1
|
Qi X, Chen Y, Liu S, Liu L, Yu Z, Yin L, Fu L, Deng M, Liang S, Lü M. Sanguinarine inhibits melanoma invasion and migration by targeting the FAK/PI3K/AKT/mTOR signalling pathway. PHARMACEUTICAL BIOLOGY 2023; 61:696-709. [PMID: 37092313 PMCID: PMC10128503 DOI: 10.1080/13880209.2023.2200787] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
CONTEXT Sanguinarine (SAG) is the most abundant constituent of Macleaya cordata (Willd.) R. Br. (Popaceae). SAG has shown antimammary and colorectal metastatic effects in mice in vivo, suggesting its potential for cancer chemotherapy. OBJECTIVE To determine the antimetastatic effect and underlying molecular mechanisms of SAG on melanoma. MATERIALS AND METHODS CCK8 assay was used to determine the inhibition of SAG on the proliferation of A375 and A2058 cells. Network pharmacology analysis was applied to construct a compound-target network and select potential therapeutic targets of SAG against melanoma. Molecular docking simulation was conducted for further analysis of the selected targets. In vitro migration/invasion/western blot assay with 1, 1.5, 2 μM SAG and in vivo effect of 2, 4, 8 mg/kg SAG in xenotransplantation model in nude mice. RESULTS The key targets of SAG treatment for melanoma were mainly enriched in PI3K-AKT pathway, and the binding energy of SAG to PI3K, AKT, and mTOR were -6.33, -6.31, and -6.07 kcal/mol, respectively. SAG treatment inhibited the proliferation, migration, and invasion ability of A375 and A2058 cells (p < 0.05) with IC50 values of 2.378 μM and 2.719 μM, respectively. It also decreased the phosphorylation levels of FAK, PI3K, AKT, mTOR and protein expression levels of MMP2 and ICAM-2. In the nude mouse xenograft model, 2, 4, 8 mg/kg SAG was shown to be effective in inhibiting tumour growth. CONCLUSIONS Our research offered a theoretical foundation for the clinical antitumor properties of SAG, further suggesting its potential application in the clinic.
Collapse
Affiliation(s)
- Xiaoyi Qi
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- The Public Platform of Advanced Detecting Instruments, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China
- Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou, China
- Cardiovascular and Metabolic Diseases of Sichuan Key Laboratory, Luzhou, China
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang University, Hangzhou, China
| | - Yonglan Chen
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Sha Liu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Li Liu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zehui Yu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ling Yin
- The Public Platform of Advanced Detecting Instruments, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China
| | - Lu Fu
- The Public Platform of Advanced Detecting Instruments, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China
| | - Mingming Deng
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Sicheng Liang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- The Public Platform of Advanced Detecting Instruments, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China
- Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou, China
- Cardiovascular and Metabolic Diseases of Sichuan Key Laboratory, Luzhou, China
- CONTACT Sicheng Liang Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China; The Public Platform of Advanced Detecting Instruments, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China; Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou, China; Cardiovascular and Metabolic Diseases of Sichuan Key Laboratory, Luzhou, China
| | - Muhan Lü
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou, China
- Cardiovascular and Metabolic Diseases of Sichuan Key Laboratory, Luzhou, China
- Muhan Lü Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou, China; Cardiovascular and Metabolic Diseases of Sichuan Key Laboratory, Luzhou, China
| |
Collapse
|
2
|
Purohit S, Piani F, Ordoñez FA, de Lucas-Collantes C, Bauer C, Cara-Fuentes G. Molecular Mechanisms of Proteinuria in Minimal Change Disease. Front Med (Lausanne) 2022; 8:761600. [PMID: 35004732 PMCID: PMC8733331 DOI: 10.3389/fmed.2021.761600] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022] Open
Abstract
Minimal change disease (MCD) is the most common type of idiopathic nephrotic syndrome in childhood and represents about 15% cases in adults. It is characterized by massive proteinuria, edema, hypoalbuminemia, and podocyte foot process effacement on electron microscopy. Clinical and experimental studies have shown an association between MCD and immune dysregulation. Given the lack of inflammatory changes or immunocomplex deposits in the kidney tissue, MCD has been traditionally thought to be mediated by an unknown circulating factor(s), probably released by T cells that directly target podocytes leading to podocyte ultrastructural changes and proteinuria. Not surprisingly, research efforts have focused on the role of T cells and podocytes in the disease process. Nevertheless, the pathogenesis of the disease remains a mystery. More recently, B cells have been postulated as an important player in the disease either by activating T cells or by releasing circulating autoantibodies against podocyte targets. There are also few reports of endothelial injury in MCD, but whether glomerular endothelial cells play a role in the disease remains unexplored. Genome-wide association studies are providing insights into the genetic susceptibility to develop the disease and found a link between MCD and certain human haplotype antigen variants. Altogether, these findings emphasize the complex interplay between the immune system, glomerular cells, and the genome, raising the possibility of distinct underlying triggers and/or mechanisms of proteinuria among patients with MCD. The heterogeneity of the disease and the lack of good animal models of MCD remain major obstacles in the understanding of MCD. In this study, we will review the most relevant candidate mediators and mechanisms of proteinuria involved in MCD and the current models of MCD-like injury.
Collapse
Affiliation(s)
- Shrey Purohit
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Pediatrics, Section of Pediatric Nephrology, Children's Hospital Colorado, Aurora, CO, United States
| | - Federica Piani
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Medicine and Surgery Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Flor A Ordoñez
- Division of Pediatric Nephrology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | - Colin Bauer
- Department of Pediatrics, Section of Pediatric Nephrology, Children's Hospital Colorado, Aurora, CO, United States
| | - Gabriel Cara-Fuentes
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Pediatrics, Section of Pediatric Nephrology, Children's Hospital Colorado, Aurora, CO, United States
| |
Collapse
|
3
|
Cao W, Wei W, Zhan Z, Xie D, Xie Y, Xiao Q. Regulation of drug resistance and metastasis of gastric cancer cells via the microRNA647-ANK2 axis. Int J Mol Med 2018; 41:1958-1966. [PMID: 29328428 PMCID: PMC5810220 DOI: 10.3892/ijmm.2018.3381] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 11/22/2017] [Indexed: 12/11/2022] Open
Abstract
Due to a lack of effective methods for early diagnosis, the majority of patients with gastric cancer (GC) are diagnosed during the late stages of the disease, which are often accompanied by metastasis. For these patients, despite being considered an important therapeutic modality in the treatment of cancer, chemotherapy is usually not effective due to multidrug resistance (MDR). The expression levels of MDR/metastasis-associated genes are regulated by numerous microRNAs (miRNAs/miRs). The expression of miR-647 in GC tissues and SGC7901/VCR cell line (drug resistance to vincristine) was detected by qRT-PCR. The effect of overexpression of miR-647 on drug resistance was evaluated by measuring the half maximal inhibitory concentration (IC50) value of SGC-7901/VCR to vincristine and tumor growth in vivo. Moreover, drug-induced cell apoptosis and cell cycle were evaluated by flow cytometry, as well as the ability of cell migration and invasiveness detected by wound healing and transwell assay. Furthermore, underlying targets of miR-647 were predicted by TargetScan and MicroRNA; meanwhile, the expression of ANK2, FAK, MMP2, MMP12,CD44,SNAIL1 were observed by qRT-PCR and western blot analysis. The present study established that the expression levels of miR-647 were downregulated in GC tissues from patients with metastasis and in the vincristine-resistant SGC7901 (SGC-7901/VCR) GC cell line. The IC50 value for vincristine was significantly decreased, whereas the proportion of cells in G0/G1 phase and the drug-induced apoptotic rate were significantly increased following upregulation of miR-647. Furthermore, the results demonstrated that miR-647 overexpression led to decreased migration and invasion of SGC-7901/VCR cells. Overexpression of miR-647 was also demonstrated to sensitize tumors to chemotherapy in vivo. In addition, miR-647 overexpression was able to reduce the expression levels of ankyrin-B, focal adhesion kinase, matrix metalloproteinase (MMP)2, MMP12, cluster of differentiation 44 and snail family transcriptional repressor 1. In conclusion, these findings demonstrated that miR-647 may function as a novel target to ameliorate drug resistance and metastasis of GC cells.
Collapse
Affiliation(s)
- Wenlong Cao
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Weiyuan Wei
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zexu Zhan
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Dongyi Xie
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yubo Xie
- Department of Anaesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qiang Xiao
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
4
|
Zhu Y, Pan Y, Zhang G, Wu Y, Zhong W, Chu C, Qian Y, Zhu G. Chelerythrine Inhibits Human Hepatocellular Carcinoma Metastasis in Vitro. Biol Pharm Bull 2017; 41:36-46. [PMID: 29093327 DOI: 10.1248/bpb.b17-00451] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chelerythrine (CHE) is a type of benzophenanthridine alkaloid found in many herbs and is also the main alkaloid constituent of Toddalia asiatica (L.) LAM. It has been proven to have various activities including antitumor, antifungal, anti-inflammatory and anti-parasitic effects. We have previously demonstrated that CHE can inhibit proliferation and promote apoptosis in human hepatocellular carcinoma (HCC) cells. However, the effect of CHE on the metastasis of HCC and its related molecular mechanisms have yet to be validated. In this study, we investigated the effects of CHE on the migration and invasion of the HCC cell line Hep3B. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), wounding healing, transwell migration and invasion assays and cytoskeleton staining demonstrated that CHE could inhibit the migration and invasion of Hep3B cells in a dose-dependent manner with change of cell structure. RNA interference studies made a knockdown of matrix metalloproteinase (MMP)-2/9 respectively in Hep3B cells. And the results of wounding healing and transwell invasion assay with the treatment of small interfering RNA (siRNA) investigated that MMP-2/9 are positively associated with Hep3B cell metastasis. The results of enzyme-linked immunosorbent assay (ELISA), Western blotting and quantitative RT-PCR showed that CHE suppressed the expression of MMP-2/9 at both mRNA and protein levels. CHE also exhibited an inhibitory effect on the phosphorylation of Focal adhesion kinase (FAK), phosphatidylinositol 3-kinase (PI3K), Akt, mammalian target of rapamycin (mTOR), c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinases (ERK) and p38. In summary, on Hep3B cells, CHE could change the cell cytoskeletal structures through reducing the expression of p-FAK and inhibit the metastasis of Hep3B cells by downregulating the expression of MMP-2/9 mainly through PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yuanzhang Zhu
- Laboratory of Formula, School of Pharmacy, Shanghai University of Traditional Chinese Medicine
| | - Yingyi Pan
- Department of Traditional Chinese Medicine, School of Pharmacy, Shanghai University of Traditional Chinese Medicine
| | - Guibiao Zhang
- Department of Traditional Chinese Medicine, School of Pharmacy, Shanghai University of Traditional Chinese Medicine
| | - Yingchun Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine
| | - Weicai Zhong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine
| | - Chunxiao Chu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine
| | - Yun Qian
- Laboratory of Formula, School of Pharmacy, Shanghai University of Traditional Chinese Medicine
| | - Guofu Zhu
- Department of Traditional Chinese Medicine, School of Pharmacy, Shanghai University of Traditional Chinese Medicine
| |
Collapse
|
5
|
Lycorine inhibits breast cancer growth and metastasis via inducing apoptosis and blocking Src/FAK-involved pathway. SCIENCE CHINA-LIFE SCIENCES 2017; 60:417-428. [PMID: 28251459 DOI: 10.1007/s11427-016-0368-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/27/2016] [Indexed: 01/07/2023]
Abstract
Breast cancer is the most commonly diagnosed cancer type worldwide among women and more than 90% of patients die from tumor metastasis. Lycorine, a natural alkaloid, has been widely reported possessing potential efficacy against cancer proliferation and metastasis. In our study, the anti-tumor potency on breast cancer was evaluated in vitro and in vivo for the first time. Our results indicated that lycorine inhibited breast cancer cells growth, migration and invasion as well as induced their apoptosis. In in vivo study, lycorine not only suppressed breast tumor growth in xenograft models and inhibited breast tumor metastasis in MDA-MB-231 tail vein model. More importantly, we found lycorine had less toxicity than first-line chemotherapy drug paclitaxel at the same effective dose in vivo. Furthermore, on mechanism, lycorine inhibited tumor cell migration and invasion via blocking the Src/FAK (focal adhesion kinase)-involved pathway. In conclusion, our study implied lycorine was a potential candidate for the treatment of breast cancer by inhibition of tumor growth and metastasis.
Collapse
|
6
|
Tomita Y, Dorward H, Yool AJ, Smith E, Townsend AR, Price TJ, Hardingham JE. Role of Aquaporin 1 Signalling in Cancer Development and Progression. Int J Mol Sci 2017; 18:ijms18020299. [PMID: 28146084 PMCID: PMC5343835 DOI: 10.3390/ijms18020299] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/19/2017] [Accepted: 01/23/2017] [Indexed: 02/07/2023] Open
Abstract
Cancer is a major health burden worldwide. Despite the advances in our understanding of its pathogenesis and continued improvement in cancer management and outcomes, there remains a strong clinical demand for more accurate and reliable biomarkers of metastatic progression and novel therapeutic targets to abrogate angiogenesis and tumour progression. Aquaporin 1 (AQP1) is a small hydrophobic integral transmembrane protein with a predominant role in trans-cellular water transport. Recently, over-expression of AQP1 has been associated with many types of cancer as a distinctive clinical prognostic factor. This has prompted researchers to evaluate the link between AQP1 and cancer biological functions. Available literature implicates the role of AQP1 in tumour cell migration, invasion and angiogenesis. This article reviews the current understanding of AQP1-facilitated tumour development and progression with a focus on regulatory mechanisms and downstream signalling pathways.
Collapse
Affiliation(s)
- Yoko Tomita
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital & Discipline of Physiology, School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia.
| | - Hilary Dorward
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
| | - Andrea J Yool
- Discipline of Physiology, School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia.
| | - Eric Smith
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
| | - Amanda R Townsend
- Medical Oncology, The Queen Elizabeth Hospital & School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia.
| | - Timothy J Price
- Medical Oncology, The Queen Elizabeth Hospital & School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia.
| | - Jennifer E Hardingham
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital & Discipline of Physiology, School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia.
| |
Collapse
|
7
|
Cao W, Wei W, Zhan Z, Xie D, Xie Y, Xiao Q. Role of miR-647 in human gastric cancer suppression. Oncol Rep 2017; 37:1401-1411. [PMID: 28098914 PMCID: PMC5364874 DOI: 10.3892/or.2017.5383] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 01/03/2017] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) regulate various oncogenes concomitantly, resulting in tumor suppression. They regulate proliferation and migration pathways in tumor development, suggesting a potential therapeutic role. In the present study, we found that miR-647 was markedly downregulated in gastric cancer (GC), and was significantly correlated with reduced tumor size and metastasis. In addition, miR-647 was also reduced in GC cell lines. Furthermore, overexpression of miR-647 in the GC cell lines inhibited cell proliferation, promoted cell cycle arrest at the G0/G1 phase and induced cell apoptosis. miR-647 also significantly inhibited tumor growth in vivo. Notably, we found that miR-647 overexpression suppressed the migration and invasion of the cancer cells, particularly liver metastasis in nude mice. miR-647 also reduced the expression levels of genes associated with proliferation and metastasis in tumors, including ANK2, FAK, MMP2, MMP12, CD44 and SNAIL1. Overall, our findings demonstrated that miR-647 exerts powerful antitumorigenic effects in vitro and in vivo, and may represent a promising therapeutic agent against GC.
Collapse
Affiliation(s)
- Wenlong Cao
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Weiyuan Wei
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zexu Zhan
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Dongyi Xie
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yubo Xie
- Department of Anaesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Qiang Xiao
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
8
|
Sarode SC, Sarode GS, Choudhary S, Patil S. FAK is overexpressed in keratocystic odontogenic tumor: a preliminary study. J Oral Pathol Med 2017; 46:611-617. [DOI: 10.1111/jop.12532] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Sachin C Sarode
- Department of Oral Pathology and Microbiology; Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth; Pune India
| | - Gargi S Sarode
- Department of Oral Pathology and Microbiology; Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth; Pune India
| | - Shakira Choudhary
- Department of Oral Pathology and Microbiology; Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth; Pune India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences; Division of Oral Pathology; College of Dentistry; Jazan University; Jazan Saudi Arabia
| |
Collapse
|
9
|
Panera N, Crudele A, Romito I, Gnani D, Alisi A. Focal Adhesion Kinase: Insight into Molecular Roles and Functions in Hepatocellular Carcinoma. Int J Mol Sci 2017; 18:ijms18010099. [PMID: 28067792 PMCID: PMC5297733 DOI: 10.3390/ijms18010099] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/23/2016] [Accepted: 12/30/2016] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Due to the high incidence of post-operative recurrence after current treatments, the identification of new and more effective drugs is required. In previous years, new targetable genes/pathways involved in HCC pathogenesis have been discovered through the help of high-throughput sequencing technologies. Mutations in TP53 and β-catenin genes are the most frequent aberrations in HCC. However, approaches able to reverse the effect of these mutations might be unpredictable. In fact, if the reactivation of proteins, such as p53 in tumours, holds great promise as anticancer therapy, there are studies arguing that chronic activation of these types of molecules may be deleterious. Thus, recently the efforts on potential targets have focused on actionable mutations, such as those occurring in the gene encoding for focal adhesion kinase (FAK). This tyrosine kinase, localized to cellular focal contacts, is over-expressed in a variety of human tumours, including HCC. Moreover, several lines of evidence demonstrated that FAK depletion or inhibition impair in vitro and in vivo HCC growth and metastasis. Here, we provide an overview of FAK expression and activity in the context of tumour biology, discussing the current evidence of its connection with HCC development and progression.
Collapse
Affiliation(s)
- Nadia Panera
- Liver Research Unit, Bambino Gesù Children's Hospital, IRCCS, Via S. Paolo, 15, 00146 Rome, Italy.
| | - Annalisa Crudele
- Liver Research Unit, Bambino Gesù Children's Hospital, IRCCS, Via S. Paolo, 15, 00146 Rome, Italy.
| | - Ilaria Romito
- Liver Research Unit, Bambino Gesù Children's Hospital, IRCCS, Via S. Paolo, 15, 00146 Rome, Italy.
| | - Daniela Gnani
- Liver Research Unit, Bambino Gesù Children's Hospital, IRCCS, Via S. Paolo, 15, 00146 Rome, Italy.
| | - Anna Alisi
- Liver Research Unit, Bambino Gesù Children's Hospital, IRCCS, Via S. Paolo, 15, 00146 Rome, Italy.
| |
Collapse
|
10
|
Cucurbitacin B inhibits breast cancer metastasis and angiogenesis through VEGF-mediated suppression of FAK/MMP-9 signaling axis. Int J Biochem Cell Biol 2016; 77:41-56. [DOI: 10.1016/j.biocel.2016.05.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/28/2016] [Accepted: 05/17/2016] [Indexed: 12/19/2022]
|
11
|
ZENG CHUNYAN, ZHAN YISHAN, HUANG JUN, CHEN YOUXIANG. MicroRNA-7 suppresses human colon cancer invasion and proliferation by targeting the expression of focal adhesion kinase. Mol Med Rep 2015; 13:1297-303. [DOI: 10.3892/mmr.2015.4643] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 08/19/2015] [Indexed: 11/06/2022] Open
|
12
|
Moazzam M, Ye L, Sun PH, Kynaston H, Jiang WG. Knockdown of WAVE3 impairs HGF induced migration and invasion of prostate cancer cells. Cancer Cell Int 2015; 15:51. [PMID: 26052252 PMCID: PMC4458333 DOI: 10.1186/s12935-015-0203-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 05/02/2015] [Indexed: 12/20/2022] Open
Abstract
Background The WASP (Wiskott-Aldrich syndrome protein) and WAVE (WASP Verpolin homologous) family of proteins are structurally related and responsible for regulation of actin polymerization through their interaction with actin related proteins 2&3 (ARP 2/3). WAVE-3 has exhibited an association with disease progression and poorer prognosis of certain malignancies. In the current study, we determined the role of WAVE-3 in hepatocyte growth factor induced cellular changes including cell matrix interaction, invasion and cellular motility, and pathways that may be responsible for the changes in prostate cancer cells. Methods We used hammer head ribozymes to knock down the expression of WAVE-3 in PC-3 prostate cancer cell line. In vitro cellular functional assays including growth, invasion, adhesion, motility and invasion, were performed to assess the effects of WAVE-3 knock down. Further experimentation was performed to investigate the role of different pathway through expression and phosphorylation status of various intermediate proteins. Results WAVE-3 knockdown reduced invasive potential and motility of prostate cancer cells. Following addition of HGF, control cells showed significantly increased invasion and motility (p value <0.5) and marked increase in cellular growth. However, WAVE-3 knockdown cell line failed to show any increase in these trends (p value <0.5) except increased growth compared with control cells. Further experiments revealed that HGF-induced activation of Paxillin was weakened by the knockdown of WAVE-3. Our study also indicated that reduced invasiveness following WAVE-3 knockdown, may be related to reduce activity of MMP-2. Conclusions Our studies suggest a vital role of WAVE-3 in HGF induced invasion and migration in which Paxillin and MMP-2 are involved. Further study will shed light on its potential as therapeutic target to suppress local invasion and metastasis of prostate cancer cells. Electronic supplementary material The online version of this article (doi:10.1186/s12935-015-0203-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Muhammad Moazzam
- Metastasis & Angiogenesis Research Group, Department of Surgery, Institute of Cancer and Genetics, Cardiff, UK
| | - Lin Ye
- Metastasis & Angiogenesis Research Group, Department of Surgery, Institute of Cancer and Genetics, Cardiff, UK ; Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, CF14 4XN UK
| | - Ping-Hui Sun
- Metastasis & Angiogenesis Research Group, Department of Surgery, Institute of Cancer and Genetics, Cardiff, UK ; Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, CF14 4XN UK
| | - Howard Kynaston
- Metastasis & Angiogenesis Research Group, Department of Surgery, Institute of Cancer and Genetics, Cardiff, UK
| | - Wen G Jiang
- Metastasis & Angiogenesis Research Group, Department of Surgery, Institute of Cancer and Genetics, Cardiff, UK ; Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, CF14 4XN UK
| |
Collapse
|
13
|
Gong WG, Lin JL, Niu QX, Wang HM, Zhou YC, Chen SY, Liang GW. Paeoniflorin diminishes ConA-induced IL-8 production in primary human hepatic sinusoidal endothelial cells in the involvement of ERK1/2 and Akt phosphorylation. Int J Biochem Cell Biol 2015; 62:93-100. [PMID: 25748730 DOI: 10.1016/j.biocel.2015.02.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 02/17/2015] [Accepted: 02/25/2015] [Indexed: 02/05/2023]
Abstract
Liver diseases are closely associated with elevated levels of interleukin-8 (IL-8), suggesting the ability to inhibit IL-8 production could enhance the treatment of liver diseases. Paeoniflorin is a major active constituent of dried Paeoniae Radix Alba root (Baishao in Chinese) which is widely used in China to treat liver diseases. We examined the effects and underlying mechanisms of paeoniflorin on IL-8 production in primary human hepatic sinusoidal endothelial cells (HHSECs). Concanavalin A (ConA) at 20 μg/mL produced a 5.2-fold increase in IL-8 mRNA by 8h, and a 14.2-fold rise in IL-8 levels by 16 h. Inhibition of MEK (ERK kinase) and extracellular signal-regulated kinase (ERK) by PD98059 and U0126, or inhibition of phosphatidylinositol 3-kinase (PI3K) by LY294002 blocked both ConA-induced IL-8 mRNA expression and IL-8 secretion. Paeoniflorin reduced ConA-induced IL-8 mRNA expression and IL-8 release by 57.9% and 52.8%, respectively, and also decreased ConA-stimulated phosphorylation of ERK1/2 and Akt, suggesting paeoniflorin inhibits IL-8 expression and release by inhibiting the ERK1/2 and Akt pathways. Combining paeoniflorin with U0126 or LY294002 at low doses showed supra-additive inhibition of not only phospho-ERK1/2 and phospho-Akt by 46.4% and 35.0%, but also IL-8 release by 42.4% and 36.1% and IL-8 mRNA expression by 43.5% and 31.8%, respectively. In conclusion, paeoniflorin most likely contributes to the therapy for liver disease by exerting anti-inflammatory effects on HHSECs through blocking IL-8 secretion via downregulation of ERK1/2 and Akt phosphorylation.
Collapse
Affiliation(s)
- Wen-Guang Gong
- Institute of Inflammation and Immune Diseases, Department of Pathophysiology, Key Immunopharmacology Laboratory of Guangdong Province, Shantou University Medical College, Guangdong, PR China
| | - Jue-Long Lin
- Center Laboratory, Shantou University Medical College, Guangdong, PR China
| | - Qing-Xia Niu
- Institute of Inflammation and Immune Diseases, Department of Pathophysiology, Key Immunopharmacology Laboratory of Guangdong Province, Shantou University Medical College, Guangdong, PR China.
| | - Hong-Mei Wang
- Institute of Inflammation and Immune Diseases, Department of Pathophysiology, Key Immunopharmacology Laboratory of Guangdong Province, Shantou University Medical College, Guangdong, PR China
| | - Yan-Chun Zhou
- Institute of Inflammation and Immune Diseases, Department of Pathophysiology, Key Immunopharmacology Laboratory of Guangdong Province, Shantou University Medical College, Guangdong, PR China
| | - Shao-Ying Chen
- Institute of Inflammation and Immune Diseases, Department of Pathophysiology, Key Immunopharmacology Laboratory of Guangdong Province, Shantou University Medical College, Guangdong, PR China
| | - Guo-Wu Liang
- Institute of Inflammation and Immune Diseases, Department of Pathophysiology, Key Immunopharmacology Laboratory of Guangdong Province, Shantou University Medical College, Guangdong, PR China
| |
Collapse
|
14
|
Nifuroxazide induces apoptosis and impairs pulmonary metastasis in breast cancer model. Cell Death Dis 2015; 6:e1701. [PMID: 25811798 PMCID: PMC4385941 DOI: 10.1038/cddis.2015.63] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 02/01/2015] [Accepted: 02/09/2015] [Indexed: 02/05/2023]
Abstract
Breast carcinoma is the most common female cancer with considerable metastatic potential. Signal transducers and activators of the transcription 3 (Stat3) signaling pathway is constitutively activated in many cancers including breast cancer and has been validated as a novel potential anticancer target. Here, we reported our finding with nifuroxazide, an antidiarrheal agent identified as a potent inhibitor of Stat3. The potency of nifuroxazide on breast cancer was assessed in vitro and in vivo. In this investigation, we found that nifuroxazide decreased the viability of three breast cancer cell lines and induced apoptosis of cancer cells in a dose-dependent manner. In addition, western blot analysis demonstrated that the occurrence of its apoptosis was associated with activation of cleaved caspases-3 and Bax, downregulation of Bcl-2. Moreover, nifuroxazide markedly blocked cancer cell migration and invasion, and the reduction of phosphorylated-Stat3Tyr705, matrix metalloproteinase (MMP) MMP-2 and MMP-9 expression were also observed. Furthermore, in our animal experiments, intraperitoneal administration of 50 mg/kg/day nifuroxazide suppressed 4T1 tumor growth and blocked formation of pulmonary metastases without detectable toxicity. Meanwhile, histological and immunohistochemical analyses revealed a decrease in Ki-67-positive cells, MMP-9-positive cells and an increase in cleaved caspase-3-positive cells upon nifuroxazide. Notably, nifuroxazide reduced the number of myeloid-derived suppressor cell in the lung. Our data indicated that nifuroxazide may potentially be a therapeutic agent for growth and metastasis of breast cancer.
Collapse
|
15
|
Chatterjee A, Sen T, Ganguly K, Biswas J. Focal adhesion kinase induces matrix metalloproteinase-2 by involving α5β1-mediated signaling in breast cancer cell, MCF-7. ACTA MEDICA INTERNATIONAL 2015. [DOI: 10.5530/ami.2015.1.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
16
|
Extracellular matrix protein laminin induces matrix metalloproteinase-9 in human breast cancer cell line mcf-7. CANCER MICROENVIRONMENT 2014; 7:71-8. [PMID: 24858419 DOI: 10.1007/s12307-014-0146-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 04/14/2014] [Indexed: 12/14/2022]
Abstract
Studies on interaction of tumor cells with extracellular matrix (ECM) components showed increased extracellular protease activity mediated by the family of matrix metalloproteinases (MMPs). Here we studied the effect of human breast cancer cell line MCF-7-laminin (LM) interaction on MMPs and the underlying signaling pathways. Culturing of MCF-7 cells on LM coated surface upregulated MMP-9 expression as well as reduced tissue inhibitor of metalloproteinases-1 (TIMP-1) expression. LM induced MMP-9 expression is abrogated by the blockade of α2 integrin. Inhibitor studies indicate possible involvement of phosphatidyl-inositol-3-kinase (PI3K), extracellular signal regulated kinase (ERK) and nuclear factor-kappaB (NF-κB) in LM induced signaling. LM treatment also enhanced phosphorylation of FAK (focal adhesion kinase), PI3K, ERK; nuclear translocation of ERK, pERK, NF-κB and cell migration. Our findings indicate that, binding of MCF-7 cells to LM, possibly via α2β1 integrin, induces signaling involving FAK, PI3K, ERK, NF-κB followed by upregulation of MMP-9 and cell migration.
Collapse
|
17
|
Chen X, Wang X, Ruan A, Han W, Zhao Y, Lu X, Xiao P, Shi H, Wang R, Chen L, Chen S, Du Q, Yang H, Zhang X. miR-141 is a key regulator of renal cell carcinoma proliferation and metastasis by controlling EphA2 expression. Clin Cancer Res 2014; 20:2617-30. [PMID: 24647573 DOI: 10.1158/1078-0432.ccr-13-3224] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Although microRNAs (miRNA) have been revealed as crucial modulators of tumorigenesis, our understanding of their roles in renal cell carcinoma (RCC) is limited. Here we sought to identify human miRNAs that act as key regulators of renal carcinogenesis. EXPERIMENTAL DESIGN We performed microarray-based miRNA profiling of clear cell RCC (ccRCC) and adjacent normal tissues and then explored the roles of miR-141 both in vitro and in vivo, which was the most significantly downregulated in ccRCC tissues. RESULTS A total of 74 miRNAs were dysregulated in ccRCC compared with normal tissues. miR-141 was remarkably downregulated in 92.6% (63/68) ccRCC tissues and would serve as a promising biomarker for discriminating ccRCC from normal tissues with an area under the receiver operating characteristics curve of 0.93. Overexpression of miR-141 robustly impaired ccRCC cell migratory and invasive properties and suppressed cell proliferation by arresting cells at G0-G1 phase in vitro and in human RCC orthotopic xenografts. Significantly, the antitumor activities of miR-141 were mediated by its reversal regulation of erythropoietin-producing hepatocellular (Eph) A2 (EphA2), which then relayed a signaling transduction cascade to attenuate the functions of focal adhesion kinase (FAK), AKT, and MMP2/9. In addition, a specific and inverse correlation between miR-141 and EphA2 expression was obtained in human ccRCC samples. Finally, miR-141 could be secreted from the ccRCC donor cells, and be taken up and function moderately in the ccRCC recipient cells. CONCLUSION miR-141 serves as a potential biomarker for discriminating ccRCC from normal tissues and a crucial suppressor of ccRCC cell proliferation and metastasis by modulating the EphA2/p-FAK/p-AKT/MMPs signaling cascade.
Collapse
Affiliation(s)
- Xuanyu Chen
- Authors' Affiliations: Department of Urology, Union Hospital; Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Cancer Biology Program, Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and Department of Neurology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Xuegang Wang
- Authors' Affiliations: Department of Urology, Union Hospital; Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Cancer Biology Program, Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and Department of Neurology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Anming Ruan
- Authors' Affiliations: Department of Urology, Union Hospital; Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Cancer Biology Program, Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and Department of Neurology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Weiwei Han
- Authors' Affiliations: Department of Urology, Union Hospital; Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Cancer Biology Program, Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and Department of Neurology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Yan Zhao
- Authors' Affiliations: Department of Urology, Union Hospital; Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Cancer Biology Program, Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and Department of Neurology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Xing Lu
- Authors' Affiliations: Department of Urology, Union Hospital; Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Cancer Biology Program, Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and Department of Neurology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Pei Xiao
- Authors' Affiliations: Department of Urology, Union Hospital; Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Cancer Biology Program, Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and Department of Neurology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Hangchuan Shi
- Authors' Affiliations: Department of Urology, Union Hospital; Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Cancer Biology Program, Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and Department of Neurology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Rong Wang
- Authors' Affiliations: Department of Urology, Union Hospital; Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Cancer Biology Program, Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and Department of Neurology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Li Chen
- Authors' Affiliations: Department of Urology, Union Hospital; Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Cancer Biology Program, Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and Department of Neurology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Shaoyong Chen
- Authors' Affiliations: Department of Urology, Union Hospital; Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Cancer Biology Program, Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and Department of Neurology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Quansheng Du
- Authors' Affiliations: Department of Urology, Union Hospital; Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Cancer Biology Program, Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and Department of Neurology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Hongmei Yang
- Authors' Affiliations: Department of Urology, Union Hospital; Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Cancer Biology Program, Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and Department of Neurology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Xiaoping Zhang
- Authors' Affiliations: Department of Urology, Union Hospital; Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Cancer Biology Program, Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and Department of Neurology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| |
Collapse
|
18
|
Yamashita O, Yoshimura K, Nagasawa A, Ueda K, Morikage N, Ikeda Y, Hamano K. Periostin links mechanical strain to inflammation in abdominal aortic aneurysm. PLoS One 2013; 8:e79753. [PMID: 24260297 PMCID: PMC3833967 DOI: 10.1371/journal.pone.0079753] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 09/30/2013] [Indexed: 12/04/2022] Open
Abstract
AIMS Abdominal aortic aneurysms (AAAs) are characterized by chronic inflammation, which contributes to the pathological remodeling of the extracellular matrix. Although mechanical stress has been suggested to promote inflammation in AAA, the molecular mechanism remains uncertain. Periostin is a matricellular protein known to respond to mechanical strain. The aim of this study was to elucidate the role of periostin in mechanotransduction in the pathogenesis of AAA. METHODS AND RESULTS We found significant increases in periostin protein levels in the walls of human AAA specimens. Tissue localization of periostin was associated with inflammatory cell infiltration and destruction of elastic fibers. We examined whether mechanical strain could stimulate periostin expression in cultured rat vascular smooth muscle cells. Cells subjected to 20% uniaxial cyclic strains showed significant increases in periostin protein expression, focal adhesion kinase (FAK) activation, and secretions of monocyte chemoattractant protein-1 (MCP-1) and the active form of matrix metalloproteinase (MMP)-2. These changes were largely abolished by a periostin-neutralizing antibody and by the FAK inhibitor, PF573228. Interestingly, inhibition of either periostin or FAK caused suppression of the other, indicating a positive feedback loop. In human AAA tissues in ex vivo culture, MCP-1 secretion was dramatically suppressed by PF573228. Moreover, in vivo, periaortic application of recombinant periostin in mice led to FAK activation and MCP-1 upregulation in the aortic walls, which resulted in marked cellular infiltration. CONCLUSION Our findings indicated that periostin plays an important role in mechanotransduction that maintains inflammation via FAK activation in AAA.
Collapse
MESH Headings
- Aged
- Animals
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Cells, Cultured
- Chemokine CCL2/genetics
- Chemokine CCL2/metabolism
- Female
- Focal Adhesion Kinase 1/genetics
- Focal Adhesion Kinase 1/metabolism
- Humans
- Inflammation/genetics
- Inflammation/metabolism
- Inflammation/pathology
- Male
- Matrix Metalloproteinase 2/genetics
- Matrix Metalloproteinase 2/metabolism
- Mice
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Rats
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Osamu Yamashita
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Koichi Yoshimura
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
- Graduate School of Health and Welfare, Yamaguchi Prefectural University, Yamaguchi, Japan
| | - Ayako Nagasawa
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Koshiro Ueda
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Noriyasu Morikage
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yasuhiro Ikeda
- Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Kimikazu Hamano
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| |
Collapse
|
19
|
Bijian K, Lougheed C, Su J, Xu B, Yu H, Wu JH, Riccio K, Alaoui-Jamali MA. Targeting focal adhesion turnover in invasive breast cancer cells by the purine derivative reversine. Br J Cancer 2013; 109:2810-8. [PMID: 24169345 PMCID: PMC3844920 DOI: 10.1038/bjc.2013.675] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/01/2013] [Accepted: 10/04/2013] [Indexed: 12/29/2022] Open
Abstract
Background: The dynamics of focal adhesion (FA) turnover is a key determinant for the regulation of cancer cell migration. Here we investigated FA turnover in a panel of breast cancer models with distinct invasive properties and evaluated the impact of reversine on this turnover in relation to cancer cell invasion in in vitro and in vivo conditions. Methods: Live imaging and immunofluorescence assays were used to investigate FA turnover in breast cancer cells. Biochemical studies were used to investigate the impact of reversine on FA signalling and turnover. In vivo activity was investigated using orthotopic breast cancer mouse models. Results: Accelerated FA disassembly from plasma membrane protrusions was observed in invasive compared with non-invasive breast cancer cells or non-immortalised mammary epithelial cells. Reversine significantly inhibited FA disassembly leading to stable FAs, which was associated with reduced cell motility and invasion. The inhibitory effect of reversine on FA turnover accounted for a large part on its capacity to interfere with FAK function on regulating its downstream targets. In orthotopic breast cancer mouse models, reversine revealed a potent inhibitory activity on tumour progression to metastasis. Conclusion: These results support the utility of targeting FA turnover as a therapeutic approach for invasive breast cancer.
Collapse
Affiliation(s)
- K Bijian
- Departments of Medicine and Oncology, Segal Cancer Centre and Lady Davis Institute of the Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Pal S, Ganguly KK, Chatterjee A. Extracellular matrix protein fibronectin induces matrix metalloproteinases in human prostate adenocarcinoma cells PC-3. ACTA ACUST UNITED AC 2013; 20:105-14. [PMID: 24047237 DOI: 10.3109/15419061.2013.833193] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Studies on interaction of tumor cells with ECM components showed increased extracellular protease activity mediated by the family of matrix metalloproteinases (MMPs). Here we studied the effect of human prostate adenocarcinoma PC-3 cells-fibronectin (FN) interaction on MMPs and the underlying signaling pathways. Culturing of PC-3 cells on FN-coated surface upregulated MMP-9 and MMP-1. This response is abrogated by the blockade of α5 integrin. siRNA and inhibitor studies indicate possible involvement of phosphatidyl-inositol-3-kinase (PI-3K), focal adhesion kinase (FAK) and nuclear factor-kappaB (NF-κB) in FN-induced upregulation of MMPs. FN treatment also enhanced phosphorylation of FAK, PI3K, protein kinase B (PKB or Akt), nuclear translocation of NF-κB, surface expression of CD-44, and cell migration. Our findings indicate that, binding of PC-3 cells to FN, possibly via α5β1 integrin, induces signaling involving FAK, PI-3K, Akt, NF-κB followed by upregulation of MMP-9 and MMP-1. CD-44 may have role in modulating MMP-9 activity.
Collapse
Affiliation(s)
- Sekhar Pal
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute , Kolkata , India
| | | | | |
Collapse
|
21
|
A novel inhibitor, 16-hydroxy-cleroda-3,13-dien-16,15-olide, blocks the autophosphorylation site of focal adhesion kinase (Y397) by molecular docking. Biochim Biophys Acta Gen Subj 2013; 1830:4091-101. [DOI: 10.1016/j.bbagen.2013.04.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/16/2013] [Accepted: 04/18/2013] [Indexed: 01/05/2023]
|
22
|
Mendoza P, Ortiz R, Díaz J, Quest AFG, Leyton L, Stupack D, Torres VA. Rab5 activation promotes focal adhesion disassembly, migration and invasiveness in tumor cells. J Cell Sci 2013; 126:3835-47. [PMID: 23813952 DOI: 10.1242/jcs.119727] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Migration and invasion are essential steps associated with tumor cell metastasis and increasing evidence points towards endosome trafficking being essential in this process. Indeed, the small GTPase Rab5, a crucial regulator of early endosome dynamics, promotes cell migration in vitro and in vivo. Precisely how Rab5 participates in these events remains to be determined. Considering that focal adhesions represent structures crucial to cell migration, we specifically asked whether Rab5 activation promoted focal adhesion disassembly and thereby facilitated migration and invasion of metastatic cancer cells. Pulldown and biosensor assays revealed that Rab5-GTP loading increased at the leading edge of migrating tumor cells. Additionally, targeting of Rab5 by different shRNA sequences, but not control shRNA, decreased Rab5-GTP levels, leading to reduced cell spreading, migration and invasiveness. Re-expression in knockdown cells of wild-type Rab5, but not the S34N mutant (GDP-bound), restored these properties. Importantly, Rab5 association with the focal adhesion proteins vinculin and paxillin increased during migration, and expression of wild-type, but not GDP-bound Rab5, accelerated focal adhesion disassembly, as well as FAK dephosphorylation on tyrosine 397. Finally, Rab5-driven invasiveness required focal adhesion disassembly, as treatment with the FAK inhibitor number 14 prevented Matrigel invasion and matrix metalloproteinase release. Taken together, these observations show that Rab5 activation is required to enhance cancer cell migration and invasion by promoting focal adhesion disassembly.
Collapse
Affiliation(s)
- Pablo Mendoza
- Department of Basic and Communitarian Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380-492, Chile
| | | | | | | | | | | | | |
Collapse
|
23
|
Rao YM, Ji M, Chen CH, Shi HR. Effect of siRNA targeting MTA1 on metastasis malignant phenotype of ovarian cancer A2780 cells. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY. MEDICAL SCIENCES = HUA ZHONG KE JI DA XUE XUE BAO. YI XUE YING DE WEN BAN = HUAZHONG KEJI DAXUE XUEBAO. YIXUE YINGDEWEN BAN 2013; 33:266-271. [PMID: 23592142 DOI: 10.1007/s11596-013-1109-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Indexed: 12/28/2022]
Abstract
Ovarian cancer is the fifth lethal gynecologic malignancy. Metastasis-associated gene 1 (MTA1) is overexpressed in many malignant tumors with high metastatic potential. This study investigated whether down-regulation of MTA1 expression by RNAi in A2780 ovarian cancer cells could affect proliferation, anoikis, migration, invasion and adhesion of the cells and to research the potential for MTA1 gene therapy of ovarian cancer. After transfection with effective Mta1 gene siRNA, the effects on proliferation, anoikis, migration, invasion and adhesion of A2780 cells were tested by MTT assay, flow cytometry, wound-healing assay, Transwell assay and adhesion assay. Expression levels of PTEN, beta 1 integrin, MMP-9, phosphor-AKT (Ser473), and total AKT activity were evaluated in control and transfected cells. The results showed that inhibition of MTA1 mediated by Mta1-siRNA transfection decreased the cell invasion, migration and adhesion, and induced the increased cell anoikis, but no significant difference was found in proliferation of A2780 cancer cells. In addition, beta 1 integrin, MMP-9, and phosphor-AKT protein levels were significantly down-regulated, while PTEN was significantly up-regulated. These results demonstrated that MTA1 played an important role in the cell metastasis in ovarian cancer. MTA1 could serve as another novel potential therapeutic target in ovarian cancer.
Collapse
Affiliation(s)
- Yu-Mei Rao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Mei Ji
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Cai-Hong Chen
- Center of Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hui-Rong Shi
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
24
|
Cucurbitacin E inhibits breast tumor metastasis by suppressing cell migration and invasion. Breast Cancer Res Treat 2012; 135:445-58. [DOI: 10.1007/s10549-012-2175-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/17/2012] [Indexed: 12/14/2022]
|
25
|
Park SJ, Jeon YJ. Dieckol from Ecklonia cava suppresses the migration and invasion of HT1080 cells by inhibiting the focal adhesion kinase pathway downstream of Rac1-ROS signaling. Mol Cells 2012; 33:141-9. [PMID: 22286230 PMCID: PMC3887716 DOI: 10.1007/s10059-012-2192-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/10/2011] [Accepted: 11/30/2011] [Indexed: 12/30/2022] Open
Abstract
We have previously isolated dieckol, a nutrient polyphenol compound, from the brown alga, Ecklonia cava (Lee et al.,2010a). Dieckol shows both antitumor and antioxidant activity and thus is of special interest for the development of chemopreventive and chemotherapeutic agents against cancer. However, the mechanism by which dieckol exerts its antitumor activity is poorly understood. Here, we show that dieckol, derived from E. cava, inhibits migration and invasion of HT1080 cells by scavenging intracellular reactive oxygen species (ROS). H2O2 or integrin signal-mediated ROS generation increases migration and invasion of HT1080 cells, which correlates with Rac1 activation and increased expression and phosphorylation of focal adhesion kinase (FAK). Rac1 activation is required for ROS generation. Depletion of FAK by siRNA suppresses Rac1-ROS-induced cell migration and invasion. Dieckol treatment attenuated intracellular ROS levels and activation of Rac1 as well as expression and phosphorylation of FAK. Dieckol treatment also decreases complex formation of FAK-Src-p130C as and expression of MMP2, 9, and 13. These results suggest that the Rac1-ROS-linked cascade enhances migration and invasion of HT1080 cells by inducing expression of MMPs through activation of the FAK signaling pathway, whereas dieckol downregulates FAK signaling through scavenging intracellular ROS. This finding provides new insights into the mechanisms by which dieckol is able to suppress human cancer progresssion and metastasis. Therefore, we suggest that dieckol is a potential therapeutic agent for cancer treatment.
Collapse
Affiliation(s)
- Sun Joo Park
- Department of Chemistry, Pukyong National University, Busan 608-737, Korea.
| | | |
Collapse
|
26
|
Dutta A, Sen T, Chatterjee A. All-trans retinoic acid (ATRA) downregulates MMP-9 by modulating its regulatory molecules. Cell Adh Migr 2011; 4:409-18. [PMID: 20421725 DOI: 10.4161/cam.4.3.11682] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
UNLABELLED The vitamin A derivative all-trans retinoic acid (ATRA) is considered as a potent chemotherapeutic drug for its capability of regulating cell growth and differentiation. We aimed to study the effect of ATRA on MMP-9 in MDA-MB-231, human breast cancer cells and the probable molecular mechanisms through which ATRA exerts its effect. RESULTS Our experimental findings demonstrate that ATRA enters into the nucleus and regulates various signaling pathways viz. Integrin, FAK, ERK, PI-3K, NF-κB and also EGFR and down regulates pro-MMP-9 activity as well as its expression. As a result MDA-MB-231 cell migration on fibronectin medium gets retarded in presence of ATRA. ATRA up regulates TIMP-1 expression. Our study may help to understand the role of ATRA as a regulator of MMP-9 and the possible signaling pathways which are involved in this ATRA mediated down regulation of MMP-9.
Collapse
Affiliation(s)
- Anindita Dutta
- Department of Receptor Biology & Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| | | | | |
Collapse
|
27
|
Chen Y, Löhr M, Jesnowski R. Inhibition of ankyrin-B expression reduces growth and invasion of human pancreatic ductal adenocarcinoma. Pancreatology 2010; 10:586-96. [PMID: 21042036 DOI: 10.1159/000308821] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 03/13/2010] [Indexed: 12/11/2022]
Abstract
BACKGROUND In spite of the increasing knowledge of the molecular pathology of pancreatic ductal adenocarcinoma (PDAC), treatment of this tumor still remains an unresolved problem. Thus, the identification of 'novel' genes involved in pancreatic tumor progression is essential for early diagnosis and new treatment regimens of PDAC. Ankyrin-B (ANK2) was identified as being overexpressed in PDAC in a previous study by our group. ANK2 overexpression has been described in several tumors; however, the function of ANK2 in pancreatic carcinoma has not been elucidated. MATERIALS AND METHODS In the present study, we confirmed ANK2 overexpression in PDAC and analyzed the effects of ANK2 knockdown in the pancreatic tumor cell line PANC-1. RESULTS ANK2 silencing reduced the activity of FAK, ERK1/2 and p38. Decreased ANK2 expression restrained migration and invasive potential of PANC-1 cells. Moreover, silencing of ANK2 decreased the proliferation of the pancreatic tumor cells and reduced their tumorigenicity in vitro and in vivo. CONCLUSION Our results demonstrate that silencing of ANK2 expression reduced the malignant phenotype of pancreatic cancer cells, indicating that ANK2 represents a potential target for therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Ying Chen
- Clinical Cooperation Unit Molecular Gastroenterology (G350), DKFZ, Heidelberg, Germany
| | | | | |
Collapse
|
28
|
Nobiletin, a citrus flavonoid, suppresses invasion and migration involving FAK/PI3K/Akt and small GTPase signals in human gastric adenocarcinoma AGS cells. Mol Cell Biochem 2010; 347:103-15. [PMID: 20963626 DOI: 10.1007/s11010-010-0618-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Accepted: 10/06/2010] [Indexed: 12/13/2022]
Abstract
Nobiletin, a compound isolated from citrus fruits, is a polymethoxylated flavone derivative shown to have anti-inflammatory, antitumor, and neuroprotective properties. This study has investigated that nobiletin exerted inhibitory effects on the cell adhesion, invasion, and migration abilities of a highly metastatic AGS cells under non-cytotoxic concentrations. Data also showed nobiletin could inhibit the activation of focal adhesion kinase (FAK) and phosphoinositide-3-kinase/Akt (PI3K/Akt) involved in the downregulation of the enzyme activities, protein expressions, messenger RNA levels of matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-2 (MMP-9). Also, our data revealed that nobiletin inhibited FAK/PI3K/Akt with concurrent reduction in the protein expressions of Ras, c-Raf, Rac-1, Cdc42, and RhoA by western blotting, whereas the protein level of RhoB increased progressively. Otherwise, nobiletin-treated AGS cells showed tremendously decreased in the phosphorylation and degradation of inhibitor of kappaBα (IκBα), the nuclear level of NF-κB, and the binding ability of NF-κB to NF-κB response element. Furthermore, nobiletin significantly decreased the levels of phospho-Akt and MMP-2/9 in Akt1-cDNA-transfected cells concomitantly with a marked reduction in cell invasion and migration. These results suggest that nobiletin can reduce invasion and migration of AGS cells, and such a characteristic may be of great value in the development of a potential cancer therapy.
Collapse
|
29
|
Ding L, Sun X, You Y, Liu N, Fu Z. Expression of focal adhesion kinase and phosphorylated focal adhesion kinase in human gliomas is associated with unfavorable overall survival. Transl Res 2010; 156:45-52. [PMID: 20621036 DOI: 10.1016/j.trsl.2010.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 04/27/2010] [Accepted: 05/01/2010] [Indexed: 11/29/2022]
Abstract
Human glioma is a malignancy that has no effective systemic therapy. Focal adhesion kinase (FAK) is overexpressed in various invasive and metastatic tumor cells. To investigate its prognostic value in human gliomas, which currently is unknown, we examined the expression patterns of FAK and its activated form, phospho-FAK (FAK pY397), and analyzed the correlation between their expression and prognosis in patients with gliomas. Immunohistochemical staining was performed to detect FAK and phospho-FAK expression patterns in the biopsies from 96 patients with primary gliomas. Kaplan-Meier survival and Cox regression analyses were performed to evaluate the prognosis of patients. As a result, the immunohistochemical analysis revealed that FAK and phospho-FAK both were associated significantly with the Karnofsky performance scale (KPS) score and World Health Organization (WHO) grades of patients with gliomas. Especially, the positive expression rates of FAK and phospho-FAK were significantly higher in patients with a higher grade (P = 0.01 and 0.02, respectively) and a lower KPS score (P = 0.006 and 0.008, respectively). The patients with FAK positive expression correlated with a poor prognosis of human gliomas (P = 0.006) as well as phospho-FAK (P = 0.01). The survival rate of the patients with FAK+/phospho-FAK+ expression was the lowest (P < 0.05), and conjoined expressions of FAK/phospho-FAK were an independent prognostic indicator of human gliomas (P < 0.05). In conclusion, the results suggest that the elevated expression of FAK and phospho-FAK is an important feature of human glioma. A combined detection of FAK/phospho-FAK coexpression may benefit us in the prediction of the prognosis of human glioma.
Collapse
Affiliation(s)
- Lianshu Ding
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | | | | | | | | |
Collapse
|
30
|
FAK is involved in invasion and metastasis of hepatocellular carcinoma. Clin Exp Metastasis 2010; 27:71-82. [PMID: 20180147 DOI: 10.1007/s10585-010-9306-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 01/22/2010] [Indexed: 10/19/2022]
Abstract
Studies have shown that focal adhesion kinase (FAK) is overexpressed in several human tumors and plays an important role in tumor progression. However, the role and underlying mechanisms of FAK in hepatocellular carcinoma (HCC) progression remains to be elucidated. In this study, we examined FAK and phosphorylated FAK Tyr397 expression in a large series of HCCs. We found that both FAK and phosphorylated FAK Tyr397 were overexpressed in HCC samples and HCC cell lines. Increased FAK and phosphorylated FAK Tyr397 expressions were correlated with tumor stage, vascular invasion and intrahepatic metastasis in HCC. Furthermore, HCC cell adhesion, migration and invasion were substantially impaired by siRNA-mediated knockdown of FAK expression, whereas cell growth, apoptosis and cell cycle distribution were not affected. In addition, depletion of FAK induced a significant reduction in expressions and activities of both MMP-2 and MMP-9. Taken together, FAK contributes to invasion and metastasis of HCC partly through regulating expressions and activations of both MMP-2 and MMP-9, suggesting FAK could be a promising therapeutic target for HCC.
Collapse
|
31
|
Studies on Multifunctional Effect of All-Trans Retinoic Acid (ATRA) on Matrix Metalloproteinase-2 (MMP-2) and Its Regulatory Molecules in Human Breast Cancer Cells (MCF-7). JOURNAL OF ONCOLOGY 2009; 2009:627840. [PMID: 19636436 PMCID: PMC2712868 DOI: 10.1155/2009/627840] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 02/28/2009] [Accepted: 05/01/2009] [Indexed: 11/17/2022]
Abstract
Background. Vitamin A derivative all-trans retinoic acid (ATRA) is considered as a potent chemotherapeutic drug for its capability of regulating cell growth and differentiation. We studied the effect of ATRA on MMP-2 in MCF-7, human breast cancer cells, and the probable signaling pathways which are affected by ATRA on regulating pro-MMP-2 activity and expression. Methods. Gelatin zymography, RT-PCR, ELISA, Western blot, Immunoprecipitation, and Cell adhesion assay are used. Results. Gelatin zymography showed that ATRA caused a dose-dependent inhibition of pro-MMP-2 activity. ATRA treatment downregulates the expression of MT1-MMP, EMMPRIN, FAK, NF-kB, and p-ERK. However, expression of E-cadherin, RAR, and CRABP increased upon ATRA treatment. Binding of cells to extra cellular matrix (ECM) protein fibronectin reduced significantly after ATRA treatment. Conclusions. The experimental findings clearly showed the inhibition of MMP-2 activity upon ATRA treatment. This inhibitory effect of ATRA on MMP-2 activity in human breast cancer cells (MCF-7) may result due to its inhibitory effect on MT1-MMP, EMMPRIN, and upregulation of TIMP-2. This study is focused on the effect of ATRA on MMP, MMP-integrin-E-cadherin interrelationship, and also the effect of the drug on different signaling molecules which may involve in the progression of malignant tumor development.
Collapse
|
32
|
Inflammation and tumor progression: a lesson from TNF-alpha-dependent FAK signaling in cholangiocarcinoma. Methods Mol Biol 2009; 512:279-93. [PMID: 19347283 DOI: 10.1007/978-1-60327-530-9_15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Focal Adhesion Kinase (FAK) is implicated in a wide array of cellular processes and also involved in the production of matrix metalloproteinases (MMPs) which degrade extracellular matrix (ECM). We have shown that FAK plays a critical role in MMP-9 production and subsequent invasion of the cholangiocarcinoma activated by an inflammatory cytokine, TNF-alpha. By nature, cholangiocarcinoma is frequently associated with hepatolithiasis that causes recurrent inflammation. As degradation of the ECM is a prerequisite step for the invasion and metastasis of cancer cells, we used an assay of gelatin-degrading MMPs by Zymography to clarify the characteristic feature of the matrix degrading systems of the cancer cells. Immunoprecipitation and western blot analysis together with site specific phosphorylated FAK antibodies showed aberrant FAK activity in inflammation-mediated tumor cells. Confocal immunofluorescence staining could confirm not only localization but also phosphotyrosine contents of phosphorylated FAK by TNF-alpha stimulation. Destruction or penetration of the basement membrane is thought to be an essential step in successful metastasis by tumor cells, we used a matrix of basement membrane which was reconstituted on to a filter in the Boyden Chamber and assayed the ability of cancer cells to penetrate through matrigel-coated filter. We demonstrated the effectiveness of FAK siRNA treatment to prevent tumor invasion. Our observations suggested the importance of FAK as a therapeutic target for malignant neoplasm.
Collapse
|
33
|
Wykosky J, Debinski W. The EphA2 receptor and ephrinA1 ligand in solid tumors: function and therapeutic targeting. Mol Cancer Res 2009; 6:1795-806. [PMID: 19074825 DOI: 10.1158/1541-7786.mcr-08-0244] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Eph receptor tyrosine kinases and ephrin ligands have been studied extensively for their roles in developmental processes. In recent years, Eph receptors and ephrins have been found to be integral players in cancer formation and progression. Among these are EphA2 and ephrinA1, which are involved in the development and maintenance of many different types of solid tumors. The function of EphA2 and ephrinA1 in tumorigenesis and tumor progression is complex and seems to be dependent on cell type and microenvironment. These variables affect the expression of the EphA2 and ephrinA1 proteins, the pathways through which they induce signaling, and the functional consequences of that signaling on the behavior of tumor cells and tumor-associated cells. This review will specifically focus on the roles that EphA2 and ephrinA1 play in the different cell types that contribute to the malignancy of solid tumors, with emphasis on the opportunities for therapeutic targeting.
Collapse
Affiliation(s)
- Jill Wykosky
- Department of Neurosurgery, Brain Tumor Center of Excellence, Comprehensive Cancer Center of Wake Forest University, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | |
Collapse
|
34
|
Zhu J, Wang YS, Zhang J, Zhao W, Yang XM, Li X, Jiang TS, Yao LB. Focal adhesion kinase signaling pathway participates in the formation of choroidal neovascularization and regulates the proliferation and migration of choroidal microvascular endothelial cells by acting through HIF-1 and VEGF expression in RPE cells. Exp Eye Res 2008; 88:910-8. [PMID: 19111720 DOI: 10.1016/j.exer.2008.11.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 11/14/2008] [Accepted: 11/25/2008] [Indexed: 12/27/2022]
Abstract
Choroidal neovascularization (CNV) is one of the most frequent causes of severe and progressive vision loss, while its pathogenesis is still poorly understood. Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, plays a crucial role in linking signals initiated by both the extracellular matrix (ECM) and soluble signaling factors and controls essential cellular processes. Extensive evidence has shown that FAK is activated in angiogenic response. This study aims to investigate the effect of FAK on CNV formation. The Brown-Norway (BN) rats underwent laser rupture of Bruch's membrane to induce CNV and were then killed at 1, 3, 7, and 14 days following laser injury. Immunofluorescence and Western blot were processed to detect FAK protein. Retinal pigment epithelial (RPE) cells were cultured under hypoxia and RNA interference (RNAi) technique was used to knock down the FAK gene in RPE cells. Expression of hypoxia inducible factor-1 (HIF-1alpha) and vascular endothelial growth factor (VEGF) in RPE cells were investigated by RT-PCR and Western blot. Two kinds of coculture models were used to observe the effects of specific blockade of FAK in RPE cells on the proliferation and migration of choroidal microvascular endothelial cells (CECs), respectively. FAK was highly expressed in the rat RPE-choroid tissue after photocoagulation. In vitro experiment showed that FAK was involved in hypoxia signaling in cultured RPE cells. The absence of FAK effectively reduced the expression of hypoxia-induced HIF-1alpha and VEGF in RPE cells, resulting in the inhibition of proliferation and migration of CECs. Our results suggest that FAK pathway activation plays a role in the development of CNV, and regulates the proliferation and migration of CECs by acting through HIF-1 and then up-regulating the expression of the angiogenic factor VEGF in RPE cells. It is reasonable to propose that FAK siRNA will potentially provides a means to attenuate the strong stimuli for neovascularization in CNV-dependent disorders, which could present a therapeutically relevant strategy for the inhibition of CNV.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Shaanxi Province, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Wu H, Wang S, Weng D, Xing H, Song X, Zhu T, Xia X, Weng Y, Xu G, Meng L, Zhou J, Ma D. Reversal of the malignant phenotype of ovarian cancer A2780 cells through transfection with wild-type PTEN gene. Cancer Lett 2008; 271:205-14. [PMID: 18662848 DOI: 10.1016/j.canlet.2008.06.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 04/18/2008] [Accepted: 06/02/2008] [Indexed: 12/22/2022]
Abstract
OBJECTIVE PTEN (phosphatase and tensin homologue deleted on chromosome 10) is a tumor suppressor gene identified on human chromosome 10q23. Substantial studies have demonstrated that PTEN can inhibit cell proliferation, migration and invasion of many cancer cells. The purpose of this study was to determine whether upregulation of PTEN gene by transfection wild-type PTEN gene to ovarian cancer cells can inhibit growth and migration and to explore the potential for PTEN gene therapy of ovarian cancers. METHOD Wild-type and phosphatase-inactive (C124A) PTEN plasmids were transfected into ovarian epithelial cancer A2780 cells, and their effects on cell apoptosis, cell proliferation, cell migration and cell invasion were analyzed by flow cytometry analysis, TUNEL assay, MTT assay, wound-healing assay and transwell assay. RESULTS Both wild-type and mutant PTEN can upregulate the expression of PTEN gene dramatically; however, it is wild-type PTEN not phosphatase-inactive PTEN that can induce apoptosis and decrease cell migration, invasion and proliferation in ovarian cancer cells. CONCLUSION These results demonstrated that PTEN had played an important role in the cell proliferation, cell migration and invasion dependent on its phosphatase activity. Enhanced expression of PTEN by gene transfer is sufficient to reverse the malignant phenotype of ovarian cancer cells and transfection of ovarian cancer cells with wild-type PTEN gene might be another novel approach for therapeutic intervention in ovarian cancer.
Collapse
Affiliation(s)
- Huijuan Wu
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Canel M, Secades P, Garzón-Arango M, Allonca E, Suarez C, Serrels A, Frame M, Brunton V, Chiara MD. Involvement of focal adhesion kinase in cellular invasion of head and neck squamous cell carcinomas via regulation of MMP-2 expression. Br J Cancer 2008; 98:1274-84. [PMID: 18349846 PMCID: PMC2359633 DOI: 10.1038/sj.bjc.6604286] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Focal adhesion kinase (FAK) is considered intimately involved in cancer progression. Our previous research has demonstrated that overexpression of FAK is an early and frequent event in squamous cell carcinomas of the supraglottic larynx, and it is associated with the presence of metastases in cervical lymph nodes. The purpose of this study was to examine the functional role of FAK in the progression of head and neck squamous cell carcinomas (HNSCC). To this end, expression of FAK-related nonkinase (FRNK) or small interfering RNA (siRNA) against FAK was used to disrupt the FAK-induced signal transduction pathways in the HNSCC-derived SCC40 and SCC38 cell lines. Similar phenotypic effects were observed with the two methodological approaches in both cell lines. Decreased cell attachment, motility and invasion were induced by FRNK and FAK siRNA, whereas cell proliferation was not impaired. In addition, increased cell invasion was observed upon FAK overexpression in SCC cells. FRNK expression resulted in a downregulation of MMP-2 and MMP-9 expression. Interestingly, MMP-2 overexpression in FRNK-expressing cells rescued FRNK inhibition of cell invasion. This is the first demonstration of a direct rescue of impaired cell invasion by the re-expression of MMP-2 in a tumour cell type with decreased expression of functional FAK. Collectively, these data reported here support the conclusion that FAK enhances invasion of HNSCC by promoting both increased cell motility and MMP-2 production, thus providing new insights into possible therapeutic intervention strategies.
Collapse
Affiliation(s)
- M Canel
- Servicio de Otorrinolaringología, Hospital Universitario Central de Asturias, Asturias, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
CNTO 95, a fully human anti alphav integrin antibody, inhibits cell signaling, migration, invasion, and spontaneous metastasis of human breast cancer cells. Clin Exp Metastasis 2007; 25:139-48. [PMID: 18064530 DOI: 10.1007/s10585-007-9132-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Accepted: 11/19/2007] [Indexed: 01/03/2023]
Abstract
CNTO 95 is a fully human monoclonal antibody that recognizes alphav integrins. Previous studies have shown that CNTO 95 exhibits both anti-tumor and anti-angiogenic activities (Trikha M et al., Int J Cancer 110:326-335, 2004). In this study we investigated the biological activities of CNTO 95 on breast tumor cells both in vitro and in vivo. In vitro treatment with CNTO 95 decreased the viability of breast tumor cells adhering to vitronectin. CNTO 95 inhibited tumor cell adhesion, migration, and invasion in vitro. CNTO 95 treatment also induced tyrosine dephosphorylation of focal adhesion kinase (FAK), and the docking protein paxillin that recruits both structural and signaling molecules to focal adhesions (Turner CE, Int J Biochem Cell Biol 30:955-959, 1998; O'Neil GM et al., Trends Cell Biol 10:111-119, 2000). These results suggest that CNTO 95 inhibits breast tumor cell growth, migration and invasion by interruption of alphav integrin mediated focal adhesions and cell motility signals. In vivo studies of CNTO 95 were conducted in an orthotopic breast tumor xenograft model. Treatment with CNTO 95 resulted in significant inhibition of both tumor growth and spontaneous metastasis of MDA-MB-231 cells to the lungs. CNTO 95 also inhibited lung metastasis in a separate experimental (tail vein injection) model of metastasis. The results presented here demonstrate the anti-tumor and anti-metastatic activities of CNTO 95 in breast cancer models and provide insight into the cellular and molecular mechanisms mediating its inhibitory effects on metastasis.
Collapse
|
38
|
Ruhul Amin ARM, Uddin Biswas MH, Senga T, Feng GS, Kannagi R, Agarwal ML, Hamaguchi M. A role for SHPS-1/SIRPalpha in Concanavalin A-dependent production of MMP-9. Genes Cells 2007; 12:1023-33. [PMID: 17825046 DOI: 10.1111/j.1365-2443.2007.01115.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
SHPS-1/SIRPalpha1 is a transmembrane glycoprotein that belongs to the immunoglobulin (Ig) super family. In the present study, we show that SHPS-1 strongly associates with Concanavalin A (Con A), a plant lectin obtained from jack beans. Further studies with SHPS-1 mutants reveal that the extracellular domain of SHPS-1 containing the Ig sequence is responsible for its association with Con A. Con A treatment induces cross-linking and multimerization of the SHPS-1 protein in the plasma membrane, accompanied by its tyrosine phosphorylation and recruitment of SHP-2. In contrast, Ricinus communis agglutinin (RCA), another lectin obtained from castor bean, does not bind or activate tyrosine phosphorylation of SHPS-1. Moreover, Con A activates Akt in a SHP-2-dependent manner. Treatment of mouse embryonic fibroblasts (MEFs) with Con A induces secretion of matrix metalloproteinase (MMP)-9, a phenomenon that is inhibited in cells expressing YF mutant of SHPS-1, a dominant negative form of Akt or in cells pre-treated with an Akt inhibitor, LY294002 or extracellular-signal regulated kinase (Erk) inhibitor, U0126. In addition, expression of the YF mutant of SHPS-1 inhibits Con A-dependent activation of Akt and Erk kinases. Taken together, our results suggest that SHPS-1 is a receptor for Con A that mediates Con A-dependent MMP-9 secretion through SHP-2-promoted activation of both Akt and Erk pathways.
Collapse
Affiliation(s)
- A R M Ruhul Amin
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Sodhi A, Kesherwani V. Signaling molecules involved in production and regulation of IL-1β by murine peritoneal macrophages in vitro on treatment with Concanavalin A. Int Immunopharmacol 2007; 7:1403-13. [PMID: 17761344 DOI: 10.1016/j.intimp.2007.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 06/29/2007] [Accepted: 07/06/2007] [Indexed: 11/21/2022]
Abstract
In the present study we report the activation of murine peritoneal macrophages in vitro on treatment with Concanavalin A (ConA). ConA (10 microg/ml) treatment of macrophages resulted in the transcription of IL-1beta gene at 16 h and maximum production of IL-1beta at 24 h. To investigate the signaling molecules involved in the production of IL-1beta different pharmacological inhibitors were used. It was observed that genestein, wortmannin, H-7, TMB-8, PD98059, SB202190, and tyrophostin (AG490) down regulated the expression of IL-1beta. These observations suggested the involvement of tyrosine kinase, PI3 kinase, protein kinase C, p42/44, p38, Ca(++) and JAK2 signaling molecules in ConA induced production of IL-1beta by macrophages. Maximum protein tyrosine kinase activity and expression of PI3K in macrophages was seen at 5 min, PKC activity and Ca(++) release was found at 10 min after ConA treatment. Maximum expression of phospho-JAK2 at 2.5-5 min, phospho-p42/44 at 5-60 min, phospho-p38 at 15-30 min, phospho-IkappaB and phospho-Stat1 at 30-60 min and phospho-ELK1, c-Fos, phospho-Stat3 at 60 min of ConA treatment was observed. Pharmacological inhibitors were also used to check the cascade of activation of tyrosine kinase, PKC, PI3 kinase, p42/44, p38, JAK kinase and release of Ca(++) from intracellular storage to sort out the signaling pathways involved in the release of IL-1beta by macrophages on treatment with ConA in vitro.
Collapse
Affiliation(s)
- Ajit Sodhi
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi-221005, India.
| | | |
Collapse
|
40
|
Amin ARMR, Paul RK, Thakur VS, Agarwal ML. A Novel Role for p73 in the Regulation of Akt-Foxo1a-Bim Signaling and Apoptosis Induced by the Plant Lectin, Concanavalin A. Cancer Res 2007; 67:5617-21. [PMID: 17575126 DOI: 10.1158/0008-5472.can-07-0655] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Virtually all human cancers encounter disruption of the "p53 network." From a therapeutic point of view, it is important to devise strategies that eliminate cancer cells, which are often defective in functional p53 and protect p53-expressing normal cells. By comparing the response of a pair of isogenic cell lines, we identify a plant-derived compound, Concanavalin A (Con A), which differentially kills p53-null cells. Further, we find that p53 family member, p73, plays a critical role that is unmasked in the absence of p53. Con A treatment leads to induction of p73 and several others that are important mediators of apoptosis and act downstream, such as p21, Bax, Foxo1a, and Bim. Inactivation of p73 reverses the expression of these proteins and apoptosis. Inhibition of Akt activation sensitizes otherwise resistant cells. These observations thus reveal a novel role for p73 in the regulation of Akt-Foxo1a-Bim signaling and apoptosis especially when p53 is absent.
Collapse
Affiliation(s)
- A R M Ruhul Amin
- Department of Genetics and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
41
|
Kesherwani V, Sodhi A. Differential activation of macrophages in vitro by lectin Concanavalin A, Phytohemagglutinin and Wheat germ agglutinin: production and regulation of nitric oxide. Nitric Oxide 2006; 16:294-305. [PMID: 17208474 DOI: 10.1016/j.niox.2006.11.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 11/15/2006] [Accepted: 11/16/2006] [Indexed: 10/23/2022]
Abstract
The role of Concanavalin A (ConA), Phytohemagglutinin (PHA) and Wheat germ agglutinin (WGA) in the activation of murine peritoneal macrophages particularly with reference to production and regulation of nitric oxide (NO) has been investigated. Macrophages on treatment with ConA and PHA showed significantly enhanced production of NO, which was dose and time dependent. On the other hand macrophages treated with WGA did not produce NO. L-N-monomethyal-l-arginine (L-NMMA), an inhibitor of NOS inhibited the ConA and PHA induced NO production. ConA and PHA treatment of macrophages induced transcription of iNOS gene and the enhanced expression of iNOS protein. Pharmacological inhibitors of PI3 kinase-Wortmannin, tyrosine kinase-Genestein, protein kinase C-H-7 and p42/44-PD98059 inhibited the ConA and PHA induced production of NO and p38 MAP kinase inhibitor SB202190 inhibited NO production only in ConA treated macrophage, while Galphai protein inhibitor-PTX and JNK inhibitor-SP600125 inhibited NO production in PHA treated macrophages. Tyrophostin (AG490), an inhibitor of JAK2 and TMB-8, an intracellular calcium immobilizing agent also inhibited the ConA and PHA induced NO production, suggesting the involvement of JAK-STAT pathway and calcium. The data also provides the relative measure and importance of different key signaling molecules in the regulation of NO production by macrophages on activation.
Collapse
Affiliation(s)
- Varun Kesherwani
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
42
|
Halder J, Kamat AA, Landen CN, Han LY, Lutgendorf SK, Lin YG, Merritt WM, Jennings NB, Chavez-Reyes A, Coleman RL, Gershenson DM, Schmandt R, Cole SW, Lopez-Berestein G, Sood AK. Focal adhesion kinase targeting using in vivo short interfering RNA delivery in neutral liposomes for ovarian carcinoma therapy. Clin Cancer Res 2006; 12:4916-24. [PMID: 16914580 PMCID: PMC3144499 DOI: 10.1158/1078-0432.ccr-06-0021] [Citation(s) in RCA: 237] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Focal adhesion kinase (FAK) plays a critical role in ovarian cancer cell survival and in various steps in the metastatic cascade. Based on encouraging in vitro results with FAK silencing, we examined the in vivo therapeutic potential of this approach using short interfering RNA (siRNA) in the neutral liposome 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC). EXPERIMENTAL DESIGN Therapy experiments of FAK siRNA with or without docetaxel were done using human ovarian cancer cell lines SKOV3ip1, HeyA8, and HeyA8MDR in nude mice. Additional experiments with a cisplatin-resistant cell line (A2780-CP20) were also done. Assessments of angiogenesis (CD31), cell proliferation (proliferating cell nuclear antigen), and apoptosis (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) were done using immunohistochemical analysis. RESULTS A single dose of FAK siRNA-DOPC was highly effective in reducing in vivo FAK expression for up to 4 days as assayed by Western blot and immunohistochemical analysis. Therapy experiments were started 1 week after injection of the ovarian cancer cells. Treatment with FAK siRNA-DOPC (150 mug/kg twice weekly) reduced mean tumor weight by 44% to 72% in the three cell lines compared with the control group (Ps < 0.05 for HeyA8, A2780-CP20, and SKOV3ip1). When FAK siRNA-DOPC was combined with docetaxel, there was even greater reduction in mean tumor weight in all models (all Ps < 0.05). Similar results were observed in combination with cisplatin. Treatment with FAK siRNA-DOPC plus docetaxel resulted in decreased microvessel density, decreased expression of vascular endothelial growth factor and matrix metalloproteinase-9, and increased apoptosis of tumor-associated endothelial cells and tumor cells. CONCLUSIONS Taken together, these findings suggest that FAK siRNA-DOPC plus docetaxel or platinum might be a novel therapeutic approach against ovarian cancer.
Collapse
Affiliation(s)
- Jyotsnabaran Halder
- Department of Gynecologic Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Aparna A. Kamat
- Department of Gynecologic Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Charles N. Landen
- Department of Gynecologic Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Liz Y. Han
- Department of Gynecologic Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | | | - Yvonne G. Lin
- Department of Gynecologic Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - William M. Merritt
- Department of Gynecologic Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Nicholas B. Jennings
- Department of Gynecologic Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Arturo Chavez-Reyes
- Department of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Robert L. Coleman
- Department of Gynecologic Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - David M. Gershenson
- Department of Gynecologic Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Rosemarie Schmandt
- Department of Gynecologic Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Steven W. Cole
- Department of Medical Hematology Oncology, University of California at Los Angeles, Los Angeles, California
| | - Gabriel Lopez-Berestein
- Department of Gynecologic Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Anil K. Sood
- Department of Gynecologic Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
- Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| |
Collapse
|
43
|
Nakajima Y, Haraguchi M, Furukawa T, Yamamoto M, Nakanishi H, Tatematsu M, Akiyama SI. 2-Deoxy-L-ribose inhibits the invasion of thymidine phosphorylase-overexpressing tumors by suppressing matrix metalloproteinase-9. Int J Cancer 2006; 119:1710-6. [PMID: 16646076 DOI: 10.1002/ijc.22014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Thymidine phosphorylase (TP), an enzyme involved in pyrimidine metabolism, is identical with an angiogenic factor, platelet-derived endothelial cell growth factor. 2-Deoxy-D-ribose (D-dRib), the degradation product of thymidine generated by TP activity, has been suggested to be a downstream mediator of TP function. 2-Deoxy-L-ribose (L-dRib), a stereoisomer of D-dRib, inhibited the promotion of angiogenesis, tumor growth and metastasis by TP. In our study, we have shown that nude mice inoculated with TP-overexpressing KB/TP cells had shorter survival times than those injected with control KB/CV cells. KB/TP tumors were also more highly invasive than KB/CV tumors in mice. The expression levels of matrix metalloproteinase (MMP)-9 in KB/TP tumors were significantly higher than those in KB/CV tumors. L-dRib and a TP inhibitior, TPI, extended the survival period of KB/TP tumor-bearing mice. L-dRib also reduced MMP-9 mRNA levels in KB/TP tumors. Furthermore, L-dRib suppressed the mRNA level of MMP-9 in cultured KB/TP cells, and the invasive activity of the cells. L-dRib may be useful for the suppression of invasion of TP-expressing tumor cells.
Collapse
Affiliation(s)
- Yuichi Nakajima
- Department of Molecular Oncology, Field of Oncology, Course of Advanced Therapeutics,Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Mon NN, Hasegawa H, Thant AA, Huang P, Tanimura Y, Senga T, Hamaguchi M. A role for focal adhesion kinase signaling in tumor necrosis factor-alpha-dependent matrix metalloproteinase-9 production in a cholangiocarcinoma cell line, CCKS1. Cancer Res 2006; 66:6778-84. [PMID: 16818654 DOI: 10.1158/0008-5472.can-05-4159] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have previously reported that tumor necrosis factor-alpha (TNF-alpha) stimulation of CCKS1, a cell line established from cholangiocarcinoma with i.p. dissemination, dramatically increased matrix metalloproteinase-9 (MMP-9) production and tumor invasion. We investigated the role of focal adhesion kinase (FAK) in TNF-alpha-dependent production of MMP-9 in CCKS1 and FAK-null mouse fibroblast cells. TNF-alpha stimulation of CCKS1 or wild-type fibroblasts substantially activated FAK phosphorylation and increased MMP-9 production. In contrast, FAK-null fibroblasts could not respond well to TNF-alpha stimulation. Conditional expression of wild-type FAK in FAK-null cells restored the TNF-alpha-dependent production of MMP-9. TNF-alpha treatment activated the kinase activity of FAK and its phosphorylation especially at Y397 and Y925. Phosphorylated FAK accumulated at focal adhesions and formed a complex with growth factor receptor binding protein 2 and SOS. In contrast, Y397F FAK and Y925F FAK, whose Y397 and Y925 were replaced with phenylalanine, respectively, as well as KD FAK, whose kinase was inactivated, could not restore the MMP-9 production. In addition, small interfering RNA against FAK drastically suppressed the TNF-alpha-dependent production of MMP-9 and inhibited the TNF-alpha-dependent invasion of CCKS1. Taken together, our results suggest the pivotal role of FAK in TNF-alpha-dependent production of MMP-9 and subsequent activation of tumor invasion.
Collapse
Affiliation(s)
- Naing Naing Mon
- Division of Cancer Biology, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, 466 Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Biswas MHU, Hasegawa HH, Rahman MA, Huang P, Mon NN, Ruhul Amin ARM, Senga T, Kannagi R, Hamaguchi M. SHP-2-Erk signaling regulates Concanavalin A-dependent production of TIMP-2. Biochem Biophys Res Commun 2006; 348:1145-9. [PMID: 16904070 DOI: 10.1016/j.bbrc.2006.07.173] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2006] [Accepted: 07/28/2006] [Indexed: 11/22/2022]
Abstract
To search for the signaling critical for the production of tissue inhibitor of metalloproteinase-2 (TIMP-2), we investigated the role of SHP-2 in TIMP-2 production with Concanavalin A (Con A)-treated cells. In wild-type fibroblasts, Con A-treatment dramatically activated TIMP-2 production. In contrast, production of TIMP-2 in response to Con A-treatment was severely impaired in cells expressing mutant SHP-2 whose 65 amino acids in the SH2-N domain were deleted. Con A-treatment activated dual signaling pathways, Erk and p38, in a SHP-2-dependent manner. Pretreatment of wild-type cells with U0126, a potent inhibitor of MEK1, significantly inhibited the production of TIMP-2, whereas SB203580, a specific inhibitor for p38, could not. Finally, expression of exogenous wild-type SHP-2 in SHP-2 mutant cells clearly rescued Erk activation and TIMP-2 production in response to Con A-treatment. Taken together, our results strongly suggest that SHP-2 plays a critical role as a positive modulator for the production of TIMP-2 via MEK1-Erk signaling in fibroblasts.
Collapse
Affiliation(s)
- Md Helal Uddin Biswas
- Department of Cancer Biology, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Zhang Q, Furukawa K, Chen HH, Sakakibara T, Urano T, Furukawa K. Metastatic Potential of Mouse Lewis Lung Cancer Cells Is Regulated via Ganglioside GM1 by Modulating the Matrix Metalloprotease-9 Localization in Lipid Rafts. J Biol Chem 2006; 281:18145-55. [PMID: 16636068 DOI: 10.1074/jbc.m512566200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
To analyze mechanisms for cancer metastasis, we established high metastatic sublines from mouse Lewis lung cancer (P29) by repeated injection. Sublines established from the two subclones H7 and C4 commonly exhibited increased proliferation and invasion activity and reduced expression of ganglioside GM1, although they showed different preferences in their target organs of metastasis. The high metastatic sublines secreted higher levels of activated matrix metalloprotease (MMP)-9 as well as pro-MMP-9 in the culture medium than the parent lines. Furthermore, they contained MMP-9 at the glycolipid-enriched microdomain (GEM)/rafts fractionated by the sucrose density gradient ultracentrifugation of Triton X-100 extracts, whereas the parent cells showed faint bands at the fraction. When high metastatic sublines were treated with methyl-beta-cyclodextrin, their invasion activities were dramatically suppressed, and the MMP-9 secretion was also suppressed. All these results indicated that GEM/rafts play crucial roles in the increased invasion and high metastatic potential. To clarify the implication of reduced GM1 expression, low GM1-expressing cell lines were established using an RNA interference-expression vector of the GM1 synthase. Low GM1-expressing cell lines showed increased proliferation and invasion, enrichment in the GEM/rafts, and increased secretion of MMP-9. Among adhesion molecules, only integrin beta1 was detected in GEM/rafts with stronger intensity in high metastatic lines and low GM1-expressing cells. Taken together, integrins seemed to be enriched in the GEM/rafts by reduced GM1 levels, and subsequently MMP-9 was recruited to the GEM/rafts, resulting in its efficient secretion and activation, and eventually in the increased invasion and metastatic potentials.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, Tsurumai, Showa-ku, Nagoya 466-0065, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Peng X, Kraus MS, Wei H, Shen TL, Pariaut R, Alcaraz A, Ji G, Cheng L, Yang Q, Kotlikoff MI, Chen J, Chien K, Gu H, Guan JL. Inactivation of focal adhesion kinase in cardiomyocytes promotes eccentric cardiac hypertrophy and fibrosis in mice. J Clin Invest 2006; 116:217-27. [PMID: 16374517 PMCID: PMC1319217 DOI: 10.1172/jci24497] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Accepted: 10/24/2005] [Indexed: 12/12/2022] Open
Abstract
Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase that plays a major role in integrin signaling pathways. Although cardiovascular defects were observed in FAK total KO mice, the embryonic lethality prevented investigation of FAK function in the hearts of adult animals. To circumvent these problems, we created mice in which FAK is selectively inactivated in cardiomyocytes (CFKO mice). We found that CFKO mice develop eccentric cardiac hypertrophy (normal LV wall thickness and increased left chamber dimension) upon stimulation with angiotensin II or pressure overload by transverse aortic constriction as measured by echocardiography. We also found increased heart/body weight ratios, elevated markers of cardiac hypertrophy, multifocal interstitial fibrosis, and increased collagen I and VI expression in CFKO mice compared with control littermates. Spontaneous cardiac chamber dilation and increased expression of hypertrophy markers were found in the older CFKO mice. Analysis of cardiomyocytes isolated from CFKO mice showed increased length but not width. The myocardium of CFKO mice exhibited disorganized myofibrils with increased nonmyofibrillar space filled with swelled mitochondria. Last, decreased tyrosine phosphorylation of FAK substrates p130Cas and paxillin were observed in CFKO mice compared with the control littermates. Together, these results provide strong evidence for a role of FAK in the regulation of heart hypertrophy in vivo.
Collapse
Affiliation(s)
- Xu Peng
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Park H, Han I, Kwon HJ, Oh ES. Focal Adhesion Kinase Regulates Syndecan-2–Mediated Tumorigenic Activity of HT1080 Fibrosarcoma Cells. Cancer Res 2005; 65:9899-905. [PMID: 16267014 DOI: 10.1158/0008-5472.can-05-1386] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Expression of syndecan-2, a transmembrane heparan sulfate proteoglycan, is crucial for the tumorigenic activity in colon carcinoma cells. However, despite the high-level expression of syndecan-2 in mesenchymal cells, few studies have addressed the function of syndecan-2 in sarcoma cells. In HT1080 fibrosarcoma cells, we found that syndecan-2 regulated migration, invasion into Matrigel, and anchorage-independent growth but not cell-extracellular matrix adhesion or proliferation, suggesting that syndecan-2 plays different functional roles in fibrosarcoma and colon carcinoma cells. Consistent with the increased cell migration/invasion of syndecan-2-overexpressing HT1080 cells, syndecan-2 overexpression increased phosphorylation and interaction of focal adhesion kinase (FAK) and phosphatidylinositol 3-kinase (PI3K), membrane localization of T-lymphoma invasion and metastasis gene-1 (Tiam-1), and activation of Rac. Syndecan-2-mediated cell migration/invasion of HT1080 cells was diminished when (a) cells were cotransfected with nonphosphorylatable mutant FAK Y397F or with other FAK mutants lacking PI3K interactions, (b) cells were treated with a specific PI3K inhibitor, or (c) levels of Tiam-1 were knocked down with small interfering RNAs. Furthermore, expression of several FAK mutants inhibited syndecan-2-mediated enhancement of anchorage-independent growth in HT1080 cells. Taken together, these data suggest that syndecan-2 regulates the tumorigenic activities of HT1080 fibrosarcoma cells and that FAK is a key regulator of syndecan-2-mediated tumorigenic activities.
Collapse
Affiliation(s)
- Haein Park
- Department of Life Science, Division of Molecular Life Sciences and Center for Cell Signaling Research, Ewha Womans University, Seoul, Korea
| | | | | | | |
Collapse
|
49
|
Moissoglu K, Sachdev S, Gelman IH. Enhanced v-Src-induced oncogenic transformation in the absence of focal adhesion kinase is mediated by phosphatidylinositol 3-kinase. Biochem Biophys Res Commun 2005; 330:673-84. [PMID: 15809050 DOI: 10.1016/j.bbrc.2005.03.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Indexed: 11/21/2022]
Abstract
We showed previously [K. Moissoglu, I.H. Gelman, J. Biol. Chem. 278 (2003) 47946-47959] that oncogenic v-Src could induce 7- to 10-fold greater anchorage-independent growth (AIG) in FAK-null mouse embryo fibroblasts (MEF) compared to those expressing FAK. Here, we demonstrate that the enhanced AIG (eAIG) correlates with increased activation levels of phosphatidylinositol 3-kinase (PI3K) and not with changes in the protein levels of the p85 regulatory subunit of PI3K, PDK1 or PTEN- modulators, and/or mediators of PI3K activity. eAIG could be blunted selectively by treatment with the PI3K inhibitor, LY294002, or by overexpression of either the PI3K antagonist, PTEN, dominant-interfering alleles of PI3K or a downstream PI3K mediator, AKT, but not by the MEK inhibitor, PD98059, dominant-interfering alleles of MEK or the signal transducer and activator of transcription (STAT)-3. In contrast, RNAi-mediated knockdown of FAK resulted in increased v-Src-induced AIG. Expression of a constitutively active PI3K allele was sufficient to induce higher levels of AIG, whereas overexpression of v-Src produced only larger-sized colonies in soft agar. Interestingly, FAK was required for full activation of PI3K by PDGF whereas the activation of PI3K by insulin was significantly increased in FAK-/- cells. Thus, although FAK is dispensable for v-Src-induced oncogenic transformation in vitro, it may exert either positive or negative effects on signaling or motility depending on which pathways are activated in cancer cells.
Collapse
Affiliation(s)
- Konstadinos Moissoglu
- Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14623, USA
| | | | | |
Collapse
|
50
|
Sood AK, Coffin JE, Schneider GB, Fletcher MS, DeYoung BR, Gruman LM, Gershenson DM, Schaller MD, Hendrix MJC. Biological significance of focal adhesion kinase in ovarian cancer: role in migration and invasion. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:1087-95. [PMID: 15466376 PMCID: PMC1618649 DOI: 10.1016/s0002-9440(10)63370-6] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase that is activated by integrin clustering. There are limited data regarding the functional role of FAK in ovarian cancer migration and invasion. In the current study, FAK expression was evaluated in ovarian cell lines (nontransformed and cancer), 12 benign ovarian samples, and in 79 invasive epithelial ovarian cancers. All three ovarian cancer cell lines overexpressed FAK compared to the nontransformed cells. The dominant-negative construct called FAK-related nonkinase (FRNK) was introduced into two ovarian cancer cell lines (SKOV3 and 222). FRNK promoted FAK dephosphorylation without changing total FAK levels in these cell lines. Furthermore, FRNK decreased the in vitro invasive ability of ovarian cancer cells by 56 to 85% and decreased migration by 52 to 68%. FRNK-transfected cells also displayed poor cell spreading. Immunohistochemical analysis revealed that the surface epithelium from all benign ovarian samples had weak FAK expression. In contrast, 68% of invasive ovarian cancers overexpressed FAK. FAK overexpression was significantly associated with high tumor stage, high tumor grade, positive lymph nodes and presence of distant metastasis (all P values <0.05). FAK overexpression was also associated with shorter overall survival (P = 0.008). Multivariate analysis revealed that FAK overexpression and residual disease >1 cm were independent predictors of poor survival. These data indicate that FAK is overexpressed in most invasive ovarian cancers and plays a functionally significant role in ovarian cancer migration and invasion. Thus, FAK may be an important therapeutic target in ovarian carcinoma.
Collapse
Affiliation(s)
- Anil K Sood
- Department of Gynecologic Oncology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|