1
|
Qin X, Fang Z, Zhang J, Zhao W, Zheng N, Wang X. Regulatory effect of Ganoderma lucidum and its active components on gut flora in diseases. Front Microbiol 2024; 15:1362479. [PMID: 38572237 PMCID: PMC10990249 DOI: 10.3389/fmicb.2024.1362479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Driven by the good developmental potential and favorable environment at this stage, Ganoderma lucidum is recognized as a precious large fungus with medicinal and nutritional health care values. Among them, polysaccharides, triterpenoids, oligosaccharides, trace elements, etc. are important bioactive components in G. lucidum. These bioactive components will have an impact on gut flora, thus alleviating diseases such as hyperglycemia, hyperlipidemia and obesity caused by gut flora disorder. While numerous studies have demonstrated the ability of G. lucidum and its active components to regulate gut flora, a systematic review of this mechanism is currently lacking. The purpose of this paper is to summarize the regulatory effects of G. lucidum and its active components on gut flora in cardiovascular, gastrointestinal and renal metabolic diseases, and summarize the research progress of G. lucidum active components in improving related diseases by regulating gut flora. Additionally, review delves into the principle by which G. lucidum and its active components can treat or assist treat diseases by regulating gut flora. The research progress of G. lucidum in intestinal tract and its potential in medicine, health food and clinical application were fully explored for researchers.
Collapse
Affiliation(s)
- Xinjie Qin
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
- Jilin Province Key Field of Social Sciences (Food Industry) Research Base, Changchun, China
| | - Zinan Fang
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
- Jilin Province Key Field of Social Sciences (Food Industry) Research Base, Changchun, China
| | - Jinkang Zhang
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
- Jilin Province Key Field of Social Sciences (Food Industry) Research Base, Changchun, China
| | - Wenbo Zhao
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
- Jilin Province Key Field of Social Sciences (Food Industry) Research Base, Changchun, China
| | - Ni Zheng
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
- Jilin Province Key Field of Social Sciences (Food Industry) Research Base, Changchun, China
| | - Xiaoe Wang
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
- Jilin Province Key Field of Social Sciences (Food Industry) Research Base, Changchun, China
| |
Collapse
|
2
|
Rastall RA, Diez-Municio M, Forssten SD, Hamaker B, Meynier A, Moreno FJ, Respondek F, Stah B, Venema K, Wiese M. Structure and function of non-digestible carbohydrates in the gut microbiome. Benef Microbes 2022; 13:95-168. [PMID: 35729770 DOI: 10.3920/bm2021.0090] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Together with proteins and fats, carbohydrates are one of the macronutrients in the human diet. Digestible carbohydrates, such as starch, starch-based products, sucrose, lactose, glucose and some sugar alcohols and unusual (and fairly rare) α-linked glucans, directly provide us with energy while other carbohydrates including high molecular weight polysaccharides, mainly from plant cell walls, provide us with dietary fibre. Carbohydrates which are efficiently digested in the small intestine are not available in appreciable quantities to act as substrates for gut bacteria. Some oligo- and polysaccharides, many of which are also dietary fibres, are resistant to digestion in the small intestines and enter the colon where they provide substrates for the complex bacterial ecosystem that resides there. This review will focus on these non-digestible carbohydrates (NDC) and examine their impact on the gut microbiota and their physiological impact. Of particular focus will be the potential of non-digestible carbohydrates to act as prebiotics, but the review will also evaluate direct effects of NDC on human cells and systems.
Collapse
Affiliation(s)
- R A Rastall
- Department of Food and Nutritional Sciences, The University of Reading, P.O. Box 226, Whiteknights, Reading, RG6 6AP, United Kingdom
| | - M Diez-Municio
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - S D Forssten
- IFF Health & Biosciences, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | - B Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907-2009, USA
| | - A Meynier
- Nutrition Research, Mondelez France R&D SAS, 6 rue René Razel, 91400 Saclay, France
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - F Respondek
- Tereos, Zoning Industriel Portuaire, 67390 Marckolsheim, France
| | - B Stah
- Human Milk Research & Analytical Science, Danone Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, the Netherlands.,Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - K Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University - campus Venlo, St. Jansweg 20, 5928 RC Venlo, the Netherlands
| | - M Wiese
- Department of Microbiology and Systems Biology, TNO, Utrechtseweg 48, 3704 HE, Zeist, the Netherlands
| |
Collapse
|
3
|
Effects of dietary whole grain buckwheat and oat on benzo[a]pyrene-induced genotoxicity, oxidative and pyroptotic injury in liver of mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
4
|
Barberio B, Facchin S, Patuzzi I, Ford AC, Massimi D, Valle G, Sattin E, Simionati B, Bertazzo E, Zingone F, Savarino EV. A specific microbiota signature is associated to various degrees of ulcerative colitis as assessed by a machine learning approach. Gut Microbes 2022; 14:2028366. [PMID: 35129058 PMCID: PMC8820804 DOI: 10.1080/19490976.2022.2028366] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Ulcerative colitis (UC) is a complex immune-mediated disease in which the gut microbiota plays a central role, and may determine prognosis and disease progression. We aimed to assess whether a specific microbiota profile, as measured by a machine learning approach, can be associated with disease severity in patients with UC. In this prospective pilot study, consecutive patients with active or inactive UC and healthy controls (HCs) were enrolled. Stool samples were collected for fecal microbiota assessment analysis by 16S rRNA gene sequencing approach. A machine learning approach was used to predict the groups' separation. Thirty-six HCs and forty-six patients with UC (20 active and 26 inactive) were enrolled. Alpha diversity was significantly different between the three groups (Shannon index: p-values: active UC vs HCs = 0.0005; active UC vs inactive UC = 0.0273; HCs vs inactive UC = 0.0260). In particular, patients with active UC showed the lowest values, followed by patients with inactive UC, and HCs. At species level, we found high levels of Bifidobacterium adolescentis and Haemophilus parainfluenzae in inactive UC and active UC, respectively. A specific microbiota profile was found for each group and was confirmed with sparse partial least squares discriminant analysis, a machine learning-supervised approach. The latter allowed us to observe a perfect class prediction and group separation using the complete information (full Operational Taxonomic Unit table), with a minimal loss in performance when using only 5% of features. A machine learning approach to 16S rRNA data identifies a bacterial signature characterizing different degrees of disease activity in UC. Follow-up studies will clarify whether such microbiota profiling are useful for diagnosis and management.
Collapse
Affiliation(s)
- Brigida Barberio
- Division of Gastroenterology, Department of Surgery, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Sonia Facchin
- Division of Gastroenterology, Department of Surgery, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Ilaria Patuzzi
- Research & Development Division, University of Padova, Padova, Italy
| | - Alexander C. Ford
- Leeds Gastroenterology Institute, St. James’s University Hospital, Leeds, UK,Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, UK
| | - Davide Massimi
- Division of Gastroenterology, Department of Surgery, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Giorgio Valle
- Department of Biology and Cribi Biotechnology Centre, University of Padova, Padova, Italy
| | | | - Barbara Simionati
- Research & Development Division, University of Padova, Padova, Italy
| | - Elena Bertazzo
- Division of Gastroenterology, Department of Surgery, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Fabiana Zingone
- Division of Gastroenterology, Department of Surgery, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Edoardo Vincenzo Savarino
- Division of Gastroenterology, Department of Surgery, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy,CONTACT Edoardo Vincenzo Savarino Division of Gastroenterology, Department of Surgery, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| |
Collapse
|
5
|
Liu H, Liu W, Huang X, Feng Y, Lu J, Gao F. Intestinal flora differences between patients with ulcerative colitis of different ethnic groups in China. Medicine (Baltimore) 2021; 100:e26932. [PMID: 34397940 PMCID: PMC8360419 DOI: 10.1097/md.0000000000026932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/17/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
To determine the differences in intestinal flora between Uygur and Han patients with ulcerative colitis (UC).Microbial diversity and structural composition of fecal bacteria from patients with UC and their matched healthy spouses or first-degree relatives were analyzed using high-throughput sequencing technology.The fecal microbial diversity and abundance index of Uygur patients with UC (UUC) were significantly lower compared with the Uygur normal control group, while there was no significant difference between the Han UC patients (HUC) and the Han normal control group (HN). Compared with their respective control groups, Uygur UC patients and Han UC patients had a different main composition of human intestinal flora (P < .05). The abundance of Burkholderia, Caballeronia, Paraburkholderia in the UUC group were higher compared with the HUC group, while Faecalibacterium, Bifidobacterium, and Blautia in the HUC group were higher than those in the UUC group (P < .05). Veillonella in the UUC group was higher than that in the Uygur normal control group group, while Subdoligranulum and Ruminococcaceae_UCG-002 were significantly lower (P < .05). Prevotella_9 in the HUC group was significantly higher than that in HN group, while Blautia, Anaerostipes, and [Eubacterium]_hallii_group were significantly lower. Moreover, the top 6 species in order of importance were Christensenellaceae_R_7_group, Ruminococcae_ucg_005, Ruminococcae_ucg_010, Ruminococcae_ucg_013, Haemophilus, and Ezakiella.The difference in intestinal microflora structure may be one of the reasons for the clinical heterogeneity between Uygur and Han patients with UC. Christensenellaceae_R_7_group, Ruminococcae_ucg_005, Ruminococcae_ucg_010, Ruminococcae_ucg_013, Haemophilus, and Ezakiella could be used as potential biomarkers for predicting UC.
Collapse
Affiliation(s)
- Huan Liu
- College of Clinical Medicine, Xinjiang Medical University, 393 Xinyi Road, Urumqi, Xinjiang, China
| | - Weidong Liu
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Tianshan District, Urumqi, Xinjiang, China
| | - Xiaoling Huang
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Tianshan District, Urumqi, Xinjiang, China
| | - Yan Feng
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Tianshan District, Urumqi, Xinjiang, China
| | - Jiajie Lu
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Tianshan District, Urumqi, Xinjiang, China
| | - Feng Gao
- College of Clinical Medicine, Xinjiang Medical University, 393 Xinyi Road, Urumqi, Xinjiang, China
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Tianshan District, Urumqi, Xinjiang, China
| |
Collapse
|
6
|
McDaniel Mims B, Enriquez J, Pires dos Santos A, Jones-Hall Y, Dowd S, Furr KL, Grisham MB. Antibiotic administration exacerbates acute graft vs. host disease-induced bone marrow and spleen damage in lymphopenic mice. PLoS One 2021; 16:e0254845. [PMID: 34358240 PMCID: PMC8346256 DOI: 10.1371/journal.pone.0254845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 07/04/2021] [Indexed: 12/29/2022] Open
Abstract
Background Hematopoietic stem cell transplantation is a potential cure for certain life-threatening malignant and nonmalignant diseases. However, experimental and clinical studies have demonstrated that pre-transplant myeloablative conditioning damages the gut leading to translocation of intestinal bacteria and the development of acute graft vs. host disease (aGVHD). The overall objective of this study was to determine whether administration of broad spectrum antibiotics (Abx) affects the onset and/or severity of aGVHD in lymphopenic mice that were not subjected to toxic, pre-transplant conditioning. Results We found that treatment of NK cell-depleted recombination activating gene-1-deficient (-NK/RAG) recipients with an Abx cocktail containing vancomycin and neomycin for 7 days prior to and 4 weeks following adoptive transfer of allogeneic CD4+ T cells, exacerbated the development of aGVHD-induced BM failure and spleen damage when compared to untreated–NK/RAG recipients engrafted with syngeneic or allogeneic T cells. Abx-treated mice exhibited severe anemia and monocytopenia as well as marked reductions in BM- and spleen-residing immune cells. Blinded histopathological analysis confirmed that Abx-treated mice engrafted with allogeneic T cells suffered significantly more damage to the BM and spleen than did untreated mice engrafted with allogeneic T cells. Abx-induced exacerbation of BM and spleen damage correlated with a dramatic reduction in fecal bacterial diversity, marked loss of anaerobic bacteria and remarkable expansion of potentially pathogenic bacteria. Conclusions We conclude that continuous Abx treatment may aggravate aGVHD-induced tissue damage by reducing short chain fatty acid-producing anaerobes (e.g. Clostridium, Blautia) and/or by promoting the expansion of pathobionts (e.g. Akkermansia) and opportunistic pathogens (Cronobacter).
Collapse
Affiliation(s)
- Brianyell McDaniel Mims
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States of America
| | - Josue Enriquez
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States of America
| | - Andrea Pires dos Santos
- College of Veterinary Medicine, Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States of America
| | - Yava Jones-Hall
- College of Veterinary Medicine and Biomedical Sciences, Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States of America
| | - Scot Dowd
- MR DNA (Molecular Research), Shallowater, TX, United States of America
| | - Kathryn L. Furr
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States of America
| | - Matthew B. Grisham
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States of America
- * E-mail:
| |
Collapse
|
7
|
Mkaouar H, Mariaule V, Rhimi S, Hernandez J, Kriaa A, Jablaoui A, Akermi N, Maguin E, Lesner A, Korkmaz B, Rhimi M. Gut Serpinome: Emerging Evidence in IBD. Int J Mol Sci 2021; 22:ijms22116088. [PMID: 34200095 PMCID: PMC8201313 DOI: 10.3390/ijms22116088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are incurable disorders whose prevalence and global socioeconomic impact are increasing. While the role of host genetics and immunity is well documented, that of gut microbiota dysbiosis is increasingly being studied. However, the molecular basis of the dialogue between the gut microbiota and the host remains poorly understood. Increased activity of serine proteases is demonstrated in IBD patients and may contribute to the onset and the maintenance of the disease. The intestinal proteolytic balance is the result of an equilibrium between the proteases and their corresponding inhibitors. Interestingly, the serine protease inhibitors (serpins) encoded by the host are well reported; in contrast, those from the gut microbiota remain poorly studied. In this review, we provide a concise analysis of the roles of serine protease in IBD physiopathology and we focus on the serpins from the gut microbiota (gut serpinome) and their relevance as a promising therapeutic approach.
Collapse
Affiliation(s)
- Héla Mkaouar
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, 78350 Jouy-en-Josas, France; (H.M.); (V.M.); (S.R.); (A.K.); (A.J.); (N.A.); (E.M.)
| | - Vincent Mariaule
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, 78350 Jouy-en-Josas, France; (H.M.); (V.M.); (S.R.); (A.K.); (A.J.); (N.A.); (E.M.)
| | - Soufien Rhimi
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, 78350 Jouy-en-Josas, France; (H.M.); (V.M.); (S.R.); (A.K.); (A.J.); (N.A.); (E.M.)
| | - Juan Hernandez
- Department of Clinical Sciences, Nantes-Atlantic College of Veterinary Medicine and Food Sciences (Oniris), University of Nantes, 101 Route de Gachet, 44300 Nantes, France;
| | - Aicha Kriaa
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, 78350 Jouy-en-Josas, France; (H.M.); (V.M.); (S.R.); (A.K.); (A.J.); (N.A.); (E.M.)
| | - Amin Jablaoui
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, 78350 Jouy-en-Josas, France; (H.M.); (V.M.); (S.R.); (A.K.); (A.J.); (N.A.); (E.M.)
| | - Nizar Akermi
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, 78350 Jouy-en-Josas, France; (H.M.); (V.M.); (S.R.); (A.K.); (A.J.); (N.A.); (E.M.)
| | - Emmanuelle Maguin
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, 78350 Jouy-en-Josas, France; (H.M.); (V.M.); (S.R.); (A.K.); (A.J.); (N.A.); (E.M.)
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, Uniwersytet Gdanski, Chemistry, Wita Stwosza 63, PL80-308 Gdansk, Poland;
| | - Brice Korkmaz
- INSERM UMR-1100, “Research Center for Respiratory Diseases” and University of Tours, 37032 Tours, France;
| | - Moez Rhimi
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, 78350 Jouy-en-Josas, France; (H.M.); (V.M.); (S.R.); (A.K.); (A.J.); (N.A.); (E.M.)
- Correspondence:
| |
Collapse
|
8
|
Kim J, Balasubramanian I, Bandyopadhyay S, Nadler I, Singh R, Harlan D, Bumber A, He Y, Kerkhof LJ, Gao N, Su X, Ferraris RP. Lactobacillus rhamnosus GG modifies the metabolome of pathobionts in gnotobiotic mice. BMC Microbiol 2021; 21:165. [PMID: 34082713 PMCID: PMC8176599 DOI: 10.1186/s12866-021-02178-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
Background Lactobacillus rhamnosus GG (LGG) is the most widely used probiotic, but the mechanisms underlying its beneficial effects remain unresolved. Previous studies typically inoculated LGG in hosts with established gut microbiota, limiting the understanding of specific impacts of LGG on host due to numerous interactions among LGG, commensal microbes, and the host. There has been a scarcity of studies that used gnotobiotic animals to elucidate LGG-host interaction, in particular for gaining specific insights about how it modifies the metabolome. To evaluate whether LGG affects the metabolite output of pathobionts, we inoculated with LGG gnotobiotic mice containing Propionibacterium acnes, Turicibacter sanguinis, and Staphylococcus aureus (PTS). Results 16S rRNA sequencing of fecal samples by Ion Torrent and MinION platforms showed colonization of germ-free mice by PTS or by PTS plus LGG (LTS). Although the body weights and feeding rates of mice remained similar between PTS and LTS groups, co-associating LGG with PTS led to a pronounced reduction in abundance of P. acnes in the gut. Addition of LGG or its secretome inhibited P. acnes growth in culture. After optimizing procedures for fecal metabolite extraction and metabolomic liquid chromatography-mass spectrometry analysis, unsupervised and supervised multivariate analyses revealed a distinct separation among fecal metabolites of PTS, LTS, and germ-free groups. Variables-important-in-projection scores showed that LGG colonization robustly diminished guanine, ornitihine, and sorbitol while significantly elevating acetylated amino acids, ribitol, indolelactic acid, and histamine. In addition, carnitine, betaine, and glutamate increased while thymidine, quinic acid and biotin were reduced in both PTS and LTS groups. Furthermore, LGG association reduced intestinal mucosal expression levels of inflammatory cytokines, such as IL-1α, IL-1β and TNF-α. Conclusions LGG co-association had a negative impact on colonization of P. acnes, and markedly altered the metabolic output and inflammatory response elicited by pathobionts. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02178-2.
Collapse
Affiliation(s)
- Jinhee Kim
- Department of Pharmacology, Physiology and Neurosciences, Medical Science Building, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | | | - Sheila Bandyopadhyay
- Department of Biological Sciences, Life Science Center, Rutgers University, Newark, NJ, 07102, USA
| | - Ian Nadler
- Department of Pharmacology, Physiology and Neurosciences, Medical Science Building, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Rajbir Singh
- Department of Biological Sciences, Life Science Center, Rutgers University, Newark, NJ, 07102, USA
| | - Danielle Harlan
- Department of Pharmacology, Physiology and Neurosciences, Medical Science Building, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Amanda Bumber
- Comparative Medicine Resources, Rutgers University, Newark, NJ, 07103, USA
| | - Yuling He
- Department of Medicine, Clinical Academic Building, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, 08901, USA.,Present address: Geriatric Endocrinology Division, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Lee J Kerkhof
- Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Rd, New Brunswick, NJ, 08901, USA
| | - Nan Gao
- Department of Biological Sciences, Life Science Center, Rutgers University, Newark, NJ, 07102, USA
| | - Xiaoyang Su
- Department of Medicine, Clinical Academic Building, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Ronaldo P Ferraris
- Department of Pharmacology, Physiology and Neurosciences, Medical Science Building, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA.
| |
Collapse
|
9
|
Leong W, Huang G, Khan I, Xia W, Li Y, Liu Y, Li X, Han R, Su Z, Hsiao WLW. Patchouli Essential Oil and Its Derived Compounds Revealed Prebiotic-Like Effects in C57BL/6J Mice. Front Pharmacol 2019; 10:1229. [PMID: 31680986 PMCID: PMC6812344 DOI: 10.3389/fphar.2019.01229] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
Pogostemon cablin (Blanco) Benth (PC) is a Chinese medicinal plant traditionally used for the treatment of gastrointestinal symptoms. To investigate the prebiotic effect of patchouli essential oil (PEO) and its derived compounds through the modulation of gut microbiota (GM). C57BL/6J mice were treated with the PEO and three active components of PEO, i.e. patchouli alcohol (PA), pogostone (PO) and β-patchoulene (β-PAE) for 15 consecutive days. Fecal samples and mucosa were collected for GM biomarkers studies. PEO, PA, PO, and β-PAE improve the gut epithelial barrier by altering the status of E-cadherin vs. N-cadherin expressions, and increasing the mucosal p-lysozyme and Muc 2. Moreover, the treatments also facilitate the polarization of M1 to M2 macrophage phenotypes, meanwhile, suppress the pro-inflammatory cytokines. Fecal microbial DNAs were analyzed and evaluated for GM composition by ERIC-PCR and 16S rRNA amplicon sequencing. The GM diversity was increased with the treated groups compared to the control. Further analysis showed that some known short chain fatty acids (SCFAs)-producing bacteria, e.g. Anaerostipes butyraticus, Butytivibrio fibrisolvens, Clostridium jejuense, Eubacterium uniforme, and Lactobacillus lactis were significantly enriched in the treated groups. In addition, the key SCFAs receptors, GPR 41, 43 and 109a, were significantly stimulated in the gut epithelial layer of the treated mice. By contract, the relative abundance of pathogens Sutterlla spp., Fusobacterium mortiferum, and Helicobacter spp. were distinctly reduced by the treatments with PEO and β-PAE. Our findings provide insightful information that the microbiota/host dynamic interaction may play a key role for the pharmacological activities of PEO, PA, PO, and β-PAE.
Collapse
Affiliation(s)
- Waikit Leong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Guoxin Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Wenrui Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yucui Li
- Guangdong Provincial Key Laboratory of New Chinese Medicinal Development and Research, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuhong Liu
- Guangdong Provincial Key Laboratory of New Chinese Medicinal Development and Research, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Ruixuan Han
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Ziren Su
- Guangdong Provincial Key Laboratory of New Chinese Medicinal Development and Research, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - W L Wendy Hsiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
10
|
Gut microbiota confers host resistance to obesity by metabolizing dietary polyunsaturated fatty acids. Nat Commun 2019; 10:4007. [PMID: 31488836 PMCID: PMC6728375 DOI: 10.1038/s41467-019-11978-0] [Citation(s) in RCA: 258] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/15/2019] [Indexed: 12/15/2022] Open
Abstract
Gut microbiota mediates the effects of diet, thereby modifying host metabolism and the incidence of metabolic disorders. Increased consumption of omega-6 polyunsaturated fatty acid (PUFA) that is abundant in Western diet contributes to obesity and related diseases. Although gut-microbiota-related metabolic pathways of dietary PUFAs were recently elucidated, the effects on host physiological function remain unclear. Here, we demonstrate that gut microbiota confers host resistance to high-fat diet (HFD)-induced obesity by modulating dietary PUFAs metabolism. Supplementation of 10-hydroxy-cis-12-octadecenoic acid (HYA), an initial linoleic acid-related gut-microbial metabolite, attenuates HFD-induced obesity in mice without eliciting arachidonic acid-mediated adipose inflammation and by improving metabolic condition via free fatty acid receptors. Moreover, Lactobacillus-colonized mice show similar effects with elevated HYA levels. Our findings illustrate the interplay between gut microbiota and host energy metabolism via the metabolites of dietary omega-6-FAs thereby shedding light on the prevention and treatment of metabolic disorders by targeting gut microbial metabolites. The gut microbiome is an important regulator of metabolic health. Here the authors show that intestinal bacteria metabolize dietary linoleic acid to 10-hydroxy-cis-12-octadecenoic acid (HYA) which confers host resistance to high fat diet-induced obesity in mice.
Collapse
|
11
|
Hsu WH, Wang JY, Kuo CH. Current applications of fecal microbiota transplantation in intestinal disorders. Kaohsiung J Med Sci 2019; 35:327-331. [PMID: 31017741 DOI: 10.1002/kjm2.12069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/25/2019] [Indexed: 11/10/2022] Open
Abstract
Fecal microbiota transplantation (FMT) had been an ancient remedy for severe illness several centuries ago. Under modern medical analysis and evidence-based research, it has been proved as an alternative treatment for recurrent Clostridium difficile infection and recent randomized control study also showed that FMT could be an adjuvant treatment for inflammatory bowel disease. As we get a better understanding of the relationship between gut microbiota and systemic disease, FMT became a potential treatment to explore. This article summarized procedures such as donor selection, fecal material preparation, transplantation delivery methods, and adverse events. We also review the present evidence about FMT in clinical practice.
Collapse
Affiliation(s)
- Wen-Hung Hsu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jaw-Yuan Wang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chao-Hung Kuo
- Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Internal Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung, Taiwan
| |
Collapse
|
12
|
Sasaki K, Inoue J, Sasaki D, Hoshi N, Shirai T, Fukuda I, Azuma T, Kondo A, Osawa R. Construction of a Model Culture System of Human Colonic Microbiota to Detect Decreased Lachnospiraceae Abundance and Butyrogenesis in the Feces of Ulcerative Colitis Patients. Biotechnol J 2019; 14:e1800555. [PMID: 30791234 DOI: 10.1002/biot.201800555] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/28/2018] [Indexed: 01/27/2023]
Abstract
Compositional alteration of the gut microbiota is associated with ulcerative colitis (UC). Here, a model culture system is established for the in vitro human colonic microbiota of UC, which will be helpful for determining medical interventions. 16S ribosomal RNA sequencing confirms that UC models are successfully developed from fecal inoculum and retain the bacterial species biodiversity of UC feces. The UC models closely reproduce the microbial components and successfully preserve distinct clusters from the healthy subjects (HS), as observed in the feces. The relative abundance of bacteria belonging to the family Lachnospiraceae significantly decreases in the UC models compared to that in HS, as observed in the feces. The system detects significantly lower butyrogenesis in the UC models than that in HS, correlating with the decreased abundance of Lachnospiraceae. Interestingly, the relative abundance of Lachnospiraceae does not correlate with disease activity (defined as partial Mayo score), suggesting that Lachnospiraceae persists in UC patients at a decreased level, irrespective of the alteration in disease activity. Moreover, the system shows that administration of Clostridium butyricum MIYAIRI restores butyrogenesis in the UC model. Hence, the model detects deregulation in the intestinal environment in UC patients and may be useful for simulating the effect of probiotics.
Collapse
Affiliation(s)
- Kengo Sasaki
- Graduate School of Science, Technology and Innovation Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Jun Inoue
- Department of Internal Medicine, Division of Gastroenterology, Graduate School of Medicine, Kobe University, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Daisuke Sasaki
- Graduate School of Science, Technology and Innovation Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Namiko Hoshi
- Department of Internal Medicine, Division of Gastroenterology, Graduate School of Medicine, Kobe University, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Tomokazu Shirai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Itsuko Fukuda
- Graduate School of Science, Technology and Innovation Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Takeshi Azuma
- Department of Internal Medicine, Division of Gastroenterology, Graduate School of Medicine, Kobe University, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Ro Osawa
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,Research Center for Food Safety and Security, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| |
Collapse
|
13
|
Lu J, Dong B, Chen A, He F, Peng B, Wu Z, Cao J, Li W. Escherichia coli promotes DSS‑induced murine colitis recovery through activation of the TLR4/NF‑κB signaling pathway. Mol Med Rep 2019; 19:2021-2028. [PMID: 30664156 PMCID: PMC6390074 DOI: 10.3892/mmr.2019.9848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 10/12/2018] [Indexed: 12/28/2022] Open
Abstract
Increasing evidence suggests that intestinal microbiota have critical function in the pathogenesis of inflammatory bowel disease. This present study investigated the effects of Escherichia coli (E. coli) in mice with dextran sulfate sodium (DSS)-induced colitis. Furthermore, Toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB) gene expression was measured by reverse transcription-quantitative polymerase chain reaction. In total, two experiments were performed. In the first experiment, four groups were established in BALB/c mice: i) Group A, control (no treatments); ii) group B, DSS-induced colitis; iii) group C, DSS-induced colitis bacteria depleted (BD) mice; and iv) group D, E. coli-treated DSS-induced colitis BD mice. In the second experiment, there were three groups: i) Group A1, control C57BL/6 mice; ii) group B1, E. coli-treated DSS-induced colitis BD C57BL/6 mice; and iii) E. coli-treated DSS-induced colitis BD TLR4−/− mice. Clinical outcomes, colon and immune histopathology and tissue myeloperoxidase activity were assessed. Mice with DSS-induced colitis that were treated with E. coli exhibited enhanced recovery, with significantly improved clinical and histological scores compared with the DSS only group. The mRNA expression of TLR4 and NF-κB in the E. coli-treated group was also significantly higher. These effects were abolished in TLR4−/− mice, suggesting that E. coli may have promoted recovery through the TLR4 pathway. The present study indicated that E. coli promoted recovery from DSS-induced colitis in mice, potentially through activation of the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jiabao Lu
- Department of Colorectal Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Boye Dong
- Department of Colorectal Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Ailan Chen
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Feng He
- Department of Colorectal Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Baifu Peng
- Department of Colorectal Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Zixin Wu
- Department of Colorectal Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Jie Cao
- Department of Colorectal Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Wanglin Li
- Department of Colorectal Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| |
Collapse
|
14
|
Liu L, Firrman J, Tanes C, Bittinger K, Thomas-Gahring A, Wu GD, Van den Abbeele P, Tomasula PM. Establishing a mucosal gut microbial community in vitro using an artificial simulator. PLoS One 2018; 13:e0197692. [PMID: 30016326 PMCID: PMC6050037 DOI: 10.1371/journal.pone.0197692] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/07/2018] [Indexed: 11/19/2022] Open
Abstract
The Twin Simulator of the Human Intestinal Microbial Ecosystem (TWINSHIME®) was initially developed to study the luminal gut microbiota of the ascending (AC), transverse (TC), and descending (DC) colon regions. Given the unique composition and potential importance of the mucosal microbiota for human health, the TWINSHIME was recently adapted to simulate the mucosal microbiota as well as the luminal community. It has been previously demonstrated that the luminal community in the TWINSHIME reaches a steady state within two weeks post inoculation, and is able to differentiate into region specific communities. However, less is known regarding the mucosal community structure and dynamics. During the current study, the luminal and mucosal communities in each region of the TWINSHIME were evaluated over the course of six weeks. Based on 16S rRNA gene sequencing and short chain fatty acid analysis, it was determined that both the luminal and mucosal communities reached stability 10–20 days after inoculation, and remained stable until the end of the experiment. Bioinformatics analysis revealed the formation of unique community structures between the mucosal and luminal phases in all three colon regions, yet these communities were similar to the inoculum. Specific colonizers of the mucus mainly belonged to the Firmicutes phylum and included Lachnospiraceae (AC/TC/DC), Ruminococcaceae and Eubacteriaceae (AC), Lactobacillaceae (AC/TC), Clostridiaceae and Erysipelotrichaceae (TC/DC). In contrast, Bacteroidaceae were enriched in the gut lumen of all three colon regions. The unique profile of short chain fatty acid (SCFA) production further demonstrated system stability, but also proved to be an area of marked differences between the in vitro system and in vivo reports. Results of this study demonstrate that it is possible to replicate the community structure and composition of the gut microbiota in vitro. Through implementation of this system, the human gut microbiota can be studied in a dynamic and continuous fashion.
Collapse
Affiliation(s)
- LinShu Liu
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, Pennsylvania, United States of America
- * E-mail:
| | - Jenni Firrman
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, Pennsylvania, United States of America
| | - Ceylan Tanes
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Audrey Thomas-Gahring
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, Pennsylvania, United States of America
| | - Gary D. Wu
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | | - Peggy M. Tomasula
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, Pennsylvania, United States of America
| |
Collapse
|
15
|
NADPH oxidases and ROS signaling in the gastrointestinal tract. Mucosal Immunol 2018; 11:1011-1023. [PMID: 29743611 DOI: 10.1038/s41385-018-0021-8] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 02/04/2023]
Abstract
Reactive oxygen species (ROS), initially categorized as toxic by-products of aerobic metabolism, have often been called a double-edged sword. ROS are considered indispensable when host defense and redox signaling is concerned and a threat in inflammatory or degenerative diseases. This generalization does not take in account the diversity of oxygen metabolites being generated, their physicochemical characteristics and their production by distinct enzymes in space and time. NOX/DUOX NADPH oxidases are the only enzymes solely dedicated to ROS production and the prime ROS producer for intracellular and intercellular communication due to their widespread expression and intricate regulation. Here we discuss new insights of how NADPH oxidases act via ROS as multifaceted regulators of the intestinal barrier in homeostasis, infectious disease and intestinal inflammation. A closer look at monogenic VEOIBD and commensals as ROS source supports the view of H2O2 as key beneficial messenger in the barrier ecosystem.
Collapse
|
16
|
Mushroom polysaccharides from Ganoderma lucidum and Poria cocos reveal prebiotic functions. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.046] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
17
|
Reinoso Webb C, den Bakker H, Koboziev I, Jones-Hall Y, Rao Kottapalli K, Ostanin D, Furr KL, Mu Q, Luo XM, Grisham MB. Differential Susceptibility to T Cell-Induced Colitis in Mice: Role of the Intestinal Microbiota. Inflamm Bowel Dis 2018; 24:361-379. [PMID: 29361089 PMCID: PMC6176899 DOI: 10.1093/ibd/izx014] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Indexed: 12/12/2022]
Abstract
One of the best characterized mouse models of the inflammatory bowel diseases (IBD; Crohn's disease, ulcerative colitis) is the CD4+CD45RBhigh T cell transfer model of chronic colitis. Following our relocation to Texas Tech University Health Sciences Center (TTUHSC), we observed a dramatic reduction in the incidence of moderate-to-severe colitis from a 16-year historical average of 90% at Louisiana State University Health Sciences Center (LSUHSC) to <30% at TTUHSC. We hypothesized that differences in the commensal microbiota at the 2 institutions may account for the differences in susceptibility to T cell-induced colitis. Using bioinformatic analyses of 16S rRNA amplicon sequence data, we quantified and compared the major microbial populations in feces from healthy and colitic mice housed at the 2 institutions. We found that the bacterial composition differed greatly between mice housed at LSUHSC vs TTUHSC. We identified several genera strongly associated with, and signficantly overrepresented in high responding RAG-/- mice housed at LSUHSC. In addition, we found that colonization of healthy TTUHSC RAG-/- mice with feces obtained from healthy or colitic RAG-/- mice housed at LSUHSC transferred susceptibility to T cell-induced colitis such that the recipients developed chronic colitis with incidence and severity similar to mice generated at LSUHSC. Finally, we found that the treatment of mice with preexisting colitis with antibiotics remarkably attenuated disease. Taken together, our data demonstrate that specific microbial communities determine disease susceptibility and that manipulation of the intestinal microbiota alters the induction and/or perpetuation of chronic colitis.
Collapse
Affiliation(s)
- Cynthia Reinoso Webb
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX
| | | | - Iurii Koboziev
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Yava Jones-Hall
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, IN
| | | | - Dmitry Ostanin
- Immunology Discovery, Translational Research and Development, Bristol Myers Squibb, Princeton, NJ
| | - Kathryn L Furr
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Qinghui Mu
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Xin M Luo
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Matthew B Grisham
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX,Correspondence address. Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street STOP 6591, Lubbock, Texas 79430-6591. E-mail:
| |
Collapse
|
18
|
Dupont D, Alric M, Blanquet-Diot S, Bornhorst G, Cueva C, Deglaire A, Denis S, Ferrua M, Havenaar R, Lelieveld J, Mackie AR, Marzorati M, Menard O, Minekus M, Miralles B, Recio I, Van den Abbeele P. Can dynamicin vitrodigestion systems mimic the physiological reality? Crit Rev Food Sci Nutr 2018; 59:1546-1562. [DOI: 10.1080/10408398.2017.1421900] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- D. Dupont
- INRA Agrocampus Ouest, STLO, Rennes, France
| | - M. Alric
- Université Clermont Auvergne, Clermont-Ferrand, France
| | | | | | - C. Cueva
- CSIC Universidad Autonoma de Madrid, CIAL, Madrid, Spain
| | | | - S. Denis
- Université Clermont Auvergne, Clermont-Ferrand, France
| | - M. Ferrua
- Fonterra, Palmerston North, New Zealand
| | | | | | | | | | - O. Menard
- INRA Agrocampus Ouest, STLO, Rennes, France
| | | | - B. Miralles
- CSIC Universidad Autonoma de Madrid, CIAL, Madrid, Spain
| | - I. Recio
- CSIC Universidad Autonoma de Madrid, CIAL, Madrid, Spain
| | | |
Collapse
|
19
|
Nagao-Kitamoto H, Kamada N. Host-microbial Cross-talk in Inflammatory Bowel Disease. Immune Netw 2017; 17:1-12. [PMID: 28261015 PMCID: PMC5334117 DOI: 10.4110/in.2017.17.1.1] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/19/2017] [Accepted: 01/27/2017] [Indexed: 02/06/2023] Open
Abstract
A vast community of commensal microorganisms, commonly referred to as the gut microbiota, colonizes the gastrointestinal tract (GI). The involvement of the gut microbiota in the maintenance of the gut ecosystem is two-fold: it educates host immune cells and protects the host from pathogens. However, when healthy microbial composition and function are disrupted (dysbiosis), the dysbiotic gut microbiota can trigger the initiation and development of various GI diseases, including inflammatory bowel disease (IBD). IBD, primarily includes ulcerative colitis (UC) and Crohn's disease (CD), is a major global public health problem affecting over 1 million patients in the United States alone. Accumulating evidence suggests that various environmental and genetic factors contribute to the pathogenesis of IBD. In particular, the gut microbiota is a key factor associated with the triggering and presentation of disease. Gut dysbiosis in patients with IBD is defined as a reduction of beneficial commensal bacteria and an enrichment of potentially harmful commensal bacteria (pathobionts). However, as of now it is largely unknown whether gut dysbiosis is a cause or a consequence of IBD. Recent technological advances have made it possible to address this question and investigate the functional impact of dysbiotic microbiota on IBD. In this review, we will discuss the recent advances in the field, focusing on host-microbial cross-talk in IBD.
Collapse
Affiliation(s)
- Hiroko Nagao-Kitamoto
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nobuhiko Kamada
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
20
|
Fecal Microbiota and Metabolome in a Mouse Model of Spontaneous Chronic Colitis: Relevance to Human Inflammatory Bowel Disease. Inflamm Bowel Dis 2016; 22:2767-2787. [PMID: 27824648 DOI: 10.1097/mib.0000000000000970] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dysbiosis of the gut microbiota may be involved in the pathogenesis of inflammatory bowel disease (IBD). However, the mechanisms underlying the role of the intestinal microbiome and metabolome in IBD onset and its alteration during active treatment and recovery remain unknown. Animal models of chronic intestinal inflammation with similar microbial and metabolomic profiles would enable investigation of these mechanisms and development of more effective treatments. Recently, the Winnie mouse model of colitis closely representing the clinical symptoms and characteristics of human IBD has been developed. In this study, we have analyzed fecal microbial and metabolomic profiles in Winnie mice and discussed their relevance to human IBD. METHODS The 16S rRNA gene was sequenced from fecal DNA of Winnie and C57BL/6 mice to define operational taxonomic units at ≥97% similarity threshold. Metabolomic profiling of the same fecal samples was performed by gas chromatography-mass spectrometry. RESULTS Composition of the dominant microbiota was disturbed, and prominent differences were evident at all levels of the intestinal microbiome in fecal samples from Winnie mice, similar to observations in patients with IBD. Metabolomic profiling revealed that chronic colitis in Winnie mice upregulated production of metabolites and altered several metabolic pathways, mostly affecting amino acid synthesis and breakdown of monosaccharides to short chain fatty acids. CONCLUSIONS Significant dysbiosis in the Winnie mouse gut replicates many changes observed in patients with IBD. These results provide justification for the suitability of this model to investigate mechanisms underlying the role of intestinal microbiota and metabolome in the pathophysiology of IBD.
Collapse
|
21
|
Oral exposure to environmental pollutant benzo[a]pyrene impacts the intestinal epithelium and induces gut microbial shifts in murine model. Sci Rep 2016; 6:31027. [PMID: 27503127 PMCID: PMC4977522 DOI: 10.1038/srep31027] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/13/2016] [Indexed: 02/07/2023] Open
Abstract
Gut microbiota dysbiosis are associated with a wide range of human diseases, including inflammatory bowel diseases. The physiopathology of these diseases has multifactorial aetiology in which environmental factors, particularly pollution could play a crucial role. Among the different pollutants listed, Polycyclic Aromatic Hydrocarbons (PAHs) are subject to increased monitoring due to their wide distribution and high toxicity on Humans. Here, we used 16S rRNA gene sequencing to investigate the impact of benzo[a]pyrene (BaP, most toxic PAH) oral exposure on the faecal and intestinal mucosa-associated bacteria in C57BL/6 mice. Intestinal inflammation was also evaluated by histological observations. BaP oral exposure significantly altered the composition and the abundance of the gut microbiota and led to moderate inflammation in ileal and colonic mucosa. More severe lesions were observed in ileal segment. Shifts in gut microbiota associated with moderate inflammatory signs in intestinal mucosa would suggest the establishment of a pro-inflammatory intestinal environment following BaP oral exposure. Therefore, under conditions of genetic susceptibility and in association with other environmental factors, exposure to this pollutant could trigger and/or accelerate the development of inflammatory pathologies.
Collapse
|
22
|
Smirnov KS, Maier TV, Walker A, Heinzmann SS, Forcisi S, Martinez I, Walter J, Schmitt-Kopplin P. Challenges of metabolomics in human gut microbiota research. Int J Med Microbiol 2016; 306:266-279. [PMID: 27012595 DOI: 10.1016/j.ijmm.2016.03.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 01/17/2023] Open
Abstract
The review highlights the role of metabolomics in studying human gut microbial metabolism. Microbial communities in our gut exert a multitude of functions with huge impact on human health and disease. Within the meta-omics discipline, gut microbiome is studied by (meta)genomics, (meta)transcriptomics, (meta)proteomics and metabolomics. The goal of metabolomics research applied to fecal samples is to perform their metabolic profiling, to quantify compounds and classes of interest, to characterize small molecules produced by gut microbes. Nuclear magnetic resonance spectroscopy and mass spectrometry are main technologies that are applied in fecal metabolomics. Metabolomics studies have been increasingly used in gut microbiota related research regarding health and disease with main focus on understanding inflammatory bowel diseases. The elucidated metabolites in this field are summarized in this review. We also addressed the main challenges of metabolomics in current and future gut microbiota research. The first challenge reflects the need of adequate analytical tools and pipelines, including sample handling, selection of appropriate equipment, and statistical evaluation to enable meaningful biological interpretation. The second challenge is related to the choice of the right animal model for studies on gut microbiota. We exemplified this using NMR spectroscopy for the investigation of cross-species comparison of fecal metabolite profiles. Finally, we present the problem of variability of human gut microbiota and metabolome that has important consequences on the concepts of personalized nutrition and medicine.
Collapse
Affiliation(s)
- Kirill S Smirnov
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany
| | - Tanja V Maier
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany
| | - Alesia Walker
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany
| | - Silke S Heinzmann
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany
| | - Sara Forcisi
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany
| | - Inés Martinez
- Department of Agriculture, Food and Nutritional Science, University of Alberta, T6G 2E1 Edmonton, AB, Canada
| | - Jens Walter
- Department of Agriculture, Food and Nutritional Science, University of Alberta, T6G 2E1 Edmonton, AB, Canada
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany; Chair of Analytical Food Chemistry, Technische Universität München, Alte Akademie 10, 85354 Freising, Germany; ZIEL, Institute for Food & Health, Weihenstephaner Berg 1, 85354 Freising, Germany.
| |
Collapse
|
23
|
Cornick S, Tawiah A, Chadee K. Roles and regulation of the mucus barrier in the gut. Tissue Barriers 2015; 3:e982426. [PMID: 25838985 PMCID: PMC4372027 DOI: 10.4161/21688370.2014.982426] [Citation(s) in RCA: 321] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/27/2014] [Indexed: 02/07/2023] Open
Abstract
The gastrointestinal tract is coated by a thick layer of mucus that forms the front line of innate host defense. Mucus consists of high molecular weight glycoproteins called mucins that are synthesized and secreted by goblet cells and functions primarily to lubricate the epithelium and protect it from damage by noxious substances. Recent studies have also suggested the involvement of goblet cells and mucins in complex immune functions such as antigen presentation and tolerance. Under normal physiological conditions, goblet cells continually produce mucins to replenish and maintain the mucus barrier; however, goblet cell function can be disrupted by various factors that can affect the integrity of the mucus barrier. Some of these factors such as microbes, microbial toxins and cytokines can stimulate or inhibit mucin production and secretion, alter the chemical composition of mucins or degrade the mucus layer. This can lead to a compromised mucus barrier and subsequently to various pathological conditions like chronic inflammatory diseases. Insight into how these factors modulate the mucus barrier in the gut is necessary in order to develop strategies to combat these disorders.
Collapse
Key Words
- Barrier function
- CD, Crohns disease
- ER stress
- ERAD, ER-associated protein degradation
- EhCP5, Entamoeba histolytica cysteine protease 5
- FAS, fatty acid synthase
- GI, gastrointestinal
- GalNAc, N-Acetylgalactosamine
- Goblet cell
- IBD
- IBD, Inflammatory bowel disease
- Innate defense
- LLO, Listeriolysin O
- LPS, Lipopolysaccharide
- MUC2
- MucBP, Mucin binding proteins
- Mucin
- SCFA, short chain fatty acids
- Secretory response
- UC, Ulcerative colitis
- UPR, unfolded protein response
- Unfolded protein response
Collapse
Affiliation(s)
- Steve Cornick
- Department of Microbiology; Immunology and Infectious Diseases; Snyder Institute for Chronic Diseases; Gastrointestinal Research Group; University of Calgary; Calgary, Alberta, Canada
| | - Adelaide Tawiah
- Department of Microbiology; Immunology and Infectious Diseases; Snyder Institute for Chronic Diseases; Gastrointestinal Research Group; University of Calgary; Calgary, Alberta, Canada
| | - Kris Chadee
- Department of Microbiology; Immunology and Infectious Diseases; Snyder Institute for Chronic Diseases; Gastrointestinal Research Group; University of Calgary; Calgary, Alberta, Canada
| |
Collapse
|
24
|
Wang ZK, Yang YS, Chen Y, Yuan J, Sun G, Peng LH. Intestinal microbiota pathogenesis and fecal microbiota transplantation for inflammatory bowel disease. World J Gastroenterol 2014; 20:14805-14820. [PMID: 25356041 PMCID: PMC4209544 DOI: 10.3748/wjg.v20.i40.14805] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 06/16/2014] [Accepted: 07/16/2014] [Indexed: 02/06/2023] Open
Abstract
The intestinal microbiota plays an important role in inflammatory bowel disease (IBD). The pathogenesis of IBD involves inappropriate ongoing activation of the mucosal immune system driven by abnormal intestinal microbiota in genetically predisposed individuals. However, there are still no definitive microbial pathogens linked to the onset of IBD. The composition and function of the intestinal microbiota and their metabolites are indeed disturbed in IBD patients. The special alterations of gut microbiota associated with IBD remain to be evaluated. The microbial interactions and host-microbe immune interactions are still not clarified. Limitations of present probiotic products in IBD are mainly due to modest clinical efficacy, few available strains and no standardized administration. Fecal microbiota transplantation (FMT) may restore intestinal microbial homeostasis, and preliminary data have shown the clinical efficacy of FMT on refractory IBD or IBD combined with Clostridium difficile infection. Additionally, synthetic microbiota transplantation with the defined composition of fecal microbiota is also a promising therapeutic approach for IBD. However, FMT-related barriers, including the mechanism of restoring gut microbiota, standardized donor screening, fecal material preparation and administration, and long-term safety should be resolved. The role of intestinal microbiota and FMT in IBD should be further investigated by metagenomic and metatranscriptomic analyses combined with germ-free/human flora-associated animals and chemostat gut models.
Collapse
|
25
|
Perez-Muñoz ME, Bergstrom K, Peng V, Schmaltz R, Jimenez-Cardona R, Marsteller N, McGee S, Clavel T, Ley R, Fu J, Xia L, Peterson DA. Discordance between changes in the gut microbiota and pathogenicity in a mouse model of spontaneous colitis. Gut Microbes 2014; 5:286-95. [PMID: 24662098 PMCID: PMC4153765 DOI: 10.4161/gmic.28622] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Under conventional conditions, mice deficient in core 1-derived O-glycans (TM-IEC C1galt1(-/-)), which have a defective mucus layer, experienced spontaneous inflammation of the colon. Analysis of fecal bacterial populations by pyrosequencing of 16S rRNA gene showed that disease in conventional TM-IEC C1galt1(-/-) was associated with shifts in the microbiota manifested by increases in Lactobacillus and Clostridium species, and decreases in unclassified Ruminococcaceae and Lachnospiraceae. Under germ-free (GF) conditions, TM-IEC C1galt1(-/-) presented decreased goblet cells, but did not develop inflammation. Monoassociation of GF TM-IEC C1galt1(-/-) revealed that bacterial species differ significantly in their ability to induce inflammatory changes. Bacteroides thetaiotaomicron caused inflammation, while Lactobacillus johnsonii (enriched during colitis) did not. These observations demonstrate that not all microbiota shifts that correlate with disease contribute to pathogenesis.
Collapse
Affiliation(s)
- Maria Elisa Perez-Muñoz
- Department of Food Science and Technology; University of Nebraska; Lincoln, NE USA,Department of Pathology; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | - Kirk Bergstrom
- Oklahoma Medical Research Foundation; Oklahoma City, OK USA
| | - Vincent Peng
- Oklahoma Medical Research Foundation; Oklahoma City, OK USA
| | - Robert Schmaltz
- Department of Food Science and Technology; University of Nebraska; Lincoln, NE USA
| | | | - Nathan Marsteller
- Department of Food Science and Technology; University of Nebraska; Lincoln, NE USA
| | - Sam McGee
- Oklahoma Medical Research Foundation; Oklahoma City, OK USA
| | - Thomas Clavel
- Junior Research Group Intestinal Microbiome; ZIEL-Research Center for Nutrition and Food Sciences; Technische Universität München; Munich, Germany
| | - Ruth Ley
- Department of Microbiology; Cornell University; Ithaca, NY USA
| | - Jianxin Fu
- Oklahoma Medical Research Foundation; Oklahoma City, OK USA
| | - Lijun Xia
- Oklahoma Medical Research Foundation; Oklahoma City, OK USA,Correspondence to: Lijun Xia, and Daniel A Peterson,
| | - Daniel A Peterson
- Department of Food Science and Technology; University of Nebraska; Lincoln, NE USA,Department of Pathology; Johns Hopkins University School of Medicine; Baltimore, MD USA,Correspondence to: Lijun Xia, and Daniel A Peterson,
| |
Collapse
|
26
|
Rogler G, Vavricka S, Schoepfer A, Lakatos PL. Mucosal healing and deep remission: What does it mean? World J Gastroenterol 2013; 19:7552-7560. [PMID: 24282345 PMCID: PMC3837253 DOI: 10.3748/wjg.v19.i43.7552] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 08/27/2013] [Accepted: 09/29/2013] [Indexed: 02/06/2023] Open
Abstract
The use of specific terms under different meanings and varying definitions has always been a source of confusion in science. When we point our efforts towards an evidence based medicine for inflammatory bowel diseases (IBD) the same is true: Terms such as “mucosal healing” or “deep remission” as endpoints in clinical trials or treatment goals in daily patient care may contribute to misconceptions if meanings change over time or definitions are altered. It appears to be useful to first have a look at the development of terms and their definitions, to assess their intrinsic and context-independent problems and then to analyze the different relevance in present-day clinical studies and trials. The purpose of such an attempt would be to gain clearer insights into the true impact of the clinical findings behind the terms. It may also lead to a better defined use of those terms for future studies. The terms “mucosal healing” and “deep remission” have been introduced in recent years as new therapeutic targets in the treatment of IBD patients. Several clinical trials, cohort studies or inception cohorts provided data that the long term disease course is better, when mucosal healing is achieved. However, it is still unclear whether continued or increased therapeutic measures will aid or improve mucosal healing for patients in clinical remission. Clinical trials are under way to answer this question. Attention should be paid to clearly address what levels of IBD activity are looked at. In the present review article authors aim to summarize the current evidence available on mucosal healing and deep remission and try to highlight their value and position in the everyday decision making for gastroenterologists.
Collapse
|
27
|
Mani S, Boelsterli UA, Redinbo MR. Understanding and modulating mammalian-microbial communication for improved human health. Annu Rev Pharmacol Toxicol 2013; 3. [PMID: 27942535 PMCID: PMC5145265 DOI: 10.11131/2016/101199] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The molecular basis for the regulation of the intestinal barrier is a very fertile research area. A growing body of knowledge supports the targeting of various components of intestinal barrier function as means to treat a variety of diseases, including the inflammatory bowel diseases. Herein, we will summarize the current state of knowledge of key xenobiotic receptor regulators of barrier function, highlighting recent advances, such that the field and its future are succinctly reviewed. We posit that these receptors confer an additional dimension of host-microbe interaction in the gut, by sensing and responding to metabolites released from the symbiotic microbiota, in innate immunity and also in host drug metabolism. The scientific evidence for involvement of the receptors and its molecular basis for the control of barrier function and innate immunity regulation would serve as a rationale towards development of non-toxic probes and ligands as drugs.
Collapse
Affiliation(s)
- Sridhar Mani
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | |
Collapse
|
28
|
Venema K, van den Abbeele P. Experimental models of the gut microbiome. Best Pract Res Clin Gastroenterol 2013; 27:115-26. [PMID: 23768557 DOI: 10.1016/j.bpg.2013.03.002] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/02/2013] [Accepted: 03/14/2013] [Indexed: 02/08/2023]
Abstract
The human gut contains a diverse microbiota with large potential to influence health. Given the difficulty to access the main sites of the gut, in vitro models have been developed to dynamically monitor microbial processes at the site of metabolic activity. These models range from simple batch fermentations to complex multi-compartmental continuous systems. The latter include different models, focussing on similar but each also on distinct digestive parameters. The most intensively used include the three-stage continuous culture system, SHIME(®), EnteroMix, Lacroix model and TIM-2. Especially after inclusion of surface-attached mucosal microbes (M-SHIME), such models have been shown representative of the in vivo situation in terms of microbial composition and activity. They have even been shown to maintain the interpersonal variation among different human fecal inocula. Novel developments, such as the incorporation of host cells, will further broaden the potential of in vitro models to unravel the importance of gut microbes for human health and disease.
Collapse
Affiliation(s)
- Koen Venema
- TNO, P.O. Box 360, 3700 AJ Zeist, The Netherlands.
| | | |
Collapse
|