1
|
Xiang X, Shao Y, Xiang L, Jiao Q, Zhang W, Qin Y, Chen Y. Suppression of Liver Fibrogenesis with Photothermal Sorafenib Nanovesicles via Selectively Inhibiting Glycolysis and Amplification of Active HSCs. Mol Pharm 2025; 22:1939-1957. [PMID: 40053386 DOI: 10.1021/acs.molpharmaceut.4c01135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2025]
Abstract
As the major driving factor of hepatic fibrosis, the activated hepatic stellate cells (aHSCs) rely on active glycolysis to support their aberrant proliferation and secretion of the extracellular matrix. Sorafenib (Sor) can combat liver fibrosis by suppressing HIF-1α and glycolysis, but its poor solubility, rapid metabolism, and low bioavailability restrict such a clinical application. Here, Sor was loaded onto polydopamine nanoparticles and then encapsulated by a retinoid-decorated red blood cell membrane, yielding HSC-targeted Sor nanovesicles (PDA/Sor@RMV-VA) with a high Sor-loading capacity and photothermally controlled drug release for antifibrotic treatment. These Sor RMVs not only exhibited a good particle size, dispersity and biocompatibility, prolonged circulation time, enhanced aHSC targetability, and hepatic accumulation both in vitro and in vivo, but also displayed a mild photothermal activity proper for promoting sorafenib release and accumulation in CCl4-induced fibrotic mouse livers without incurring phototoxicity. Compared with nontargeting Sor formulations, PDA/Sor@RMV-VA more effectively downregulated HIF-1α and glycolytic enzyme in both cultured aHSCs and fibrotic mice and reversed myofibroblast phenotype and amplification of aHSCs and thus more significantly improved liver damage, inflammation, and fibrosis, all of which could be even further advanced with NIR irradiation. These results fully demonstrate the antifibrotic power and therapeutic potential of PDA/Sor@RMV-VA as an antifibrotic nanomedicine, which would support a new clinical treatment for hepatic fibrosis.
Collapse
Affiliation(s)
- Xianjing Xiang
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
| | - Yaru Shao
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
| | - Li Xiang
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
- Hengyang Medical School, University of South China, Hengyang, Hunan 410001, China
| | - Qiangqiang Jiao
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
| | - Wenhui Zhang
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
| | - Yuting Qin
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
| | - Yuping Chen
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
- Hengyang Medical School, University of South China, Hengyang, Hunan 410001, China
- MOE Key Laboratory of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 410001, China
| |
Collapse
|
2
|
Koyuncu S, Sipahioğlu H, Karakukcu C, İçaçan G, Biçer NS, Kocyigit I. The relationship between changes in peritoneal permeability with CA-125 and HIF-1α. Ther Apher Dial 2025; 29:269-275. [PMID: 39233434 DOI: 10.1111/1744-9987.14206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Peritoneal fibrosis (PF) is a major, persistent complication of prolonged peritoneal dialysis that eventually leads to peritoneal ultrafiltration failure and termination of peritoneal dialysis. Prolonged exposure to high glucose concentrations, degradation products, uremic toxins, and episodes of peritonitis can cause some changes in the peritoneal membrane, resulting in intraperitoneal inflammation and PF, leading to failure of ultrafiltration and dialysis. CA-125 can be used as a biomarker of peritoneal mesothelial cell count in the peritoneal dialysate and for monitoring cell count in PD patients. Hypoxia-inducible factor 1-alpha (HIF-1α) has been reported to cause PF, but has not been reported to be associated with changes in peritoneal structure. We hypothesized that peritoneal adequacy can be followed using HIF-1α and CA-125 values. In the present study, therefore, we investigated the relationship between HIF-1α and CA-125 levels and parietal membrane permeability changes in PD patients. METHODS Forty-five patients were included in the study. Peritoneal permeability was constant in 20 of these, while peritoneal permeability increased in 11 and decreased in 14. The HIF-1α value from the blood samples of the patients and the CA-125 measurement from the peritoneal fluids were measured. The relationship between peritoneal variability and CA-125 and HIF levels after follow-up was investigated. RESULTS We compared serum HIF-1α and peritoneal fluid CA-125 levels in the three groups receiving peritoneal dialysis treatment. HIF-1α levels increased with peritoneal permeability changes, while CA-125 levels decreased. In patients with high to low permeability changes, HIF-1α levels were higher compared to those with stable or low to high changes, which was statistically significant. Conversely, CA-125 levels significantly decreased in patients whose peritoneal permeability changed from high to low, compared to the other two groups. CONCLUSION Changes in peritoneal structure can be followed with biomarkers. It has been shown that CA-125 and HIF-1α levels can guide the changes in the peritoneal membrane. This can be useful in the monitoring of peritoneal dialysis.
Collapse
Affiliation(s)
- Sumeyra Koyuncu
- Department of Nephrology, Kayseri Education and Research Hospital, Kayseri, Turkey
| | - Hilal Sipahioğlu
- Department of İntensive Care Unit, Kayseri Education and Research Hospital, Kayseri, Turkey
| | - Cigdem Karakukcu
- Department of Biochemistry, Erciyes Medical Faculty, Kayseri, Turkey
| | - Gamze İçaçan
- Department of Nephrology, Izmir City Hospital, Izmir, Turkey
| | | | - Ismail Kocyigit
- Department of Nephrology, Erciyes Medical Faculty, Kayseri, Turkey
| |
Collapse
|
3
|
Ikehara T, Shimizu A, Kubota K, Notake T, Kitagawa N, Masuo H, Yoshizawa T, Hosoda K, Sakai H, Soejima Y. Appropriate methods of evaluating future liver remnant volume to predict postoperative liver failure after major hepatectomy based on the body mass of patients with normal hepatic reserve. Surg Today 2025:10.1007/s00595-025-03030-0. [PMID: 40146336 DOI: 10.1007/s00595-025-03030-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/02/2025] [Indexed: 03/28/2025]
Abstract
PURPOSE Several parameters are used to assess future liver remnant (FLR) size before major hepatectomy. This study aimed to clarify which is the most appropriate method to use for the prediction of post-hepatectomy liver failure (PHLF). METHODS The subjects of this study were 307 patients with Child-Pugh class A only, who underwent major hepatectomy, to focus on FLR size. The parameters we evaluated for their accuracy in predicting Grade B/C PHLF (PHLF B/C) using receiver operating characteristic curve analysis were FLR volume (FLRV), the FLRV to total liver volume ratio (FLRV/TLV), standard liver volume (FLRV/SLV), and body weight (FLRV/BW) according to body mass. RESULTS The predictive value accuracy of these four parameters for PHLF was similar for the entire cohort. However, in the subgroup analysis based on body mass index, FLRV/BW accuracy was highest in the obese group, whereas that of FLRV/TLV was highest in the lean group. Multivariate analysis identified that FLRV/BW (< 0.7%) and blood loss (≥ 1000 ml) were independent risk factors for PHLF B/C in the obese group. In the lean group, FLRV/TLV (< 40%) and biliary reconstruction were risk factors for PHLF B/C. CONCLUSIONS The FLR size evaluation method for predicting PHLF should be appropriately selected based on the patient's body mass.
Collapse
Affiliation(s)
- Tomohiko Ikehara
- Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto, Nagano, 390-8621, Japan
| | - Akira Shimizu
- Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto, Nagano, 390-8621, Japan.
| | - Koji Kubota
- Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto, Nagano, 390-8621, Japan
| | - Tsuyoshi Notake
- Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto, Nagano, 390-8621, Japan
| | - Noriyuki Kitagawa
- Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto, Nagano, 390-8621, Japan
| | - Hitoshi Masuo
- Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto, Nagano, 390-8621, Japan
| | - Takahiro Yoshizawa
- Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto, Nagano, 390-8621, Japan
| | - Kiyotaka Hosoda
- Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto, Nagano, 390-8621, Japan
| | - Hiroki Sakai
- Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto, Nagano, 390-8621, Japan
| | - Yuji Soejima
- Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto, Nagano, 390-8621, Japan
| |
Collapse
|
4
|
Chen M, Zhao JB, Wu GB, Wu ZH, Luo GQ, Zhao ZF, Zhang CH, Lin JY, Li HJ, Qi XL, Huo HZ, Tuersun A, Fan Q, Zheng L, Luo M. Platelet activation relieves liver portal hypertension via the lymphatic system though the classical vascular endothelial growth factor receptor 3 signaling pathway. World J Gastroenterol 2025; 31:100194. [PMID: 40093669 PMCID: PMC11886527 DOI: 10.3748/wjg.v31.i10.100194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/16/2024] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Liver cirrhosis and portal hypertension (PHT) can lead to lymphatic abnormalities and coagulation dysfunction. Because lymphangiogenesis may relieve liver cirrhosis and PHT, the present study investigated the gene expression alterations in the lymphatic system and the effectiveness of platelet-mediated lymphangiogenesis in improving liver cirrhosis and PHT. AIM To investigate the role of lymphangiogenesis in preclinical PHT models. METHODS Immunohistochemistry and transcriptome sequencing of bile duct ligation (BDL) and control lymphatic samples were conducted to reveal the indicated signaling pathways. Functional enrichment analyses were performed on the differentially expressed genes and hub genes. Adenoviral infection of vascular endothelial growth factor C (VEGF-C), platelet-rich plasma (PRP), and VEGF3 receptor (VEGFR) inhibitor MAZ-51 was used as an intervention for the lymphatic system in PHT models. Histology, hemodynamic tests and western blot analyses were performed to demonstrate the effects of lymphatic intervention in PHT patients. RESULTS Lymphangiogenesis was increased in the BDL rat model. Transcriptome sequencing analysis of the extrahepatic lymphatic system revealed its close association with platelet adherence, aggregation, and activation. The role of PHT in the rat model was investigated by activating (PRP) and inhibiting (MAZ-51) the lymphatic system. PRP promoted lymphangiogenesis, which increased lymphatic drainage, alleviated portal pressure, reduced liver fibrosis, inhibited inflammation, inhibited angiogenesis, and suppressed mesenteric artery remodeling. MAZ-51 reversed the above improvements. CONCLUSION Via VEGF-C/VEGFR-3, platelets impede fibrosis, angiogenesis, and mesenteric artery remodeling, ultimately alleviating PHT. Thus, platelet intervention is a therapeutic approach for cirrhosis and PHT.
Collapse
Affiliation(s)
- Min Chen
- Department of General Surgery, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jin-Bo Zhao
- Department of General Surgery, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Guang-Bo Wu
- Department of General Surgery, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Zheng-Hao Wu
- Department of General Surgery, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Gu-Qing Luo
- Department of General Surgery, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Zhi-Feng Zhao
- Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Chi-Hao Zhang
- Department of General Surgery, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jia-Yun Lin
- Department of General Surgery, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Hong-Jie Li
- Department of General Surgery, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Xiao-Liang Qi
- Department of General Surgery, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Hai-Zhong Huo
- Department of General Surgery, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Abudukadier Tuersun
- Department of General Surgery, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Qiang Fan
- Department of General Surgery, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Lei Zheng
- Department of General Surgery, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Meng Luo
- Department of General Surgery, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| |
Collapse
|
5
|
Scolozzi V, Nicoletti A, Capotosti A, Ponziani FR, Taralli S, Genco E, Leccisotti L, Moretti R, Indovina L, Pompili M, Calcagni ML. 13N-Ammonia PET-CT for Evaluating Response to Antiangiogenic Therapy and Prognosis in Patients with Advanced Hepatocellular Carcinoma: A Pilot Study. Cancers (Basel) 2025; 17:656. [PMID: 40002251 PMCID: PMC11853641 DOI: 10.3390/cancers17040656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
PURPOSE To prospectively investigate dynamic 13N-ammonia PET-CT for evaluating early treatment response and predicting prognosis in advanced hepatocellular carcinoma (HCC) patients who have undergone antiangiogenic therapy. METHODS Dynamic 13N-ammonia PET-CT was performed in 23 advanced HCC patients before antiangiogenic therapy (baseline) and in 18/23 patients after 8-10 weeks of treatment (post-therapy). At kinetic PET-CT analysis, mean, maximum, and peak values of K1 (mL/cm3/min) and k2 (min-1) were estimated in HCC lesions and non-neoplastic liver using cardiologic 13N-ammonia PET-CT in 15 patients without any liver diseases as normal controls. Outcome endpoints were treatment response after 8-10 weeks assessed by contrast-enhanced CT, progression-free survival (PFS), and overall survival (OS). RESULTS At both baseline and post-therapy PET-CT, all kinetic PET parameters were significantly higher (p < 0.05) in HCC lesions than in non-neoplastic and healthy liver of HCC patients and controls. According to mRECIST criteria, 13/18 patients (72.2%) were responders (1 CR, 1 PR, and 11 SD), and 5/18 patients (27.8%) were non-responders (PD), with no significant differences in baseline and post-therapy PET parameters between the two groups. At follow-up (median: 14.2 months), 15/18 patients (83.3%) experienced radiological progression, and 14/18 (77.8%) died (7/14 within 12 months from treatment). The nine earlier-progression patients (within 6 months from treatment) showed significantly lower baseline K1mean in HCC lesions than all nine patients with later or no-progression (p = 0.03). Patients still alive 12 months after treatment (n = 11) showed significantly lower post-therapy K1mean (p = 0.05), K1max (p = 0.05), and K1peak (p = 0.03) in non-neoplastic liver than patients with shorter OS (n = 7). CONCLUSIONS In advanced HCC patients treated with antiangiogenic agents, kinetic parameters from baseline and post-therapy 13N-ammonia PET-CT may predict early disease progression and survival. PET-CT seems not able to discriminate responders and non-responders after 8-10 weeks of treatment, suggesting the need for future and larger studies after a longer treatment period.
Collapse
Affiliation(s)
- Valentina Scolozzi
- Unità di Medicina Nucleare, Dipartimento di Diagnostica per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Alberto Nicoletti
- Liver Unit, CEMAD-Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Amedeo Capotosti
- Dipartimento di Diagnostica per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Liver Unit, CEMAD-Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Silvia Taralli
- Unità di Medicina Nucleare, Dipartimento di Diagnostica per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Enza Genco
- Radiologia Addomino-Pelvica, Dipartimento di Diagnostica per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Lucia Leccisotti
- Unità di Medicina Nucleare, Dipartimento di Diagnostica per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Istituto di Medicina Nucleare, Dipartimento Universitario di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Roberto Moretti
- Dipartimento di Diagnostica per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Luca Indovina
- Dipartimento di Diagnostica per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Maurizio Pompili
- Liver Unit, CEMAD-Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Lucia Calcagni
- Unità di Medicina Nucleare, Dipartimento di Diagnostica per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Istituto di Medicina Nucleare, Dipartimento Universitario di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
6
|
He Y, Huang J, Liang X, Shao C, Sun X, Zhang J. Global perspectives and hotspots of VEGF signaling pathway in liver disease from 2008 to 2023: A bibliometric analysis and visualization. Heliyon 2025; 11:e41346. [PMID: 39811369 PMCID: PMC11729667 DOI: 10.1016/j.heliyon.2024.e41346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/05/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Background The vascular endothelial growth factor (VEGF) signaling pathway is closely related to pathological angiogenesis in liver disease. Anti-angiogenesis is an effective intervention in the clinical treatment of liver disease. Some antiangiogenic drugs are resistant and have limitations in clinical use. Methods This research uses bibliometric methods to assess the literature on the VEGF signaling pathway in liver disease from 2008 to 2023. Results The number of publications has generally increased over the past 16 years, meaning that enormous researchers are interested in this field. China and the USA have published the most articles and cooperate closely with each other. Plos one has published the largest number of articles in this area, and Hepatology and Journal of Hepatology is the most authoritative journal. Llovet JM is an outstanding researcher in the field with the highest citations. Keywords and research hotspots analysis indicated that researchers are very concerned about the application and clinical research status of anti-angiogenic drugs in hepatocellular carcinoma (HCC). Continuing to deepen the research on the use of anti-angiogenic drugs alone and in combination is necessary. In addition, the resistance of anti-angiogenic therapeutic drugs leads to a complex mechanism of angiogenesis response caused by hypoxia, which requires further research. Conclusions This study analyzed the research situation related to the VEGF signaling pathway in liver disease from a bibliometric and visual perspective. Our analysis helps researchers better understand the research directions and hotspots in this area, enabling them to better carry out research in the future.
Collapse
Affiliation(s)
- Yi He
- College of Basic Medical Science, Zhejiang Chinese Medical University, China
| | - Jiaxin Huang
- College of Basic Medical Science, Zhejiang Chinese Medical University, China
| | - Xiaofan Liang
- College of Basic Medical Science, Zhejiang Chinese Medical University, China
| | - Chang Shao
- College of Basic Medical Science, Zhejiang Chinese Medical University, China
| | - Xiguang Sun
- College of Basic Medical Science, Zhejiang Chinese Medical University, China
| | - Junjie Zhang
- College of Basic Medical Science, Zhejiang Chinese Medical University, China
| |
Collapse
|
7
|
Gibert-Ramos A, Andrés-Rozas M, Pastó R, Alfaro-Retamero P, Guixé-Muntet S, Gracia-Sancho J. Sinusoidal communication in chronic liver disease. Clin Mol Hepatol 2025; 31:32-55. [PMID: 39355871 PMCID: PMC11791556 DOI: 10.3350/cmh.2024.0734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/03/2024] Open
Abstract
The liver sinusoid, mainly composed of liver sinusoidal endothelial cells, hepatic macrophages and hepatic stellate cells, shapes the hepatic vasculature and is key to maintaining liver homeostasis and function. During chronic liver disease (CLD), the function of sinusoidal cells is impaired, being directly involved in the progression of liver fibrosis, cirrhosis, and main clinical complications including portal hypertension and hepatocellular carcinoma. In addition to their roles in liver diseases pathobiology, sinusoidal cells' paracrine communication or cross-talk is being studied as a mechanism of disease but also as a remarkable target for treatment. The aim of this review is to gather current knowledge of intercellular signalling in the hepatic sinusoid during the progression of liver disease. We summarise studies developed in pre-clinical models of CLD, especially emphasizing those pathways characterized in human-based clinically relevant models. Finally, we describe pharmacological treatments targeting sinusoidal communication as promising options to treat CLD and its clinical complications.
Collapse
Affiliation(s)
- Albert Gibert-Ramos
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - María Andrés-Rozas
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Raül Pastó
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Pablo Alfaro-Retamero
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Sergi Guixé-Muntet
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Khan MS, Tak J, Kim YS, Lee SG, Lee EB, Kim SG. Chronic hyperglycemia induces hepatocyte pyroptosis via Gα 12/Gα 13-associated endoplasmic reticulum stress: Effect of pharmacological intervention. Life Sci 2025; 360:123180. [PMID: 39561875 DOI: 10.1016/j.lfs.2024.123180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/17/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024]
Abstract
AIMS Hyperglycemia induces pathophysiological changes. Endoplasmic reticulum (ER) stress with Gα12 overexpression may promote hepatocyte death. This study investigated whether sustained hyperglycemia triggers ER stress-associated pyroptosis and fibrosis in the liver alongside an overexpression of Gα12, and examined the potential link with VEGF-A levels. MAIN METHODS Mice were subjected to a high-fat diet (60 kcal% fat) with streptozotocin (50 mg/kg body weight, three consecutive times, between 12-13th weeks). AZ2 (a functional Gα12 inhibitor) was treated at 10 mg/kg body weight (5 times/week, 3 weeks). Immunoblotting and immunohistochemistry analyses were performed. KEY FINDINGS Hepatic Gα12/Gα13 were overexpressed in the diabetic mice. The following proteins downstream from the Gα12 axis were upregulated: PGC1α, PPARα, and SIRT1. Sustained hyperglycemia promoted ER stress marker levels. Histopathological and biochemical assays showed large-sized lipid droplet accumulation, hepatocyte degeneration, and damage as blood transaminase activities increased. Moreover, the diabetic condition increased IL-1β, caspase-1, and NLRP3 levels, which were supportive of pyroptosis. Consistently, the intensities of Masson's trichrome, collagen-1A1, α-SMA, vimentin, and fibronectin all increased. VEGF-A and VEGFR2 levels also increased in the liver and/or sera. The levels of hepatic pigment epithelial-derived factor (PEDF), a physiological antagonist of VEGF-A, decreased with its reciprocal increase in serum. These events were reversed by AZ2 treatment, supporting the role of Gα12 in hyperglycemic stress in the liver. SIGNIFICANCE Chronic hyperglycemia causes hepatic pyroptosis and fibrosis related to ER stress with Gα12/Gα13 and VEGF overexpression, which may be overcome by AZ2 treatments.
Collapse
Affiliation(s)
- Muhammad Sohaib Khan
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Jihoon Tak
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Yun Seok Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sang Gil Lee
- Center of Research and Development, A Pharma Inc, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Eun Byul Lee
- Center of Research and Development, A Pharma Inc, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyeonggi-do 10326, Republic of Korea.
| |
Collapse
|
9
|
Lin HM, Zhang JR, Li MX, Hou H, Wang H, Huang Y. Cigarette smoking and alcohol-related liver disease. LIVER RESEARCH 2024; 8:237-245. [PMID: 39958918 PMCID: PMC11771264 DOI: 10.1016/j.livres.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/27/2024] [Accepted: 12/04/2024] [Indexed: 02/18/2025]
Abstract
China is a major consumer of alcohol and tobacco. Tobacco and alcohol use are closely linked, with up to 90% of alcoholics having a history of tobacco use, and heavy smokers also tending to be alcoholics. Alcohol-related liver disease (ALD), one of the most common and serious complications of chronic alcohol intake, involving hepatic steatosis, hepatitis, hepatic fibrosis, cirrhosis and hepatocellular carcinoma (HCC), has become one of the globally prevalent chronic diseases. An increasing number of studies have focused on the association between smoking and ALD and explored the mechanisms involved. Clinical evidence suggests that smoking has a negative impact on the incidence and severity of fatty liver disease, progression of liver fibrosis, development of HCC, prognosis of patients with advanced liver disease, and alcohol-related liver transplant recipients. The underlying mechanisms are complex and involve different pathophysiological pathways, including free radical exposure, endoplasmic reticulum stress, insulin resistance, and oncogenic signaling. This review discusses the deleterious effects of smoking on ALD patients and the possible underlying mechanisms at several levels. It emphasizes the importance of discouraging smoking among ALD patients. Finally, the pathogenic role of electronic cigarettes, which have emerged in recent years, is discussed, calling for an emphasis on social missions for young people.
Collapse
Affiliation(s)
- Hui-Min Lin
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
- Department of Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jing-Rong Zhang
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Meng-Xue Li
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Hui Hou
- Department of Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hua Wang
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Yan Huang
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
10
|
Tsuchihashi T, Cho Y, Tokuhara D. Fontan-associated liver disease: the importance of multidisciplinary teamwork in its management. Front Med (Lausanne) 2024; 11:1354857. [PMID: 39664312 PMCID: PMC11631589 DOI: 10.3389/fmed.2024.1354857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 11/12/2024] [Indexed: 12/13/2024] Open
Abstract
The Fontan operation, which directly connects the superior and inferior vena cava to the pulmonary artery, is a palliative surgery for children with a functional or anatomic single ventricle. This procedure leads to hemodynamic changes (Fontan circulation) in patients, who tend to develop congestive hepatic fibrosis characterized by sinusoidal fibrosis and dilatation beginning approximately 10 years after the procedure. In addition, in the context of severe fibrosis and cirrhosis, hepato-gastrointestinal complications including hepatocellular carcinoma, focal nodular hyperplasia, and portal hypertension can arise. Fontan-associated liver disease (FALD) encompasses the broad spectrum of liver alterations secondary to postoperative hemodynamic changes, and the effective management of FALD requires contributions from specialists in hepatology, gastroenterology, surgery, radiology, histopathology, and pediatric and adult cardiology. In this article, we outline the pathogenesis of FALD and discuss the importance of a multidisciplinary collaborative approach to its management.
Collapse
Affiliation(s)
| | - Yuki Cho
- Department of Pediatrics, Wakayama Medical University, Wakayama, Japan
| | - Daisuke Tokuhara
- Department of Pediatrics, Wakayama Medical University, Wakayama, Japan
- Department of Pediatrics, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
11
|
Xu Y, Zhang Y, Tian H, Zhong Q, Yi K, Li F, Xue T, Wang H, Lao Y, Xu Y, Li Y, Long L, Li K, Tao Y, Li M. Smart Microneedle Arrays Integrating Cell-Free Therapy and Nanocatalysis to Treat Liver Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309940. [PMID: 38874114 PMCID: PMC11336984 DOI: 10.1002/advs.202309940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/02/2024] [Indexed: 06/15/2024]
Abstract
Liver fibrosis is a chronic pathological condition lacking specific clinical treatments. Stem cells, with notable potential in regenerative medicine, offer promise in treating liver fibrosis. However, stem cell therapy is hindered by potential immunological rejection, carcinogenesis risk, efficacy variation, and high cost. Stem cell secretome-based cell-free therapy offers potential solutions to address these challenges, but it is limited by low delivery efficiency and rapid clearance. Herein, an innovative approach for in situ implantation of smart microneedle (MN) arrays enabling precisely controlled delivery of multiple therapeutic agents directly into fibrotic liver tissues is developed. By integrating cell-free and platinum-based nanocatalytic combination therapy, the MN arrays can deactivate hepatic stellate cells. Moreover, they promote excessive extracellular matrix degradation by more than 75%, approaching normal levels. Additionally, the smart MN arrays can provide hepatocyte protection while reducing inflammation levels by ≈70-90%. They can also exhibit remarkable capability in scavenging almost 100% of reactive oxygen species and alleviating hypoxia. Ultimately, this treatment strategy can effectively restrain fibrosis progression. The comprehensive in vitro and in vivo experiments, supplemented by proteome and transcriptome analyses, substantiate the effectiveness of the approach in treating liver fibrosis, holding immense promise for clinical applications.
Collapse
Affiliation(s)
- Yanteng Xu
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Department of UltrasoundThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Yixin Zhang
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Department of UltrasoundThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Hao Tian
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Department of UltrasoundThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
- Department of NeurologyThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Qingguo Zhong
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Department of UltrasoundThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Ke Yi
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Department of UltrasoundThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Fenfang Li
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Department of UltrasoundThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Tiantian Xue
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Department of UltrasoundThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Department of UltrasoundThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Yeh‐Hsing Lao
- Department of Pharmaceutical SciencesUniversity at BuffaloThe State University of New YorkBuffaloNY14214USA
| | - Yingying Xu
- Center for Health ResearchGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou510530China
- University of China Academy of SciencesBeijing100049China
| | - Yinxiong Li
- Center for Health ResearchGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou510530China
- University of China Academy of SciencesBeijing100049China
| | - Ling Long
- Department of NeurologyThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Kai Li
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Department of UltrasoundThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Yu Tao
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Department of UltrasoundThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
- Guangdong Provincial Key Laboratory of Liver DiseaseGuangzhou510630China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Department of UltrasoundThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
- Guangdong Provincial Key Laboratory of Liver DiseaseGuangzhou510630China
| |
Collapse
|
12
|
Wu Q, Sun Q, Zhang Q, Wang N, Lv W, Han D. Extracellular Matrix Stiffness-Induced Mechanotransduction of Capillarized Liver Sinusoidal Endothelial Cells. Pharmaceuticals (Basel) 2024; 17:644. [PMID: 38794214 PMCID: PMC11124019 DOI: 10.3390/ph17050644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The mechanobiological response mechanism of the fenestrae of liver sinusoidal endothelial cells (LSECs) to the physical stiffness of the extracellular matrix (ECM) remains unclear. We investigated how the mechanical properties of their substrates affect the LSECs' fenestrae by the nitric oxide (NO)-dependent pathway and how they relate to the progression of hepatic sinus capillarization during liver fibrosis. We detected different stiffnesses of ECM in the progress of liver fibrosis (LF) and developed polyacrylamide hydrogel (PAM) substrates to simulate them. Softer stiffness substrates contributed to LSECs maintaining fenestrae phenotype in vitro. The stiffness of liver fibrosis tissue could be reversed in vivo via treatment with anti-ECM deposition drugs. Similarly, the capillarization of LSECs could be reversed by decreasing the ECM stiffness. Our results also indicate that the NO-dependent pathway plays a key regulatory role in the capillarization of ECM-LSECs. Our study reveals ECM-induced mechanotransduction of capillarized LSECs through a NO-dependent pathway via a previously unrevealed mechanotransduction mechanism. The elucidation of this mechanism may offer precise biomechanics-specific intervention strategies targeting liver fibrosis progression.
Collapse
Affiliation(s)
- Qingjuan Wu
- Guang Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100010, China; (Q.W.); (N.W.)
| | - Quanmei Sun
- National Center for Nanoscience and Technology, Beijing 100190, China;
| | - Qiang Zhang
- Hebei Key Laboratory of Nano-Biotechnology, Yanshan University, Qinhuangdao 066104, China;
| | - Ning Wang
- Guang Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100010, China; (Q.W.); (N.W.)
| | - Wenliang Lv
- Guang Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100010, China; (Q.W.); (N.W.)
| | - Dong Han
- National Center for Nanoscience and Technology, Beijing 100190, China;
| |
Collapse
|
13
|
Üremis N, Türköz Y, Üremiş MM, Çiğremiş Y, Şalva E. RETRACTED ARTICLE: Investigating EGFR-VEGF-mediated apoptotic effect of cucurbitacin D and I combination with sorafenib via Ras/Raf/MEK/ERK and PI3K/Akt signaling pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3247. [PMID: 37917368 DOI: 10.1007/s00210-023-02811-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Affiliation(s)
- Nuray Üremis
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey.
| | - Yusuf Türköz
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey
| | - Muhammed Mehdi Üremiş
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey
| | - Yılmaz Çiğremiş
- Department of Medical Biology and Genetics, Medical Faculty, Inonu University, Malatya, Turkey
| | - Emine Şalva
- Department of Pharmacy Technology, Pharmacy Faculty, Inonu University, Malatya, Turkey
| |
Collapse
|
14
|
Pastrovic F, Novak R, Grgurevic I, Hrkac S, Salai G, Zarak M, Grgurevic L. Serum proteomic profiling of patients with compensated advanced chronic liver disease with and without clinically significant portal hypertension. PLoS One 2024; 19:e0301416. [PMID: 38603681 PMCID: PMC11008873 DOI: 10.1371/journal.pone.0301416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/16/2024] [Indexed: 04/13/2024] Open
Abstract
INTRODUCTION Portal hypertension (PH) drives the progression of liver cirrhosis to decompensation and death. Hepatic venous pressure gradient (HVPG) measurement is the standard of PH quantification, and HVPG≥10 mmHg defines clinically significant PH (CSPH). We performed proteomics-based serum profiling to search for a proteomic signature of CSPH in patients with compensated advanced chronic liver disease (cACLD). MATERIALS AND METHODS Consecutive patients with histologically confirmed cACLD and results of HVPG measurements were prospectively included. Serum samples were pooled according to the presence/absence of CSPH and analysed by liquid chromatography-mass spectrometry. Gene set enrichment analysis was performed, followed by comprehensive literature review for proteins identified with the most striking difference between the groups. RESULTS We included 48 patients (30 with, and 18 without CSPH). Protein CD44, involved in the inflammatory response, vascular endothelial growth factor C (VEGF-C) and lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1), both involved in lymphangiogenesis were found solely in the CSPH group. Although identified in both groups, proteins involved in neutrophil extracellular traps (NET) formation, as well as tenascin C, autotaxin and nephronectin which mediate vascular contractility and lymphangiogenesis were more abundant in CSPH. DISCUSSION AND CONCLUSION We propose that altered inflammatory response, including NET formation, vascular contractility and formation of new lymph vessels are key steps in PH development. Proteins such as CD44, VEGF-C, LYVE-1, tenascin C, Plasminogen activator inhibitor 1, Nephronectin, Bactericidal permeability-increasing protein, Autotaxin, Myeloperoxidase and a disintegrin and metalloproteinase with thrombospondin motifs-like protein 4 might be considered for further validation as potential therapeutic targets and candidate biomarkers of CSPH in cACLD.
Collapse
Affiliation(s)
- Frane Pastrovic
- Department of Gastroenterology, Hepatology and Clinical Nutrition, Laboratory for Liver Diseases and Portal Hypertension, University Hospital Dubrava, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Rudjer Novak
- Department of Proteomics, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
- University of Zagreb, School of Medicine, Zagreb, Croatia
- Biomedical Research Center Salata, University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Ivica Grgurevic
- Department of Gastroenterology, Hepatology and Clinical Nutrition, Laboratory for Liver Diseases and Portal Hypertension, University Hospital Dubrava, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
- University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Stela Hrkac
- Department of Clinical Immunology, Allergology and Rheumatology, University Hospital Dubrava, Zagreb, Croatia
| | - Grgur Salai
- Department of Pulmonology, University Hospital Dubrava, Zagreb, Croatia
| | - Marko Zarak
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
- Clinical Department of Laboratory Diagnostics, University Hospital Dubrava, Zagreb, Croatia
| | - Lovorka Grgurevic
- Department of Proteomics, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Biomedical Research Center Salata, University of Zagreb, School of Medicine, Zagreb, Croatia
- Department of Anatomy, ˝Drago Perovic˝, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
15
|
De Gaetano V, Pallozzi M, Cerrito L, Santopaolo F, Stella L, Gasbarrini A, Ponziani FR. Management of Portal Hypertension in Patients with Hepatocellular Carcinoma on Systemic Treatment: Current Evidence and Future Perspectives. Cancers (Basel) 2024; 16:1388. [PMID: 38611066 PMCID: PMC11011056 DOI: 10.3390/cancers16071388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The management of CSPH in patients undergoing systemic treatment for HCC has emerged as a critical concern due to the absence of reliable diagnostic criteria and uncertainties surrounding therapeutic approaches. This review aims to underscore the primary pathophysiological aspects linking HCC and PH, while also addressing the current and emerging clinical strategies for the management of portal hypertension. A review of studies from January 2003 to June 2023 was conducted using the PubMed database and employing MeSH terms, such as "hepatocellular carcinoma", "immune checkpoint inhibitors", "systemic therapy", "portal hypertension", "variceal bleeding" and "tyrosine kinase inhibitors". Despite promising results of tyrosine kinase inhibitors in animal models for PH and fibrosis, only Sorafenib has demonstrated similar effects in human studies, whereas Lenvatinib appears to promote PH development. The impact of Atezolizumab/Bevacizumab on PH remains uncertain, with an increasing risk of bleeding related to Bevacizumab in patients with prior variceal hemorrhage. Given the absence of specific guidelines, endoscopic surveillance during treatment is advisable, and primary and secondary prophylaxis of variceal bleeding should adhere to the Baveno VII recommendations. Furthermore, in patients with advanced HCC, refinement of diagnostic criteria for CSPH and guidelines for its surveillance are warranted.
Collapse
Affiliation(s)
- Valeria De Gaetano
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario GemelliIstituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (V.D.G.); (M.P.); (L.C.); (F.S.); (L.S.); (F.R.P.)
| | - Maria Pallozzi
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario GemelliIstituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (V.D.G.); (M.P.); (L.C.); (F.S.); (L.S.); (F.R.P.)
| | - Lucia Cerrito
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario GemelliIstituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (V.D.G.); (M.P.); (L.C.); (F.S.); (L.S.); (F.R.P.)
| | - Francesco Santopaolo
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario GemelliIstituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (V.D.G.); (M.P.); (L.C.); (F.S.); (L.S.); (F.R.P.)
| | - Leonardo Stella
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario GemelliIstituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (V.D.G.); (M.P.); (L.C.); (F.S.); (L.S.); (F.R.P.)
| | - Antonio Gasbarrini
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario GemelliIstituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (V.D.G.); (M.P.); (L.C.); (F.S.); (L.S.); (F.R.P.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario GemelliIstituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (V.D.G.); (M.P.); (L.C.); (F.S.); (L.S.); (F.R.P.)
| |
Collapse
|
16
|
Villareal LB, Xue X. The emerging role of hypoxia and environmental factors in inflammatory bowel disease. Toxicol Sci 2024; 198:169-184. [PMID: 38200624 PMCID: PMC10964750 DOI: 10.1093/toxsci/kfae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and debilitating disorder characterized by inflammation of the gastrointestinal tract. Despite extensive research, the exact cause of IBD remains unknown, hampering the development of effective therapies. However, emerging evidence suggests that hypoxia, a condition resulting from inadequate oxygen supply, plays a crucial role in intestinal inflammation and tissue damage in IBD. Hypoxia-inducible factors (HIFs), transcription factors that regulate the cellular response to low oxygen levels, have gained attention for their involvement in modulating inflammatory processes and maintaining tissue homeostasis. The two most studied HIFs, HIF-1α and HIF-2α, have been implicated in the development and progression of IBD. Toxicological factors encompass a wide range of environmental and endogenous agents, including dietary components, microbial metabolites, and pollutants. These factors can profoundly influence the hypoxic microenvironment within the gut, thereby exacerbating the course of IBD and fostering the progression of colitis-associated colorectal cancer. This review explores the regulation of hypoxia signaling at the molecular, microenvironmental, and environmental levels, investigating the intricate interplay between toxicological factors and hypoxic signaling in the context of IBD, focusing on its most concerning outcomes: intestinal fibrosis and colorectal cancer.
Collapse
Affiliation(s)
- Luke B Villareal
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Xiang Xue
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
17
|
Xiong B, Bai Y, Liu J, Li T, Wang Y, Zhou C. Dual neovascular targets of vascular endothelial growth factor receptors and platelet‐derived growth factor receptor ameliorate thioacetamide induced liver fibrosis in rats. PORTAL HYPERTENSION & CIRRHOSIS 2024; 3:1-13. [DOI: 10.1002/poh2.75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/17/2024] [Indexed: 01/05/2025]
Abstract
AbstractAimsNeovascularization plays a crucial role in liver fibrosis (LF), and blocking vascular endothelial growth factor receptors (VEGFR) has been shown to improve fibrosis. The aim of our study was to investigate the role of dual neovascularization targets, VEGFR, and platelet‐derived growth factor receptor (PDGFR), in ameliorating fibrosis.MethodsIn vitro, we observed the effects of apatinib (APA) (a VEGFR inhibitor) and donafenib (DON) (a VEGFR and PDGFR inhibitor) on the activation, proliferation, and apoptosis of hepatic stellate cells (HSCs) from rats and humans. In vivo, we established a thioacetamide (TAA)‐induced liver fibrosis rat model to explore the antifibrosis effect of APA and DON. We used the method of random table to randomly divide the rats into 4 groups. We detected the expression of angiogenesis‐related proteins using Western blot and immunohistochemistry.ResultsAPA and DON inhibited the proliferation and activation of HSCs, promoted apoptosis of HSCs, and arrested the S phase of the cell cycle in vitro. We also found that DON had a stronger inhibitory effect on HSCs. In vivo, APA and DON ameliorated liver fibrosis, reduced collagen deposition and α‐SMA expression in rats, and DON had a stronger improvement effect. APA and DON downregulated the expression of VEGFR2 while inhibiting the phosphorylation of Akt and ERK1/2. DON can act through both VEGF and PDGF pathways, whereas APA can only act through the VEGF pathway.ConclusionAntiangiogenesis is a promising approach for the treatment of fibrosis. Compared with a single‐target drug (APA), the dual‐target drug (DON) can achieve better therapeutic effects.
Collapse
Affiliation(s)
- Bin Xiong
- Department of Interventional Radiology The First Affiliated Hospital of Guangzhou Medical University Guangzhou Guangdong China
| | - Yaowei Bai
- Department of Radiology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei China
- Hubei Province Key Laboratory of Molecular Imaging Wuhan Hubei China
| | - Jiacheng Liu
- Department of Radiology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei China
- Hubei Province Key Laboratory of Molecular Imaging Wuhan Hubei China
| | - Tongqiang Li
- Department of Interventional Radiology The First Affiliated Hospital of Guangzhou Medical University Guangzhou Guangdong China
| | - Yingliang Wang
- Department of Radiology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei China
- Hubei Province Key Laboratory of Molecular Imaging Wuhan Hubei China
| | - Chen Zhou
- Department of Radiology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei China
- Hubei Province Key Laboratory of Molecular Imaging Wuhan Hubei China
| |
Collapse
|
18
|
Bigos KJA, Quiles CG, Lunj S, Smith DJ, Krause M, Troost EGC, West CM, Hoskin P, Choudhury A. Tumour response to hypoxia: understanding the hypoxic tumour microenvironment to improve treatment outcome in solid tumours. Front Oncol 2024; 14:1331355. [PMID: 38352889 PMCID: PMC10861654 DOI: 10.3389/fonc.2024.1331355] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024] Open
Abstract
Hypoxia is a common feature of solid tumours affecting their biology and response to therapy. One of the main transcription factors activated by hypoxia is hypoxia-inducible factor (HIF), which regulates the expression of genes involved in various aspects of tumourigenesis including proliferative capacity, angiogenesis, immune evasion, metabolic reprogramming, extracellular matrix (ECM) remodelling, and cell migration. This can negatively impact patient outcomes by inducing therapeutic resistance. The importance of hypoxia is clearly demonstrated by continued research into finding clinically relevant hypoxia biomarkers, and hypoxia-targeting therapies. One of the problems is the lack of clinically applicable methods of hypoxia detection, and lack of standardisation. Additionally, a lot of the methods of detecting hypoxia do not take into consideration the complexity of the hypoxic tumour microenvironment (TME). Therefore, this needs further elucidation as approximately 50% of solid tumours are hypoxic. The ECM is important component of the hypoxic TME, and is developed by both cancer associated fibroblasts (CAFs) and tumour cells. However, it is important to distinguish the different roles to develop both biomarkers and novel compounds. Fibronectin (FN), collagen (COL) and hyaluronic acid (HA) are important components of the ECM that create ECM fibres. These fibres are crosslinked by specific enzymes including lysyl oxidase (LOX) which regulates the stiffness of tumours and induces fibrosis. This is partially regulated by HIFs. The review highlights the importance of understanding the role of matrix stiffness in different solid tumours as current data shows contradictory results on the impact on therapeutic resistance. The review also indicates that further research is needed into identifying different CAF subtypes and their exact roles; with some showing pro-tumorigenic capacity and others having anti-tumorigenic roles. This has made it difficult to fully elucidate the role of CAFs within the TME. However, it is clear that this is an important area of research that requires unravelling as current strategies to target CAFs have resulted in worsened prognosis. The role of immune cells within the tumour microenvironment is also discussed as hypoxia has been associated with modulating immune cells to create an anti-tumorigenic environment. Which has led to the development of immunotherapies including PD-L1. These hypoxia-induced changes can confer resistance to conventional therapies, such as chemotherapy, radiotherapy, and immunotherapy. This review summarizes the current knowledge on the impact of hypoxia on the TME and its implications for therapy resistance. It also discusses the potential of hypoxia biomarkers as prognostic and predictive indictors of treatment response, as well as the challenges and opportunities of targeting hypoxia in clinical trials.
Collapse
Affiliation(s)
- Kamilla JA. Bigos
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Conrado G. Quiles
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Sapna Lunj
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Danielle J. Smith
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Mechthild Krause
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy and Image-guided High Precision Radiotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy and Image-guided High Precision Radiotherapy, Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- School of Medicine, Technische Universitat Dresden, Dresden, Germany
| | - Esther GC. Troost
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy and Image-guided High Precision Radiotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy and Image-guided High Precision Radiotherapy, Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- School of Medicine, Technische Universitat Dresden, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Institute of Radiooncology – OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Rossendorf, Germany
| | - Catharine M. West
- Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, United Kingdom
| | - Peter Hoskin
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
- Mount Vernon Cancer Centre, Northwood, United Kingdom
| | - Ananya Choudhury
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
- Christie Hospital NHS Foundation Trust, Manchester, Germany
| |
Collapse
|
19
|
Kumar MS. Paneth cell: The missing link between obesity, MASH and portal hypertension. Clin Res Hepatol Gastroenterol 2024; 48:102259. [PMID: 38070827 DOI: 10.1016/j.clinre.2023.102259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
Obesity is a global health crisis, with its prevalence steadily rising over the past few decades. One concerning consequence of obesity is its association with metabolic associated steatohepatitis [MASH], portal hypertension and liver cirrhosis. Cirrhosis is irreversible, but stages of liver disease before the development of cirrhosis are reversible with appropriate interventions. Studies have brought into light new entities that influences the pathophysiology of portal hypertension. This review provides evidence supporting that, Paneth cells[PCs] in the intestinal epithelium, which remained enigmatic for a century, are the maneuverer of pathophysiology of portal hypertension and obesity. PC dysfunction can cause perturbation of the intestinal microbiota and changes in intestinal permeability, which are the potential triggers of systemic inflammation. Thus, it can offer unique opportunities to understand the pathophysiology of portal hypertension for intervention strategies.
Collapse
Affiliation(s)
- Minu Sajeev Kumar
- Department of Gastroenterology, Government Medical College, Thiruvanathapuram, India.
| |
Collapse
|
20
|
Ortega-Ribera M, Babuta M, Szabo G. Sinusoidal cell interactions—From soluble factors to exosomes. SINUSOIDAL CELLS IN LIVER DISEASES 2024:23-52. [DOI: 10.1016/b978-0-323-95262-0.00002-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
21
|
Varlamova EG, Goltyaev MV, Rogachev VV, Gudkov SV, Karaduleva EV, Turovsky EA. Antifibrotic Effect of Selenium-Containing Nanoparticles on a Model of TAA-Induced Liver Fibrosis. Cells 2023; 12:2723. [PMID: 38067151 PMCID: PMC10706216 DOI: 10.3390/cells12232723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
For the first time, based on the expression analysis of a wide range of pro- and anti-fibrotic, pro- and anti-inflammatory, and pro- and anti-apoptotic genes, key markers of endoplasmic reticulum stress (ER-stress), molecular mechanisms for the regulation of fibrosis, and accompanying negative processes caused by thioacetamide (TAA) injections and subsequent injections of selenium-containing nanoparticles and sorafenib have been proposed. We found that selenium nanoparticles of two types (doped with and without sorafenib) led to a significant decrease in almost all pro-fibrotic and pro-inflammatory genes. Sorafenib injections also reduced mRNA expression of pro-fibrotic and pro-inflammatory genes but less effectively than both types of nanoparticles. In addition, it was shown for the first time that TAA can be an inducer of ER-stress, most likely activating the IRE1α and PERK signaling pathways of the UPR, an inducer of apoptosis and pyroptosis. Sorafenib, despite a pronounced anti-apoptotic effect, still did not reduce the expression of caspase-3 and 12 or mitogen-activated kinase JNK1 to control values, which increases the risk of persistent apoptosis in liver cells. After injections of selenium-containing nanoparticles, the negative effects caused by TAA were leveled, causing an adaptive UPR signaling response through activation of the PERK signaling pathway. The advantages of selenium-containing nanoparticles over sorafenib, established in this work, once again emphasize the unique properties of this microelement and serve as an important factor for the further introduction of drugs based on it into clinical practice.
Collapse
Affiliation(s)
- Elena G. Varlamova
- Institute of Cell Biophysics, the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (M.V.G.); (V.V.R.); (E.V.K.); (E.A.T.)
| | - Michail Victorovich Goltyaev
- Institute of Cell Biophysics, the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (M.V.G.); (V.V.R.); (E.V.K.); (E.A.T.)
| | - Vladimir Vladimirovich Rogachev
- Institute of Cell Biophysics, the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (M.V.G.); (V.V.R.); (E.V.K.); (E.A.T.)
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute, the Russian Academy of Sciences, 119991 Moscow, Russia;
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Elena V. Karaduleva
- Institute of Cell Biophysics, the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (M.V.G.); (V.V.R.); (E.V.K.); (E.A.T.)
| | - Egor A. Turovsky
- Institute of Cell Biophysics, the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (M.V.G.); (V.V.R.); (E.V.K.); (E.A.T.)
| |
Collapse
|
22
|
Abstract
The steatotic diseases of metabolic dysfunction-associated steatotic liver disease (MASLD), alcohol-associated liver disease (ALD), and chronic hepatitis C (HCV) account for the majority of liver disease prevalence, morbidity, and mortality worldwide. While these diseases have distinct pathogenic and clinical features, dysregulated lipid droplet (LD) organelle biology represents a convergence of pathogenesis in all three. With increasing understanding of hepatocyte LD biology, we now understand the roles of LD proteins involved in these diseases but also how genetics modulate LD biology to either exacerbate or protect against the phenotypes associated with steatotic liver diseases. Here, we review the history of the LD organelle and its biogenesis and catabolism. We also review how this organelle is critical not only for the steatotic phenotype of liver diseases but also for their advanced phenotypes. Finally, we summarize the latest attempts and challenges of leveraging LD biology for therapeutic gain in steatotic diseases. In conclusion, the study of dysregulated LD biology may lead to novel therapeutics for the prevention of disease progression in the highly prevalent steatotic liver diseases of MASLD, ALD, and HCV.
Collapse
Affiliation(s)
- Joseph L Dempsey
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of Washington, Seattle, Washington
| | - George N Ioannou
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of Washington, Seattle, Washington
- Division of Gastroenterology, Veterans Affairs Puget Sound Healthcare System Seattle, Washington
| | - Rotonya M Carr
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
23
|
Miranda WR, Kamath PS, Jain CC, Connolly HC, Egbe AC. Liver Fibrosis Scores Are Associated With Resting and Exercise Fontan and Pulmonary Artery Wedge Pressures: Insights Into FALD. Can J Cardiol 2023; 39:1349-1357. [PMID: 37150355 DOI: 10.1016/j.cjca.2023.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/03/2023] [Accepted: 04/27/2023] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND Alterations in liver perfusion and venous hypertension have been implicated in the pathophysiology of Fontan-associated liver disease (FALD). However, the correlation between exercise hemodynamics and markers of FALD have not been studied. METHODS We performed a retrospective review of 32 consecutive adults undergoing exercise catheterisation at the Mayo Clinic, Minnesota. Invasive hemodynamics were correlated with aspartate transaminase to platelet ratio index (APRI) and the Fibrosis-4 (Fib-4) score, well validated surrogates of liver fibrosis. RESULTS The mean age was 30.9 ± 7 years. The mean APRI was 0.5 ± 0.2 and the mean Fib-4 score 1.3 ± 0.8. Fib-4 scores correlated with spleen size on abdominal imaging (r = 0.40; P = 0.03). Resting Fontan pressure was 13.9 ± 3.9 mm Hg and pulmonary artery wedge pressure (PAWP) 10.0 ± 3.5 mm Hg. At peak exercise (69.4 ± 23.2 W), Fontan pressures increased to 26.5 ± 6.2 mm Hg and PAWP to 22.4 ± 7.1 mm Hg. APRI and Fib-4 score were directly related to Fontan pressure and PAWP at rest and during exercise, and inversely related to exercise arterial O2 saturation. Fib-4 inversely correlated with O2 delivery indices. Similarly, when categorising patients according to high APRI (> 0.5 vs ≤ 0.5) or Fib-4 score (≥ 1.45 vs < 1.45) according to previously proposed cutoffs for diagnosis of liver fibrosis, those with elevated scores had higher resting and exercise Fontan and PAWP pressure with lower O2 arterial saturation. CONCLUSIONS APRI and Fib-4 score correlated with resting and exercise Fontan pressure and PAWP. In addition, Fib-4 scores were inversely related to O2 delivery indices. These findings support a role played by hepatic venous hypertension and reduced O2 supply in patients with FALD.
Collapse
Affiliation(s)
- William R Miranda
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.
| | - Patrick S Kamath
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - C Charles Jain
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Heidi C Connolly
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Alexander C Egbe
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
24
|
Wang D, Zhao Y, Zhou Y, Yang S, Xiao X, Feng L. Angiogenesis-An Emerging Role in Organ Fibrosis. Int J Mol Sci 2023; 24:14123. [PMID: 37762426 PMCID: PMC10532049 DOI: 10.3390/ijms241814123] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
In recent years, the study of lymphangiogenesis and fibrotic diseases has made considerable achievements, and accumulating evidence indicates that lymphangiogenesis plays a key role in the process of fibrosis in various organs. Although the effects of lymphangiogenesis on fibrosis disease have not been conclusively determined due to different disease models and pathological stages of organ fibrosis, its importance in the development of fibrosis is unquestionable. Therefore, we expounded on the characteristics of lymphangiogenesis in fibrotic diseases from the effects of lymphangiogenesis on fibrosis, the source of lymphatic endothelial cells (LECs), the mechanism of fibrosis-related lymphangiogenesis, and the therapeutic effect of intervening lymphangiogenesis on fibrosis. We found that expansion of LECs or lymphatic networks occurs through original endothelial cell budding or macrophage differentiation into LECs, and the vascular endothelial growth factor C (VEGFC)/vascular endothelial growth factor receptor (VEGFR3) pathway is central in fibrosis-related lymphangiogenesis. Lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1), as a receptor of LECs, is also involved in the regulation of lymphangiogenesis. Intervention with lymphangiogenesis improves fibrosis to some extent. In the complex organ fibrosis microenvironment, a variety of functional cells, inflammatory factors and chemokines synergistically or antagonistically form the complex network involved in fibrosis-related lymphangiogenesis and regulate the progression of fibrosis disease. Further clarifying the formation of a new fibrosis-related lymphangiogenesis network may potentially provide new strategies for the treatment of fibrosis disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Feng
- Division of Liver Surgery, Department of General Surgery and Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China; (D.W.); (Y.Z.); (Y.Z.); (S.Y.); (X.X.)
| |
Collapse
|
25
|
Oey O, Sunjaya AF, Khan Y, Redfern A. Stromal inflammation, fibrosis and cancer: An old intuition with promising potential. World J Clin Oncol 2023; 14:230-246. [PMID: 37583950 PMCID: PMC10424089 DOI: 10.5306/wjco.v14.i7.230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/07/2023] [Accepted: 06/21/2023] [Indexed: 07/19/2023] Open
Abstract
It is now well established that the biology of cancer is influenced by not only malignant cells but also other components of the tumour microenvironment. Chronic inflammation and fibrosis have long been postulated to be involved in carcinogenesis. Chronic inflammation can promote tumorigenesis via growth factor/cytokine-mediated cellular proliferation, apoptotic resistance, immunosuppression; and free-radical-induced oxidative deoxyribonucleic acid damage. Fibrosis could cause a perturbation in the dynamics of the tumour microenvironment, potentially damaging the genome surveillance machinery of normal epithelial cells. In this review, we will provide an in-depth discussion of various diseases characterised by inflammation and fibrosis that have been associated with an increased risk of malignancy. In particular, we will present a comprehensive overview of the impact of alterations in stromal composition on tumorigenesis, induced as a consequence of inflammation and/or fibrosis. Strategies including the application of various therapeutic agents with stromal manipulation potential and targeted cancer screening for certain inflammatory diseases which can reduce the risk of cancer will also be discussed.
Collapse
Affiliation(s)
- Oliver Oey
- Faculty of Medicine, University of Western Australia, Perth 6009, Crawley NA, Australia
- Department of Medical Oncology, Sir Charles Gardner Hospital, Nedlands 6009, Australia
| | - Angela Felicia Sunjaya
- Institute of Cardiovascular Science, University College London, London WC1E 6DD, United Kingdom
| | - Yasir Khan
- Department of Medical Oncology, St John of God Midland Public and Private Hospital, Midland 6056, WA, Australia
| | - Andrew Redfern
- Department of Medical Oncology, Fiona Stanley Hospital, Murdoch 6150, WA, Australia
| |
Collapse
|
26
|
Airola C, Pallozzi M, Cerrito L, Santopaolo F, Stella L, Gasbarrini A, Ponziani FR. Microvascular Thrombosis and Liver Fibrosis Progression: Mechanisms and Clinical Applications. Cells 2023; 12:1712. [PMID: 37443746 PMCID: PMC10341358 DOI: 10.3390/cells12131712] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Fibrosis is an unavoidable consequence of chronic inflammation. Extracellular matrix deposition by fibroblasts, stimulated by multiple pathways, is the first step in the onset of chronic liver disease, and its propagation promotes liver dysfunction. At the same time, chronic liver disease is characterized by alterations in primary and secondary hemostasis but unlike previously thought, these changes are not associated with an increased risk of bleeding complications. In recent years, the role of coagulation imbalance has been postulated as one of the main mechanisms promoting hepatic fibrogenesis. In this review, we aim to investigate the function of microvascular thrombosis in the progression of liver disease and highlight the molecular and cellular networks linking hemostasis to fibrosis in this context. We analyze the predictive and prognostic role of coagulation products as biomarkers of liver decompensation (ascites, variceal hemorrhage, and hepatic encephalopathy) and liver-related mortality. Finally, we evaluate the current evidence on the application of antiplatelet and anticoagulant therapies for prophylaxis of hepatic decompensation or prevention of the progression of liver fibrosis.
Collapse
Affiliation(s)
- Carlo Airola
- Hepatology Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Maria Pallozzi
- Hepatology Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Lucia Cerrito
- Hepatology Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Francesco Santopaolo
- Hepatology Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Leonardo Stella
- Hepatology Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Antonio Gasbarrini
- Hepatology Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (F.S.); (L.S.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Hepatology Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (F.S.); (L.S.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
27
|
Owen T, Carpino G, Chen L, Kundu D, Wills P, Ekser B, Onori P, Gaudio E, Alpini G, Francis H, Kennedy L. Endothelin Receptor-A Inhibition Decreases Ductular Reaction, Liver Fibrosis, and Angiogenesis in a Model of Cholangitis. Cell Mol Gastroenterol Hepatol 2023; 16:513-540. [PMID: 37336290 PMCID: PMC10462792 DOI: 10.1016/j.jcmgh.2023.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND & AIMS Primary sclerosing cholangitis (PSC) leads to ductular reaction and fibrosis and is complicated by vascular dysfunction. Cholangiocyte and endothelial cell crosstalk modulates their proliferation in cholestatic models. Endothelin (ET)-1 and ET-2 bind to their receptor, ET-A, and cholangiocytes are a key source of ET-1 after bile duct ligation. We aimed to evaluate the therapeutic potential of ET-A inhibition in PSC and biliary-endothelial crosstalk mediated by this pathway. METHODS Wild-type and multidrug resistance 2 knockout (Mdr2-/-) mice at 12 weeks of age were treated with vehicle or Ambrisentan (ET-A antagonist) for 1 week by daily intraperitoneal injections. Human control and PSC samples were used. RESULTS Mdr2-/- mice at 4, 8, and 12 weeks displayed angiogenesis that peaked at 12 weeks. Mdr2-/- mice at 12 weeks had enhanced biliary ET-1/ET-2/ET-A expression and secretion, whereas human PSC had enhanced ET-1/ET-A expression and secretion. Ambrisentan reduced biliary damage, immune cell infiltration, and fibrosis in Mdr2-/- mice. Mdr2-/- mice had squamous cholangiocytes with blunted microvilli and dilated arterioles lacking cilia; however, Ambrisentan reversed these alterations. Ambrisentan decreased cholangiocyte expression of pro-angiogenic factors, specifically midkine, through the regulation of cFOS. In vitro, ET-1/ET-A caused cholangiocyte senescence, endothelial cell angiogenesis, and macrophage inflammation. In vitro, human PSC cholangiocyte supernatants increased endothelial cell migration, which was blocked with Ambrisentan treatment. CONCLUSIONS ET-A inhibition reduced biliary and liver damage in Mdr2-/- mice. ET-A promotes biliary angiocrine signaling that may, in turn, enhance angiogenesis. Targeting ET-A may prove therapeutic for PSC, specifically patients displaying vascular dysfunction.
Collapse
Affiliation(s)
- Travis Owen
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Guido Carpino
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Lixian Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Debjyoti Kundu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Payton Wills
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana.
| |
Collapse
|
28
|
Trinh VQH, Lee TF, Lemoinne S, Ray KC, Ybanez MD, Tsuchida T, Carter JK, Agudo J, Brown BD, Akat KM, Friedman SL, Lee YA. Hepatic stellate cells maintain liver homeostasis through paracrine neurotrophin-3 signaling that induces hepatocyte proliferation. Sci Signal 2023; 16:eadf6696. [PMID: 37253090 PMCID: PMC10367116 DOI: 10.1126/scisignal.adf6696] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 05/03/2023] [Indexed: 06/01/2023]
Abstract
Organ size is maintained by the controlled proliferation of distinct cell populations. In the mouse liver, hepatocytes in the midlobular zone that are positive for cyclin D1 (CCND1) repopulate the parenchyma at a constant rate to preserve liver mass. Here, we investigated how hepatocyte proliferation is supported by hepatic stellate cells (HSCs), pericytes that are in close proximity to hepatocytes. We used T cells to ablate nearly all HSCs in the murine liver, enabling the unbiased characterization of HSC functions. In the normal liver, complete loss of HSCs persisted for up to 10 weeks and caused a gradual reduction in liver mass and in the number of CCND1+ hepatocytes. We identified neurotrophin-3 (Ntf-3) as an HSC-produced factor that induced the proliferation of midlobular hepatocytes through the activation of tropomyosin receptor kinase B (TrkB). Treating HSC-depleted mice with Ntf-3 restored CCND1+ hepatocytes in the midlobular region and increased liver mass. These findings establish that HSCs form the mitogenic niche for midlobular hepatocytes and identify Ntf-3 as a hepatocyte growth factor.
Collapse
Affiliation(s)
| | - Ting-Fang Lee
- Department of Surgery, Vanderbilt University Medical Center; Nashville, TN, USA
| | - Sara Lemoinne
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai; New York, NY, USA
| | - Kevin C. Ray
- Department of Surgery, Vanderbilt University Medical Center; Nashville, TN, USA
| | - Maria D. Ybanez
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai; New York, NY, USA
| | - Takuma Tsuchida
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai; New York, NY, USA
| | - James K. Carter
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai; New York, NY, USA
| | - Judith Agudo
- Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School; Boston, MA, USA
| | - Brian D. Brown
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kemal M. Akat
- Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center; Nashville, TN, USA
| | - Scott L. Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai; New York, NY, USA
| | - Youngmin A. Lee
- Department of Surgery, Vanderbilt University Medical Center; Nashville, TN, USA
| |
Collapse
|
29
|
Li F, Cheng Z, Sun J, Cheng X, Li C, Wu Z, Qi F, Zhao Y, Nie G. The Combination of Sinusoidal Perfusion Enhancement and Apoptosis Inhibition by Riociguat Plus a Galactose-PEGylated Bilirubin Multiplexing Nanomedicine Ameliorates Liver Fibrosis Progression. NANO LETTERS 2023; 23:4126-4135. [PMID: 37155569 DOI: 10.1021/acs.nanolett.2c04726] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Chronic liver injury and continuous wound healing lead to extracellular matrix (ECM) deposition and liver fibrosis. The elevated production of reactive oxygen species (ROS) in the liver leads to the apoptosis of hepatocytes and the activation of hepatic stellate cells (HSCs). In the current study, we describe a combination strategy of sinusoidal perfusion enhancement and apoptosis inhibition enabled by riociguat together with a tailor-designed galactose-PEGylated bilirubin nanomedicine (Sel@GBRNPs). Riociguat enhanced sinusoidal perfusion and decreased the associated ROS accumulation and inflammatory state of the fibrotic liver. Concurrently, hepatocyte-targeting galactose-PEGylated bilirubin scavenged excessive ROS and released encapsulated selonsertib. The released selonsertib inhibited apoptosis signal-regulating kinase 1 (ASK1) phosphorylation to alleviate apoptosis in hepatocytes. The combined effects on ROS and hepatocyte apoptosis attenuated the stimulation of HSC activation and ECM deposition in a mouse model of liver fibrosis. This work provides a novel strategy for liver fibrosis treatment based on sinusoidal perfusion enhancement and apoptosis inhibition.
Collapse
Affiliation(s)
- Fenfen Li
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhaoxia Cheng
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jingyi Sun
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Cheng
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Li
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhouliang Wu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feilong Qi
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Zhao
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangjun Nie
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- GBA Research Innovation Institute for Nanotechnology, Guangzhou 510530, China
| |
Collapse
|
30
|
Kou K, Li S, Qiu W, Fan Z, Li M, Lv G. Hypoxia-inducible factor 1α/IL-6 axis in activated hepatic stellate cells aggravates liver fibrosis. Biochem Biophys Res Commun 2023; 653:21-30. [PMID: 36848821 DOI: 10.1016/j.bbrc.2023.02.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/21/2023]
Abstract
Hepatic stellate cells (HSCs) upregulate hypoxia inducible factor 1 alpha (HIF-1α) expression in response to fibrosis-induced hypoxia. The mechanism by which HIF-1α promotes liver fibrosis in HSCs is not fully understood. In this study, we found that increased expression of α-SMA, HIF-1α and IL-6, as well as colocalization of α-SMA and HIF-1α, and HIF-1α and IL-6, were observed in liver fibrotic tissues of patients and a mouse model. HIF-1α expression induced IL-6 secretion in activated HSCs and the increase could be abolished by HIF-1α suppression or HIF1A gene knockdown. HIF-1α directly bound to the hypoxia response element (HRE) region in HSC IL6/Il6 promoters. Additionally, culturing naïve CD4 T cells with supernatant from HSCs in which HIF-1α is highly expressed increased IL-17A expression, and the expression could be abolished by HIF1A knockdown in LX2. In turn, the IL-17A-enriched supernatant induced IL-6 secretion in HSCs. Together, these results show that HIF-1α upregulates IL-6 expression in HSCs and induces IL-17A secretion through directly binding to the HRE of IL6 promoter.
Collapse
Affiliation(s)
- Kai Kou
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, Jilin, China.
| | - Shuxuan Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, Jilin, China.
| | - Wei Qiu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, Jilin, China.
| | - Zhongqi Fan
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, Jilin, China.
| | - Mingqian Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, Jilin, China.
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, Jilin, China.
| |
Collapse
|
31
|
Zhang W, Huang C, Yin T, Miao X, Deng H, Zheng R, Ren J, Chen S. Ultrasensitive US Microvessel Imaging of Hepatic Microcirculation in the Cirrhotic Rat Liver. Radiology 2023; 307:e220739. [PMID: 36413130 DOI: 10.1148/radiol.220739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background Liver microcirculation dysfunction plays a vital role in the occurrence and development of liver diseases, and thus, there is a clinical need for in vivo, noninvasive, and quantitative evaluation of liver microcirculation. Purpose To evaluate the feasibility of ultrasensitive US microvessel imaging (UMI) in the visualization and quantification of hepatic microvessels in healthy and cirrhotic rats. Materials and Methods In vivo studies were performed to image hepatic microvasculature by means of laparotomy in Sprague-Dawley rats (five cirrhotic and five control rats). In vivo conventional power Doppler US and ex vivo micro-CT were performed for comparison. UMI-based quantifications of perfusion, tortuosity, and integrity of microvessels were compared between the control and cirrhotic groups by using the Wilcoxon test. Spearman correlations between quantification parameters and pathologic fibrosis, perfusion function, and hepatic hypoxia were evaluated. Results UMI helped detect minute vessels below the liver capsule, as compared with conventional power Doppler US and micro-CT. With use of UMI, lower perfusion indicated by vessel density (median, 22% [IQR, 20%-28%] vs 41% [IQR, 37%-46%]; P = .008) and fractional moving blood volume (FMBV) (median, 6.4% [IQR, 4.8%-8.6%] vs 13% [IQR, 12%-14%]; P = .008) and higher tortuosity indicated by the sum of angles metric (SOAM) (median, 3.0 [IQR, 2.9-3.0] vs 2.7 [IQR, 2.6-2.9]; P = .008) were demonstrated in the cirrhotic rat group compared with the control group. Vessel density (r = 0.85, P = .003), FMBV (r = 0.86, P = .002), and median SOAM (r = -0.83, P = .003) showed strong correlations with pathologically derived vessel density labeled with dextran. Vessel density (r = -0.81, P = .005) and median SOAM (r = 0.87, P = .001) also showed strong correlations with hepatic tissue hypoxia. Conclusion Contrast-free ultrasensitive US microvessel imaging provided noninvasive in vivo imaging and quantification of hepatic microvessels in cirrhotic rat liver. © RSNA, 2022 Supplemental material is available for this article. See also the editorial by Fetzer in this issue.
Collapse
Affiliation(s)
- Wei Zhang
- From the Department of Ultrasound, Laboratory of Novel Optoacoustic (Ultrasonic) Imaging, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Rd, Guangzhou 510630, China (W.Z., T.Y., X.M., H.D., R.Z., J.R.); and Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, Minn (C.H., S.C.)
| | - Chengwu Huang
- From the Department of Ultrasound, Laboratory of Novel Optoacoustic (Ultrasonic) Imaging, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Rd, Guangzhou 510630, China (W.Z., T.Y., X.M., H.D., R.Z., J.R.); and Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, Minn (C.H., S.C.)
| | - Tinghui Yin
- From the Department of Ultrasound, Laboratory of Novel Optoacoustic (Ultrasonic) Imaging, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Rd, Guangzhou 510630, China (W.Z., T.Y., X.M., H.D., R.Z., J.R.); and Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, Minn (C.H., S.C.)
| | - Xiaoyan Miao
- From the Department of Ultrasound, Laboratory of Novel Optoacoustic (Ultrasonic) Imaging, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Rd, Guangzhou 510630, China (W.Z., T.Y., X.M., H.D., R.Z., J.R.); and Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, Minn (C.H., S.C.)
| | - Huan Deng
- From the Department of Ultrasound, Laboratory of Novel Optoacoustic (Ultrasonic) Imaging, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Rd, Guangzhou 510630, China (W.Z., T.Y., X.M., H.D., R.Z., J.R.); and Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, Minn (C.H., S.C.)
| | - Rongqin Zheng
- From the Department of Ultrasound, Laboratory of Novel Optoacoustic (Ultrasonic) Imaging, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Rd, Guangzhou 510630, China (W.Z., T.Y., X.M., H.D., R.Z., J.R.); and Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, Minn (C.H., S.C.)
| | - Jie Ren
- From the Department of Ultrasound, Laboratory of Novel Optoacoustic (Ultrasonic) Imaging, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Rd, Guangzhou 510630, China (W.Z., T.Y., X.M., H.D., R.Z., J.R.); and Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, Minn (C.H., S.C.)
| | - Shigao Chen
- From the Department of Ultrasound, Laboratory of Novel Optoacoustic (Ultrasonic) Imaging, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Rd, Guangzhou 510630, China (W.Z., T.Y., X.M., H.D., R.Z., J.R.); and Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, Minn (C.H., S.C.)
| |
Collapse
|
32
|
Quelhas P, Breton MC, Oliveira RC, Cipriano MA, Teixeira P, Cerski CT, Shivakumar P, Vieira SMG, Kieling CO, Verde I, Santos JLD. HIF-1alpha-pathway activation in cholangiocytes of patients with biliary atresia: An immunohistochemical/molecular exploratory study. J Pediatr Surg 2023; 58:587-594. [PMID: 36150932 DOI: 10.1016/j.jpedsurg.2022.08.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Biliary atresia is a neonatal disease characterized by choledochal obstruction and progressive cholangiopathy requiring liver transplantation in most patients. Hypoxia-ischemia affecting the biliary epithelium may lead to biliary obstruction. We hypothesized that ischemic cholangiopathy involving disruption of the peribiliary vascular plexus could act as a triggering event in biliary atresia pathogenesis. METHODS Liver and porta hepatis paraffin-embedded samples of patients with biliary atresia or intrahepatic neonatal cholestasis (controls) were immunohistochemically evaluated for HIF-1alpha-nuclear signals. Frozen histological samples were analyzed for gene expression in molecular profiles associated with hypoxia-ischemia. Prospective clinical-laboratory and histopathological data of biliary atresia patients and controls were reviewed. RESULTS Immunohistochemical HIF-1alpha signals localized to cholangiocytes were detected exclusively in liver specimens from biliary atresia patients. In 37.5% of liver specimens, HIF-1alpha signals were observed in biliary structures involving progenitor cell niches and peribiliary vascular plexus. HIF-1alpha signals were also detected in biliary remnants of 81.8% of porta hepatis specimens. Increased gene expression of molecules linked to REDOX status, biliary proliferation, and angiogenesis was identified in biliary atresia liver specimens. In addition, there was a trend towards decreased GSR expression levels in the HIF-1alpha-positive group compared to the HIF-1alpha-negative group. CONCLUSION Activation of the HIF-1alpha pathway may be associated with the pathogenesis of biliary atresia, and additional studies are necessary to confirm the significance of this finding. Ischemic cholangiopathy and REDOX status disturbance are putative explanations for HIF-1alpha activation. These findings may give rise to novel lines of clinical and therapeutic investigation in the BA field.
Collapse
Affiliation(s)
- Patrícia Quelhas
- Faculdade de Ciências da Saúde, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Covilhã, Portugal
| | - Michele Claire Breton
- Faculdade de Ciências da Saúde, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Covilhã, Portugal
| | - Rui Caetano Oliveira
- Serviço de Anatomia Patológica, Centro Hospitalar e Universitário, Universidade de Coimbra (SAP-CHUC), Portugal; Instituto de Biofísica, Faculdade de Medicina, Universidade de Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Portugal
| | - Maria Augusta Cipriano
- Serviço de Anatomia Patológica, Centro Hospitalar e Universitário, Universidade de Coimbra (SAP-CHUC), Portugal; Instituto de Biofísica, Faculdade de Medicina, Universidade de Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Portugal
| | - Paulo Teixeira
- Serviço de Anatomia Patológica, Centro Hospitalar e Universitário, Universidade de Coimbra (SAP-CHUC), Portugal; Instituto de Biofísica, Faculdade de Medicina, Universidade de Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Portugal
| | - Carlos Thadeu Cerski
- Universidade Federal do Rio Grande do Sul (UFRGS), Department of Pathology, Brazil
| | - Pranavkumar Shivakumar
- Divisions of Gastroenterology, Hepatology and Nutrition and The Liver Care Center at Cincinnati Children's Hospital Medical Center, Cincinnati, United States; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Sandra Maria Gonçalves Vieira
- Universidade Federal do Rio Grande do Sul (UFRGS), Department of Pediatrics, Brazil; Unidade de Gastroenterologia e Hepatologia, Hospital de Clínicas de Porto Alegre (HCPA), Brazil; Programa de Transplante de Fígado Pediátrico, Hospital de Clínicas de Porto Alegre (HCPA), Brazil
| | - Carlos Oscar Kieling
- Unidade de Gastroenterologia e Hepatologia, Hospital de Clínicas de Porto Alegre (HCPA), Brazil
| | - Ignacio Verde
- Faculdade de Ciências da Saúde, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Covilhã, Portugal
| | - Jorge Luiz Dos Santos
- Faculdade de Ciências da Saúde, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Covilhã, Portugal.
| |
Collapse
|
33
|
Zheng H, Huang N, Lin JQ, Yan LY, Jiang QG, Yang WZ. Effect and mechanism of pirfenidone combined with 2-methoxy-estradiol perfusion through portal vein on hepatic artery hypoxia-induced hepatic fibrosis. Adv Med Sci 2023; 68:46-53. [PMID: 36610261 DOI: 10.1016/j.advms.2022.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/20/2022] [Accepted: 12/07/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE The aim of this study was to explore the effect and mechanism of pirfenidone (PFD) combined with 2-methoxyestradiol (2-ME2) perfusion through portal vein on hepatic artery hypoxia-induced hepatic fibrosis. MATERIALS AND METHODS Sprague-Dawley rats were divided into 5 groups (n = 3/group): control group, hepatic artery ligation (HAL) group, HAL + PFD (portal vein perfusion of PFD) group, HAL+2-ME2 (portal vein perfusion of 2-ME2) group and HAL + PFD+2-ME2 group depending on whether they received HAL and/or portal vein perfusion (PFD and/or 2-ME2). Livers were harvested for pathology, western blotting (WB), and quantitative real-time PCR (qRT-PCR). RESULTS Sirius red staining showed that portal vein perfusion of drugs resulted in degradation of liver fibrosis. Immunohistochemistry showed decreased hypoxia-inducible factor-1 α (HIF-1α) and α-smooth muscle actin (α-SMA) after portal intravenous drugs infusion compared with HAL group (P < 0.05). WB analysis showed increased Smad7 in HAL + PFD group compared with HAL group (P < 0.05). qRT-PCR analysis showed decreased matrix metallo-proteinase 2 (MMP2), transforming growth factor β1 (TGF-β1), monocyte chemoattractant protein-1 (MCP-1), and Collagen I mRNA in HAL + PFD group except for tissue inhibitor of metalloproteinase-1 (TIMP-1) compared with HAL group (P < 0.05). Compared with HAL + PFD group, the addition of 2-ME2 did not lead to better results in qRT-PCR analysis. CONCLUSIONS The portal vein perfusion of PFD significantly reduced the hepatic artery hypoxia-induced fibrosis degree in treated rats by down-regulating the expression of HIF-1α, α-SMA, MMP2, TGF-β1, MCP-1, and Collagen I, as well as up-regulating the TIMP-1 expression and Smad7 protein level. Combined 2-ME2 infusion was not better than PFD alone.
Collapse
Affiliation(s)
- Hui Zheng
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
| | - Ning Huang
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
| | - Jun-Qing Lin
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
| | - Le-Ye Yan
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
| | - Qing-Gui Jiang
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China; Department of Interventional Therapy, Xiamen Humanity Hospital, Xiamen, Fujian, People's Republic of China
| | - Wei-Zhu Yang
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China.
| |
Collapse
|
34
|
Bi J, Liu J, Chen X, Shi N, Wu H, Tang H, Mao J. MiR-155-5p-SOCS1/JAK1/STAT1 participates in hepatic lymphangiogenesis in liver fibrosis and cirrhosis by regulating M1 macrophage polarization. Hum Exp Toxicol 2023; 42:9603271221141695. [PMID: 36651907 DOI: 10.1177/09603271221141695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND The role and underlying mechanism of liver macrophages and their derived miR-155-5p in hepatic lymphangiogenesis in liver fibrosis remain unclear. Here, we investigated the mechanism by which macrophages and miR-155-5p were involved in lymphangiogenesis during liver fibrosis and cirrhosis. METHODS In vivo, hepatic lymphatic vessel expansion was evaluated; the liver macrophage subsets, proportion of peripherally-derived macrophages and expressions of CCL25, MCP-1, VAP-1 and MAdCAM-1 were documented; and miR-155-5p in the peripheral blood and liver was detected. In vitro, macrophages with miR-155-5p overexpression and inhibition were used to clarify the effect of miR-155-5p on regulation of macrophage polarization and the possible signalling pathway. RESULTS Hepatic lymphangiogenesis was observed in mice with liver fibrosis and cirrhosis challenged with carbon tetrachloride (CCl4). In the liver, the number of M1 macrophages was associated with lymphangiogenesis and the degree of fibrosis. The liver recruitment of peripherally-derived macrophages occurred during liver fibrosis. The levels of miR-155-5p in the liver and peripheral blood gradually increased with aggravation of liver fibrosis. In vitro, SOCS1, a target of miR-155-5p, regulated macrophage polarization into the M1 phenotype through the JAK1/STAT1 pathway. CONCLUSION MiR-155-5p-SOCS1/JAK1/STAT1 pathway participates in hepatic lymphangiogenesis in mice with liver fibrosis and cirrhosis induced by CCl4 by regulating the polarization of macrophages into the M1 phenotype.
Collapse
Affiliation(s)
- Jian Bi
- Department of Gastroenterology, 74710First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Jia Liu
- Department of Respiratory and Critical Disease, 74710First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Xiuli Chen
- Department of Gastroenterology, 74710First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Na Shi
- Department of Gastroenterology, 74710First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Hao Wu
- Department of Gastroenterology, 74710First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Haiying Tang
- Department of Respiratory and Critical Disease, 74710First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Jingwei Mao
- Department of Gastroenterology, 74710First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| |
Collapse
|
35
|
Mohammad Omar J, Hai Y, Jin S. Hypoxia-induced factor and its role in liver fibrosis. PeerJ 2022; 10:e14299. [PMID: 36523459 PMCID: PMC9745792 DOI: 10.7717/peerj.14299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/04/2022] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis develops as a result of severe liver damage and is considered a major clinical concern throughout the world. Many factors are crucial for liver fibrosis progression. While advancements have been made to understand this disease, no effective pharmacological drug and treatment strategies have been established that can effectively prevent liver fibrosis or even could halt the fibrotic process. Most of those advances in curing liver fibrosis have been aimed towards mitigating the causes of fibrosis, including the development of potent antivirals to inhibit the hepatitis virus. It is not practicable for many individuals; however, a liver transplant becomes the only suitable alternative. A liver transplant is an expensive procedure. Thus, there is a significant need to identify potential targets of liver fibrosis and the development of such agents that can effectively treat or reverse liver fibrosis by targeting them. Researchers have identified hypoxia-inducible factors (HIFs) in the last 16 years as important transcription factors driving several facets of liver fibrosis, making them possible therapeutic targets. The latest knowledge on HIFs and their possible role in liver fibrosis, along with the cell-specific activities of such transcription factors that how they play role in liver fibrosis progression, is discussed in this review.
Collapse
Affiliation(s)
- Jan Mohammad Omar
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical, Harbin, Heilongjiang, China
| | - Yang Hai
- College of International Education, Harbin Medical University, Harbin, Heilongjiang, China
| | - Shizhu Jin
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical, Harbin, Heilongjiang, China
| |
Collapse
|
36
|
Lei J, Li Q, Xu H, Luo M, Liu Z, Xiang D, Chen P. Anlotinib improves bile duct ligature‐induced liver fibrosis in rats via antiangiogenesis regulated by VEGFR2/mTOR pathway. Drug Dev Res 2022; 84:143-155. [PMID: 36464837 DOI: 10.1002/ddr.22019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/31/2022] [Accepted: 11/18/2022] [Indexed: 12/08/2022]
Abstract
Cholestasis is a main clinical feature of biliary atresia (BA), which leads to liver fibrosis (LF). The focus of BA treatment is preventing and slowing the progress of LF. This study reports the improvement effect of anlotinib on common bile duct ligature (BDL)-induced LF in young rats. The BDL young rats were treated with anlotinib and the serum levels of aspartate aminotransferase, alanine aminotransferase, albumin, and total bilirubin were determined. Histological staining was performed and pathological changes in liver tissue were observed. The expression levels of α-SMA, collagen I, CD31, TGF-β1, phospho-VEGFR2, phospho-4E/BP1, and phospho-S6K1 were determined. The results showed that anlotinib significantly improved the liver function and histopathological injury of BDL rats, inhibited the deposition of collagen and hepatocyte apoptosis, and downregulated the protein expression of α-SMA and collagen I. Furthermore, anlotinib treatment significantly inhibited microvascular formation in the liver and downregulated the expression level of phospho-VEGFR2, thereby suggesting that the antifibrosis effect of anlotinib may be achieved by antiangiogenesis. In addition, anlotinib downregulated the expression of phospho-S6K1 and upregulated the expression of phospho-4E/BP1, two downstream proteins of the mammalian target of rapamycin (mTOR) pathway. MHY1485, an agonist of mTOR, significantly reversed the inhibitory effect of anlotinib on angiogenesis and LF but did not influence the effect of anlotinib on the downregulation of phospho-VEGFR2 expression. Together, the above-mentioned results suggest that the effect of anlotinib on BDL-induced LF involves at least antiangiogenesis regulated by the VEGFR2/mTOR signaling pathway.
Collapse
Affiliation(s)
- Jun Lei
- Department of General Surgery Jiangxi Provincial Children's Hospital Nanchang Jiangxi P.R. China
| | - Qing Li
- Rehabilitation Center Jiangxi Provincial Children's Hospital Nanchang Jiangxi P.R. China
| | - Hongyan Xu
- Department of Pathology Jiangxi Provincial Children's Hospital Nanchang Jiangxi P.R. China
| | - Ming Luo
- Department of General Surgery Jiangxi Provincial Children's Hospital Nanchang Jiangxi P.R. China
| | - Zhiwen Liu
- Department of neonatal surgery Jiangxi Provincial Children's Hospital Nanchang Jiangxi P.R. China
| | - Deng Xiang
- Department of General Surgery Jiangxi Provincial Children's Hospital Nanchang Jiangxi P.R. China
| | - Peiqun Chen
- Department of General Surgery Jiangxi Provincial Children's Hospital Nanchang Jiangxi P.R. China
| |
Collapse
|
37
|
Hartl L, Haslinger K, Angerer M, Semmler G, Schneeweiss-Gleixner M, Jachs M, Simbrunner B, Bauer DJM, Eigenbauer E, Strassl R, Breuer M, Kimberger O, Laxar D, Lampichler K, Halilbasic E, Stättermayer AF, Ba-Ssalamah A, Mandorfer M, Scheiner B, Reiberger T, Trauner M. Progressive cholestasis and associated sclerosing cholangitis are frequent complications of COVID-19 in patients with chronic liver disease. Hepatology 2022; 76:1563-1575. [PMID: 35596929 PMCID: PMC9347407 DOI: 10.1002/hep.32582] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/22/2022] [Accepted: 05/16/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Cholestasis is associated with disease severity and worse outcome in COVID-19. Cases of secondary sclerosing cholangitis (SSC) after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection have been described. APPROACH AND RESULTS Hospitalized patients with COVID-19 between 03/2020 and 07/2021 were included. Patients were stratified as having (i) no chronic liver disease (CLD), (ii) non-advanced CLD (non-ACLD), or (iii) advanced CLD (ACLD). Patients with CLD and non-COVID-19 pneumonia were matched to patients with CLD and COVID-19 as a control cohort. Liver chemistries before (Pre) and at first, second, and third blood withdrawal after SARS-CoV-2 infection (T1-T3) and at last available time point (last) were recorded. A total of 496 patients were included. In total, 13.1% (n = 65) had CLD (non-ACLD: 70.8%; ACLD: 29.2%); the predominant etiology was NAFLD/NASH (60.0%). COVID-19-related liver injury was more common among patients with CLD (24.6% vs. 10.6%; p = 0.001). After SARS-CoV-2 infection, patients with CLD exhibited progressive cholestasis with persistently increasing levels of alkaline phosphatase (Pre: 91.0 vs. T1: 121.0 vs. last: 175.0 U/L; p < 0.001) and gamma-glutamyl transferase (Pre: 95.0 vs. T1: 135.0 vs. last: 202.0 U/L; p = 0.001). A total of 23.1% of patients with CLD (n = 15/65) developed cholestatic liver failure (cholestasis plus bilirubin ≥6 mg/dl) during COVID-19, and 15.4% of patients (n = 10/65) developed SSC. SSC was significantly more frequent among patients with CLD and COVID-19 than in patients with CLD and non-COVID-19 pneumonia (p = 0.040). COVID-19-associated SSC occurred predominantly in patients with NAFLD/NASH and metabolic risk factors. A total of 26.3% (n = 5/19) of patients with ACLD experienced hepatic decompensation after SARS-CoV-2 infection. CONCLUSIONS About 20% of patients with CLD develop progressive cholestasis after SARS-CoV-2 infection. Patients with NAFLD/NASH and metabolic risk factors are at particular risk for developing cholestatic liver failure and/or SSC after COVID-19.
Collapse
Affiliation(s)
- Lukas Hartl
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria.,Vienna Hepatic Hemodynamic LabDivision of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
| | - Katharina Haslinger
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria.,Vienna Hepatic Hemodynamic LabDivision of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
| | - Martin Angerer
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria.,Vienna Hepatic Hemodynamic LabDivision of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
| | - Georg Semmler
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria.,Vienna Hepatic Hemodynamic LabDivision of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
| | | | - Mathias Jachs
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria.,Vienna Hepatic Hemodynamic LabDivision of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
| | - Benedikt Simbrunner
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria.,Vienna Hepatic Hemodynamic LabDivision of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria.,Christian Doppler Lab for Portal Hypertension and Liver FibrosisMedical University of ViennaViennaAustria
| | - David Josef Maria Bauer
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria.,Vienna Hepatic Hemodynamic LabDivision of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
| | - Ernst Eigenbauer
- IT-Systems and CommunicationsMedical University of ViennaViennaAustria
| | - Robert Strassl
- Division of Clinical VirologyDepartment of Laboratory MedicineMedical University of ViennaViennaAustria
| | - Monika Breuer
- Division of Clinical VirologyDepartment of Laboratory MedicineMedical University of ViennaViennaAustria
| | - Oliver Kimberger
- Department of AnaesthesiaIntensive Care Medicine and Pain MedicineMedical University of ViennaViennaAustria
| | - Daniel Laxar
- Department of AnaesthesiaIntensive Care Medicine and Pain MedicineMedical University of ViennaViennaAustria
| | - Katharina Lampichler
- Department of Biomedical Imaging and Image-Guided TherapyMedical University of ViennaViennaAustria
| | - Emina Halilbasic
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
| | - Albert Friedrich Stättermayer
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria.,Vienna Hepatic Hemodynamic LabDivision of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
| | - Ahmed Ba-Ssalamah
- Department of Biomedical Imaging and Image-Guided TherapyMedical University of ViennaViennaAustria
| | - Mattias Mandorfer
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria.,Vienna Hepatic Hemodynamic LabDivision of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
| | - Bernhard Scheiner
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria.,Vienna Hepatic Hemodynamic LabDivision of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
| | - Thomas Reiberger
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria.,Vienna Hepatic Hemodynamic LabDivision of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria.,Christian Doppler Lab for Portal Hypertension and Liver FibrosisMedical University of ViennaViennaAustria
| | - Michael Trauner
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
| |
Collapse
|
38
|
Shen H, Yu H, Li QY, Wei YT, Fu J, Dong H, Cao D, Guo LN, Chen L, Yang Y, Xu Y, Wu MC, Wang HY, Chen Y. Hepatocyte-derived VEGFA accelerates the progression of non-alcoholic fatty liver disease to hepatocellular carcinoma via activating hepatic stellate cells. Acta Pharmacol Sin 2022; 43:2917-2928. [PMID: 35508720 PMCID: PMC9622738 DOI: 10.1038/s41401-022-00907-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/02/2022] [Indexed: 11/09/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is emerging as an epidemic risk factor for hepatocellular carcinoma (HCC). The progression of NAFLD to HCC is closely associated with paracrine communication among hepatic cells. Vascular endothelial growth factor A (VEGFA) plays a key role in NAFLD and HCC; however, the cellular communication of VEGFA in the pathological transition from NAFLD to HCC remains unclear. Here, we found that VEGFA elevation was considerably distributed in hepatocytes of clinical and murine NAFLD-HCC specimens. Notably, progression from NAFLD to HCC was attenuated in hepatocyte-specific deletion of Vegfa (VegfaΔhep) mice. Mechanistically, VEGFA activated human hepatic stellate cell (HSC) LX2 into a fibrogenic phenotype via VEGF-VEGFR signaling in fatty acid medium, and HSC activation was largely attenuated in VegfaΔhep mice during NAFLD-HCC progression. Additionally, a positive correlation between VEGFA and hepatic fibrosis was observed in the NAFLD-HCC cohort, but not in the HBV-HCC cohort. Moreover, LX2 cells could be activated by conditioned medium from NAFLD-derived organoids, but not from HBV livers, whereas this activation was blocked by a VEGFA antibody. In summary, our findings reveal that hepatocyte-derived VEGFA contributes to NAFLD-HCC development by activating HSCs and highlight the potential of precisely targeting hepatocytic VEGFA as a promising therapeutic strategy for NAFLD-HCC.
Collapse
Affiliation(s)
- Hao Shen
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai, 200433, China
| | - Han Yu
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai, 200433, China
| | - Qian-Yu Li
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Ya-Ting Wei
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai, 200433, China
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
| | - Jing Fu
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai, 200433, China
| | - Hui Dong
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai, 200433, China
| | - Dan Cao
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai, 200433, China
| | - Lin-Na Guo
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai, 200433, China
| | - Lei Chen
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai, 200433, China
| | - Yuan Yang
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Ying Xu
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai, 200433, China
| | - Meng-Chao Wu
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai, 200433, China
| | - Hong-Yang Wang
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai, 200433, China.
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China.
| | - Yao Chen
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai, 200433, China.
| |
Collapse
|
39
|
Lin Y, Dong M, Liu Z, Xu M, Huang Z, Liu H, Gao Y, Zhou W. A strategy of vascular-targeted therapy for liver fibrosis. Hepatology 2022; 76:660-675. [PMID: 34940991 PMCID: PMC9543235 DOI: 10.1002/hep.32299] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS No effective treatments are available for liver fibrosis. Angiogenesis is deeply involved in liver fibrogenesis. However, current controversial results suggest it is difficult to treat liver fibrosis through vascular targeting. There are three different microvessels in liver: portal vessels, liver sinusoids, and central vessels. The changes and roles for each of the three different vessels during liver fibrogenesis are unclear. We propose that they play different roles during liver fibrogenesis, and a single vascular endothelial cell (EC) regulator is not enough to fully regulate these three vessels to treat liver fibrosis. Therefore, a combined regulation of multiple different EC regulatory signaling pathway may provide new strategies for the liver fibrosis therapy. Herein, we present a proof-of-concept strategy by combining the regulation of leukocyte cell-derived chemotaxin 2 (LECT2)/tyrosine kinase with immunoglobulin-like and epidermal growth factor-like domains 1 signaling with that of vascular endothelial growth factor (VEGF)/recombinant VEGF (rVEGF) signaling. APPROACH AND RESULTS The CCl4 -induced mouse liver fibrosis model and NASH model were both used. During fibrogenesis, vascular changes occurred at very early stage, and different liver vessels showed different changes and played different roles: decreased portal vessels, increased sinusoid capillarization and the increased central vessels the increase of portal vessels alleviates liver fibrosis, the increase of central vessels aggravates liver fibrosis, and the increase of sinusoid capillarization aggravates liver fibrosis. The combinational treatment of adeno-associated viral vector serotype 9 (AAV9)-LECT2-short hairpin RNA (shRNA) and rVEGF showed improved therapeutic effects, but it led to serious side effects. The combination of AAV9-LECT2-shRNA and bevacizumab showed both improved therapeutic effects and decreased side effects. CONCLUSIONS Liver vascular changes occurred at very early stage of fibrogenesis. Different vessels play different roles in liver fibrosis. The combinational treatment of AAV9-LECT2-shRNA and bevacizumab could significantly improve the therapeutic effects on liver fibrosis.
Collapse
Affiliation(s)
- Yuan Lin
- Department of PathologyShunde HospitalSouthern Medical University (The First People’s Hospital of Shunde Foshan)FoshanChina,State Key Laboratory of Organ Failure ResearchDepartment of PathologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Meng‐Qi Dong
- State Key Laboratory of Organ Failure ResearchDepartment of PathologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Zhi‐Min Liu
- State Key Laboratory of Organ Failure ResearchDepartment of PathologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Meng Xu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorNanfang HospitalFirst Clinical Medical CollegeSouthern Medical UniversityGuangzhouChina
| | - Zhi‐Hao Huang
- State Key Laboratory of Organ Failure ResearchDepartment of PathologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Hong‐Juan Liu
- Department of BioinformationSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Yi Gao
- General Surgery CenterDepartment of Hepatobiliary Surgery IIGuangdong ProvincialResearch Center for Artificial Organ and Tissue EngineeringGuangzhou Clinical Research and Transformation Center for Artificial LiverInstitute of Regenerative MedicineZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Wei‐Jie Zhou
- Department of PathologyShunde HospitalSouthern Medical University (The First People’s Hospital of Shunde Foshan)FoshanChina,State Key Laboratory of Organ Failure ResearchDepartment of PathologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina,Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorNanfang HospitalFirst Clinical Medical CollegeSouthern Medical UniversityGuangzhouChina,General Surgery CenterDepartment of Hepatobiliary Surgery IIGuangdong ProvincialResearch Center for Artificial Organ and Tissue EngineeringGuangzhou Clinical Research and Transformation Center for Artificial LiverInstitute of Regenerative MedicineZhujiang HospitalSouthern Medical UniversityGuangzhouChina,Microbiome Medicine CenterZhujiang HospitalSouthern Medical UniversityGuangzhouChina,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| |
Collapse
|
40
|
Naheda A, Aqeel S, Khan K, Khan W, Khan T. Immunohistopathological changes in the placenta of malaria-infected women in unstable transmission setting of Aligarh. Placenta 2022; 127:52-61. [PMID: 35970103 DOI: 10.1016/j.placenta.2022.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/16/2022] [Accepted: 07/24/2022] [Indexed: 10/15/2022]
Abstract
INTRODUCTION Pregnant women are more susceptible to malaria due to a combination of physiological and immunological changes. The infection may even affect the growth and survival of the foetus, which mainly occur when parasite enters the placenta. The sequestration of infected erythrocytes may trigger the host response, leading to placental inflammation and altered development, affecting the structure and nutrient transport of placenta. These factors collectively impair placental functions and affect foetal growth. METHODS Pregnant women with peripheral parasitaemia for P. falciparum and P. vivax (20 each) were included in the present study, along with 15 age-matched uninfected healthy pregnant women. Placentae were analysed for the presence of local parasitaemia along with pathological lesions caused due to the parasite. Immunohistochemical staining for CD20, CD45 and CD68 cells was performed for examining the specific leucocytes in the intervillous space of the placenta. RESULTS Of the 20 individuals with P. falciparum, only seven placentae showed parasitaemia, whereas individuals with P. vivax showed no placental infection. The pathological changes observed in the P. falciparum-infected placenta include syncytial knotting, excess fibrinoid deposition, syncytiotrophoblast necrosis, syncytial rupture, thickening of trophoblast basement membrane and increased collagen deposition. Immunohistochemical staining showed a significant increase in B cells (CD20), leucocytes (CD45) and monocytes and macrophages (CD68) in the P. falciparum-infected placenta (p < 0.0001). DISCUSSION The result implies that P. falciparum is responsible for pathological alterations in placenta, affecting the nutrient transport across placenta and foetal growth. The immune cells also migrate to the placenta and accumulate in the intervillous space to show humoral and cell-mediated immunity against the parasite.
Collapse
Affiliation(s)
- Ansari Naheda
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India.
| | - Sana Aqeel
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| | - Khadija Khan
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| | - Wajihullah Khan
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India.
| | - Tamkin Khan
- Department of Obstetrics & Gynaecology, Jawaharlal Nehru Medical College & Hospital, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
41
|
Abdelgwad M, Ewaiss M, Sabry D, Khalifa WA, Altaib ZM, Alhelf M. Comparative study on effect of mesenchymal stem cells and endothelial progenitor cells on treatment of experimental CCL4-induced liver fibrosis. Arch Physiol Biochem 2022; 128:1071-1080. [PMID: 32374186 DOI: 10.1080/13813455.2020.1752256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND We speculated impacts of BM-MSCs and UC-EPCs on reversal of hepatic injury induced by carbon tetrachloride (CCl4). Fifty adult rats were divided into five groups: control group, CCl4A group, CCl4B group, CCl4/BM-MSCs group and CCl4/UC-EPCs group. Blood samples were driven to measure concentration of albumin and ALT. Quantitative expression of HGF, TGF-β, MMP-2, and VEGF were assessed by PCR. Histological and immunohistochemistry examination of the liver tissue were performed. RESULTS There was elevating albumin (p < .05) and reducing ALT (p < .05) concentrations in groups treated with BM-MSCs and UC-EPCs compared to untreated CCL4A&B groups. UC-EPCs treated group have significantly higher MMP-2 and VEGF (p < .01) genes expression than BM-MSCs treated group. Furthermore, UC-EPCs were more valuable than BMMSCs in increasing gene expression of HGF (p < .05) and immunohistochemistry of α-SMA and Ki-67 (p < .01). BM-MSCs have significantly lower TGF-β (p < .00) compared to UC-EPCs. CONCLUSION This study highlighted on liver regeneration role of both UC-EPCs and BM-MSCs in liver fibrosis.
Collapse
Affiliation(s)
- Marwa Abdelgwad
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Manal Ewaiss
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Beni Suef University, Beni Suef, Egypt
- Medical College, Al-Jouf University, Al-Jawf, Saudi Arabia
| | - Dina Sabry
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Warda A Khalifa
- Department of Biotechnology, Faculty of Science, Sebha University, Sabha, Libya
| | - Zeinab M Altaib
- Department of Histology and Cell Biology, Helwan Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Maha Alhelf
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
42
|
Kumar R, García-Compeán D, Maji T. Hepatogenous diabetes: Knowledge, evidence, and skepticism. World J Hepatol 2022; 14:1291-1306. [PMID: 36158904 PMCID: PMC9376767 DOI: 10.4254/wjh.v14.i7.1291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/27/2022] [Accepted: 07/05/2022] [Indexed: 02/06/2023] Open
Abstract
The diabetogenic potential of liver cirrhosis (LC) has been known for a long time, and the name "hepatogenous diabetes" (HD) was coined in 1906 to define the condition. Diabetes mellitus (DM) that develops as a consequence of LC is referred to as HD. In patients with LC, the prevalence rates of HD have been reported to vary from 21% to 57%. The pathophysiological basis of HD seems to involve insulin resistance (IR) and pancreatic β-cell dysfunction. The neurohormonal changes, endotoxemia, and chronic inflammation of LC initially create IR; however, the toxic effects eventually lead to β-cell dysfunction, which marks the transition from impaired glucose tolerance to HD. In addition, a number of factors, including sarcopenia, sarcopenic obesity, gut dysbiosis, and hyperammonemia, have recently been linked to impaired glucose metabolism in LC. DM is associated with complications and poor outcomes in patients with LC, although the individual impact of each type 2 DM and HD is unknown due to a lack of categorization of diabetes in most published research. In fact, there is much skepticism within scientific organizations over the recognition of HD as a separate disease and a consequence of LC. Currently, T2DM and HD are being treated in a similar manner although no standardized guidelines are available. The different pathophysiological basis of HD may have an impact on treatment options. This review article discusses the existence of HD as a distinct entity with high prevalence rates, a strong pathophysiological basis, clinical and therapeutic implications, as well as widespread skepticism and knowledge gaps.
Collapse
Affiliation(s)
- Ramesh Kumar
- Department of Gastroenterology, All India Institute of Medical Sciences, Patna 801507, Bihar, India.
| | - Diego García-Compeán
- Department of Gastroenterology, University Hospital, Universidad Autónoma de Nuevo León, México, Monterrey 64700, México
| | - Tanmoy Maji
- Department of Gastroenterology, All India Institute of Medical Sciences, Patna 801507, Bihar, India
| |
Collapse
|
43
|
Marti-Aguado D, Clemente-Sanchez A, Bataller R. Cigarette smoking and liver diseases. J Hepatol 2022; 77:191-205. [PMID: 35131406 DOI: 10.1016/j.jhep.2022.01.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 01/27/2023]
Abstract
Cigarette smoking is a preventable risk factor for premature morbidity and mortality. A history of smoking is observed in approximately 40% of patients with liver disease, while a growing number of studies are investigating the potential impact of smoking in chronic liver diseases. This review discusses the effects of smoking on liver diseases, at multiple levels, with a focus on its potential causal role. Clinical evidence indicates that cigarette smoking negatively impacts the incidence and severity of fatty liver disease, fibrosis progression, hepatocellular carcinoma development, and the outcomes of patients with advanced liver disease. The underlying mechanisms are complex and involve different pathophysiological pathways including oxidative stress and oncogenic signals. Importantly, smoking promotes cardiovascular disease and extrahepatic cancers in patients with steatohepatitis and in transplant recipients. We discuss how promoting smoking cessation could improve the rates of treatment response (in clinical trials) and fibrosis regression, while reducing the risk of hepatocellular carcinoma and improving liver transplant outcomes. Finally, we discuss current challenges such as the referral of smokers to specialised units for smoking cessation.
Collapse
Affiliation(s)
- David Marti-Aguado
- Digestive Disease Department, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain; Center for Liver Diseases, Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Ana Clemente-Sanchez
- Center for Liver Diseases, Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Liver Unit and Digestive Department, Hospital General Universitario Gregorio Marañon, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Ramon Bataller
- Center for Liver Diseases, Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
44
|
Li H. Intercellular crosstalk of liver sinusoidal endothelial cells in liver fibrosis, cirrhosis and hepatocellular carcinoma. Dig Liver Dis 2022; 54:598-613. [PMID: 34344577 DOI: 10.1016/j.dld.2021.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022]
Abstract
Intercellular crosstalk among various liver cells plays an important role in liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Capillarization of liver sinusoidal endothelial cells (LSECs) precedes fibrosis and accumulating evidence suggests that the crosstalk between LSECs and other liver cells is critical in the development and progression of liver fibrosis. LSECs dysfunction, a key event in the progression from fibrosis to cirrhosis, and subsequently obstruction of hepatic sinuses and increased intrahepatic vascular resistance (IHVR) contribute to development of portal hypertension (PHT) and cirrhosis. More importantly, immunosuppressive tumor microenvironment (TME), which is closely related to the crosstalk between LSECs and immune liver cells like CD8+ T cells, promotes advances tumorigenesis, especially HCC. However, the connections within the crosstalk between LSECs and other liver cells during the progression from liver fibrosis to cirrhosis to HCC have yet to be discussed. In this review, we first summarize the current knowledge of how different crosstalk between LSECs and other liver cells, including hepatocytes, hepatic stellate cells (HSCs), macrophoges, immune cells in liver and extra cellular matrix (ECM) contribute to the physiological function and the progrssion from liver fibrosis to cirrhosis, or even to HCC. Then we examine current treatment strategies for LSECs crosstalk in liver fibrosis, cirrhosis and HCC.
Collapse
Affiliation(s)
- Hui Li
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, NO. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, PR China.
| |
Collapse
|
45
|
Characterization of the Impacts of Living at High Altitude in Taif: Oxidative Stress Biomarker Alterations and Immunohistochemical Changes. Curr Issues Mol Biol 2022; 44:1610-1625. [PMID: 35723368 PMCID: PMC9164078 DOI: 10.3390/cimb44040110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
At high elevations, the human body experiences a number of pathological, physiological, and biochemical changes, all of which have adverse impacts on human health and organ vitality. This study aimed to investigate the alterations in the liver and kidney biomarkers, oxidative stress markers, gene expression, and cellular histology of rats maintained at high altitudes and normal sea level. A total of twenty male Wistar rats at 2 months of age were randomly assigned to two groups. The rats in group A were maintained at normal sea level in Jeddah, whereas rats in group B were maintained in an area in Taif 2600 m above sea level. After 2 months of housing, orbital blood samples were collected for the analysis of significant biochemical indicators of oxidative stress biomarkers of the liver and kidneys. Liver and kidney tissues from both groups were taken to examine the hepatorenal changes occurring at the biochemical, histological, immunohistochemical, and genetic levels. The results revealed substantial increases in the serum levels of liver and kidney biomarkers (GPT, GOT, urea, and creatinine) and decreases in the serum levels of antioxidant biomarkers (SOD, catalase, GSH, and NO). In parallel, the levels of the malondialdehyde (MDA) tissue damage marker and inflammatory cytokines (IL-1β, TNF-α, and IFN-γ) were increased in the high-altitude group compared to the normal sea level group. In addition, there were significant alterations in the oxidative and inflammatory status of rats that lived at high altitude, with considerable upregulation in the expression of hepatic VEGF, type 1 collagen, Cox-2, TNF-α, and iNOS as well as renal EPASI, CMYC, HIF-α, and EGLN-2 genes in the high-altitude group compared with controls housed at normal sea level. In conclusion, living at high altitude induces hepatorenal damage and biochemical and molecular alterations, all of which may serve as critical factors that must be taken into account for organisms living at high altitudes.
Collapse
|
46
|
Scorletti E, Carr RM. A new perspective on NAFLD: Focusing on lipid droplets. J Hepatol 2022; 76:934-945. [PMID: 34793866 DOI: 10.1016/j.jhep.2021.11.009] [Citation(s) in RCA: 174] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/13/2021] [Accepted: 11/06/2021] [Indexed: 02/07/2023]
Abstract
Lipid droplets (LDs) are complex and metabolically active organelles. They are composed of a neutral lipid core surrounded by a monolayer of phospholipids and proteins. LD accumulation in hepatocytes is the distinctive characteristic of non-alcoholic fatty liver disease (NAFLD), which is a chronic, heterogeneous liver condition that can progress to liver fibrosis and hepatocellular carcinoma. Though recent research has improved our understanding of the mechanisms linking LD accumulation to NAFLD progression, numerous aspects of LD biology are either poorly understood or unknown. In this review, we provide a description of several key mechanisms that contribute to LD accumulation in hepatocytes, favouring NAFLD progression. First, we highlight the importance of LD architecture and describe how the dysregulation of LD biogenesis leads to endoplasmic reticulum stress and inflammation. This is followed by an analysis of the causal nexus that exists between LD proteome composition and LD degradation. Finally, we describe how the increase in size of LDs causes activation of hepatic stellate cells, leading to liver fibrosis and hepatocellular carcinoma. We conclude that acquiring a more sophisticated understanding of LD biology will provide crucial insights into the heterogeneity of NAFLD and assist in the development of therapeutic approaches for this liver disease.
Collapse
Affiliation(s)
- Eleonora Scorletti
- Division of Translational Medicine and Human Genetics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Rotonya M Carr
- Division of Gastroenterology, University of Washington, Seattle, WA 98195-6424, United States.
| |
Collapse
|
47
|
Lappano R, Todd LA, Stanic M, Cai Q, Maggiolini M, Marincola F, Pietrobon V. Multifaceted Interplay between Hormones, Growth Factors and Hypoxia in the Tumor Microenvironment. Cancers (Basel) 2022; 14:539. [PMID: 35158804 PMCID: PMC8833523 DOI: 10.3390/cancers14030539] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Hormones and growth factors (GFs) are signaling molecules implicated in the regulation of a variety of cellular processes. They play important roles in both healthy and tumor cells, where they function by binding to specific receptors on target cells and activating downstream signaling cascades. The stages of tumor progression are influenced by hormones and GF signaling. Hypoxia, a hallmark of cancer progression, contributes to tumor plasticity and heterogeneity. Most solid tumors contain a hypoxic core due to rapid cellular proliferation that outgrows the blood supply. In these circumstances, hypoxia-inducible factors (HIFs) play a central role in the adaptation of tumor cells to their new environment, dramatically reshaping their transcriptional profile. HIF signaling is modulated by a variety of factors including hormones and GFs, which activate signaling pathways that enhance tumor growth and metastatic potential and impair responses to therapy. In this review, we summarize the role of hormones and GFs during cancer onset and progression with a particular focus on hypoxia and the interplay with HIF proteins. We also discuss how hypoxia influences the efficacy of cancer immunotherapy, considering that a hypoxic environment may act as a determinant of the immune-excluded phenotype and a major hindrance to the success of adoptive cell therapies.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Lauren A. Todd
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Mia Stanic
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Qi Cai
- Kite Pharma Inc., Santa Monica, CA 90404, USA; (Q.C.); (F.M.)
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | | | | |
Collapse
|
48
|
Yuan S, Wei C, Liu G, Zhang L, Li J, Li L, Cai S, Fang L. Sorafenib attenuates liver fibrosis by triggering hepatic stellate cell ferroptosis via HIF-1α/SLC7A11 pathway. Cell Prolif 2022; 55:e13158. [PMID: 34811833 PMCID: PMC8780895 DOI: 10.1111/cpr.13158] [Citation(s) in RCA: 227] [Impact Index Per Article: 75.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/17/2021] [Accepted: 08/31/2021] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES Evidences demonstrate that sorafenib alleviates liver fibrosis via inhibiting HSC activation and ECM accumulation. The underlying mechanism remains unclear. Ferroptosis, a novel programmed cell death, regulates diverse physiological/pathological processes. In this study, we aim to investigate the functional role of HSC ferroptosis in the anti-fibrotic effect of sorafenib. MATERIALS AND METHODS The effects of sorafenib on HSC ferroptosis and ECM expression were assessed in mouse model of liver fibrosis induced by CCl4 . In vitro, Fer-1 and DFO were used to block ferroptosis and then explored the anti-fibrotic effect of sorafenib by detecting α-SMA, COL1α1 and fibronectin proteins. Finally, HIF-1α siRNA, plasmid and stabilizers were applied to assess related signalling pathway. RESULTS Sorafenib attenuated liver injury and ECM accumulation in CCl4 -induced fibrotic livers, accompanied by reduction of SLC7A11 and GPX4 proteins. In sorafenib-treated HSC-T6 cells, ferroptotic events (depletion of SLC7A11, GPX4 and GSH; accumulation iron, ROS and MDA) were discovered. Intriguingly, these ferroptotic events were not appeared in hepatocytes or macrophages. Sorafenib-elicited HSC ferroptosis and ECM reduction were abrogated by Fer-1 and DFO. Additionally, both HIF-1α and SLC7A11 proteins were reduced in sorafenib-treated HSC-T6 cells. SLC7A11 was positively regulated by HIF-1α, inactivation of HIF-1α/SLC7A11 pathway was required for sorafenib-induced HSC ferroptosis, and elevation of HIF-1α could inhibit ferroptosis, ultimately limited the anti-fibrotic effect. CONCLUSIONS Sorafenib triggers HSC ferroptosis via HIF-1α/SLC7A11 signalling, which in turn attenuates liver injury and fibrosis.
Collapse
Affiliation(s)
- Siyu Yuan
- Department of PharmacyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Can Wei
- Department of UrologyThe Second People's Hospital of HefeiHefeiChina
| | - Guofang Liu
- School of PharmacyAnhui University of Chinese MedicineHefeiChina
| | - Lijun Zhang
- School of PharmacyAnhui Medical UniversityHefeiChina
| | - Jiahao Li
- School of PharmacyAnhui University of Chinese MedicineHefeiChina
| | - Lingling Li
- Department of PharmacyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Shiyi Cai
- School of PharmacyAnhui Medical UniversityHefeiChina
| | - Ling Fang
- Department of PharmacyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| |
Collapse
|
49
|
Geiduschek EK, Milne PD, Mzyk P, Mavlyutov TA, McDowell CM. TLR4 signaling modulates extracellular matrix production in the lamina cribrosa. FRONTIERS IN OPHTHALMOLOGY 2022; 2:968381. [PMID: 36911656 PMCID: PMC9997209 DOI: 10.3389/fopht.2022.968381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The optic nerve head (ONH) is a place of vulnerability during glaucoma progression due to increased intraocular pressure damaging the retinal ganglion cell axons. The molecular signaling pathways involved in generating glaucomatous ONH damage has not been fully elucidated. There is a great deal of evidence that pro-fibrotic TGFβ2 signaling is involved in modulating the ECM environment within the lamina cribrosa (LC) region of the ONH. Here we investigated the role of signaling crosstalk between the TGFβ2 pathway and the toll-like receptor 4 (TLR4) pathway within the LC. ECM deposition was examined between healthy and glaucomatous human ONH sections, finding increases in fibronectin and fibronectin extra domain A (FN-EDA) an isoform of fibronectin known to be a damage associated molecular pattern (DAMP) that can activate TLR4 signaling. In human LC cell cultures derived from healthy donor eyes, inhibition of TLR4 signaling blocked TGFβ2 induced FN and FN-EDA expression. Activation of TLR4 by cellular FN (cFN) containing the EDA isoform increased both total FN production and Collagen-1 production and this effect was dependent on TLR4 signaling. These studies identify TGFβ2-TLR4 signaling crosstalk in LC cells of the ONH as a novel pathway regulating ECM and DAMP production.
Collapse
Affiliation(s)
- Emma K Geiduschek
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Paige D Milne
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Philip Mzyk
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Timur A Mavlyutov
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Colleen M McDowell
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
50
|
Vettore LA, Westbrook RL, Tennant DA. Proline metabolism and redox; maintaining a balance in health and disease. Amino Acids 2021; 53:1779-1788. [PMID: 34291343 PMCID: PMC8651533 DOI: 10.1007/s00726-021-03051-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/10/2021] [Indexed: 02/06/2023]
Abstract
Proline is a non-essential amino acid with key roles in protein structure/function and maintenance of cellular redox homeostasis. It is available from dietary sources, generated de novo within cells, and released from protein structures; a noteworthy source being collagen. Its catabolism within cells can generate ATP and reactive oxygen species (ROS). Recent findings suggest that proline biosynthesis and catabolism are essential processes in disease; not only due to the role in new protein synthesis as part of pathogenic processes but also due to the impact of proline metabolism on the wider metabolic network through its significant role in redox homeostasis. This is particularly clear in cancer proliferation and metastatic outgrowth. Nevertheless, the precise identity of the drivers of cellular proline catabolism and biosynthesis, and the overall cost of maintaining appropriate balance is not currently known. In this review, we explore the major drivers of proline availability and consumption at a local and systemic level with a focus on cancer. Unraveling the main factors influencing proline metabolism in normal physiology and disease will shed light on new effective treatment strategies.
Collapse
Affiliation(s)
- Lisa A Vettore
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Rebecca L Westbrook
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Daniel A Tennant
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK.
| |
Collapse
|