1
|
Chang ML, Cheng JS, Chen WT, Shen YJ, Kuo CJ, Chien RN. Mixed cryoglobulinemia decelerates hepatocellular carcinoma development in hepatitis C patients with SVR by downregulating regulatory B cells: a 12-year prospective cohort study. Oncoimmunology 2025; 14:2470128. [PMID: 40008547 DOI: 10.1080/2162402x.2025.2470128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
How mixed cryoglobulinemia (MC) affects cancer risk in chronic hepatitis C patients with sustained virologic response (SVR) remains unclear. In a 12-year prospective study, post-SVR MC was assessed every 3‒6 months. Among the 891 SVR patients, 265 (29.7%) had baseline (24 weeks after completing anti-HCV therapy) MC, and the 12-year cancer cumulative incidence was 19.7%. Among the 73 patients who developed cancer, 37 (50.7%) had hepatocellular carcinoma (HCC), with the following associated baseline variables: for cancer, male sex, age and alanine aminotransferase (ALT) levels; for HCC, male sex, age, and cirrhosis; and for non-HCC cancer, rheumatoid factor levels. Among patients with post-SVR HCC, the mean time to HCC was longer in those with than in those without baseline MC (1545.4 ± 276.5 vs. 856.9 ± 115.2 days, p = 0.014). Patients with baseline MC had decreased circulating interleukin-10 (IL-10)-positive B cell (CD19+IL-10+cells/CD19+cells) (31.24 ± 16.14 vs. 40.08 ± 15.42%, p = 0.031), regulatory B cell (Breg) (CD19+CD24hi CD27+cells/CD19+cells) (10.45 ± 7.10 vs. 15.76 ± 9.14%, p = 0.035), IL-10-positive Breg (CD19+CD24hiCD27+IL-10+cells/CD19+cells) (5.06 ± 4.68 vs. 8.83 ± 5.46%, p = 0.015) and HCC-infiltrating Breg (18.6 ± 10 vs. 33.51 ± 6.8%, p = 0.022) ratios but comparable circulating and HCC-infiltrating regulatory T cell ratios relative to patients without baseline MC. In conclusion, old male SVR patients with elevated ALT levels or cirrhosis require intensive monitoring for cancer development, especially HCC. Tailored HCC follow-up is needed for SVR patients according to their baseline MC, which might downregulate Bregs to decelerate HCC development for almost 2 years.
Collapse
Affiliation(s)
- Ming-Ling Chang
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jur-Shan Cheng
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Clinical Informatics and Medical Statistics Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Ting Chen
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yi-Jyun Shen
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chia-Jung Kuo
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Rong-Nan Chien
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
2
|
Tian Y, Zhang M, Liu LX, Wang ZC, Liu B, Huang Y, Wang X, Ling YZ, Wang F, Feng X, Tu Y. Exploring non-coding RNA mechanisms in hepatocellular carcinoma: implications for therapy and prognosis. Front Immunol 2024; 15:1400744. [PMID: 38799446 PMCID: PMC11116607 DOI: 10.3389/fimmu.2024.1400744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/03/2024] [Indexed: 05/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a significant contributor to cancer-related deaths in the world. The development and progression of HCC are closely correlated with the abnormal regulation of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Important biological pathways in cancer biology, such as cell proliferation, death, and metastasis, are impacted by these ncRNAs, which modulate gene expression. The abnormal expression of non-coding RNAs in HCC raises the possibility that they could be applied as new biomarkers for diagnosis, prognosis, and treatment targets. Furthermore, by controlling the expression of cancer-related genes, miRNAs can function as either tumor suppressors or oncogenes. On the other hand, lncRNAs play a role in the advancement of cancer by interacting with other molecules within the cell, which, in turn, affects processes such as chromatin remodeling, transcription, and post-transcriptional processes. The importance of ncRNA-driven regulatory systems in HCC is being highlighted by current research, which sheds light on tumor behavior and therapy response. This research highlights the great potential of ncRNAs to improve patient outcomes in this difficult disease landscape by augmenting the present methods of HCC care through the use of precision medicine approaches.
Collapse
Affiliation(s)
- Yu Tian
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
- School of Public Health, Benedictine University, Lisle, IL, United States
| | - Meng Zhang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Li-xia Liu
- Department of Ultrasound, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Zi-chao Wang
- Department of Ultrasound, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Bin Liu
- Central Laboratory, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Youcai Huang
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Xiaoling Wang
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Yun-zhi Ling
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Furong Wang
- Department of Pathology, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Xiaoqiang Feng
- Center of Stem Cell and Regenerative Medicine, Gaozhou People’s Hospital, Gaozhou, Guangdong, China
| | - Yanyang Tu
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| |
Collapse
|
3
|
He Z, Khatib AM, Creemers JWM. The proprotein convertase furin in cancer: more than an oncogene. Oncogene 2022; 41:1252-1262. [PMID: 34997216 DOI: 10.1038/s41388-021-02175-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/13/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023]
Abstract
Furin is the first discovered proprotein convertase member and is present in almost all mammalian cells. Therefore, by regulating the maturation of a wide range of proproteins, Furin expression and/or activity is involved in various physiological and pathophysiological processes ranging from embryonic development to carcinogenesis. Since many of these protein precursors are involved in initiating and maintaining the hallmarks of cancer, Furin has been proposed as a potential target for treating several human cancers. In contrast, other studies have revealed that some types of cancer do not benefit from Furin inhibition. Therefore, understanding the heterogeneous functions of Furin in cancer will provide important insights into the design of effective strategies targeting Furin in cancer treatment. Here, we present recent advances in understanding how Furin expression and activity are regulated in cancer cells and their influences on the activity of Furin substrates in carcinogenesis. Furthermore, we discuss how Furin represses tumorigenic properties of several cancer cells and why Furin inhibition leads to aggressive phenotypes in other tumors. Finally, we summarize the clinical applications of Furin inhibition in treating human cancers.
Collapse
Affiliation(s)
- Zongsheng He
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
- Laboratory of Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Abdel-Majid Khatib
- INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France.
- Institut Bergoinié, Bordeaux, France.
| | - John W M Creemers
- Laboratory of Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Ungefroren H. Autocrine TGF-β in Cancer: Review of the Literature and Caveats in Experimental Analysis. Int J Mol Sci 2021; 22:977. [PMID: 33478130 PMCID: PMC7835898 DOI: 10.3390/ijms22020977] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
Autocrine signaling is defined as the production and secretion of an extracellular mediator by a cell followed by the binding of that mediator to receptors on the same cell to initiate signaling. Autocrine stimulation often operates in autocrine loops, a type of interaction, in which a cell produces a mediator, for which it has receptors, that upon activation promotes expression of the same mediator, allowing the cell to repeatedly autostimulate itself (positive feedback) or balance its expression via regulation of a second factor that provides negative feedback. Autocrine signaling loops with positive or negative feedback are an important feature in cancer, where they enable context-dependent cell signaling in the regulation of growth, survival, and cell motility. A growth factor that is intimately involved in tumor development and progression and often produced by the cancer cells in an autocrine manner is transforming growth factor-β (TGF-β). This review surveys the many observations of autocrine TGF-β signaling in tumor biology, including data from cell culture and animal models as well as from patients. We also provide the reader with a critical discussion on the various experimental approaches employed to identify and prove the involvement of autocrine TGF-β in a given cellular response.
Collapse
Affiliation(s)
- Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany;
- Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany
| |
Collapse
|
5
|
Contextual Regulation of TGF-β Signaling in Liver Cancer. Cells 2019; 8:cells8101235. [PMID: 31614569 PMCID: PMC6829617 DOI: 10.3390/cells8101235] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 02/06/2023] Open
Abstract
Primary liver cancer is one of the leading causes for cancer-related death worldwide. Transforming growth factor beta (TGF-β) is a pleiotropic cytokine that signals through membrane receptors and intracellular Smad proteins, which enter the nucleus upon receptor activation and act as transcription factors. TGF-β inhibits liver tumorigenesis in the early stage by inducing cytostasis and apoptosis, but promotes malignant progression in more advanced stages by enhancing cancer cell survival, EMT, migration, invasion and finally metastasis. Understanding the molecular mechanisms underpinning the multi-faceted roles of TGF-β in liver cancer has become a persistent pursuit during the last two decades. Contextual regulation fine-tunes the robustness, duration and plasticity of TGF-β signaling, yielding versatile albeit specific responses. This involves multiple feedback and feed-forward regulatory loops and also the interplay between Smad signaling and non-Smad pathways. This review summarizes the known regulatory mechanisms of TGF-β signaling in liver cancer, and how they channel, skew and even switch the actions of TGF-β during cancer progression.
Collapse
|
6
|
Li X, Gao Y, Li J, Zhang K, Han J, Li W, Hao Q, Zhang W, Wang S, Zeng C, Zhang W, Zhang Y, Li M, Zhang C. FOXP3 inhibits angiogenesis by downregulating VEGF in breast cancer. Cell Death Dis 2018; 9:744. [PMID: 29970908 PMCID: PMC6030162 DOI: 10.1038/s41419-018-0790-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 02/06/2023]
Abstract
Forkhead box P3 (FOXP3), an X-linked tumor suppressor gene, plays an important role in breast cancer. However, the biological functions of FOXP3 in breast cancer angiogenesis remain unclear. Here we found that the clinical expression of nuclear FOXP3 was inversely correlated with breast cancer angiogenesis. Moreover, the animal study demonstrated that FOXP3 significantly reduced the microvascular density of MDA-MB-231 tumors transplanted in mice. The cytological experiments showed that the supernatant from FOXP3-overexpressing cells exhibited a diminished ability to stimulate tube formation and sprouting in HUVECs in vitro. In addition, expression of vascular endothelial growth factor (VEGF) was downregulated by FOXP3 in breast cancer cell lines. Luciferase reporter assays and chromatin immunoprecipitation assays demonstrated that FOXP3 can directly interact with the VEGF promoter via specific forkhead-binding motifs to suppress its transcription. Importantly, the inhibitory effects of FOXP3 in the supernatant on tube formation and sprouting in HUVECs could be reversed by adding VEGF in vitro. Nuclear FOXP3 expression was inversely correlated with VEGF expression in clinical breast cancer tissues, and FOXP3 downregulation and VEGF upregulation were both correlated with reduced survival in breast cancer data sets in the Kaplan–Meier plotter. Taken together, our data demonstrate that FOXP3 suppresses breast cancer angiogenesis by downregulating VEGF expression.
Collapse
Affiliation(s)
- Xiaoju Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032, Xi'an, People's Republic of China
| | - Yuan Gao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032, Xi'an, People's Republic of China
| | - Jialin Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032, Xi'an, People's Republic of China.,Clinical Laboratory, The 305 Hospital of The People's Liberation Army, 100017, Beijing, People's Republic of China
| | - Kuo Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032, Xi'an, People's Republic of China
| | - Jun Han
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032, Xi'an, People's Republic of China
| | - Weina Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032, Xi'an, People's Republic of China
| | - Qiang Hao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032, Xi'an, People's Republic of China
| | - Wangqian Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032, Xi'an, People's Republic of China
| | - Shuning Wang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032, Xi'an, People's Republic of China
| | - Cheng Zeng
- Institute of Material Medical, School of Pharmacy, The Fourth Military Medical University, 710032, Xi'an, People's Republic of China
| | - Wei Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032, Xi'an, People's Republic of China
| | - Yingqi Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032, Xi'an, People's Republic of China
| | - Meng Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032, Xi'an, People's Republic of China.
| | - Cun Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032, Xi'an, People's Republic of China.
| |
Collapse
|
7
|
Rabieian R, Boshtam M, Zareei M, Kouhpayeh S, Masoudifar A, Mirzaei H. Plasminogen Activator Inhibitor Type-1 as a Regulator of Fibrosis. J Cell Biochem 2017; 119:17-27. [PMID: 28520219 DOI: 10.1002/jcb.26146] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/17/2017] [Indexed: 12/17/2022]
Abstract
Fibrosis is known as a frequent and irreversible pathological condition which is associated with organ failure. Tissue fibrosis is a central process in a variety of chronic progressive diseases such as diabetes, hypertension, and persistent inflammation. This state could contribute to chronic injury and the initiation of tissue repair. Fibrotic disorders represent abnormal wound healing with defective matrix turnover and clearance that lead to excessive accumulation of extracellular matrix components. A variety of identified growth factors, cytokines, and persistently activated myofibroblasts have critical roles in the pathogenesis of fibrosis. Irrespective of etiology, the transforming growth factor-β pathway is the major driver of fibrotic response. Plasminogen activator inhibitor-1 (PAI-1) is a crucial downstream target of this pathway. Transforming growth factor-β positively regulates PAI-1 gene expression via two main pathways including Smad-mediated canonical and non-canonical pathways. Overexpression of PAI-1 reduces extracellular matrix degradation via perturbing the plasminogen activation system. Indeed, elevated PAI-1 levels inhibit proteolytic activity of tissue plasminogen activator and urokinase plasminogen activator which could contribute to a variety of inflammatory elements in the injury site and to excessive matrix deposition. This review summarizes the current knowledge of critical pathways that regulate PAI-1 gene expression and suggests effective approaches for the treatment of fibrotic disease. J. Cell. Biochem. 119: 17-27, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Reyhaneh Rabieian
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahshid Zareei
- Department of Biology, School of Sciences, University of Isfahan, Isfahan, Iran
| | - Shirin Kouhpayeh
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Aria Masoudifar
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hamed Mirzaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
TGF-β signal shifting between tumor suppression and fibro-carcinogenesis in human chronic liver diseases. J Gastroenterol 2014; 49:971-81. [PMID: 24263677 DOI: 10.1007/s00535-013-0910-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 11/04/2013] [Indexed: 02/04/2023]
Abstract
Perturbation of transforming growth factor (TGF)-β signaling in hepatocytes persistently infected with hepatitis viruses promotes both fibrogenesis and carcinogenesis (fibro-carcinogenesis). Insights into hepatocytic fibro-carcinogenesis have emerged from recent detailed analyses of context-dependent and cell type-specific TGF-β signaling processes directed by multiple phosphorylated forms (phospho-isoforms) of Smad mediators. In the course of hepatitis virus-related chronic liver diseases, chronic inflammation, ongoing viral infection, and host genetic/epigenetic alterations additively shift hepatocytic Smad phospho-isoform signaling from tumor suppression to fibro-carcinogenesis, accelerating liver fibrosis and increasing risk of hepatocellular carcinoma (HCC). After successful antiviral therapy, patients with chronic hepatitis can experience less risk of HCC occurrence by reversing Smad phospho-isoform signaling from fibro-carcinogenesis to tumor suppression. However, patients with cirrhosis can still develop HCC owing to sustained, intense fibro-carcinogenic signaling. Recent progress in understanding Smad phospho-isoform signaling should permit use of Smad phosphorylation as a tool predicting the likelihood of liver disease progression, and as a biomarker for assessing the effectiveness of interventions aimed at reducing fibrosis and cancer risk.
Collapse
|
9
|
Abstract
Liver regeneration is perhaps the most studied example of compensatory growth aimed to replace loss of tissue in an organ. Hepatocytes, the main functional cells of the liver, manage to proliferate to restore mass and to simultaneously deliver all functions hepatic functions necessary to maintain body homeostasis. They are the first cells to respond to regenerative stimuli triggered by mitogenic growth factor receptors MET (the hepatocyte growth factor receptor] and epidermal growth factor receptor and complemented by auxiliary mitogenic signals induced by other cytokines. Termination of liver regeneration is a complex process affected by integrin mediated signaling and it restores the organ to its original mass as determined by the needs of the body (hepatostat function). When hepatocytes cannot proliferate, progenitor cells derived from the biliary epithelium transdifferentiate to restore the hepatocyte compartment. In a reverse situation, hepatocytes can also transdifferentiate to restore the biliary compartment. Several hormones and xenobiotics alter the hepatostat directly and induce an increase in liver to body weight ratio (augmentative hepatomegaly). The complex challenges of the liver toward body homeostasis are thus always preserved by complex but unfailing responses involving orchestrated signaling and affecting growth and differentiation of all hepatic cell types.
Collapse
Affiliation(s)
- George K Michalopoulos
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
10
|
Tu B, Peng ZX, Fan QM, Du L, Yan W, Tang TT. Osteosarcoma cells promote the production of pro-tumor cytokines in mesenchymal stem cells by inhibiting their osteogenic differentiation through the TGF-β/Smad2/3 pathway. Exp Cell Res 2013; 320:164-73. [PMID: 24183998 DOI: 10.1016/j.yexcr.2013.10.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 10/15/2013] [Accepted: 10/23/2013] [Indexed: 01/23/2023]
Abstract
Mesenchymal stem cells (MSCs) are among the most important components of the osteosarcoma microenvironment and are reported to promote tumor progression. However, the means by which osteosarcoma cells modulate MSC behavior remains unclear. The aim of this study was to determine the effects of osteosarcoma cells on both the production of pro-tumor cytokines by mesenchymal stem cells (MSCs) and the osteogenic differentiation of MSCs. High level of transforming growth factor-β (TGF-β) was detected in three osteosarcoma cell lines. Conditioned media (CM) from the osteosarcoma cell lines Saos-2 and U2-OS were used to stimulate the cultured MSCs. We found that osteosarcoma cells promoted the production of IL-6 and VEGF in MSCs by inhibiting their osteogenic differentiation. Furthermore, TGF-β in tumor CM was proved to be an important factor. The TGF-β neutralizing antibody antagonized the effects induced by osteosarcoma CM. The inhibition of Smad2/3 by siRNA significantly decreased the production of IL-6 and VEGF in MSCs and induced their osteogenic differentiation. We also found that Smad2/3 enhanced the expression of β-catenin in MSCs by decreasing the level of Dickkopf-1 (DKK1). Although the inhibition of β-catenin did not affect the production of IL-6 or VEGF, or the gene expression of the early osteogenic markers Runx2 and ALP, it did enhance the gene expression of osteocalcin. Taken together, our data indicate that osteosarcoma cells secrete TGF-β to maintain the stemness of MSCs and promote the production of pro-tumor cytokines by these cells.
Collapse
Affiliation(s)
- Bing Tu
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road 639, Shanghai 200011, China
| | | | | | | | | | | |
Collapse
|
11
|
Yang L, Inokuchi S, Roh YS, Song J, Loomba R, Park EJ, Seki E. Transforming growth factor-β signaling in hepatocytes promotes hepatic fibrosis and carcinogenesis in mice with hepatocyte-specific deletion of TAK1. Gastroenterology 2013; 144:1042-1054.e4. [PMID: 23391818 PMCID: PMC3752402 DOI: 10.1053/j.gastro.2013.01.056] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 01/07/2013] [Accepted: 01/24/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Transforming growth factor (TGF)-β-activated kinase 1 (TAK1) is activated in different cytokine signaling pathways. Deletion of Tak1 from hepatocytes results in spontaneous development of hepatocellular carcinoma (HCC), liver inflammation, and fibrosis. TGF-β activates TAK1 and Smad signaling, which regulate cell death, proliferation, and carcinogenesis. However, it is not clear whether TGF-β signaling in hepatocytes, via TGF-β receptor-2 (Tgfbr2), promotes HCC and liver fibrosis. METHODS We generated mice with hepatocyte-specific deletion of Tak1 (Tak1ΔHep), as well as Tak1/Tgfbr2DHep and Tak1/Smad4ΔHep mice. Tak1flox/flox, Tgfbr2ΔHep, and Smad4ΔHep mice were used as controls, respectively. We assessed development of liver injury, inflammation, fibrosis, and HCC. Primary hepatocytes isolated from these mice were used to assess TGF-β-mediated signaling. RESULTS Levels of TGF-β, TGF-βR2, and phospho-Smad2/3 were increased in HCCs from Tak1ΔHep mice, which developed liver fibrosis and inflammation by 1 month and HCC by 9 months. However, Tak1/Tgfbr2ΔHep mice did not have this phenotype, and their hepatocytes did not undergo spontaneous cell death or compensatory proliferation. Hepatocytes from Tak1ΔHep mice incubated with TGF-β did not activate p38, c-Jun N-terminal kinase, or nuclear factor-κB; conversely, TGF-β-mediated cell death and phosphorylation of Smad2/3 were increased, compared with control hepatocytes. Blocking the Smad pathway inhibited TGF-β-mediated death of Tak1-/- hepatocytes. Accordingly, disruption of Smad4 reduced the spontaneous liver injury, inflammation, fibrosis, and HCC that develops in Tak1ΔHep mice. Levels of the anti-apoptotic protein Bcl-xL, β-catenin, connective tissue growth factor, and vascular endothelial growth factor were increased in HCC from Tak1ΔHep mice, but not in HCCs from Tak1/Tgfbr2ΔHep mice. Injection of N-nitrosodiethylamine induced HCC formation in wild-type mice, but less in Tgfbr2ΔHep mice. CONCLUSIONS TGF-β promotes development of HCC in Tak1ΔHep mice by inducing hepatocyte apoptosis and compensatory proliferation during early phases of tumorigenesis, and inducing expression of anti-apoptotic, pro-oncogenic, and angiogenic factors during tumor progression.
Collapse
Affiliation(s)
- Ling Yang
- Division of Gastroenterology, Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Ozaki I, Hamajima H, Matsuhashi S, Mizuta T. Regulation of TGF-β1-Induced Pro-Apoptotic Signaling by Growth Factor Receptors and Extracellular Matrix Receptor Integrins in the Liver. Front Physiol 2011; 2:78. [PMID: 22028694 PMCID: PMC3199809 DOI: 10.3389/fphys.2011.00078] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 10/11/2011] [Indexed: 01/24/2023] Open
Abstract
Hepatocellular carcinoma (HCC) often arises from chronically diseased livers. Persistent liver inflammation causes the accumulation of excessive extracellular matrix (ECM) proteins and impairs the liver function, finally leading to the development of HCC. A pleiotropic cytokine, transforming growth factor (TGF)-β1, plays critical roles throughout the process of fibrogenesis and hepatocarcinogenesis. In the liver, TGF-β1 inhibits the proliferation of hepatocytes and stimulates the production of ECM from hepatic stellate cells (HSCs) to maintain tissue homeostasis. During disease progression, both growth factors/cytokines and the ECM alter the TGF-β1 signals by modifying the phosphorylation of Smad proteins at their C-terminal and linker regions. TGF-β1 stimulates the expression of integrins, cellular receptors for ECM, along with an increase in ECM accumulation. The activation of integrins by the ECM modulates the response to TGF-β1 in hepatic cells, resulting in their resistance to TGF-β1-induced growth suppression in hepatocytes and the sustained production of ECM proteins in activated HSCs/myofibroblasts. Both growth factor receptors and integrins modify the expression and/or functions of the downstream effectors of TGF-β1, resulting in the escape of hepatocytes from TGF-β1-induced apoptosis. Recent studies have revealed that the alterations of Smad phosphorylation that occur as the results of the crosstalk between TGF-β1, growth factors and integrins could change the nature of TGF-β1 signals from tumor suppression to promotion. Therefore, the modification of Smad phosphorylation could be an attractive target for the prevention and/or treatment of HCC.
Collapse
Affiliation(s)
- Iwata Ozaki
- Saga Medical School, Health Administration Center Saga, Japan
| | | | | | | |
Collapse
|
13
|
Interferon-α2b and transforming growth factor-β1 treatments on HCC cell lines: Are Wnt/β-catenin pathway and Smads signaling connected in hepatocellular carcinoma? Biochem Pharmacol 2011; 82:1682-91. [PMID: 21843516 DOI: 10.1016/j.bcp.2011.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/01/2011] [Accepted: 08/01/2011] [Indexed: 01/04/2023]
Abstract
Wnt/β-catenin pathway is often dysregulated in hepatocellular carcinoma (HCC). Activated β-catenin accumulates in the cytosol and nucleus and forms a nuclear complex with TCF/LEF factors like TCF4. Interferon-α (IFN-α) has recently been recognized to harbor therapeutic potential in prevention and treatment of HCC. Transforming Growth Factor-β1 (TGF-β1) is a mediator of apoptosis, exerting its effects via Smads proteins. One mode of interaction between Wnt/β-catenin and TGF-β1/Smads pathways is the association of Smads with β-catenin/TCF4. In this study we analyzed the effects of IFN-α2b and TGF-β1 treatments on Wnt/β-catenin pathway, Smads proteins levels, β-catenin/TCF4/Smads interaction and proliferation and apoptotic death in HepG2/C3A and Huh7 cell lines. IFN-α2b and TGF-β1 attenuated Wnt/β-catenin signal by decreasing β-catenin and Frizzled7 receptor proteins contents and the interaction of β-catenin with TCF4. Truncated β-catenin form present in C3A cell line also diminished after treatments. Both cytokines declined Smads proteins and their interaction with TCF4. The overall cellular response to cytokines was the decrease in proliferation and increase in apoptotic death. Treatment with Wnt3a, which elevates β-catenin protein levels, also generated the increment of Smads proteins contents when comparing with untreated cells. In conclusion, IFN-α2b and TGF-β1 proved to be effective as modulators of Wnt/β-catenin pathway in HCC cell lines holding both wild-type and truncated β-catenin. Since the inhibition of β-catenin/TCF4/Smads complexes formation may have a critical role in slowing down oncogenesis, IFN-α2b and TGF-β1 could be useful as potential treatments in patients with HCC.
Collapse
|
14
|
Smad phosphoisoform signals in acute and chronic liver injury: similarities and differences between epithelial and mesenchymal cells. Cell Tissue Res 2011; 347:225-43. [PMID: 21626291 PMCID: PMC3250618 DOI: 10.1007/s00441-011-1178-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 04/15/2011] [Indexed: 12/17/2022]
Abstract
Hepatocellular carcinoma (HCC) usually arises from hepatic fibrosis caused by chronic inflammation. In chronic liver damage, hepatic stellate cells undergo progressive activation to myofibroblasts (MFB), which are important extracellular-matrix-producing mesenchymal cells. Concomitantly, perturbation of transforming growth factor (TGF)-β signaling by pro-inflammatory cytokines in the epithelial cells of the liver (hepatocytes) promotes both fibrogenesis and carcinogenesis (fibro-carcinogenesis). Insights into fibro-carcinogenic effects on chronically damaged hepatocytes have come from recent detailed analyses of the TGF-β signaling process. Smad proteins, which convey signals from TGF-β receptors to the nucleus, have intermediate linker regions between conserved Mad homology (MH) 1 and MH2 domains. TGF-β type I receptor and pro-inflammatory cytokine-activated kinases differentially phosphorylate Smad2 and Smad3 to create phosphoisoforms phosphorylated at the COOH-terminal, linker, or both (L/C) regions. After acute liver injury, TGF-β-mediated pSmad3C signaling terminates hepatocytic proliferation induced by the pro-inflammatory cytokine-mediated mitogenic pSmad3L pathway; TGF-β and pro-inflammatory cytokines synergistically enhance collagen synthesis by activated hepatic stellate cells via pSmad2L/C and pSmad3L/C pathways. During chronic liver disease progression, pre-neoplastic hepatocytes persistently affected by TGF-β together with pro-inflammatory cytokines come to exhibit the same carcinogenic (mitogenic) pSmad3L and fibrogenic pSmad2L/C signaling as do MFB, thereby accelerating liver fibrosis while increasing risk of HCC. This review of Smad phosphoisoform-mediated signals examines similarities and differences between epithelial and mesenchymal cells in acute and chronic liver injuries and considers Smad linker phosphorylation as a potential target for the chemoprevention of fibro-carcinogenesis.
Collapse
|
15
|
Opposite functions of HIF-α isoforms in VEGF induction by TGF-β1 under non-hypoxic conditions. Oncogene 2010; 30:1213-28. [PMID: 21057546 DOI: 10.1038/onc.2010.498] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Transforming growth factor (TGF)-β1 has biphasic functions in prostate tumorigenesis, having a growth-inhibitory effect in the early stages, but in the late stages promoting tumor angiogenesis and metastasis. We demonstrate here that tumor-producing TGF-β1 induces vascular endothelial growth factor (VEGF) in prostate cancer cells, and hypoxia-inducible factor (HIF)-1α and HIF-2α has opposite functions in TGF-β1 regulation of VEGF expression under non-hypoxic conditions. The promoter response of VEGF to TGF-β1 was upregulated by the transfection of HIF-2α or siHIF-1α but downregulated by HIF-1α and siHIF-2α. Both HIF-1α and HIF-2α were induced by TGF-β1 at mRNA and protein levels, however, their nuclear translocation was differentially regulated by TGF-β1, suggesting its association with their opposite effects. VEGF induction by TGF-β1 occurred in a Smad3-dependent manner, and the Smad-binding element 2 (SBE2, -992 to -986) and hypoxia response element (-975 to -968) in the VEGF promoter were required for the promoter response to TGF-β1. Smad3 cooperated with HIF-2α in TGF-β1 activation of VEGF transcription and Smad3 binding to the SBE2 site was greatly impaired by knockdown of HIF-2α expression. Moreover, the VEGF promoter response to TGF-β1 was synergistically elevated by co-transfection of Smad3 and HIF-2α but attenuated by HIF-1α in a dose-dependent manner. Additionally, TGF-β1 was found to increase the stability of VEGF transcript by facilitating the cytoplasmic translocation of a RNA-stabilizing factor HuR. Collectively, our data show that tumor-producing TGF-β1 induces VEGF at the both transcription and post-transcriptional levels through multiple routes including Smad3, HIF-2α and HuR. This study thus suggests that autocrine TGF-β1 production may contribute to tumor angiogenesis via HIF-2α signaling under non-hypoxic conditions, providing a selective growth advantage for prostate tumor cells.
Collapse
|
16
|
Artman T, Schilling D, Gnann J, Molls M, Multhoff G, Bayer C. Irradiation-induced regulation of plasminogen activator inhibitor type-1 and vascular endothelial growth factor in six human squamous cell carcinoma lines of the head and neck. Int J Radiat Oncol Biol Phys 2010; 76:574-82. [PMID: 20117293 DOI: 10.1016/j.ijrobp.2009.08.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 08/07/2009] [Accepted: 08/17/2009] [Indexed: 01/22/2023]
Abstract
PURPOSE It has been shown that plasminogen activator inhibitor type-1 (PAI-1) and vascular endothelial growth factor (VEGF) are involved in neo-angiogenesis. The aim of this study was to investigate the irradiation-induced regulation of PAI-1 and VEGF in squamous cell carcinomas of the head and neck (SCCHN) cell lines of varying radiation sensitivity. METHODS AND MATERIALS Six cell lines derived from SCCHN were investigated in vitro. The colorimetric AlamarBlue assay was used to detect metabolic activity of cell lines during irradiation as a surrogate marker for radiation sensitivity. PAI-1 and VEGF secretion levels were measured by enzyme-linked immunosorbent assay 24, 48, and 72 h after irradiation with 0, 2, 6, and 10 Gy. The direct radioprotective effect of exogenous PAI-1 was measured using the clonogenic assay. For regulation studies, transforming growth factor-beta1 (TGF-beta1), hypoxia-inducible factor-1alpha (HIF-1alpha), hypoxia-inducible factor-2alpha (HIF-2alpha), or both HIF-1alpha and HIF-2alpha were downregulated using siRNA. RESULTS Although baseline levels varied greatly, irradiation led to a comparable dose-dependent increase in PAI-1 and VEGF secretion in all six cell lines. Addition of exogenous stable PAI-1 to the low PAI-1-expressing cell lines, XF354 and FaDu, did not lead to a radioprotective effect. Downregulation of TGF-beta1 significantly decreased VEGF secretion in radiation-sensitive XF354 cells, and downregulation of HIF-1alpha and HIF-2alpha reduced PAI-1 and VEGF secretion in radiation-resistant SAS cells. CONCLUSIONS Irradiation dose-dependently increased PAI-1 and VEGF secretion in all SCCHN cell lines tested regardless of their basal levels and radiation sensitivity. In addition, TGF-beta1 and HIF-1alpha could be partly responsible for VEGF and PAI-1 upregulation after irradiation.
Collapse
Affiliation(s)
- Tuuli Artman
- Department of Radiation Oncology, Technical University of Munich, Munich, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Investigation of immunosuppressive mechanisms in a mouse glioma model. J Neurooncol 2009; 93:107-14. [DOI: 10.1007/s11060-009-9884-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 03/20/2009] [Indexed: 10/20/2022]
|
18
|
Gramantieri L, Fornari F, Callegari E, Sabbioni S, Lanza G, Croce CM, Bolondi L, Negrini M. MicroRNA involvement in hepatocellular carcinoma. J Cell Mol Med 2009; 12:2189-204. [PMID: 19120703 PMCID: PMC4514099 DOI: 10.1111/j.1582-4934.2008.00533.x] [Citation(s) in RCA: 217] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third cause of cancer-related death worldwide. Curative options for HCC are limited and exclusively available for patients carrying an early stage HCC. In advanced stages, traditional chemotherapy proved to be only marginally effective or even toxic. Thus, the identification of new treatment options is needed. New targets for non-conventional treatment will necessarily take advantage of progresses on the molecular pathogenesis of HCC. MicroRNAs (miRNAs) are a group of tiny RNAs with a fundamental role in the regulation of gene expression. Aberrant expression of several miRNAs was found to be involved in human hepatocarcinogenesis. miRNA expression signatures were correlated with bio-pathological and clinical features of HCC. In some cases, aberrantly expressed miRNAs could be linked to cancer-associated pathways, indicating a direct role in liver tumourigenesis. For example, up-regulation of mir-221 and mir-21 could promote cell cycle progression, reduce cell death and favour angiogenesis and invasion. These findings suggest that miRNAs could become novel molecular targets for HCC treatment. The demonstration of in vivo efficacy and safety of anti-miRNA compounds has opened the way to their use in clinical trials.
Collapse
Affiliation(s)
- Laura Gramantieri
- Department of Internal Medicine and Gastroenterology, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Serganova I, Moroz E, Vider J, Gogiberidze G, Moroz M, Pillarsetty N, Doubrovin M, Minn A, Thaler HT, Massague J, Gelovani J, Blasberg R. Multimodality imaging of TGFbeta signaling in breast cancer metastases. FASEB J 2009; 23:2662-72. [PMID: 19325038 DOI: 10.1096/fj.08-126920] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The skeleton is a preferred site for breast cancer metastasis. We have developed a multimodality imaging approach to monitor the transforming growth factor beta (TGFbeta) signaling pathway in bone metastases, sequentially over time in the same animal. As model systems, two MDA-MB-231 breast cancer cells lines with different metastatic tropisms, SCP2 and SCP3, were transduced with constitutive and TGFbeta-inducible reporter genes and were tested in vitro and in living animals. The sites and expansion of metastases were visualized by bioluminescence imaging using a constitutive firefly luciferase reporter, while TGFbeta signaling in metastases was monitored by microPET imaging of HSV1-TK/GFP expression with [(18)F]FEAU and by a more sensitive and cost-effective bioluminescence reporter, based on nonsecreted Gaussia luciferase. Concurrent and sequential imaging of metastases in the same animals provided insight into the location and progression of metastases, and the timing and course of TGFbeta signaling. The anticipated and newly observed differences in the imaging of tumors from two related cell lines have demonstrated that TGFbeta signal transduction pathway activity can be noninvasively imaged with high sensitivity and reproducibility, thereby providing the opportunity for an assessment of novel treatments that target TGFbeta signaling.
Collapse
Affiliation(s)
- Inna Serganova
- Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Several cytokine families have roles in the development, maintenance, and remodeling of the microcirculation. Of these, the vascular endothelial growth factor (VEGF) family is one of the best studied and one of the most complex. Five VEGF ligand genes and five cell-surface receptor genes are known in the human, and each of these may be transcribed as multiple splice isoforms to generate an extensive family of proteins, many of which are subject to further proteolytic processing. Using the VEGF family as an example, we describe the current knowledge of growth-factor expression, processing, and transport in vivo. Experimental studies and computational simulations are being used to measure and predict the activity of these molecules, and we describe avenues of research that seek to fill the remaining gaps in our understanding of VEGF family behavior.
Collapse
Affiliation(s)
- Feilim Mac Gabhann
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | |
Collapse
|
21
|
Sancho P, Bertran E, Caja L, Carmona-Cuenca I, Murillo MM, Fabregat I. The inhibition of the epidermal growth factor (EGF) pathway enhances TGF-beta-induced apoptosis in rat hepatoma cells through inducing oxidative stress coincident with a change in the expression pattern of the NADPH oxidases (NOX) isoforms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:253-63. [PMID: 18848961 DOI: 10.1016/j.bbamcr.2008.09.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 07/21/2008] [Accepted: 09/11/2008] [Indexed: 12/15/2022]
Abstract
Transforming growth factor-beta (TGF-beta) induces apoptosis in hepatocytes, through a mechanism mediated by reactive oxygen species (ROS) production. Numerous tumoral cells develop mechanisms to escape from the TGF-beta-induced tumor suppressor effects. In this work we show that in FaO rat hepatoma cells inhibition of the epidermal growth factor receptor (EGFR) with the tyrphostin AG1478 enhances TGF-beta-induced cell death, coincident with an elevated increase in ROS production and GSH depletion. These events correlate with down-regulation of genes involved in the maintenance of redox homeostasis, such as gamma-GCS and MnSOD, and elevated mitochondrial ROS. Nonetheless, not all the ROS proceed from the mitochondria. Emerging evidences indicate that ROS production by TGF-beta is also mediated by the NADPH oxidase (NOX) system. TGF-beta-treated FaO cells induce nox1 expression. However, the treatment with TGF-beta and AG1478 greatly enhanced the expression of another family member: nox4. NOX1 and NOX4 targeted knock-down by siRNA experiments suggest that they play opposite roles, because NOX1 knockdown increases caspase-3 activity and cell death, whilst NOX4 knock-down attenuates the apoptotic process. This attenuation correlates with maintenance of GSH and antioxidant enzymes levels. In summary, EGFR inhibition enhances apoptosis induced by TGF-beta in FaO rat hepatoma cells through an increased oxidative stress coincident with a change in the expression pattern of NOX enzymes.
Collapse
Affiliation(s)
- Patricia Sancho
- Centre d'Oncologia Molecular (COM), IDIBELL-Institut d'Investigació Biomèdica de Bellvitge, L'Hospitalet, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
22
|
Abdel Aziz MT, El-Miligy D, Amin MA, El Ansari A, Ahmed HH, Marzouk S, Sabry D. Molecular evaluation of apoptotic versus antiapoptotic angiogenic markers in hepatocellular carcinoma. Clin Biochem 2008; 41:1008-14. [PMID: 18339319 DOI: 10.1016/j.clinbiochem.2008.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 01/27/2008] [Accepted: 02/07/2008] [Indexed: 02/05/2023]
Affiliation(s)
- Mohamed T Abdel Aziz
- Unit of Medical Biochemistry and Molecular Biology, Biochemistry Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | | | | | | | | | | |
Collapse
|
23
|
Kapral M, Strzalka B, Kowalczyk M, Jurzak M, Mazurek U, Gierek T, Paluch J, Markowski J, Swiatkowska L, Weglarz L. Transforming growth factor beta isoforms (TGF-beta1, TGF-beta2, TGF-beta3) messenger RNA expression in laryngeal cancer. Am J Otolaryngol 2008; 29:233-7. [PMID: 18598833 DOI: 10.1016/j.amjoto.2007.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 07/20/2007] [Accepted: 08/05/2007] [Indexed: 10/22/2022]
Abstract
PURPOSE Cancerogenesis is a multistage process controlled by many cytokines, including growth factors. The aim of the study was the comparison of transcriptional activity of transforming growth factor beta (TGF-beta) genes in laryngeal squamous cell carcinomas and adjacent nonneoplastic tissues. MATERIALS AND METHODS Tissues samples were obtained from 32 patients with laryngeal squamous cell carcinoma in histologic grades G1 to G3 who underwent surgical treatment at the ENT Clinics of Medical University of Silesia in Katowice, Poland. Quantification of gene expression was performed by real-time quantitative reverse transcriptase polymerase chain reaction technique. RESULTS In tumor cells, expression of TGF-beta1 and TGF-beta2 isoforms (P < .001) was higher than in normal tissues. There was a positive correlation between the expression of TGF-beta1 and TGF-beta2 genes in tumors (R = 0.78, P = .0000) and adjacent normal tissues (R = 0.77, P = .0000). CONCLUSIONS The results suggest that TGF-beta1 and TGF-beta2 messenger RNAs may be useful as molecular markers in distinguishing cancer from nonneoplastic tissues in laryngeal area.
Collapse
|
24
|
Peters CA, Stock RG, Rosenstein BS. In Reply to Dr. Langsenlehner et al. Int J Radiat Oncol Biol Phys 2008. [DOI: 10.1016/j.ijrobp.2008.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Abstract
AIM: To study at transcriptional level the similarities and differences of the physiological and biochemical activities between liver tumor (LT) and regenerating liver cells.
METHODS: LT-associated genes and their expression changes in LT were obtained from databases and scientific articles, and their expression profiles in rat liver regeneration (LR) were detected using Rat Genome 230 2.0 array. Subsequently their expression changes in LT and LR were compared and analyzed.
RESULTS: One hundred and twenty one LT-associated genes were found to be LR-associated. Thirty four genes were up-regulated, and 14 genes were down-regulated in both LT and regenerating liver; 20 genes up-regulated in LT were down-regulated in regenerating liver; 21 up-regulated genes and 16 down-regulated genes in LT were up-regulated at some time points and down-regulated at others during LR.
CONCLUSION: Results suggested that apoptosis activity suppressed in LT was still active in regenerating liver, and there are lots of similarities and differences between the LT and regenerating liver at the aspects of cell growth, proliferation, differentiation, migration and angiogenesis.
Collapse
Affiliation(s)
- Cun-Shuan Xu
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan Province, China.
| | | | | | | |
Collapse
|
26
|
Roskoski R. Vascular endothelial growth factor (VEGF) signaling in tumor progression. Crit Rev Oncol Hematol 2007; 62:179-213. [PMID: 17324579 DOI: 10.1016/j.critrevonc.2007.01.006] [Citation(s) in RCA: 434] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2006] [Revised: 01/01/2007] [Accepted: 01/29/2007] [Indexed: 12/17/2022] Open
Abstract
Vascular endothelial cells are ordinarily quiescent in adult humans and divide less than once per decade. When tumors reach a size of about 0.2-2.0mm in diameter, they become hypoxic and limited in size in the absence of angiogenesis. There are about 30 endogenous pro-angiogenic factors and about 30 endogenous anti-angiogenic factors. In order to increase in size, tumors undergo an angiogenic switch where the action of pro-angiogenic factors predominates, resulting in angiogenesis and tumor progression. One mechanism for driving angiogenesis results from the increased production of vascular endothelial growth factor (VEGF) following up-regulation of the hypoxia-inducible transcription factor. The human VEGF family consists of VEGF (VEGF-A), VEGF-B, VEGF-C, VEGF-D, and placental growth factor (PlGF). The VEGF family of receptors consists of three protein-tyrosine kinases and two non-protein kinase receptors (neuropilin-1 and -2). Owing to the importance of angiogenesis in tumor progression, inhibition of VEGF signaling represents an attractive cancer treatment.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 3754 Brevard Road, Suite 116A, Box 19, Horse Shoe, NC 28742, USA.
| |
Collapse
|
27
|
Inamoto S, Iwata S, Inamoto T, Nomura S, Sasaki T, Urasaki Y, Hosono O, Kawasaki H, Tanaka H, Dang NH, Morimoto C. Crk-associated substrate lymphocyte type regulates transforming growth factor-beta signaling by inhibiting Smad6 and Smad7. Oncogene 2006; 26:893-904. [PMID: 16909115 DOI: 10.1038/sj.onc.1209848] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Crk-associated substrate lymphocyte type (Cas-L) is a 105 kDa docking protein with diverse functional properties, including regulation of cell division, proliferation, migration and adhesion. Cas-L is also involved in beta1 integrin- or antigen receptor-mediated signaling in B and T cells. In the present study, we demonstrate that Cas-L potentiates transforming growth factor-beta (TGF-beta) signaling pathway by interacting with Smad6 and Smad7. Immunoprecipitation experiments reveal that single domain deletion of full-length Cas-L completely abolishes its docking function with Smad6 and Smad7, suggesting that the natural structure of Cas-L is necessary for its association with Smad6 and Smad7. On the other hand, both N-terminal and C-terminal deletion mutants of Smad6 and Smad7 still retain their docking ability to Cas-L, suggesting that Smad6 and Smad7 possess several binding motifs to Cas-L. Moreover, Cas-L interaction with Mad-homology (MH)2 domain, but not with MH1 domain of Smad6 or Smad7, ameliorates TGF-beta-induced signaling pathway. Finally, depletion of Cas-L by small-interfering RNA oligo attenuates TGF-beta-induced growth inhibition of Huh-7 cells, with a concomitant reduction in phosphorylation of Smad2 and Smad3. These results strongly suggest that Cas-L is a potential regulator of TGF-beta signaling pathway.
Collapse
Affiliation(s)
- S Inamoto
- Division of Clinical Immunology, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ueda SI, Basaki Y, Yoshie M, Ogawa K, Sakisaka S, Kuwano M, Ono M. PTEN/Akt signaling through epidermal growth factor receptor is prerequisite for angiogenesis by hepatocellular carcinoma cells that is susceptible to inhibition by gefitinib. Cancer Res 2006; 66:5346-53. [PMID: 16707461 DOI: 10.1158/0008-5472.can-05-3684] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common tumor-related causes of death worldwide for which there is still no satisfactory treatment. We previously reported the antiangiogenic effect of gefitinib, a selective epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that has been used successfully to treat lung cancer. In this study, we investigated the effects of gefitinib on tumor-induced angiogenesis by using HCC cell lines (HCC3, CBO12C3, and AD3) in vitro as well as in vivo. Oral administration of gefitinib inhibited angiogenesis induced by HCC3 and CBO12C3, but not by AD3 in the mouse dorsal air sac model. Production of both vascular endothelial growth factor (VEGF) and chemokine C-X-C motif ligand 1 (CXCL1) by EGF-stimulated HCC was more markedly inhibited by gefitinib in HCC3 and CBO12C3 cells than in AD3 cells. EGF stimulated the phosphorylation of EGFR, Akt, and extracellular signal-regulated kinase 1/2 (ERK1/2) in HCC3 and CBO12C3 cells, whereas EGF stimulated phosphorylation of EGFR and ERK1/2, but not Akt in AD3 cells. In fact, Akt was constitutively activated in the absence of EGF in AD3 cells. Gefitinib inhibited Akt phosphorylation in all three cell lines, but it was about five times less effective in AD3 cells. The concentration of PTEN in AD3 cells was about a half that in HCC3 and CBO12C3 cells. Transfection of HCC3 cells with PTEN small interfering RNA reduced their sensitivity to gefitinib in terms of its inhibitory effect on both Akt phosphorylation and the production of VEGF and CXCL1. In conclusion, effect of gefitinib on HCC-induced angiogenesis depends on its inhibition of the production of angiogenic factors, probably involving a PTEN/Akt signaling pathway.
Collapse
Affiliation(s)
- Shu-Ichi Ueda
- Department of Medical Biochemistry, Graduate School of Medical Science and Station-II for Collaborative Research, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
McMahon S, Charbonneau M, Grandmont S, Richard DE, Dubois CM. Transforming growth factor beta1 induces hypoxia-inducible factor-1 stabilization through selective inhibition of PHD2 expression. J Biol Chem 2006; 281:24171-81. [PMID: 16815840 DOI: 10.1074/jbc.m604507200] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The hypoxia-inducible transcription factor-1 (HIF-1) is central to a number of pathological processes through the induction of specific genes such as vascular endothelial growth factor (VEGF). Even though HIF-1 is highly regulated by cellular oxygen levels, other elements of the inflammatory and tumor microenvironment were shown to influence its activity under normal oxygen concentration. Among others, recent studies indicated that transforming growth factor (TGF) beta increases the expression of the regulatory HIF-1alpha subunit, and induces HIF-1 DNA binding activity. Here, we demonstrate that TGFbeta acts on HIF-1alpha accumulation and activity by increasing HIF-1alpha protein stability. In particular, we demonstrate that TGFbeta markedly and specifically decreases both mRNA and protein levels of a HIF-1alpha-associated prolyl hydroxylase (PHD), PHD2, through the Smad signaling pathway. As a consequence, the degradation of HIF-1alpha was inhibited as determined by impaired degradation of a reporter protein containing the HIF-1alpha oxygen-dependent degradation domain encompassing the PHD-targeted prolines. Moreover, inhibition of the TGFbeta1 converting enzyme, furin, resulted in increased PHD2 expression, and decreased basal HIF-1alpha and VEGF levels, suggesting that endogenous production of bioactive TGFbeta1 efficiently regulates HIF-1-targeted genes. This was reinforced by results from HIF-1alpha knock-out or HIF-1alpha-inhibited cells that show impairment in VEGF production in response to TGFbeta. This study reveals a novel mechanism by which a growth factor controls HIF-1 stability, and thereby drives the expression of specific genes, through the regulation of PHD2 levels.
Collapse
Affiliation(s)
- Stephanie McMahon
- Immunology Division, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | | | |
Collapse
|
30
|
Ji GZ, Wang XH, Miao L, Liu Z, Zhang P, Zhang FM, Yang JB. Role of transforming growth factor-beta1-smad signal transduction pathway in patients with hepatocellular carcinoma. World J Gastroenterol 2006; 12:644-8. [PMID: 16489684 PMCID: PMC4066103 DOI: 10.3748/wjg.v12.i4.644] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM: To explore the role of transforming growth factor-beta1 (TGF-β1)-smad signal transduction pathway in patients with hepatocellular carcinoma.
METHODS: Thirty-six hepatocellular carcinoma specimens were obtained from Qidong Liver Cancer Institute and Department of Pathology of the Second Affiliated Hospital of Nanjing Medical University. All primary antibodies (polyclonal antibodies) to TGF-β1, type II Transforming growth factor-beta receptor (TβR-II), nuclear factor-kappaB (NF-κB), CD34, smad4 and smad7,secondary antibodies and immunohistochemical kit were purchased from Zhongshan Biotechnology Limited Company (Beijing, China). The expressions of TGF-β1, TβR-II, NF-κB, smad4 and smad7 proteins in 36 specimens of hepatocellular carcinoma (HCC) and its adjacent tissue were separately detected by immunohistochemistry to observe the relationship between TGF-β1 and TβR-II, between NF-κB and TGF-β1, between smad4 and smad7 and between TGF-β1 or TβR-IIand microvessel density (MVD). MVD was determined by labelling the vessel endothelial cells with CD34.
RESULTS: The expression of TGF-β1, smad7 and MVD was higher in HCC tissue than in adjacent HCC tissue (P<0.01, P <0.05, P <0.01 respectively). The expression of TβR-IIand smad4 was lower in HCC tissue than in its adjacent tissue (P <0.01, P <0.05 respectively). The expression of TGF-β1 protein and NF-κB protein was consistent in HCC tissue. The expression of TGF-β1 and MVD was also consistent in HCC tissue. The expression of TβR-IIwas negatively correlated with that of MVD in HCC tissue.
CONCLUSION: The expressions of TGF-β1, TβR-II, NF-κB, smad4 and smad7 in HCC tissue, which are major up and down stream factors of TGF-β1-smad signal transduction pathway , are abnormal. These factors are closely related with MVD and may play an important role in HCC angiogenesis. The inhibitory action of TGF-β1 is weakened in hepatic carcinoma cells because of abnormality of TGF-β1 receptors (such as TβR-II) and postreceptors (such as smad4 and smad7). NF-κB may cause activation and production of TGF-β1.
Collapse
Affiliation(s)
- Guo-Zhong Ji
- Department of Gastroenterology, Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu Province, China.
| | | | | | | | | | | | | |
Collapse
|
31
|
Lian Z, Liu J, Li L, Li X, Tufan NLS, Wu MC, Wang HY, Arbuthnot P, Kew M, Feitelson MA. Human S15a expression is upregulated by hepatitis B virus X protein. Mol Carcinog 2004; 40:34-46. [PMID: 15108328 DOI: 10.1002/mc.20012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The hepatitis B virus (HBV)-encoded X antigen (HBxAg) may contribute to the development of hepatocellular carcinoma (HCC) through the upregulated expression of selected cellular genes. To identify these genes, RNAs isolated from HBxAg-positive and -negative HepG2 cells were compared by PCR select cDNA subtraction. One gene overexpressed in HBxAg-positive cells by Northern and Western blotting is the ribosomal protein S15a. The S15a mRNA is 535 base pairs, encoding a protein 130 amino acids long with a molecular weight of 14.3 kDa. S15a expression was upregulated in HBV-infected livers, where it costained with HBxAg. Overexpression of S15a stimulated cell growth, colony formation in soft agar, and tumor formation in SCID mice. Hence, HBxAg upregulated the expression of S15a, the latter of which participates in the development of HCC, perhaps by altering the integrity of translation.
Collapse
Affiliation(s)
- Zhaorui Lian
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107-6749, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|