1
|
El Sheikha AF. Nutritional Profile and Health Benefits of Ganoderma lucidum "Lingzhi, Reishi, or Mannentake" as Functional Foods: Current Scenario and Future Perspectives. Foods 2022; 11:1030. [PMID: 35407117 PMCID: PMC8998036 DOI: 10.3390/foods11071030] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 02/07/2023] Open
Abstract
Ganoderma lucidum has a long history of medicinal uses in the Far East countries of more than 2000 years due to its healing properties. Recently, G. lucidum has come under scientific scrutiny to evaluate its content of bioactive components that affect human physiology, and has been exploited for potent components in the pharmacology, nutraceuticals, and cosmetics industries. For instance, evidence is accumulating on the potential of this mushroom species as a promising antiviral medicine for treating many viral diseases, such as dengue virus, enterovirus 71, and recently coronavirus disease of 2019 (COVID-19). Still, more research studies on the biotherapeutic components of G. lucidum are needed to ensure the safety and efficiency of G. lucidum and promote the development of commercial functional foods. This paper provides an extensive overview of the nutraceutical value of Ganoderma lucidum and the development of commercial functional food. Moreover, the geo-origin tracing strategies of this mushroom and its products are discussed, a highly important parameter to ensure product quality and safety. The discussed features will open new avenues and reveal more secrets to widely utilizing this mushroom in many industrial fields; i.e., pharmaceutical and nutritional ones, which will positively reflect the global economy.
Collapse
Affiliation(s)
- Aly Farag El Sheikha
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China;
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, 25 University Private, Ottawa, ON K1N 6N5, Canada
- Bioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
- Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
- Department of Food Science and Technology, Faculty of Agriculture, Minufiya University, Shibin El Kom 32511, Egypt
| |
Collapse
|
2
|
Chan SW, Tomlinson B, Chan P, Lam CWK. The beneficial effects of Ganoderma lucidum on cardiovascular and metabolic disease risk. PHARMACEUTICAL BIOLOGY 2021; 59:1161-1171. [PMID: 34465259 PMCID: PMC8409941 DOI: 10.1080/13880209.2021.1969413] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/12/2021] [Indexed: 05/16/2023]
Abstract
CONTEXT Various herbal medicines are thought to be useful in the management of cardiometabolic disease and its risk factors. Ganoderma lucidum (Curtis) P. Karst. (Ganodermataceae), also known as Lingzhi, has received considerable attention for various indications, including some related to the prevention and treatment of cardiovascular and metabolic disease by ameliorating major cardiovascular risk factors. OBJECTIVE This review focuses on the major studies of the whole plant, plant extract, and specific active compounds isolated from G. lucidum in relation to the main risk factors for cardiometabolic disease. METHODS References from major databases including PubMed, Web of Science, and Google Scholar were compiled. The search terms used were Ganoderma lucidum, Lingzhi, Reishi, cardiovascular, hypoglycaemic, diabetes, dyslipidaemia, antihypertensive, and anti-inflammatory. RESULTS A number of in vitro studies and in vivo animal models have found that G. lucidum possesses antioxidative, antihypertensive, hypoglycaemic, lipid-lowering, and anti-inflammatory properties, but the health benefits in clinical trials are inconsistent. Among these potential health benefits, the most compelling evidence thus far is its hypoglycaemic effects in patients with type 2 diabetes or hyperglycaemia. CONCLUSIONS The inconsistent evidence about the potential health benefits of G. lucidum is possibly because of the use of different Ganoderma formulations and different study populations. Further large controlled clinical studies are therefore needed to clarify the potential benefits of G. lucidum preparations standardised by known active components in the prevention and treatment of cardiometabolic disease.
Collapse
Affiliation(s)
- Sze Wa Chan
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong SAR, China
| | - Brian Tomlinson
- Faculty of Medicine, Macau University of Science & Technology, Macau, China
| | - Paul Chan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
| | | |
Collapse
|
3
|
Shaher F, Wang S, Qiu H, Hu Y, Zhang Y, Wang W, AL-Ward H, Abdulghani MAM, Baldi S, Zhou S. Effect and Mechanism of Ganoderma lucidum Spores on Alleviation of Diabetic Cardiomyopathy in a Pilot in vivo Study. Diabetes Metab Syndr Obes 2020; 13:4809-4822. [PMID: 33335409 PMCID: PMC7736836 DOI: 10.2147/dmso.s281527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Ganoderma lucidum spores (GLS) exhibit disease prevention properties, but no study has been carried out on the anti-diabetic cardiomyopathy property of GLS. The aim of this study was to evaluate the hyperglycemia-mediated cardiomyopathy protection and mechanisms of GLS in streptozotocin (STZ)induced diabetic rats. METHODS Male SD rats were randomly divided into three groups. Two groups were given STZ (50 mg/kg, i.p.) treatment and when their fasting plasma glucose was above 16.7 mmol/L, among them, one group was given placebo, as diabetic group, and another group was given GLS (300 mg/kg) treatment. The group without STZ treatment was given placebo as a control group. The experiment lasted 70 days. The histology of myocardium and biomarkers of antioxidants, myocardial injury, pro-inflammatory cytokines, pro-apoptotic proteins and phosphorylation of key proteins in PI3K/AKT pathway were assessed. RESULTS Biochemical analysis showed that GLS treatment significantly reduced the blood glucose (-20.3%) and triglyceride (-20.4%) levels compared to diabetic group without treatment. GLS treatment decreased the content of MDA (-25.6%) and activity of lactate dehydrogenase (-18.9%) but increased the activity of GSH-Px (65.4%). Western blot analysis showed that GLS treatment reduced the expression of both alpha-smooth muscle actin and brain natriuretic peptide. Histological analysis on the cardiac tissue micrographs showed that GLS treatment reduced collagen fibrosis and glycogen reactivity in myocardium. Both Western blot and immunohistochemistry analyses showed that GLS treatment decreased the expression levels of pro-inflammatory factors (cytokines IL-1β, and TNF-α) as well as apoptosis regulatory proteins (Bax, caspase-3 and -9), but increased Bcl-2. Moreover, GLS treatment significantly increased the phosphorylation of key proteins involved in PI3K/AKT pathway, eg, p-AKT p-PI3K and mTOR. CONCLUSION The results indicated that GLS treatment alleviates diabetic cardiomyopathy by reducing hyperglycemia, oxidative stress, inflammation, apoptosis and further attenuating the fibrosis and myocardial dysfunction induced by STZ through stimulation of the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Fahmi Shaher
- Department of Pathophysiology, College of Basic Medicine, Jiamusi University, Jiamusi, People’s Republic of China
| | - Shuqiu Wang
- Department of Pathophysiology, College of Basic Medicine, Jiamusi University, Jiamusi, People’s Republic of China
| | - Hongbin Qiu
- Department of Pathophysiology, College of Basic Medicine, Jiamusi University, Jiamusi, People’s Republic of China
| | - Yu Hu
- Department of Pathophysiology, College of Basic Medicine, Jiamusi University, Jiamusi, People’s Republic of China
| | - Yu Zhang
- Department of Pharmacology, College of Pharmacy, Jiamusi University, Jiamusi, People’s Republic of China
| | - Weiqun Wang
- Department of Physiology, College of Basic Medicine, Jiamusi University, Jiamusi, People’s Republic of China
| | - Hisham AL-Ward
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Jiamusi University, Jiamusi, People’s Republic of China
| | - Mahfoudh A M Abdulghani
- Department of Pharmacology and Toxicology, Unaizah College Pharmacy, Qassim University, Qassim, Saudi Arabia
| | - Salem Baldi
- Department of Clinical Laboratory Diagnostics, College of Basic Medicine, Dalian Medical University, Dalian, People’s Republic of China
| | - Shaobo Zhou
- School of Life Sciences, Institute of Biomedical and Environmental Science and Technology (iBEST), University of Bedfordshire, LutonLU1 3JU, UK
| |
Collapse
|
4
|
Shaito A, Thuan DTB, Phu HT, Nguyen THD, Hasan H, Halabi S, Abdelhady S, Nasrallah GK, Eid AH, Pintus G. Herbal Medicine for Cardiovascular Diseases: Efficacy, Mechanisms, and Safety. Front Pharmacol 2020; 11:422. [PMID: 32317975 PMCID: PMC7155419 DOI: 10.3389/fphar.2020.00422] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/19/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a significant health burden with an ever-increasing prevalence. They remain the leading causes of morbidity and mortality worldwide. The use of medicinal herbs continues to be an alternative treatment approach for several diseases including CVDs. Currently, there is an unprecedented drive for the use of herbal preparations in modern medicinal systems. This drive is powered by several aspects, prime among which are their cost-effective therapeutic promise compared to standard modern therapies and the general belief that they are safe. Nonetheless, the claimed safety of herbal preparations yet remains to be properly tested. Consequently, public awareness should be raised regarding medicinal herbs safety, toxicity, potentially life-threatening adverse effects, and possible herb–drug interactions. Over the years, laboratory data have shown that medicinal herbs may have therapeutic value in CVDs as they can interfere with several CVD risk factors. Accordingly, there have been many attempts to move studies on medicinal herbs from the bench to the bedside, in order to effectively employ herbs in CVD treatments. In this review, we introduce CVDs and their risk factors. Then we overview the use of herbs for disease treatment in general and CVDs in particular. Further, data on the ethnopharmacological therapeutic potentials and medicinal properties against CVDs of four widely used plants, namely Ginseng, Ginkgo biloba, Ganoderma lucidum, and Gynostemma pentaphyllum, are gathered and reviewed. In particular, the employment of these four plants in the context of CVDs, such as myocardial infarction, hypertension, peripheral vascular diseases, coronary heart disease, cardiomyopathies, and dyslipidemias has been reviewed, analyzed, and critically discussed. We also endeavor to document the recent studies aimed to dissect the cellular and molecular cardio-protective mechanisms of the four plants, using recently reported in vitro and in vivo studies. Finally, we reviewed and reported the results of the recent clinical trials that have been conducted using these four medicinal herbs with special emphasis on their efficacy, safety, and toxicity.
Collapse
Affiliation(s)
- Abdullah Shaito
- Department of Biological and Chemical Sciences, Lebanese International University, Beirut, Lebanon
| | - Duong Thi Bich Thuan
- Department of Biochemistry, University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Hoa Thi Phu
- Department of Biochemistry, University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Thi Hieu Dung Nguyen
- Department of Physiology, University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Hiba Hasan
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Sarah Halabi
- Biology Department, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Samar Abdelhady
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Gheyath K Nasrallah
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Ali H Eid
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar.,Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Department of Biomedical Sciences, Faculty of Medicine, University of Sassari, Sassari, Italy
| |
Collapse
|
5
|
Fu Y, Shi L, Ding K. Structure elucidation and anti-tumor activity in vivo of a polysaccharide from spores of Ganoderma lucidum (Fr.) Karst. Int J Biol Macromol 2019; 141:693-699. [DOI: 10.1016/j.ijbiomac.2019.09.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/15/2019] [Accepted: 09/05/2019] [Indexed: 01/15/2023]
|
6
|
Wińska K, Mączka W, Gabryelska K, Grabarczyk M. Mushrooms of the Genus Ganoderma Used to Treat Diabetes and Insulin Resistance. Molecules 2019; 24:E4075. [PMID: 31717970 PMCID: PMC6891282 DOI: 10.3390/molecules24224075] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/30/2019] [Accepted: 11/08/2019] [Indexed: 02/06/2023] Open
Abstract
Pharmacotherapy using natural substances can be currently regarded as a very promising future alternative to conventional therapy of diabetes mellitus, especially in the case of chronic disease when the body is no longer able to produce adequate insulin or when it cannot use the produced insulin effectively. This minireview summarizes the perspectives, recent advances, and major challenges of medicinal mushrooms from Ganoderma genus with reference to their antidiabetic activity. The most active ingredients of those mushrooms are polysaccharides and triterpenoids. We hope this review can offer some theoretical basis and inspiration for the mechanism study of the bioactivity of those compounds.
Collapse
Affiliation(s)
- Katarzyna Wińska
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland;
| | - Wanda Mączka
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland;
| | | | - Małgorzata Grabarczyk
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland;
| |
Collapse
|
7
|
Wang W, Gou X, Xue H, Liu K. Ganoderan (GDN) Regulates The Growth, Motility And Apoptosis Of Non-Small Cell Lung Cancer Cells Through ERK Signaling Pathway In Vitro And In Vivo. Onco Targets Ther 2019; 12:8821-8832. [PMID: 31695437 PMCID: PMC6821078 DOI: 10.2147/ott.s221161] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/15/2019] [Indexed: 12/14/2022] Open
Abstract
Background Lung cancer is the most common malignant tumor worldwide. About 90% of lung cancers are considered non-small cell lung cancer (NSCLC). Ganoderan (GDN) is one of the components of Ganoderma lucidum polysaccharides. Ganoderan A (GDNA), Ganoderan B (GDNB) and Ganoderan C (GDNC) were three polysaccharides isolated from the Ganoderma lucidum fruiting body. Methods Cell growth was measured by Cell Counting kit-8 and colony formation assay, while cell motility was measured by transwell assay and wound healing assay. Apoptosis was measured by flow cytometry analysis and TUNEL staining, and protein expression was detected by Western blotting and immunohistochemistry. Results Previous studies have shown that GDNB has the effects of hyperglycemic and kidney protection. However, the role of GDNB in tumors is currently unknown. This study elaborated the role of GDNB in NSCLC and its underlying molecular mechanisms. The results exerted that GDNB inhibited the growth of H510A and A549 cells by suppressing the expression of ki67 and PCNA. Besides, transwell assay and wound healing assay showed that GDNB inhibited invasion and migration of H510A and A549 cells in a concentration-dependent manner. Moreover, Western blotting also showed that GDNB downregulated the levels of N-cadherin, vimentin and Snail in H510A and A549 cells in a dose-dependent manner, while it upregulated the level of E-cadherin. Additionally, GDNB also promoted apoptosis of H510A and A549 cells by regulating the expression of Bcl-2, Bax, cleaved caspase 3 and cleaved PARP. Animal experiments revealed that GDNB inhibited tumor growth and metastasis, and induced apoptosis of tumor cells in vivo. Mechanically, GDNB suppressed the expression of Ras and c-Myc, and decreased the phosphorylation levels of MEK1/2 and ERK1/2. Conclusion Collectively, all data suggest that GDNB regulates the growth, motility and apoptosis of non-small cell lung cancer cells through ERK signaling pathway in vitro and in vivo.
Collapse
Affiliation(s)
- Weifeng Wang
- Department of Thoracic Surgery, The First People's Hospital of Xianyang, Xianyang City, Shaanxi 712000, People's Republic of China
| | - Xiaohui Gou
- Department of Thoracic Surgery, The First People's Hospital of Xianyang, Xianyang City, Shaanxi 712000, People's Republic of China
| | - Hua Xue
- Department of Thoracic Surgery, The First People's Hospital of Xianyang, Xianyang City, Shaanxi 712000, People's Republic of China
| | - Kai Liu
- Department of Thoracic Surgery, The Central Hospital of Xianyang, Xianyang City, Shaanxi 712000, People's Republic of China
| |
Collapse
|
8
|
Sharma C, Bhardwaj N, Sharma A, Tuli HS, Batra P, Beniwal V, Gupta GK, Sharma AK. Bioactive metabolites of Ganoderma lucidum: Factors, mechanism and broad spectrum therapeutic potential. J Herb Med 2019. [DOI: 10.1016/j.hermed.2019.100268] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Lin Z, Deng A. Antioxidative and Free Radical Scavenging Activity of Ganoderma (Lingzhi). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1182:271-297. [DOI: 10.1007/978-981-32-9421-9_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Zheng Y, Bai L, Zhou Y, Tong R, Zeng M, Li X, Shi J. Polysaccharides from Chinese herbal medicine for anti-diabetes recent advances. Int J Biol Macromol 2019; 121:1240-1253. [DOI: 10.1016/j.ijbiomac.2018.10.072] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 10/10/2018] [Accepted: 10/14/2018] [Indexed: 12/11/2022]
|
11
|
Onaolapo AY, Onaolapo OJ. Nutraceuticals and Diet-based Phytochemicals in Type 2 Diabetes Mellitus: From Whole Food to Components with Defined Roles and Mechanisms. Curr Diabetes Rev 2019; 16:12-25. [PMID: 30378500 DOI: 10.2174/1573399814666181031103930] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Over the past decades, the development and use of an array of prescription medications have considerably improved the clinical management of type 2 diabetes mellitus and the quality of life of patients. However, as our knowledge of the associated risk factors and approaches to its management increases, the increasing roles of diet and the composition of the diet in the etiology and successful management of diabetes mellitus are being illuminated. Presently, a lot of attention is being given to nutraceuticals and certain phytochemicals that are integral parts of the human diet. It is believed that a clearer understanding of their roles may be crucial to 'non-invasive' or minimallyintrusive management, with regards to daily living of patients. In this review, an overview of nutraceutical components and phytochemicals that may be of benefit, or had been known to be beneficial in diabetes mellitus is given. Also, how the roles of such dietary components are evolving in the management of this disorder is highlighted. Lastly, the obstacles that need to be overcome before nutraceuticals can be considered as options for the clinical management of diabetes mellitus areconsidered. CONCLUSION Despite studies that demonstrate their efficacy, no nutraceutical or food-derived compound has been formally adopted as a direct replacement for any class of antidiabetic drugs.
Collapse
Affiliation(s)
- Adejoke Yetunde Onaolapo
- Behavioural Neuroscience/Neurobiology Unit, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Olakunle James Onaolapo
- Department of Pharmacology, Behavioural Neuroscience/Neuropharmacology Unit, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| |
Collapse
|
12
|
Tamboli E, Bhatnagar A, Mishra A. Alpha-amylase inhibitors from mycelium of an oyster mushroom. Prep Biochem Biotechnol 2018; 48:693-699. [PMID: 30015540 DOI: 10.1080/10826068.2018.1487849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The α-Amylase and α-glucosidase are two main enzymes involved in carbohydrate metabolism. This study was aimed at detecting alpha-amylase inhibitory activity from edible mushroom mycelia. Oyster mushroom was collected from a natural source, from Indian Institute of Technology (Banaras Hindu University) campus and was maintained in vitro in mycelial form. Chloroform, acetone, methanol, and water were used separately for extraction of an active constituent from mycelial cells grown, for 7 days, in potato dextrose broth. The extracts were tested for alpha-amylase inhibitory activity. Chloroform, acetone, and methanol extracts were found to have alpha-amylase inhibitory activity, with IC50 values of 1.71, 224, and 383 μg/mL, respectively. Aqueous extract had no enzyme inhibitory activity. The acetone extract inhibited α-amylase non-competitively whereas chloroform extract showed competitive inhibition. Acetone extraction yielded highest total phenolic content (TPC) of 0.524 mM of gallic acid equivalent, whereas chloroform extraction resulted in lowest TPC of 0.006 mM. The HPLC and absorbance maxima of acetone and chloroform extracts suggest that the bioactive component responsible for enzyme inhibition could be glycoproteins in chloroform extract and catechins (flavonoids) in acetone extract. Thus, the mushroom mycelia under study may be exploited for production and purification of a lead compound for the development of the α-amylase inhibitory drug.
Collapse
Affiliation(s)
- Ekant Tamboli
- a School of Biochemical Engineering , Indian Institute of Technology (Banaras Hindu University) , Varanasi , Uttar Pradesh , India
| | - Aditi Bhatnagar
- a School of Biochemical Engineering , Indian Institute of Technology (Banaras Hindu University) , Varanasi , Uttar Pradesh , India
| | - Abha Mishra
- a School of Biochemical Engineering , Indian Institute of Technology (Banaras Hindu University) , Varanasi , Uttar Pradesh , India
| |
Collapse
|
13
|
Hypoglycemic mechanism of a novel proteoglycan, extracted from Ganoderma lucidum , in hepatocytes. Eur J Pharmacol 2018; 820:77-85. [DOI: 10.1016/j.ejphar.2017.12.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 12/04/2017] [Accepted: 12/08/2017] [Indexed: 01/29/2023]
|
14
|
Xiao C, Wu Q, Xie Y, Tan J, Ding Y, Bai L. Hypoglycemic mechanisms of Ganoderma lucidum polysaccharides F31 in db/db mice via RNA-seq and iTRAQ. Food Funct 2018; 9:6495-6507. [DOI: 10.1039/c8fo01656a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This study provides insight into the system-level hypoglycemic mechanisms of Ganoderma lucidum polysaccharides F31 by the integrative analysis of transcriptomics and proteomics data.
Collapse
Affiliation(s)
- Chun Xiao
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Open Laboratory of Applied Microbiology
- Guangdong Institute of Microbiology
- Guangzhou 510070
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Open Laboratory of Applied Microbiology
- Guangdong Institute of Microbiology
- Guangzhou 510070
| | - Yizhen Xie
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Open Laboratory of Applied Microbiology
- Guangdong Institute of Microbiology
- Guangzhou 510070
| | - Jianbin Tan
- Department of Toxicology
- Center for Disease Control and Prevention of Guangdong Province
- Guangzhou 510020
- China
| | - YinRun Ding
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Open Laboratory of Applied Microbiology
- Guangdong Institute of Microbiology
- Guangzhou 510070
| | - Lijuan Bai
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Open Laboratory of Applied Microbiology
- Guangdong Institute of Microbiology
- Guangzhou 510070
| |
Collapse
|
15
|
Chen XQ, Chen LX, Li SP, Zhao J. A new nortriterpenoid and an ergostane-type steroid from the fruiting bodies of the fungus Ganoderma resinaceum. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2017; 19:1239-1244. [PMID: 28366021 DOI: 10.1080/10286020.2017.1308355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/15/2017] [Indexed: 06/07/2023]
Abstract
One new expoxy nortriterpenoid (1) and one new ergostane-type steroid (2), together with seven known steroids (3-9), were obtained from the fruiting bodies of the fungus Ganoderma resinaceum. The new compounds were elucidated on the basis of extensive spectroscopic data (MS, NMR, IR, and UV) and the known compounds were identified by comparing spectroscopic data with those reported in literature.
Collapse
Affiliation(s)
- Xian-Qiang Chen
- a State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Ling-Xiao Chen
- a State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Shao-Ping Li
- a State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Jing Zhao
- a State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences, University of Macau , Macao , China
| |
Collapse
|
16
|
Xiao C, Wu Q, Zhang J, Xie Y, Cai W, Tan J. Antidiabetic activity of Ganoderma lucidum polysaccharides F31 down-regulated hepatic glucose regulatory enzymes in diabetic mice. JOURNAL OF ETHNOPHARMACOLOGY 2017; 196:47-57. [PMID: 27902927 DOI: 10.1016/j.jep.2016.11.044] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 11/23/2016] [Accepted: 11/26/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ganoderma lucidum (Lin Zhi) has been used to treat diabetes in Chinese folk for centuries. Our laboratory previously demonstrated that Ganoderma lucidum polysaccharides (GLPs) had hypoglycemic effects in diabetic mice. Our aim was to identify the main bioactives in GLPs and corresponding mechanism of action. MATERIALS AND METHODS Four polysaccharide-enriched fraction were isolated from GLPs and the antidiabetic activities were evaluated by type 2 diabetic mice. Fasting serum glucose (FSG), fasting serum insulin (FSI) and epididymal fat/BW ratio were measured at the end of the experiment. In liver, the mRNA levels of hepatic glucose regulatory enzymes were determined by quantitative polymerase chain reaction (qPCR) and the protein levels of phospho-AMP-activated protein kinase (p-AMPK)/AMPK were determined by western blotting test. In epididymal fat tissue, the mRNA and protein levels GLUT4, resistin, fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC1) were determined by qPCR and immuno-histochemistry. The structure of polysaccharide F31 was obtained from GPC, FTIR NMR and GC-MS spectroscopy, RESULTS: F31 significantly decreased FSG (P<0.05), FSI and epididymal fat/BW ratio (P<0.01). In liver, F31 decreased the mRNA levels of hepatic glucose regulatory enzymes, and up-regulated the ratio of phospho-AMP-activated protein kinase (p-AMPK)/AMPK. In epididymal fat tissue, F31 increased the mRNA levels of GLUT4 but decreased fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC1) and resistin. Immuno-histochemistry results revealed F31 increased the protein levels of GLUT4 and decreased resistin. CONCLUSION Data suggested that the main bioactives in GLPs was F31, which was determined to be a β-heteropolysaccharide with the weight-average molecular weight of 15.9kDa. The possible action mechanism of F31 may be associated with down-regulation of the hepatic glucose regulated enzyme mRNA levels via AMPK activation, improvement of insulin resistance and decrease of epididymal fat/BW ratio. These results strongly suggest that F31 has antidiabetic potential.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Acetyl-CoA Carboxylase/genetics
- Acetyl-CoA Carboxylase/metabolism
- Adipose Tissue/drug effects
- Adipose Tissue/metabolism
- Animals
- Blood Glucose/analysis
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Down-Regulation
- Fasting/blood
- Fatty Acid Synthase, Type I/genetics
- Fatty Acid Synthase, Type I/metabolism
- Fruiting Bodies, Fungal
- Fungal Polysaccharides/pharmacology
- Fungal Polysaccharides/therapeutic use
- Ganoderma
- Glucose Transporter Type 4/genetics
- Glucose Transporter Type 4/metabolism
- Hypoglycemic Agents/pharmacology
- Hypoglycemic Agents/therapeutic use
- Insulin/blood
- Liver/drug effects
- Liver/metabolism
- Male
- Mice, Inbred C57BL
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- Chun Xiao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Xianlie Central Road 100, Guangzhou 510070, China.
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Xianlie Central Road 100, Guangzhou 510070, China.
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Xianlie Central Road 100, Guangzhou 510070, China.
| | - Yizhen Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Xianlie Central Road 100, Guangzhou 510070, China.
| | - Wen Cai
- Department of Toxicology, Center for Disease Control and Prevention of Guangdong Province, Guangzhou 510020, China.
| | - Jianbin Tan
- Department of Toxicology, Center for Disease Control and Prevention of Guangdong Province, Guangzhou 510020, China.
| |
Collapse
|
17
|
|
18
|
de Mattos-Shipley K, Ford K, Alberti F, Banks A, Bailey A, Foster G. The good, the bad and the tasty: The many roles of mushrooms. Stud Mycol 2016; 85:125-157. [PMID: 28082758 PMCID: PMC5220184 DOI: 10.1016/j.simyco.2016.11.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Fungi are often inconspicuous in nature and this means it is all too easy to overlook their importance. Often referred to as the "Forgotten Kingdom", fungi are key components of life on this planet. The phylum Basidiomycota, considered to contain the most complex and evolutionarily advanced members of this Kingdom, includes some of the most iconic fungal species such as the gilled mushrooms, puffballs and bracket fungi. Basidiomycetes inhabit a wide range of ecological niches, carrying out vital ecosystem roles, particularly in carbon cycling and as symbiotic partners with a range of other organisms. Specifically in the context of human use, the basidiomycetes are a highly valuable food source and are increasingly medicinally important. In this review, seven main categories, or 'roles', for basidiomycetes have been suggested by the authors: as model species, edible species, toxic species, medicinal basidiomycetes, symbionts, decomposers and pathogens, and two species have been chosen as representatives of each category. Although this is in no way an exhaustive discussion of the importance of basidiomycetes, this review aims to give a broad overview of the importance of these organisms, exploring the various ways they can be exploited to the benefit of human society.
Collapse
Affiliation(s)
- K.M.J. de Mattos-Shipley
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - K.L. Ford
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - F. Alberti
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
- School of Life Sciences and Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - A.M. Banks
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
- School of Biology, Devonshire Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - A.M. Bailey
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - G.D. Foster
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
19
|
Klupp NL, Kiat H, Bensoussan A, Steiner GZ, Chang DH. A double-blind, randomised, placebo-controlled trial of Ganoderma lucidum for the treatment of cardiovascular risk factors of metabolic syndrome. Sci Rep 2016; 6:29540. [PMID: 27511742 PMCID: PMC4980683 DOI: 10.1038/srep29540] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/17/2016] [Indexed: 11/09/2022] Open
Abstract
This study aimed to evaluate the efficacy and safety of Ganoderma lucidum for the treatment of hyperglycaemia and other cardiovascular risk components of metabolic syndrome using a prospective, double-blind, randomised, placebo-controlled trial. Eighty-four participants with type 2 diabetes mellitus and metabolic syndrome were randomised to one of three intervention groups: Ganoderma lucidum, Ganoderma lucidum with Cordyceps sinensis, or placebo. The dosage was 3 g/day of Ganoderma lucidum, with or without Cordyceps sinensis, for 16 weeks. The primary outcome measure was blood glucose (glycosylated haemoglobin [HbA1c] and fasting plasma glucose [FPG]); a number of secondary outcome measures were also tested. Data from the two intervention groups were combined. The combined intervention had no effect on any of the primary (baseline-adjusted difference in means: HbA1c = 0.13%, 95% CI [-0.35, 0.60], p = 0.60; FPG = 0.03 mmol/L, 95% CI [-0.90, 0.96], p = 0.95) or secondary outcome measures over the course of the 16-week trial, and no overall increased risk of adverse events with either active treatment. Evidence from this randomised clinical trial does not support the use of Ganoderma lucidum for treatment of cardiovascular risk factors in people with diabetes mellitus or metabolic syndrome. This Clinical Trial was registered with the Australian New Zealand Clinical Trials Registry on November 23, 2006. Trial ID: ACTRN12606000485538 and can be accessed here: https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=81705.
Collapse
Affiliation(s)
- Nerida L. Klupp
- The National Institute of Complementary Medicine, School of Science and Health, Western Sydney University, Penrith NSW, Australia
| | - Hosen Kiat
- Faculty of Medicine, University of New South Wales, Kensington NSW, Australia
- School of Medicine, Western Sydney University, Penrith NSW, Australia
- Faculty of Medicine and Health Sciences, Macquarie University NSW, Australia
| | - Alan Bensoussan
- The National Institute of Complementary Medicine, School of Science and Health, Western Sydney University, Penrith NSW, Australia
| | - Genevieve Z. Steiner
- The National Institute of Complementary Medicine, School of Science and Health, Western Sydney University, Penrith NSW, Australia
| | - Dennis H. Chang
- The National Institute of Complementary Medicine, School of Science and Health, Western Sydney University, Penrith NSW, Australia
| |
Collapse
|
20
|
|
21
|
Misconstrued versatility of Ganoderma lucidum: a key player in multi-targeted cellular signaling. Tumour Biol 2015; 37:2789-804. [DOI: 10.1007/s13277-015-4709-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/20/2015] [Indexed: 01/11/2023] Open
|
22
|
Ma HT, Hsieh JF, Chen ST. Anti-diabetic effects of Ganoderma lucidum. PHYTOCHEMISTRY 2015; 114:109-113. [PMID: 25790910 DOI: 10.1016/j.phytochem.2015.02.017] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 02/12/2015] [Accepted: 02/23/2015] [Indexed: 06/04/2023]
Abstract
Ganoderma lucidum is a white rot fungus widely used as a tonic for the promotion of longevity and health. Extracts of G. lucidum have been recognized as an alternative adjuvant treatment for diabetes. Among the many biologically active constituents of G. lucidum, polysaccharides, proteoglycans, proteins and triterpenoids have been shown to have hypoglycemic effects. G. lucidum polysaccharides have been reported to have hypoglycemic activity by increasing plasma insulin levels and decreasing plasma sugar levels in mice. Protein tyrosine phosphatase 1B is a promising therapeutic target in diabetes, and G. lucidum proteoglycan can inhibit this enzyme in vitro. Moreover, G. lucidum triterpenoids were shown to have inhibitory activity on aldose reductase and α-glucosidase that can suppress postprandial hyperglycemia. In addition, a protein Ling Zhi-8 extracted from G. lucidum significantly decreased lymphocyte infiltration and increased the antibody detection of insulin in diabetic mice. This review summarizes most of the research about the hypoglycemic action effects of polysaccharides, proteoglycans, proteins and tritrerpenoids from G. lucidum as a guide for future research.
Collapse
Affiliation(s)
- Haou-Tzong Ma
- Institute of Biological Chemistry and Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Jung-Feng Hsieh
- Department of Food Science, Fu Jen Catholic University, Taipei 242, Taiwan
| | - Shui-Tein Chen
- Institute of Biological Chemistry and Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Science, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
23
|
Wang F, Zhou Z, Ren X, Wang Y, Yang R, Luo J, Strappe P. Effect of Ganoderma lucidum spores intervention on glucose and lipid metabolism gene expression profiles in type 2 diabetic rats. Lipids Health Dis 2015; 14:49. [PMID: 25994182 PMCID: PMC4443549 DOI: 10.1186/s12944-015-0045-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/12/2015] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The fruiting body of Ganoderma lucidum has been used as a traditional herbal medicine for many years. However, to the date, there is no detailed study for describing the effect of G. lucidum spores on oxidative stress, blood glucose level and lipid compositions in animal models of type 2 diabetic rats, in particular the effect on the gene expression profiles associated with glucose and lipid metabolisms. METHODS G. lucidum spores powder (GLSP) with a shell-broken rate >99.9 % was used. Adult male Sprague-Dawley rats were randomly divided into three groups (n = 8/group). Group 1: Normal control, normal rats with ordinary feed; Group 2: Model control, diabetic rats with ordinary feed without intervention; Group 3: GLSP, diabetic rats with ordinary feed, an intervention group utilizing GLSP of 1 g per day by oral gavages for 4 consecutive weeks. Type 2 diabetic rats were obtained by streptozocin (STZ) injection. The changes in the levels of glucose, triglycerides, total cholesterol and HDL-cholesterol in blood samples were analyzed after GLSP intervention. Meanwhile, gene expressions associated with the possible molecular mechanism of GLSP regulation were also investigated using a quantitative RT-PCR. RESULTS The reduction of blood glucose level occurred within the first 2 weeks of GLSP intervention and the lipid synthesis in the diabetic rats of GLSP group was significantly decreased at 4 weeks compared to the model control group. Furthermore, it was also found that GLSP intervention greatly attenuated the level of oxidative stress in the diabetic rats. Quantitative RT-PCR analysis showed up-regulation of lipid metabolism related genes (Acox1, ACC, Insig-1 and Insig-2) and glycogen synthesis related genes (GS2 and GYG1) in GLSP group compared to model control group. Additionally, there were no significant changes in the expression of other genes, such as SREBP-1, Acly, Fas, Fads1, Gpam, Dgat1, PEPCK and G6PC1. CONCLUSION This study might indicate that GLSP consumption could provide a beneficial effect in terms of lowering the blood glucose levels by promoting glycogen synthesis and inhibiting gluconeogenesis. Meanwhile, GLSP treatment was also associated with the improvement of blood lipid compositions through the regulation of cholesterol homeostasis in the type 2 diabetic rats.
Collapse
MESH Headings
- Animals
- Blood Glucose/analysis
- Cholesterol/blood
- Cholesterol, HDL/blood
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Gene Expression/drug effects
- Glucose/metabolism
- Insulin/blood
- Lipid Metabolism/drug effects
- Lipid Metabolism/genetics
- Male
- Medicine, Chinese Traditional/methods
- Oxidative Stress/drug effects
- Rats
- Rats, Sprague-Dawley
- Reishi/metabolism
- Spores, Fungal/metabolism
- Triglycerides/blood
Collapse
Affiliation(s)
- Fang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China.
- School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Zhongkai Zhou
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China.
- School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Xiaochong Ren
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Yuyang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Rui Yang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Jinhua Luo
- Chongqing Biotechnology Research Institute, Chongqing, 401121, China.
| | - Padraig Strappe
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia.
| |
Collapse
|
24
|
ZHU HY, CHEN GT, MENG GL, XU JL. Characterization of pumpkin polysaccharides and protective effects on streptozotocin-damaged islet cells. Chin J Nat Med 2015; 13:199-207. [DOI: 10.1016/s1875-5364(15)30005-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Indexed: 01/09/2023]
|
25
|
Xiao C, Wu Q, Xie Y, Zhang J, Tan J. Hypoglycemic effects of Grifola frondosa (Maitake) polysaccharides F2 and F3 through improvement of insulin resistance in diabetic rats. Food Funct 2015; 6:3567-75. [DOI: 10.1039/c5fo00497g] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This study demonstrated the hypoglycemic effects of Grifola frondosa polysaccharides F2 and F3 through insulin sensitivity improvement in diabetic rats.
Collapse
Affiliation(s)
- Chun Xiao
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Open Laboratory of Applied Microbiology
- Guangdong Institute of Microbiology
- Guangzhou 510070
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Open Laboratory of Applied Microbiology
- Guangdong Institute of Microbiology
- Guangzhou 510070
| | - Yizhen Xie
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Open Laboratory of Applied Microbiology
- Guangdong Institute of Microbiology
- Guangzhou 510070
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Open Laboratory of Applied Microbiology
- Guangdong Institute of Microbiology
- Guangzhou 510070
| | - Jianbin Tan
- Department of Toxicology
- Center for Disease Control and Prevention of Guangdong Province
- Guangzhou 510020
- China
| |
Collapse
|
26
|
Choong YK, Sun SQ, Zhou Q, Lan J, Lee HL, Chen XD. Verification of Ganoderma (lingzhi) commercial products by Fourier Transform infrared spectroscopy and two-dimensional IR correlation spectroscopy. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2013.11.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Fatmawati S, Kondo R, Shimizu K. Structure–activity relationships of lanostane-type triterpenoids from Ganoderma lingzhi as α-glucosidase inhibitors. Bioorg Med Chem Lett 2013; 23:5900-3. [DOI: 10.1016/j.bmcl.2013.08.084] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 08/15/2013] [Accepted: 08/21/2013] [Indexed: 11/28/2022]
|
28
|
|
29
|
Nie S, Zhang H, Li W, Xie M. Current development of polysaccharides from Ganoderma: Isolation, structure and bioactivities. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.bcdf.2013.01.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Xiao C, Wu QP, Cai W, Tan JB, Yang XB, Zhang JM. Hypoglycemic effects of Ganoderma lucidum polysaccharides in type 2 diabetic mice. Arch Pharm Res 2012; 35:1793-801. [PMID: 23139131 DOI: 10.1007/s12272-012-1012-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 04/26/2012] [Accepted: 06/01/2012] [Indexed: 11/28/2022]
Abstract
Our aims were to investigate the hypoglycemic effects and mechanisms of action of Ganoderma lucidum polysaccharides (GLPs) administered for 7 days in type 2 diabetic mice. The mice were randomly divided into four groups (8 mice/group): normal control group, diabetic control group, low-dose GLP-treated diabetic group (50 mg/kg/d), and high-dose GLP-treated diabetic group (100 mg/kg/d). Diabetes was induced by streptozotocin injection and high-fat dietary feeding. At the end of the study, fasting serum glucose, insulin, body weight (BW) and epididymal white adipose tissue weight were measured. The hepatic mRNA levels of glycogen phosphorylase (GP), fructose-1,6-bisphosphatase (FBPase), phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) genes were determined by real-time polymerase chain reaction. Both doses of GLPs significantly decreased fasting serum glucose, insulin and epididymal fat/BW ratio compared with the diabetic control group (p < 0.05). The hepatic mRNA levels of GP, FBPase, PEPCK and G6Pase were significantly lower in both GLP-treated groups compared with the diabetic control group. Taken together, GLPs significantly decrease fasting serum glucose levels in type 2 diabetic mice in a dose-dependent manner. The decreases in fasting serum glucose levels may be associated with decreased mRNA expression levels of several key enzymes involved in gluconeogenesis and/or glycogenolysis.
Collapse
Affiliation(s)
- Chun Xiao
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Ministry of Guangdong Province Joint Breeding Base, South China, Guangdong Institute of Microbiology, Guangzhou, China.
| | | | | | | | | | | |
Collapse
|
31
|
Lam W, Wang C, Tsui T, Wai M, Tang H, Wong Y, Lam L, Hui L, Yew D. Extract of white button mushroom affects skin healing and angiogenesis. Microsc Res Tech 2012; 75:1334-40. [DOI: 10.1002/jemt.22071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 04/13/2012] [Indexed: 01/06/2023]
|
32
|
Lai SW, Lin JH, Lai SS, Wu YL. Influence of Ganoderma lucidum on Blood Biochemistry and Immunocompetence in Horses. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 32:931-40. [PMID: 15673198 DOI: 10.1142/s0192415x04002533] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The characteristic ingredients of Ganoderma lucidum, such as polysaccharides, triterpenoids, nucleic acids and small proteins, have been found and proved to have many special pharmacological properties. Mice and rats have been extensively used to investigate the effects of G. lucidum. Experiments with horses as an animal model for investigating the effects of G. lucidum have never been reported. The purpose of this investigation was to understand the influence of G. lucidum feeding on blood biochemistry and immunocompetence in horses. Complete blood count (CBC) and blood biochemistry were surveyed routinely. Cellular-mediated immunity was monitored by flow cytometry to survey the percentage changes of CD5+, CD4+, CD8+ T-lymphocytes and B-lymphocytes in the peripheral blood lymphocytes (PBLs). The effect of G. lucidum on humoral immunity was experimented by fast plate agglutination test to survey the change and manifestation of the titer of specific anti-egg albumin antibodies in the serum after egg albumin injection. The findings on CBC and blood biochemistry indicated that G. lucidum was quite safe to horses. Experimental result on cell-mediated immunity showed that G. lucidum could increase the percentage of CD5+, CD4+ and CD8+ T-lymphocytes in PBLs (p<0.001). Experimental result on humoral immunity showed that G. lucidum could help the horses to produce a significantly higher quantity of specific antibodies in a shorter time (p<0.001).
Collapse
Affiliation(s)
- Shao-Wen Lai
- Department of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan
| | | | | | | |
Collapse
|
33
|
An effective method for deproteinization of bioactive polysaccharides extracted from lingzhi (Ganoderma atrum). Food Sci Biotechnol 2012. [DOI: 10.1007/s10068-012-0024-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
34
|
Perera PK, Li Y. Functional herbal food ingredients used in type 2 diabetes mellitus. Pharmacogn Rev 2012; 6:37-45. [PMID: 22654403 PMCID: PMC3358966 DOI: 10.4103/0973-7847.95863] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 11/15/2010] [Accepted: 05/08/2012] [Indexed: 12/18/2022] Open
Abstract
From many reports it is clear that diabetes will be one of the major diseases in the coming years. As a result there is a rapidly increasing interest in searching new medicines, or even better searching prophylactic methods. Based on a large number of chemical and pharmacological research work, numerous bioactive compounds have been found in functional herbal food ingredients for diabetes. The present paper reviews functional herbal food ingredients with regards to their anti-diabetic active principles and pharmacological test results, which are commonly used in Asian culinary system and medical system and have demonstrated clinical or/and experimental anti-diabetic effectiveness. Our idea of reviewing this article is to give more attention to these functional food ingredients as targets medicinal foods in order to prevent or slow down the development of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Pathirage Kamal Perera
- Department of Physiology, China Pharmaceutical University, Nanjing, Jiangsu, P. R., China
| | - Yunman Li
- Department of Physiology, China Pharmaceutical University, Nanjing, Jiangsu, P. R., China
| |
Collapse
|
35
|
Fatmawati S, Shimizu K, Kondo R. Structure–activity relationships of ganoderma acids from Ganoderma lucidum as aldose reductase inhibitors. Bioorg Med Chem Lett 2011; 21:7295-7. [DOI: 10.1016/j.bmcl.2011.10.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/09/2011] [Accepted: 10/11/2011] [Indexed: 10/16/2022]
|
36
|
Park MS, Park JH, Oh DH. Quality and Volatile-Flavor Compound Characteristics of Hypsizigus marmoreus. ACTA ACUST UNITED AC 2011. [DOI: 10.11002/kjfp.2011.18.4.552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
37
|
Study of potential cardioprotective effects ofGanoderma lucidum(Lingzhi): results of a controlled human intervention trial. Br J Nutr 2011; 107:1017-27. [DOI: 10.1017/s0007114511003795] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Previous studies have suggested that Lingzhi (Ganoderma lucidum) has antioxidant effects and possibly beneficial effects on blood pressure, plasma lipids and glucose, but these have not been confirmed in subjects with mild hypertension or hyperlipidaemia. The objective of the present study was to assess the cardiovascular, metabolic, antioxidant and immunomodulatory responses to therapy with Lingzhi in patients with borderline elevations of blood pressure and/or cholesterol in a controlled cross-over trial. A total of twenty-six patients received 1·44 g Lingzhi daily or matching placebo for 12 weeks in a randomised, double-blind, cross-over study with placebo-controlled run-in and cross-over periods. Body weight, blood pressure, metabolic parameters, urine catecholamines and cortisol, antioxidant status and lymphocyte subsets were measured after each period. Lingzhi was well tolerated and data from twenty-three evaluable subjects showed no changes in BMI or blood pressure when treated with Lingzhi or placebo. Plasma insulin and homeostasis model assessment-insulin resistance were lower after treatment with Lingzhi than after placebo. TAG decreased and HDL-cholesterol increased with Lingzhi but not with placebo in the first treatment period, but significant carry-over effects prevented complete analysis of these parameters. Urine catecholamines and cortisol, plasma antioxidant status and blood lymphocyte subsets showed no significant differences across treatments. Results indicate that Lingzhi might have mild antidiabetic effects and potentially improve the dyslipidaemia of diabetes, as shown previously in some animal studies. Further studies are desirable in patients with hyperglycaemia.
Collapse
|
38
|
Teng BS, Wang CD, Yang HJ, Wu JS, Zhang D, Zheng M, Fan ZH, Pan D, Zhou P. A protein tyrosine phosphatase 1B activity inhibitor from the fruiting bodies of Ganoderma lucidum (Fr.) Karst and its hypoglycemic potency on streptozotocin-induced type 2 diabetic mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:6492-500. [PMID: 21585203 DOI: 10.1021/jf200527y] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Inhibition of protein tyrosine phosphatase 1B (PTP1B) activity has been considered to be a promising therapy approach to treat type 2 diabetes. In this work, a novel PTP1B activity inhibitor, named FYGL (Fudan-Yueyang-G. lucidum), was screened from the fruiting bodies of Ganoderma lucidum and showed an efficient PTP1B inhibitory potency with IC₅₀ = 5.12 ± 0.05 μg/mL. FYGL is a water-soluble macromolecular proteoglycan with a protein to polysaccharide ratio of 17:77 and a viscosity-average molecular weight (M(η)) of 2.6 × 10⁵. The type 2 diabetic mice treated orally by FYGL showed an obvious decrease in plasma glucose level compared with the diabetic controls without drug treatment, comparable with that of diabetic mice treated with metformin, a clinical drug. The toxicity of FYGL is very low. The results indicate that FYGL may serve as a drug candidate or a health-care food for diabetic therapy or protection.
Collapse
Affiliation(s)
- Bao-Song Teng
- Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Matute RG, Serra A, Figlas D, Curvetto N. Copper and zinc bioaccumulation and bioavailability of Ganoderma lucidum. J Med Food 2011; 14:1273-9. [PMID: 21554122 DOI: 10.1089/jmf.2010.0206] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ganoderma lucidum is a widely recognized medicinal mushroom. The bioaccumulation and potential bioavailability of copper (Cu) and zinc (Zn), which are essentials for human health, were analyzed in G. lucidum mycelium and fruit bodies grown in the presence of these metals to test their potential utility as a food dietary supplement. Mycelia grown in culture medium with non-mycotoxic doses of Cu or Zn (25 and 50 mg/kg) were selected for evaluation of the bioavailability of these metals in the gastrointestinal tract by using an in vitro simulated digestion system. One gram of dried mycelium grown in the presence of 50 mg/kg Cu or Zn showed a bioavailability of 19% for Cu and 2% for Zn of the recommended daily intake (RDI). When production of fruit bodies was evaluated, the highest biological efficiency (23%) was reached when the substrate was enriched with 100 mg/kg Cu. Cu and Zn contents obtained either before or after digestion of fruit bodies from all metal-enriched treatments were substantially lower than those from metal-enriched mycelia. The metal bioavailability was also low: 1.5% of the Cu RDI and almost negligible for Zn. The results are discussed in relation to the RDI values exhibited by two commercial supplements. The potential incorporation of these mineral-enriched mycelia/fruit bodies in capsules, infusions, and dietary supplements is evaluated.
Collapse
Affiliation(s)
- Ramiro González Matute
- Laboratory of Biotechnology of Edible and Medicinal Mushrooms, CERZOS (CONICET), Bahía Blanca, Argentina.
| | | | | | | |
Collapse
|
40
|
Meng G, Zhu H, Yang S, Wu F, Zheng H, Chen E, Xu J. Attenuating effects of Ganoderma lucidum polysaccharides on myocardial collagen cross-linking relates to advanced glycation end product and antioxidant enzymes in high-fat-diet and streptozotocin-induced diabetic rats. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2010.11.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
41
|
Sasidharan S, Chen Y, Saravanan D, Sundram KM, Yoga Latha L. Extraction, isolation and characterization of bioactive compounds from plants' extracts. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES : AJTCAM 2011. [PMID: 22238476 DOI: 10.1625/jcam.8.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Natural products from medicinal plants, either as pure compounds or as standardized extracts, provide unlimited opportunities for new drug leads because of the unmatched availability of chemical diversity. Due to an increasing demand for chemical diversity in screening programs, seeking therapeutic drugs from natural products, interest particularly in edible plants has grown throughout the world. Botanicals and herbal preparations for medicinal usage contain various types of bioactive compounds. The focus of this paper is on the analytical methodologies, which include the extraction, isolation and characterization of active ingredients in botanicals and herbal preparations. The common problems and key challenges in the extraction, isolation and characterization of active ingredients in botanicals and herbal preparations are discussed. As extraction is the most important step in the analysis of constituents present in botanicals and herbal preparations, the strengths and weaknesses of different extraction techniques are discussed. The analysis of bioactive compounds present in the plant extracts involving the applications of common phytochemical screening assays, chromatographic techniques such as HPLC and, TLC as well as non-chromatographic techniques such as immunoassay and Fourier Transform Infra Red (FTIR) are discussed.
Collapse
Affiliation(s)
- S Sasidharan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Malaysia.
| | | | | | | | | |
Collapse
|
42
|
Oh TW, Kim YA, Jang WJ, Byeon JI, Ryu CH, Kim JO, Ha YL. Semipurified fractions from the submerged-culture broth of Agaricus blazei Murill reduce blood glucose levels in streptozotocin-induced diabetic rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:4113-4119. [PMID: 20196600 DOI: 10.1021/jf9036672] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Hypoglycemic action of semipurified fractions from hot-water extracts of the submerged-culture broth of Agaricus blazei Murill was examined in streptozotocin (60 mg/kg, intraperitoneal)-induced diabetic male Sprague-Dawley rats, relative to the diabetes drug metformin. The hot-water extract, treated with ethanol to remove beta-glucans and glycoproteins, was freeze-dried, and fractionated into hexane, chloroform, ethyl acetate (EA), and butanol fractions. The EA fraction (EAF; 200 mg/kg body weight) reduced (p < 0.05) the blood glucose level in the oral glucose tolerance test, relative to the other fractions and control. In a 14 day-treatment study, diabetic rats treated with the EAF displayed a suppressed blood glucose level and elevated plasma insulin and glucose transport-4 proteins; the reactions occurred in a dose-dependent manner (200 and 400 mg/kg body weight) compared to those in control animals. The EAF reduced the levels of triglyceride and cholesterol in plasma, the activity of glutamate-oxaloacetate transaminase and glutamate-pyruvate transaminase in blood, and the content of thiobarbituric acid reactive substance in the liver and kidney. The hypoglycemic efficacy of the EAF (400 mg/kg body weight) was similar to that of metformin (500 mg/kg body weight). The EAF contained substantial amounts of isoflavonoids including genistein, genistin, daidzein, and daidzin, which could have contributed to the fraction's hypoglycemic action. These results indicate that the hot-water extract of the submerged-culture broth of Agaricus blazei contains an EAF having potent hypoglycemic action, which could be useful in the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Tae W Oh
- Division of Applied Life Sciences (BK21 program), Graduate School and Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
43
|
Kim HY, Joung EM, Hwang IG, Jeong JH, Yu KW, Lee JS, Jeong HS. Effect of Fermented Ginseng Extract by Mushroom Mycelia on Antiproliferation of Cancer Cells. ACTA ACUST UNITED AC 2010. [DOI: 10.3746/jkfn.2010.39.1.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
44
|
Bedekar A, Shah K, Koffas M. Natural Products for Type II Diabetes Treatment. ADVANCES IN APPLIED MICROBIOLOGY 2010; 71:21-73. [DOI: 10.1016/s0065-2164(10)71002-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
Tong C, Choong Y, Mohamed S, Mohamed Mustapha N, Aini Umar N. Efficacy of Ganoderma lucidum on plasma lipids and lipoproteins in rats fed with high cholesterol diet. ACTA ACUST UNITED AC 2008. [DOI: 10.1108/00346650810871911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Chen Y, Xie MY, Nie SP, Li C, Wang YX. Purification, composition analysis and antioxidant activity of a polysaccharide from the fruiting bodies of Ganoderma atrum. Food Chem 2008. [DOI: 10.1016/j.foodchem.2007.08.021] [Citation(s) in RCA: 455] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Watanabe T, Nakajima Y, Konishi T. In Vitro and in Vivo Anti-oxidant Activity of Hot Water Extract of Basidiomycetes-X, Newly Identified Edible Fungus. Biol Pharm Bull 2008; 31:111-7. [DOI: 10.1248/bpb.31.111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Yuki Nakajima
- Department of Functional and Analytical Food Sciences, Niigata University of Pharmacy and Applied Life Sciences
| | - Tetsuya Konishi
- Department of Functional and Analytical Food Sciences, Niigata University of Pharmacy and Applied Life Sciences
| |
Collapse
|
48
|
OKAZAKI M, TANAKA A, HATTA Y, KAWAHARA Y, KAMIUCHI S, IWATA N, ASANO S, SUZUKI F, IIZUKA H, HIBINO Y. Antioxidant Properties of a Water-soluble Extract from Culture Medium of Ganoderma lucidum (Rei-shi) Mycelia and Antidiabetic Effects in Streptozotocin-treated Mice. ACTA ACUST UNITED AC 2008. [DOI: 10.1625/jcam.5.209] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Mari OKAZAKI
- Laboratory of Immunobiochemistry, Department of Clinical Dietetics & Human Nutrition, Faculty of Pharmaceutical Sciences, Josai University
| | - Aiko TANAKA
- Laboratory of Immunobiochemistry, Department of Clinical Dietetics & Human Nutrition, Faculty of Pharmaceutical Sciences, Josai University
| | - Yuko HATTA
- Laboratory of Immunobiochemistry, Department of Clinical Dietetics & Human Nutrition, Faculty of Pharmaceutical Sciences, Josai University
| | - Yukiko KAWAHARA
- Laboratory of Immunobiochemistry, Department of Clinical Dietetics & Human Nutrition, Faculty of Pharmaceutical Sciences, Josai University
| | - Shinya KAMIUCHI
- Laboratory of Immunobiochemistry, Department of Clinical Dietetics & Human Nutrition, Faculty of Pharmaceutical Sciences, Josai University
| | - Naohiro IWATA
- Laboratory of Immunobiochemistry, Department of Clinical Dietetics & Human Nutrition, Faculty of Pharmaceutical Sciences, Josai University
| | - Satoshi ASANO
- Post-marketing surveillance, Development & Medical Affairs Division, GlaxoSmithKline K.K
| | | | | | - Yasuhide HIBINO
- Laboratory of Immunobiochemistry, Department of Clinical Dietetics & Human Nutrition, Faculty of Pharmaceutical Sciences, Josai University
| |
Collapse
|
49
|
Chen SD, Hsieh MC, Chiou MT, Lai YS, Cheng YH. Effects of fermentation products ofGanoderma lucidumon growth performance and immunocompetence in weanling pigs. Arch Anim Nutr 2007; 62:22-32. [DOI: 10.1080/17450390701780201] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
50
|
Kim MC, Kim MJ, Kim JS, Heo MS. Effect of Culture Broth from Mushroom Mycelium on Growth and Non-specific Immune Parameters in Flounder (Paralichthys olivaceus) by Oral Administration. ACTA ACUST UNITED AC 2007. [DOI: 10.5352/jls.2007.17.10.1434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|