moreover, the absence of β1 integrin expression by T lymphocytes decreased TCR αβ+ IETs in vivo. Intravital microscopy showed that the patrolling movement of IETs was reduced without epithelial HVEM. As likely consequences of decreased number and movement, protective responses to Salmonella enterica were reduced in mice lacking either epithelial HVEM, HVEM ligands, or β1 integrins. Therefore, IETs, at steady state and after infection, depended on HVEM expressed by epithelial cells for the synthesis of collagen IV by epithelial cells. Collagen IV engaged β1 integrins on IETs that were important for their maintenance and for their protective function in mucosal immunity.
Collapse
Affiliation(s)
- Goo-Young Seo
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Qingyang Wang
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Angeline Chen
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | | | - Sara McArdle
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Ashu Sethi
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Jr-Wen Shui
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Charles D Surh
- La Jolla Institute for Immunology, La Jolla, CA, USA.,Institute for Basic Science (IBS), Academy of Immunology and Microbiology, Pohang, South Korea
| | | | - Mitchell Kronenberg
- La Jolla Institute for Immunology, La Jolla, CA, USA.,Division of Biology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
40
|
Reis BS, Darcy PW, Khan IZ, Moon CS, Kornberg AE, Schneider VS, Alvarez Y, Eleso O, Zhu C, Schernthanner M, Lockhart A, Reed A, Bortolatto J, Castro TBR, Bilate AM, Grivennikov S, Han AS, Mucida D. TCR-Vγδ usage distinguishes protumor from antitumor intestinal γδ T cell subsets. Science 2022; 377:276-284. [PMID: 35857588 PMCID: PMC9326786 DOI: 10.1126/science.abj8695] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
γδ T cells represent a substantial fraction of intestinal lymphocytes at homeostasis, but they also constitute a major lymphocyte population infiltrating colorectal cancers (CRCs); however, their temporal contribution to CRC development or progression remains unclear. Using human CRC samples and murine CRC models, we found that most γδ T cells in premalignant or nontumor colons exhibit cytotoxic markers, whereas tumor-infiltrating γδ T cells express a protumorigenic profile. These contrasting T cell profiles were associated with distinct T cell receptor (TCR)-Vγδ gene usage in both humans and mice. Longitudinal intersectional genetics and antibody-dependent strategies targeting murine γδ T cells enriched in the epithelium at steady state led to heightened tumor development, whereas targeting γδ subsets that accumulate during CRC resulted in reduced tumor growth. Our results uncover temporal pro- and antitumor roles for γδ T cell subsets.
Collapse
Affiliation(s)
- Bernardo S. Reis
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, 10065, USA.,Correspondence: (B.S.R.), (D.M.)
| | - Patrick W. Darcy
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Iasha Z. Khan
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Christine S. Moon
- Department of Medicine, Division of Digestive and Liver Diseases, Columbia University, New York, NY, 10032, USA
| | - Adam E. Kornberg
- Department of Medicine, Division of Digestive and Liver Diseases, Columbia University, New York, NY, 10032, USA
| | - Vanessa S. Schneider
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, 10065, USA.,Department of Biochemistry and Molecular Biology, Federal University of Parana, Curitiba, PR, Brazil
| | - Yelina Alvarez
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Olawale Eleso
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Caixia Zhu
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, 10065, USA.,Current address: Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Marina Schernthanner
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Ainsley Lockhart
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Aubrey Reed
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Juliana Bortolatto
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Tiago B. R. Castro
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Angelina M. Bilate
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Sergei Grivennikov
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Arnold S. Han
- Department of Medicine, Division of Digestive and Liver Diseases, Columbia University, New York, NY, 10032, USA
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, 10065, USA.,Howard Hughes Medical Institute, The Rockefeller University, New York, NY, 10065, USA.,Correspondence: (B.S.R.), (D.M.)
| |
Collapse
|
41
|
Wu X, Gu B, Yang H. The role of γδ T cells in the interaction between commensal and pathogenic bacteria in the intestinal mucosa. Int Rev Immunol 2022; 42:379-392. [PMID: 35583374 DOI: 10.1080/08830185.2022.2076846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 12/22/2022]
Abstract
The intestinal mucosa is an important structure involved in resistance to pathogen infection. It is mainly composed of four barriers, which have different but interrelated functions. Pathogenic bacteria can damage these intestinal mucosal barriers. Here, we mainly review the mechanisms of pathogen damage to biological barriers. Most γδ T cells are located on the surface of the intestinal mucosa, with the ability to migrate and engage in crosstalk with microorganisms. Commensal bacteria are involved in the activation and migration of γδ T cells to monitor the invasion of pathogens. Pathogen invasion alters the migration pattern of γδ T cells. γδ T cells accelerate pathogen clearance and limit opportunistic invasion of commensal bacteria. By discussing these interactions among γδ T cells, commensal bacteria and pathogenic bacteria, we suggest that γδ T cells may link the interactions between commensal bacteria and pathogenic bacteria.
Collapse
Affiliation(s)
- Xiaoxiao Wu
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Bing Gu
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Huan Yang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
42
|
Qiu J, Ma Y, Qiu J. Regulation of intestinal immunity by dietary fatty acids. Mucosal Immunol 2022; 15:846-856. [PMID: 35821290 DOI: 10.1038/s41385-022-00547-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023]
Abstract
Dietary fatty acids are absorbed through the intestine and are fundamental for cellular energy provision and structural formation. Dietary fatty acids profoundly affect intestinal immunity and influence the development and progression of inflammatory bowel disease, intestinal infections and tumors. Although different types of fatty acids exert differential roles in intestinal immunity, a western diet, rich in saturated fatty acids with abundant carbohydrates and studied as high-fat diet (HFD) in animal experiments, disturbs intestinal homeostasis and plays a pathogenic role in intestinal inflammatory diseases. Here, we review recent findings on the regulation of intestinal immunity by dietary fatty acids, focusing on HFD. We summarize HFD-altered immune responses leading to susceptibility to intestinal pathology and dissect the mechanisms involving the impact of HFD on immune cells, intestinal epithelial cells and the microbiota. Understanding the perturbation of intestinal immunity by HFD will provide new strategies for prevention and treatment of intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Jinxin Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yanhui Ma
- Department of Laboratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Ju Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
43
|
Rampoldi F, Prinz I. Three Layers of Intestinal γδ T Cells Talk Different Languages With the Microbiota. Front Immunol 2022; 13:849954. [PMID: 35422795 PMCID: PMC9004464 DOI: 10.3389/fimmu.2022.849954] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
The mucosal surfaces of our body are the main contact site where the immune system encounters non-self molecules from food-derived antigens, pathogens, and symbiotic bacteria. γδ T cells are one of the most abundant populations in the gut. Firstly, they include intestinal intraepithelial lymphocytes, which screen and maintain the intestinal barrier integrity in close contact with the epithelium. A second layer of intestinal γδ T cells is found among lamina propria lymphocytes (LPL)s. These γδ LPLs are able to produce IL-17 and likely have functional overlap with local Th17 cells and innate lymphoid cells. In addition, a third population of γδ T cells resides within the Peyer´s patches, where it is probably involved in antigen presentation and supports the mucosal humoral immunity. Current obstacles in understanding γδ T cells in the gut include the lack of information on cognate ligands of the γδ TCR and an incomplete understanding of their physiological role. In this review, we summarize and discuss what is known about different subpopulations of γδ T cells in the murine and human gut and we discuss their interactions with the gut microbiota in the context of homeostasis and pathogenic infections.
Collapse
Affiliation(s)
- Francesca Rampoldi
- Institute of Medical Microbiology and Hygiene and Research Center for Immunotherapy (FZI), University Medical Center, University of Mainz, Mainz, Germany.,Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
44
|
Rezende RM, Weiner HL. Oral tolerance: an updated review. Immunol Lett 2022; 245:29-37. [PMID: 35395272 DOI: 10.1016/j.imlet.2022.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 12/18/2022]
Abstract
Oral tolerance (OT) has classically been defined as the specific suppression of cellular and/or humoral immune responses to an antigen by prior administration of the antigen through the oral route. Multiple mechanisms have been proposed to explain the induction of OT including T cell clonal depletion and anergy when high doses of antigens are fed, and regulatory T (Treg) cell generation following oral administration of low and repeated doses of antigens. Oral antigen administration suppresses the immune response in several animal models of autoimmune disease, including experimental autoimmune encephalomyelitis, uveitis, thyroiditis, myasthenia, arthritis and diabetes, but also non-autoimmune inflammatory conditions such as asthma, atherosclerosis, graft rejection, allergy and stroke. However, human trials have given mixed results and a great deal remains to be learned about the mechanisms of OT before it can be successfully applied to people. One of the possible mechanisms relates to the gut microbiota and in this review, we will explore the cellular components involved in the induction of OT and the role of the gut microbiota in contributing to OT development.
Collapse
Affiliation(s)
- Rafael M Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
45
|
Jia L, Wu G, Alonso S, Zhao C, Lemenze A, Lam YY, Zhao L, Edelblum KL. A transmissible γδ intraepithelial lymphocyte hyperproliferative phenotype is associated with the intestinal microbiota and confers protection against acute infection. Mucosal Immunol 2022; 15:772-782. [PMID: 35589986 PMCID: PMC9262869 DOI: 10.1038/s41385-022-00522-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/27/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023]
Abstract
Intraepithelial lymphocytes expressing the γδ T cell receptor (γδ IELs) serve as a first line of defense against luminal microbes. Although the presence of an intact microbiota is dispensable for γδ IEL development, several microbial factors contribute to the maintenance of this sentinel population. However, whether specific commensals influence population of the γδ IEL compartment under homeostatic conditions has yet to be determined. We identified a novel γδ IEL hyperproliferative phenotype that arises early in life and is characterized by expansion of multiple Vγ subsets. Horizontal transfer of this hyperproliferative phenotype to mice harboring a phenotypically normal γδ IEL compartment was prevented following antibiotic treatment, thus demonstrating that the microbiota is both necessary and sufficient for the observed increase in γδ IELs. Further, we identified two guilds of small intestinal or fecal bacteria represented by 12 amplicon sequence variants (ASV) that are strongly associated with γδ IEL expansion. Using intravital microscopy, we find that hyperproliferative γδ IELs also exhibit increased migratory behavior leading to enhanced protection against bacterial infection. These findings reveal that transfer of a specific group of commensals can regulate γδ IEL homeostasis and immune surveillance, which may provide a novel means to reinforce the epithelial barrier.
Collapse
Affiliation(s)
- Luo Jia
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Guojun Wu
- New Jersey Institute for Food, Nutrition & Health, Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
| | - Sara Alonso
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Cuiping Zhao
- New Jersey Institute for Food, Nutrition & Health, Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
| | - Alexander Lemenze
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Yan Y Lam
- New Jersey Institute for Food, Nutrition & Health, Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
- Gut Microbiota and Metabolism Group, Centre for Chinese Herbal Medicine Drug Development, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong, China
| | - Liping Zhao
- New Jersey Institute for Food, Nutrition & Health, Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
| | - Karen L Edelblum
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
46
|
Zeiser R, Warnatz K, Rosshart S, Sagar, Tanriver Y. GVHD, IBD and primary immunodeficiencies: The gut as a target of immunopathology resulting from impaired immunity. Eur J Immunol 2022; 52:1406-1418. [PMID: 35339113 DOI: 10.1002/eji.202149530] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/10/2021] [Accepted: 01/21/2022] [Indexed: 11/11/2022]
Abstract
The intestinal tract is the largest immunological organ in the body and has a central function of regulating local immune responses, as the intestinal epithelial barrier is a location where the immune system interacts with the gut microbiome including bacteria, fungi and viruses. Impaired immunity in the intestinal tract can lead to immunopathology, which manifests in different diseases such as inflammatory bowel disease (IBD) or intestinal graft-versus-host disease (GVHD). A disturbed communication between epithelial cells, immune cells and microbiome will shape pathogenic immune responses to antigens, which need to be counterbalanced by tolerogenic mechanisms and repair mechanisms. Here, we review how impaired intestinal immune function leads to immunopathology with a specific focus on innate immune cells, the role of the microbiome and the resulting clinical manifestations including intestinal GVHD, IBD and enteropathy in primary immunodeficiency. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Robert Zeiser
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), Medical Center- University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Signalling Research Centres BIOSS and CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology - Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Rosshart
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sagar
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yakup Tanriver
- Department of Medicine IV (Nephrology and Primary Care), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Microbiology and Hygiene, Institute for Microbiology and Hygiene, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
47
|
Leonardi I, Gao IH, Lin WY, Allen M, Li XV, Fiers WD, De Celie MB, Putzel GG, Yantiss RK, Johncilla M, Colak D, Iliev ID. Mucosal fungi promote gut barrier function and social behavior via Type 17 immunity. Cell 2022; 185:831-846.e14. [PMID: 35176228 PMCID: PMC8897247 DOI: 10.1016/j.cell.2022.01.017] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 11/30/2021] [Accepted: 01/20/2022] [Indexed: 02/07/2023]
Abstract
Fungal communities (the mycobiota) are an integral part of the gut microbiota, and the disruption of their integrity contributes to local and gut-distal pathologies. Yet, the mechanisms by which intestinal fungi promote homeostasis remain unclear. We characterized the mycobiota biogeography along the gastrointestinal tract and identified a subset of fungi associated with the intestinal mucosa of mice and humans. Mucosa-associated fungi (MAF) reinforced intestinal epithelial function and protected mice against intestinal injury and bacterial infection. Notably, intestinal colonization with a defined consortium of MAF promoted social behavior in mice. The gut-local effects on barrier function were dependent on IL-22 production by CD4+ T helper cells, whereas the effects on social behavior were mediated through IL-17R-dependent signaling in neurons. Thus, the spatial organization of the gut mycobiota is associated with host-protective immunity and epithelial barrier function and might be a driver of the neuroimmune modulation of mouse behavior through complementary Type 17 immune mechanisms.
Collapse
Affiliation(s)
- Irina Leonardi
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.,The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Iris H. Gao
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.,The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.,Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Woan-Yu Lin
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.,The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.,Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Megan Allen
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York City, NY, USA
| | - Xin V. Li
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.,The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - William D. Fiers
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.,The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Meghan Bialt De Celie
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.,The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Gregory G. Putzel
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Rhonda K. Yantiss
- MJ Department of Pathology & Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Melanie Johncilla
- MJ Department of Pathology & Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Dilek Colak
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York City, NY, USA.,Gale and Ira Drukier Institute for Children’s Health, Weill Cornell Medical College, Cornell University, New York City, NY, USA
| | - Iliyan D. Iliev
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.,The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.,Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.,Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| |
Collapse
|
48
|
Hu MD, Golovchenko NB, Burns GL, Nair PM, Kelly TJ, Agos J, Irani MZ, Soh WS, Zeglinski MR, Lemenze A, Bonder EM, Sandrock I, Prinz I, Granville DJ, Keely S, Watson AJ, Edelblum KL. γδ Intraepithelial Lymphocytes Facilitate Pathological Epithelial Cell Shedding Via CD103-Mediated Granzyme Release. Gastroenterology 2022; 162:877-889.e7. [PMID: 34861219 PMCID: PMC8881348 DOI: 10.1053/j.gastro.2021.11.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Excessive shedding of apoptotic enterocytes into the intestinal lumen is observed in inflammatory bowel disease and is correlated with disease relapse. Based on their cytolytic capacity and surveillance behavior, we investigated whether intraepithelial lymphocytes expressing the γδ T cell receptor (γδ IELs) are actively involved in the shedding of enterocytes into the lumen. METHODS Intravital microscopy was performed on GFP γδ T cell reporter mice treated with intraperitoneal lipopolysaccharide (10 mg/kg) for 90 minutes to induce tumor necrosis factor-mediated apoptosis. Cell shedding in various knockout or transgenic mice in the presence or absence of blocking antibody was quantified by immunostaining for ZO-1 funnels and cleaved caspase-3 (CC3). Granzyme A and granzyme B release from ex vivo-stimulated γδ IELs was quantified by enzyme-linked immunosorbent assay. Immunostaining for γδ T cell receptor and CC3 was performed on duodenal and ileal biopsies from controls and patients with Crohn's disease. RESULTS Intravital microscopy of lipopolysaccharide-treated mice revealed that γδ IELs make extended contact with shedding enterocytes. These prolonged interactions require CD103 engagement by E-cadherin, and CD103 knockout or blockade significantly reduced lipopolysaccharide-induced shedding. Furthermore, we found that granzymes A and B, but not perforin, are required for cell shedding. These extracellular granzymes are released by γδ IELs both constitutively and after CD103/E-cadherin ligation. Moreover, we found that the frequency of γδ IEL localization to CC3-positive enterocytes is increased in Crohn's disease biopsies compared with healthy controls. CONCLUSIONS Our results uncover a previously unrecognized role for γδ IELs in facilitating tumor necrosis factor-mediated shedding of apoptotic enterocytes via CD103-mediated extracellular granzyme release.
Collapse
Affiliation(s)
- Madeleine D. Hu
- Center for Immunity and Inflammation, Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Natasha B. Golovchenko
- Center for Immunity and Inflammation, Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Grace L. Burns
- NHMRC Centre of Research Excellence in Digestive Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia; Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia
| | - Prema M. Nair
- NHMRC Centre of Research Excellence in Digestive Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia; Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia
| | - Thomas J. Kelly
- Center for Immunity and Inflammation, Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Jonathan Agos
- Center for Immunity and Inflammation, Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Mudar Zand Irani
- NHMRC Centre of Research Excellence in Digestive Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia; Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia
| | - Wai Sinn Soh
- NHMRC Centre of Research Excellence in Digestive Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia; Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia
| | - Matthew R. Zeglinski
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 2B5, Canada
| | - Alexander Lemenze
- Center for Immunity and Inflammation, Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Edward M. Bonder
- Department of Biological Sciences, Rutgers University – The State University of New Jersey, Newark, NJ, 07102, USA
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Immo Prinz
- Institute of Systems Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - David J. Granville
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 2B5, Canada
| | - Simon Keely
- NHMRC Centre of Research Excellence in Digestive Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia; Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia
| | - Alastair J.M. Watson
- Department of Gastroenterology and Gut Biology, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Karen L. Edelblum
- Center for Immunity and Inflammation, Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| |
Collapse
|
49
|
Constantinides MG, Belkaid Y. Early-life imprinting of unconventional T cells and tissue homeostasis. Science 2021; 374:eabf0095. [PMID: 34882451 DOI: 10.1126/science.abf0095] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Michael G Constantinides
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA.,NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| |
Collapse
|
50
|
Integrin αEβ7 + T cells direct intestinal stem cell fate decisions via adhesion signaling. Cell Res 2021; 31:1291-1307. [PMID: 34518654 DOI: 10.1038/s41422-021-00561-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022] Open
Abstract
Intestinal stem cell (ISC) differentiation is regulated precisely by a niche in the crypt, where lymphocytes may interact with stem and transient amplifying (TA) cells. However, whether and how lymphocyte-stem/TA cell contact affects ISC differentiation is largely unknown. Here, we uncover a novel role of T cell-stem/TA cell contact in ISC fate decisions. We show that intestinal lymphocyte depletion results in skewed ISC differentiation in mice, which can be rescued by T cell transfer. Mechanistically, integrin αEβ7 expressed on T cells binds to E-cadherin on ISCs and TA cells, triggering E-cadherin endocytosis and the consequent Wnt and Notch signaling alterations. Blocking αEβ7-E-cadherin adhesion suppresses Wnt signaling and promotes Notch signaling in ISCs and TA cells, leading to defective ISC differentiation. Thus, αEβ7+ T cells regulate ISC differentiation at single-cell level through cell-cell contact-mediated αEβ7-E-cadherin adhesion signaling, highlighting a critical role of the T cell-stem/TA cell contact in maintaining intestinal homeostasis.
Collapse
|