1
|
Huang DQ, Wong VWS, Rinella ME, Boursier J, Lazarus JV, Yki-Järvinen H, Loomba R. Metabolic dysfunction-associated steatotic liver disease in adults. Nat Rev Dis Primers 2025; 11:14. [PMID: 40050362 DOI: 10.1038/s41572-025-00599-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/07/2025] [Indexed: 03/09/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the umbrella term that comprises metabolic dysfunction-associated steatotic liver, or isolated hepatic steatosis, through to metabolic dysfunction-associated steatohepatitis, the progressive necroinflammatory disease form that can progress to fibrosis, cirrhosis and hepatocellular carcinoma. MASLD is estimated to affect more than one-third of adults worldwide. MASLD is closely associated with insulin resistance, obesity, gut microbial dysbiosis and genetic risk factors. The obesity epidemic and the growing prevalence of type 2 diabetes mellitus greatly contribute to the increasing burden of MASLD. The treatment and prevention of major metabolic comorbidities such as type 2 diabetes mellitus and obesity will probably slow the growth of MASLD. In 2023, the field decided on a new nomenclature and agreed on a set of research and action priorities, and in 2024, the US FDA approved the first drug, resmetirom, for the treatment of non-cirrhotic metabolic dysfunction-associated steatohepatitis with moderate to advanced fibrosis. Reliable, validated biomarkers that can replace histology for patient selection and primary end points in MASH trials will greatly accelerate the drug development process. Additionally, noninvasive tests that can reliably determine treatment response or predict response to therapy are warranted. Sustained efforts are required to combat the burden of MASLD by tackling metabolic risk factors, improving risk stratification and linkage to care, and increasing access to therapeutic agents and non-pharmaceutical interventions.
Collapse
Affiliation(s)
- Daniel Q Huang
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore
| | - Vincent W S Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Mary E Rinella
- University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - Jerome Boursier
- Service d'Hépato-Gastroentérologie et Oncologie Digestive, Centre Hospitalier Universitaire d'Angers, Angers, France
- Laboratoire HIFIH, SFR ICAT 4208, Université d'Angers, Angers, France
| | - Jeffrey V Lazarus
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
- Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- City University of New York Graduate School of Public Health and Health Policy, New York, NY, USA
| | - Hannele Yki-Järvinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Rohit Loomba
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, San Diego, CA, USA.
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California at San Diego, San Diego, CA, USA.
| |
Collapse
|
2
|
Ratziu V, Scanlan TS, Bruinstroop E. Thyroid hormone receptor-β analogues for the treatment of metabolic dysfunction-associated steatohepatitis (MASH). J Hepatol 2025; 82:375-387. [PMID: 39428045 DOI: 10.1016/j.jhep.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/23/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
The association between suboptimal thyroid function ((sub)clinical hypothyroidism or low-normal thyroid function) and the metabolic syndrome and MASLD (metabolic dysfunction-associated steatotic liver disease) has been clearly established. Furthermore, in MASLD, intracellular thyroid hormone concentrations are low and the activation of the thyroid hormone receptor (THR) is reduced. Administration of thyroid hormone has been shown to reduce liver triglycerides by stimulating fatty acid disposal through lipophagy and beta-oxidation, and to lower LDL-cholesterol. As thyroid hormone exerts its effects in many different organs, including the heart and bone, several drug candidates have been developed as selective thyromimetics for the THR-β nuclear receptor with potent and liver-targeted activity. Importantly, these compounds have reduced affinity for the THR-α nuclear receptor and tissue distribution profiles that differ from endogenous thyroid hormones, thereby reducing unwanted cardiovascular side effects. The most advanced compound, resmetirom, is an oral drug that demonstrated, in a large phase III trial in patients with MASH (metabolic dysfunction-associated steatohepatitis), the ability to reduce liver fat, decrease aminotransferase levels and improve atherogenic dyslipidaemia with a good tolerability profile. This translated into histological improvement that led to accelerated approval of this drug for active fibrotic steatohepatitis, a milestone achievement as a first MASH drug.
Collapse
Affiliation(s)
- Vlad Ratziu
- Sorbonne Université, ICAN Institute for Cardiometabolism and Nutrition, INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Thomas S Scanlan
- Department of Chemical Physiology & Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Eveline Bruinstroop
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands.
| |
Collapse
|
3
|
El‐Kassas M, Mostafa H, Abdellatif W, Shoman S, Esmat G, Brahmania M, Liu H, Lee SS. Lubiprostone Reduces Fat Content on MRI-PDFF in Patients With MASLD: A 48-Week Randomised Controlled Trial. Aliment Pharmacol Ther 2025; 61:628-635. [PMID: 39744921 PMCID: PMC11754939 DOI: 10.1111/apt.18478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/01/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025]
Abstract
BACKGROUND AND AIMS The laxative lubiprostone has been shown to decrease intestinal permeability. We aimed to assess the safety and efficacy of lubiprostone administered for 48 weeks in patients with metabolic dysfunction-associated steatotic liver disease (MASLD). APPROACH AND RESULTS A randomised placebo-controlled trial was conducted in a specialised MASLD outpatient clinic at the National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt. The recruited patients had radiological evidence of MASLD along with other criteria for diagnosis. Eligible patients were randomly assigned to receive either placebo or lubiprostone 24 μg orally twice daily for 48 weeks. The liver fat content was quantified by magnetic resonance imaging estimated proton density fat fraction (MRI-PDFF). Between November 2020 and February 2023, 176 patients were screened, of whom 116 were eligible. Fifty-nine patients were randomised to receive placebo, while 57 patients were randomised to receive lubiprostone. Due mostly to patient dropout (i.e., loss to follow-up), complete data were available for 40 patients in each group. Compared with placebo group, 48-week lubiprostone treatment significantly reduced fat quantity (p = 0.04). Despite a significant reduction in body weight in the control group, no significant difference was found between both groups regarding fibrosis score by transient elastography or in serum ALT levels. One patient in the lubiprostone group developed severe diarrhoea requiring treatment stoppage. No other serious adverse events occurred. CONCLUSION Lubiprostone was well tolerated and reduced liver fat content as measured by MRI-PDFF in patients with MASLD over 48 weeks. Lubiprostone appears promising to treat MASLD and warrants more extensive studies to confirm such efficacy. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT05768334.
Collapse
Affiliation(s)
- Mohamed El‐Kassas
- Endemic Medicine Department, Faculty of MedicineHelwan UniversityCairoEgypt
- Liver Disease Research Center, College of MedicineKing Saud UniversityRiyadhSaudi Arabia
- Steatotic Liver Disease Study Foundation in Middle East and North Africa (SLMENA)CairoEgypt
| | - Hala Mostafa
- Endemic Medicine Department, Faculty of MedicineHelwan UniversityCairoEgypt
| | - Wessam Abdellatif
- Radiology DepartmentNational Hepatology & Tropical Medicine Research Institute (NHTMRI)CairoEgypt
| | - Sohier Shoman
- Gastroenterology and Hepatology DepartmentNational Hepatology & Tropical Medicine Research Institute (NHTMRI)CairoEgypt
| | - Gamal Esmat
- Hepatology and Endemic Medicine Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - Mayur Brahmania
- Liver UnitUniversity of Calgary Cumming School of MedicineCalgaryAlbertaCanada
| | - Hongqun Liu
- Liver UnitUniversity of Calgary Cumming School of MedicineCalgaryAlbertaCanada
| | - Samuel S. Lee
- Liver UnitUniversity of Calgary Cumming School of MedicineCalgaryAlbertaCanada
| |
Collapse
|
4
|
Stine JG, Bradley D, McCall-Hosenfeld J, Motz-Patel V, Tondt J, Batra S, Fitzgerald B, Garcia S, Hummer B, Kindrew C, Koppenhaver A, Mohr H, Smith N, Tressler H, VanKirk K, Krok K, Schreibman I, Stonesifer E, Clarke K. Multidisciplinary clinic model enhances liver and metabolic health outcomes in adults with MASH. Hepatol Commun 2025; 9:e0649. [PMID: 39899664 DOI: 10.1097/hc9.0000000000000649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 11/28/2024] [Indexed: 02/05/2025] Open
Affiliation(s)
- Jonathan G Stine
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Fatty Liver Program, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Liver Center, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Department of Public Health Sciences, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania, USA
- Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - David Bradley
- Fatty Liver Program, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Department of Medicine, Division of Endocrinology, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Jennifer McCall-Hosenfeld
- Fatty Liver Program, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Victoria Motz-Patel
- Fatty Liver Program, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Justin Tondt
- Fatty Liver Program, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Department of Family Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Sarah Batra
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | | | - Samantha Garcia
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Breianna Hummer
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Fatty Liver Program, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Courtney Kindrew
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Fatty Liver Program, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Autumn Koppenhaver
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Fatty Liver Program, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Hannah Mohr
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Nataliya Smith
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Fatty Liver Program, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Heather Tressler
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Fatty Liver Program, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Kyra VanKirk
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Karen Krok
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Fatty Liver Program, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Ian Schreibman
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Fatty Liver Program, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Elizabeth Stonesifer
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Fatty Liver Program, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Kofi Clarke
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| |
Collapse
|
5
|
Harrison SA, Browne SK, Suschak JJ, Tomah S, Gutierrez JA, Yang J, Roberts MS, Harris MS. Effect of pemvidutide, a GLP-1/glucagon dual receptor agonist, on MASLD: A randomized, double-blind, placebo-controlled study. J Hepatol 2025; 82:7-17. [PMID: 39002641 DOI: 10.1016/j.jhep.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND & AIMS This was a randomized, double-blind, placebo-controlled study to assess the effects of pemvidutide, a glucagon-like peptide-1 (GLP-1)/glucagon dual receptor agonist, on liver fat content (LFC) in individuals with metabolic dysfunction-associated steatotic liver disease (MASLD). METHODS Patients with a BMI ≥28.0 kg/m2 and LFC ≥10% by magnetic resonance imaging-proton density fat fraction were randomized 1:1:1:1 to pemvidutide at 1.2 mg, 1.8 mg, or 2.4 mg, or placebo administered subcutaneously once weekly for 12 weeks. Participants were stratified according to a diagnosis of type 2 diabetes mellitus. The primary efficacy endpoint was relative reduction (%) from baseline in LFC after 12 weeks of treatment. RESULTS Ninety-four patients were randomized and dosed. Median baseline BMI and LFC across the study population were 36.2 kg/m2 and 20.6%; 29% of patients had type 2 diabetes mellitus. At week 12, relative reductions in LFC from baseline were 46.6% (95% CI -63.7 to -29.6), 68.5% (95% CI -84.4 to -52.5), and 57.1% (95% CI -76.1 to -38.1) for the pemvidutide 1.2 mg, 1.8 mg, and 2.4 mg groups, respectively, vs. 4.4% (95% CI -20.2 to 11.3) for the placebo group (p <0.001 vs. placebo, all treatment groups), with 94.4% and 72.2% of patients achieving 30% and 50% reductions in LFC and 55.6% achieving normalization (≤5% LFC) at the 1.8 mg dose. Maximal responses for weight loss (-4.3%; p <0.001), alanine aminotransferase (-13.8 IU/L; p = 0.029), and corrected cT1 (-75.9 ms; p = 0.002) were all observed at the 1.8 mg dose. Pemvidutide was well-tolerated at all doses with no severe or serious adverse events. CONCLUSIONS In patients with MASLD, weekly pemvidutide treatment yielded significant reductions in LFC, markers of hepatic inflammation, and body weight compared to placebo. IMPACT AND IMPLICATIONS Metabolic dysfunction-associated steatotic liver disease, and its progressive form steatohepatitis, are strongly associated with overweight/obesity and it is believed that the excess liver fat associated with obesity is an important driver of these diseases. Glucagon-like peptide-1 receptor (GLP-1R) agonists elicit weight loss through centrally and peripherally mediated effects on appetite. Unlike GLP-1R agonists, glucagon receptor agonists act directly on the liver to stimulate fatty acid oxidation and inhibit lipogenesis, potentially providing a more potent mechanism for liver fat content reduction than weight loss alone. This study demonstrated the ability of once-weekly treatment with pemvidutide, a dual GLP-1R/glucagon receptor agonist, to significantly reduce liver fat content, hepatic inflammatory activity, and body weight, suggesting that pemvidutide may be an effective treatment for both metabolic dysfunction-associated steatohepatitis and obesity. CLINICAL TRIAL NUMBER NCT05006885.
Collapse
Affiliation(s)
- Stephen A Harrison
- Department of Hepatology, University of Oxford, Oxford, UK; Pinnacle Clinical Research, San Antonio, TX, USA
| | | | | | | | - Julio A Gutierrez
- Altimmune, Inc, Gaithersburg, MD, USA; Center for Organ Transplant, Scripps, La Jolla, Ca, USA
| | - Jay Yang
- Altimmune, Inc, Gaithersburg, MD, USA
| | | | | |
Collapse
|
6
|
Bollinger B, Cotter R, Deng Y, Ilagan-Ying Y, Gupta V. Presence of Mood and/or Anxiety Disorders Does Not Affect Success of Weight Management Therapies in Metabolic Dysfunction-Associated Steatotic Liver Disease. Dig Dis Sci 2025; 70:378-385. [PMID: 39604664 DOI: 10.1007/s10620-024-08724-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/27/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND AND AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD) and resultant steatohepatitis (MASH) have been linked to psychiatric comorbidities. The treatment of MASLD/MASH primarily relies upon weight loss, where achieving a 7% total body weight loss is recommended to improve steatohepatitis. We aimed to determine whether achieving a 7% total body weight loss (TBWL) in MASLD/MASH patients was significantly different in the presence of a mood and/or anxiety disorder in an interdisciplinary clinic that integrates weight management and hepatology care. METHODS We conducted a single center retrospective cohort study of MASLD/MASH patients segregated into those with an ICD-10 diagnosis of a mood and/or anxiety disorder to those without. The primary outcome was reaching a 7% TBWL at 12 months with univariable and multivariable logistic regression models used to identify treatments predicting a 7% TBWL. Secondary outcomes were noninvasive assessment of steatohepatitis improvement, including change in ALT and FIB-4 scores. RESULTS Of 567 patients with MASLD/MASH, 366 (64.6%) had a mood and/or anxiety disorder. The presence of psychiatric disease was not a significant predictor of weight loss or any secondary outcome measures at 12 months. Significant predictors of achieving 7% TBWL at 12 months among all patients with MASLD/MASH included semaglutide, phentermine-topiramate, and bariatric surgery. Significant predictors of achieving 7% TBWL at 12 months in patients with MASLD/MASH and a psychiatric comorbidity included semaglutide, topiramate, phentermine-topiramate, and bariatric surgery. Both groups experienced similar improvements in hepatic outcomes. CONCLUSIONS Our findings suggest that obesity management in patients with MASLD/MASH performs similarly in the presence of comorbid mood and/or anxiety disorders. Topiramate and phentermine may be particularly effective in this patient population, yet are underutilized in routine hepatology practice.
Collapse
Affiliation(s)
| | - Robert Cotter
- Yale University School of Medicine, New Haven, CT, USA
| | - Yanhong Deng
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Ysabel Ilagan-Ying
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar St., TAC S241, New Haven, CT, 06519, USA
| | - Vikas Gupta
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar St., TAC S241, New Haven, CT, 06519, USA.
| |
Collapse
|
7
|
Noureddin M, Charlton MR, Harrison SA, Bansal MB, Alkhouri N, Loomba R, Sanyal AJ, Rinella ME. Expert Panel Recommendations: Practical Clinical Applications for Initiating and Monitoring Resmetirom in Patients With MASH/NASH and Moderate to Noncirrhotic Advanced Fibrosis. Clin Gastroenterol Hepatol 2024; 22:2367-2377. [PMID: 39038768 DOI: 10.1016/j.cgh.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease affects 1 in 4 people in the United States and western Europe, with an important proportion developing metabolic dysfunction-associated steatohepatitis (MASH), the progressive subtype of metabolic dysfunction-associated steatotic liver disease. Cirrhosis caused by MASH is a leading indication for liver transplantation and the most common cause of hepatocellular carcinoma. Hitherto, there have been no specific pharmacotherapies for MASH. The recent conditional approval by the Food and Drug Administration of resmetirom for the treatment of moderate or advanced MASH presents a much-anticipated therapeutic option for patients with noncirrhotic advanced MASH. Specifically, the intended population for resmetirom are patients with MASH and fibrosis stages 2 or 3. The approval of resmetirom also presents important challenges, including how to noninvasively identify patients with fibrosis stages 2-3, and how to exclude patients with more advanced disease who should not be treated until further data emerge on the use of resmetirom in this population. Herein we consider the available literature with regard to identifying the intended population for treatment with resmetirom and in proposing criteria for stopping treatment.
Collapse
Affiliation(s)
- Mazen Noureddin
- Houston Methodist Hospital, Houston Research Institute, Houston, Texas
| | | | - Stephen A Harrison
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | | | | | - Arun J Sanyal
- Virginia Commonwealth University, Richmond, Virginia
| | - Mary E Rinella
- University of Chicago, Pritzker School of Medicine, Chicago, Illinois.
| |
Collapse
|
8
|
Chee NMZ, Sinnanaidu RP, Chan WK. Vitamin E improves serum markers and histology in adults with metabolic dysfunction-associated steatotic liver disease: Systematic review and meta-analysis. J Gastroenterol Hepatol 2024; 39:2545-2554. [PMID: 39150005 DOI: 10.1111/jgh.16723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/17/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND AND AIM Multiple clinical trials have been conducted to study the potential benefits of vitamin E for the treatment of metabolic dysfunction-associated steatotic liver disease (MASLD). Despite available evidence, vitamin E is not widely used. This study aimed to assess the effect of vitamin E on serum markers of liver inflammation, specifically serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, and histology, including resolution of metabolic dysfunction-associated steatohepatitis (MASH), in adult patients with MASLD. METHODS A systematic literature search on randomized controlled trials published in English was conducted using electronic databases. Standardized mean difference (SMD) and mean difference (MD) were used for continuous outcomes, while risk ratio (RR) was used for dichotomous outcomes, with corresponding 95% confidence interval (CI). RESULTS A total of eight studies were included in the qualitative synthesis while seven studies were included in the meta-analysis. Vitamin E significantly reduced serum ALT and AST levels with SMD of -0.82 (95% CI, -1.13 to -0.51) and -0.68 (95% CI, -0.94 to -0.41), respectively. Vitamin E significantly reduced steatosis, lobular inflammation, and hepatocyte ballooning with a MD of -0.60 (95% CI, -0.83 to -0.37), -0.34 (95% CI, -0.53 to -0.16), -0.32 (95% CI, -0.53 to -0.12), and increased MASH resolution with a RR of 1.9 (95%CI, 1.20 to 3.02). However, vitamin E did not reduce fibrosis, with a MD of -0.23 (95% CI, -0.51 to 0.05). CONCLUSION Vitamin E resulted in significant improvement in serum markers of liver inflammation and histology in patients with MASLD.
Collapse
Affiliation(s)
- Nicholas Ming-Zher Chee
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ram Prasad Sinnanaidu
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Wah-Kheong Chan
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Kim MN, Han JW, An J, Kim BK, Jin YJ, Kim SS, Lee M, Lee HA, Cho Y, Kim HY, Shin YR, Yu JH, Kim MY, Choi Y, Chon YE, Cho EJ, Lee EJ, Kim SG, Kim W, Jun DW, Kim SU. KASL clinical practice guidelines for noninvasive tests to assess liver fibrosis in chronic liver disease. Clin Mol Hepatol 2024; 30:S5-S105. [PMID: 39159947 PMCID: PMC11493350 DOI: 10.3350/cmh.2024.0506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024] Open
Affiliation(s)
- Mi Na Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Ji Won Han
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jihyun An
- Department of Gastroenterology and Hepatology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Beom Kyung Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Young-Joo Jin
- Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon, Korea
| | - Seung-seob Kim
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Minjong Lee
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Han Ah Lee
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Yuri Cho
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Korea
| | - Hee Yeon Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yu Rim Shin
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Hwan Yu
- Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon, Korea
| | - Moon Young Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - YoungRok Choi
- Department of Surgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Young Eun Chon
- Department of Internal Medicine, Institute of Gastroenterology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Eun Ju Cho
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Joo Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Gyune Kim
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Won Kim
- Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Dae Won Jun
- Department of Internal Medicine, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Korea
| | - Seung Up Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - on behalf of The Korean Association for the Study of the Liver (KASL)
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Gastroenterology and Hepatology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
- Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon, Korea
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Department of Surgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Institute of Gastroenterology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
- Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
10
|
Cuthbertson DJ, Keating SE, Pugh CJA, Owen PJ, Kemp GJ, Umpleby M, Geyer NG, Chinchilli VM, Stine JG. Exercise improves surrogate measures of liver histological response in metabolic dysfunction-associated steatotic liver disease. Liver Int 2024; 44:2368-2381. [PMID: 38847589 PMCID: PMC11365804 DOI: 10.1111/liv.15947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND AND AIMS Exercise is recommended for the management of metabolic dysfunction-associated steatotic liver disease (MASLD), yet effects on liver histology remain unknown, especially without significant weight loss. We aimed to examine changes in surrogate measures of liver histological response with exercise training. METHODS We conducted a post hoc pooled analysis of three randomised controlled trials (duration: 12-20 weeks) comparing aerobic exercise interventions with controls. The primary outcome measure was a ≥30% relative reduction in (MRI-measured) liver fat, as a surrogate measure of liver histological response (the threshold necessary for fibrosis improvement). Secondary outcome measures were changes in other biomarkers of liver fibrosis, anthropometry, body composition and aerobic fitness. RESULTS Eighty-eight adults (exercise: 54, control: 34; male: 67%) were included with mean (SD) age 51 (11) years and body mass index 33.3 (5.2) kg/m2. Following the intervention, exercise had ~5-fold (OR [95%CI]: 4.86 [1.72, 13.8], p = .002) greater odds of ≥30% relative reduction in MRI-measured liver fat compared with control. This paralleled the improvements in anthropometry (waist and hip circumference reduction), body composition (body fat, visceral and subcutaneous adipose tissue) and aerobic fitness (V̇O2peak, ventilatory threshold and exercise capacity). Importantly, these effects were independent of clinically significant body weight loss (<3% body weight). CONCLUSION Exercise training led to clinically meaningful improvements in surrogate serum- and imaging-based measures of liver histological change, without clinically meaningful body weight reduction. These data reinforce the weight-neutral benefit of exercise training and suggest that aerobic training may improve liver fibrosis in patients with MASLD.
Collapse
Affiliation(s)
- Daniel J Cuthbertson
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Shelley E Keating
- School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Christopher J A Pugh
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
- Centre for Health, Activity and Wellbeing Research, Cardiff Metropolitan University, Cardiff, UK
| | - Patrick J Owen
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Graham J Kemp
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Margot Umpleby
- Diabetes and Metabolic Medicine, University of Surrey, Guildford, UK
| | - Nathaniel G Geyer
- Department of Public Health Sciences, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Vernon M Chinchilli
- Department of Public Health Sciences, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Jonathan G Stine
- Department of Public Health Sciences, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Liver Center, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Fatty Liver Program, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| |
Collapse
|
11
|
Tacke F, Horn P, Wai-Sun Wong V, Ratziu V, Bugianesi E, Francque S, Zelber-Sagi S, Valenti L, Roden M, Schick F, Yki-Järvinen H, Gastaldelli A, Vettor R, Frühbeck G, Dicker D. EASL-EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J Hepatol 2024; 81:492-542. [PMID: 38851997 DOI: 10.1016/j.jhep.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 06/10/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously termed non-alcoholic fatty liver disease (NAFLD), is defined as steatotic liver disease (SLD) in the presence of one or more cardiometabolic risk factor(s) and the absence of harmful alcohol intake. The spectrum of MASLD includes steatosis, metabolic dysfunction-associated steatohepatitis (MASH, previously NASH), fibrosis, cirrhosis and MASH-related hepatocellular carcinoma (HCC). This joint EASL-EASD-EASO guideline provides an update on definitions, prevention, screening, diagnosis and treatment for MASLD. Case-finding strategies for MASLD with liver fibrosis, using non-invasive tests, should be applied in individuals with cardiometabolic risk factors, abnormal liver enzymes, and/or radiological signs of hepatic steatosis, particularly in the presence of type 2 diabetes (T2D) or obesity with additional metabolic risk factor(s). A stepwise approach using blood-based scores (such as FIB-4) and, sequentially, imaging techniques (such as transient elastography) is suitable to rule-out/in advanced fibrosis, which is predictive of liver-related outcomes. In adults with MASLD, lifestyle modification - including weight loss, dietary changes, physical exercise and discouraging alcohol consumption - as well as optimal management of comorbidities - including use of incretin-based therapies (e.g. semaglutide, tirzepatide) for T2D or obesity, if indicated - is advised. Bariatric surgery is also an option in individuals with MASLD and obesity. If locally approved and dependent on the label, adults with non-cirrhotic MASH and significant liver fibrosis (stage ≥2) should be considered for a MASH-targeted treatment with resmetirom, which demonstrated histological effectiveness on steatohepatitis and fibrosis with an acceptable safety and tolerability profile. No MASH-targeted pharmacotherapy can currently be recommended for the cirrhotic stage. Management of MASH-related cirrhosis includes adaptations of metabolic drugs, nutritional counselling, surveillance for portal hypertension and HCC, as well as liver transplantation in decompensated cirrhosis.
Collapse
|
12
|
Tincopa MA, Loomba R. Noninvasive Tests to Assess Fibrosis and Disease Severity in Metabolic Dysfunction-Associated Steatotic Liver Disease. Semin Liver Dis 2024; 44:287-299. [PMID: 38981691 DOI: 10.1055/s-0044-1788277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Risk of disease progression and clinical outcomes in metabolic dysfunction-associated steatotic liver disease (MASLD) is associated with fibrosis stage and presence of "at-risk metabolic dysfunction-associated steatohepatitis (MASH)." Although liver biopsy is considered the gold standard to diagnose MASH and stage of fibrosis, biopsy is infrequently performed in clinical practice and has associated sampling error, lack of interrater reliability, and risk for procedural complications. Noninvasive tests (NITs) are routinely used in clinical practice for risk stratification of patients with MASLD. Several NITs are being developed for detecting "at-risk MASH" and cirrhosis. Clinical care guidelines apply NITs to identify patients needing subspecialty referral. With recently approved Food and Drug Administration treatment for MASH and additional emerging pharmacotherapy, NITs will identify patients who will most benefit from treatment, monitor treatment response, and assess risk for long-term clinical outcomes. In this review, we examine the performance of NITs to detect "at-risk MASH," fibrosis stage, response to treatment, and risk of clinical outcomes in MASLD and MASH.
Collapse
Affiliation(s)
- Monica A Tincopa
- Division of Gastroenterology and Hepatology, MASLD Research Center, University of California at San Diego, La Jolla, California
| | - Rohit Loomba
- Division of Gastroenterology and Hepatology, MASLD Research Center, University of California at San Diego, La Jolla, California
- School of Public Health, University of California at San Diego, La Jolla, California
| |
Collapse
|
13
|
Qin D, Pan P, Lyu B, Chen W, Gao Y. Lupeol improves bile acid metabolism and metabolic dysfunction-associated steatotic liver disease in mice via FXR signaling pathway and gut-liver axis. Biomed Pharmacother 2024; 177:116942. [PMID: 38889641 DOI: 10.1016/j.biopha.2024.116942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has a multifactorial and complex pathogenesis. Notably, the disorder of Bile acid (BA) metabolism and lipid metabolism-induced lipotoxicity are the main risk factors of MASLD. Lupeol, traditional regional medicine from Xinjiang, has a long history of use for its anti-inflammatory, anti-tumor, and immune-modulating properties. Recent research suggests its potential as a therapeutic option for MASLD due to its proposed binding capacity to the nuclear BA receptor, Farnesoid X receptor (FXR), hence could represent a therapeutic option for MASLD. In this study, a natural triterpenoid drug lupeol improved BA metabolism and MASLD in mice through the FXR signaling pathway and the gut-liver axis. Furthermore, lupeol effectively restored gut healthiness and improved intestinal immunity, barrier integrity, and inflammation, as indicated by the reconstructed gut flora. Compared with fenofibrate (Feno), lupeol treatment significantly reduced weight gain, fat deposition, and liver injury, decreased serum total cholesterol (TC) and triglyceride (TG) levels, and alleviated hepatic steatosis and liver inflammation. BA analysis showed that lupeol treatment accelerated BA efflux and decreased uptake of BA by increasing hepatic FXR and bile salt export pump (BSEP) expression. Gut microbiota alterations could be related to enhanced fecal BA excretion in lupeol-treated mice. Therefore, consumption of lupeol may prevent HFD-induced MASLD and BA accumulation, possibly via the FXR signaling pathway and regulating the gut microbiota.
Collapse
Affiliation(s)
- Dongmei Qin
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003, China.
| | - Peiyan Pan
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003, China.
| | - Bo Lyu
- The First Affiliated Hospital of School of Medicine, Shihezi University, Shihezi 832000, China.
| | - Weijun Chen
- Xinjiang Second Medical College, Karamay 834000, China.
| | - Yuefeng Gao
- College of Applied Engineering, Henan University of Science and Technology, Sanmenxia 472000, China.
| |
Collapse
|
14
|
Kaya S, Boydak M, Aydin M, Aras İ. Association between serum cytokeratin 18 and N-terminal procollagen III propeptide in patients with biopsy-proven nonalcoholic fatty liver disease. Biotech Histochem 2024; 99:313-319. [PMID: 39092622 DOI: 10.1080/10520295.2024.2385011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Liver biopsy is still the gold standard in the staging of nonalcoholic fatty liver disease (NAFLD), which is the most common chronic liver disease worldwide. However, being an invasive method, liver biopsy has limited use in clinical practice. The aim of this study was to determine the relationship between serum levels of cytokeratin 18 (CK-M30) and N-terminal procollagen III propeptide (PIIINP) in patients with biopsy-proven NAFLD. The study was carried out on volunteers, including both healthy individuals and patients pre-diagnosed with NAFLD. The liver biopsies were re-assessed by applying the Steatosis, Activity, Fibrosis/Fatty Liver Inhibition of Progression (SAF/FLIP) algorithm. At the end of the study, frozen serum samples (-80 °C) were analyzed using commercial kits. CK18-M30 and PIIINP levels significantly differed in all study groups. There was no significant correlation between serum levels of CK18-M30 and PIIINP in healthy individuals but there was a significant positive correlation between CK18-M30 and PIIINP levels in NAFLD (NAFL-nonalcoholic steatohepatitis (NASH)) groups. CK18-M30 was better than PIIINP at distinguishing between NAFL and NASH. The results obtained for biopsy-proven NAFLD demonstrated that both PIIINP and CK18-M30 were partly associated with histological parameters and could aid in distinguishing between NASH and NAFL.
Collapse
Affiliation(s)
- Sercan Kaya
- Health Services Vocational School, Medical Laboratory Program, Batman University, Batman, Turkey
| | - Murat Boydak
- Faculty of Veterinary Medicine Faculty, Department of Histology and Embryology, Selçuk University, Konya, Turkey
| | - Mesut Aydin
- School of Medicine, Department of Gastroenterology, Van Yuzuncu Yil University, Van, Turkey
| | - İbrahim Aras
- School of Medicine, Department of Pathology, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
15
|
Loomba R, Amangurbanova M, Bettencourt R, Madamba E, Siddiqi H, Richards L, Behling C, Sirlin CB, Gottwald MD, Feng S, Margalit M, Huang DQ. MASH Resolution Index: development and validation of a non-invasive score to detect histological resolution of MASH. Gut 2024; 73:1343-1349. [PMID: 38418210 DOI: 10.1136/gutjnl-2023-331401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/25/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND Dynamic changes in non-invasive tests, such as changes in alanine aminotransferase (ALT) and MRI proton-density-fat-fraction (MRI-PDFF), may help to detect metabolic dysfunction-associated steatohepatitis (MASH) resolution, but a combination of non-invasive tests may be more accurate than either alone. We developed a novel non-invasive score, the MASH Resolution Index, to detect the histological resolution of MASH. METHODS This study included a derivation cohort of 95 well-characterised adult participants (67% female) with biopsy-confirmed MASH who underwent contemporaneous laboratory testing, MRI-PDFF and liver biopsy at two time points. The primary objective was to develop a non-invasive score to detect MASH resolution with no worsening of fibrosis. The most predictive logistic regression model was selected based on the highest area under the receiver operating curve (AUC), and the lowest Akaike information criterion and Bayesian information criterion. The model was then externally validated in a distinct cohort of 163 participants with MASH from a clinical trial. RESULTS The median (IQR) age and body mass index were 55 (45-62) years and 32.0 (30-37) kg/m2, respectively, in the derivation cohort. The most accurate model (MASH Resolution Index) included MRI-PDFF, ALT and aspartate aminotransferase. The index had an AUC of 0.81 (95% CI 0.69 to 0.93) for detecting MASH resolution in the derivation cohort. The score calibrated well and performed robustly in a distinct external validation cohort (AUC 0.83, 95% CI 0.76 to 0.91), and outperformed changes in ALT and MRI-PDFF. CONCLUSION The MASH Resolution Index may be a useful score to non-invasively identify MASH resolution.
Collapse
Affiliation(s)
- Rohit Loomba
- MASLD Research Center, University of California San Diego, La Jolla, California, USA
- Division of Epidemiology, University of California, San Diego, California, USA
| | | | - Ricki Bettencourt
- NAFLD Research Center, University of California, La Jolla, California, USA
| | - Egbert Madamba
- NAFLD Research Center, University of California, La Jolla, California, USA
| | - Harris Siddiqi
- NAFLD Research Center, University of California, La Jolla, California, USA
| | - Lisa Richards
- NAFLD Research Center, University of California, La Jolla, California, USA
| | - Cynthia Behling
- Department of Pathology, University of California, La Jolla, California, USA
| | - Claude B Sirlin
- Department of Radiology, University of California, La Jolla, California, USA
| | | | | | | | - Daniel Q Huang
- MASLD Research Center, University of California San Diego, La Jolla, California, USA
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Gastroenterology and Hepatology, National University Hospital, Singapore
| |
Collapse
|
16
|
EASL-EASD-EASO Clinical Practice Guidelines on the Management of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Obes Facts 2024; 17:374-444. [PMID: 38852583 PMCID: PMC11299976 DOI: 10.1159/000539371] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously termed non-alcoholic fatty liver disease (NAFLD), is defined as steatotic liver disease (SLD) in the presence of one or more cardiometabolic risk factor(s) and the absence of harmful alcohol intake. The spectrum of MASLD includes steatosis, metabolic dysfunction-associated steatohepatitis (MASH, previously NASH), fibrosis, cirrhosis and MASH-related hepatocellular carcinoma (HCC). This joint EASL-EASD-EASO guideline provides an update on definitions, prevention, screening, diagnosis and treatment for MASLD. Case-finding strategies for MASLD with liver fibrosis, using non-invasive tests, should be applied in individuals with cardiometabolic risk factors, abnormal liver enzymes, and/or radiological signs of hepatic steatosis, particularly in the presence of type 2 diabetes (T2D) or obesity with additional metabolic risk factor(s). A stepwise approach using blood-based scores (such as FIB-4) and, sequentially, imaging techniques (such as transient elastography) is suitable to rule-out/in advanced fibrosis, which is predictive of liver-related outcomes. In adults with MASLD, lifestyle modification - including weight loss, dietary changes, physical exercise and discouraging alcohol consumption - as well as optimal management of comorbidities - including use of incretin-based therapies (e.g. semaglutide, tirzepatide) for T2D or obesity, if indicated - is advised. Bariatric surgery is also an option in individuals with MASLD and obesity. If locally approved and dependent on the label, adults with non-cirrhotic MASH and significant liver fibrosis (stage ≥2) should be considered for a MASH-targeted treatment with resmetirom, which demonstrated histological effectiveness on steatohepatitis and fibrosis with an acceptable safety and tolerability profile. No MASH-targeted pharmacotherapy can currently be recommended for the cirrhotic stage. Management of MASH-related cirrhosis includes adaptations of metabolic drugs, nutritional counselling, surveillance for portal hypertension and HCC, as well as liver transplantation in decompensated cirrhosis.
Collapse
|
17
|
Noureddin N, Copur-Dahi N, Loomba R. Monitoring disease progression in metabolic dysfunction-associated steatotic liver disease. Aliment Pharmacol Ther 2024; 59 Suppl 1:S41-S51. [PMID: 38813822 PMCID: PMC11141723 DOI: 10.1111/apt.17752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 05/31/2024]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common cause of chronic liver disease. Its prevalence is increasing with the epidemic of obesity and metabolic syndrome. MASLD progression into metabolic dysfunction-associated steatohepatitis (MASH) and advanced fibrosis may lead to decompensated cirrhosis and development of liver-related events, hepatocellular carcinoma and death. Monitoring disease progression is critical in decreasing morbidity, mortality, need for transplant and economic burden. Assessing for treatment response once FDA-approved medications are available is still an unmet clinical need. AIMS To explore the most up-to-date literature on testing used for monitoring disease progression and treatment response METHODS: We searched PubMed from inception to 15 August 2023, using the following MeSH terms: 'MASLD', 'Metabolic dysfunction-associated steatotic liver disease', 'MASH', 'metabolic dysfunction-associated steatohepatitis', 'Non-Alcoholic Fatty Liver Disease', 'NAFLD', 'non-alcoholic steatohepatitis', 'NASH', 'Biomarkers', 'clinical trial'. Articles were also identified through searches of the authors' files. The final reference list was generated based on originality and relevance to this review's broad scope, considering only papers published in English. RESULTS We have cited 101 references in this review detailing methods to monitor MASLD disease progression and treatment response. CONCLUSION Various biomarkers can be used in different care settings to monitor disease progression. Further research is needed to validate noninvasive tests more effectively.
Collapse
Affiliation(s)
- Nabil Noureddin
- MASLD Research Center, University of California at San Diego, La Jolla, CA, USA
- Division of Gastroenterology & Hepatology, University of California at San Diego, La Jolla, CA, USA
| | - Nedret Copur-Dahi
- Division of Gastroenterology & Hepatology, University of California at San Diego, La Jolla, CA, USA
| | - Rohit Loomba
- MASLD Research Center, University of California at San Diego, La Jolla, CA, USA
- Division of Gastroenterology & Hepatology, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
18
|
Tincopa MA, Anstee QM, Loomba R. New and emerging treatments for metabolic dysfunction-associated steatohepatitis. Cell Metab 2024; 36:912-926. [PMID: 38608696 DOI: 10.1016/j.cmet.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a leading etiology of chronic liver disease worldwide, with increasing incidence and prevalence in the setting of the obesity epidemic. MASH is also a leading indication for liver transplantation, given its associated risk of progression to end-stage liver disease. A key challenge in managing MASH is the lack of approved pharmacotherapy. In its absence, lifestyle interventions with a focus on healthy nutrition and regular physical activity have been the cornerstone of therapy. Real-world efficacy and sustainability of lifestyle interventions are low, however. Pharmacotherapy development for MASH is emerging with promising data from several agents with different mechanisms of action (MOAs) in phase 3 clinical trials. In this review, we highlight ongoing challenges and potential solutions in drug development for MASH and provide an overview of available data from emerging therapies across multiple MOAs.
Collapse
Affiliation(s)
- Monica A Tincopa
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California, San Diego, La Jolla, CA 92103, USA
| | - Quentin M Anstee
- Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Newcastle NIHR Biomedical Research Center, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| | - Rohit Loomba
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California, San Diego, La Jolla, CA 92103, USA; School of Public Health, University of California, San Diego, La Jolla, CA 92103, USA.
| |
Collapse
|
19
|
Yamada-Shimizu M, Tamaki N, Kurosaki M, Uchihara N, Suzuki K, Tanaka Y, Miyamoto H, Ishido S, Nobusawa T, Matsumoto H, Keitoku T, Higuchi M, Takaura K, Tanaka S, Maeyashiki C, Yasui Y, Takahashi Y, Tsuchiya K, Nakanishi H, Izumi N. A Comparison of Alanine Aminotransferase Normalization between Pemafibrate and Bezafibrate in Patients with Nonalcoholic Fatty Liver Disease. Intern Med 2024; 63:1185-1190. [PMID: 37779070 PMCID: PMC11116030 DOI: 10.2169/internalmedicine.2248-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/15/2023] [Indexed: 10/03/2023] Open
Abstract
Objective Pemafibrate is a recently developed selective peroxisome proliferator-activated receptor alpha modulator that can improve alanine aminotransferase (ALT) levels in patients with nonalcoholic fatty liver disease (NAFLD). However, the effectiveness of ALT normalization with pemafibrate and bezafibrate, a traditional fibrate, has not been compared. Methods In this retrospective study, we compared the effects of pemafibrate and bezafibrate on ALT normalization in patients with NAFLD. The primary endpoint was the ALT normalization rate at 12 months after administration. Patients Twenty and 14 patients with NAFLD receiving pemafibrate and bezafibrate, respectively, were included in this retrospective analysis. All patients had elevated ALT levels and dyslipidemia at entry. Results The ALT normalization rates at 3, 6, and 12 months were 40%, 55%, and 60% for pemafibrate and 14.3%, 28.6%, and 14.3% for bezafibrate, respectively. The ALT normalization rate at 12 months was significantly higher in patients treated with pemafibrate than in those treated with bezafibrate (p=0.01). Pemafibrate, when compared with bezafibrate, was shown to be a significant factor for ALT normalization in a multivariable analysis with an adjusted odds ratio (95% confidence interval) of 13.8 (1.6-115, p=0.01). Conclusion Pemafibrate is effective in ALT normalization in patients with NAFLD and may be used as a treatment for NAFLD.
Collapse
Affiliation(s)
| | - Nobuharu Tamaki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| | - Masayuki Kurosaki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| | - Naoki Uchihara
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| | - Keito Suzuki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| | - Yuki Tanaka
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| | - Haruka Miyamoto
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| | - Shun Ishido
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| | - Tsubasa Nobusawa
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| | - Hiroaki Matsumoto
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| | - Taisei Keitoku
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| | - Mayu Higuchi
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| | - Kenta Takaura
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| | - Shohei Tanaka
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| | - Chiaki Maeyashiki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| | - Yutaka Yasui
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| | - Yuka Takahashi
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| | - Kaoru Tsuchiya
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| | - Hiroyuki Nakanishi
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| | - Namiki Izumi
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| |
Collapse
|
20
|
Jirapinyo P, Jaroenlapnopparat A, Zucker SD, Thompson CC. Combination Therapy of Endoscopic Gastric Remodeling with GLP-1RA for the Treatment of MASLD. Obes Surg 2024; 34:1471-1478. [PMID: 38512644 DOI: 10.1007/s11695-024-07178-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
PURPOSE The mainstay of treatment for metabolic dysfunction-associated steatotic liver disease (MASLD) is weight loss. Endoscopic gastric remodeling (EGR) and glucagon-like peptide-1 receptor agonist (GLP-1RA) are effective weight loss therapies. This study aims to assess the effect of combining EGR with GLP-1RA on liver-related outcomes and weight profile. MATERIALS AND METHODS This is a retrospective study of a prospectively collected registry of patients with MASLD and compensated advanced chronic liver disease (cACLD) who underwent EGR. Patients were categorized as (1) monotherapy: EGR alone and (2) combination therapy: GLP-1RA prescribed within 6 months prior to or after EGR. Outcomes included changes in noninvasive tests of hepatic fibrosis, weight profile, and insulin resistance status at 12 months. RESULTS Thirty patients (body mass index 40.7 ± 9.3 kg/m2) were included. Of these, 12 patients (40%) underwent EGR monotherapy, and 18 patients (60%) underwent EGR + GLP-1RA combination therapy. Combination therapy group experienced greater improvements in fibrosis compared to monotherapy group (alanine aminotransferase: reduction by 55 ± 23% vs 29 ± 22% (p = 0.008), NAFLD fibrosis score: reduction by 181 ± 182% vs 30 ± 83% (p = 0.04), liver stiffness measurement on transient elastography: reduction by 54 ± 12% vs 14 ± 45% (p = 0.05)). There were greater reductions in hemoglobin A1c and homeostatic model assessment for insulin resistance in combination therapy compared to monotherapy (p < 0.05). At 12 months, the combination therapy group experienced 18.2 ± 6.6% TWL, while monotherapy group experienced 9.6 ± 3.3% TWL (p = 0.004). CONCLUSIONS In patients with MASLD and cACLD, combination of EGR with GLP-1RA is associated with greater improvements in hepatic fibrosis, weight profile, and insulin resistance compared to EGR alone.
Collapse
Affiliation(s)
- Pichamol Jirapinyo
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, 75 Francis St., Boston, MA, 02115, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| | - Aunchalee Jaroenlapnopparat
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, 75 Francis St., Boston, MA, 02115, USA
- Department of Medicine, Mount Auburn Hospital, 330 Mt Auburn St, Cambridge, MA, 02138, USA
| | - Stephen D Zucker
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, 75 Francis St., Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Christopher C Thompson
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, 75 Francis St., Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
21
|
Ratiner K, Ciocan D, Abdeen SK, Elinav E. Utilization of the microbiome in personalized medicine. Nat Rev Microbiol 2024; 22:291-308. [PMID: 38110694 DOI: 10.1038/s41579-023-00998-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2023] [Indexed: 12/20/2023]
Abstract
Inter-individual human variability, driven by various genetic and environmental factors, complicates the ability to develop effective population-based early disease detection, treatment and prognostic assessment. The microbiome, consisting of diverse microorganism communities including viruses, bacteria, fungi and eukaryotes colonizing human body surfaces, has recently been identified as a contributor to inter-individual variation, through its person-specific signatures. As such, the microbiome may modulate disease manifestations, even among individuals with similar genetic disease susceptibility risks. Information stored within microbiomes may therefore enable early detection and prognostic assessment of disease in at-risk populations, whereas microbiome modulation may constitute an effective and safe treatment tailored to the individual. In this Review, we explore recent advances in the application of microbiome data in precision medicine across a growing number of human diseases. We also discuss the challenges, limitations and prospects of analysing microbiome data for personalized patient care.
Collapse
Affiliation(s)
- Karina Ratiner
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Dragos Ciocan
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Suhaib K Abdeen
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
| | - Eran Elinav
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
- Division of Cancer-Microbiome Research, DKFZ, Heidelberg, Germany.
| |
Collapse
|
22
|
Armandi A, Bugianesi E. Dietary and pharmacological treatment in patients with metabolic-dysfunction associated steatotic liver disease. Eur J Intern Med 2024; 122:20-27. [PMID: 38262842 DOI: 10.1016/j.ejim.2024.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/30/2023] [Accepted: 01/07/2024] [Indexed: 01/25/2024]
Abstract
Metabolic-dysfunction Associated Steatotic Liver Disease (MASLD) is a disease spectrum encompassing liver injury with progressive severity, tightly connected to the metabolic syndrome. Management of MASLD mostly relies on lifestyle change aiming at improving metabolic homeostasis and insulin resistance. A Mediterranean-like dietary pattern and individualized lifestyle interventions are the cornerstone of MASLD treatment. A careful evaluation of alcohol intake and active treatment of all metabolic co-morbidities are recommended. In the MASLD spectrum, the population with liver inflammation and enhanced fibrogenesis (MASH - Metabolic-dysfunction associated steatohepatitis) can progress to advanced liver disease and has been addressed as "at-risk MASH", eligible to pharmacological treatment according to FDA and EMA. Currently there is a robust therapeutic pipeline across a variety of new targets to resolve MASH or reverse fibrosis, or both. Some of these therapies have beneficial effects that extend beyond the liver, such as effects on glycaemic control, lipid profile and weight loss. For "at-risk" MASH, reversal of fibrosis by one stage or resolution of MASH with no worsening in fibrosis as a surrogate end-point will need to be accompanied by overall survival benefits. In this review, we summarize the current evidence on lifestyle interventions in MASLD as well as pharmacological approaches for fibrosing MASH that have progressed to phase II and phase III clinical trials.
Collapse
Affiliation(s)
- Angelo Armandi
- Department of Medical Sciences, Division of Gastroenterology, University of Turin, Italy.
| | - Elisabetta Bugianesi
- Department of Medical Sciences, Division of Gastroenterology, University of Turin, Italy
| |
Collapse
|
23
|
Soto-Catalán M, Opazo-Ríos L, Quiceno H, Lázaro I, Moreno JA, Gómez-Guerrero C, Egido J, Mas-Fontao S. Semaglutide Improves Liver Steatosis and De Novo Lipogenesis Markers in Obese and Type-2-Diabetic Mice with Metabolic-Dysfunction-Associated Steatotic Liver Disease. Int J Mol Sci 2024; 25:2961. [PMID: 38474208 DOI: 10.3390/ijms25052961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Metabolic-dysfunction-associated steatotic liver disease (MASLD) is a prevalent clinical condition associated with elevated morbidity and mortality rates. Patients with MASLD treated with semaglutide, a glucagon-like peptide-1 receptor agonist, demonstrate improvement in terms of liver damage. However, the mechanisms underlaying this beneficial effect are not yet fully elucidated. We investigated the efficacy of semaglutide in halting MASLD progression using a genetic mouse model of diabesity. Leptin-receptor-deficient mice with obesity and diabetes (BKS db/db) were either untreated or administered with semaglutide for 11 weeks. Changes in food and water intake, body weight and glycemia were monitored throughout the study. Body fat composition was assessed by dual-energy X-ray absorptiometry. Upon sacrifice, serum biochemical parameters, liver morphology, lipidomic profile and liver-lipid-related pathways were evaluated. The semaglutide-treated mice exhibited lower levels of glycemia, body weight, serum markers of liver dysfunction and total and percentage of fat mass compared to untreated db/db mice without a significant reduction in food intake. Histologically, semaglutide reduced hepatic steatosis, hepatocellular ballooning and intrahepatic triglycerides. Furthermore, the treatment ameliorated the hepatic expression of de novo lipogenesis markers and modified lipid composition by increasing the amount of polyunsaturated fatty acids. The administration of semaglutide to leptin-receptor-deficient, hyperphagic and diabetic mice resulted in the amelioration of MASLD, likely independently of daily caloric intake, suggesting a direct effect of semaglutide on the liver through modulation of the lipid profile.
Collapse
Affiliation(s)
- Manuel Soto-Catalán
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Spanish Biomedical Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
| | - Lucas Opazo-Ríos
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Spanish Biomedical Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Facultad de Ciencias de la Salud, Universidad de Las Américas, Concepción-Talcahuano 4301099, Chile
| | - Hernán Quiceno
- Department of Pathology, Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Iolanda Lázaro
- Cardiovascular Risk and Nutrition Research Group, Epidemiology and Public Health Program, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Juan Antonio Moreno
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 140471 Cordoba, Spain
- Maimónides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Carmen Gómez-Guerrero
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Spanish Biomedical Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Spanish Biomedical Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
| | - Sebastian Mas-Fontao
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Spanish Biomedical Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
- Faculty of Medicine and Biomedicine, Universidad Alfonso X el Sabio (UAX), 28691 Madrid, Spain
| |
Collapse
|
24
|
Urias E, Tedesco NR, Oliveri A, Raut C, Speliotes EK, Chen VL. PNPLA3 Risk Allele Association With ALT Response to Semaglutide Treatment. Gastroenterology 2024; 166:515-517.e2. [PMID: 37972824 PMCID: PMC10922261 DOI: 10.1053/j.gastro.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Affiliation(s)
- Esteban Urias
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Nicholas R Tedesco
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Antonino Oliveri
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Chinmay Raut
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Elizabeth K Speliotes
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Vincent L Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
25
|
Harris SJ, Smith N, Hummer B, Schreibman IR, Faust AJ, Geyer NR, Chinchilli VM, Sciamanna C, Loomba R, Stine JG. Exercise training improves serum biomarkers of liver fibroinflammation in patients with metabolic dysfunction-associated steatohepatitis. Liver Int 2024; 44:532-540. [PMID: 38014619 PMCID: PMC10844956 DOI: 10.1111/liv.15769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/04/2023] [Accepted: 10/08/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND AND AIMS Exercise training is recommended for all patients with metabolic dysfunction-associated steatotic liver disease and may reverse liver fibrosis. Whether exercise training improves liver fibrosis without body weight loss remains controversial. We further investigated this relationship using serum biomarkers of liver fibroinflammation in a post hoc analysis of an exercise trial where patients did not lose significant body weight. METHODS In the NASHFit trial, patients with metabolic dysfunction-associated steatohepatitis were randomized to receive either moderate-intensity aerobic exercise training or standard clinical care for 20 weeks. Mediterranean-informed dietary counselling was provided to each group. Change in serum biomarkers was measured and compared between the two groups. RESULTS Exercise training led to improvement in serum biomarkers of liver fibroinflammation, including (1) ≥17 IU/L reduction in alanine aminotransferase (ALT) in 53% of individuals in the exercise training group compared to 13% in the standard clinical care group (p < 0.001; mean reduction 24% vs. 10% respectively) and (2) improvement in CK18 (-61 vs. +71 ng/mL, p = 0.040). ALT improvement ≥17 IU/L was correlated with ≥30% relative reduction in magnetic resonance imaging-measured liver fat and PNPLA3 genotype. CONCLUSION Exercise training improves multiple serum biomarkers of liver fibroinflammation at clinically significant thresholds of response without body weight loss. This study provides further evidence that exercise training should be viewed as a weight-neutral intervention for which response to intervention can be readily monitored with widely available non-invasive biomarkers that can be applied at the population level.
Collapse
Affiliation(s)
- Sara J. Harris
- College of Medicine, The Pennsylvania State University,
Hershey PA
| | - Nataliya Smith
- Division of Gastroenterology and Hepatology, Department of
Medicine, Penn State Health- Milton S. Hershey Medical Center, Hershey PA
- Fatty Liver Program, Penn State Health- Milton S. Hershey
Medical Center, Hershey PA
| | - Breianna Hummer
- Division of Gastroenterology and Hepatology, Department of
Medicine, Penn State Health- Milton S. Hershey Medical Center, Hershey PA
- Fatty Liver Program, Penn State Health- Milton S. Hershey
Medical Center, Hershey PA
| | - Ian R. Schreibman
- Division of Gastroenterology and Hepatology, Department of
Medicine, Penn State Health- Milton S. Hershey Medical Center, Hershey PA
- Fatty Liver Program, Penn State Health- Milton S. Hershey
Medical Center, Hershey PA
- Liver Center, Penn State Health- Milton S. Hershey Medical
Center, Hershey PA
| | - Alison J. Faust
- Division of Gastroenterology and Hepatology, Department of
Medicine, Penn State Health- Milton S. Hershey Medical Center, Hershey PA
- Fatty Liver Program, Penn State Health- Milton S. Hershey
Medical Center, Hershey PA
- Liver Center, Penn State Health- Milton S. Hershey Medical
Center, Hershey PA
| | - Nathaniel R. Geyer
- Department of Public Health Sciences, The Pennsylvania
State University- College of Medicine, Hershey PA
| | - Vernon M. Chinchilli
- Department of Public Health Sciences, The Pennsylvania
State University- College of Medicine, Hershey PA
| | - Chris Sciamanna
- College of Medicine, The Pennsylvania State University,
Hershey PA
| | - Rohit Loomba
- Division of Gastroenterology and Hepatology, Department of
Medicine, University of California San Diego, San Diego CA
- NAFLD Research Center, University of California San Diego,
San Diego CA
| | - Jonathan G. Stine
- Division of Gastroenterology and Hepatology, Department of
Medicine, Penn State Health- Milton S. Hershey Medical Center, Hershey PA
- Fatty Liver Program, Penn State Health- Milton S. Hershey
Medical Center, Hershey PA
- Liver Center, Penn State Health- Milton S. Hershey Medical
Center, Hershey PA
- Department of Public Health Sciences, The Pennsylvania
State University- College of Medicine, Hershey PA
- Cancer Institute, Penn State Health- Milton S. Hershey
Medical Center, Hershey PA
| |
Collapse
|
26
|
Jirapinyo P, Thompson CC, Garcia-Tsao G, Zucker SD, Ryou M. The effect of endoscopic gastric plication on portosystemic pressure gradient in patients with nonalcoholic fatty liver disease and compensated advanced chronic liver disease. Endoscopy 2024; 56:56-62. [PMID: 37532114 DOI: 10.1055/a-2146-8857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
BACKGROUND The goals of therapy for patients with nonalcoholic fatty liver disease and compensated advanced chronic liver disease include weight loss and reduction of the portosystemic pressure gradient (PPG) to decrease the risk of hepatic decompensation. Endoscopic gastric plication (EGP) is an effective endoscopic weight loss procedure. This study aimed to assess the effect of EGP on PPG. METHODS In this prospective pilot study, patients with nonalcoholic fatty liver disease and compensated advanced chronic liver disease underwent endoscopic ultrasound-guided PPG measurement prior to and at 6 months following EGP. Primary outcomes were the change in PPG and proportion of patients experiencing ≥ 20 % reduction in PPG at 6 months. Secondary outcomes included percent total weight loss (TWL) and changes in noninvasive tests of fibrosis. RESULTS 20 patients were included. Baseline median body mass index and liver stiffness measurement were 40.2 kg/m2 (range 30.1-56.7) and 14.7 kPa (range 8.2-36), respectively. At 6 months, median PPG decreased from 5.4 mmHg (range 0.7-19.6) to 1.8 mmHg (range 0.4-17.6) (P = 0.002), with 79 % (11/14) experiencing ≥ 20 % reduction. Patients experienced 12.5 % (6.5 %-26.1 %) TWL (P < 0.001) at 6 months, with 89 % (17/19) achieving ≥ 7 % and 68 % (13/19) achieving ≥ 10 % TWL. There were significant improvements in noninvasive tests of fibrosis. CONCLUSION EGP appeared to be effective at reducing PPG in patients with nonalcoholic fatty liver disease and compensated advanced chronic liver disease.
Collapse
Affiliation(s)
- Pichamol Jirapinyo
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Christopher C Thompson
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Guadalupe Garcia-Tsao
- Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, United States
- Section of Digestive Diseases, VA-CT Healthcare System, West Haven, Connecticut, United States
| | - Stephen D Zucker
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Marvin Ryou
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
27
|
Kim SH, Kwo PY. Pharmacologic treatment of NAFLD/NASH and their related comorbidities. METABOLIC STEATOTIC LIVER DISEASE 2024:197-220. [DOI: 10.1016/b978-0-323-99649-5.00013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
28
|
Keating SE, Sabag A, Hallsworth K, Hickman IJ, Macdonald GA, Stine JG, George J, Johnson NA. Exercise in the Management of Metabolic-Associated Fatty Liver Disease (MAFLD) in Adults: A Position Statement from Exercise and Sport Science Australia. Sports Med 2023; 53:2347-2371. [PMID: 37695493 PMCID: PMC10687186 DOI: 10.1007/s40279-023-01918-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2023] [Indexed: 09/12/2023]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is the most prevalent chronic liver disease worldwide, affecting 25% of people globally and up to 80% of people with obesity. MAFLD is characterised by fat accumulation in the liver (hepatic steatosis) with varying degrees of inflammation and fibrosis. MAFLD is strongly linked with cardiometabolic disease and lifestyle-related cancers, in addition to heightened liver-related morbidity and mortality. This position statement examines evidence for exercise in the management of MAFLD and describes the role of the exercise professional in the context of the multi-disciplinary care team. The purpose of these guidelines is to equip the exercise professional with a broad understanding of the pathophysiological underpinnings of MAFLD, how it is diagnosed and managed in clinical practice, and to provide evidence- and consensus-based recommendations for exercise therapy in MAFLD management. The majority of research evidence indicates that 150-240 min per week of at least moderate-intensity aerobic exercise can reduce hepatic steatosis by ~ 2-4% (absolute reduction), but as little as 135 min/week has been shown to be effective. While emerging evidence shows that high-intensity interval training (HIIT) approaches may provide comparable benefit on hepatic steatosis, there does not appear to be an intensity-dependent benefit, as long as the recommended exercise volume is achieved. This dose of exercise is likely to also reduce central adiposity, increase cardiorespiratory fitness and improve cardiometabolic health, irrespective of weight loss. Resistance training should be considered in addition to, and not instead of, aerobic exercise targets. The information in this statement is relevant and appropriate for people living with the condition historically termed non-alcoholic fatty liver disease (NAFLD), regardless of terminology.
Collapse
Affiliation(s)
- Shelley E Keating
- School of Human Movement and Nutrition Sciences, The University of Queensland, Room 534, Bd 26B, St Lucia, Brisbane, QLD, 4067, Australia.
| | - Angelo Sabag
- Faculty of Medicine and Health, Discipline of Exercise and Sport Science, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| | - Kate Hallsworth
- NIHR Newcastle Biomedical Research Centre, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
- Liver Unit, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Ingrid J Hickman
- Department of Nutrition and Dietetics, Princess Alexandra Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, PA-Southside Clinical Unit, The University of Queensland, Brisbane, QLD, Australia
| | - Graeme A Macdonald
- Faculty of Medicine, PA-Southside Clinical Unit, The University of Queensland, Brisbane, QLD, Australia
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Jonathan G Stine
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University- Milton S. Hershey Medical Center, Hershey, PA, USA
- Department of Public Health Sciences, The Pennsylvania State University- College of Medicine, Hershey, PA, USA
- Liver Center, The Pennsylvania State University- Milton S. Hershey Medical Center, Hershey, PA, USA
- Cancer Institute, The Pennsylvania State University- Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Jacob George
- Storr Liver Centre, The Westmead Institute for Medical Research and Westmead Hospital, University of Sydney, Sydney, NSW, Australia
| | - Nathan A Johnson
- Faculty of Medicine and Health, Discipline of Exercise and Sport Science, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
29
|
Sanyal AJ, Ratziu V, Loomba R, Anstee QM, Kowdley KV, Rinella ME, Sheikh MY, Trotter JF, Knapple W, Lawitz EJ, Abdelmalek MF, Newsome PN, Boursier J, Mathurin P, Dufour JF, Berrey MM, Shiff SJ, Sawhney S, Capozza T, Leyva R, Harrison SA, Younossi ZM. Results from a new efficacy and safety analysis of the REGENERATE trial of obeticholic acid for treatment of pre-cirrhotic fibrosis due to non-alcoholic steatohepatitis. J Hepatol 2023; 79:1110-1120. [PMID: 37517454 DOI: 10.1016/j.jhep.2023.07.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND & AIMS Obeticholic acid (OCA) is a first-in-class farnesoid X receptor agonist and antifibrotic agent in development for the treatment of pre-cirrhotic liver fibrosis due to non-alcoholic steatohepatitis (NASH). We aimed to validate the original 18-month liver biopsy analysis from the phase III REGENERATE trial of OCA for the treatment of NASH with a consensus panel analysis, provide additional histology data in a larger population, and evaluate safety from >8,000 total patient-years' exposure with nearly 1,000 participants receiving study drug for >4 years. METHODS Digitized whole-slide images were evaluated independently by panels of three pathologists using the NASH Clinical Research Network scoring system. Primary endpoints were (1) ≥1 stage improvement in fibrosis with no worsening of NASH or (2) NASH resolution with no worsening of fibrosis. Safety was assessed by laboratory values and adverse events. RESULTS Prespecified efficacy analyses included 931 participants. The proportion of participants achieving a ≥1 stage improvement in fibrosis with no worsening of NASH was 22.4% for OCA 25 mg vs. 9.6% for placebo (p <0.0001). More participants receiving OCA 25 mg vs. placebo achieved NASH resolution with no worsening of fibrosis (6.5% vs. 3.5%, respectively; p = 0.093). Histology data in a larger population of 1,607 participants supported these results. Safety data included 2,477 participants. The incidence of treatment-emergent adverse events (TEAEs), serious TEAEs, and deaths was not substantively different across treatment groups. Pruritus was the most common TEAE. Rates of adjudicated hepatic, renal, and cardiovascular events were low and similar across treatment groups. CONCLUSIONS These results confirm the antifibrotic effect of OCA 25 mg. OCA was generally well tolerated over long-term dosing. These data support a positive benefit:risk profile in patients with pre-cirrhotic liver fibrosis due to NASH. IMPACT AND IMPLICATIONS Patients with non-alcoholic steatohepatitis (NASH) often have liver scarring (fibrosis), which causes an increased risk of liver-related illness and death. Preventing progression of fibrosis to cirrhosis or reversing fibrosis are the main goals of drug development for NASH. In this clinical trial of obeticholic acid (OCA) in patients with NASH (REGENERATE), we reaffirmed our previous results demonstrating that OCA was superior to placebo in improving fibrosis using a more rigorous consensus panel analysis of liver biopsies taken at month 18. We also showed that OCA treatment resulted in dose-dependent reductions of serum liver biochemistries and liver stiffness measurements compared with placebo, even in participants in whom histologic fibrosis did not change at 18 months, providing evidence that the benefit of OCA extends beyond what is captured by the ordinal NASH CRN scoring system. OCA was well tolerated with a favorable safety profile supporting a positive benefit: risk profile in patients with pre-cirrhotic liver fibrosis due to NASH.
Collapse
Affiliation(s)
- Arun J Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, VA, USA.
| | - Vlad Ratziu
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Institute for Cardiometabolism and Nutrition, Paris, France
| | - Rohit Loomba
- University of California, San Diego, La Jolla, CA, USA
| | - Quentin M Anstee
- Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, UK; Newcastle NIHR Biomedical Research Center, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | | | - Mary E Rinella
- University of Chicago, Pritzker School of Medicine, Chicago, IL, USA
| | | | | | | | - Eric J Lawitz
- Texas Liver Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Manal F Abdelmalek
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Philip N Newsome
- National Institute for Health Research Birmingham Biomedical Research Centre, Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Jérôme Boursier
- Angers University Hospital, Angers University, Angers, France
| | | | | | | | | | | | | | - Rina Leyva
- Intercept Pharmaceuticals, Morristown, NJ, USA
| | | | - Zobair M Younossi
- Beatty Liver and Obesity Research Program, Center for Liver Diseases, Inova Medicine, Falls Church, VA, USA
| |
Collapse
|
30
|
Alkhouri N, Lazas D, Loomba R, Frias JP, Feng S, Tseng L, Balic K, Agollah GD, Kwan T, Iyer JS, Morrow L, Mansbach H, Margalit M, Harrison SA. Clinical trial: Effects of pegozafermin on the liver and on metabolic comorbidities in subjects with biopsy-confirmed nonalcoholic steatohepatitis. Aliment Pharmacol Ther 2023; 58:1005-1015. [PMID: 37718721 DOI: 10.1111/apt.17709] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/19/2023] [Accepted: 08/31/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND An approved therapy for nonalcoholic steatohepatitis (NASH) and fibrosis remains a major unmet medical need. AIM To investigate the histological and metabolic benefits of pegozafermin, a glycoPEGylated FGF21 analogue, in subjects with biopsy-confirmed NASH. METHODS This proof-of-concept, open-label, single-cohort study, part 2 of a phase 1b/2a clinical trial, was conducted at 16 centres in the United States. Adults (age 21-75 years) with NASH (stage 2 or 3 fibrosis, NAS≥4) and magnetic resonance imaging proton density fat fraction (MRI-PDFF) ≥8% received subcutaneous pegozafermin 27 mg once weekly for 20 weeks. Primary outcomes were improvements in liver histology, and safety and tolerability. RESULTS Of 20 enrolled subjects, 19 completed the study. Twelve subjects (63%) met the primary endpoint of ≥2-point improvement in NAFLD activity score with ≥1-point improvement in ballooning or lobular inflammation and no worsening of fibrosis. Improvement of fibrosis without worsening of NASH was observed in 26% of subjects, and NASH resolution without worsening of fibrosis in 32%. Least-squares mean relative change from baseline in MRI-PDFF was -64.7% (95% CI: -71.7, -57.7; p < 0.0001). Significant improvements from baseline were also seen in serum aminotransferases, noninvasive fibrosis tests, serum lipids, glycaemic control and body weight. Adverse events (AEs) were reported in 18 subjects (90%). The most frequently reported AEs were mild/moderate nausea and diarrhoea. There were no serious AEs, discontinuations due to AEs, or deaths. CONCLUSIONS Pegozafermin treatment for 20 weeks had beneficial effects on hepatic and metabolic parameters and was well tolerated in subjects with NASH. CLINICALTRIALS gov: NCT04048135.
Collapse
Affiliation(s)
| | - Donald Lazas
- ObjectiveHealth/Digestive Health Research, Nashville, Tennessee, USA
| | - Rohit Loomba
- University of California San Diego, San Diego, California, USA
| | - Juan P Frias
- Velocity Clinical Research, Los Angeles, California, USA
| | | | - Leo Tseng
- 89bio Inc., San Francisco, California, USA
| | | | | | - Tinna Kwan
- 89bio Inc., San Francisco, California, USA
| | | | | | | | | | - Stephen A Harrison
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Pinnacle Clinical Research, San Antonio, Texas, USA
| |
Collapse
|
31
|
Hu Y, Li H, Zhang H, Chen X, Chen J, Xu Z, You H, Dong R, Peng Y, Li J, Li X, Wu D, Zhang L, Cao D, Jin H, Qiu D, Yang A, Lou J, Zhu X, Niu J, Ding Y. ZSP1601, a novel pan-phosphodiesterase inhibitor for the treatment of NAFLD, A randomized, placebo-controlled phase Ib/IIa trial. Nat Commun 2023; 14:6409. [PMID: 37828034 PMCID: PMC10570369 DOI: 10.1038/s41467-023-42162-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
Non-alcoholic fatty liver disease is a growing health burden with limited treatment options worldwide. Herein we report a randomized, double-blind, placebo-controlled, multiple-dose trial of a first-in-class pan-phosphodiesterase inhibitor ZSP1601 in 36 NAFLD patients (NCT04140123). There were three cohorts. Each cohort included twelve patients, nine of whom received ZSP1601 50 mg once daily, 50 mg twice daily, or 100 mg twice daily, and three of whom received matching placebos for 28 days. The primary outcomes were the safety and tolerability of ZSP1601. A total of 27 (27/36, 75%) patients experienced at least one treatment-emergent adverse event (TEAE). Most TEAEs were mild to moderate. There was no Serious Adverse Event. Diarrhea, transiently elevated creatinine and adaptive headache were frequently reported adverse drug reaction. We conclude that ZSP1601 is well-tolerated and safe, showing effective improvement in liver chemistries, liver fat content and fibrosis in patients with NAFLD.
Collapse
Affiliation(s)
- Yue Hu
- Phase I Clinical Research Center, First Hospital of Jilin University, Changchun, China
| | - Haijun Li
- Guangdong Raynovent Biotech Co., Ltd, Guangzhou, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Hong Zhang
- Phase I Clinical Research Center, First Hospital of Jilin University, Changchun, China
| | - Xiaoxin Chen
- Guangdong Raynovent Biotech Co., Ltd, Guangzhou, China
| | - Jinjun Chen
- Nafang Hospital, Nanfang Medical University, Guangzhou, China
| | - Zhongyuan Xu
- Nafang Hospital, Nanfang Medical University, Guangzhou, China
| | - Hong You
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ruihua Dong
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yun Peng
- Guangdong Raynovent Biotech Co., Ltd, Guangzhou, China
| | - Jing Li
- Guangdong Raynovent Biotech Co., Ltd, Guangzhou, China
| | - Xiaojiao Li
- Phase I Clinical Research Center, First Hospital of Jilin University, Changchun, China
| | - Dandan Wu
- Phase I Clinical Research Center, First Hospital of Jilin University, Changchun, China
| | - Lei Zhang
- Department of Radiology, First Hospital of Jilin University, Changchun, China
| | - Di Cao
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - He Jin
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dongdong Qiu
- Department of Radiology, First Hospital of Jilin University, Changchun, China
| | - Aruhan Yang
- Phase I Clinical Research Center, First Hospital of Jilin University, Changchun, China
| | - Jinfeng Lou
- Phase I Clinical Research Center, First Hospital of Jilin University, Changchun, China
| | - Xiaoxue Zhu
- Phase I Clinical Research Center, First Hospital of Jilin University, Changchun, China.
| | - Junqi Niu
- Department of Hepatology, First Hospital of Jilin University, Changchun, China.
| | - Yanhua Ding
- Phase I Clinical Research Center, First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
32
|
Zhu K, Kakkar R, Chahal D, Yoshida EM, Hussaini T. Efficacy and safety of semaglutide in non-alcoholic fatty liver disease. World J Gastroenterol 2023; 29:5327-5338. [PMID: 37899788 PMCID: PMC10600803 DOI: 10.3748/wjg.v29.i37.5327] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease. The prevalence and disease burden of NAFLD are projected to exponentially increase resulting in significant healthcare expenditures and lower health-related quality of life. To date, there are no approved pharmacotherapies for NAFLD or non-alcoholic steatohepatitis (NASH). Semaglutide has glycemic and weight loss benefits that may be advantageous for patients with NAFLD. AIM To investigate the efficacy and safety of semaglutide in patients with NAFLD. METHODS MEDLINE, CENTRAL, and EMBASE were searched from inception to May 1, 2023, to identify eligible randomized controlled trials (RCTs). Meta-analysis was performed using random effects model expressing continuous outcomes as mean differences (MD) or standardized MDs (SMD), and dichotomous outcomes as odds ratios (OR) with 95% confidence intervals (CI). Statistical heterogeneity was assessed using the Cochran's Q test and I2 statistic. RESULTS Three RCTs involving 458 patients were included. Semaglutide increased the likelihood of NASH resolution (OR: 3.18, 95%CI: 1.70, 5.95; P < 0.001), improvement in steatosis (OR: 2.83, 95%CI: 1.19, 6.71; P = 0.03), lobular inflammation (OR: 1.81, 95%CI: 1.11, 2.96; P = 0.02), and hepatocellular ballooning (OR: 2.92, 95%CI: 1.83, 4.65; P < 0.001), but not fibrosis stage (OR: 0.71, 95%CI: 0.15, 3.41; P = 0.67). Radiologically, semaglutide reduced liver stiffness (SMD: -0.48, 95%CI: -0.86, -0.11; P = 0.01) and steatosis (MD: -4.96%, 95%CI: -9.92, 0.01; P = 0.05). It also reduced alanine aminotransferase (MD: -14.06 U/L, 95%CI: -22.06, -6.07; P < 0.001) and aspartate aminotransferase (MD: -11.44 U/L, 95%CI: -17.23, -5.65; P < 0.001). Semaglutide led to improved cardiometabolic outcomes, including decreased HgA1c (MD: -0.77%, 95%CI: -1.18, -0.37; P < 0.001) and weight loss (MD: -6.53 kg, 95%CI: -11.21, -1.85; P = 0.006), but increased the occurrence of GI-related side effects (OR: 3.72, 95%CI: 1.68, 8.23; P = 0.001). Overall risk of serious adverse events was similar compared to placebo (OR: 1.40, 95%CI: 0.75, 2.62; P < 0.29). CONCLUSION Semaglutide is effective in the treatment of NAFLD while maintaining a well-tolerated safety profile. Future studies are required to evaluate its effects on fibrosis regression and different phases of NAFLD.
Collapse
Affiliation(s)
- Kai Zhu
- Internal Medicine, University of British Columbia, Vancouver V5Z 1M9, BC, Canada
| | - Rohan Kakkar
- Internal Medicine, University of British Columbia, Vancouver V5Z 1M9, BC, Canada
| | - Daljeet Chahal
- Department of Gastroenterology, University of British Columbia, Vancouver V5Z 1M9, BC, Canada
- BC Liver Transplant Program, Vancouver General Hospital, Vancouver V5Z 1M9, BC, Canada
| | - Eric M Yoshida
- Department of Gastroenterology, University of British Columbia, Vancouver V5Z 1M9, BC, Canada
- BC Liver Transplant Program, Vancouver General Hospital, Vancouver V5Z 1M9, BC, Canada
| | - Trana Hussaini
- BC Liver Transplant Program, Vancouver General Hospital, Vancouver V5Z 1M9, BC, Canada
- Pharmaceutical Sciences, University of British Columbia, Vancouver V5Z 1M9, BC, Canada
| |
Collapse
|
33
|
Dellinger RW, Holmes HE, Hu-Seliger T, Butt RW, Harrison SA, Mozaffarian D, Chen O, Guarente L. Nicotinamide riboside and pterostilbene reduces markers of hepatic inflammation in NAFLD: A double-blind, placebo-controlled clinical trial. Hepatology 2023; 78:863-877. [PMID: 36082508 DOI: 10.1002/hep.32778] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS The prevalence of NAFLD is increasing globally and on a path to becoming the most frequent cause of chronic liver disease. Strategies for the prevention and treatment of NAFLD are urgently needed. APPROACH AND RESULTS A 6-month prospective, randomized, double-blind, placebo-controlled clinical trial was conducted to assess the efficacy of daily NRPT (commercially known as Basis, a combination of nicotinamide riboside and pterostilbene) supplementation in 111 adults with NAFLD. The study consisted of three arms: placebo, recommended daily dose of NRPT (NRPT 1×), and a double dose of NRPT (NRPT 2×). NRPT appeared safe and well tolerated. At the end of the study, no significant change was seen in the primary endpoint of hepatic fat fraction with respect to placebo. However, among prespecified secondary outcomes, a time-dependent decrease in the circulating levels of the liver enzymes alanine aminotransferase (ALT) and gamma-glutamyltransferase (GGT) was observed in the NRPT 1× group, and this decrease was significant with respect to placebo. Furthermore, a significant decrease in the circulating levels of the toxic lipid ceramide 14:0 was also observed in the NRPT 1× group versus placebo, and this decrease was associated with a decrease in ALT in individuals of this group. A dose-dependent effect was not observed with respect to ALT, GGT, or ceramide 14:0 in the NRPT 2× group. CONCLUSIONS This study demonstrates that NRPT at the recommended dose is safe and may hold promise in lowering markers of hepatic inflammation in patients with NAFLD.
Collapse
Affiliation(s)
| | | | | | | | | | - Dariush Mozaffarian
- Friedman School of Nutrition Science and Policy , Tufts University , Boston , Massachusetts , USA
| | - Oliver Chen
- Friedman School of Nutrition Science and Policy , Tufts University , Boston , Massachusetts , USA
- Biofortis Research , Addison , Illinois , USA
| | - Leonard Guarente
- Elysium Health New York , New York , New York , USA
- Department of Biology , MIT , Cambridge , Massachusetts , USA
| |
Collapse
|
34
|
Huang DQ, Sharpton SR, Amangurbanova M, Tamaki N, Sirlin CB, Loomba R. Clinical Utility of Combined MRI-PDFF and ALT Response in Predicting Histologic Response in Nonalcoholic Fatty Liver Disease. Clin Gastroenterol Hepatol 2023; 21:2682-2685.e4. [PMID: 36075503 DOI: 10.1016/j.cgh.2022.08.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 02/07/2023]
Affiliation(s)
- Daniel Q Huang
- NAFLD Research Center, Division of Gastroenterology, University of California San Diego, La Jolla, California; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore
| | - Suzanne R Sharpton
- NAFLD Research Center, Division of Gastroenterology, University of California San Diego, La Jolla, California
| | - Maral Amangurbanova
- NAFLD Research Center, Division of Gastroenterology, University of California San Diego, La Jolla, California
| | - Nobuharu Tamaki
- NAFLD Research Center, Division of Gastroenterology, University of California San Diego, La Jolla, California; Division of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan
| | - Claude B Sirlin
- Liver Imaging Group, Department of Radiology, University of California San Diego, La Jolla, California
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology, University of California San Diego, La Jolla, California; Division of Epidemiology, Department of Family Medicine and Public Health, University of California San Diego, San Diego, California.
| |
Collapse
|
35
|
Tincopa MA, Loomba R. Non-invasive diagnosis and monitoring of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. Lancet Gastroenterol Hepatol 2023; 8:660-670. [PMID: 37060912 DOI: 10.1016/s2468-1253(23)00066-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 04/17/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent form of chronic liver disease that poses challenges in diagnosis and risk stratification. Non-alcoholic steatohepatitis (NASH), the more progressive form of NAFLD, is particularly challenging to diagnose in the absence of histology. Liver biopsy is infrequently performed due to its invasive nature, potential for sampling error, and lack of inter-rater reliability. Non-invasive tests that can accurately identify patients with at-risk NASH (ie, individuals with biopsy-proven NASH with NAFLD activity score [NAS] ≥4 and fibrosis stage ≥2) are key tools to identify candidates for pharmacologic therapy in registrational trials for the treatment of NASH-related fibrosis. With emerging pharmacotherapy, non-invasive tests are required to track treatment response. Lastly, there is an unmet need for non-invasive tests to assess risk for clinical outcomes including progression to cirrhosis, hepatic decompensation, liver-related mortality, and overall mortality. In this Review we examine advances in non-invasive tests to diagnose and monitor NAFLD and NASH.
Collapse
Affiliation(s)
- Monica A Tincopa
- NAFLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, La Jolla, CA, USA
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, La Jolla, CA, USA; School of Public Health, University of California at San Diego, La Jolla, CA, USA.
| |
Collapse
|
36
|
Sanyal AJ, Castera L, Wong VWS. Noninvasive Assessment of Liver Fibrosis in NAFLD. Clin Gastroenterol Hepatol 2023; 21:2026-2039. [PMID: 37062495 DOI: 10.1016/j.cgh.2023.03.042] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/06/2023] [Accepted: 03/24/2023] [Indexed: 04/18/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as a leading cause of liver-related morbidity and mortality worldwide, afflicting approximately a billion individuals. NAFLD is a slowly progressive disease that may evolve in a subset of patients toward cirrhosis, hepatocellular carcinoma, and end-stage liver disease. Liver fibrosis severity is the strongest predictor of clinical outcomes. The emergence of effective therapeutics on the horizon highlights the need to identify among patients with NAFLD, those with severe fibrosis or cirrhosis, who are the most at risk of developing complications and target them for therapy. Liver biopsy has been the reference standard for this purpose. However, it is not suitable for large-scale population evaluation, given its well-known limitations (invasiveness, rare but severe complications, and sampling variability). Thus, there have been major efforts to develop simple noninvasive tools that can be used in routine clinical settings and in drug development. Noninvasive approaches are based on the quantification of biomarkers in serum samples or on the measurement of liver stiffness, using either ultrasound- or magnetic resonance-based elastography techniques. This review provides a roadmap for future development and integration of noninvasive tools in clinical practice and in drug development in NAFLD. We discuss herein the principles for their development and validation, their use in clinical practice, including for diagnosis of NAFLD, risk stratification in primary care and hepatology settings, prediction of long-term liver-related and non-liver-related outcomes, monitoring of fibrosis progression and regression, and response to future treatment.
Collapse
Affiliation(s)
- Arun J Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia.
| | - Laurent Castera
- UMR1149 (Center of Research on Inflammation), French Institute of Health and Medical Research, Université Paris Cité, Paris, France; Service d'Hépatologie, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France.
| | - Vincent Wai-Sun Wong
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China; Medical Data Analytics Centre, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
37
|
Harrison SA, Loomba R, Dubourg J, Ratziu V, Noureddin M. Clinical Trial Landscape in NASH. Clin Gastroenterol Hepatol 2023; 21:2001-2014. [PMID: 37059159 DOI: 10.1016/j.cgh.2023.03.041] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/16/2023]
Abstract
Nonalcoholic fatty liver disease consists of a spectrum starting from nonalcoholic fatty liver disease that may progress to nonalcoholic steatohepatitis (NASH), which can lead to fibrosis, cirrhosis, hepatocellular carcinoma, or even liver failure. The prevalence of NASH has increased in parallel with the rising rate of obesity and type 2 diabetes. Given the high prevalence and deadly complications of NASH, there have been significant efforts to develop effective treatments. Phase 2A studies have assessed various mechanisms of action across the spectrum of the disease, while phase 3 studies have focused mainly on NASH and fibrosis stage 2 and higher, as these patients have a higher risk of disease morbidity and mortality. The primary efficacy endpoints also vary, by using noninvasive tests in early-phase trials while relying on liver histological endpoints in phase 3 studies as required by regulatory agencies. Despite initial disappointment due to the failure of several drugs, recent phase 2 and 3 studies have shown promising results, with the first Food and Drug Administration-approved drug for NASH expected to be approved in 2023. In this review, we discuss the various drugs under development for NASH, their mechanisms of action, and the results of their clinical trials. We also highlight the potential challenges in developing pharmacological therapies for NASH.
Collapse
Affiliation(s)
- Stephen A Harrison
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; Pinnacle Clinical Research, San Antonio, Texas.
| | - Rohit Loomba
- NAFLD Liver Center, Division of Gastroenterology, University of California San Diego, San Diego California
| | | | - Vlad Ratziu
- Institute for Cardiometabolism and Nutrition, Hospital Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Mazen Noureddin
- Houston Research Institute, Houston Methodist Hospital, Houston, Texas
| |
Collapse
|
38
|
Jirapinyo P, Zucker SD, Thompson CC. Regression of Hepatic Fibrosis After Endoscopic Gastric Plication in Nonalcoholic Fatty Liver Disease. Am J Gastroenterol 2023; 118:983-990. [PMID: 36597405 DOI: 10.14309/ajg.0000000000002087] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/02/2022] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Fibrosis stage is the strongest predictor of mortality in patients with nonalcoholic fatty liver disease (NAFLD). There is currently no approved therapy that specifically targets fibrosis. This study aims to assess the effect of endoscopic gastric plication on hepatic fibrosis in patients with underlying NAFLD. METHODS This is a retrospective analysis of prospectively collected registry of patients with obesity and NAFLD with clinically significant hepatic fibrosis (≥F2) who underwent endoscopic gastric plication. Full-thickness plications were placed in the gastric body using a commercially available platform to reduce the gastric volume. The primary outcome included various noninvasive tests (NITs) of hepatic fibrosis based on clinical chemistry and/or imaging. The secondary outcomes included NITs of hepatic steatosis, other metabolic outcomes, including hemoglobin A1c, insulin resistance, and total weight loss (TWL), and adverse events. RESULTS Forty-five patients (age 51 ± 13 years and body mass index 40.7 ± 6.9 kg/m 2 ) were included. All patients underwent endoscopic gastric plication successfully. At 6-12 months, there were significant reductions in biochemistries (alanine aminotransferase: 49.7 ± 36.8 U/L to 24.2 ± 12.0 U/L [ P < 0.0001], aspartate aminotransferase: 39.1 ± 24.1 U/L to 24.1 ± 10.0 U/L [ P < 0.0001]), composite fibrosis score (NAFLD fibrosis score: 0.48 ± 1.51 to -1.18 ± 1.56 [ P < 0.0001], fibrosis-4 index: 1.4 ± 1.2 to 1.2 ± 0.7 [ P = 0.03]), and imaging-based markers of fibrosis (vibration-controlled transient elastography: 13.9 ± 7.5 kPa to 8.9 ± 4.8 kPa ( P < 0.0001) and Agile 3+: 0.53 ± 0.28 to 0.37 ± 0.28 [ P = 0.001]). There were significant reductions in controlled attenuation parameter, Homeostatic Model Assessment for Insulin Resistance, and hemoglobin A1c ( P < 0.05 for all). At 12 months, patients experienced 15.5% ± 7.9% TWL, with 63% reaching at least 10% TWL. DISCUSSION Endoscopic gastric plication seems effective at treating NAFLD, with significant reduction in NITs of hepatic fibrosis even in patients with cirrhosis.
Collapse
Affiliation(s)
- Pichamol Jirapinyo
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Stephen D Zucker
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher C Thompson
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
39
|
Loomba R, Abdelmalek MF, Armstrong MJ, Jara M, Kjær MS, Krarup N, Lawitz E, Ratziu V, Sanyal AJ, Schattenberg JM, Newsome PN. Semaglutide 2·4 mg once weekly in patients with non-alcoholic steatohepatitis-related cirrhosis: a randomised, placebo-controlled phase 2 trial. Lancet Gastroenterol Hepatol 2023; 8:511-522. [PMID: 36934740 PMCID: PMC10792518 DOI: 10.1016/s2468-1253(23)00068-7] [Citation(s) in RCA: 176] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Patients with non-alcoholic steatohepatitis (NASH)-related cirrhosis are at high risk of liver-related and all-cause morbidity and mortality. We investigated the efficacy and safety of the glucagon-like peptide-1 analogue semaglutide in patients with NASH and compensated cirrhosis. METHODS This double-blind, placebo-controlled phase 2 trial enrolled patients from 38 centres in Europe and the USA. Adults with biopsy-confirmed NASH-related cirrhosis and body-mass index (BMI) of 27 kg/m2 or more were randomly assigned (2:1) to receive either once-weekly subcutaneous semaglutide 2·4 mg or visually matching placebo. Patients were randomly allocated via an interactive web response system, stratified by presence or absence of type 2 diabetes. Patients, investigators, and those assessing outcomes were masked to treatment assignment. The primary endpoint was the proportion of patients with an improvement in liver fibrosis of one stage or more without worsening of NASH after 48 weeks, assessed by biopsy in the intention-to-treat population. Safety was assessed in all patients who received at least one dose of study drug. The trial is closed and completed, and registered with ClinicalTrials.gov, number NCT03987451. FINDINGS 71 patients were enrolled between June 18, 2019, and April 22, 2021; 49 (69%) patients were female and 22 (31%) were male. Patients had a mean age of 59·5 years (SD 8·0) and mean BMI of 34·9 kg/m2 (SD 5·9); 53 (75%) patients had diabetes. 47 patients were randomly assigned to the semaglutide group and 24 to the placebo group. After 48 weeks, there was no statistically significant difference between the two groups in the proportion of patients with an improvement in liver fibrosis of one stage or more without worsening of NASH (five [11%] of 47 patients in the semaglutide group vs seven [29%] of 24 in the placebo group; odds ratio 0·28 [95% CI 0·06-1·24; p=0·087). There was also no significant difference between groups in the proportion of patients who achieved NASH resolution (p=0·29). Similar proportions of patients in each group reported adverse events (42 [89%] patients in the semaglutide group vs 19 [79%] in the placebo group) and serious adverse events (six [13%] vs two [8%]). The most common adverse events were nausea (21 [45%] vs four [17%]), diarrhoea (nine [19%] vs two [8%]), and vomiting (eight [17%] vs none). Hepatic and renal function remained stable. There were no decompensating events or deaths. INTERPRETATION In patients with NASH and compensated cirrhosis, semaglutide did not significantly improve fibrosis or achievement of NASH resolution versus placebo. No new safety concerns were raised. FUNDING Novo Nordisk A/S.
Collapse
Affiliation(s)
- Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology and Epidemiology, University of California at San Diego, La Jolla, CA, USA.
| | - Manal F Abdelmalek
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Matthew J Armstrong
- National Institute for Health Research, Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | | | | | | | - Eric Lawitz
- Texas Liver Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Vlad Ratziu
- Institute for Cardiometabolism and Nutrition, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | - Arun J Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Jörn M Schattenberg
- Metabolic Liver Research Program, I Department of Medicine, University Medical Centre, Mainz, Germany
| | - Philip N Newsome
- National Institute for Health Research, Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| |
Collapse
|
40
|
Rinella ME, Neuschwander-Tetri BA, Siddiqui MS, Abdelmalek MF, Caldwell S, Barb D, Kleiner DE, Loomba R. AASLD Practice Guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology 2023; 77:1797-1835. [PMID: 36727674 PMCID: PMC10735173 DOI: 10.1097/hep.0000000000000323] [Citation(s) in RCA: 916] [Impact Index Per Article: 458.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 02/03/2023]
Affiliation(s)
- Mary E. Rinella
- University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA
| | | | | | | | - Stephen Caldwell
- School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Diana Barb
- University of Florida College of Medicine, Gainesville, Florida, USA
| | | | - Rohit Loomba
- University of California, San Diego, San Diego, California, USA
| |
Collapse
|
41
|
Mak LY, Gane E, Schwabe C, Yoon KT, Heo J, Scott R, Lee JH, Lee JI, Kweon YO, Weltman M, Harrison SA, Neuschwander-Tetri BA, Cusi K, Loomba R, Given BD, Christianson DR, Garcia-Medel E, Yi M, Hamilton J, Yuen MF. A phase I/II study of ARO-HSD, an RNA interference therapeutic, for the treatment of non-alcoholic steatohepatitis. J Hepatol 2023; 78:684-692. [PMID: 36513186 DOI: 10.1016/j.jhep.2022.11.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Loss-of-function HSD17β13 mutations protect against the development of chronic liver disease. HSD17β13 inhibition represents a potential approach to treat liver diseases, such as non-alcoholic steatohepatitis (NASH). ARO-HSD is an RNA interference (RNAi) therapeutic designed to selectively reduce expression of HSD17β13 mRNA in hepatocytes. In this study, we evaluated the effects of ARO-HSD in normal healthy volunteers (NHVs) and patients with confirmed or clinically suspected NASH. METHODS The safety, tolerability, and pharmacodynamics of ARO-HSD were evaluated in 32 NHVs and 18 patients with confirmed/clinically suspected NASH. Double-blind NHV cohorts received single escalating doses of ARO-HSD (25, 50, 100, or 200 mg) or placebo subcutaneously on Day 1. Open-label patient cohorts received ARO-HSD (25, 100, or 200 mg) subcutaneously on Days 1 and 29. Liver biopsy was performed pre-dose and on Day 71 to evaluate expression levels of HSD17β13 mRNA and protein. RESULTS ARO-HSD treatment was well tolerated with no treatment-related serious adverse events or drug discontinuations. The most frequently reported treatment-emergent adverse events were mild injection site reactions, which were short in duration. Mean changes in hepatic HSD17β13 mRNA from baseline to Day 71 were: -56.9% (25 mg), -85.5% (100 mg), and -93.4% (200 mg). The mean HSD17β13 mRNA reduction was 78.6% (p <0.0001) across pooled cohorts. Hepatic HSD17β13 protein levels were similarly reduced across doses. In patients, mean changes in alanine aminotransferase from baseline to Day 71 were -7.7% (25 mg), -39.3% (100 mg), and -42.3% (200 mg) (p <0.001 for pooled cohorts). CONCLUSIONS ARO-HSD was well tolerated at doses ≤200 mg. This proof-of-concept study demonstrated that short-term treatment with ARO-HSD reduces hepatic HSD17β13 mRNA and protein expression, which is accompanied by reductions in alanine aminotransferase. CLINICALTRIALS GOV NUMBER NCT04202354. IMPACTS AND IMPLICATIONS There is an unmet medical need for new therapies to treat alcohol-related and non-alcoholic liver disease. ARO-HSD is a small-interfering RNA designed to silence HSD17β13 expression and hence to phenocopy the protective effect seen in individuals with HSD17β13 loss-of-function. The reductions in HSD17β13 expression and in transaminases seen with ARO-HSD administration represent an initial step towards clinical validation of HSD17β13, a drug target with substantial genetic validation, as an important modulator of human liver disease.
Collapse
Affiliation(s)
- Lung-Yi Mak
- Department of Medicine, School of Clinical Medicine, Hong Kong; State Key Laboratory of Liver Research, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Ed Gane
- University of Auckland, Auckland, New Zealand
| | | | - Ki Tae Yoon
- Department of Internal Medicine, Pusan National University College of Medicine and Liver Center, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Jeong Heo
- Department of Internal Medicine, College of Medicine, Pusan National University and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Russell Scott
- Lipid and Diabetes Research, New Zealand Clinical Research, Christchurch, New Zealand
| | - Jeong-Hoon Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung Il Lee
- Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | - Kenneth Cusi
- University of Florida, Gainesville, FL, United States
| | - Rohit Loomba
- NAFLD Research Center, UCSD, Division of Gastroenterology, La Jolla, CA, United States
| | - Bruce D Given
- Arrowhead Pharmaceuticals, Inc., Pasadena, CA, United States
| | | | | | - Min Yi
- Arrowhead Pharmaceuticals, Inc., Pasadena, CA, United States
| | - James Hamilton
- Arrowhead Pharmaceuticals, Inc., Pasadena, CA, United States
| | - Man-Fung Yuen
- Department of Medicine, School of Clinical Medicine, Hong Kong; State Key Laboratory of Liver Research, Queen Mary Hospital, The University of Hong Kong, Hong Kong.
| |
Collapse
|
42
|
Stine JG, Welles JE, Keating S, Hussaini Z, Soriano C, Heinle JW, Geyer N, Chinchilli VM, Loomba R, Kimball SR. Serum Fibroblast Growth Factor 21 Is Markedly Decreased following Exercise Training in Patients with Biopsy-Proven Nonalcoholic Steatohepatitis. Nutrients 2023; 15:1481. [PMID: 36986211 PMCID: PMC10056327 DOI: 10.3390/nu15061481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND AND AIMS Exercise remains a key component of nonalcoholic fatty liver disease (NAFLD) treatment. However, mechanisms underpinning the improvements in NAFLD seen with exercise are unclear. Exercise improved liver fat and serum biomarkers of liver fibrosis in the NASHFit trial. We investigated exercise's mechanism of benefit by conducting a post hoc analysis of these data to determine the relationship between serum fibroblast growth factor (FGF) 21, which is implicated in NAFLD development, and exercise. METHODS In the 20 wk NASHFit trial, patients with nonalcoholic steatohepatitis (NASH) were randomized to receive moderate-intensity aerobic exercise training or standard clinical care. Mediterranean-informed dietary counseling was provided to each group. Change in serum FGF21 was measured after an overnight fast. RESULTS There was a significant improvement in serum FGF21 with exercise training compared to standard clinical care (p = 0.037) with serum FGF21 reducing by 22% (-243.4 +/-349 ng/mL) with exercise vs. a 34% increase (+88.4 ng/mL +/-350.3 ng/mL) with standard clinical care. There was a large inverse association between change in serum FGF21 and change in cardiorespiratory fitness (VO2peak) (r = -0.62, 95% CI -0.88 to -0.05, p = 0.031), and on multivariable analysis, change in VO2peak remained independently associated with change in FGF21 (β = -44.5, 95% CI -83.8 to -5.11, p = 0.031). CONCLUSIONS Serum FGF21 is markedly decreased in response to aerobic exercise training, offering a novel mechanism to explain the observed reduction in liver fat and improvement in serum biomarkers of liver fibrosis in patients with NASH who do exercise.
Collapse
Affiliation(s)
- Jonathan G. Stine
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
- Department of Public Health Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
- Liver Center, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
- Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Jaclyn E. Welles
- Department of Cellular and Molecular Physiology, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Shelley Keating
- School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zeba Hussaini
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Christopher Soriano
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - J. Wes Heinle
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Nathaniel Geyer
- Department of Public Health Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Vernon M. Chinchilli
- Department of Public Health Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Rohit Loomba
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
- NAFLD Research Center, University of California San Diego, San Diego, CA 92093, USA
| | - Scot R. Kimball
- Department of Cellular and Molecular Physiology, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| |
Collapse
|
43
|
Hepatic and renal improvements with FXR agonist vonafexor in individuals with suspected fibrotic NASH. J Hepatol 2023; 78:479-492. [PMID: 36334688 DOI: 10.1016/j.jhep.2022.10.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/04/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND & AIMS The LIVIFY trial investigated the safety, tolerability, and efficacy of vonafexor, a second-generation, non-bile acid farnesoid X receptor agonist in patients with suspected fibrotic non-alcoholic steatohepatitis (NASH). METHODS This double-blind phase IIa study was conducted in two parts. Patients were randomised (1:1:1:1) to receive placebo, vonafexor 100 mg twice daily (VONA-100BID), vonafexor 200 mg once daily (VONA-200QD), or 400 mg vonafexor QD (VONA-400QD) in Part A (safety run-in, pharmacokinetics/pharmacodynamics) or placebo, vonafexor 100 mg QD (VONA-100QD), or VONA-200QD (1:1:1) in Part B. The primary efficacy endpoint was a reduction in liver fat content (LFC) by MRI-proton density fat fraction, while secondary endpoints included reduced corrected T1 values and liver enzymes, from baseline to Week 12. RESULTS One hundred and twenty patients were randomised (Part A, n = 24; Part B, n = 96). In Part B, there was a significant reduction in least-square mean (SE) absolute change in LFC from baseline to Week 12 for VONA-100QD (-6.3% [0.9]) and VONA-200QD (-5.4% [0.9]), vs. placebo (-2.3% [0.9], p = 0.002 and 0.012, respectively). A >30% relative LFC reduction was achieved by 50.0% and 39.3% of patients in the VONA-100QD and VONA-200QD arms, respectively, but only in 12.5% in the placebo arm. Reductions in body weight, liver enzymes, and corrected T1 were also observed with vonafexor. Creatinine-based glomerular filtration rate improved in the active arms but not the placebo arm. Mild to moderate generalised pruritus was reported in 6.3%, 9.7%, and 18.2% of participants in the placebo, VONA-100QD, and VONA-200QD arms, respectively. CONCLUSIONS In patients with suspected fibrotic NASH, vonafexor was safe and induced potent liver fat reduction, improvement in liver enzymes, weight loss, and a possible renal benefit. CLINICAL TRIAL NUMBER (EUDRACT) 2018-003119-22. CLINICALTRIALS GOV IDENTIFIER NCT03812029. IMPACT AND IMPLICATIONS Non-alcoholic steatohepatitis (NASH) has become a leading cause of chronic liver disease worldwide. Affected patients are also at higher risk of developing chronic kidney disease. There are no approved therapies and only few options to treat this population. The phase IIa LIVIFY trial results show that single daily administration of oral vonafexor, an FXR agonist, leads in the short term to a reduction in liver fat, liver enzymes, fibrosis biomarkers, body weight and abdominal circumference, and a possible improvement in kidney function, while possible mild moderate pruritus (a peripheral FXR class effect) and an LDL-cholesterol increase are manageable with lower doses and statins. These results support exploration in longer and larger trials, with the aim of addressing the unmet medical need in NASH.
Collapse
|
44
|
Duseja A, Singh S, De A, Madan K, Rao PN, Shukla A, Choudhuri G, Saigal S, Shalimar, Arora A, Anand AC, Das A, Kumar A, Eapen CE, Devadas K, Shenoy KT, Panigrahi M, Wadhawan M, Rathi M, Kumar M, Choudhary NS, Saraf N, Nath P, Kar S, Alam S, Shah S, Nijhawan S, Acharya SK, Aggarwal V, Saraswat VA, Chawla YK. Indian National Association for Study of the Liver (INASL) Guidance Paper on Nomenclature, Diagnosis and Treatment of Nonalcoholic Fatty Liver Disease (NAFLD). J Clin Exp Hepatol 2023; 13:273-302. [PMID: 36950481 PMCID: PMC10025685 DOI: 10.1016/j.jceh.2022.11.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 03/24/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major cause of chronic liver disease globally and in India. The already high burden of NAFLD in India is expected to further increase in the future in parallel with the ongoing epidemics of obesity and type 2 diabetes mellitus. Given the high prevalence of NAFLD in the community, it is crucial to identify those at risk of progressive liver disease to streamline referral and guide proper management. Existing guidelines on NAFLD by various international societies fail to capture the entire landscape of NAFLD in India and are often difficult to incorporate in clinical practice due to fundamental differences in sociocultural aspects and health infrastructure available in India. A lot of progress has been made in the field of NAFLD in the 7 years since the initial position paper by the Indian National Association for the Study of Liver on NAFLD in 2015. Further, the ongoing debate on the nomenclature of NAFLD is creating undue confusion among clinical practitioners. The ensuing comprehensive review provides consensus-based, guidance statements on the nomenclature, diagnosis, and treatment of NAFLD that are practically implementable in the Indian setting.
Collapse
Key Words
- AASLD, American Association for the Study of Liver Diseases
- ALD, alcohol-associated liver disease
- ALT, alanine aminotransferase
- APRI, AST-platelet ratio index
- AST, aspartate aminotransferase
- BMI, body mass index
- CAP, controlled attenuation parameter
- CHB, chronic Hepatitis B
- CHC, chronic Hepatitis C
- CK-18, Cytokeratin-18
- CKD, chronic kidney disease
- CRN, Clinical Research Network
- CVD, cardiovascular disease
- DAFLD/DASH, dual etiology fatty liver disease or steatohepatitis
- EBMT, endoscopic bariatric metabolic therapy
- ELF, enhanced liver fibrosis
- FAST, FibroScan-AST
- FIB-4, fibrosis-4
- FLIP, fatty liver inhibition of progression
- FXR, farnesoid X receptor
- GLP-1, glucagon-like peptide-1
- HCC, hepatocellular carcinoma
- INASL, Indian National Association for Study of the Liver
- LAI, liver attenuation index
- LSM, liver stiffness measurement
- MAFLD
- MAFLD, metabolic dysfunction-associated fatty liver disease
- MR-PDFF, magnetic resonance – proton density fat fraction
- MRE, magnetic resonance elastography
- MetS, metabolic syndrome
- NAFL:, nonalcoholic fatty liver
- NAFLD, nonalcoholic fatty liver disease
- NAS, NAFLD activity score
- NASH
- NASH, nonalcoholic steatohepatitis
- NCD, noncommunicable diseases
- NCPF, noncirrhotic portal fibrosis
- NFS, NAFLD fibrosis score
- NHL, non-Hodgkin's lymphoma
- NPCDCS, National Programme for Prevention and Control of Cancer, Diabetes, Cardiovascular Diseases and Stroke
- OCA, obeticholic acid
- PPAR, peroxisome proliferator activated receptor
- PTMS, post-transplant metabolic syndrome
- SAF, steatosis, activity, and fibrosis
- SGLT-2, sodium-glucose cotransporter-2
- SWE, shear wave elastography
- T2DM, DM: type 2 diabetes mellitus
- USG, ultrasound
- VAT, visceral adipose tissue
- VCTE, vibration controlled transient elastography
- fatty liver
- hepatic steatosis
- nonalcoholic steatohepatitis
Collapse
Affiliation(s)
- Ajay Duseja
- Departmentof Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - S.P. Singh
- Department of Gastroenterology, SCB Medical College, Cuttack, India
| | - Arka De
- Departmentof Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kaushal Madan
- Max Centre for Gastroenterology, Hepatology and Endoscopy, Max Hospitals, Saket, New Delhi, India
| | - Padaki Nagaraja Rao
- Department of Hepatology, Asian Institute of Gastroenterology, Hyderabad, India
| | - Akash Shukla
- Department of Gastroenterology, Seth GSMC & KEM Hospital, Mumbai, India
| | - Gourdas Choudhuri
- Department of Gastroenterology and Hepato-Biliary Sciences, Fortis Memorial Research Institute, Gurugram, India
| | - Sanjiv Saigal
- Max Centre for Gastroenterology, Hepatology and Endoscopy, Max Hospitals, Saket, New Delhi, India
| | - Shalimar
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Anil Arora
- Institute of Liver, Gastroenterology and Pancreatico-Biliary Sciences, Sir Ganga Ram Hospital, New Delhi, India
| | - Anil C. Anand
- Department of Gastroenterology and Hepatology, Kalinga Institute of Medical Sciences, Bhubaneswar, India
| | - Ashim Das
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashish Kumar
- Institute of Liver, Gastroenterology and Pancreatico-Biliary Sciences, Sir Ganga Ram Hospital, New Delhi, India
| | | | - Krishnadas Devadas
- Department of Gastroenterology, Government Medical College, Trivandrum, India
| | | | - Manas Panigrahi
- Department of Gastroenterology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Manav Wadhawan
- Institute of Liver & Digestive Diseases, BLK Super Speciality Hospital, Delhi, India
| | - Manish Rathi
- Department of Nephrology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manoj Kumar
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | | | - Neeraj Saraf
- Department of Hepatology, Medanta, The Medicity, Gurugram, India
| | - Preetam Nath
- Department of Gastroenterology and Hepatology, Kalinga Institute of Medical Sciences, Bhubaneswar, India
| | - Sanjib Kar
- Department of Gastroenterology and Hepatology, Gastro Liver Care, Cuttack, India
| | - Seema Alam
- Department of PediatricHepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Samir Shah
- Department of Hepatology, Institute of Liver Disease, HPB Surgery and Transplant, Global Hospitals, Mumbai, India
| | - Sandeep Nijhawan
- Department of Gastroenterology, Sawai Man Singh Medical College, Jaipur, India
| | - Subrat K. Acharya
- Department of Gastroenterology and Hepatology, Kalinga Institute of Medical Sciences, Bhubaneswar, India
| | - Vinayak Aggarwal
- Department of Cardiology, Fortis Memorial Research Institute, Gurugram, India
| | - Vivek A. Saraswat
- Department of Hepatology, Pancreatobiliary Sciences and Liver Transplantation, Mahatma Gandhi University of Medical Sciences and Technology, Jaipur, India
| | - Yogesh K. Chawla
- Department of Gastroenterology and Hepatology, Kalinga Institute of Medical Sciences, Bhubaneswar, India
| |
Collapse
|
45
|
Harrison SA, Allen AM, Dubourg J, Noureddin M, Alkhouri N. Challenges and opportunities in NASH drug development. Nat Med 2023; 29:562-573. [PMID: 36894650 DOI: 10.1038/s41591-023-02242-6] [Citation(s) in RCA: 159] [Impact Index Per Article: 79.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/20/2022] [Indexed: 03/11/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) and its more severe form, nonalcoholic steatohepatitis (NASH), represent a growing worldwide epidemic and a high unmet medical need, as no licensed drugs have been approved thus far. Currently, histopathological assessment of liver biopsies is mandatory as a primary endpoint for conditional drug approval. This requirement represents one of the main challenges in the field, as there is substantial variability in this invasive histopathological assessment, which leads to dramatically high screen-failure rates in clinical trials. Over the past decades, several non-invasive tests have been developed to correlate with liver histology and, eventually, outcomes to assess disease severity and longitudinal changes non-invasively. However, further data are needed to ensure their endorsement by regulatory authorities as alternatives to histological endpoints in phase 3 trials. This Review describes the challenges of drug development in NAFLD-NASH trials and potential mitigating strategies to move the field forward.
Collapse
Affiliation(s)
| | - Alina M Allen
- Division of Gastroenterology and Hepatology, Mayo Clinic Rochester, Rochester, MN, USA
| | | | | | - Naim Alkhouri
- Department of Hepatology, Arizona Liver Health, Chandler, AZ, USA
| |
Collapse
|
46
|
Loomba R, Lawitz EJ, Frias JP, Ortiz-Lasanta G, Johansson L, Franey BB, Morrow L, Rosenstock M, Hartsfield CL, Chen CY, Tseng L, Charlton RW, Mansbach H, Margalit M. Safety, pharmacokinetics, and pharmacodynamics of pegozafermin in patients with non-alcoholic steatohepatitis: a randomised, double-blind, placebo-controlled, phase 1b/2a multiple-ascending-dose study. Lancet Gastroenterol Hepatol 2023; 8:120-132. [PMID: 36521501 DOI: 10.1016/s2468-1253(22)00347-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Management strategies for non-alcoholic steatohepatitis (NASH) are based predominantly on lifestyle modification, with no approved disease-modifying drugs yet available. We aimed to evaluate the safety, pharmacokinetics, and pharmacodynamics of pegozafermin (BIO89-100), a glycoPEGylated FGF21 analogue, in participants with NASH. METHODS This randomised, double-blind, placebo-controlled, phase 1b/2a multiple-ascending-dose study enrolled adults (aged 21-75 years) who had NASH with stage F1-F3 fibrosis, or non-alcoholic fatty liver disease and a high risk of NASH (referred to in this study as phenotypic NASH) due to central obesity with type 2 diabetes, or central obesity with increased alanine aminotransferase (ALT) or a Fibroscan score of 7 kPa or greater, across 12 specialist centres and clinics in the USA. Patients were centrally randomised by use of an interactive web response system to receive subcutaneously administered pegozafermin (3, 9, 18, or 27 mg once weekly; 18 or 36 mg once every 2 weeks) or placebo for 12 weeks. The primary endpoints were the safety, tolerability, and pharmacokinetics of pegozafermin. This trial is registered with ClinicalTrials.gov (NCT04048135). FINDINGS Between July 29, 2019, and Aug 3, 2020, 275 participants were screened and 81 (15 [19%] with biopsy-confirmed NASH) were randomly assigned: 62 to pegozafermin (six to 3 mg once weekly, 12 to 9 mg once weekly, 11 to 18 mg once weekly, ten to 27 mg once weekly, 14 to 18 mg once every 2 weeks, and nine to 36 mg once every 2 weeks) and 19 to placebo; 63 received pegozafermin and 18 received placebo, as one participant in the placebo group inadvertently received 3 mg pegozafermin once weekly. Adverse events were reported in eight (44%) of 18 participants in the pooled placebo group, six (86%) of seven in the 3 mg once weekly pegozafermin group, four (33%) of 12 in the 9 mg once weekly group, seven (64%) of 11 in the 18 mg once weekly group, seven (70%) of ten in the 27 mg once weekly group, eight (57%) of 14 in the 18 mg once every 2 weeks group, and eight (89%) of nine in the 36 mg once every 2 weeks group. The most common treatment-related adverse event was mild increased appetite (in ten [16%] of 63 participants in the pooled pegozafermin group vs none of 18 in the pooled placebo group), which was not associated with bodyweight gain. Two patients discontinued treatment due to an adverse event (one each in the 27 mg once weekly and 18 mg once every 2 weeks groups). No treatment-related serious adverse events or deaths occurred. Dose-proportional pharmacokinetics were observed. Anti-drug antibodies were detected in 41 (65%) of 63 participants treated with pegozafermin. By week 13, pegozafermin significantly reduced the least squares mean (LSM) absolute differences in hepatic fat fraction versus pooled placebo (-8·9% [95% CI -14·8 to -3·1; p=0·0032] for 3 mg once weekly, -11·5% [-16·1 to -6·9; p<0·0001] for 9 mg once weekly, -8·9% [-13·7 to -4·2; p=0·0004] for 18 mg once weekly, -14·9% [-20·1 to -9·7; p<0·0001] for 27 mg once weekly, -10·4% [-14·7 to -6·1; p<0·0001] for 18 mg once every 2 weeks, and -11·1% [-16·2 to -6·0; p<0·0001] for 36 mg once every 2 weeks). At week 13, significant LSM relative reductions versus pooled placebo in ALT were observed for pegozafermin 9 mg once weekly, 18 mg once weekly, 27 mg once weekly, and 36 mg once every 2 weeks. At week 13, significant LSM relative reductions versus pooled placebo in aspartate aminotransferase were observed for pegozafermin 3 mg once weekly, 27 mg once weekly, and 36 mg once every 2 weeks. Significant improvements were also observed with pegozafermin treatment for triglycerides (9 mg once weekly, 27 mg once weekly, and 18 mg once every 2 weeks), LDL-C (9 mg once weekly and 27 mg once weekly), HDL-C (3 mg once weekly and 18 mg once every 2 weeks), non-HDL-C (9 mg once weekly and 27 mg once weekly), adiponectin (all doses except for 36 mg once every 2 weeks), PRO-C3 (27 mg once weekly), and bodyweight (27 mg once weekly). Changes in insulin resistance and HbA1c were not significant. INTERPRETATION Pegozafermin was generally well tolerated and associated with clinically meaningful reductions in liver fat, measures of liver function, and circulating lipids. Further evaluation of pegozafermin in individuals with NASH is warranted. FUNDING 89bio.
Collapse
Affiliation(s)
- Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Eric J Lawitz
- Texas Liver Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | | | | | | | | | | | - Moti Rosenstock
- 89bio, Preclinical and Clinical Development, Rehovot, Israel
| | | | - Chao-Yin Chen
- 89bio, Preclinical and Clinical Development, San Francisco, CA, USA
| | - Leo Tseng
- 89bio, Preclinical and Clinical Development, San Francisco, CA, USA
| | - R Will Charlton
- 89bio, Preclinical and Clinical Development, San Francisco, CA, USA
| | - Hank Mansbach
- 89bio, Preclinical and Clinical Development, San Francisco, CA, USA
| | - Maya Margalit
- 89bio, Preclinical and Clinical Development, Rehovot, Israel.
| |
Collapse
|
47
|
High Meat Consumption Is Prospectively Associated with the Risk of Non-Alcoholic Fatty Liver Disease and Presumed Significant Fibrosis. Nutrients 2022; 14:nu14173533. [PMID: 36079791 PMCID: PMC9459934 DOI: 10.3390/nu14173533] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has been associated with meat consumption in cross-sectional studies. However, only a few prospective studies have been conducted, and they did not test for liver fibrosis. We aimed to assess the association between meat consumption changes and the incidence and remission of NAFLD and significant liver fibrosis. We used a prospective cohort study design, including 316 subjects aged 40–70 years, participating in baseline and follow-up evaluations at Tel-Aviv Medical Center. NAFLD was determined by liver ultrasound or controlled attenuation parameter (CAP), and liver fibrosis was determined by FibroScan. Meat consumption (g/day) was assessed by a food frequency questionnaire (FFQ). In multivariable-adjusted analyses, high consumption of red and/or processed meat (≥gender-specific median) was associated with a higher risk of NAFLD with elevated alanine aminotransferase (ALT) (OR = 3.75, 1.21–11.62, p = 0.022). Consistently high (in both baseline and follow-up evaluations) total meat consumption was associated with 2.55-fold (95% CI 1.27–5.12, p = 0.009) greater odds for new onset and/or persistence of NAFLD compared to consistently low meat consumption. A similar association was shown for consistently high consumption of red and/or processed meat (OR = 2.12, 95% CI 1.11–4.05, p = 0.022). Consistently high red and/or processed meat consumption was associated with 4.77-fold (95% CI 1.36–16.69, p = 0.014) greater odds for significant fibrosis compared to consistently low consumption. Minimizing the consumption of red and/or processed meat may help prevent NAFLD and significant fibrosis.
Collapse
|
48
|
Abstract
Initially a condition that received limited recognition and whose clinical impact was controversial, non-alcoholic steatohepatitis (NASH) has become a leading cause of chronic liver disease. Although there are no approved therapies, major breakthroughs, which will be reviewed here, have paved the way for future therapeutic successes. The unmet medical need in NASH is no longer disputed, and progress in the understanding of its pathogenesis has resulted in the identification of many pharmacological targets. Key surrogate outcomes for therapeutic trials are now accepted by regulatory agencies, thus creating a path for drug registration. A set of non-invasive measurements enabled early-stage trials to be conducted expeditiously, thus providing early indications on the biological and possibly clinical actions of therapeutic candidates. This generated efficacy results for a number of highly promising compounds that are now in late-stage development. Intense research aimed at further improving the assessment of histological endpoints and in developing non-invasive predictive biomarkers is underway. This will help improve the design and feasibility of successful trials, ultimately providing patients with therapeutic options that can change the course of the disease.
Collapse
|
49
|
Fouad Y, Palmer M, Chen M, Regev A, Banerjee R, Myers R, Riccio R, Torstenson R, Younes R, Arora PS, Landgren H, Karsdal MA, Blake M, Shapiro DA, Gruss HJ, Sheikh MY, Attia D, Bollipo S, Smith AD, Freilich B, Gish RG, Schuppan D. Redefinition of Fatty Liver Disease from NAFLD to MAFLD through the Lens of Drug Development and Regulatory Science. J Clin Transl Hepatol 2022; 10:374-382. [PMID: 35528969 PMCID: PMC9039717 DOI: 10.14218/jcth.2021.00408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 12/04/2022] Open
Abstract
Metabolic (dysfunction)-associated fatty liver disease (MAFLD) affects a third of the population and is a leading cause of liver-related death. Since no effective treatments exist, novel approaches to drug development are required. Unfortunately, outdated terminology and definitions of the disease are hampering efforts to develop new drugs and treatments. An international consensus panel has put forth an influential proposal for the disease to be renamed from nonalcoholic fatty liver disease (NAFLD) to MAFLD, including a proposal for how the disease should be diagnosed. As allies with the many stakeholders in MAFLD care-including patients, patients' advocates, clinicians, researchers, nurse and allied health groups, regional societies, and others-we are aware of the negative consequences of the NAFLD term and definition. We share the sense of urgency for change and will act in new ways to achieve our goals. Although there is much work to be done to overcome clinical inertia and reverse worrisome recent trends, the MAFLD initiative provides a firm foundation to build on. It provides a roadmap for moving forward toward more efficient care and affordable, sustainable drug and device innovation in MAFLD care. We hope it will bring promising new opportunities for a brighter future for MAFLD care and improve care and outcomes for patients of one of the globe's largest and costliest public health burdens. From this viewpoint, we have revisited this initiative through the perspectives of drug development and regulatory science.
Collapse
Affiliation(s)
- Yasser Fouad
- Department of Gastroenterology, Hepatology, and Endemic Medicine, Faculty of Medicine, Minia University, Minia, Egypt
| | - Melissa Palmer
- Gannex/Ascletis Pharma Co Ltd, Beijing, China
- Liver Consulting LLC, New York, NY, USA
| | - Minjun Chen
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - Arie Regev
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Rob Myers
- Gilead Sciences Inc, Foster City, CA, USA
| | | | | | - Ramy Younes
- Boehringer Ingelheim International, GmbH, Ingelheim, Germany
| | | | | | | | | | | | | | | | - Dina Attia
- Gastroenterology and Hepatology Department, Beni-Suef University, Beni Suef, Egypt
| | - Steven Bollipo
- Department of Gastroenterology and Endoscopy, John Hunter Hospital, Newcastle, NSW, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia
| | | | | | - Robert G. Gish
- Division of Gastroenterology and Hepatology, Loma Linda University, Loma Linda, CA, USA
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
50
|
Fraser DA, Wang X, Lund J, Nikolić N, Iruarrizaga-Lejarreta M, Skjaeret T, Alonso C, Kastelein JJP, Rustan AC, Kim YO, Schuppan D. A structurally engineered fatty acid, icosabutate, suppresses liver inflammation and fibrosis in NASH. J Hepatol 2022; 76:800-811. [PMID: 34915054 DOI: 10.1016/j.jhep.2021.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Although long-chain omega-3 fatty acids (LCn-3FAs) regulate inflammatory pathways of relevance to non-alcoholic steatohepatitis (NASH), their susceptibility to peroxidation may limit their therapeutic potential. We compared the metabolism of eicosapentaenoic acid (EPA) with an engineered EPA derivative (icosabutate) in human hepatocytes in vitro and their effects on hepatic glutathione metabolism, oxidised lipids, inflammation, and fibrosis in a dietary mouse model of NASH, and in patients prone to fatty liver disease. METHODS Oxidation rates and cellular partitioning of EPA and icosabutate were compared in primary human hepatocytes. Comparative effects of delayed treatment with either low- (56 mg/kg) or high-dose (112 mg/kg) icosabutate were compared with EPA (91 mg/kg) or a glucagon-like peptide 1 receptor agonist in a choline-deficient (CD), L-amino acid-defined NASH mouse model. To assess the translational potential of these findings, effects on elevated liver enzymes and fibrosis-4 (FIB-4) score were assessed in overweight, hyperlipidaemic patients at an increased risk of NASH. RESULTS In contrast to EPA, icosabutate resisted oxidation and incorporation into hepatocytes. Icosabutate also reduced inflammation and fibrosis in conjunction with a reversal of CD diet-induced changes in the hepatic lipidome. EPA had minimal effect on any parameter and even worsened fibrosis in association with depletion of hepatic glutathione. In dyslipidaemic patients at risk of NASH, icosabutate rapidly normalised elevated plasma ALT, GGT and AST and reduced FIB-4 in patients with elevated ALT and/or AST. CONCLUSION Icosabutate does not accumulate in hepatocytes and confers beneficial effects on hepatic oxidative stress, inflammation and fibrosis in mice. In conjunction with reductions in markers of liver injury in hyperlipidaemic patients, these findings suggest that structural engineering of LCn-3FAs offers a novel approach for the treatment of NASH. LAY SUMMARY Long-chain omega-3 fatty acids are involved in multiple pathways regulating hepatic inflammation and fibrosis, but their susceptibility to peroxidation and use as an energy source may limit their clinical efficacy. Herein, we show that a structurally modified omega-3 fatty acid, icosabutate, overcame these challenges and had markedly improved antifibrotic efficacy in a mouse model of non-alcoholic steatohepatitis. A hepatoprotective effect of icosabutate was also observed in patients with elevated circulating lipids, in whom it led to rapid reductions in markers of liver injury.
Collapse
Affiliation(s)
| | - Xiaoyu Wang
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, Mainz, Germany
| | - Jenny Lund
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Nataša Nikolić
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | | | | | - Cristina Alonso
- OWL Metabolomics, Parque Tecnológico de Bizkaia, Derio, Spain
| | - John J P Kastelein
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Arild C Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Yong Ook Kim
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, Mainz, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|