1
|
Gao R, Rapin N, Andrushko JW, Farthing JP, Gordon J, Chilibeck PD. The effect of tart cherry juice compared to a sports drink on cycling exercise performance, substrate metabolism, and recovery. PLoS One 2024; 19:e0307263. [PMID: 39141644 PMCID: PMC11324131 DOI: 10.1371/journal.pone.0307263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/01/2024] [Indexed: 08/16/2024] Open
Abstract
Tart cherries have low glycemic index, antioxidant and anti-inflammatory properties, and therefore may benefit performance and recovery from exercise. We determined the effects of consuming tart cherry juice versus a high-glycemic index sports drink on cycling performance, substrate oxidation, and recovery of low-frequency fatigue. Using a randomized, counter-balanced cross-over design, with one-month washout, 12 recreational cyclists (8 males and 4 females; 35±16y; VO2peak 38.2±7.4 ml/kg/min) consumed cherry juice or sports drink twice a day (300mL/d) for 4d before and 2d after exercise. On the exercise day, beverages (providing 1g/kg carbohydrate) were consumed 45min before 90min of cycling at 65%VO2peak, followed by a 10km time trial. Blood glucose, lactate, carbohydrate and fat oxidation, respiratory exchange ratio (RER), O2 cost of cycling, and rating of perceived exertion (RPE) were measured during the initial 90min of cycling. Muscle soreness, maximal voluntary contraction (MVC) and low-frequency fatigue were determined at baseline and after the time trial on the exercise day, and 30min after beverage consumption 24 and 48h later. There were no differences for time trial performance (17±3min cherry juice vs. 17±2min sports drink, p = 0.27) or any other measures between drink conditions. There were time main effects (p<0.05) for isometric MVC (decreasing) and low-frequency fatigue (increasing; i.e. decreased force at low relative to high stimulation frequencies), changing significantly from baseline to post-exercise and then returning to baseline at 24h post-exercise. Tart cherry juice was not effective for improving performance, substrate oxidation during exercise, and recovery from exercise, compared to a high-glycemic index sports drink.
Collapse
Affiliation(s)
- Ruirui Gao
- College of Kinesiology, University of Saskatchewan, Saskatoon, Canada
| | - Nicole Rapin
- College of Kinesiology, University of Saskatchewan, Saskatoon, Canada
| | | | | | - Julianne Gordon
- College of Kinesiology, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
2
|
Lee HY, Jack M, Poon T, Noori D, Venditti C, Hamamji S, Musa-Veloso K. Effects of Unsweetened Preloads and Preloads Sweetened with Caloric or Low-/No-Calorie Sweeteners on Subsequent Energy Intakes: A Systematic Review and Meta-Analysis of Controlled Human Intervention Studies. Adv Nutr 2021; 12:1481-1499. [PMID: 33439973 PMCID: PMC8321874 DOI: 10.1093/advances/nmaa157] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/02/2020] [Accepted: 11/10/2020] [Indexed: 11/25/2022] Open
Abstract
Effects of isocaloric (sweetness differences but constant calories) preloads and isosweet (caloric differences but constant sweetness) preloads, as well as preloads that were neither isosweet nor isocaloric (sweetness and caloric differences) on subsequent ad libitum meal and total (preload + ad libitum) energy intakes were investigated. Thirty-five crossover studies were eligible for inclusion, representing 116 comparisons (41, isocaloric; 41, isosweet; and 34, neither isosweet nor isocaloric). References of existing reviews and literature from 4 databases were searched. The calculated raw mean differences in ad libitum and total energy intakes were pooled in meta-analyses using a random-effects model and the inverse of the variance as the weighting factor. Energy intakes at an ad libitum meal were significantly lower for low-/no-calorie sweetener (LNCS)-sweetened compared with unsweetened preloads in the isocaloric comparison (-55.5 kcal; 95% CI: -82.9, -28.0 kcal; P < 0.001); however, the difference in energy intake was not significant in additional sensitivity analyses (i.e., removal of comparisons where the matrix was a capsule and when xylitol was the LNCS). For the isosweet comparison, although the pooled energy intake at the ad libitum meal was significantly greater with the LNCS-sweetened preload compared with the caloric sweetener (CS)-sweetened preload (58.5 kcal; 95% CI: 35.4, 81.7 kcal; P < 0.001), the pattern was reversed when total energy intake was considered (-132.4 kcal; 95% CI: -163.2, -101.6 kcal; P < 0.001), explained by only partial compensation from the CS-sweetened preload. The results were similar when assessing ad libitum and total energy intakes when unsweetened compared with CS-sweetened preloads were consumed. Unsweetened or LNCS-sweetened preloads appear to have similar effects on intakes when compared with one another or with CS-sweetened preloads. These findings suggest that LNCS-sweetened foods and beverages are viable alternatives to CS-sweetened foods and beverages to manage short-term energy intake.
Collapse
Affiliation(s)
- Han Youl Lee
- Intertek Health Sciences, Inc., Mississauga, Ontario Canada
| | - Maia Jack
- American Beverage Association, Science and Regulatory Affairs, Washington, DC, USA
| | - Theresa Poon
- Intertek Health Sciences, Inc., Mississauga, Ontario Canada
| | - Daniel Noori
- Intertek Health Sciences, Inc., Mississauga, Ontario Canada
| | | | - Samer Hamamji
- Intertek Health Sciences, Inc., Mississauga, Ontario Canada
| | | |
Collapse
|
3
|
The effect on satiety of ingesting isosweet and isoenergetic sucrose- and isomaltulose-sweetened beverages: a randomised crossover trial. Br J Nutr 2020; 124:225-231. [DOI: 10.1017/s0007114520000884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractGenerating feelings of satiety may be important in maintaining weight control. It has been hypothesised that the circulating concentration of glucose is a major determinant of satiety, yet the relationship between postprandial glycaemia and satiety is inconclusive. Our aim was to assess satiety following ingestion of beverages differing in glycaemic index (GI) containing either 50 g of sucrose (GI 65) or isomaltulose (PalatinoseTM) (GI 32). The beverages were matched for sweetness using a triangle sensory test. Seventy-seven participants were randomised to the order in which they received each beverage, 2 weeks apart. A standard lunch was given at 12.00 hours. Satiety was measured using 100-mm visual analogue scales (VAS) administered at 14.00 hours (baseline) and at 30, 60, 90, 120, 150 and 180 min after ingesting the beverage. Weighed diet records were kept from 17.00 to 24.00 hours. Mean differences for isomaltulose compared with sucrose AUC VAS were ‘How hungry do you feel?’ 109 (95 % CI –443, 661) mm × min; ‘How satisfied do you feel?’ 29 (95 % CI –569, 627) mm × min; ‘How full do you feel?’ −91 (95 % CI –725, 544) mm × min and ‘How much do you think you can eat?’ 300 (95 % CI –318, 919) mm × min. There was no between-treatment difference in satiety question responses or in dietary energy intake −291 (95 % CI −845, 267) kJ over the remainder of the day. In this experiment, feelings of satiety were independent of the GI of the test beverages. Any differences in satiety found between foods chosen on the basis of GI could be attributable to food properties other than the glycaemic-inducing potential of the food.
Collapse
|
4
|
Duszka K, Gregor A, Reichel MW, Baierl A, Fahrngruber C, König J. Visual stimulation with food pictures in the regulation of hunger hormones and nutrient deposition, a potential contributor to the obesity crisis. PLoS One 2020; 15:e0232099. [PMID: 32330183 PMCID: PMC7182185 DOI: 10.1371/journal.pone.0232099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
Food cues affect hunger and nutritional choices. Omnipresent stimulation with palatable food contributes to the epidemics of obesity. The objective of the study was to investigate the impact of food cues on appetite-related hormones and to assess the functionality of the secreted hormones on macronutrient uptake in healthy subjects. Additionally, we aimed at verifying differences in the response of total and active ghrelin to stimulation with food pictures and to a meal followed by the stimulation. We were also interested in the identification of factors contributing to response to food cues. We recruited healthy, non-obese participants for two independent cross-over studies. During the first study, the subjects were presented random non-food pictures on the first day and pictures of foods on the second day of the study. Throughout the second study, following the picture session, the participants were additionally asked to drink a milkshake. Concentrations of blood glucose, triglycerides and hunger-related hormones were measured. The results showed that concentrations of several hormones measured in the blood are interdependent. In the case of ghrelin and gastric inhibitory peptide (GIP) as well as ghrelin and glucagon-like peptide-1 (GLP-1), this co-occurrence relies on the visual cues. Regulation of total ghrelin concentration following food stimulation is highly individual and responders showed upregulated total ghrelin, while the concentration of active ghrelin decreases following a meal. Protein content and colour intensity of food pictures reversely correlated with participants’ rating of the pictures. We conclude that observation of food pictures influences the concentration of several appetite-related hormones. The close link of visual clues to physiological responses is likely of clinical relevance. Additionally, the protein content of displayed foods and green colour intensity in pictures may serve as a predictor of subjective attractiveness of the presented meal.
Collapse
Affiliation(s)
- Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
- * E-mail:
| | - András Gregor
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | | | - Andreas Baierl
- Department of Statistics and Operations Research, University of Vienna, Vienna, Austria
| | | | - Jürgen König
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Galderisi A, Giannini C, Van Name M, Caprio S. Fructose Consumption Contributes to Hyperinsulinemia in Adolescents With Obesity Through a GLP-1-Mediated Mechanism. J Clin Endocrinol Metab 2019; 104:3481-3490. [PMID: 30938760 PMCID: PMC6599430 DOI: 10.1210/jc.2019-00161] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/26/2019] [Indexed: 01/03/2023]
Abstract
CONTEXT The consumption of high-fructose beverages is associated with a higher risk for obesity and diabetes. Fructose can stimulate glucagon-like peptide 1 (GLP-1) secretion in lean adults, in the absence of any anorexic effect. OBJECTIVE We hypothesized that the ingestion of glucose and fructose may differentially stimulate GLP-1 and insulin response in lean adolescents and adolescents with obesity. DESIGN We studied 14 lean adolescents [four females; 15.9 ± 1.6 years of age; body mass index (BMI), 21.8 ± 2.2 kg/m2] and 23 adolescents with obesity (five females; 15.1 ± 1.6 years of age; BMI, 34.5 ± 4.6 kg/m2). Participants underwent a baseline oral glucose tolerance test to determine their glucose tolerance and estimate insulin sensitivity and β-cell function [oral disposition index (oDIcpep)]. Eligible subjects received, in a double-blind, crossover design, 75 g of glucose or fructose. Plasma was obtained every 10 minutes for 60 minutes for the measures of glucose, insulin, and GLP-1 (radioimmunoassay) and glucose-dependent insulinotropic polypeptide (GIP; ELISA). Incremental glucose and hormone levels were compared between lean individuals and those with obesity by a linear mixed model. The relationship between GLP-1 increment and oDIcpep was evaluated by regression analysis. RESULTS Following the fructose challenge, plasma glucose excursions were similar in both groups, yet the adolescents with obesity exhibited a greater insulin (P < 0.001) and GLP-1 (P < 0.001) increase than did their lean peers. Changes in GIP were similar in both groups. After glucose ingestion, the GLP-1 response (P < 0.001) was higher in the lean group. The GLP-1 increment during 60 minutes from fructose drink was correlated with a lower oDIcpep (r2 = 0.22, P = 0.009). CONCLUSION Fructose, but not glucose, ingestion elicits a higher GLP-1 and insulin response in adolescents with obesity than in lean adolescents. Fructose consumption may contribute to the hyperinsulinemic phenotype of adolescent obesity through a GLP-1-mediated mechanism.
Collapse
Affiliation(s)
- Alfonso Galderisi
- Department of Pediatrics, Pediatrics Endocrinology and Diabetes Section, Yale School of Medicine, New Haven, Connecticut
- Department of Woman’s and Child’s Health, University of Padova, Padova, Italy
| | - Cosimo Giannini
- Department of Pediatrics, Pediatrics Endocrinology and Diabetes Section, Yale School of Medicine, New Haven, Connecticut
| | - Michelle Van Name
- Department of Pediatrics, Pediatrics Endocrinology and Diabetes Section, Yale School of Medicine, New Haven, Connecticut
| | - Sonia Caprio
- Department of Pediatrics, Pediatrics Endocrinology and Diabetes Section, Yale School of Medicine, New Haven, Connecticut
- Correspondence and Reprint Requests: Sonia Caprio, MD, Division of Pediatric Endocrinology, Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520. E-mail:
| |
Collapse
|
6
|
Acute Effects of Nutritive and Non-Nutritive Sweeteners on Postprandial Blood Pressure. Nutrients 2019; 11:nu11081717. [PMID: 31349678 PMCID: PMC6722982 DOI: 10.3390/nu11081717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 02/06/2023] Open
Abstract
Postprandial hypotension (PPH) is under-recognised, but common, particularly in the elderly, and is of clear clinical importance due to both the independent association between PPH and an increase in mortality and lack of effective management for this condition. Following health concerns surrounding excessive consumption of sugar, there has been a trend in the use of low- or non-nutritive sweeteners as an alternative. Due to the lack of literature in this area, we conducted a systematic search to identify studies relevant to the effects of different types of sweeteners on postprandial blood pressure (BP). The BP response to ingestion of sweeteners is generally unaffected in healthy young subjects, however in elderly subjects, glucose induces the greatest decrease in postprandial BP, while the response to sucrose is less pronounced. The limited studies investigating other nutritive and non-nutritive sweeteners have demonstrated minimal or no effect on postprandial BP. Dietary modification by replacing high nutritive sweeteners (glucose, fructose, and sucrose) with low nutritive (d-xylose, xylitol, erythritol, maltose, maltodextrin, and tagatose) and non-nutritive sweeteners may be a simple and effective management strategy for PPH.
Collapse
|
7
|
Does an increased intake of added sugar affect appetite in overweight or obese adults, when compared with lower intakes? A systematic review of the literature. Br J Nutr 2018; 121:232-240. [PMID: 30489234 DOI: 10.1017/s0007114518003239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Changes in added sugar intake have been associated with corresponding changes in body weight. Potential mechanisms, particularly the impact of added sugar intake on appetite, warrant exploration. A systematic literature review of randomised controlled trials investigated the association between added sugar consumption and appetite in overweight and obese adults. A systematic search of Medline, Cochrane CENTRAL, Web of Science and CINAHL included studies that examined the relationship between added sugar intake and appetite markers, in comparison with a group with lower added sugar intake. A total of twenty-one articles describing nineteen studies were included in the review. The effect of added sugar on appetite was explored separately by reported comparisons of added sugar type and their effect to three study outcomes: energy consumption (n 20 comparisons); satiety (n 18); and appetite hormones, leptin (n 4) or ghrelin (n 7). Increased added sugar consumption did not impact subsequent energy intake (n 9), nor did it influence satiety (n 12) or ghrelin levels (n 4). Differences in the total daily energy intake were comparable with the differences in energy values of tested products (n 3). Added sugar intake was reported to increase leptin levels (n 3). This review did not find a consistent relationship between added sugar intake and appetite measures, which may be partially explained by variations in study methodologies. There is a need for randomised controlled trials examining a range of added sugar sources and doses on appetite in overweight and obese adults to better understand implications for weight gain.
Collapse
|
8
|
Evans RA, Frese M, Romero J, Cunningham JH, Mills KE. Fructose replacement of glucose or sucrose in food or beverages lowers postprandial glucose and insulin without raising triglycerides: a systematic review and meta-analysis. Am J Clin Nutr 2017; 106:506-518. [PMID: 28592611 DOI: 10.3945/ajcn.116.145151] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 05/01/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Conflicting evidence exists on the effects of fructose consumption in people with type 1 and type 2 diabetes mellitus. No systematic review has addressed the effect of isoenergetic fructose replacement of glucose or sucrose on peak postprandial glucose, insulin, and triglyceride concentrations.Objective: The objective of this study was to review the evidence for postprandial glycemic and insulinemic responses after isoenergetic replacement of either glucose or sucrose in foods or beverages with fructose.Design: We searched the Cochrane Library, MEDLINE, EMBASE, the WHO International Clinical Trials Registry Platform Search Portal, and clinicaltrials.gov The date of the last search was 26 April 2016. We included randomized controlled trials measuring peak postprandial glycemia after isoenergetic replacement of glucose, sucrose, or both with fructose in healthy adults or children with or without diabetes. The main outcomes analyzed were peak postprandial blood glucose, insulin, and triglyceride concentrations.Results: Replacement of either glucose or sucrose by fructose resulted in significantly lowered peak postprandial blood glucose, particularly in people with prediabetes and type 1 and type 2 diabetes. Similar results were obtained for insulin. Peak postprandial blood triglyceride concentrations did not significantly increase.Conclusions: Strong evidence exists that substituting fructose for glucose or sucrose in food or beverages lowers peak postprandial blood glucose and insulin concentrations. Isoenergetic replacement does not result in a substantial increase in blood triglyceride concentrations.
Collapse
Affiliation(s)
| | - Michael Frese
- Health Research Institute.,Faculty of Education, Science, Technology and Mathematics, and
| | - Julio Romero
- Department of Software Engineering and Artificial Intelligence, University of Canberra, Canberra, Australia; and
| | - Judy H Cunningham
- Formerly of Risk Assessment Chemical Safety and Nutrition, Food Standards Australia New Zealand, Canberra, Australia
| | - Kerry E Mills
- Health Research Institute, .,Faculty of Education, Science, Technology and Mathematics, and
| |
Collapse
|
9
|
Matikainen N, Söderlund S, Björnson E, Bogl LH, Pietiläinen KH, Hakkarainen A, Lundbom N, Eliasson B, Räsänen SM, Rivellese A, Patti L, Prinster A, Riccardi G, Després JP, Alméras N, Holst JJ, Deacon CF, Borén J, Taskinen MR. Fructose intervention for 12 weeks does not impair glycemic control or incretin hormone responses during oral glucose or mixed meal tests in obese men. Nutr Metab Cardiovasc Dis 2017; 27:534-542. [PMID: 28428027 DOI: 10.1016/j.numecd.2017.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/28/2017] [Accepted: 03/09/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND AIMS Incretin hormones glucagon-like peptide (GLP)-1 and glucose-dependent insulinotropic polypeptide (GIP) are affected early on in the pathogenesis of metabolic syndrome and type 2 diabetes. Epidemiologic studies consistently link high fructose consumption to insulin resistance but whether fructose consumption impairs the incretin response remains unknown. METHODS AND RESULTS As many as 66 obese (BMI 26-40 kg/m2) male subjects consumed fructose-sweetened beverages containing 75 g fructose/day for 12 weeks while continuing their usual lifestyle. Glucose, insulin, GLP-1 and GIP were measured during oral glucose tolerance test (OGTT) and triglycerides (TG), GLP-1, GIP and PYY during a mixed meal test before and after fructose intervention. Fructose intervention did not worsen glucose and insulin responses during OGTT, and GLP-1 and GIP responses during OGTT and fat-rich meal were unchanged. Postprandial TG response increased significantly, p = 0.004, and we observed small but significant increases in weight and liver fat content, but not in visceral or subcutaneous fat depots. However, even the subgroups who gained weight or liver fat during fructose intervention did not worsen their glucose, insulin, GLP-1 or PYY responses. A minor increase in GIP response during OGTT occurred in subjects who gained liver fat (p = 0.049). CONCLUSION In obese males with features of metabolic syndrome, 12 weeks fructose intervention 75 g/day did not change glucose, insulin, GLP-1 or GIP responses during OGTT or GLP-1, GIP or PYY responses during a mixed meal. Therefore, fructose intake, even accompanied with mild weight gain, increases in liver fat and worsening of postprandial TG profile, does not impair glucose tolerance or gut incretin response to oral glucose or mixed meal challenge.
Collapse
Affiliation(s)
- N Matikainen
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki University Hospital, Helsinki, Finland; Endocrinology, Abdominal Center, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland.
| | - S Söderlund
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - E Björnson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - L H Bogl
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki University Hospital, Helsinki, Finland; Institute for Molecular Medicine FIMM, Helsinki, Finland; Department of Public Health, University of Helsinki, Helsinki, Finland
| | - K H Pietiläinen
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki University Hospital, Helsinki, Finland; Endocrinology, Abdominal Center, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - A Hakkarainen
- Radiology, HUS Medical Imaging Center, Helsinki University Hospital, University of Helsinki, Finland
| | - N Lundbom
- Radiology, HUS Medical Imaging Center, Helsinki University Hospital, University of Helsinki, Finland
| | - B Eliasson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - S M Räsänen
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - A Rivellese
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - L Patti
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - A Prinster
- Biostructure and Bioimaging Institute, National Research Council, Naples, Italy
| | - G Riccardi
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - J-P Després
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, Québec, Canada
| | - N Alméras
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, Québec, Canada
| | - J J Holst
- NNF Centre for Basic Metabolic Research, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - C F Deacon
- NNF Centre for Basic Metabolic Research, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - J Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - M-R Taskinen
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
10
|
Plant-rich mixed meals based on Palaeolithic diet principles have a dramatic impact on incretin, peptide YY and satiety response, but show little effect on glucose and insulin homeostasis: an acute-effects randomised study. Br J Nutr 2015; 113:574-84. [PMID: 25661189 DOI: 10.1017/s0007114514004012] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
There is evidence for health benefits from 'Palaeolithic' diets; however, there are a few data on the acute effects of rationally designed Palaeolithic-type meals. In the present study, we used Palaeolithic diet principles to construct meals comprising readily available ingredients: fish and a variety of plants, selected to be rich in fibre and phyto-nutrients. We investigated the acute effects of two Palaeolithic-type meals (PAL 1 and PAL 2) and a reference meal based on WHO guidelines (REF), on blood glucose control, gut hormone responses and appetite regulation. Using a randomised cross-over trial design, healthy subjects were given three meals on separate occasions. PAL2 and REF were matched for energy, protein, fat and carbohydrates; PAL1 contained more protein and energy. Plasma glucose, insulin, glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic peptide (GIP) and peptide YY (PYY) concentrations were measured over a period of 180 min. Satiation was assessed using electronic visual analogue scale (EVAS) scores. GLP-1 and PYY concentrations were significantly increased across 180 min for both PAL1 (P= 0·001 and P< 0·001) and PAL2 (P= 0·011 and P= 0·003) compared with the REF. Concomitant EVAS scores showed increased satiety. By contrast, GIP concentration was significantly suppressed. Positive incremental AUC over 120 min for glucose and insulin did not differ between the meals. Consumption of meals based on Palaeolithic diet principles resulted in significant increases in incretin and anorectic gut hormones and increased perceived satiety. Surprisingly, this was independent of the energy or protein content of the meal and therefore suggests potential benefits for reduced risk of obesity.
Collapse
|
11
|
Abstract
Glucagon-like peptide-1 (GLP-1), an incretin hormone secreted primarily from the intestinal L-cells in response to meals, modulates nutrient homeostasis via actions exerted in multiple tissues and cell types. GLP-1 and its analogs, as well as compounds that inhibit endogenous GLP-1 breakdown, have become an effective therapeutic strategy for many subjects with type 2 diabetes. Here we review the discovery of GLP-1; its synthesis, secretion, and elimination from the circulation; and its multiple pancreatic and extrapancreatic effects. Finally, we review current options for GLP-1-based diabetes therapy, including GLP-1 receptor agonism and inhibition of GLP-1 breakdown, as well as the benefits and drawbacks of different modes of therapy and the potential for new therapeutic avenues.
Collapse
Affiliation(s)
- Young Min Cho
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744, South Korea;
| | | | | |
Collapse
|
12
|
Maeda A, Miyagawa JI, Miuchi M, Nagai E, Konishi K, Matsuo T, Tokuda M, Kusunoki Y, Ochi H, Murai K, Katsuno T, Hamaguchi T, Harano Y, Namba M. Effects of the naturally-occurring disaccharides, palatinose and sucrose, on incretin secretion in healthy non-obese subjects. J Diabetes Investig 2013; 4:281-6. [PMID: 24843667 PMCID: PMC4015665 DOI: 10.1111/jdi.12045] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 11/08/2012] [Accepted: 11/15/2012] [Indexed: 12/24/2022] Open
Abstract
Aims/Introduction Incretins might play some pathophysiological role in glucose metabolism in diabetes and obesity; it is not clear whether or not the amount and the pattern of incretin secretion vary with different types of sugars. To evaluate the effect of two types of disaccharides on glucose metabolism and the kinetics of incretin secretion, plasma levels were measured after palatinose or sucrose ingestion in non‐obese healthy participants. Materials and Methods The study was carried out on healthy participants who were given a solution containing 50 g of palatinose or sucrose for ingestion. Blood samples were obtained before loading and after ingestion. Insulin, glucagon and incretins hormones were measured by the enzyme‐linked immunosorbent assay method. Results When the data were compared between palatinose and sucrose ingestion, both plasma glucose values at 15, 30 and 60 min, and plasma insulin values at 15 and 30 min after palatinose loading were significantly lower than those after sucrose loading. Plasma levels of total glucose‐dependent insulinotropic polypeptide at 15–90 min after palatinose loading were significantly lower than those after sucrose loading. Plasma levels of total and active glucagon‐like peptide‐1 at 90 min and the area under the curve (60–120 min) of the total glucagon‐like peptide‐1 were significantly higher with palatinose‐loading than with sucrose loading. Conclusion Compared with sucrose, palatinose appears to have a more favorable effect on glucose metabolism and protection of pancreatic islets as a result of less hyperglycemic and hyperinsulinemic potency.
Collapse
Affiliation(s)
- Aya Maeda
- Division of Diabetes and Metabolism, Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Jun-Ichiro Miyagawa
- Division of Diabetes and Metabolism, Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Masayuki Miuchi
- Division of Diabetes and Metabolism, Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Etsuko Nagai
- Division of Diabetes and Metabolism, Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Kosuke Konishi
- Division of Diabetes and Metabolism, Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Toshihiro Matsuo
- Division of Diabetes and Metabolism, Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Masaru Tokuda
- Division of Diabetes and Metabolism, Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Yoshiki Kusunoki
- Division of Diabetes and Metabolism, Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Humihiro Ochi
- Division of Diabetes and Metabolism, Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Kazuki Murai
- Division of Diabetes and Metabolism, Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Tomoyuki Katsuno
- Division of Diabetes and Metabolism, Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Tomoya Hamaguchi
- Division of Innovative Diabetes Treatment Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Yutaka Harano
- Niseikai Center for Lifestyle-Related Diseases Osaka Japan
| | - Mitsuyoshi Namba
- Division of Diabetes and Metabolism, Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| |
Collapse
|
13
|
Erejuwa OO, Sulaiman SA, Wahab MSA. Honey--a novel antidiabetic agent. Int J Biol Sci 2012; 8:913-34. [PMID: 22811614 PMCID: PMC3399220 DOI: 10.7150/ijbs.3697] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 01/24/2012] [Indexed: 12/26/2022] Open
Abstract
Diabetes mellitus remains a burden worldwide in spite of the availability of numerous antidiabetic drugs. Honey is a natural substance produced by bees from nectar. Several evidence-based health benefits have been ascribed to honey in the recent years. In this review article, we highlight findings which demonstrate the beneficial or potential effects of honey in the gastrointestinal tract (GIT), on the gut microbiota, in the liver, in the pancreas and how these effects could improve glycemic control and metabolic derangements. In healthy subjects or patients with impaired glucose tolerance or diabetes mellitus, various studies revealed that honey reduced blood glucose or was more tolerable than most common sugars or sweeteners. Pre-clinical studies provided more convincing evidence in support of honey as a potential antidiabetic agent than clinical studies did. The not-too-impressive clinical data could mainly be attributed to poor study designs or due to the fact that the clinical studies were preliminary. Based on the key constituents of honey, the possible mechanisms of action of antidiabetic effect of honey are proposed. The paper also highlights the potential impacts and future perspectives on the use of honey as an antidiabetic agent. It makes recommendations for further clinical studies on the potential antidiabetic effect of honey. This review provides insight on the potential use of honey, especially as a complementary agent, in the management of diabetes mellitus. Hence, it is very important to have well-designed, randomized controlled clinical trials that investigate the reproducibility (or otherwise) of these experimental data in diabetic human subjects.
Collapse
Affiliation(s)
- Omotayo O Erejuwa
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| | | | | |
Collapse
|
14
|
Wiebe N, Padwal R, Field C, Marks S, Jacobs R, Tonelli M. A systematic review on the effect of sweeteners on glycemic response and clinically relevant outcomes. BMC Med 2011; 9:123. [PMID: 22093544 PMCID: PMC3286380 DOI: 10.1186/1741-7015-9-123] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 11/17/2011] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The major metabolic complications of obesity and type 2 diabetes may be prevented and managed with dietary modification. The use of sweeteners that provide little or no calories may help to achieve this objective. METHODS We did a systematic review and network meta-analysis of the comparative effectiveness of sweetener additives using Bayesian techniques. MEDLINE, EMBASE, CENTRAL and CAB Global were searched to January 2011. Randomized trials comparing sweeteners in obese, diabetic, and healthy populations were selected. Outcomes of interest included weight change, energy intake, lipids, glycated hemoglobin, markers of insulin resistance and glycemic response. Evidence-based items potentially indicating risk of bias were assessed. RESULTS Of 3,666 citations, we identified 53 eligible randomized controlled trials with 1,126 participants. In diabetic participants, fructose reduced 2-hour blood glucose concentrations by 4.81 mmol/L (95% CI 3.29, 6.34) compared to glucose. Two-hour blood glucose concentration data comparing hypocaloric sweeteners to sucrose or high fructose corn syrup were inconclusive. Based on two ≤10-week trials, we found that non-caloric sweeteners reduced energy intake compared to the sucrose groups by approximately 250-500 kcal/day (95% CI 153, 806). One trial found that participants in the non-caloric sweetener group had a decrease in body mass index compared to an increase in body mass index in the sucrose group (-0.40 vs 0.50 kg/m2, and -1.00 vs 1.60 kg/m2, respectively). No randomized controlled trials showed that high fructose corn syrup or fructose increased levels of cholesterol relative to other sweeteners. CONCLUSIONS Considering the public health importance of obesity and its consequences; the clearly relevant role of diet in the pathogenesis and maintenance of obesity; and the billions of dollars spent on non-caloric sweeteners, little high-quality clinical research has been done. Studies are needed to determine the role of hypocaloric sweeteners in a wider population health strategy to prevent, reduce and manage obesity and its consequences.
Collapse
Affiliation(s)
- Natasha Wiebe
- Department of Medicine, 13-103 Clinical Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2G3 Canada
| | | | | | | | | | | |
Collapse
|
15
|
Dolan LC, Potter SM, Burdock GA. Evidence-based review on the effect of normal dietary consumption of fructose on blood lipids and body weight of overweight and obese individuals. Crit Rev Food Sci Nutr 2011; 50:889-918. [PMID: 21108071 DOI: 10.1080/10408398.2010.512990] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although some investigators have hypothesized that ingestion of fructose from foods and beverages is responsible for the development of hyperlipidemia or obesity, a recent evidence-based review demonstrated that there was no relationship between the consumption of fructose in a normal dietary manner and the development of hyperlipidemia or increased weight in normal weight individuals. Because overweight and obese individuals may exhibit metabolic abnormalities such as insulin resistance, impaired glucose tolerance, hyperlipedemia, and/or alterations in gut hormones involved in appetite regulation, the findings of fructose studies performed in normal weight subjects may not be particularly relevant for overweight or obese subjects. A systematic assessment of the strength and quality of the studies and their relevance for overweight or obese humans ingesting fructose in a normal dietary manner has not been performed. The purpose of this review was to critically evaluate the existing database for a causal relationship between the ingestion of fructose in a normal, dietary manner and the development of hyperlipidemia or increased body weight in overweight or obese humans, using an evidence-based approach. The results of the analysis indicate that there is no evidence which shows that the consumption of fructose at normal levels of intake causes biologically relevant changes in triglycerides (TG) or body weight in overweight or obese individuals.
Collapse
|
16
|
Crespo MA, González Matías LC, Lozano MG, Paz SF, Pérez MR, Gago EV, Ferrer FM. [Gastrointestinal hormones in food intake control]. ACTA ACUST UNITED AC 2010; 56:317-30. [PMID: 19695513 DOI: 10.1016/s1575-0922(09)71946-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 05/25/2009] [Indexed: 12/17/2022]
Abstract
The discovery of gut hormones regulating the energy balance has aroused great interest in the scientific community. Some of these hormones modulate appetite and satiety, acting on the hypothalamus or the solitary tract nucleus in the brainstem. In general, the endocrine signals generated in the gut have direct or indirect (through the autonomous nervous system) anorexigenic effects. Only ghrelin, a gastric hormone, has been consistently associated with the initiation of food intake and is regarded as the main orexigenic signal both in animal models and humans. In this review, we provide a brief description of the major gastrointestinal hormones implicated in the regulation of food intake. Given the increased importance of food intake disturbances, especially obesity, a better understanding of the underlying mechanisms of action of the gastrointestinal hormones might contribute to the development of new molecules that could increase the therapeutic arsenal for treating obesity and its associated comorbidities.
Collapse
Affiliation(s)
- Mayte Alvarez Crespo
- Laboratorio de Endocrinología, Departamento de Biología Funcional y Ciencias de la Salud, Facultad de Biología, Universidad de Vigo, Vigo, Pontevedra, España
| | | | | | | | | | | | | |
Collapse
|
17
|
Stevens JE, Doran S, Russo A, O'Donovan D, Feinle-Bisset C, Rayner CK, Horowitz M, Jones KL. Effects of intravenous fructose on gastric emptying and antropyloroduodenal motility in healthy subjects. Am J Physiol Gastrointest Liver Physiol 2009; 297:G1274-80. [PMID: 19808656 DOI: 10.1152/ajpgi.00214.2009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastric emptying (GE) of glucose is regulated closely, not only as a result of inhibitory feedback arising from the small intestine, but also because of the resulting hyperglycemia. Fructose is used widely in the diabetic diet and is known to empty from the stomach slightly faster than glucose but substantially slower than water. The aims of this study were to determine whether intravenous (iv) fructose affects GE and antropyloroduodenal motility and how any effects compare to those induced by iv glucose. Six healthy males (age: 26.7 +/- 3.8 yr) underwent concurrent measurements of GE of a solid meal (100 g ground beef labeled with 20 MBq (99m)Tc-sulfur colloid) and antropyloroduodenal motility on three separate days in randomized order during iv infusion of either fructose (0.5 g/kg), glucose (0.5 g/kg), or isotonic saline for 20 min. GE (scintigraphy), antropyloroduodenal motility (manometry), and blood glucose (glucometer) were measured for 120 min. There was a rise in blood glucose (P < 0.001) after iv glucose (peak 16.4 +/- 0.6 mmol/l) but not after fructose or saline. Intravenous glucose and fructose both slowed GE substantially (P < 0.005 for both), without any significant difference between them. Between t = 0 and 30 min, the number of antral pressure waves was less after both glucose and fructose (P < 0.002 for both) than saline, and there were more isolated pyloric pressure waves during iv glucose (P = 0.003) compared with fructose and saline (P = NS for both) infusions. In conclusion, iv fructose slows GE and modulates gastric motility in healthy subjects, and the magnitude of slowing of GE is comparable to that induced by iv glucose.
Collapse
Affiliation(s)
- Julie E Stevens
- University of Adelaide, Royal Adelaide Hospital, SA, Australia
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Melanson KJ, Angelopoulos TJ, Nguyen V, Zukley L, Lowndes J, Rippe JM. High-fructose corn syrup, energy intake, and appetite regulation. Am J Clin Nutr 2008; 88:1738S-1744S. [PMID: 19064539 DOI: 10.3945/ajcn.2008.25825e] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
High-fructose corn syrup (HFCS) has been implicated in excess weight gain through mechanisms seen in some acute feeding studies and by virtue of its abundance in the food supply during years of increasing obesity. Compared with pure glucose, fructose is thought to be associated with insufficient secretion of insulin and leptin and suppression of ghrelin. However, when HFCS is compared with sucrose, the more commonly consumed sweetener, such differences are not apparent, and appetite and energy intake do not differ in the short-term. Longer-term studies on connections between HFCS, potential mechanisms, and body weight have not been conducted. The main objective of this review was to examine collective data on associations between consumption of HFCS and energy balance, with particular focus on energy intake and its regulation.
Collapse
|
19
|
Effect of protein, fat, carbohydrate and fibre on gastrointestinal peptide release in humans. ACTA ACUST UNITED AC 2008; 149:70-8. [DOI: 10.1016/j.regpep.2007.10.008] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2007] [Accepted: 10/22/2007] [Indexed: 02/07/2023]
|
20
|
Soenen S, Westerterp-Plantenga MS. No differences in satiety or energy intake after high-fructose corn syrup, sucrose, or milk preloads. Am J Clin Nutr 2007; 86:1586-94. [PMID: 18065574 DOI: 10.1093/ajcn/86.5.1586] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND It is unclear whether energy-containing drinks, especially those sweetened with high-fructose corn syrup (HFCS), promote positive energy balance and thereby play a role in the development of obesity. OBJECTIVE The objective was to examine the satiating effects of HFCS and sucrose in comparison with milk and a diet drink. DESIGN The effects of four 800-mL drinks [corrected] containing no energy or 1.5 MJ from sucrose, HFCS, or milk on satiety were assessed, first in 15 men and 15 women with a mean (+/-SD) body mass index (BMI; in kg/m(2)) of 22.1 +/- 1.9 according to visual analogue scales (VAS) and blood variables and second in 20 men and 20 women (BMI: 22.4 +/- 2.1) according to ingestion of a standardized ad libitum meal (granola cereal + yogurt, 10.1 kJ/g). RESULTS Fifty minutes after consumption of the 1.5-MJ preload drinks containing sucrose, HFCS, or milk, 170%-mm VAS changes in satiety were observed. Glucagon-like peptide 1 (GLP-1) (P < 0.001) and ghrelin (P < 0.05) concentrations changed accordingly. Compensatory energy intake did not differ significantly between the 3 preloads and ranged from 30% to 45%. Energy intake compensations were related to satiety (r = 0.35, P < 0.05). No differences were observed between the effects of the sucrose- and HFCS-containing drinks on changes in VAS and on insulin, glucose, GLP-1, and ghrelin concentrations. Changes in appetite VAS ratings were a function of changes in GLP-1, ghrelin, insulin, and glucose concentrations. CONCLUSION Energy balance consequences of HFCS-sweetened soft drinks are not different from those of other isoenergetic drinks, eg, a sucrose-drink or milk.
Collapse
Affiliation(s)
- Stijn Soenen
- Department of Human Biology, Maastricht University, Maastricht, Netherlands.
| | | |
Collapse
|
21
|
Bowen J, Noakes M, Clifton PM. Appetite hormones and energy intake in obese men after consumption of fructose, glucose and whey protein beverages. Int J Obes (Lond) 2007; 31:1696-703. [PMID: 17593904 DOI: 10.1038/sj.ijo.0803665] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To investigate appetite responses over 4 h to fructose beverages in obese men, relative to glucose and whey protein. Second, to investigate the effect of combining whey and fructose on postprandial appetite hormones. DESIGN Randomized, double-blind crossover study of four beverages (1.1 MJ) containing 50 g of whey, fructose, glucose or 25 g whey+25 g fructose. Blood samples and appetite ratings were collected for 4 h then a buffet meal was offered. SUBJECTS Twenty-eight obese men (age: 57.0+/-1.6 years, body mass index: 32.5+/-0.6 kg/m(2)). MEASUREMENTS Plasma ghrelin (total), glucagon-like peptide-1 (GLP-1 7-36), cholecystokinin-8, glucose, insulin and appetite ratings were assessed at baseline and 30, 45, 60, 90, 120, 180, 240 min after beverages, followed by measurement of ad libitum energy intake. RESULTS Fructose produced lower glycaemia and insulinaemia compared to the glucose treatment (P<0.0001); whereas postprandial ghrelin, GLP-1 and cholecystokinin responses were similar after both treatments. Whey protein produced a prolonged (2-4 h) suppression of ghrelin (P=0.001) and elevation of GLP-1 (P=0.002) and cholecystokinin (P=0.003) that were reduced when combined with fructose, while glucose and insulin responses were similar. Energy intake after 4 h was independent of beverage type (glucose 4.7+/-0.2 MJ; fructose 4.9+/-0.3 MJ; whey 4.6+/-0.3 MJ; whey/fructose 4.8+/-0.3 MJ; P>0.05). CONCLUSION In obese men, fructose- and glucose-based beverages had similar effects on appetite and associated regulatory hormones, independent of the differing glycaemic and insulinaemic responses. The contrasting profile of plasma ghrelin, GLP-1 and cholecystokinin after whey protein consumption did not impact on ad libitum intake 4 h later and was attenuated when 50% of whey was replaced with fructose.
Collapse
Affiliation(s)
- J Bowen
- Commonwealth Scientific and Industrial Research Organisation, Human Nutrition, Adelaide, Australia.
| | | | | |
Collapse
|
22
|
Melanson KJ, Zukley L, Lowndes J, Nguyen V, Angelopoulos TJ, Rippe JM. Effects of high-fructose corn syrup and sucrose consumption on circulating glucose, insulin, leptin, and ghrelin and on appetite in normal-weight women. Nutrition 2007; 23:103-12. [PMID: 17234503 DOI: 10.1016/j.nut.2006.11.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 10/20/2006] [Accepted: 11/06/2006] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Fructose has been implicated in obesity, partly due to lack of insulin-mediated leptin stimulation and ghrelin suppression. Most work has examined effects of pure fructose, rather than high-fructose corn syrup (HFCS), the most commonly consumed form of fructose. This study examined effects of beverages sweetened with HFCS or sucrose (Suc), when consumed with mixed meals, on blood glucose, insulin, leptin, ghrelin, and appetite. METHODS Thirty lean women were studied on two randomized 2-d visits during which HFCS- and Suc-sweetened beverages were consumed as 30% of energy on isocaloric diets during day 1 while blood was sampled. On day 2, food was eaten ad libitum. Subjects rated appetite at designated times throughout visits. RESULTS No significant differences between the two sweeteners were seen in fasting plasma glucose, insulin, leptin, and ghrelin (P > 0.05). The within-day variation in all four items was not different between the two visits (P > 0.05). Net areas under the curve were similar for glucose, insulin, and leptin (P > 0.05). There were no differences in energy or macronutrient intake on day 2. The only appetite variable that differed between sweeteners was desire to eat, which had a higher area under the curve the day after Suc compared with HFCS. CONCLUSION These short-term results suggest that, when fructose is consumed in the form of HFCS, the measured metabolic responses do not differ from Suc in lean women. Further research is required to examine appetite responses and to determine if these findings hold true for obese individuals, males, or longer periods.
Collapse
Affiliation(s)
- Kathleen J Melanson
- Department of Nutrition and Food Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | | | | | | | | | | |
Collapse
|
23
|
Chaikomin R, Rayner CK, Jones KL, Horowitz M. Upper gastrointestinal function and glycemic control in diabetes mellitus. World J Gastroenterol 2006; 12:5611-21. [PMID: 17007012 PMCID: PMC4088160 DOI: 10.3748/wjg.v12.i35.5611] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recent evidence has highlighted the impact of glycemic control on the incidence and progression of diabetic micro- and macrovascular complications, and on cardiovascular risk in the non-diabetic population. Postprandial blood glucose concentrations make a major contribution to overall glycemic control, and are determined in part by upper gastrointestinal function. Conversely, poor glycemic control has an acute, reversible effect on gastrointestinal motility. Insights into the mechanisms by which the gut contributes to glycemia have given rise to a number of novel dietary and pharmacological strategies designed to lower postprandial blood glucose concentrations.
Collapse
Affiliation(s)
- Reawika Chaikomin
- Department of Medicine, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia 5000, Australia
| | | | | | | |
Collapse
|
24
|
Basciano H, Federico L, Adeli K. Fructose, insulin resistance, and metabolic dyslipidemia. Nutr Metab (Lond) 2005; 2:5. [PMID: 15723702 PMCID: PMC552336 DOI: 10.1186/1743-7075-2-5] [Citation(s) in RCA: 545] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Accepted: 02/21/2005] [Indexed: 12/31/2022] Open
Abstract
Obesity and type 2 diabetes are occurring at epidemic rates in the United States and many parts of the world. The "obesity epidemic" appears to have emerged largely from changes in our diet and reduced physical activity. An important but not well-appreciated dietary change has been the substantial increase in the amount of dietary fructose consumption from high intake of sucrose and high fructose corn syrup, a common sweetener used in the food industry. A high flux of fructose to the liver, the main organ capable of metabolizing this simple carbohydrate, perturbs glucose metabolism and glucose uptake pathways, and leads to a significantly enhanced rate of de novo lipogenesis and triglyceride (TG) synthesis, driven by the high flux of glycerol and acyl portions of TG molecules from fructose catabolism. These metabolic disturbances appear to underlie the induction of insulin resistance commonly observed with high fructose feeding in both humans and animal models. Fructose-induced insulin resistant states are commonly characterized by a profound metabolic dyslipidemia, which appears to result from hepatic and intestinal overproduction of atherogenic lipoprotein particles. Thus, emerging evidence from recent epidemiological and biochemical studies clearly suggests that the high dietary intake of fructose has rapidly become an important causative factor in the development of the metabolic syndrome. There is an urgent need for increased public awareness of the risks associated with high fructose consumption and greater efforts should be made to curb the supplementation of packaged foods with high fructose additives. The present review will discuss the trends in fructose consumption, the metabolic consequences of increased fructose intake, and the molecular mechanisms leading to fructose-induced lipogenesis, insulin resistance and metabolic dyslipidemia.
Collapse
Affiliation(s)
- Heather Basciano
- Clinical Biochemistry Division, Department of Laboratory Medicine and Pathobiology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Lisa Federico
- Clinical Biochemistry Division, Department of Laboratory Medicine and Pathobiology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Khosrow Adeli
- Clinical Biochemistry Division, Department of Laboratory Medicine and Pathobiology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Teff KL, Elliott SS, Tschöp M, Kieffer TJ, Rader D, Heiman M, Townsend RR, Keim NL, D'Alessio D, Havel PJ. Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women. J Clin Endocrinol Metab 2004; 89:2963-72. [PMID: 15181085 DOI: 10.1210/jc.2003-031855] [Citation(s) in RCA: 445] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous studies indicate that leptin secretion is regulated by insulin-mediated glucose metabolism. Because fructose, unlike glucose, does not stimulate insulin secretion, we hypothesized that meals high in fructose would result in lower leptin concentrations than meals containing the same amount of glucose. Blood samples were collected every 30-60 min for 24 h from 12 normal-weight women on 2 randomized days during which the subjects consumed three meals containing 55, 30, and 15% of total kilocalories as carbohydrate, fat, and protein, respectively, with 30% of kilocalories as either a fructose-sweetened [high fructose (HFr)] or glucose-sweetened [high glucose (HGl)] beverage. Meals were isocaloric in the two treatments. Postprandial glycemic excursions were reduced by 66 +/- 12%, and insulin responses were 65 +/- 5% lower (both P < 0.001) during HFr consumption. The area under the curve for leptin during the first 12 h (-33 +/- 7%; P < 0.005), the entire 24 h (-21 +/- 8%; P < 0.02), and the diurnal amplitude (peak - nadir) (24 +/- 6%; P < 0.0025) were reduced on the HFr day compared with the HGl day. In addition, circulating levels of the orexigenic gastroenteric hormone, ghrelin, were suppressed by approximately 30% 1-2 h after ingestion of each HGl meal (P < 0.01), but postprandial suppression of ghrelin was significantly less pronounced after HFr meals (P < 0.05 vs. HGl). Consumption of HFr meals produced a rapid and prolonged elevation of plasma triglycerides compared with the HGl day (P < 0.005). Because insulin and leptin, and possibly ghrelin, function as key signals to the central nervous system in the long-term regulation of energy balance, decreases of circulating insulin and leptin and increased ghrelin concentrations, as demonstrated in this study, could lead to increased caloric intake and ultimately contribute to weight gain and obesity during chronic consumption of diets high in fructose.
Collapse
Affiliation(s)
- Karen L Teff
- Monell Chemical Senses Center, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
de Graaf C, Blom WAM, Smeets PAM, Stafleu A, Hendriks HFJ. Biomarkers of satiation and satiety. Am J Clin Nutr 2004; 79:946-61. [PMID: 15159223 DOI: 10.1093/ajcn/79.6.946] [Citation(s) in RCA: 310] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This review's objective is to give a critical summary of studies that focused on physiologic measures relating to subjectively rated appetite, actual food intake, or both. Biomarkers of satiation and satiety may be used as a tool for assessing the satiating efficiency of foods and for understanding the regulation of food intake and energy balance. We made a distinction between biomarkers of satiation or meal termination and those of meal initiation related to satiety and between markers in the brain [central nervous system (CNS)] and those related to signals from the periphery to the CNS. Various studies showed that physicochemical measures related to stomach distension and blood concentrations of cholecystokinin and glucagon-like peptide 1 are peripheral biomarkers associated with meal termination. CNS biomarkers related to meal termination identified by functional magnetic resonance imaging and positron emission tomography are indicators of neural activity related to sensory-specific satiety. These measures cannot yet serve as a tool for assessing the satiating effect of foods, because they are not yet feasible. CNS biomarkers related to satiety are not yet specific enough to serve as biomarkers, although they can distinguish between extreme hunger and fullness. Three currently available biomarkers for satiety are decreases in blood glucose in the short term (<5 min), which have been shown to be involved in meal initiation; leptin changes during longer-term (>2-4 d) negative energy balance; and ghrelin concentrations, which have been implicated in both short-term and long-term energy balance. The next challenge in this research area is to identify food ingredients that have an effect on biomarkers of satiation, satiety, or both. These ingredients may help consumers to maintain their energy intake at a level consistent with a healthy body weight.
Collapse
Affiliation(s)
- Cees de Graaf
- TNO Nutrition and Food Research, Zeist, Netherlands.
| | | | | | | | | |
Collapse
|
27
|
Henriksen DB, Alexandersen P, Bjarnason NH, Vilsbøll T, Hartmann B, Henriksen EEG, Byrjalsen I, Krarup T, Holst JJ, Christiansen C. Role of gastrointestinal hormones in postprandial reduction of bone resorption. J Bone Miner Res 2003; 18:2180-9. [PMID: 14672353 DOI: 10.1359/jbmr.2003.18.12.2180] [Citation(s) in RCA: 230] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
UNLABELLED Collagen type I fragments, reflecting bone resorption, and release of gut hormones were investigated after a meal. Investigations led to a dose escalation study with glucagon like peptide-2 (GLP-2) in postmenopausal women. We found a dose-dependent effect of GLP-2 on the reduction of bone resorption. INTRODUCTION The C-terminal telopeptide region of type I collagen as measured in serum (s-CTX) can be used to assess bone resorption. This marker of bone resorption has a significant circadian variation that is influenced by food intake. However, the mediator of this variation has not been identified. MATERIALS AND METHODS We studied the release of the gut hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-2 (GLP-2; a representative of the intestinal proglucagon-derived peptides) after ingestion of glucose, fat, protein, and fructose, as well as their effects after parenteral administration in relation to bone turnover processes in healthy volunteers. Furthermore, we studied the effect on bone turnover of a single subcutaneous injection of GLP-2 in four different dosages (100, 200, 400, or 800 microg GLP-2) or placebo in 60 postmenopausal women (mean age, 61 +/- 5 years). RESULTS All macronutrients significantly (p < 0.05) reduced bone resorption as assessed by s-CTX (39-52% from baseline), and only the glucagon-like peptides were secreted in parallel. Parenteral administration of GIP and GLP-1 did not result in a reduction of the s-CTX level, whereas GLP-2 caused a statistically significant and dose-dependent reduction in the s-CTX level from baseline compared with placebo (p < 0.05). Urine DPD/creatinine, a marker of bone resorption, was significantly reduced by 25% from baseline in the 800-microg GLP-2 group (p < 0.01). An area under the curve (AUC(0-8h)) analysis for s-CTX after GLP-2 injection confirmed the dose-dependent decrease (ANOVA, p = 0.05). The s-osteocalcin level was unaffected by the GLP-2 treatment. CONCLUSION These studies exclude both GIP and GLP-1 as key mediators for the immediate reduction in bone resorption seen after a meal. The dose-dependent reduction of bone resorption markers found after subcutaneous injection of GLP-2 warrants further investigation into the mechanism and importance of GLP-2 for the bone turnover processes.
Collapse
|
28
|
Hung T, Sievenpiper JL, Marchie A, Kendall CWC, Jenkins DJA. Fat versus carbohydrate in insulin resistance, obesity, diabetes and cardiovascular disease. Curr Opin Clin Nutr Metab Care 2003; 6:165-76. [PMID: 12589186 DOI: 10.1097/00075197-200303000-00005] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW This review assesses the relative effect of fat versus carbohydrate and the differences between fatty acids and types of carbohydrate on insulin resistance and associated risk factors for diabetes and cardiovascular disease. RECENT FINDINGS The debate continues over whether high-carbohydrate or high-fat diets have the more deleterious metabolic effects. Large randomized controlled trials have shown that a reduction of fat intake as part of a healthy lifestyle combined with weight reduction and exercise reduce the risk of type 2 diabetes. Carbohydrate as fruit and vegetable together with low-fat dairy products reduce blood pressure. The results of trials of fatty acid type continue to favor the use of monounsaturated fats. However, the advantages over carbohydrate have not always been clear. In terms of carbohydrate, the glycemic index appears to be a better predictor of the metabolic effects of a diet than the sugar content. The fiber content of the carbohydrate food appears to confer benefits in terms of diabetic control. Lower cholesterol and postprandial blood glucose results are associated with viscous fibers. SUMMARY Diets that are higher in monounsaturated fatty acids, fiber and low glycemic index foods appear to have advantages in insulin resistance, glycemic control and blood lipids in a number of studies. The division of nutrients into total fat (regardless of fatty acids) versus carbohydrate (type and quantity not specified) appears to be less helpful in predicting outcomes.
Collapse
Affiliation(s)
- Tony Hung
- Faculty of Medicine, and Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|