1
|
Juusti V, Rannikko A, Laurila A, Sundvall M, Hänninen P, Kulpakko J. Phage Biosensor for the Classification of Metastatic Urological Cancers from Urine. Life (Basel) 2024; 14:600. [PMID: 38792621 PMCID: PMC11122065 DOI: 10.3390/life14050600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Most of the annual 10 million cancer-related deaths are caused by metastatic disease. Survival rates for cancer are strongly dependent on the type of cancer and its stage at detection. Early detection remains a challenge due to the lack of reliable biomarkers and cost-efficient screening methods. Phage biosensors can offer a solution for early detection using non-invasive liquid biopsies. Here, we report the first results of the bifunctional phage biosensor to detect metastatic urological cancers from urine. A dye-sensitized phage library was used to select metastasis-related phage binders. After selection rounds, the most promising phage candidate was used to classify metastatic cancer from controls. Additionally, we applied one chemical sensor (phenoxazine non-fluorescent dye) to classify cancer from urine. A statistical significance (p = 0.0002) was observed between metastatic and non-metastatic cancer, with sensitivity of 70% and specificity of 79%. Furthermore, the chemical sensor demonstrated significance in detecting cancer (p < 0.0001) with a sensitivity of 71% and a specificity of 75%. Our data suggest a new promising field for urine biomarker research, and further evaluation with prospectively collected samples is ongoing. In conclusion, we report, for the first time, the potential of a chemical- and phage-based biosensor method to detect metastatic cancer using urine.
Collapse
Affiliation(s)
- Vilhelmiina Juusti
- Laboratory of Biophysics and Medicity Research Laboratories, Institute of Biomedicine, Faculty of Medicine, University of Turku, Tykistökatu 6A, 20520 Turku, Finland
- Aqsens Health Ltd., Itäinen Pitkäkatu 4B, 20520 Turku, Finland
| | - Antti Rannikko
- Department of Urology, Helsinki University, Helsinki University Hospital, 00280 Helsinki, Finland
| | - Anu Laurila
- Department of Oncology, Turku University Hospital, PL52, 20521 Turku, Finland
| | - Maria Sundvall
- Department of Oncology, Turku University Hospital, PL52, 20521 Turku, Finland
- Cancer Research Unit, Institute of Biomedicine, FICAN West Cancer Center Laboratory, University of Turku, Turku University Hospital, Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Pekka Hänninen
- Laboratory of Biophysics and Medicity Research Laboratories, Institute of Biomedicine, Faculty of Medicine, University of Turku, Tykistökatu 6A, 20520 Turku, Finland
| | - Janne Kulpakko
- Aqsens Health Ltd., Itäinen Pitkäkatu 4B, 20520 Turku, Finland
| |
Collapse
|
2
|
Chen H, Zhai C, Xu X, Wang H, Han W, Shen J. Multilevel Heterogeneity of Colorectal Cancer Liver Metastasis. Cancers (Basel) 2023; 16:59. [PMID: 38201487 PMCID: PMC10778489 DOI: 10.3390/cancers16010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Colorectal cancer liver metastasis (CRLM) is a highly heterogeneous disease. Therapies that target both primary foci and liver metastasis are severely lacking. Therefore, understanding the features of metastatic tumor cells in the liver is valuable for the overall control of CRLM patients. In this review, we summarize the heterogeneity exhibited in CRLM from five aspects (gene, transcriptome, protein, metabolism, and immunity). In addition to genetic heterogeneity, the other four aspects exhibit significant heterogeneity. Compared to primary CRC, the dysregulation of epithelial-mesenchymal transition (EMT)-related proteins, the enhanced metabolic activity, and the increased infiltration of immunosuppressive cells are detected in CRLM. Preclinical evidence shows that targeting the EMT process or enhancing cellular metabolism may represent a novel approach to increasing the therapeutic efficacy of CRLM.
Collapse
Affiliation(s)
| | | | | | | | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (H.C.); (C.Z.); (X.X.); (H.W.)
| | - Jiaying Shen
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (H.C.); (C.Z.); (X.X.); (H.W.)
| |
Collapse
|
3
|
Yin L, Liu S, Shi H, Feng Y, Zhang Y, Wu D, Song Z, Zhang L. Subcellular Proteomic Analysis Reveals Dysregulation in Organization of Human A549 Cells Infected with Influenza Virus H7N9. CURR PROTEOMICS 2021. [DOI: 10.2174/1570164619666211222145450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
H7N9 influenza virus poses a high risk to human beings and proteomic evaluations of these infections may help to better understand its pathogenic mechanisms in human systems. Objective: To find membrane proteins related to H7N9 infection.
Methods:
Here, we infected primary human alveolar adenocarcinoma epithelial cells (A549) cells with H7N9 (including wild and mutant strains) and then produced enriched cellular membrane isolations which were evaluated by western blot. The proteins in these cell membrane fractions were analyzed using the isobaric Tags for Relative and Absolute Quantitation (iTRAQ) proteome technologies.
Results:
Differentially expressed proteins (n = 32) were identified following liquid chromatography-tandem mass spectrometry, including 20 down-regulated proteins such as CD44 antigen, and CD151 antigen, and 12 up-regulated proteins such as tight junction protein ZO-1, and prostaglandin reductase 1. Gene Ontology database searching revealed that 20 out of the 32 differentially expressed proteins were localized to the plasma membrane. These proteins were primarily associated with cellular component organization (n = 20), and enriched in the Reactome pathway of extracellular matrix organization (n = 4).
Conclusion:
These findings indicate that H7N9 may dysregulate cellular organization via specific alterations to the protein profile of the plasma membrane.
Collapse
Affiliation(s)
- Lin Yin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Siyuan Liu
- The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 201400, China
| | - Huichun Shi
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yanling Feng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yujiao Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Dage Wu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Zhigang Song
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Lijun Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| |
Collapse
|
4
|
Hu H, Zhang S, Xiong S, Hu B, He Y, Gu Y. ACTR3 promotes cell migration and invasion by inducing epithelial mesenchymal transition in pancreatic ductal adenocarcinoma. J Gastrointest Oncol 2021; 12:2325-2333. [PMID: 34790395 DOI: 10.21037/jgo-21-609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
Background Recurrence and metastasis are the major causes of pancreatic ductal adenocarcinoma (PDAC) mortality after treatment. The underlying molecular mechanism is poorly understood. Actin-related protein 3 (ACTR3) is an important component of the actin-related protein 2/3 complex, which is involved in the regulation of cell motility and epithelial mesenchymal transition (EMT) process. Previously published studies have indicated that ACTR3 expression is upregulated in several types of cancers, and promotes tumor development, including gastric cancer and hepatocellular carcinoma. However, to date, the expression levels and the role of ACTR3 in PDAC are not well understood. Methods In the present study, the expression levels of ACTR3 in PDAC tissue and the relationship of ACTR3 expression with clinical prognosis were analyzed by mRNA microarray and bioinformatics. The biological functions and underlying mechanism of ACTR3 in PDAC were examined by a series of assays, including Cell Counting Kit-8 (CCK-8), transwell assay, and Western blotting. Results We found that the expression of ACTR3 was significantly increased in PDAC tissues and cell lines. A higher expression of ACTR3 was predictive of poor outcome for patients with PDAC. In vitro, the knockdown of ACTR3 expression significantly inhibited the invasive and migratory capacity of PDAC cells, and altered the distribution of F-actin and the expression of EMT markers. Conclusions The findings of our study indicated that ACTR3 promotes cell migration and invasion by inducing EMT in PDAC, which may be a potential therapeutic target and prognostic indicator for PDAC patients.
Collapse
Affiliation(s)
- Hao Hu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China.,School of Medicine, Jiangnan University, Wuxi, China.,Department of Hepatobiliary and Pancreatic Surgery, The Third Hospital Affiliated to Nantong University, Wuxi, China.,School of Medicine, Nantong University, Nantong, China.,Wuxi Institute of Hepatobiliary Surgery, Wuxi, China
| | - Shuo Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China.,School of Medicine, Jiangnan University, Wuxi, China
| | - Shuming Xiong
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China.,School of Medicine, Jiangnan University, Wuxi, China
| | - Benshun Hu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China.,Wuxi Institute of Hepatobiliary Surgery, Wuxi, China
| | - Youzhao He
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China.,Wuxi Institute of Hepatobiliary Surgery, Wuxi, China
| | - Yuanlong Gu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China.,School of Medicine, Jiangnan University, Wuxi, China.,Wuxi Institute of Hepatobiliary Surgery, Wuxi, China
| |
Collapse
|
5
|
Dalal N, Jalandra R, Sharma M, Prakash H, Makharia GK, Solanki PR, Singh R, Kumar A. Omics technologies for improved diagnosis and treatment of colorectal cancer: Technical advancement and major perspectives. Biomed Pharmacother 2020; 131:110648. [PMID: 33152902 DOI: 10.1016/j.biopha.2020.110648] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/09/2020] [Accepted: 08/16/2020] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) ranks third among the most commonly occurring cancers worldwide, and it causes half a million deaths annually. Alongside mechanistic study for CRC detection and treatment by conventional techniques, new technologies have been developed to study CRC. These technologies include genomics, transcriptomics, proteomics, and metabolomics which elucidate DNA markers, RNA transcripts, protein and, metabolites produced inside the colon and rectum part of the gut. All these approaches form the omics arena, which presents a remarkable opportunity for the discovery of novel prognostic, diagnostic and therapeutic biomarkers and also delineate the underlying mechanism of CRC causation, which may further help in devising treatment strategies. This review also mentions the latest developments in metagenomics and culturomics as emerging evidence suggests that metagenomics of gut microbiota has profound implications in the causation, prognosis, and treatment of CRC. A majority of bacteria cannot be studied as they remain unculturable, so culturomics has also been strengthened to develop culture conditions suitable for the growth of unculturable bacteria and identify unknown bacteria. The overall purpose of this review is to succinctly evaluate the application of omics technologies in colorectal cancer research for improving the diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Nishu Dalal
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi 110067, India; Department of Environmental Science, Satyawati College, Delhi University, Delhi 110052, India
| | - Rekha Jalandra
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi 110067, India; Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India
| | - Minakshi Sharma
- Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India
| | - Hridayesh Prakash
- Amity Institute of Virology and Immunology, Amity University, Sector 125, Noida 201313, Uttar Pradesh, India
| | - Govind K Makharia
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Pratima R Solanki
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajeev Singh
- Department of Environmental Science, Satyawati College, Delhi University, Delhi 110052, India.
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi 110067, India.
| |
Collapse
|
6
|
Wu H, Zhang XY, Niu M, Li FF, Gao S, Wei W, Li SW, Zhang XD, Liu SL, Pang D. Isobaric Tags for Relative and Absolute Quantitation in Proteomic Analysis of Potential Biomarkers in Invasive Cancer, Ductal Carcinoma In Situ, and Mammary Fibroadenoma. Front Oncol 2020; 10:574552. [PMID: 33194682 PMCID: PMC7640741 DOI: 10.3389/fonc.2020.574552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES Breast malignancy is a serious threat to women's health around the world. Following the rapid progress in the field of cancer diagnostics and identification of pathological markers, breast tumor treatment methods have been greatly improved. However, for invasive, ductal carcinomas and mammary fibroadenoma, there is an urgent demand for better breast tumor-linked biomarkers. The current study was designed to identify diagnostic and/or therapeutic protein biomarkers for breast tumors. METHODS A total of 140 individuals were included, comprising 35 healthy women, 35 invasive breast cancers (IBC), 35 breast ductal carcinomas in situ (DCIS), and 35 breast fibroadenoma patients. Isobaric tags for relative and absolute quantitation (iTRAQ) proteomic analysis was employed to characterize differentially expressed proteins for potential biomarkers in IBC, DCIS, and fibroadenomas by comparisons with their matched adjacent tissues and/or normal breast tissues. The public databases Metascape and String were used for bioinformatic analyses. RESULTS Using the proteomics approach, we identified differentially expressed proteins in tissues of different breast tumors compared to normal/adjacent breast tissues, including 100 in IBC, 52 in DCIS, and 44 in fibroadenoma. Among the 100 IBC differentially expressed proteins, 37 were found to be specific to this type of cancer only. Additionally, four proteins were specifically expressed in DCIS and four in fibroadenoma. Compared to corresponding adjacent tissues and normal breast tissues, 18 step-changing proteins were differentially expressed in IBC, 14 in DCIS, and 13 in fibroadenoma, respectively. Compared to DCIS and normal breast tissues, 65 proteins were differentially expressed in IBC with growing levels of malignancy. CONCLUSIONS The identified potential protein biomarkers may be used as diagnostic and/or therapeutic targets in breast tumors.
Collapse
Affiliation(s)
- Hao Wu
- Genomics Research Center, College of Pharmacy, State-Province Laboratory of Biomedicine and Pharmaceutics of China, Harbin Medical University, Harbin, China
- Sino-Russian Medical Research Center, Harbin Medical University Cancer Hospital, Harbin, China
- Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Xian-Yu Zhang
- Genomics Research Center, College of Pharmacy, State-Province Laboratory of Biomedicine and Pharmaceutics of China, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ming Niu
- Genomics Research Center, College of Pharmacy, State-Province Laboratory of Biomedicine and Pharmaceutics of China, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Fei-Feng Li
- Genomics Research Center, College of Pharmacy, State-Province Laboratory of Biomedicine and Pharmaceutics of China, Harbin Medical University, Harbin, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Song Gao
- Genomics Research Center, College of Pharmacy, State-Province Laboratory of Biomedicine and Pharmaceutics of China, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wei Wei
- Genomics Research Center, College of Pharmacy, State-Province Laboratory of Biomedicine and Pharmaceutics of China, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Si-Wei Li
- Genomics Research Center, College of Pharmacy, State-Province Laboratory of Biomedicine and Pharmaceutics of China, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xing-Da Zhang
- Genomics Research Center, College of Pharmacy, State-Province Laboratory of Biomedicine and Pharmaceutics of China, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shu-Lin Liu
- Genomics Research Center, College of Pharmacy, State-Province Laboratory of Biomedicine and Pharmaceutics of China, Harbin Medical University, Harbin, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Da Pang
- Genomics Research Center, College of Pharmacy, State-Province Laboratory of Biomedicine and Pharmaceutics of China, Harbin Medical University, Harbin, China
- Sino-Russian Medical Research Center, Harbin Medical University Cancer Hospital, Harbin, China
- Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
7
|
Kim EK, Song MJ, Jung Y, Lee WS, Jang HH. Proteomic Analysis of Primary Colon Cancer and Synchronous Solitary Liver Metastasis. Cancer Genomics Proteomics 2020; 16:583-592. [PMID: 31659112 DOI: 10.21873/cgp.20161] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND/AIM Colon cancer is prone to distant metastases to other sites and the risk of recurrence is relatively high. Therefore, the identification of liver metastasis-related factors is important for the diagnosis or treatment of colon cancer. The aim of this study was to identify the metastasis-related factors that are differentially expressed in synchronous solitary liver metastasis compared to primary colon cancer. MATERIALS AND METHODS Tissues of primary colon cancer and associated with liver metastases of five patients were used for mass spectrometry. Identified proteins were validated by western blotting. The in silico analysis was performed using the STRING database and GeneMANIA. RESULTS We identified 58 differentially expressed proteins (DEPs), including 51 under-expressed and 7 over-expressed proteins among a total of 164 identified proteins. Major hubs of protein-protein networks were ACTC1, PRDX6, TPI1, and ALDH1A1. DEPs were located in the extracellular region and cytoplasm and were involved in the regulation of enzymatic activity. The metabolic process was significantly enriched in biological processes and an involvement in the KEGG pathway. CONCLUSION These DEPs can potentially be used as biomarkers for the diagnosis of liver metastasis and they may provide a new strategy for developing anti-metastatic liver drugs in colon cancer patients.
Collapse
Affiliation(s)
- Eun-Kyung Kim
- Department of Biochemistry, College of Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Min-Jeong Song
- Department of Biochemistry, College of Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Yunjae Jung
- Department of Microbiology, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Won-Suk Lee
- Department of Surgery, Gil Medical Center, Gachon University, Incheon, Republic of Korea
| | - Ho Hee Jang
- Department of Biochemistry, College of Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
8
|
Gong SN, Zhu JP, Ma YJ, Zhao DQ. Proteomics of the mediodorsal thalamic nucleus of rats with stress-induced gastric ulcer. World J Gastroenterol 2019; 25:2911-2923. [PMID: 31249449 PMCID: PMC6589736 DOI: 10.3748/wjg.v25.i23.2911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/08/2019] [Accepted: 05/18/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Stress-induced gastric ulcer (SGU) is one of the most common visceral complications after trauma. Restraint water-immersion stress (RWIS) can cause serious gastrointestinal dysfunction and has been widely used to study the pathogenesis of SGU to identify medications that can cure the disease. The mediodorsal thalamic nucleus (MD) is the centre integrating visceral and physical activity and contributes to SGU induced by RWIS. Hence, the role of the MD during RWIS needs to be studied.
AIM To screen for differentially expressed proteins in the MD of the RWIS rats to further elucidate molecular mechanisms of SGU.
METHODS Male Wistar rats were selected randomly and divided into two groups, namely, a control group and an RWIS group. Gastric mucosal lesions of the sacrificed rats were measured using the erosion index and the proteomic profiles of the MD were generated through isobaric tags for relative and absolute quantitation (iTRAQ) coupled with two-dimensional liquid chromatography and tandem mass spectrometry. Additionally, iTRAQ results were verified by Western blot analysis.
RESULTS A total of 2853 proteins were identified, and these included 65 dysregulated (31 upregulated and 34 downregulated) proteins (fold change ratio ≥ 1.2). Gene Ontology (GO) analysis showed that most of the upregulated proteins are primarily related to cell division, whereas most of the downregulated proteins are related to neuron morphogenesis and neurotransmitter regulation. Ingenuity Pathway Analysis revealed that the dysregulated proteins are mainly involved in the neurological disease signalling pathways. Furthermore, our results indicated that glycogen synthase kinase-3 beta might be related to the central mechanism through which RWIS gives rise to SGU.
CONCLUSION Quantitative proteomic analysis elucidated the molecular targets associated with the production of SGU and provides insights into the role of the MD. The underlying molecular mechanisms need to be further dissected.
Collapse
Affiliation(s)
- Sheng-Nan Gong
- College of Life Sciences, Shandong Normal University, Jinan 250014, Shandong Province, China
| | - Jian-Ping Zhu
- College of Life Sciences, Shandong Normal University, Jinan 250014, Shandong Province, China
| | - Ying-Jie Ma
- College of Life Sciences, Shandong Normal University, Jinan 250014, Shandong Province, China
| | - Dong-Qin Zhao
- College of Life Sciences, Shandong Normal University, Jinan 250014, Shandong Province, China
| |
Collapse
|
9
|
Lian L, Li XL, Xu MD, Li XM, Wu MY, Zhang Y, Tao M, Li W, Shen XM, Zhou C, Jiang M. VEGFR2 promotes tumorigenesis and metastasis in a pro-angiogenic-independent way in gastric cancer. BMC Cancer 2019; 19:183. [PMID: 30819137 PMCID: PMC6393973 DOI: 10.1186/s12885-019-5322-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 01/25/2019] [Indexed: 02/08/2023] Open
Abstract
Background VEGF/VEGFR2 pathway is the central therapeutic target in anti-angiogenic treatment in multiple cancers. However, little work has been carried out concerning the pro-malignancy functions of VEGFR2 that are independent of its pro-angiogenesis effects in gastric cancer. Here, we demonstrated that VEGFR2 up-regulation in gastric cancer tissues was a prognostic marker for poor disease-free survival and overall survival of gastric cancer patients. Methods Immunohistochemistry was used to detect VEGFR2 and VTN expressions in specimens. Kaplan–Meier curves were constructed for survival analysis. Stably knockdown cell lines and overexpression cell lines were constructed by small interfering RNA and plasmids transfection. Real-time PCR and Western blot were used to confirm the expressions of target genes at both RNA and protein levels. Cell proliferation was measured by using Cell Counting Kit-8 and xenograft models. Microarray and bioinformatic analysis were also performed to identify the relationship between Vitronectin (VTN) and VEGFR2. Results When overexpressed in gastric cancer cells, VEGFR2 increased cellular proliferation and invasion in vitro and tumor formation in xenograft models. By using integrating microarray and bioinformatic analysis, we identifiedVTN as a downstream of VEGFR2 pathway. In gain- and loss-of function analysis in gastric cancer cells, VTN was further verified in consistent with VEGFR2 in expression levels and in regulating cell growth and motility in vitro and in vivo. Moreover, in gastric cancer samples, VTN was as also revealed as a poor prognostic factor. Conclusions Our present findings defined a novel activity for VEGFR2 in promoting tumorogenicity, motility and indicating a poor survival in gastric cancer beyond its known pro-angiogenic effects. Implications Our present findings defined a novel activity for VEGFR2 in promoting tumorogenicity, motility and indicating a poor survival in gastric cancer beyond its known pro-angiogenic effects, which may provide a new and valuable target for design of therapies for intervention and a new cognitive perspective for the anti-angiogenesis therapies. Electronic supplementary material The online version of this article (10.1186/s12885-019-5322-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lian Lian
- Department of Oncology, Suzhou Xiangcheng People's Hospital, Suzhou, 215131, China.,Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Xiang-Li Li
- Department of General Surgery, Suzhou Xiangcheng People's Hospital, Suzhou, 215131, China.,Comprehensive Cancer Center, Suzhou Xiangcheng People's Hospital, Suzhou, 215131, China
| | - Meng-Dan Xu
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Xian-Min Li
- Department of Oncology, Suzhou Xiangcheng People's Hospital, Suzhou, 215131, China
| | - Meng-Yao Wu
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yan Zhang
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Min Tao
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Wei Li
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.,Comprehensive Cancer Center, Suzhou Xiangcheng People's Hospital, Suzhou, 215131, China
| | - Xiao-Ming Shen
- Department of Oncology, Suzhou Xiangcheng People's Hospital, Suzhou, 215131, China.
| | - Chong Zhou
- Department of Radiation Oncology, Xuzhou Central Hospital, Xuzhou, 221009, China.
| | - Min Jiang
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
10
|
Lv J, Liu J, Xiao M, Xu H, Xu C, Zhang X, Tang L, Jiang F, Zhou Y, Zhang Z, Qu L, Lu C. ARP3 promotes tumor metastasis and predicts a poor prognosis in hepatocellular carcinoma. Pathol Res Pract 2018; 214:1356-1361. [PMID: 30049513 DOI: 10.1016/j.prp.2018.05.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 01/15/2023]
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide. Therefore, the study of the precise molecular mechanism underlying hepatocarcinogenesis has profound significance. In this study, we found that the expression of ARP3 was significantly up-regulated in HCC tissues and cell lines. Studies in liver cancer specimens showed that the expression of ARP3 is closely related to the pathological grade, distant metastasis and vascular invasion of HCC. According to the results of multivariate analysis, ARP3 is an independent prognostic factor for HCC patients. In vitro, knockdown of ARP3 expression significantly inhibited the invasion and migration of HCC cells and altered the expression of EMT markers. Based on the above conclusions, we conclude that ARP3 may be a potential prognostic indicator and therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Jiale Lv
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Jinxia Liu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Mingbin Xiao
- Department of Gastroenterology and Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Hui Xu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Chenzhou Xu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Xuening Zhang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Lei Tang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Feng Jiang
- Department of Gastroenterology and Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yifan Zhou
- Class 4, Grade 14, Clinical Medicine, Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Zijuan Zhang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Lishuai Qu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Cuihua Lu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
11
|
Lee PY, Chin SF, Low TY, Jamal R. Probing the colorectal cancer proteome for biomarkers: Current status and perspectives. J Proteomics 2018; 187:93-105. [PMID: 29953962 DOI: 10.1016/j.jprot.2018.06.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/13/2018] [Accepted: 06/23/2018] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignancies worldwide. Biomarkers that can facilitate better clinical management of CRC are in high demand to improve patient outcome and to reduce mortality. In this regard, proteomic analysis holds a promising prospect in the hunt of novel biomarkers for CRC and in understanding the mechanisms underlying tumorigenesis. This review aims to provide an overview of the current progress of proteomic research, focusing on discovery and validation of diagnostic biomarkers for CRC. We will summarize the contributions of proteomic strategies to recent discoveries of protein biomarkers for CRC and also briefly discuss the potential and challenges of different proteomic approaches in biomarker discovery and translational applications.
Collapse
Affiliation(s)
- Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia.
| | - Siok-Fong Chin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Biomedical analysis of formalin-fixed, paraffin-embedded tissue samples: The Holy Grail for molecular diagnostics. J Pharm Biomed Anal 2018; 155:125-134. [PMID: 29627729 DOI: 10.1016/j.jpba.2018.03.065] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/30/2018] [Accepted: 03/31/2018] [Indexed: 02/07/2023]
Abstract
More than a century ago in 1893, a revolutionary idea about fixing biological tissue specimens was introduced by Ferdinand Blum, a German physician. Since then, a plethora of fixation methods have been investigated and used. Formalin fixation with paraffin embedment became the most widely used types of fixation and preservation method, due to its proper architectural conservation of tissue structures and cellular shape. The huge collection of formalin-fixed, paraffin-embedded (FFPE) sample archives worldwide holds a large amount of unearthed information about diseases that could be the Holy Grail in contemporary biomarker research utilizing analytical omics based molecular diagnostics. The aim of this review is to critically evaluate the omics options for FFPE tissue sample analysis in the molecular diagnostics field.
Collapse
|
13
|
Neural cell adhesion molecule-1 may be a new biomarker of coronary artery disease. Int J Cardiol 2018; 257:238-242. [DOI: 10.1016/j.ijcard.2017.12.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 12/06/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022]
|
14
|
Lim LC, Lim YM. Proteome Heterogeneity in Colorectal Cancer. Proteomics 2018; 18. [PMID: 29316255 DOI: 10.1002/pmic.201700169] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 12/17/2017] [Indexed: 01/26/2023]
Abstract
Tumor heterogeneity is an important feature of colorectal cancer (CRC) manifested by dynamic changes in gene expression, protein expression, and availability of different tumor subtypes. Recent publications in the past 10 years have revealed proteome heterogeneity between different colorectal tumors and within the same tumor site. This paper reviews recent research works on the proteome heterogeneity in CRC, which includes the heterogeneity within a single tumor (intratumor heterogeneity), between different anatomical sites at the same organ, and between primary and metastatic sites (intertumor heterogeneity). The potential use of proteome heterogeneity in precision medicine and its implications in biomarker discovery and therapeutic outcomes will be discussed. Identification of the unique proteome landscape between and within individual tumors is imperative for understanding cancer biology and the management of CRC patients.
Collapse
Affiliation(s)
- Lay Cheng Lim
- Centre for Cancer Research, Faculty of Medicine and Health Sciences, University of Tunku Abdul Rahman, Selangor, Malaysia
| | - Yang Mooi Lim
- Centre for Cancer Research, Faculty of Medicine and Health Sciences, University of Tunku Abdul Rahman, Selangor, Malaysia
| |
Collapse
|
15
|
Kwasnik A, von Kriegsheim A, Irving A, Pennington SR. Potential mechanisms of calcium dependent regulation of the mammalian cell cycle revealed by comprehensive unbiased label-free nLC-MS/MS quantitative proteomics. J Proteomics 2018; 170:151-166. [DOI: 10.1016/j.jprot.2017.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 08/03/2017] [Accepted: 08/05/2017] [Indexed: 01/27/2023]
|
16
|
Pedersen MH, Hood BL, Beck HC, Conrads TP, Ditzel HJ, Leth-Larsen R. Downregulation of antigen presentation-associated pathway proteins is linked to poor outcome in triple-negative breast cancer patient tumors. Oncoimmunology 2017. [PMID: 28638726 DOI: 10.1080/2162402x.2017.1305531] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous subtype with varying disease outcomes. Tumor-infiltrating lymphocytes (TILs) are frequent in TNBC and have been shown to correlate with outcome, suggesting an immunogenic component in this subtype. However, other factors intrinsic to the cancer cells may also influence outcome. To identify proteins and molecular pathways associated with recurrence in TNBC, 34 formalin-fixed paraffin-embedded (FFPE) primary TNBC tumors were investigated by global proteomic profiling using mass spectrometry. Approximately, half of the patients were lymph node-negative and remained free of local or distant metastasis within 10 y follow-up, while the other half developed distant metastasis. Proteomic profiling identified >4,000 proteins, of which 63 exhibited altered expression in primary tumors of recurrence versus recurrence-free patients. Importantly, downregulation of proteins in the major histocompatibility complex (MHC) class I antigen presentation pathways were enriched, including TAP1, TAP2, CALR, HLA-A, ERAP1 and TAPBP, and were associated with significantly shorter recurrence-free and overall survival. In addition, proteins involved in cancer cell proliferation and growth, including GBP1, RAD23B, WARS and STAT1, also exhibited altered expression in primary tumors of recurrence versus recurrence-free patients. The association between the antigen-presentation pathway and outcome were validated in a second sample set of 10 primary TNBC tumors and corresponding metastases using proteomics and in a large public gene expression database of 249 TNBC and 580 basal-like breast cancer cases. Our study demonstrates that downregulation of antigen presentation is a key mechanism for TNBC cells to avoid immune surveillance, allowing continued growth and spread.
Collapse
Affiliation(s)
- Martin H Pedersen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | - Brian L Hood
- Womens Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Henry Jackson Foundation for the Advancement of Military Medicine, Annandale, VA, USA
| | - Hans Christian Beck
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense C, Denmark
| | - Thomas P Conrads
- Womens Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Henry Jackson Foundation for the Advancement of Military Medicine, Annandale, VA, USA
| | - Henrik J Ditzel
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark.,Department of Oncology, Odense University Hospital, Odense C, Denmark
| | - Rikke Leth-Larsen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark.,Department of Regional Health Research, University of Southern Denmark, Odense C, Denmark
| |
Collapse
|
17
|
Zeng JH, Liang L, He RQ, Tang RX, Cai XY, Chen JQ, Luo DZ, Chen G. Comprehensive investigation of a novel differentially expressed lncRNA expression profile signature to assess the survival of patients with colorectal adenocarcinoma. Oncotarget 2017; 8:16811-16828. [PMID: 28187432 PMCID: PMC5370003 DOI: 10.18632/oncotarget.15161] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/24/2017] [Indexed: 02/06/2023] Open
Abstract
Growing evidence has shown that long non-coding RNAs (lncRNAs) can serve as prospective markers for survival in patients with colorectal adenocarcinoma. However, most studies have explored a limited number of lncRNAs in a small number of cases. The objective of this study is to identify a panel of lncRNA signature that could evaluate the prognosis in colorectal adenocarcinoma based on the data from The Cancer Genome Atlas (TCGA). Altogether, 371 colon adenocarcinoma (COAD) patients with complete clinical data were included in our study as the test cohort. A total of 578 differentially expressed lncRNAs (DELs) were observed, among which 20 lncRNAs closely related to overall survival (OS) in COAD patients were identified using a Cox proportional regression model. A risk score formula was developed to assess the prognostic value of the lncRNA signature in COAD with four lncRNAs (LINC01555, RP11-610P16.1, RP11-108K3.1 and LINC01207), which were identified to possess the most remarkable correlation with OS in COAD patients. COAD patients with a high-risk score had poorer OS than those with a low-risk score. The multivariate Cox regression analyses confirmed that the four-lncRNA signature could function as an independent prognostic indicator for COAD patients, which was largely mirrored in the validating cohort with rectal adenocarcinoma (READ) containing 158 cases. In addition, the correlative genes of LINC01555 and LINC01207 were enriched in the cAMP signaling and mucin type O-Glycan biosynthesis pathways. With further validation in the future, our study indicates that the four-lncRNA signature could serve as an independent biomarker for survival of colorectal adenocarcinoma.
Collapse
Affiliation(s)
- Jiang-Hui Zeng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Liang Liang
- Department of General Surgery, First Affiliated Hospital of Guangxi Medical University (West Branch), Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Rui-Xue Tang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Xiao-Yong Cai
- Department of General Surgery, First Affiliated Hospital of Guangxi Medical University (West Branch), Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Jun-Qiang Chen
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Dian-Zhong Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| |
Collapse
|
18
|
Ostasiewicz P, Wiśniewski J. A Protocol for Large-Scale Proteomic Analysis of Microdissected Formalin Fixed and Paraffin Embedded Tissue. Methods Enzymol 2017; 585:159-176. [DOI: 10.1016/bs.mie.2016.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Mathieu AA, Ohl-Séguy E, Dubois ML, Jean D, Jones C, Boudreau F, Boisvert FM. Subcellular proteomics analysis of different stages of colorectal cancer cell lines. Proteomics 2016; 16:3009-3018. [DOI: 10.1002/pmic.201600314] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/20/2016] [Accepted: 09/29/2016] [Indexed: 01/10/2023]
Affiliation(s)
- Alex-Ane Mathieu
- Department of Anatomy and Cell Biology; Université de Sherbrooke; Sherbrooke Canada
| | - Emma Ohl-Séguy
- Department of Anatomy and Cell Biology; Université de Sherbrooke; Sherbrooke Canada
| | - Marie-Line Dubois
- Department of Anatomy and Cell Biology; Université de Sherbrooke; Sherbrooke Canada
| | - Dominique Jean
- Department of Anatomy and Cell Biology; Université de Sherbrooke; Sherbrooke Canada
| | - Christine Jones
- Department of Anatomy and Cell Biology; Université de Sherbrooke; Sherbrooke Canada
| | - François Boudreau
- Department of Anatomy and Cell Biology; Université de Sherbrooke; Sherbrooke Canada
| | | |
Collapse
|
20
|
Huang HC, Yan L, Shao MY, Chen ZC. Advances in proteomic study of colorectal cancer. Shijie Huaren Xiaohua Zazhi 2016; 24:3870-3876. [DOI: 10.11569/wcjd.v24.i27.3870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is one of the most common malignant tumors and the fourth cause of cancer-related mortality. It is not easy to be found at the early stage and therefore has a poor prognosis. Thus, new molecular biomarkers are required to improve early diagnosis and discover new effective therapeutic targets. Advances in proteomic technologies have greatly enhanced our understanding of the pathogenesis of colorectal cancer at the protein level, and improved our ability of early diagnosis and treatment. Proteomic studies of colorectal tissues, serum and cell lines have identified differentially expressed proteins, new potential diagnostic biomarkers and clinical drug targets. This article reviews the advances in proteomic study of colorectal cancer in recent years.
Collapse
|
21
|
|