1
|
Obeid R, Mohr L, White BA, Heine GH, Emrich I, Geisel J, Carter RC. Circulating trimethylamine N-oxide and cardiovascular, cerebral, and renal diseases including mortality: Umbrella review of published systematic reviews and meta-analyses. Nutr Metab Cardiovasc Dis 2025; 35:103908. [PMID: 40118729 DOI: 10.1016/j.numecd.2025.103908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/02/2025] [Accepted: 02/07/2025] [Indexed: 03/23/2025]
Abstract
AIMS Several systematic reviews/meta-analyses of observational studies have demonstrated associations between circulating trimethylamine-N-oxide (TMAO) and cardiovascular, cerebral, and renal diseases, including mortality. However, causal roles for TMAO in these diseases are controversial. Interventions are lacking to show whether lowering TMAO in clinical trials could reduce the risks of these diseases. TMAO could still serve as a prognostic marker for the mentioned outcomes, but investigating this potential role requires robust methodologies. We conducted a systematic search and critical evaluation of published systematic reviews/meta-analyses in the field. DATA SYNTHESIS We identified 27 systematic reviews/meta-analyses on the association between TMAO and stroke (n = 7), cardiovascular disease including cause-specific and/or all-cause mortality (n = 14), and other related outcomes (n = 6). The majority of the systematic reviews/meta-analyses found higher blood TMAO concentrations in patients who were positive for the outcomes. Primary studies included populations with multiple risk factors for the given outcomes and did not sufficiently account for potential confounders. Prospective studies examining associations between baseline TMAO and subsequent disease outcomes in healthy populations were entirely absent. Furthermore, we identified serious flaws in methods, conduct and reporting in the majority of the published systematic reviews/meta-analyses, thus leading to critically low confidence in the results. CONCLUSIONS High quality systematic reviews/meta-analyses examining the associations between TMAO and cardiovascular or cerebral disease are needed to examine potential causal and/or predictive roles of TMAO in these diseases. This study is registered at the International Prospective Register of Systematic Reviews (PROSPERO) (CRD42024534940).
Collapse
Affiliation(s)
- Rima Obeid
- Department of Clinical Chemistry and Laboratory Medicine, Saarland University Hospital, Homburg, Saar, Germany.
| | - Lorenz Mohr
- Department of Clinical Chemistry and Laboratory Medicine, Saarland University Hospital, Homburg, Saar, Germany
| | - Bryan A White
- University of Illinois, Department of Animal Sciences; and Fellow American Academy of Microbiology, 1207 W. Gregory Drive, Urbana, Il, 61801, United States
| | - Gunnar H Heine
- Agaplesion Markus Hospital, Medical Clinic II, Wilhelm-Epstein Straße 4, D-60431, Frankfurt am Main, Germany; Department of Internal Medicine IV-Nephrology and Hypertension, Saarland University Hospital and Saarland University Faculty of Medicine, D-66421, Homburg, Germany
| | - Insa Emrich
- Saarland University Medical Center, Department of Internal Medicine III, Cardiology, Angiology, and Intensive Care Medicine, Homburg, Germany
| | - Juergen Geisel
- Department of Clinical Chemistry and Laboratory Medicine, Saarland University Hospital, Homburg, Saar, Germany
| | - R Colin Carter
- Departments of Pediatrics and Emergency Medicine and the Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, United States; Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| |
Collapse
|
2
|
Guo Y, Sun S, Wang Y, Chen S, Kou Z, Yuan P, Han W, Yu X. Microbial dysbiosis in obstructive sleep apnea: a systematic review and meta-analysis. Front Microbiol 2025; 16:1572637. [PMID: 40444003 PMCID: PMC12119640 DOI: 10.3389/fmicb.2025.1572637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 05/01/2025] [Indexed: 06/02/2025] Open
Abstract
Background The association between the microbiota and obstructive sleep apnea (OSA) remains understudied. In this study, we conducted a comprehensive systematic review and meta-analysis of studies investigating the diversity and relative abundance of microbiota in the gut, respiratory tracts and oral cavity of patients with OSA, aiming to provide an in-depth characterization of the microbial communities associated with OSA. Methods A comprehensive literature search across PubMed, the Cochrane Library, Web of Science, and Embase databases were conducted to include studies published prior to Dec 2024 that compared the gut, respiratory and oral microbiota between individuals with and without OSA. The findings regarding alpha-diversity, beta-diversity, and relative abundance of microbiota extracted from the included studies were summarized. This meta-analysis was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and the study protocol was registered with PROSPERO (CRD42024525114). Results We identified a total of 753 articles, out of which 27 studies were ultimately included in the systematic review, involving 1,381 patients with OSA and 692 non-OSA populations, including 1,215 OSA patients and 537 non-OSA populations in adults and 166 OSA patients and 155 non-OSA populations in children. The results of alpha diversity revealed a reduction in the Chao1 index (SMD = -0.40, 95% CI = -0.76 to -0.05), Observed species (SMD = -0.50, 95% CI = -0.89 to -0.12) and Shannon index (SMD = -0.27, 95% CI = -0.47 to -0.08) of the gut microbiota in patients with OSA. Beta diversity analysis indicated significant differences in the gut, respiratory and oral microbial community structure between individuals with OSA and those without in more than half of the included studies. Furthermore, in comparison to the non-OSA individuals, the gut environment of patients with OSA exhibited an increased relative abundance of phylum Firmicutes, along with elevated levels of genera Lachnospira; conversely, there was a decreased relative abundance of phylum Bacteroidetes and genus Ruminococcus and Faecalibacterium. Similarly, within the oral environment of OSA patients, there was an elevated relative abundance of phylum Actinobacteria and genera Neisseria, Rothia, and Actinomyces. Conclusion Patients with OSA exhibit reduced diversity, changes in bacterial abundance, and altered structure in the microbiota, especially in the gut microbiota. The results of this study provide basic evidence for further exploration of microbiome diagnostic markers and potential intervention strategies for OSA.
Collapse
Affiliation(s)
- Yang Guo
- School of Medical Laboratory, Shandong Second Medical University, Weifang, China
| | - Shuqi Sun
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Yaoyao Wang
- Department of Medicine, Qingdao University, Qingdao, China
| | - Shiyang Chen
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Ziwei Kou
- Department of Medicine, Qingdao University, Qingdao, China
| | - Peng Yuan
- Qingdao Key Laboratory of Common Diseases, Department of Respiratory and Critical Medicine, Department of Emergency, Department of General Practice, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Wei Han
- Qingdao Key Laboratory of Common Diseases, Department of Respiratory and Critical Medicine, Department of Emergency, Department of General Practice, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Xinjuan Yu
- Clinical Research Center, Qingdao Key Laboratory of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
3
|
Rukavina Mikusic NL, Prince PD, Choi MR, Chuffa LGA, Simão VA, Castro C, Manucha W, Quesada I. Microbiota, mitochondria, and epigenetics in health and disease: converging pathways to solve the puzzle. Pflugers Arch 2025; 477:635-655. [PMID: 40111427 DOI: 10.1007/s00424-025-03072-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
Dysbiosis, which refers to an imbalance in the composition of the gut microbiome, has been associated with a range of metabolic disorders, including type 2 diabetes, obesity, and metabolic syndrome. Although the exact mechanisms connecting gut dysbiosis to these conditions are not fully understood, various lines of evidence strongly suggest a substantial role for the interaction between the gut microbiome, mitochondria, and epigenetics. Current studies suggest that the gut microbiome has the potential to affect mitochondrial function and biogenesis through the production of metabolites. A well-balanced microbiota plays a pivotal role in supporting normal mitochondrial and cellular functions by providing metabolites that are essential for mitochondrial bioenergetics and signaling pathways. Conversely, in the context of illnesses, an unbalanced microbiota can impact mitochondrial function, leading to increased aerobic glycolysis, reduced oxidative phosphorylation and fatty acid oxidation, alterations in mitochondrial membrane permeability, and heightened resistance to cellular apoptosis. Mitochondrial activity can also influence the composition and function of the gut microbiota. Because of the intricate interplay between nuclear and mitochondrial communication, the nuclear epigenome can regulate mitochondrial function, and conversely, mitochondria can produce metabolic signals that initiate epigenetic changes within the nucleus. Given the epigenetic modifications triggered by metabolic signals from mitochondria in response to stress or damage, targeting an imbalanced microbiota through interventions could offer a promising strategy to alleviate the epigenetic alterations arising from disrupted mitochondrial signaling.
Collapse
Affiliation(s)
- Natalia Lucia Rukavina Mikusic
- Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET) CONICET, Universidad de Buenos Aires, 1122, Buenos Aires, Argentina
- Departamento de Ciencias Biológicas, Cátedra de Anatomía E Histología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113, Buenos Aires, Argentina
| | - Paula Denise Prince
- Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET) CONICET, Universidad de Buenos Aires, 1122, Buenos Aires, Argentina
- Departamento de Ciencias Químicas, Cátedra de Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113, Buenos Aires, Argentina
| | - Marcelo Roberto Choi
- Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET) CONICET, Universidad de Buenos Aires, 1122, Buenos Aires, Argentina.
- Departamento de Ciencias Biológicas, Cátedra de Anatomía E Histología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113, Buenos Aires, Argentina.
| | - Luiz Gustavo A Chuffa
- Department of Structural and Functional Biology, Institute of Biosciences, UNESP - São Paulo State University, P.O. Box 18618-689, Botucatu, São Paulo, Zip Code 510, Brazil
| | - Vinícius Augusto Simão
- Department of Structural and Functional Biology, Institute of Biosciences, UNESP - São Paulo State University, P.O. Box 18618-689, Botucatu, São Paulo, Zip Code 510, Brazil
| | - Claudia Castro
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU) CONICET-Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Walter Manucha
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU) CONICET-Universidad Nacional de Cuyo, Mendoza, Argentina.
- Laboratorio de Farmacología Básica y Traslacional, Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, 5500, Mendoza, Argentina.
| | - Isabel Quesada
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU) CONICET-Universidad Nacional de Cuyo, Mendoza, Argentina.
| |
Collapse
|
4
|
Liu J, Ge P, Luo Y, Sun Z, Luo X, Li H, Pei B, Xun L, Zhang X, Jiang Y, Wen H, Liu J, Yang Q, Ma S, Chen H. Decoding TMAO in the Gut-Organ Axis: From Biomarkers and Cell Death Mechanisms to Therapeutic Horizons. Drug Des Devel Ther 2025; 19:3363-3393. [PMID: 40322030 PMCID: PMC12049683 DOI: 10.2147/dddt.s512207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
The gut microbiota and its metabolites are bi-directionally associated with various human illnesses, which has received extensive attention. Trimethylamine N-oxide (TMAO) is a gut microbiota metabolite produced in the liver, which may serve the role of an "axis" connecting the gut and host organs. TMAO levels are significantly higher in the blood of individuals with cardiovascular, renal, neurological, and metabolic diseases. Endothelial cells are crucial for regulating microcirculation and maintaining tissue and organ barriers and are widely recognized as target cells for TMAO. TMAO not only induces endothelial dysfunction but also acts on various cell types, such as endothelial cells, epithelial cells, vascular smooth muscle cells, nerve cells, and pancreatic cells, triggering multiple cell death mechanisms, including necrosis and programmed cell death, thereby influencing host health. This paper thoroughly covers the origins, production, and metabolic pathways of TMAO, emphasizing its importance in the early detection and prognosis of human diseases in the "Gut-Organ" axis, as well as its mechanisms of influence on human diseases, particularly the cross-talk with cell death. Furthermore, we cover recent advances in treating human diseases by regulating gut microbiota structure and enzyme activity to influence TMAO metabolism and reduce TMAO levels, including the use of probiotics, prebiotics, antibiotics, anti-inflammatory drugs, antiplatelet drugs, hypoglycemic drugs, lipid-lowering drugs, and natural products.
Collapse
Affiliation(s)
- Jie Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Yalan Luo
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Zhenxuan Sun
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Xinyu Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Huijuan Li
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Boliang Pei
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Lu Xun
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Xuetao Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Yunfei Jiang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Haiyun Wen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Jin Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Qi Yang
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, People’s Republic of China
| | - Shurong Ma
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| |
Collapse
|
5
|
Zhou X, Zhang T, Jia S, Xia S. Multi-omics analysis identifies Sphingomonas and specific metabolites as key biomarkers in elderly Chinese patients with coronary heart disease. Front Microbiol 2025; 16:1452136. [PMID: 40336827 PMCID: PMC12058083 DOI: 10.3389/fmicb.2025.1452136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 03/31/2025] [Indexed: 05/09/2025] Open
Abstract
Background Abnormal component changes of gut microbiota are related to the pathogenesis and progression of coronary heart disease (CHD), and gut microbiota-derived metabolites are key factors in host-microbiome interactions. This study aimed to explore the key gut microbiota and metabolites, as well as their relationships in CHD. Methods Feces samples and blood samples were collected from CHD patients and healthy controls. Then, the obtained feces samples were sent for 16s rRNA gene sequencing, and the blood samples were submitted for metabolomics analysis. Finally, conjoint analysis of 16s rRNA gene sequencing and metabolomics data was performed. Results After sequencing, there were no significant differences in Chao 1, observed species, Simpson, Shannon, Pielou's evenness and Faith's PD between the CHD patients and controls. At phylum level, the dominant phyla were Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. At genus level, the abundance of Sphingomonas, Prevotella, Streptococcus, Desulfovibrio, and Shigella was relatively higher in CHD patients; whereas Roseburia, Corprococcus, and Bifidobacterium was relatively lower. Randomforest analysis showed that Sphingomonas was more important for CHD. Through metabolomic analysis, a total of 155 differential metabolites were identified, and were enriched in many signaling pathways. Additionally, the AUC of the conjoint analysis (0.908) was higher than that of gut microbiota species (0.742). Conclusion In CHD patients, the intestinal flora was disordered, as well as Sphingomonas and the identified differential metabolites may serve as was candidate biomarkers for CHD occurrence and progression.
Collapse
Affiliation(s)
- Xiaoshan Zhou
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Tianlong Zhang
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Sixiang Jia
- Department of Cardiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Shudong Xia
- Department of Cardiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| |
Collapse
|
6
|
Caradonna E, Abate F, Schiano E, Paparella F, Ferrara F, Vanoli E, Difruscolo R, Goffredo VM, Amato B, Setacci C, Setacci F, Novellino E. Trimethylamine-N-Oxide (TMAO) as a Rising-Star Metabolite: Implications for Human Health. Metabolites 2025; 15:220. [PMID: 40278349 PMCID: PMC12029716 DOI: 10.3390/metabo15040220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/26/2025] Open
Abstract
The intestinal microbiota, hosting trillions of microorganisms that inhabit the gastrointestinal tract, functions as a symbiotic organism that plays a crucial role in regulating health by producing biologically active molecules that can enter systemic circulation. Among them, trimethylamine-N-oxide (TMAO), an organic compound derived from dietary sources and microbial metabolism, has emerged as a critical biomarker linking diet, the gut microbiota, and the host metabolism to various pathological conditions. This comprehensive review highlights TMAO's biosynthesis, physiological functions, and clinical significance, focusing on its mechanistic contributions to cardiovascular and neurodegenerative diseases. Notably, TMAO-mediated pathways include endothelial dysfunction, inflammation via NLRP3 inflammasome activation, and cholesterol metabolism disruption, which collectively accelerate atherosclerosis and disease progression. Nonetheless, this work underscores the innovative potential of targeting TMAO through dietary, nutraceutical, and microbiota-modulating strategies to mitigate its pathological effects, marking a transformative approach in the prevention and management of TMAO-related disorders.
Collapse
Affiliation(s)
- Eugenio Caradonna
- Integrated Laboratory Medicine Services, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy (F.F.)
| | - Federico Abate
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy;
| | - Elisabetta Schiano
- Inventia Biotech-Healthcare Food Research Center S.r.l., Strada Statale Sannitica KM 20.700, 81020 Caserta, Italy;
| | - Francesca Paparella
- Integrated Laboratory Medicine Services, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy (F.F.)
| | - Fulvio Ferrara
- Integrated Laboratory Medicine Services, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy (F.F.)
| | - Emilio Vanoli
- School of Nursing, Cardiovascular Diseases, University of Pavia, 27100 Pavia, Italy;
| | | | - Vito Maria Goffredo
- Department of Interdisciplinary Medicine, Università Degli Studi di Bari, 70124 Bari, Italy;
| | - Bruno Amato
- Department of Public Health, Università Degli Studi di Napoli Federico II, 80138 Naples, Italy;
| | - Carlo Setacci
- Vascular and Endovascuar Surgery Unit, “Le Scotte” Hospital of Siena, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy;
| | - Francesco Setacci
- Vascular Surgery Unit, Università degli Studi di Enna “Kore”, 94100 Enna, Italy;
| | - Ettore Novellino
- Department of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy;
| |
Collapse
|
7
|
Aksoyalp ZŞ, Erdoğan BR, Aksun S, Sözmen MK, Aksun M, Buharalıoğlu CK, Altıncı-Karahan N, Turgut NH, Kaya-Temiz T. Trimethylamine N-oxide as a potential prognostic biomarker for mortality in patients with COVID-19 disease. Adv Med Sci 2025; 70:174-183. [PMID: 39920994 DOI: 10.1016/j.advms.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/30/2024] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
PURPOSE Trimethylamine N-oxide (TMAO) is suggested as a biomarker for inflammatory and cardiovascular diseases which are identified as risk factors for severe cases of coronavirus disease 2019 (COVID-19). Our primary aim was to assess prognostic potential of serum TMAO levels in predicting COVID-19-related mortality. The secondary aim was to examine the potential of various biochemical parameters, particularly those associated with inflammation or thrombosis, as predictors of mortality. PATIENTS AND METHODS In this prospective and single-centre study, COVID-19 patients were categorized as death (group 1) or discharged (group 2) based on their in-hospital mortality status. The characteristics of participants were documented, and clinical data, including TMAO, angiotensin-converting enzyme-2 (ACE2), and neutrophil to lymphocyte ratio (NLR), were determined. The association of these independent variables with the COVID-19-related mortality, was assessed by calculation of crude odds ratios (OR) in bivariate and logistic regression analysis. Receiver operation characteristic (ROC) analysis was used for cut-off values. RESULTS The serum levels of TMAO, ACE2 and NLR were markedly higher in group 1 on the days of hospital admission (p < 0.05, p < 0.05, and p < 0.01, respectively). Serum TMAO levels (OR 1.422; 95 % CI [1.067-1.894]; p = 0.016) and NLR (OR 1.166; 95 % CI [1.012-1.343]; p = 0.033) were determined as independent predictors for COVID-19-related mortality with after multivariate logistic regression analysis. The optimal cut-off values were detected as 7.9 ng/ml for TMAO (71 % sensitivity, 68 % specificity, AUC = 0.701). CONCLUSIONS The findings of this initial study indicate that serum TMAO levels and NLR may be useful in predicting mortality in the early stages of COVID-19.
Collapse
Affiliation(s)
| | - Betül Rabia Erdoğan
- Department of Pharmacology, Izmir Katip Celebi University, Izmir, Turkey; Turkish Medicines and Medical Devices Agency, Ankara, Turkey
| | - Saliha Aksun
- Department of Medical Biochemistry, Izmir Katip Celebi University, Izmir, Turkey
| | - Melih Kaan Sözmen
- Department of Public Health, Izmir Katip Celebi University, Izmir, Turkey; Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Murat Aksun
- Department of Anesthesiology and Reanimation, Izmir Katip Celebi University, Izmir, Turkey
| | | | - Nagihan Altıncı-Karahan
- Department of Anesthesiology and Reanimation, Izmir Atatürk Training and Research Hospital, Izmir, Turkey
| | | | - Tijen Kaya-Temiz
- Department of Medical Pharmacology, Izmir Katip Celebi University, Izmir, Turkey
| |
Collapse
|
8
|
Zhang L, Yin Y, Jin S. Gut microbial metabolites: The bridge connecting diet and atherosclerosis, and next-generation targets for dietary interventions. Microbiol Res 2025; 292:128037. [PMID: 39752807 DOI: 10.1016/j.micres.2024.128037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/05/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025]
Abstract
Mounting evidence indicates that gut microbial metabolites are central hubs linking the gut microbiota to atherosclerosis (AS). Gut microbiota enriched with pathobiont bacteria responsible for producing metabolites like trimethylamine N-oxide and phenylacetylglutamine are related to an increased risk of cardiovascular events. Furthermore, gut microbiota enriched with bacteria responsible for producing short-chain fatty acids, indole, and its derivatives, such as indole-3-propionic acid, have demonstrated AS-protective effects. This study described AS-related gut microbial composition and how microbial metabolites affect AS. Summary findings revealed gut microbiota and their metabolites-targeted diets could benefit AS treatment. In conclusion, dietary interventions centered on the gut microbiota represent a promising strategy for AS treatment, and understanding diet-microbiota interactions could potentially be devoted to developing novel anti-AS therapies.
Collapse
Affiliation(s)
- Liyin Zhang
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, Hubei 430077, China
| | - Yao Yin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, Hubei 430077, China
| | - Si Jin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, Hubei 430077, China.
| |
Collapse
|
9
|
Alzughayyar DKN, Weber RM, Husain S, Schoch N, Englert H. Impact of the Healthy Lifestyle Community Program (HLCP-3) on Trimethylamine N-Oxide (TMAO) and Risk Profile Parameters Related to Lifestyle Diseases During the Six Months Following an Intervention Study. Nutrients 2025; 17:298. [PMID: 39861431 PMCID: PMC11767924 DOI: 10.3390/nu17020298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/02/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
RATIONALE The dietary components choline, betaine, and L-carnitine are converted by intestinal microbiota into the molecule trimethylamine (TMA). In the human liver, hepatic flavin-containing monooxygenase 3 oxidizes TMA to trimethylamine-N-oxide (TMAO). TMAO is considered a candidate marker for the risk of cardiovascular disease. METHODOLOGY The Healthy Lifestyle Community Program cohort 3 (HLCP-3) intervention was conducted with participants recruited from the general population in Germany (intervention: n = 99; control: n = 48). The intervention included intensive educational workshops, seminars, and coaching activities. The assessment was conducted using a complete case analysis (CCA) of the participants. The intervention was carried out for a ten-week intensive phase and an alumni phase. The interventional program emphasizes adopting a healthy plant-based diet and reducing meat consumption, as adherence to such a diet may lead to lowering TMAO levels. Additionally, it provides general recommendations about physical activity, stress management, and community support. The control group did not receive any intervention. TMAO was evaluated using stable isotope dilution liquid chromatography, and tandem mass spectrometry was used to measure fasting plasma levels of TMAO. OBJECTIVES The present study aimed to determine the impact of the Healthy Lifestyle Community Program (HLCP-3) on risk profiles for lifestyle-related diseases and TMAO plasma levels. RESULTS Significant decreases in most risk profile parameters were detected, and a non-significant decrease in plasma TMAO levels was observed in the intervention group (0.37 (-1.33; 0.59) µmol/L). Furthermore, for the intervention group, after a six-month follow-up period, there was a significant negative correlation between higher healthy plant diet index (hPDI) scores and a decrease in plasma TMAO (ß = -0.200, p = 0.027). Additionally, a significant negative correlation was observed between the TMAO level and the scores for adherence to the plant diet index (PDI) (r = -0.195; p = 0.023). CONCLUSIONS HLCP-3 is effective at improving adherence to a plant-based diet and improving risk profile parameters. However, long-term interventions involving stricter dietary programs in the sense of a plant-based diet are recommended if significant decreases in TMAO levels are to be obtained.
Collapse
Affiliation(s)
- Dima-Karam Nasereddin Alzughayyar
- Faculty for Biology, University of Munster, Schlossplatz 4, D-48149 Munster, Germany
- Department of Nutrition, University of Applied Sciences, Corrensstraße 25, D-48149 Munster, Germany; (R.-M.W.); (S.H.); (N.S.); (H.E.)
| | - Ragna-Marie Weber
- Department of Nutrition, University of Applied Sciences, Corrensstraße 25, D-48149 Munster, Germany; (R.-M.W.); (S.H.); (N.S.); (H.E.)
| | - Sarah Husain
- Department of Nutrition, University of Applied Sciences, Corrensstraße 25, D-48149 Munster, Germany; (R.-M.W.); (S.H.); (N.S.); (H.E.)
| | - Nora Schoch
- Department of Nutrition, University of Applied Sciences, Corrensstraße 25, D-48149 Munster, Germany; (R.-M.W.); (S.H.); (N.S.); (H.E.)
| | - Heike Englert
- Department of Nutrition, University of Applied Sciences, Corrensstraße 25, D-48149 Munster, Germany; (R.-M.W.); (S.H.); (N.S.); (H.E.)
| |
Collapse
|
10
|
Wang X, Cui J, Gu Z, Guo L, Liu R, Guo Y, Qin N, Yang Y. Aged garlic oligosaccharides modulate host metabolism and gut microbiota to alleviate high-fat and high-cholesterol diet-induced atherosclerosis in ApoE -/- mice. Food Chem 2025; 463:141409. [PMID: 39326312 DOI: 10.1016/j.foodchem.2024.141409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/11/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
Atherosclerosis (AS) is a cardiovascular disease caused by excessive accumulation of lipids in arterial walls. In this study, we developed an AS model in ApoE-/- mice using a high-fat, high-cholesterol diet and investigated the anti-AS mechanism of aged garlic oligosaccharides (AGOs) by focusing on the gut microbiota. Results revealed that AGOs exhibited significant anti-AS effects, reduced trimethylamine N-oxide levels from 349.9 to 189.2 ng/mL, and reduced aortic lipid deposition from 31.7 % to 9.5 %. AGOs significantly increased the levels of short-chain fatty acids in feces, in which acetic, propionic, and butyric acids were increased from 1.580, 0.364, and 0.469 mg/g to 2.233, 0.774, and 0.881 mg/g, respectively. An analysis of the gut microbiota indicated that AGOs restored alpha and beta diversity, decreased the Firmicutes/Bacteroidetes ratio, and promoted the dominance of the genus Akkermansia. A metagenomic analysis revealed that AGOs alleviated AS through the ABC transporter pathway and the lipopolysaccharide biosynthesis pathway.
Collapse
Affiliation(s)
- Xiaomin Wang
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Yuci 030619, China
| | - Jianglu Cui
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Yuci 030619, China
| | - Ziyao Gu
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Yuci 030619, China
| | - Lili Guo
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Yuci 030619, China
| | - Rui Liu
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Yuci 030619, China
| | - Yu Guo
- Shanxi Agricultural Products Quality and Safety Center, Taiyuan 030006, China
| | - Nan Qin
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Yuci 030619, China.
| | - Yukun Yang
- School of Life Science, Xinghuacun College (Shanxi Institute of Brewing Technology and Industry), Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
11
|
Latif F, Mubbashir A, Khan MS, Shaikh Z, Memon A, Alvares J, Azhar A, Jain H, Ahmed R, Kanagala SG. Trimethylamine N-oxide in cardiovascular disease: Pathophysiology and the potential role of statins. Life Sci 2025; 361:123304. [PMID: 39672256 DOI: 10.1016/j.lfs.2024.123304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/23/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
Cardiovascular diseases are one of the leading causes of mortality and morbidity worldwide, with the total number of cases increasing to 523 million in 2019. Despite the advent of new drugs, cardiovascular mortality has increased at an alarming rate of 53.7 % from 12.1 million deaths in 1990. Recently, the role of gut microbiome metabolites, such as Trimethylamine N-Oxide (TMAO), in the pathogenesis of cardiovascular disease (CVD) has attracted significant attention. The gut microbiome is critical in various physiological processes including metabolism, immune function, and inflammation. Elevated TMAO levels are associated with atherosclerosis, heart failure, arrhythmia, and atrial fibrillation. TMAO accelerates atherosclerosis by promoting vascular inflammation and reducing reverse cholesterol transport, which leads to lipid accumulation and vessel narrowing. Previous research has indicated that a Mediterranean diet rich in fiber and phytochemicals can reduce TMAO levels by limiting precursors and fostering beneficial gut microbiota. Prebiotics and probiotics also decrease TMAO, while drugs such as meldonium, aspirin, and antibiotics have shown promise. However, recent studies have demonstrated major potential for the use of statins in reducing TMAO levels. Statin therapy can significantly reduce TMAO levels independent of their cholesterol-lowering effects. This reduction may involve direct interactions with the gut microbiome, changes in cholesterol metabolism, and changes in bile acid composition. This review aims to comprehensively evaluate the therapeutic potential of statins in reducing TMAO levels to improve CV outcomes.
Collapse
Affiliation(s)
- Fakhar Latif
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan.
| | - Ayesha Mubbashir
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan.
| | - Muhammad Sohaib Khan
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan.
| | - Zain Shaikh
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan.
| | - Aaima Memon
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan.
| | - Jenelle Alvares
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan.
| | - Ayesha Azhar
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan.
| | - Hritvik Jain
- Department of Internal Medicine, All India Institute of Medical Sciences (AIIMS), Jodhpur, India.
| | - Raheel Ahmed
- Heart Division Royal Brompton Hospital, Guy's and St Thomas' NHS Trust London, United Kingdom; National Heart and Lung Institute, Imperial College London London, United Kingdom.
| | - Sai Gautham Kanagala
- Department of Internal Medicine, Metropolitan Hospital Center, New York, NY, USA.
| |
Collapse
|
12
|
Nian F, Chen Y, Xia Q, Zhu C, Wu L, Lu X. Gut microbiota metabolite trimethylamine N-oxide promoted NAFLD progression by exacerbating intestinal barrier disruption and intrahepatic cellular imbalance. Int Immunopharmacol 2024; 142:113173. [PMID: 39298816 DOI: 10.1016/j.intimp.2024.113173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide, with the gut microbiota and its metabolites are important regulators of its progression. Trimethylamine N-oxide (TMAO), a metabolite of the gut microbiota, has been closely associated with various metabolic diseases, but its relationship with NAFLD remains to be elucidated. In this study, we found that fecal TMAO levels correlated with NAFLD severity. Moreover, TMAO promoted lipid deposition in HepG2 fatty liver cells and exacerbated hepatic steatosis in NAFLD rats. In the colon, TMAO undermined the structure and function of the intestinal barrier at various levels, further activated the TLR4/MyD88/NF-κB pathway, and inhibited the WNT/β-catenin pathway. In the liver, TMAO induced endothelial dysfunction with capillarization of liver sinusoidal endothelial cells, while modulating macrophage polarization. In conclusion, our study suggests that gut microbiota metabolite TMAO promotes NAFLD progression by impairing the gut and liver and that targeting TMAO could be an alternative therapeutic strategy for NAFLD.
Collapse
Affiliation(s)
- Fulin Nian
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Yueying Chen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiaoyun Xia
- Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Chen Zhu
- Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Longyun Wu
- Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Xiaolan Lu
- Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China.
| |
Collapse
|
13
|
Saparuddin F, Mohd Nawi MN, Ahmad Zamri L, Mansor F, Md Noh MF, Omar MA, Abdul Aziz NS, Wahab NA, Mediani A, Rajab NF, Sharif R. Metabolite, Biochemical, and Dietary Intake Alterations Associated with Lifestyle Interventions in Obese and Overweight Malaysian Women. Nutrients 2024; 16:3501. [PMID: 39458496 PMCID: PMC11510420 DOI: 10.3390/nu16203501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 10/28/2024] Open
Abstract
Differences in metabolic regulation among obesity phenotypes, specifically metabolically healthy obese (MHO) and metabolically unhealthy obese (MUO) women, may lead to varied responses to interventions, which could be elucidated through metabolomics. Therefore, this study aims to investigate the differences in metabolite profiles between MHO and MUO women and the changes following a lifestyle intervention. Serum samples from 36 MHO and 34 MUO women who participated in a lifestyle intervention for weight loss were analysed using untargeted proton nuclear magnetic resonance spectroscopy (1H NMR) at baseline and 6 months post-intervention. Anthropometric, clinical, and dietary intake parameters were assessed at both time points. Both groups showed differential metabolite profiles at baseline and after six months. Seven metabolites, including trimethylamine-N-oxide (TMAO), arginine, ribose, aspartate, carnitine, choline, and tyrosine, significantly changed between groups post-intervention, which all showed a decreasing pattern in MHO. Significant reductions in body weight and body mass index (BMI) in the MUO correlated with changes in the carnitine and tyrosine levels. In conclusion, metabolite profiles differed significantly between MHO and MUO women before and after a lifestyle intervention. The changes in carnitine and tyrosine levels in MUO were correlated with weight loss, suggesting potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Fatin Saparuddin
- Nutrition, Metabolism and Cardiovascular Research Center, Institute for Medical Research, National Institute of Health, Ministry of Health, Shah Alam 40170, Selangor, Malaysia
- Centre of Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Mohd Naeem Mohd Nawi
- Nutrition, Metabolism and Cardiovascular Research Center, Institute for Medical Research, National Institute of Health, Ministry of Health, Shah Alam 40170, Selangor, Malaysia
| | - Liyana Ahmad Zamri
- Nutrition, Metabolism and Cardiovascular Research Center, Institute for Medical Research, National Institute of Health, Ministry of Health, Shah Alam 40170, Selangor, Malaysia
| | - Fazliana Mansor
- Nutrition, Metabolism and Cardiovascular Research Center, Institute for Medical Research, National Institute of Health, Ministry of Health, Shah Alam 40170, Selangor, Malaysia
| | - Mohd Fairulnizal Md Noh
- Nutrition, Metabolism and Cardiovascular Research Center, Institute for Medical Research, National Institute of Health, Ministry of Health, Shah Alam 40170, Selangor, Malaysia
| | - Mohd Azahadi Omar
- Sector for Biostatistic and Data Repository, National Institute of Heath, Ministry of Health, Shah Alam 40170, Selangor, Malaysia
| | | | - Norasyikin A. Wahab
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Ahmed Mediani
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Nor Fadilah Rajab
- Centre of Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Razinah Sharif
- Centre of Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
14
|
Ho KJ, Muhammad LN, Khanh LN, Li XS, Carns M, Aren K, Kim SJ, Verma P, Hazen SL, Varga J. Elevated Circulating Levels of Gut Microbe-Derived Trimethylamine N-Oxide Are Associated with Systemic Sclerosis. J Clin Med 2024; 13:5984. [PMID: 39408044 PMCID: PMC11477889 DOI: 10.3390/jcm13195984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Alterations in fecal microbial communities in patients with systemic sclerosis (SSc) are common, but the clinical significance of this observation is poorly understood. Gut microbial production of trimethylamine (TMA), and its conversion by the host to trimethylamine N-oxide (TMAO), has clinical and mechanistic links to cardiovascular and renal diseases. Direct provision of TMAO has been shown to promote fibrosis and vascular injury, hallmarks of SSc. We sought to determine levels of TMAO and related metabolites in SSc patients and investigate associations between the metabolite levels with disease features. Methods: This is an observational case:control study. Adults with SSc (n = 200) and non-SSc controls (n = 400) were matched for age, sex, indices of renal function, diabetes mellitus, and cardiovascular disease. Serum TMAO, choline, betaine, carnitine, γ-butyrobetaine, and crotonobetaine were measured using stable isotope dilution liquid chromatography tandem mass spectrometry. Results: Median TMAO concentration was higher (p = 0.020) in SSc patients (3.31 [interquartile range 2.18, 5.23] µM) relative to controls (2.85 [IQR 1.88, 4.54] µM). TMAO was highest among obese and male SSc participants compared to all other groups. Following adjustment for sex, BMI, age, race, and eGFR in a quantile regression model, elevated TMAO levels remained associated with SSc at each quantile of TMAO. Conclusions: Patients with SSc have increased circulating levels of TMAO independent of comorbidities including age, sex, renal function, diabetes mellitus, and cardiovascular disease. As a potentially modifiable factor, further studies examining the link between TMAO and SSc disease severity and course are warranted.
Collapse
Affiliation(s)
- Karen J. Ho
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Lutfiyya N. Muhammad
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Linh Ngo Khanh
- Department of Cardiovascular Surgery, Houston Methodist Hospital, Houston, TX 77030, USA;
| | - Xinmin S. Li
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (X.S.L.); (S.L.H.)
| | - Mary Carns
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (M.C.); (K.A.)
| | - Kathleen Aren
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (M.C.); (K.A.)
| | - Seok-Jo Kim
- Institute of Basic Science, Sungkyunkwan University, Suwon 16419, Republic of Korea;
- Mondrian AI Co., Ltd., Incheon 21985, Republic of Korea
| | - Priyanka Verma
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Stanley L. Hazen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (X.S.L.); (S.L.H.)
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - John Varga
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| |
Collapse
|
15
|
Kang JW, Vemuganti V, Kuehn JF, Ulland TK, Rey FE, Bendlin BB. Gut microbial metabolism in Alzheimer's disease and related dementias. Neurotherapeutics 2024; 21:e00470. [PMID: 39462700 PMCID: PMC11585892 DOI: 10.1016/j.neurot.2024.e00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/29/2024] Open
Abstract
Multiple studies over the last decade have established that Alzheimer's disease and related dementias (ADRD) are associated with changes in the gut microbiome. These alterations in organismal composition result in changes in the abundances of functions encoded by the microbial community, including metabolic capabilities, which likely impact host disease mechanisms. Gut microbes access dietary components and other molecules made by the host and produce metabolites that can enter circulation and cross the blood-brain barrier (BBB). In recent years, several microbial metabolites have been associated with or have been shown to influence host pathways relevant to ADRD pathology. These include short chain fatty acids, secondary bile acids, tryptophan derivatives (such as kynurenine, serotonin, tryptamine, and indoles), and trimethylamine/trimethylamine N-oxide. Notably, some of these metabolites cross the BBB and can have various effects on the brain, including modulating the release of neurotransmitters and neuronal function, inducing oxidative stress and inflammation, and impacting synaptic function. Microbial metabolites can also impact the central nervous system through immune, enteroendocrine, and enteric nervous system pathways, these perturbations in turn impact the gut barrier function and peripheral immune responses, as well as the BBB integrity, neuronal homeostasis and neurogenesis, and glial cell maturation and activation. This review examines the evidence supporting the notion that ADRD is influenced by gut microbiota and its metabolites. The potential therapeutic advantages of microbial metabolites for preventing and treating ADRD are also discussed, highlighting their potential role in developing new treatments.
Collapse
Affiliation(s)
- Jea Woo Kang
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Vaibhav Vemuganti
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jessamine F Kuehn
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Tyler K Ulland
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Barbara B Bendlin
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
16
|
Talmor-Barkan Y, Yu J, Yacovzada NS, Pravda NS, Ayers C, de Lemos JA, Tang WHW, Hazen SL, Eisen A, Witberg G, Kornowski R, Neeland IJ. Trimethylamine-N-Oxide and Related Metabolites: Assessing Cardiovascular Risk in the Dallas Heart Study. Mayo Clin Proc 2024; 99:1606-1614. [PMID: 38678458 PMCID: PMC11449658 DOI: 10.1016/j.mayocp.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/14/2023] [Accepted: 12/26/2023] [Indexed: 05/01/2024]
Abstract
OBJECTIVE To evaluate the association between trimethylamine N-oxide (TMAO) and related metabolites with adverse cardiovascular events in a multiethnic urban primary prevention population. METHODS We performed a case-control study of 361 participants of the Dallas Heart Study, including 88 participants with an incident atherosclerotic cardiovascular disease (ASCVD) event and 273 controls matched for age, sex, and body mass index without an ASCVD event during 12 years of follow-up (January 1, 2000, through December 31, 2015). Plasma levels of TMAO, choline, carnitine, betaine, and butyrobetaine were measured by mass spectrometry. The differential odds for incident ASCVD by metabolite levels between cases and controls were compared by a conditional logistic regression model adjusted for cardiovascular risk factors. RESULTS Participants with incident ASCVD had higher levels of TMAO and related metabolites compared with those without ASCVD (P<.05 for all). Those with plasma TMAO concentrations in quartile 4 had a more than 2-fold higher odds of ASCVD compared with those in quartile 1 (odds ratio, 2.77 [95% CI, 1.05 to 7.7; P=.04] for hard ASCVD and 2.41 [95% CI, 1.049 to 5.709; P=.04]). Similar trends were seen with the related metabolites choline, betaine, carnitine, and butyrobetaine. CONCLUSION Our results suggest that TMAO and related metabolites are independently associated with ASCVD events. Although further studies are needed, measurement of TMAO and related metabolites may have a role in ASCVD risk stratification for primary prevention.
Collapse
Affiliation(s)
- Yeela Talmor-Barkan
- Department of Cardiology, Rabin Medical Center, Petah Tikva, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Jiao Yu
- Department of Health Policy and Management, Yale School of Public Health, Yale University, New Haven, CT
| | - Nancy-Sarah Yacovzada
- Department of Cardiology, Rabin Medical Center, Petah Tikva, Israel; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | | | - Colby Ayers
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas
| | - James A de Lemos
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas
| | - W H Wilson Tang
- Center for Microbiome and Human Health, Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH
| | - Stanley L Hazen
- Center for Microbiome and Human Health, Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH
| | - Alon Eisen
- Department of Cardiology, Rabin Medical Center, Petah Tikva, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Guy Witberg
- Department of Cardiology, Rabin Medical Center, Petah Tikva, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ran Kornowski
- Department of Cardiology, Rabin Medical Center, Petah Tikva, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ian J Neeland
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH; Case Western Reserve University School of Medicine, Cleveland, OH
| |
Collapse
|
17
|
Abstract
Significance: Aging is a complex process associated with an increased risk of many diseases, including thrombosis. This review summarizes age-related prothrombotic mechanisms in clinical settings of thromboembolism, focusing on the role of fibrin structure and function modified by oxidative stress. Recent Advances: Aging affects blood coagulation and fibrinolysis via multiple mechanisms, including enhanced oxidative stress, with an imbalance in the oxidant/antioxidant mechanisms, leading to loss of function and accumulation of oxidized proteins, including fibrinogen. Age-related prothrombotic alterations are multifactorial involving enhanced platelet activation, endothelial dysfunction, and changes in coagulation factors and inhibitors. Formation of more compact fibrin clot networks displaying impaired susceptibility to fibrinolysis represents a novel mechanism, which might contribute to atherothrombosis and venous thrombosis. Alterations to fibrin clot structure/function are at least in part modulated by post-translational modifications of fibrinogen and other proteins involved in thrombus formation, with a major impact of carbonylation. Fibrin clot properties are also involved in the efficacy and safety of therapy with oral anticoagulants, statins, and/or aspirin. Critical Issues: Since a prothrombotic state is observed in very elderly individuals free of diseases associated with thromboembolism, the actual role of activated blood coagulation in health remains elusive. It is unclear to what extent oxidative modifications of coagulation and fibrinolytic proteins, in particular fibrinogen, contribute to a prothrombotic state in healthy aging. Future Directions: Ongoing studies will show whether novel therapies that may alter oxidative stress and fibrin characteristics are beneficial to prevent atherosclerosis and thromboembolic events associated with aging.
Collapse
Affiliation(s)
- Małgorzata Konieczyńska
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- The St. John Paul II Hospital, Krakow, Poland
| | - Joanna Natorska
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- The St. John Paul II Hospital, Krakow, Poland
| | - Anetta Undas
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- The St. John Paul II Hospital, Krakow, Poland
| |
Collapse
|
18
|
Ahangari H, Bahramian B, Khezerlou A, Tavassoli M, Kiani‐Salmi N, Tarhriz V, Ehsani A. Association between monosodium glutamate consumption with changes in gut microbiota and related metabolic dysbiosis-A systematic review. Food Sci Nutr 2024; 12:5285-5295. [PMID: 39139924 PMCID: PMC11317663 DOI: 10.1002/fsn3.4198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 08/15/2024] Open
Abstract
Monosodium glutamate (MSG) is used as a common food additive in some foods. However, based on our search and knowledge, no comprehensive study discussed the effect of MSG on the human gut microbiome. In this study, the effects of MSG on the gut microbiome, liver, and kidney were performed. Data were collected from databases including PubMed, Scopus, Web of Science, and ScienceDirect using the search strategy and keywords. Finally, 14 eligible studies were selected for systematic review. This study provides a new perspective on the effects of MSG on the gut flora, shedding light on the potential relationship between MSG intake and human health.
Collapse
Affiliation(s)
- Hossein Ahangari
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
- Department of Food Science and Technology, Faculty of Nutrition and Food SciencesTabriz University of Medical SciencesTabrizIran
| | - Behnam Bahramian
- Department of Food Science and Technology, Faculty of Nutrition and Food SciencesTabriz University of Medical SciencesTabrizIran
| | - Arezou Khezerlou
- Department of Food Science and Technology, Faculty of Nutrition and Food SciencesTabriz University of Medical SciencesTabrizIran
| | - Milad Tavassoli
- Department of Food Science and Technology, Faculty of Nutrition and Food SciencesTabriz University of Medical SciencesTabrizIran
| | - Narges Kiani‐Salmi
- Department of Food Science and Technology, Faculty of Nutrition and Food SciencesTabriz University of Medical SciencesTabrizIran
| | - Vahideh Tarhriz
- Cardiovascular Center of ExcellenceLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
| | - Ali Ehsani
- Department of Food Science and Technology, Faculty of Nutrition and Food SciencesTabriz University of Medical SciencesTabrizIran
- Nutrition Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
19
|
Brandao CFC, Krempf M, Giolo de Carvalho F, Aguesse A, Junqueira-Franco MVM, Batitucci G, de Freitas EC, Noronha NY, Rodrigues GDS, Junqueira GP, Borba DA, Billon-Crossouard S, Croyal M, Marchini JS. Sphingolipid and Trimethylamine-N-Oxide (TMAO) Levels in Women with Obesity after Combined Physical Training. Metabolites 2024; 14:398. [PMID: 39195494 DOI: 10.3390/metabo14080398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 08/29/2024] Open
Abstract
Obesity causes metabolic changes, such as the development of cardiovascular diseases. Moreover, physical exercise promotes protection against these diseases. Thus, the objective of the present study was to evaluate whether combined physical training can improve the metabolic system of women with obesity, reducing plasma concentrations of trimethylamine N-oxide (TMAO) and sphingolipids, regardless of weight loss. Fourteen obese women (BMI 30-40 kg/m2), aged 20-40 years, sedentary, were submitted to 8 weeks of combined physical training (strength and aerobic exercises). The training was performed three times/week, 55 min/session, at 75-90% maximum heart rate. All participants were evaluated pre- and post-exercise intervention, and their body composition, plasma TMAO, creatinine, lipid profile, and sphingolipid concentrations were recorded. Maximum oxygen consumption (VO2max), Speed lactate threshold 1 (SpeedLT1), and Speed lactate threshold 2 (SpeedLT2) evaluated physical performance. Results: After combined exercise, it did not change body composition, but TMAO, total cholesterol, and sphingolipid concentrations significantly decreased (p < 0.05). There was an increase in physical performance by improving VO2max, SpeedLT1, and SpeedLT2 (p < 0.05). The combined physical exercise could induce cardiovascular risk protection by decreasing TMAO in obese women, parallel to physical performance improvement, independent of weight loss.
Collapse
Affiliation(s)
- Camila Fernanda Cunha Brandao
- Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14000-000, São Paulo, Brazil
- Department of Physical Education, State University of Minas Gerais, Divinópolis 35500-000, Minas Gerais, Brazil
| | - Michel Krempf
- NUN, INRA, The Research Unit of the Thorax Institute, CHU Nantes, UMR 1280, PhAN, IMAD, CRNH-O, F-44000 Nantes, France
| | - Flávia Giolo de Carvalho
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14000-000, São Paulo, Brazil
| | - Audrey Aguesse
- NUN, INRA, The Research Unit of the Thorax Institute, CHU Nantes, UMR 1280, PhAN, IMAD, CRNH-O, F-44000 Nantes, France
| | | | - Gabriela Batitucci
- Department of Food and Nutrition, School of Pharmaceutical Sciences of Araraquara, State University of São Paulo, Rod. Araraquara-Jau Km 1, Araraquara 14800-000, São Paulo, Brazil
| | - Ellen Cristini de Freitas
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14000-000, São Paulo, Brazil
- Department of Food and Nutrition, School of Pharmaceutical Sciences of Araraquara, State University of São Paulo, Rod. Araraquara-Jau Km 1, Araraquara 14800-000, São Paulo, Brazil
| | - Natalia Yumi Noronha
- Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14000-000, São Paulo, Brazil
| | - Guilherme da Silva Rodrigues
- Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14000-000, São Paulo, Brazil
| | - Gizela Pedroso Junqueira
- Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14000-000, São Paulo, Brazil
| | - Diego Alcantara Borba
- Department of Physical Education, State University of Minas Gerais, Divinópolis 35500-000, Minas Gerais, Brazil
| | - Stéphanie Billon-Crossouard
- NUN, INRA, The Research Unit of the Thorax Institute, CHU Nantes, UMR 1280, PhAN, IMAD, CRNH-O, F-44000 Nantes, France
| | - Mikael Croyal
- NUN, INRA, The Research Unit of the Thorax Institute, CHU Nantes, UMR 1280, PhAN, IMAD, CRNH-O, F-44000 Nantes, France
| | - Julio Sergio Marchini
- Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14000-000, São Paulo, Brazil
| |
Collapse
|
20
|
Chen S, Chen XY, Huang ZH, Fang AP, Li SY, Huang RZ, Chen YM, Huang BX, Zhu HL. Correlation between serum trimethylamine-N-oxide and body fat distribution in middle-aged and older adults: a prospective cohort study. Nutr J 2024; 23:70. [PMID: 38982486 PMCID: PMC11234726 DOI: 10.1186/s12937-024-00974-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Trimethylamine-N-oxide (TMAO) is linked with obesity, while limited evidence on its relationship with body fat distribution. Herein, we investigated the associations between serum TMAO and longitudinal change of fat distribution in this prospective cohort study. METHODS Data of 1964 participants (40-75y old) from Guangzhou Nutrition and Health Study (GNHS) during 2008-2014 was analyzed. Serum TMAO concentration was quantified by HPLC-MS/MS at baseline. The body composition was assessed by dual-energy X-ray absorptiometry at each 3-y follow-up. Fat distribution parameters were fat-to-lean mass ratio (FLR) and trunk-to-leg fat ratio (TLR). Fat distribution changes were derived from the coefficient of linear regression between their parameters and follow-up duration. RESULTS After an average of 6.2-y follow-up, analysis of covariance (ANCOVA) and linear regression displayed women with higher serum TMAO level had greater increments in trunk FLR (mean ± SD: 1.47 ± 4.39, P-trend = 0.006) and TLR (mean ± SD: 0.06 ± 0.24, P-trend = 0.011). Meanwhile, for women in the highest TMAO tertile, linear mixed-effects model (LMEM) analysis demonstrated the annual estimated increments (95% CI) were 0.03 (95% CI: 0.003 - 0.06, P = 0.032) in trunk FLR and 1.28 (95% CI: -0.17 - 2.73, P = 0.083) in TLR, respectively. In men, there were no similar significant observations. Sensitivity analysis yielded consistent results. CONCLUSION Serum TMAO displayed a more profound correlation with increment of FLR and TLR in middle-aged and older community-dwelling women in current study. More and further studies are still warranted in the future. TRIAL REGISTRATION NCT03179657.
Collapse
Affiliation(s)
- Si Chen
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan II Road, Guangzhou, 510080, PR China
| | - Xiao-Yan Chen
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan II Road, Guangzhou, 510080, PR China
| | - Zi-Hui Huang
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan II Road, Guangzhou, 510080, PR China
| | - Ai-Ping Fang
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan II Road, Guangzhou, 510080, PR China
| | - Shu-Yi Li
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan II Road, Guangzhou, 510080, PR China
| | - Rong-Zhu Huang
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan II Road, Guangzhou, 510080, PR China
| | - Yu-Ming Chen
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Bi-Xia Huang
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan II Road, Guangzhou, 510080, PR China.
| | - Hui-Lian Zhu
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan II Road, Guangzhou, 510080, PR China.
| |
Collapse
|
21
|
Bejarano E, Domenech-Bendaña A, Avila-Portillo N, Rowan S, Edirisinghe S, Taylor A. Glycative stress as a cause of macular degeneration. Prog Retin Eye Res 2024; 101:101260. [PMID: 38521386 PMCID: PMC11699537 DOI: 10.1016/j.preteyeres.2024.101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
People are living longer and rates of age-related diseases such as age-related macular degeneration (AMD) are accelerating, placing enormous burdens on patients and health care systems. The quality of carbohydrate foods consumed by an individual impacts health. The glycemic index (GI) is a kinetic measure of the rate at which glucose arrives in the blood stream after consuming various carbohydrates. Consuming diets that favor slowly digested carbohydrates releases sugar into the bloodstream gradually after consuming a meal (low glycemic index). This is associated with reduced risk for major age-related diseases including AMD, cardiovascular disease, and diabetes. In comparison, consuming the same amounts of different carbohydrates in higher GI diets, releases glucose into the blood rapidly, causing glycative stress as well as accumulation of advanced glycation end products (AGEs). Such AGEs are cytotoxic by virtue of their forming abnormal proteins and protein aggregates, as well as inhibiting proteolytic and other protective pathways that might otherwise selectively recognize and remove toxic species. Using in vitro and animal models of glycative stress, we observed that consuming higher GI diets perturbs metabolism and the microbiome, resulting in a shift to more lipid-rich metabolomic profiles. Interactions between aging, diet, eye phenotypes and physiology were observed. A large body of laboratory animal and human clinical epidemiologic data indicates that consuming lower GI diets, or lower glycemia diets, is protective against features of early AMD (AMDf) in mice and AMD prevalence or AMD progression in humans. Drugs may be optimized to diminish the ravages of higher glycemic diets. Human trials are indicated to determine if AMD progression can be retarded using lower GI diets. Here we summarized the current knowledge regarding the pathological role of glycative stress in retinal dysfunction and how dietary strategies might diminish retinal disease.
Collapse
Affiliation(s)
- Eloy Bejarano
- Department of Biomedical Sciences, School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Alicia Domenech-Bendaña
- Department of Biomedical Sciences, School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | | | - Sheldon Rowan
- JM USDA Human Nutrition Research Center on Aging at Tufts University, United States
| | - Sachini Edirisinghe
- Tufts University Friedman School of Nutrition Science and Policy, United States
| | - Allen Taylor
- Tufts University Friedman School of Nutrition Science and Policy, United States.
| |
Collapse
|
22
|
Amato B, Novellino E, Morlando D, Vanoli C, Vanoli E, Ferrara F, Difruscolo R, Goffredo VM, Compagna R, Tenore GC, Stornaiuolo M, Fordellone M, Caradonna E. Benefits of Taurisolo in Diabetic Patients with Peripheral Artery Disease. J Cardiovasc Dev Dis 2024; 11:174. [PMID: 38921674 PMCID: PMC11203668 DOI: 10.3390/jcdd11060174] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/29/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Trimethyl-N-oxide (TMAO) has been linked to peripheral artery disease (PAD). TaurisoloⓇ is a natural, balanced phytocomplex containing resveratrol, quercetin, catechins, procianidins, gallic acid, and caffeic acid. Numerous studies have shown that TaurisoloⓇ reduces the damage of TMAO and exerts a protective effect on endothelial cells (ECs). The aim of this randomized, double-blind, single-center study was to evaluate the effects of TaurisoloⓇ on claudication in patients with PAD (Rutheford grade I, category II, Fontaine Classification: Stage IIA, American Medical Association Whole Person Impairment Classification: Class 0-WPI 0%) in two parallel groups of 31 patients. The primary outcomes were an increase in the pain-free walking distance and the ankle/brachial pressure index at the beginning and at the end of the treatment with Taurisolo. The secondary endpoint was the serum TMAO changes. The claudication distance improved by 14.1% in the Taurisolo group and by 2.0% in the placebo group, while the maximal distance increased by 15.8% and 0.6% only, respectively (both p < 0.05). The TMAO plasma levels decreased from 3.97 ± 2.13 micromole/L to 0.87 ± 0.48 (p < 0.0001) in the treated group. All these changes were highly significant both in univariate mixed models as well as in the adjusted model. Ultimately, TaurisoloⓇ might be an effective intervention to ameliorate intermittent claudication.
Collapse
Affiliation(s)
- Bruno Amato
- Department of Public Health, Università degli Studi di Napoli Federico II, 80138 Naples, Italy; (B.A.); (D.M.)
| | - Ettore Novellino
- Chimica Farmaceutica e Tossicologica, Università Cattolica del Sacro Cuore, 20123 Rome, Italy;
| | - Davide Morlando
- Department of Public Health, Università degli Studi di Napoli Federico II, 80138 Naples, Italy; (B.A.); (D.M.)
| | - Camilla Vanoli
- Clinical Psychology, Antioch University Los Angeles, Culver City, CA 90230, USA
| | - Emilio Vanoli
- School of Nursing, University of Pavia, 27100 Pavia, Italy;
| | - Fulvio Ferrara
- Centro Diagnostico Italiano, Department of Clinical Laboratory, 20100 Milan, Italy; (F.F.); (E.C.)
| | - Rossana Difruscolo
- Biotecnologie Mediche e Farmaceutiche, Università degli Studi di Bari, 70126 Bari, Italy;
| | - Vito Maria Goffredo
- Department of Interdisciplinary Medicine, Università degli Studi di Bari, 70124 Bari, Italy;
| | - Rita Compagna
- Vascular Surgery Unit AORN Ospedale dei Colli, 80131 Naples, Italy;
| | - Gian Carlo Tenore
- Department of Pharmacy, Università degli Studi di Napoli Federico II, 80138 Naples, Italy; (G.C.T.); (M.S.)
| | - Mariano Stornaiuolo
- Department of Pharmacy, Università degli Studi di Napoli Federico II, 80138 Naples, Italy; (G.C.T.); (M.S.)
| | - Mario Fordellone
- Unità di Statistica Medica, Dipartimento di Salute Mentale e Fisica e Medicina Preventiva, Università degli Studi della Campania ‘Luigi Vanvitelli’, 81020 Napoli, Italy;
| | - Eugenio Caradonna
- Centro Diagnostico Italiano, Department of Clinical Laboratory, 20100 Milan, Italy; (F.F.); (E.C.)
| |
Collapse
|
23
|
Jiang Y, Pang S, Liu X, Wang L, Liu Y. The Gut Microbiome Affects Atherosclerosis by Regulating Reverse Cholesterol Transport. J Cardiovasc Transl Res 2024; 17:624-637. [PMID: 38231373 DOI: 10.1007/s12265-024-10480-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/07/2024] [Indexed: 01/18/2024]
Abstract
The human system's secret organ, the gut microbiome, has received considerable attention. Emerging research has yielded substantial scientific evidence indicating that changes in gut microbial composition and microbial metabolites may contribute to the development of atherosclerotic cardiovascular disease. The burden of cardiovascular disease on healthcare systems is exacerbated by atherosclerotic cardiovascular disease, which continues to be the leading cause of mortality globally. Reverse cholesterol transport is a powerful protective mechanism that effectively prevents excessive accumulation of cholesterol for atherosclerotic cardiovascular disease. It has been revealed how the gut microbiota modulates reverse cholesterol transport in patients with atherosclerotic risk. In this review, we highlight the complex interactions between microbes, their metabolites, and their potential impacts in reverse cholesterol transport. We also explore the feasibility of modulating gut microbes and metabolites to facilitate reverse cholesterol transport as a novel therapy for atherosclerosis.
Collapse
Affiliation(s)
- Yangyang Jiang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuchao Pang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
| | - Xiaoyu Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lixin Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
| |
Collapse
|
24
|
Spasova N, Somleva D, Krastev B, Ilieva R, Borizanova A, Svinarov D, Kinova E, Goudev A. Association of the trimethylamine N-oxide with cardiovascular risk and vascular alterations in middle-aged patients with risk factors for cardiovascular diseases. Biosci Rep 2024; 44:BSR20232090. [PMID: 38669041 PMCID: PMC12046062 DOI: 10.1042/bsr20232090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/15/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Trimethylamine N-oxide (TMAO) is synthesized by the intestinal microbiota and is an independent predictor of cardiovascular disease (CVD). However, its underlying mechanisms remain unclear. We investigated TMAO levels across different CVD-risk patient groups, and evaluated associations between TMAO and vascular alterations (e.g., arterial stiffness, intima-media thickness [IMT], and the presence and grade of carotid artery plaques [CAPs]). METHODS We examined 95 patients (58.5 ± 7.3 years): 40 with clinical atherosclerotic cardiovascular disease (ASCVD), 40 with atherosclerosis risk factors (RF), and 15 controls. Arterial stiffness was measured by Carotid-Femoral Pulse Wave Velocity (C-F PWV). B-mode ultrasound was used to evaluate the presence and grade of CAPs and carotid IMT (CIMT). TMAO was measured by high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) and results were presented as the median (interquartile range). RESULTS TMAO levels were higher in patients with ASCVD (251.5 [164.5] µg/l) when compared with patients with RFs (194.0 [174] µg/l, P=0.04) and controls (122.0 (77) µg/l, P<0.001). A significant correlation was observed between TMAO and PWV (r = 0.31, P=0.003), which was not confirmed after adjustment for RFs. TMAO levels were significantly correlated with plaque score (r = 0.46, P<0.001) and plaque height (r=0.41, P=0.003), and were independent predictors for grade III plaques (odds ratio [OR] = 1.002, confidence interval (CI) 95%: 1.000047-1.003, P=0.044). CONCLUSIONS TMAO levels are increased with expanded CVD risk. Across different types of vascular damage, TMAO is associated with atherosclerotic changes.
Collapse
Affiliation(s)
- Natalia Spasova
- Department of Cardiology, University Hospital, UMHAT “Tsaritsa Yoanna - ISUL”, Sofia, Bulgaria
| | - Desislava Somleva
- Department of Cardiology, University Hospital, UMHAT “Tsaritsa Yoanna - ISUL”, Sofia, Bulgaria
| | - Bozhidar Krastev
- Department of Cardiology, University Hospital, UMHAT “Tsaritsa Yoanna - ISUL”, Sofia, Bulgaria
| | - Radostina Ilieva
- Department of Cardiology, University Hospital, UMHAT “Tsaritsa Yoanna - ISUL”, Sofia, Bulgaria
| | - Angelina Borizanova
- Department of Cardiology, University Hospital, UMHAT “Tsaritsa Yoanna - ISUL”, Sofia, Bulgaria
| | - Dobrin Svinarov
- University Hospital Alexandrovska, Faculty of Medicine, Medical University, Sofia
| | - Elena Kinova
- Department of Cardiology, University Hospital, UMHAT “Tsaritsa Yoanna - ISUL”, Sofia, Bulgaria
| | - Assen Goudev
- Department of Cardiology, University Hospital, UMHAT “Tsaritsa Yoanna - ISUL”, Sofia, Bulgaria
| |
Collapse
|
25
|
Pires L, González-Paramás AM, Heleno SA, Calhelha RC. The Role of Gut Microbiota in the Etiopathogenesis of Multiple Chronic Diseases. Antibiotics (Basel) 2024; 13:392. [PMID: 38786121 PMCID: PMC11117238 DOI: 10.3390/antibiotics13050392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Chronic diseases (CD) may result from a combination of genetic factors, lifestyle and social behaviours, healthcare system influences, community factors, and environmental determinants of health. These risk factors frequently coexist and interact with one another. Ongoing research and a focus on personalized interventions are pivotal strategies for preventing and managing chronic disease outcomes. A wealth of literature suggests the potential involvement of gut microbiota in influencing host metabolism, thereby impacting various risk factors associated with chronic diseases. Dysbiosis, the perturbation of the composition and activity of the gut microbiota, is crucial in the etiopathogenesis of multiple CD. Recent studies indicate that specific microorganism-derived metabolites, including trimethylamine N-oxide, lipopolysaccharide and uremic toxins, contribute to subclinical inflammatory processes implicated in CD. Various factors, including diet, lifestyle, and medications, can alter the taxonomic species or abundance of gut microbiota. Researchers are currently dedicating efforts to understanding how the natural progression of microbiome development in humans affects health outcomes. Simultaneously, there is a focus on enhancing the understanding of microbiome-host molecular interactions. These endeavours ultimately aim to devise practical approaches for rehabilitating dysregulated human microbial ecosystems, intending to restore health and prevent diseases. This review investigates how the gut microbiome contributes to CD and explains ways to modulate it for managing or preventing chronic conditions.
Collapse
Affiliation(s)
- Lara Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (S.A.H.)
- Grupo de Investigación en Polifenoles en Alimentos, Implicaciones en la Calidad y en Salud Humana, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain;
| | - Ana M. González-Paramás
- Grupo de Investigación en Polifenoles en Alimentos, Implicaciones en la Calidad y en Salud Humana, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain;
| | - Sandrina A. Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (S.A.H.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (S.A.H.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
26
|
Zhao X, Zhao H, Chen R, Li J, Zhou J, Li N, Yan S, Liu C, Zhou P, Chen Y, Song L, Yan H. A Combined Measure of the Triglyceride Glucose Index and Trimethylamine N-Oxide in Risk Stratification of ST-Segment Elevation Myocardial Infarction Patients with High-Risk Plaque Features Defined by Optical Coherence Tomography: A Substudy of the OCTAMI Registry Study. Vasc Health Risk Manag 2024; 20:141-155. [PMID: 38567028 PMCID: PMC10986628 DOI: 10.2147/vhrm.s443742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/10/2024] [Indexed: 04/04/2024] Open
Abstract
Background and Aim An elevated triglyceride-glucose (TyG) level is associated with increased risk of mortality in patients with CAD. Trimethylamine N-oxide (TMAO) has mechanistic links to atherosclerotic coronary artery disease (CAD) pathogenesis and is correlated with adverse outcomes. However, the incremental prognostic value of TMAO and TyG in the cohort of optical coherence tomography (OCT)-defined high-risk ST-segment elevation myocardial infarction (STEMI) patients is unknown. Methods We studied 274 consecutive aged ≥18 years patients with evidence of STEMI and detected on pre-intervention OCT imaging of culprit lesions between March 2017 and March 2019. Outcomes There were 22 (22.68%), 27 (27.84%), 26 (26.80%), and 22 (22.68%) patients in groups A-D, respectively. The baseline characteristics according to the level of TMAO and TyG showed that patients with higher level in both indicators were more likely to have higher triglycerides (p < 0.001), fasting glucose (p < 0.001) and higher incidence of diabetes (p = 0.008). The group with TMAO > median and TyG ≤ median was associated with higher rates of MACEs significantly (p = 0.009) in fully adjusted analyses. During a median follow-up of 2.027 years, 20 (20.6%) patients experienced MACEs. To evaluate the diagnostic value of the TyG index combined with TMAO, the area under the receiver operating characteristic curve for predicting MACEs after full adjustment was 0.815 (95% confidence interval, 0.723-0.887; sensitivity, 85.00%; specificity, 72.73%; cut-off level, 0.577). Among the group of patients with TMAO > median and TyG ≤ median, there was a significantly higher incidence of MACEs (p=0.033). A similar tendency was found in the cohort with hyperlipidemia (p=0.016) and diabetes mellitus (p=0.036). Conclusion This study demonstrated the usefulness of combined measures of the TyG index and TMAO in enhancing risk stratification in STEMI patients with OCT-defined high-risk plaque characteristics. Trial Registration This study was registered at ClinicalTrials.gov as NCT03593928.
Collapse
Affiliation(s)
- Xiaoxiao Zhao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, BeiJing, People’s Republic of China
| | - Hanjun Zhao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, BeiJing, People’s Republic of China
| | - Runzhen Chen
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, BeiJing, People’s Republic of China
| | - Jiannan Li
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, BeiJing, People’s Republic of China
| | - Jinying Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, BeiJing, People’s Republic of China
| | - Nan Li
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, BeiJing, People’s Republic of China
| | - Shaodi Yan
- Department of Cardiology, Fuwai Hospital Chinese Academy of Medical Sciences, ShenZhen, People’s Republic of China
| | - Chen Liu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, BeiJing, People’s Republic of China
| | - Peng Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, BeiJing, People’s Republic of China
| | - Yi Chen
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, BeiJing, People’s Republic of China
| | - Li Song
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, BeiJing, People’s Republic of China
| | - Hongbing Yan
- Department of Cardiology, Fuwai Hospital Chinese Academy of Medical Sciences, ShenZhen, People’s Republic of China
| |
Collapse
|
27
|
Fu Y, Hou X, Feng Z, Feng H, Li L. Research progress in the relationship between gut microbiota metabolite trimethylamine N-oxide and ischemic stroke. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:447-456. [PMID: 38970519 PMCID: PMC11208405 DOI: 10.11817/j.issn.1672-7347.2024.230427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Indexed: 07/08/2024]
Abstract
Ischemic stroke (IS) is a severe cerebrovascular disease that seriously endangers human health. Gut microbiota plays a key role as an intermediate mediator in bidirectional regulation between the brain and the intestine. In recent years, trimethylamine N-oxide (TMAO) as a gut microbiota metabolite has received widespread attention in cardiovascular diseases. Elevated levels of TMAO may increase the risk of IS by affecting IS risk factors such as atherosclerosis, atrial fibrillation, hypertension, and type 2 diabetes. TMAO exacerbates neurological damage in IS patients, increases the risk of IS recurrence, and is an independent predictor of post-stroke cognitive impairment (PSCI) in patients. Current research suggests that the mechanisms of TMAO action include endothelial dysfunction, promoting of foam cell formation, influence on cholesterol metabolism, and enhancement of platelet reactivity. Lowering plasma TMAO levels through the rational use of traditional Chinese medicine, dietary management, vitamins, and probiotics can prevent and treat IS.
Collapse
Affiliation(s)
- Yu Fu
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355.
| | - Xiaoqian Hou
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250001, China
| | - Ziyun Feng
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250001, China
| | - Huiyue Feng
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355
| | - Li Li
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250001, China.
| |
Collapse
|
28
|
Shizukuda Y, Rosing DR. Hereditary hemochromatosis with homozygous C282Y HFE mutation: possible clinical model to assess effects of elevated reactive oxygen species on the development of cardiovascular disease. Mol Cell Biochem 2024; 479:617-627. [PMID: 37133674 DOI: 10.1007/s11010-023-04726-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/31/2023] [Indexed: 05/04/2023]
Abstract
Hereditary hemochromatosis with the homozygous C282Y HFE mutation (HH-282H) is a genetic condition which causes iron overload (IO) and elevated reactive oxygen species (ROS) secondary to the IO. Interestingly, even after successful iron removal therapy, HH-282H subjects demonstrate chronically elevated ROS. Raised ROS are also associated with the development of multiple cardiovascular diseases and HH-282H subjects may be at risk to develop these complications. In this narrative review, we consider HH-282H subjects as a clinical model for assessing the contribution of elevated ROS to the development of cardiovascular diseases in subjects with fewer confounding clinical risk factors as compared to other disease conditions with high ROS. We identify HH-282H subjects as a potentially unique clinical model to assess the impact of chronically elevated ROS on the development of cardiovascular disease and to serve as a clinical model to detect effective interventions for anti-ROS therapy.
Collapse
Affiliation(s)
- Yukitaka Shizukuda
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
- Division of Cardiology, Department of Internal Medicine, Cincinnati VA Medical Center, Cincinnati, OH, 45220, USA.
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA.
| | - Douglas R Rosing
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
29
|
Luo Z, Yu X, Wang C, Zhao H, Wang X, Guan X. Trimethylamine N-oxide promotes oxidative stress and lipid accumulation in macrophage foam cells via the Nrf2/ABCA1 pathway. J Physiol Biochem 2024; 80:67-79. [PMID: 37932654 DOI: 10.1007/s13105-023-00984-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/04/2023] [Indexed: 11/08/2023]
Abstract
Recently, trimethylamine N-oxide (TMAO) has been considered a risk factor for cardiovascular disease and has a proatherogenic effect. Many studies have found that TMAO is involved in plaque oxidative stress and lipid metabolism, but the specific mechanism is still unclear. In our study, meta-analysis and bioinformatic analysis were firstly conducted in the database, and found that the effect of high plasma TMAO levels on promoting atherosclerotic plaque may be related to the expression of key antioxidant genes nuclear factor erytheroid-derived-2-like 2 (NFE2L2/Nrf2) decreased. Next, we assessed the role of Nrf2-mediated signaling pathway in TMAO-treated foam cells. Our results showed that TMAO can inhibit the expression of Nrf2 and its downstream antioxidant response element such as heme oxygenase-1 (HO-1) and glutathione peroxidase4 (GPX4), resulting in increased production of reactive oxygen species and decreased activity of superoxide dismutase, promoting oxidative stress. And TMAO can also promote lipid accumulation in foam cells by inhibiting cholesterol efflux protein expression. In addition, upregulation of Nrf2 expression partially rescues TMAO-induced oxidative stress and reduces ATP-binding cassette A1 (ABCA1)-mediated lipid accumulation. Therefore, TMAO promotes oxidative stress and lipid accumulation in macrophage foam cells through the Nrf2/ABCA1 pathway, which may provide a potential mechanism for the proatherogenic effect of TMAO.
Collapse
Affiliation(s)
- ZhiSheng Luo
- Department of Laboratory Diagnostics, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, NanGang, Harbin, Heilongjiang, 150001, People's Republic of China
| | - XiaoChen Yu
- Department of Laboratory Diagnostics, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, NanGang, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Chao Wang
- Department of Laboratory Diagnostics, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, NanGang, Harbin, Heilongjiang, 150001, People's Republic of China
| | - HaiYan Zhao
- Department of Laboratory Diagnostics, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, NanGang, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Xinming Wang
- Department of Laboratory Diagnostics, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, NanGang, Harbin, Heilongjiang, 150001, People's Republic of China
| | - XiuRu Guan
- Department of Laboratory Diagnostics, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, NanGang, Harbin, Heilongjiang, 150001, People's Republic of China.
| |
Collapse
|
30
|
Luqman A, Hassan A, Ullah M, Naseem S, Ullah M, Zhang L, Din AU, Ullah K, Ahmad W, Wang G. Role of the intestinal microbiome and its therapeutic intervention in cardiovascular disorder. Front Immunol 2024; 15:1321395. [PMID: 38343539 PMCID: PMC10853344 DOI: 10.3389/fimmu.2024.1321395] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
The gut microbiome is a heterogeneous population of microbes comprising viruses, bacteria, fungi, and protozoa. Such a microbiome is essential for sustaining host equilibrium, and its impact on human health can be altered by a variety of factors such as external variables, social behavior, age, nutrition, and genetics. Gut microbes' imbalances are related to a variety of chronic diseases including cancer, obesity, and digestive disorders. Globally, recent findings show that intestinal microbes have a significant role in the formation of cardiovascular disease (CVD), which is still the primary cause of fatalities. Atherosclerosis, hypertension, diabetes, inflammation, and some inherited variables are all cardiovascular risk variables. However, studies found correlations between metabolism, intestinal flora, and dietary intake. Variations in the diversity of gut microbes and changes in their activity are thought to influence CVD etiology. Furthermore, the gut microbiota acts as an endocrine organ, producing bioactive metabolites such as TMA (trimethylamine)/TMAO (trimethylamine N-oxide), SCFA (short-chain fatty acids), and bile acids, which have a substantial impact on host wellness and disease by multiple mechanisms. The purpose of this overview is to compile current evidence highlighting the intricate links between gut microbiota, metabolites, and the development of CVD. It focuses on how intestinal dysbiosis promotes CVD risk factors such as heart failure, hypertension, and atherosclerosis. This review explores the normal physiology of intestinal microbes and potential techniques for targeting gut bacteria for CVD treatment using various microbial metabolites. It also examines the significance of gut bacteria in disease treatment, including supplements, prebiotics, probiotics, antibiotic therapies, and fecal transplantation, which is an innovative approach to the management of CVD. As a result, gut bacteria and metabolic pathways become increasingly attractive as potential targets for CVD intervention.
Collapse
Affiliation(s)
- Ameer Luqman
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratories, Chongqing, China
| | - Adil Hassan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratories, Chongqing, China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, China
| | - Mehtab Ullah
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Sahar Naseem
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Mehraj Ullah
- School of Fermentation Engineering Tianjin University of Science and Technology, Tianjin, China
| | | | - Ahmad Ud Din
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, United States
| | - Kamran Ullah
- Department of Biology, The University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Waqar Ahmad
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratories, Chongqing, China
| |
Collapse
|
31
|
Mao L, Gao B, Chang H, Shen H. Interaction and Metabolic Pathways: Elucidating the Role of Gut Microbiota in Gestational Diabetes Mellitus Pathogenesis. Metabolites 2024; 14:43. [PMID: 38248846 PMCID: PMC10819307 DOI: 10.3390/metabo14010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a complex metabolic condition during pregnancy with an intricate link to gut microbiota alterations. Throughout gestation, notable shifts in the gut microbial component occur. GDM is marked by significant dysbiosis, with a decline in beneficial taxa like Bifidobacterium and Lactobacillus and a surge in opportunistic taxa such as Enterococcus. These changes, detectable in the first trimester, hint as the potential early markers for GDM risk. Alongside these taxa shifts, microbial metabolic outputs, especially short-chain fatty acids and bile acids, are perturbed in GDM. These metabolites play pivotal roles in host glucose regulation, insulin responsiveness, and inflammation modulation, which are the key pathways disrupted in GDM. Moreover, maternal GDM status influences neonatal gut microbiota, indicating potential intergenerational health implications. With the advance of multi-omics approaches, a deeper understanding of the nuanced microbiota-host interactions via metabolites in GDM is emerging. The reviewed knowledge offers avenues for targeted microbiota-based interventions, holding promise for innovative strategies in GDM diagnosis, management, and prevention.
Collapse
Affiliation(s)
- Lindong Mao
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (L.M.); (B.G.); (H.C.)
| | - Biling Gao
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (L.M.); (B.G.); (H.C.)
| | - Hao Chang
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (L.M.); (B.G.); (H.C.)
| | - Heqing Shen
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (L.M.); (B.G.); (H.C.)
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen 361003, China
| |
Collapse
|
32
|
Tu R, Xia J. Stroke and Vascular Cognitive Impairment: The Role of Intestinal Microbiota Metabolite TMAO. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:102-121. [PMID: 36740795 DOI: 10.2174/1871527322666230203140805] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/18/2022] [Accepted: 12/12/2022] [Indexed: 02/07/2023]
Abstract
The gut microbiome interacts with the brain bidirectionally through the microbiome-gutbrain axis, which plays a key role in regulating various nervous system pathophysiological processes. Trimethylamine N-oxide (TMAO) is produced by choline metabolism through intestinal microorganisms, which can cross the blood-brain barrier to act on the central nervous system. Previous studies have shown that elevated plasma TMAO concentrations increase the risk of major adverse cardiovascular events, but there are few studies on TMAO in cerebrovascular disease and vascular cognitive impairment. This review summarized a decade of research on the impact of TMAO on stroke and related cognitive impairment, with particular attention to the effects on vascular cognitive disorders. We demonstrated that TMAO has a marked impact on the occurrence, development, and prognosis of stroke by regulating cholesterol metabolism, foam cell formation, platelet hyperresponsiveness and thrombosis, and promoting inflammation and oxidative stress. TMAO can also influence the cognitive impairment caused by Alzheimer's disease and Parkinson's disease via inducing abnormal aggregation of key proteins, affecting inflammation and thrombosis. However, although clinical studies have confirmed the association between the microbiome-gut-brain axis and vascular cognitive impairment (cerebral small vessel disease and post-stroke cognitive impairment), the molecular mechanism of TMAO has not been clarified, and TMAO precursors seem to play the opposite role in the process of poststroke cognitive impairment. In addition, several studies have also reported the possible neuroprotective effects of TMAO. Existing therapies for these diseases targeted to regulate intestinal flora and its metabolites have shown good efficacy. TMAO is probably a new target for early prediction and treatment of stroke and vascular cognitive impairment.
Collapse
Affiliation(s)
- Ruxin Tu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- Human Clinical Research Center for Cerebrovascular Disease, Changsha, China
| |
Collapse
|
33
|
Ahmad AF, Caparrós-Martin JA, Gray N, Lodge S, Wist J, Lee S, O'Gara F, Dwivedi G, Ward NC. Gut microbiota and metabolomics profiles in patients with chronic stable angina and acute coronary syndrome. Physiol Genomics 2024; 56:48-64. [PMID: 37811721 DOI: 10.1152/physiolgenomics.00072.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide. The gut microbiota and its associated metabolites may be involved in the development and progression of CVD, although the mechanisms and impact on clinical outcomes are not fully understood. This study investigated the gut microbiome profile and associated metabolites in patients with chronic stable angina (CSA) and acute coronary syndrome (ACS) compared with healthy controls. Bacterial alpha diversity in stool from patients with ACS or CSA was comparable to healthy controls at both baseline and follow-up visits. Differential abundance analysis identified operational taxonomic units (OTUs) assigned to commensal taxa differentiating patients with ACS from healthy controls at both baseline and follow-up. Patients with CSA and ACS had significantly higher levels of trimethylamine N-oxide compared with healthy controls (CSA: 0.032 ± 0.023 mmol/L, P < 0.01 vs. healthy, and ACS: 0.032 ± 0.023 mmol/L, P = 0.02 vs. healthy, respectively). Patients with ACS had reduced levels of propionate and butyrate (119 ± 4 vs. 139 ± 5.1 µM, P = 0.001, and 14 ± 4.3 vs. 23.5 ± 8.1 µM, P < 0.001, respectively), as well as elevated serum sCD14 (2245 ± 75.1 vs. 1834 ± 45.8 ng/mL, P < 0.0001) and sCD163 levels (457.3 ± 31.8 vs. 326.8 ± 20.7 ng/mL, P = 0.001), compared with healthy controls at baseline. Furthermore, a modified small molecule metabolomic and lipidomic signature was observed in patients with CSA and ACS compared with healthy controls. These findings provide evidence of a link between gut microbiome composition and gut bacterial metabolites with CVD. Future time course studies in patients to observe temporal changes and subsequent associations with gut microbiome composition are required to provide insight into how these are affected by transient changes following an acute coronary event.NEW & NOTEWORTHY The study found discriminative microorganisms differentiating patients with acute coronary syndrome (ACS) from healthy controls. In addition, reduced levels of certain bacterial metabolites and elevated sCD14 and sCD163 were observed in patients with ACS compared with healthy controls. Furthermore, modified small molecule metabolomic and lipidomic signatures were found in both patient groups. Although it is not known whether these differences in profiles are associated with disease development and/or progression, the findings provide exciting options for potential new disease-related mechanism(s) and associated therapeutic target(s).
Collapse
Affiliation(s)
- Adilah F Ahmad
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
- Medical School, The University of Western Australia, Perth, Western Australia, Australia
| | - Jose A Caparrós-Martin
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Nicola Gray
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia
| | - Samantha Lodge
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia
| | - Julien Wist
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia
| | - Silvia Lee
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
- Medical School, The University of Western Australia, Perth, Western Australia, Australia
- Department of Microbiology, PathWest Laboratory Medicine, Perth, Western Australia, Australia
| | - Fergal O'Gara
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, Western Australia, Australia
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - Girish Dwivedi
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
- Medical School, The University of Western Australia, Perth, Western Australia, Australia
- Department of Cardiology, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Natalie C Ward
- Dobney Hypertension Centre, Medical School, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
34
|
Shanmugham M, Devasia AG, Chin YL, Cheong KH, Ong ES, Bellanger S, Ramasamy A, Leo CH. Time-dependent specific molecular signatures of inflammation and remodelling are associated with trimethylamine-N-oxide (TMAO)-induced endothelial cell dysfunction. Sci Rep 2023; 13:20303. [PMID: 37985702 PMCID: PMC10661905 DOI: 10.1038/s41598-023-46820-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
Endothelial dysfunction is a critical initiating factor contributing to cardiovascular diseases, involving the gut microbiome-derived metabolite trimethylamine N-oxide (TMAO). This study aims to clarify the time-dependent molecular pathways by which TMAO mediates endothelial dysfunction through transcriptomics and metabolomics analyses in human microvascular endothelial cells (HMEC-1). Cell viability and reactive oxygen species (ROS) generation were also evaluated. TMAO treatment for either 24H or 48H induces reduced cell viability and enhanced oxidative stress. Interestingly, the molecular signatures were distinct between the two time-points. Specifically, few Gene Ontology biological processes (BPs) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were modulated after a short (24H) compared to a long (48H) treatment. However, the KEGG signalling pathways namely "tumour necrosis factor (TNF)" and "cytokine-cytokine receptor interaction" were downregulated at 24H but activated at 48H. In addition, at 48H, BPs linked to inflammatory phenotypes were activated (confirming KEGG results), while BPs linked to extracellular matrix (ECM) structural organisation, endothelial cell proliferation, and collagen metabolism were repressed. Lastly, metabolic profiling showed that arachidonic acid, prostaglandins, and palmitic acid were enriched at 48H. This study demonstrates that TMAO induces distinct time-dependent molecular signatures involving inflammation and remodelling pathways, while pathways such as oxidative stress are also modulated, but in a non-time-dependent manner.
Collapse
Affiliation(s)
- Meyammai Shanmugham
- Science, Math & Technology, Singapore University of Technology & Design, 8 Somapah Road, Singapore, 487372, Republic of Singapore
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore, 138648, Republic of Singapore
| | - Arun George Devasia
- Science, Math & Technology, Singapore University of Technology & Design, 8 Somapah Road, Singapore, 487372, Republic of Singapore
- Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Yu Ling Chin
- Science, Math & Technology, Singapore University of Technology & Design, 8 Somapah Road, Singapore, 487372, Republic of Singapore
| | - Kang Hao Cheong
- Science, Math & Technology, Singapore University of Technology & Design, 8 Somapah Road, Singapore, 487372, Republic of Singapore
| | - Eng Shi Ong
- Science, Math & Technology, Singapore University of Technology & Design, 8 Somapah Road, Singapore, 487372, Republic of Singapore
| | - Sophie Bellanger
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore, 138648, Republic of Singapore
| | - Adaikalavan Ramasamy
- Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Chen Huei Leo
- Science, Math & Technology, Singapore University of Technology & Design, 8 Somapah Road, Singapore, 487372, Republic of Singapore.
| |
Collapse
|
35
|
Sardar SW, Nam J, Kim TE, Kim H, Park YH. Identification of Novel Biomarkers for Early Diagnosis of Atherosclerosis Using High-Resolution Metabolomics. Metabolites 2023; 13:1160. [PMID: 37999255 PMCID: PMC10673153 DOI: 10.3390/metabo13111160] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
Atherosclerosis (AS) is a metabolic disorder and the pre-stage of several cardiovascular diseases, including myocardial infarction, stroke, and angina pectoris. Early detection of AS can provide the opportunity for effective management and better clinical results, along with the prevention of further progression of the disease. In the current study, an untargeted and targeted metabolomic approach was used to identify possible metabolic signatures that have altered levels in AS patients. A total of 200 serum samples from individuals with AS and normal were analyzed via liquid chromatography-high-resolution mass spectrometry. Univariate and multivariate analysis approaches were used to identify differential metabolites. A group of metabolites associated with bile acids, amino acids, steroid hormones, and purine metabolism were identified that are capable of distinguishing AS-risk sera from normal. Further, the targeted metabolomics approach confirmed that six metabolites, namely taurocholic acid, cholic acid, cortisol, hypoxanthine, trimethylamine N-oxide (TMAO), and isoleucine, were found to be significantly upregulated, while the concentrations of glycoursodeoxycholic acid, glycocholic acid, testosterone, leucine, methionine, phenylalanine, tyrosine, and valine were found to be significantly downregulated in the AS-risk sera. The receiver operating characteristic curves of three metabolites, including cortisol, hypoxanthine, and isoleucine, showed high sensitivity and specificity. Taken together, these findings suggest cortisol, hypoxanthine, and isoleucine as novel biomarkers for the early and non-invasive detection of AS. Thus, this study provides new insights for further investigations into the prevention and management of AS.
Collapse
Affiliation(s)
- Syed Wasim Sardar
- Omics Research Center, Korea University, Sejong 30019, Republic of Korea; (S.W.S.); (T.E.K.); (H.K.)
| | - Jeonghun Nam
- Artificial Intelligence (AI)-Bio Research Center, Incheon Jaeneung University, Incheon 22573, Republic of Korea;
| | - Tae Eun Kim
- Omics Research Center, Korea University, Sejong 30019, Republic of Korea; (S.W.S.); (T.E.K.); (H.K.)
| | - Hyunil Kim
- Omics Research Center, Korea University, Sejong 30019, Republic of Korea; (S.W.S.); (T.E.K.); (H.K.)
| | - Youngja H. Park
- Omics Research Center, Korea University, Sejong 30019, Republic of Korea; (S.W.S.); (T.E.K.); (H.K.)
- Metabolomics Laboratory, College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
36
|
Caldarelli M, Franza L, Rio P, Gasbarrini A, Gambassi G, Cianci R. Gut-Kidney-Heart: A Novel Trilogy. Biomedicines 2023; 11:3063. [PMID: 38002063 PMCID: PMC10669427 DOI: 10.3390/biomedicines11113063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
The microbiota represents a key factor in determining health and disease. Its role in inflammation and immunological disorders is well known, but it is also involved in several complex conditions, ranging from neurological to psychiatric, from gastrointestinal to cardiovascular diseases. It has recently been hypothesized that the gut microbiota may act as an intermediary in the close interaction between kidneys and the cardiovascular system, leading to the conceptualization of the "gut-kidney-heart" axis. In this narrative review, we will discuss the impact of the gut microbiota on each system while also reviewing the available data regarding the axis itself. We will also describe the role of gut metabolites in this complex interplay, as well as potential therapeutical perspectives.
Collapse
Affiliation(s)
- Mario Caldarelli
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (M.C.); (P.R.); (A.G.); (G.G.)
| | - Laura Franza
- Emergency Medicine Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy;
| | - Pierluigi Rio
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (M.C.); (P.R.); (A.G.); (G.G.)
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (M.C.); (P.R.); (A.G.); (G.G.)
| | - Giovanni Gambassi
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (M.C.); (P.R.); (A.G.); (G.G.)
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (M.C.); (P.R.); (A.G.); (G.G.)
| |
Collapse
|
37
|
Mihuta MS, Paul C, Borlea A, Roi CM, Pescari D, Velea-Barta OA, Mozos I, Stoian D. Connections between serum Trimethylamine N-Oxide (TMAO), a gut-derived metabolite, and vascular biomarkers evaluating arterial stiffness and subclinical atherosclerosis in children with obesity. Front Endocrinol (Lausanne) 2023; 14:1253584. [PMID: 37850094 PMCID: PMC10577381 DOI: 10.3389/fendo.2023.1253584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/12/2023] [Indexed: 10/19/2023] Open
Abstract
Introduction Childhood obesity leads to early subclinical atherosclerosis and arterial stiffness. Studying biomarkers like trimethylamine N-oxide (TMAO), linked to cardio-metabolic disorders in adults, is crucial to prevent long-term cardiovascular issues. Methods The study involved 70 children aged 4 to 18 (50 obese, 20 normal-weight). Clinical examination included BMI, waist measurements, puberty stage, the presence of acanthosis nigricans, and irregular menstrual cycles. Subclinical atherosclerosis was assessed by measuring the carotid intima-media thickness (CIMT), and the arterial stiffness was evaluated through surrogate markers like the pulse wave velocity (PWV), augmentation index (AIx), and peripheral and central blood pressures. The blood biomarkers included determining the values of TMAO, HOMA-IR, and other usual biomarkers investigating metabolism. Results The study detected significantly elevated levels of TMAO in obese children compared to controls. TMAO presented positive correlations to BMI, waist circumference and waist-to-height ratio and was also observed as an independent predictor of all three parameters. Significant correlations were observed between TMAO and vascular markers such as CIMT, PWV, and peripheral BP levels. TMAO independently predicts CIMT, PWV, peripheral BP, and central SBP levels, even after adding BMI, waist circumference, waist-to-height ratio, puberty development and age in the regression model. Obese children with high HOMA-IR presented a greater weight excess and significantly higher vascular markers, but TMAO levels did not differ significantly from the obese with HOMA-IR Conclusion Our study provides compelling evidence supporting the link between serum TMAO, obesity, and vascular damage in children. These findings highlight the importance of further research to unravel the underlying mechanisms of this connection.
Collapse
Affiliation(s)
- Monica Simina Mihuta
- Department of Doctoral Studies, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
- Center of Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Corina Paul
- Department of Pediatrics, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Andreea Borlea
- Center of Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
- 2nd Department of Internal Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Cristina Mihaela Roi
- Department of Doctoral Studies, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
- Center of Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Denisa Pescari
- Department of Doctoral Studies, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Oana-Alexandra Velea-Barta
- 3rd Department of Odontotherapy and Endodontics, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Ioana Mozos
- Department of Functional Sciences—Pathophysiology, Center for Translational Research and Systems Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Dana Stoian
- Center of Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
- 2nd Department of Internal Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
38
|
Iglesias-Carres L, Chadwick-Corbin SA, Sweet MG, Neilson AP. Dietary phenolics and their microbial metabolites are poor inhibitors of trimethylamine oxidation to trimethylamine N-oxide by hepatic flavin monooxygenase 3. J Nutr Biochem 2023; 120:109428. [PMID: 37549832 DOI: 10.1016/j.jnutbio.2023.109428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/11/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
High circulating levels of trimethylamine N-oxide (TMAO) have been associated with cardiovascular disease risk. TMAO is formed through a microbiome-host pathway utilizing primarily dietary choline as a substrate. Specific gut microbiota transform choline into trimethylamine (TMA), and, when absorbed, host hepatic flavin-containing monooxygenase 3 (FMO3) oxidizes TMA into TMAO. Chlorogenic acid and its metabolites reduce microbial TMA production in vitro. However, little is known regarding the potential for chlorogenic acid and its bioavailable metabolites to inhibit the last step: hepatic conversion of TMA to TMAO. We developed a screening methodology to study FMO3-catalyzed production of TMAO from TMA. HepG2 cells were unable to oxidize TMA into TMAO due to their lack of FMO3 expression. Although Hepa-1 cells did express FMO3 when pretreated with TMA and NADPH, they lacked enzymatic activity to produce TMAO. Rat hepatic microsomes contained active FMO3. Optimal reaction conditions were: 50 µM TMA, 0.2 mM NADPH, and 33 µL microsomes/mL reaction. Methimazole (a known FMO3 competitive substrate) at 200 µM effectively reduced FMO3-catalyzed conversion of TMA to TMAO. However, bioavailable chlorogenic acid metabolites did not generally inhibit FMO3 at physiological (1 µM) nor supra-physiological (50 µM) doses. Thus, the effects of chlorogenic acid in regulating TMAO levels in vivo are unlikely to occur through direct FMO3 enzyme inhibition. Potential effects on FMO3 expression remain unknown. Intestinal inhibition of TMA production and/or absorption are thus likely their primary mechanisms of action.
Collapse
Affiliation(s)
- Lisard Iglesias-Carres
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina, USA
| | - Sydney A Chadwick-Corbin
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina, USA
| | - Michael G Sweet
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina, USA
| | - Andrew P Neilson
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina, USA; Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA.
| |
Collapse
|
39
|
Haș IM, Tit DM, Bungau SG, Pavel FM, Teleky BE, Vodnar DC, Vesa CM. Cardiometabolic Risk: Characteristics of the Intestinal Microbiome and the Role of Polyphenols. Int J Mol Sci 2023; 24:13757. [PMID: 37762062 PMCID: PMC10531333 DOI: 10.3390/ijms241813757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Cardiometabolic diseases like hypertension, type 2 diabetes mellitus, atherosclerosis, and obesity have been associated with changes in the gut microbiota structure, or dysbiosis. The beneficial effect of polyphenols on reducing the incidence of this chronic disease has been confirmed by numerous studies. Polyphenols are primarily known for their anti-inflammatory and antioxidant properties, but they can also modify the gut microbiota. According to recent research, polyphenols positively influence the gut microbiota, which regulates metabolic responses and reduces systemic inflammation. This review emphasizes the prebiotic role of polyphenols and their impact on specific gut microbiota components in patients at cardiometabolic risk. It also analyzes the most recent research on the positive effects of polyphenols on cardiometabolic health. While numerous in vitro and in vivo studies have shown the interaction involving polyphenols and gut microbiota, additional clinical investigations are required to assess this effect in people.
Collapse
Affiliation(s)
- Ioana Mariana Haș
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (I.M.H.); (F.M.P.); (C.M.V.)
| | - Delia Mirela Tit
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (I.M.H.); (F.M.P.); (C.M.V.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Simona Gabriela Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (I.M.H.); (F.M.P.); (C.M.V.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Flavia Maria Pavel
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (I.M.H.); (F.M.P.); (C.M.V.)
| | - Bernadette-Emoke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.-E.T.); (D.C.V.)
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.-E.T.); (D.C.V.)
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Cosmin Mihai Vesa
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (I.M.H.); (F.M.P.); (C.M.V.)
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
40
|
Nian F, Zhu C, Jin N, Xia Q, Wu L, Lu X. Gut microbiota metabolite TMAO promoted lipid deposition and fibrosis process via KRT17 in fatty liver cells in vitro. Biochem Biophys Res Commun 2023; 669:134-142. [PMID: 37271025 DOI: 10.1016/j.bbrc.2023.05.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 06/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide but still lacks specific treatment modalities. The gut microbiota and its metabolites have been shown to be intimately involved in NAFLD development, participating in and regulating disease progression. Trimethylamine N-oxide (TMAO), a metabolite highly dependent on the gut microbiota, has been shown to play deleterious regulatory roles in cardiovascular disease, but the relationship between it and NAFLD lacks validation from basic experiments. This research applied TMAO intervention by constructing fatty liver cell models in vitro to observe its effect on fatty liver cells and potential key genes and performed siRNA interference on the gene to verify the action. The results showed that TMAO intervention promoted the appearance of more red-stained lipid droplets in Oil-red O staining results, increased triglyceride (TG) levels and increased mRNA levels of liver fibrosis-related genes, and also identified one of the key genes, keratin17 (KRT17) via transcriptomics. Following the reduction in its expression level, under the same treatment, there were decreased red-stained lipid droplets, decreased TG levels, decreased indicators of impaired liver function as well as decreased mRNA levels of liver fibrosis-related genes. In conclusion, the gut microbiota metabolite TMAO could promote lipid deposition and fibrosis process via the KRT17 gene in fatty liver cells in vitro.
Collapse
Affiliation(s)
- Fulin Nian
- Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Chen Zhu
- Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Nuyun Jin
- Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Qiaoyun Xia
- Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Longyun Wu
- Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Xiaolan Lu
- Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China.
| |
Collapse
|
41
|
Ujlaki G, Kovács T, Vida A, Kókai E, Rauch B, Schwarcz S, Mikó E, Janka E, Sipos A, Hegedűs C, Uray K, Nagy P, Bai P. Identification of Bacterial Metabolites Modulating Breast Cancer Cell Proliferation and Epithelial-Mesenchymal Transition. Molecules 2023; 28:5898. [PMID: 37570868 PMCID: PMC10420980 DOI: 10.3390/molecules28155898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Breast cancer patients are characterized by the oncobiotic transformation of multiple microbiome communities, including the gut microbiome. Oncobiotic transformation of the gut microbiome impairs the production of antineoplastic bacterial metabolites. The goal of this study was to identify bacterial metabolites with antineoplastic properties. We constructed a 30-member bacterial metabolite library and screened the library compounds for effects on cell proliferation and epithelial-mesenchymal transition. The metabolites were applied to 4T1 murine breast cancer cells in concentrations corresponding to the reference serum concentrations. However, yric acid, glycolic acid, d-mannitol, 2,3-butanediol, and trans-ferulic acid exerted cytostatic effects, and 3-hydroxyphenylacetic acid, 4-hydroxybenzoic acid, and vanillic acid exerted hyperproliferative effects. Furthermore, 3-hydroxyphenylacetic acid, 4-hydroxybenzoic acid, 2,3-butanediol, and hydrocinnamic acid inhibited epithelial-to-mesenchymal (EMT) transition. We identified redox sets among the metabolites (d-mannitol-d-mannose, 1-butanol-butyric acid, ethylene glycol-glycolic acid-oxalic acid), wherein only one partner within the set (d-mannitol, butyric acid, glycolic acid) possessed bioactivity in our system, suggesting that changes to the local redox potential may affect the bacterial secretome. Of the nine bioactive metabolites, 2,3-butanediol was the only compound with both cytostatic and anti-EMT properties.
Collapse
Affiliation(s)
- Gyula Ujlaki
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.U.); (T.K.); (A.V.); (E.K.); (B.R.); (S.S.); (E.M.); (A.S.); (C.H.); (K.U.)
| | - Tünde Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.U.); (T.K.); (A.V.); (E.K.); (B.R.); (S.S.); (E.M.); (A.S.); (C.H.); (K.U.)
| | - András Vida
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.U.); (T.K.); (A.V.); (E.K.); (B.R.); (S.S.); (E.M.); (A.S.); (C.H.); (K.U.)
| | - Endre Kókai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.U.); (T.K.); (A.V.); (E.K.); (B.R.); (S.S.); (E.M.); (A.S.); (C.H.); (K.U.)
| | - Boglára Rauch
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.U.); (T.K.); (A.V.); (E.K.); (B.R.); (S.S.); (E.M.); (A.S.); (C.H.); (K.U.)
| | - Szandra Schwarcz
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.U.); (T.K.); (A.V.); (E.K.); (B.R.); (S.S.); (E.M.); (A.S.); (C.H.); (K.U.)
| | - Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.U.); (T.K.); (A.V.); (E.K.); (B.R.); (S.S.); (E.M.); (A.S.); (C.H.); (K.U.)
| | - Eszter Janka
- Department of Dermatology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Adrienn Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.U.); (T.K.); (A.V.); (E.K.); (B.R.); (S.S.); (E.M.); (A.S.); (C.H.); (K.U.)
| | - Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.U.); (T.K.); (A.V.); (E.K.); (B.R.); (S.S.); (E.M.); (A.S.); (C.H.); (K.U.)
| | - Karen Uray
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.U.); (T.K.); (A.V.); (E.K.); (B.R.); (S.S.); (E.M.); (A.S.); (C.H.); (K.U.)
| | - Péter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Peter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.U.); (T.K.); (A.V.); (E.K.); (B.R.); (S.S.); (E.M.); (A.S.); (C.H.); (K.U.)
- MTA-DE Lendület Laboratory of Cellular Metabolism, 4032 Debrecen, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Biology and Signaling Research Group ELKH, 4032 Debrecen, Hungary
| |
Collapse
|
42
|
Tveter KM, Mezhibovsky E, Wu Y, Roopchand DE. Bile acid metabolism and signaling: Emerging pharmacological targets of dietary polyphenols. Pharmacol Ther 2023; 248:108457. [PMID: 37268113 PMCID: PMC10528343 DOI: 10.1016/j.pharmthera.2023.108457] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/03/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
Beyond their role as emulsifiers of lipophilic compounds, bile acids (BAs) are signaling endocrine molecules that show differential affinity and specificity for a variety of canonical and non-canonical BA receptors. Primary BAs (PBAs) are synthesized in the liver while secondary BAs (SBAs) are gut microbial metabolites of PBA species. PBAs and SBAs signal to BA receptors that regulate downstream pathways of inflammation and energy metabolism. Dysregulation of BA metabolism or signaling has emerged as a feature of chronic disease. Dietary polyphenols are non-nutritive plant-derived compounds associated with decreased risk of metabolic syndrome, type-2 diabetes, hepatobiliary and cardiovascular disease. Evidence suggests that the health promoting effects of dietary polyphenols are linked to their ability to alter the gut microbial community, the BA pool, and BA signaling. In this review we provide an overview of BA metabolism and summarize studies that link the cardiometabolic improvements of dietary polyphenols to their modulation of BA metabolism and signaling pathways, and the gut microbiota. Finally, we discuss approaches and challenges in deciphering cause-effect relationships between dietary polyphenols, BAs, and gut microbes.
Collapse
Affiliation(s)
- Kevin M Tveter
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA
| | - Esther Mezhibovsky
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA
| | - Yue Wu
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA
| | - Diana E Roopchand
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA.
| |
Collapse
|
43
|
Chen Y, Yang C, Dai Q, Tan J, Dou C, Luo F. Gold-nanosphere mitigates osteoporosis through regulating TMAO metabolism in a gut microbiota-dependent manner. J Nanobiotechnology 2023; 21:125. [PMID: 37041523 PMCID: PMC10088181 DOI: 10.1186/s12951-023-01872-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/24/2023] [Indexed: 04/13/2023] Open
Abstract
Osteoporosis (OP) is a metabolic bone disease characterized by decreased bone mass and increased bone fragility. The imbalance of bone homeostasis modulated by osteoclasts and osteoblasts is the most crucial pathological change in osteoporosis. As a novel treatment strategy, nanomedicine has been applied in drug delivery and targeted therapy due to its high efficiency, precision, and fewer side effects. Gold nanospheres (GNS), as a common kind of gold nanoparticles (GNPs), possess significant antimicrobial and anti-inflammatory activity, which have been applied for the treatment of eye diseases and rheumatoid arthritis. However, the effect of GNS on osteoporosis remains elusive. In this study, we found that GNS significantly prevented ovariectomy (OVX)-induced osteoporosis in a gut microbiota-dependent manner. 16S rDNA gene sequencing demonstrated GNS markedly altered the gut microbial diversity and flora composition. In addition, GNS reduced the abundance of TMAO-related metabolites in OVX mice. Low TMAO levels might alleviate the bone loss phenomenon by reducing the inflammation response. Therefore, we investigated the alteration of cytokine profiles in OVX mice. GNS inhibited the release of pro-osteoclastogenic or proinflammatory cytokines including tumor necrosis factor α (TNF-α), interleukin (IL)-6, and granulocyte colony-stimulating factor (G-CSF) in the serum. In conclusion, GNS suppressed estrogen deficiency-induced bone loss by regulating the destroyed homeostasis of gut microbiota so as to reduce its relevant TMAO metabolism and restrain the release of proinflammatory cytokines. These results demonstrated the protective effects of GNS on osteoporosis as a gut microbiota modulator and offered novel insights into the regulation of the "gut-bone" axis.
Collapse
Affiliation(s)
- Yueqi Chen
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China.
| | - Chuan Yang
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Qijie Dai
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Jiulin Tan
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Ce Dou
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China.
| | - Fei Luo
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China.
| |
Collapse
|
44
|
Liao XX, Hu K, Xie XH, Wen YL, Wang R, Hu ZW, Zhou YL, Li JJ, Wu MK, Yu JX, Chen JW, Ren P, Wu XY, Zhou JJ. Banxia Xiexin decoction alleviates AS co-depression disease by regulating the gut microbiome-lipid metabolic axis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116468. [PMID: 37044233 DOI: 10.1016/j.jep.2023.116468] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Banxia Xiexin decoction (BXD) is a classic Chinese herbal formulation consisting of 7 herbs including Pinelliae Rhizoma, Scutellariae Radix, Zingiberis Rhizoma, Ginseng Radix, Glycyrrhizae Radix, Coptidis Rhizoma, and Jujubae Fructus, which can exert effects on lowering lipids and alleviating depressive mood disorders via affecting gastrointestinal tract. AIM OF THE STUDY The pathogenesis of atherosclerosis (AS) co-depression disease has not been well studied, and the current clinical treatment strategies are not satisfactory. As a result, it is critical to find novel methods of treatment. Based on the hypothesis that the gut microbiome may promote the development of AS co-depression disease by regulating host lipid metabolism, this study sought to evaluate the effectiveness and action mechanism of BXD in regulation of the gut microbiome via an intervention in AS co-depression mice. MATERIALS AND METHODS To determine the primary constituents of BXD, UPLC-Q/TOF-MS analysis was carried out. Sixteen C56BL/6 mice were fed normal chow as a control group; 64 ApoE-/- mice were randomized into four groups (model group and three treatment groups) and fed high-fat chow combined with daily bind stimulation for sixteen weeks to develop the AS co-depression mouse model and were administered saline or low, medium or high concentrations of BXD during the experimental modeling period. The antidepressant efficacy of BXD was examined by weighing, a sucrose preference test, an open field test, and a tail suspension experiment. The effectiveness of BXD as an anti-AS treatment was evaluated by means of biochemical indices, the HE staining method, and the Oil red O staining method. The impacts of BXD on the gut microbiome structure and brain (hippocampus and prefrontal cortex tissue) lipids in mice with the AS co-depression model were examined by 16S rDNA sequencing combined with lipidomics analysis. RESULTS The main components of BXD include baicalin, berberine, ginsenoside Rb1, and 18 other substances. BXD could improve depression-like behavioral characteristics and AS-related indices in AS co-depression mice; BXD could regulate the abundance of some flora (phylum level: reduced abundance of Proteobacteria and Deferribacteres; genus level: reduced abundance of Clostridium_IV, Helicobacter, and Pseudoflavonifractor, Acetatifactor, Oscillibacter, which were significantly different). The lipidomics analysis showed that the differential lipids between the model and gavaged high-dose BXD (BXH) groups were enriched in glycerophospholipid metabolism, and lysophosphatidylcholine (LPC(20:3)(rep)(rep)) in the hippocampus and LPC(20:4)(rep) in the prefrontal cortex both showed downregulation in BXH. The correlation analysis illustrated that the screened differential lipids were mainly linked to Deferribacteres and Actinobacteria. CONCLUSION BXD may exert an anti-AS co-depression therapeutic effect by modulating the abundance of some flora and thus intervening in peripheral lipid and brain lipid metabolism (via downregulation of LPC levels).
Collapse
Affiliation(s)
- Xing-Xing Liao
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Ke Hu
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Xin-Hua Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| | - You-Liang Wen
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Rui Wang
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Zi-Wei Hu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yu-Long Zhou
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Jia-Jun Li
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Ming-Kun Wu
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Jing-Xuan Yu
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Jia-Wei Chen
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Peng Ren
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Xiao-Yun Wu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
| | - Jun-Jie Zhou
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
45
|
Hijová E. Benefits of Biotics for Cardiovascular Diseases. Int J Mol Sci 2023; 24:ijms24076292. [PMID: 37047262 PMCID: PMC10093891 DOI: 10.3390/ijms24076292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Cardiovascular diseases are the main cause of death in many countries, and the better prevention and prediction of these diseases would be of great importance for individuals and society. Nutrition, the gut microbiota, and metabolism have raised much interest in the field of cardiovascular disease research in the search for the main mechanisms that promote cardiovascular diseases. Understanding the interactions between dietary nutrient intake and the gut microbiota-mediated metabolism may provide clinical insight in order to identify individuals at risk of cardiometabolic disease progression, as well as other potential therapeutic targets to mitigate the risk of cardiometabolic disease progression. The development of cardiometabolic diseases can be modulated by specific beneficial metabolites derived from bacteria. Therefore, it is very important to investigate the impact of these metabolites on human health and the possibilities of modulating their production with dietary supplements called biotics.
Collapse
Affiliation(s)
- Emília Hijová
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| |
Collapse
|
46
|
Luu M, Schütz B, Lauth M, Visekruna A. The Impact of Gut Microbiota-Derived Metabolites on the Tumor Immune Microenvironment. Cancers (Basel) 2023; 15:cancers15051588. [PMID: 36900377 PMCID: PMC10001145 DOI: 10.3390/cancers15051588] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Prevention of the effectiveness of anti-tumor immune responses is one of the canonical cancer hallmarks. The competition for crucial nutrients within the tumor microenvironment (TME) between cancer cells and immune cells creates a complex interplay characterized by metabolic deprivation. Extensive efforts have recently been made to understand better the dynamic interactions between cancer cells and surrounding immune cells. Paradoxically, both cancer cells and activated T cells are metabolically dependent on glycolysis, even in the presence of oxygen, a metabolic process known as the Warburg effect. The intestinal microbial community delivers various types of small molecules that can potentially augment the functional capabilities of the host immune system. Currently, several studies are trying to explore the complex functional relationship between the metabolites secreted by the human microbiome and anti-tumor immunity. Recently, it has been shown that a diverse array of commensal bacteria synthetizes bioactive molecules that enhance the efficacy of cancer immunotherapy, including immune checkpoint inhibitor (ICI) treatment and adoptive cell therapy with chimeric antigen receptor (CAR) T cells. In this review, we highlight the importance of commensal bacteria, particularly of the gut microbiota-derived metabolites that are capable of shaping metabolic, transcriptional and epigenetic processes within the TME in a therapeutically meaningful way.
Collapse
Affiliation(s)
- Maik Luu
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Burkhard Schütz
- Institute of Anatomy and Cell Biology, Philipps-University Marburg, 35037 Marburg, Germany
| | - Matthias Lauth
- Department of Gastroenterology, Center for Tumor and Immune Biology (ZTI), Philipps-University Marburg, 35043 Marburg, Germany
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, 35043 Marburg, Germany
- Correspondence:
| |
Collapse
|
47
|
Heath H, Degreef K, Rosario R, Smith M, Mitchell I, Pilolla K, Phelan S, Brito A, La Frano MR. Identification of potential biomarkers and metabolic insights for gestational diabetes prevention: A review of evidence contrasting gestational diabetes versus weight loss studies that may direct future nutritional metabolomics studies. Nutrition 2023; 107:111898. [PMID: 36525799 DOI: 10.1016/j.nut.2022.111898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/22/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Gestational diabetes mellitus (GDM) significantly increases maternal health risks and adverse effects for the offspring. Observational studies suggest that weight loss before pregnancy may be a promising GDM prevention method. Still, biochemical pathways linking preconception weight changes with subsequent development of GDM among women who are overweight or obese remain unclear. Metabolomic assessment is a powerful approach for understanding the global biochemical pathways linking preconception weight changes and subsequent GDM. We hypothesize that many of the alterations of metabolite levels associated with GDM will change in one direction in GDM studies but will change in the opposite direction in studies focusing on lifestyle interventions for weight loss. The present review summarizes available evidence from 21 studies comparing women with GDM with healthy participants and 12 intervention studies that investigated metabolite changes that occurred during weight loss using caloric restriction and behavioral interventions. We discuss 15 metabolites, including amino acids, lipids, amines, carbohydrates, and carbohydrate derivatives. Of particular note are the altered levels of branched-chain amino acids, alanine, palmitoleic acid, lysophosphatidylcholine 18:1, and hypoxanthine because of their mechanistic links to insulin resistance and weight change. Mechanisms that may explain how these metabolite modifications contribute to GDM development in those who are overweight or obese are proposed, including insulin resistance pathways. Future nutritional metabolomics preconception intervention studies in overweight or obese are necessary to investigate whether weight loss through lifestyle intervention can reduce GDM occurrence in association with these metabolite alterations and to test the value of these metabolites as potential diagnostic biomarkers of GDM development.
Collapse
Affiliation(s)
- Hannah Heath
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California
| | - Kelsey Degreef
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California
| | - Rodrigo Rosario
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California
| | - MaryKate Smith
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California
| | - Isabel Mitchell
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, California
| | - Kari Pilolla
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California; Center for Health Research, California Polytechnic State University, San Luis Obispo, California
| | - Suzanne Phelan
- Center for Health Research, California Polytechnic State University, San Luis Obispo, California; Department of Kinesiology and Public Health, California Polytechnic State University, San Luis Obispo, California
| | - Alex Brito
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; World-Class Research Center "Digital Biodesign and Personalized Health Care," I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Michael R La Frano
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California; Center for Health Research, California Polytechnic State University, San Luis Obispo, California; Cal Poly Metabolomics Service Center, California Polytechnic State University, San Luis Obispo, California
| |
Collapse
|
48
|
Inceu AI, Neag MA, Craciun AE, Buzoianu AD. Gut Molecules in Cardiometabolic Diseases: The Mechanisms behind the Story. Int J Mol Sci 2023; 24:3385. [PMID: 36834796 PMCID: PMC9965280 DOI: 10.3390/ijms24043385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Atherosclerotic cardiovascular disease is the most common cause of morbidity and mortality worldwide. Diabetes mellitus increases cardiovascular risk. Heart failure and atrial fibrillation are associated comorbidities that share the main cardiovascular risk factors. The use of incretin-based therapies promoted the idea that activation of alternative signaling pathways is effective in reducing the risk of atherosclerosis and heart failure. Gut-derived molecules, gut hormones, and gut microbiota metabolites showed both positive and detrimental effects in cardiometabolic disorders. Although inflammation plays a key role in cardiometabolic disorders, additional intracellular signaling pathways are involved and could explain the observed effects. Revealing the involved molecular mechanisms could provide novel therapeutic strategies and a better understanding of the relationship between the gut, metabolic syndrome, and cardiovascular diseases.
Collapse
Affiliation(s)
- Andreea-Ioana Inceu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Maria-Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Anca-Elena Craciun
- Department of Diabetes, and Nutrition Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Anca-Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| |
Collapse
|
49
|
Tacconi E, Palma G, De Biase D, Luciano A, Barbieri M, de Nigris F, Bruzzese F. Microbiota Effect on Trimethylamine N-Oxide Production: From Cancer to Fitness-A Practical Preventing Recommendation and Therapies. Nutrients 2023; 15:563. [PMID: 36771270 PMCID: PMC9920414 DOI: 10.3390/nu15030563] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/24/2023] Open
Abstract
Trimethylamine N-oxide (TMAO) is a microbial metabolite derived from nutrients, such as choline, L-carnitine, ergothioneine and betaine. Recently, it has come under the spotlight for its close interactions with gut microbiota and implications for gastrointestinal cancers, cardiovascular disease, and systemic inflammation. The culprits in the origin of these pathologies may be food sources, in particular, high fat meat, offal, egg yolk, whole dairy products, and fatty fish, but intercalated between these food sources and the production of pro-inflammatory TMAO, the composition of gut microbiota plays an important role in modulating this process. The aim of this review is to explain how the gut microbiota interacts with the conversion of specific compounds into TMA and its oxidation to TMAO. We will first cover the correlation between TMAO and various pathologies such as dysbiosis, then focus on cardiovascular disease, with a particular emphasis on pro-atherogenic factors, and then on systemic inflammation and gastrointestinal cancers. Finally, we will discuss primary prevention and therapies that are or may become possible. Possible treatments include modulation of the gut microbiota species with diets, physical activity and supplements, and administration of drugs, such as metformin and aspirin.
Collapse
Affiliation(s)
- Edoardo Tacconi
- Department of Human Science and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Giuseppe Palma
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Davide De Biase
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Antonio Luciano
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Massimiliano Barbieri
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Filomena de Nigris
- Department of Precision Medicine, School of Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via De Crecchio 7, 80138 Naples, Italy
| | - Francesca Bruzzese
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| |
Collapse
|
50
|
Senchukova MA. Microbiota of the gastrointestinal tract: Friend or foe? World J Gastroenterol 2023; 29:19-42. [PMID: 36683718 PMCID: PMC9850957 DOI: 10.3748/wjg.v29.i1.19] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/05/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
The gut microbiota is currently considered an external organ of the human body that provides important mechanisms of metabolic regulation and protection. The gut microbiota encodes over 3 million genes, which is approximately 150 times more than the total number of genes present in the human genome. Changes in the qualitative and quantitative composition of the microbiome lead to disruption in the synthesis of key bacterial metabolites, changes in intestinal barrier function, and inflammation and can cause the development of a wide variety of diseases, such as diabetes, obesity, gastrointestinal disorders, cardiovascular issues, neurological disorders and oncological concerns. In this review, I consider issues related to the role of the microbiome in the regulation of intestinal barrier function, its influence on physiological and pathological processes occurring in the body, and potential new therapeutic strategies aimed at restoring the gut microbiome. Herewith, it is important to understand that the gut microbiota and human body should be considered as a single biological system, where change of one element will inevitably affect its other components. Thus, the study of the impact of the intestinal microbiota on health should be considered only taking into account numerous factors, the role of which has not yet been fully elucidated.
Collapse
Affiliation(s)
- Marina A Senchukova
- Department of Oncology, Orenburg State Medical University, Orenburg 460000, Russia
| |
Collapse
|