1
|
Van Keymeulen A. Mechanisms of Regulation of Cell Fate in Breast Development and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:167-184. [PMID: 39821026 DOI: 10.1007/978-3-031-70875-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
This chapter focuses on the mechanisms of regulation of cell fate in breast development, occurring mainly after birth, as well as in breast cancer. First, we will review how the microenvironment of the breast, as well as external cues, plays a crucial role in mammary gland cell specification and will describe how it has been shown to reprogram non-mammary cells into mammary epithelial cells. Then we will focus on the transcription factors and master regulators which have been established to be determinant for basal (BC) and luminal cell (LC) identity, and will describe the experiments of ectopic expression or loss of function of these transcription factors which demonstrated that they were crucial for cell fate. We will also discuss how master regulators are involved in the fate choice of LCs between estrogen receptor (ER)-positive cells and ER- cells, which will give rise to alveolar cells upon pregnancy and lactation. We will describe how oncogene expression induces reprogramming and change of fate of mammary epithelial cells before tumor appearance, which could be an essential step in tumorigenesis. Finally, we will describe the involvement of master regulators of mammary epithelial cells in breast cancer.
Collapse
Affiliation(s)
- Alexandra Van Keymeulen
- Laboratory of Stem Cells and Cancer (LSCC), Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
2
|
Dai P, Ma C, Chen C, Liang M, Dong S, Chen H, Zhang X. Unlocking Genetic Mysteries during the Epic Sperm Journey toward Fertilization: Further Expanding Cre Mouse Lines. Biomolecules 2024; 14:529. [PMID: 38785936 PMCID: PMC11117649 DOI: 10.3390/biom14050529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
The spatiotemporal expression patterns of genes are crucial for maintaining normal physiological functions in animals. Conditional gene knockout using the cyclization recombination enzyme (Cre)/locus of crossover of P1 (Cre/LoxP) strategy has been extensively employed for functional assays at specific tissue or developmental stages. This approach aids in uncovering the associations between phenotypes and gene regulation while minimizing interference among distinct tissues. Various Cre-engineered mouse models have been utilized in the male reproductive system, including Dppa3-MERCre for primordial germ cells, Ddx4-Cre and Stra8-Cre for spermatogonia, Prm1-Cre and Acrv1-iCre for haploid spermatids, Cyp17a1-iCre for the Leydig cell, Sox9-Cre for the Sertoli cell, and Lcn5/8/9-Cre for differentiated segments of the epididymis. Notably, the specificity and functioning stage of Cre recombinases vary, and the efficiency of recombination driven by Cre depends on endogenous promoters with different sequences as well as the constructed Cre vectors, even when controlled by an identical promoter. Cre mouse models generated via traditional recombination or CRISPR/Cas9 also exhibit distinct knockout properties. This review focuses on Cre-engineered mouse models applied to the male reproductive system, including Cre-targeting strategies, mouse model screening, and practical challenges encountered, particularly with novel mouse strains over the past decade. It aims to provide valuable references for studies conducted on the male reproductive system.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226001, China; (P.D.); (C.M.); (C.C.); (M.L.); (S.D.); (H.C.)
| |
Collapse
|
3
|
Miyano M, LaBarge MA. ELF5: A Molecular Clock for Breast Aging and Cancer Susceptibility. Cancers (Basel) 2024; 16:431. [PMID: 38275872 PMCID: PMC10813895 DOI: 10.3390/cancers16020431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Breast cancer is predominantly an age-related disease, with aging serving as the most significant risk factor, compounded by germline mutations in high-risk genes like BRCA1/2. Aging induces architectural changes in breast tissue, particularly affecting luminal epithelial cells by diminishing lineage-specific molecular profiles and adopting myoepithelial-like characteristics. ELF5 is an important transcription factor for both normal breast and breast cancer development. This review focuses on the role of ELF5 in normal breast development, its altered expression throughout aging, and its implications in cancer. It discusses the lineage-specific expression of ELF5, its regulatory mechanisms, and its potential as a biomarker for breast-specific biological age and cancer risk.
Collapse
Affiliation(s)
- Masaru Miyano
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
- Center for Cancer and Aging, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Mark A. LaBarge
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
- Center for Cancer and Aging, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
- Center for Cancer Biomarkers Research, University of Bergen, 5007 Bergen, Norway
| |
Collapse
|
4
|
The transcription factor ELF5 is essential for early preimplantation development. Mol Biol Rep 2023; 50:2119-2125. [PMID: 36542237 DOI: 10.1007/s11033-022-08217-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND During early embryonic development, the cell adhesion molecule E-cadherin encoded by the Cdh1 gene plays a vital role in providing proper cell-cell adhesion, ensuring an undifferentiated state critical for maintaining the pluripotency for the development of the preimplantation embryo. The transcriptional regulation of Cdh1 gained attention recently but is not yet fully understood. In a previous study, our team established a correlation between Elf3 and Cdh1 expression and showed its importance in the regulation of MET. METHODS AND RESULTS Here, the regulation of Cdh1 by Ets transcription factors in early embryogenesis was investigated. A loss-of-function approach was used to study the effect of Elf5 loss on Cdh1 gene expression by small interfering RNAs in fertilized oocytes. Changes in gene expression were measured by qPCR analysis, and developing embryos were visualized by microscopy. Loss of Elf5 arrested the embryos at the 2-cell stage, accompanied by a significant downregulation of Cdh1 expression. CONCLUSION The findings presented here illustrate the role of ELF5 in preimplantation development and in regulating the expression of Cdh1. The maintenance of the ELF5 and Cdh1 regulatory node proved essential for the proper development of the early mouse embryos, which is in agreement with the critical role of Elf5 and Cdh1 genes in regulating the early events during embryogenesis.
Collapse
|
5
|
Al-Khaldi S, Almohanna F, Barnawi R, Fallatah M, Islam SS, Ghebeh H, Al-Alwan M. Fascin is essential for mammary gland lactogenesis. Dev Biol 2022; 492:25-36. [PMID: 36152869 DOI: 10.1016/j.ydbio.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 05/29/2022] [Accepted: 09/16/2022] [Indexed: 11/03/2022]
Abstract
Fascin expression has commonly been observed in certain subtypes of breast cancer, where its expression is associated with poor clinical outcome. However, its role in normal mammary gland development has not been elucidated. Here, we used a fascin knockout mouse model to assess its role in normal mammary gland morphogenesis and lactation. Fascin knockout was not embryonically lethal, and its effect on the litter size or condition at birth was minimal. However, litter survival until the weaning stage significantly depended on fascin expression solely in the nursing dams. Accordingly, pups that nursed from fascin-/- dams had smaller milk spots in their abdomen, suggesting a lactation defect in the nursing dams. Mammary gland whole-mounts of pregnant and lactating fascin-/- mice showed significantly reduced side branching and alveologenesis. Despite a typical composition of basal, luminal, and stromal subsets of mammary cells and normal ductal architecture of myoepithelial and luminal layers, the percentage of alveolar progenitors (ALDH+) in fascin-/- epithelial fraction was significantly reduced. Further in-depth analyses of fascin-/- mammary glands showed a significant reduction in the expression of Elf5, the master regulator of alveologenesis, and a decrease in the activity of its downstream target p-STAT5. In agreement, there was a significant reduction in the expression of the milk proteins, whey acidic protein (WAP), and β-casein in fascin-/- mammary glands. Collectively, our data demonstrate, for the first time, the physiological role of fascin in normal mammary gland lactogenesis, an addition that could reveal its contribution to breast cancer initiation and progression.
Collapse
Affiliation(s)
- Samiyah Al-Khaldi
- National Center for Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Sciences and Technology, Riyadh, Saudi Arabia.
| | | | | | - Mohannad Fallatah
- National Center for Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Sciences and Technology, Riyadh, Saudi Arabia.
| | - Syed S Islam
- Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia; Collage of Medicine, Al-Faisal University, Riyadh, Saudi Arabia.
| | - Hazem Ghebeh
- Stem Cell and Tissue Re-Engineering Program, Saudi Arabia; Collage of Medicine, Al-Faisal University, Riyadh, Saudi Arabia.
| | - Monther Al-Alwan
- Stem Cell and Tissue Re-Engineering Program, Saudi Arabia; Collage of Medicine, Al-Faisal University, Riyadh, Saudi Arabia.
| |
Collapse
|
6
|
Pietzner M, Chua RL, Wheeler E, Jechow K, Willett JDS, Radbruch H, Trump S, Heidecker B, Zeberg H, Heppner FL, Eils R, Mall MA, Richards JB, Sander LE, Lehmann I, Lukassen S, Wareham NJ, Conrad C, Langenberg C. ELF5 is a potential respiratory epithelial cell-specific risk gene for severe COVID-19. Nat Commun 2022; 13:4484. [PMID: 35970849 PMCID: PMC9378714 DOI: 10.1038/s41467-022-31999-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022] Open
Abstract
Despite two years of intense global research activity, host genetic factors that predispose to a poorer prognosis of COVID-19 infection remain poorly understood. Here, we prioritise eight robust (e.g., ELF5) or suggestive but unreported (e.g., RAB2A) candidate protein mediators of COVID-19 outcomes by integrating results from the COVID-19 Host Genetics Initiative with population-based plasma proteomics using statistical colocalisation. The transcription factor ELF5 (ELF5) shows robust and directionally consistent associations across different outcome definitions, including a >4-fold higher risk (odds ratio: 4.88; 95%-CI: 2.47-9.63; p-value < 5.0 × 10-6) for severe COVID-19 per 1 s.d. higher genetically predicted plasma ELF5. We show that ELF5 is specifically expressed in epithelial cells of the respiratory system, such as secretory and alveolar type 2 cells, using single-cell RNA sequencing and immunohistochemistry. These cells are also likely targets of SARS-CoV-2 by colocalisation with key host factors, including ACE2 and TMPRSS2. In summary, large-scale human genetic studies together with gene expression at single-cell resolution highlight ELF5 as a risk gene for severe COVID-19, supporting a role of epithelial cells of the respiratory system in the adverse host response to SARS-CoV-2.
Collapse
Affiliation(s)
- Maik Pietzner
- Computational Medicine, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany.
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK.
| | - Robert Lorenz Chua
- Center for Digital Health, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Eleanor Wheeler
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Katharina Jechow
- Center for Digital Health, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Julian D S Willett
- McGill Genome Centre, McGill University, Montréal, QC, Canada
- Lady Davis Institute, Jewish General Hospital, Montréal, QC, Canada
| | - Helena Radbruch
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Berlin, Germany
| | - Saskia Trump
- Molecular Epidemiology Unit, Center for Digital Health, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bettina Heidecker
- Department of Cardiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hugo Zeberg
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Frank L Heppner
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Berlin, Germany
- Cluster of Excellence, NeuroCure, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Roland Eils
- Center for Digital Health, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Health Data Science Unit, Heidelberg University Hospital and BioQuant, Heidelberg, Germany
- German Center for Lung Research (DZL), associated partner site, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Marcus A Mall
- German Center for Lung Research (DZL), associated partner site, Augustenburger Platz 1, 13353, Berlin, Germany
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - J Brent Richards
- McGill Genome Centre, McGill University, Montréal, QC, Canada
- Lady Davis Institute, Jewish General Hospital, Montréal, QC, Canada
- Departments of Medicine, Human Genetics, Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC, Canada
- Department of Twin Research, King's College London, London, United Kingdom
| | - Leif-Erik Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Irina Lehmann
- Molecular Epidemiology Unit, Center for Digital Health, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Sören Lukassen
- Center for Digital Health, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Christian Conrad
- Center for Digital Health, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Claudia Langenberg
- Computational Medicine, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany.
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
7
|
Otto PI, Guimarães SEF, Calus MPL, Vandenplas J, Machado MA, Panetto JCC, da Silva MVGB. Single-step genome-wide association studies (GWAS) and post-GWAS analyses to identify genomic regions and candidate genes for milk yield in Brazilian Girolando cattle. J Dairy Sci 2020; 103:10347-10360. [PMID: 32896396 DOI: 10.3168/jds.2019-17890] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 06/19/2020] [Indexed: 12/15/2022]
Abstract
Milk production is economically important to the Brazilian agribusiness, and the majority of the country's milk production derives from Girolando (Gir × Holstein) cows. This study aimed to identify quantitative trait loci (QTL) and candidate genes associated with 305-d milk yield (305MY) in Girolando cattle. In addition, we investigated the SNP-specific variances for Holstein and Gir breeds of origin within the sequence of candidate genes. A single-step genomic BLUP procedure was used to identify QTL associated with 305MY, and the most likely candidate genes were identified through follow-up analyses. Genomic breeding values specific for Holstein and Gir were estimated in the Girolando animals using a model that uses breed-specific partial relationship matrices, which were converted to breed of origin SNP effects. Differences between breed of origin were evaluated by comparing estimated SNP variances between breeds. From 10 genome regions explaining most additive genetic variance for 305MY in Girolando cattle, 7 candidate genes were identified on chromosomes 1, 4, 6, and 26. Within the sequence of these 7 candidate genes, Gir breed of origin SNP alleles showed the highest genetic variance. These results indicated QTL regions that could be further explored in genomic selection panels and which may also help in understanding the gene mechanisms involved in milk production in the Girolando breed.
Collapse
Affiliation(s)
- Pamela I Otto
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Simone E F Guimarães
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Mario P L Calus
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, the Netherlands
| | - Jeremie Vandenplas
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, the Netherlands
| | - Marco A Machado
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, the Netherlands
| | - João Cláudio C Panetto
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, the Netherlands
| | | |
Collapse
|
8
|
Singh S, Elenio E, Leu NA, Romano RA, Vaughan AE, DeRiso J, Surendran K, Chakrabarti R. A new Elf5 Cre ERT 2- GFP BAC transgenic mouse model for tracing Elf5 cell lineages in adult tissues. FEBS Lett 2019; 593:1030-1039. [PMID: 31002388 DOI: 10.1002/1873-3468.13390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 12/11/2022]
Abstract
Elf5 is a transcription factor known to regulate critical developmental processes and has been shown to act as a tumour suppressor in multiple cancers. Elf5 knockout mice are embryonically lethal, limiting in vivo studies pertaining to its function. Moreover, haploinsufficiency of Elf5 limits the use of current mouse models to investigate adult tissue distribution of Elf5. Here, we successfully generated Elf5Cre ERT 2- GFP bacterial artificial chromosome (BAC) transgenic mice and show that Elf5+ cells are present in several adult tissues, where its expression was previously not known. Our study demonstrates the unique distribution of Elf5+ cells in multiple adult organs, which will facilitate future studies investigating the function of Elf5 in these tissues during homeostasis, repair and cancer.
Collapse
Affiliation(s)
- Snahlata Singh
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily Elenio
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicolae A Leu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rose-Anne Romano
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, NY, USA
| | - Andrew E Vaughan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer DeRiso
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | | | - Rumela Chakrabarti
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Kersbergen A, Best SA, Dworkin S, Ah-Cann C, de Vries ME, Asselin-Labat ML, Ritchie ME, Jane SM, Sutherland KD. Lung morphogenesis is orchestrated through Grainyhead-like 2 (Grhl2) transcriptional programs. Dev Biol 2018; 443:1-9. [DOI: 10.1016/j.ydbio.2018.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/17/2018] [Accepted: 09/02/2018] [Indexed: 01/04/2023]
|
10
|
Wang Y, Gong W, Zhou S, Yang L, Qiu F, Lin M, Su W, Nie W, Datta S, Rao B, Xian J, Feng Y, Zhang X, Zhou Y, Gao X, Lu J. Long Noncoding RNA PRRG4-4 Promotes Viability, Cell Cycle, Migration, and Invasion in Lung Cancer Cells. DNA Cell Biol 2018; 37:953-966. [PMID: 30362823 DOI: 10.1089/dna.2018.4220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
There is a perception that long noncoding RNA (lncRNA) has relationship with carcinogenesis. Many studies have previously identified and validated that the section of chromosome 11p13 is associated with high incidence of tumor. In this study, we investigated a new lncRNA, named lncPRRG4-4, mapped to 11p13 and suspected that lncPRRG4-4 was a potential lung cancer-related gene. To explore its role in carcinogenesis, we first demonstrated that lncPRRG4-4 was upregulated in lung cancer tissues compared with adjacent nontumor tissues and functioned as an oncogene in lung cancer cells. The lncPRRG4-4 was significantly upregulated in lung cancer tissues compared with adjacent normal counterparts (mean ± standard deviation: 0.12 ± 0.84 vs. 0.05 ± 0.22; p < 0.001). Patients with metastasis exhibited high levels of lncPRRG4-4 expression than those without metastasis in both the southern samples (p = 0.045) and eastern samples (p = 0.030), total samples (p = 0.004). In addition, downregulation of lncPRRG4-4 expression inhibited lung cancer proliferation, viability, migration, and invasion ability, arrested cell cycle, facilitated apoptosis, and vice versa. Taken together, these observations suggested that the lncPRRG4-4 functions as an oncogene in lung cancer cells.
Collapse
Affiliation(s)
- Yuanyuan Wang
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wei Gong
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shiyu Zhou
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lei Yang
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Guangzhou, China
| | - Fuman Qiu
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mingzhu Lin
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wenpeng Su
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wenjing Nie
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Soham Datta
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Boqi Rao
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jianfeng Xian
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yingyi Feng
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xin Zhang
- The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Guangzhou, China
| | - Yifeng Zhou
- Department of Genetics, Medical College of Soochow University, Suzhou, China
| | - Xingcheng Gao
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiachun Lu
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
11
|
Kong S, Liang G, Tu Z, Chen D, Wang H, Lu J. Generation of Elf5-Cre knockin mouse strain for trophoblast-specific gene manipulation. Genesis 2018. [PMID: 29532590 DOI: 10.1002/dvg.23101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shuangbo Kong
- Reproductive Medical Center; The First Affiliated Hospital of Xiamen University; Xiamen Fujian 361003 People's Republic of China
- Fujian Provincial Key Laboratory of Reproductive Health Research; Medical College of Xiamen University; Xiamen Fujian 361102 People's Republic of China
| | - Guixian Liang
- State key laboratory of Stem Cell and Reproductive Biology; Institute of Zoology, Chinese Academy of Sciences; Beijing 100101 People's Republic of China
| | - Zhaowei Tu
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong; China Alliance of Translational Medicine for Maternal and Children's Health; Beijing People's Republic of China
| | - Dunjin Chen
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong; China Alliance of Translational Medicine for Maternal and Children's Health; Beijing People's Republic of China
| | - Haibin Wang
- Reproductive Medical Center; The First Affiliated Hospital of Xiamen University; Xiamen Fujian 361003 People's Republic of China
- Fujian Provincial Key Laboratory of Reproductive Health Research; Medical College of Xiamen University; Xiamen Fujian 361102 People's Republic of China
| | - Jinhua Lu
- Reproductive Medical Center; The First Affiliated Hospital of Xiamen University; Xiamen Fujian 361003 People's Republic of China
- Fujian Provincial Key Laboratory of Reproductive Health Research; Medical College of Xiamen University; Xiamen Fujian 361102 People's Republic of China
| |
Collapse
|
12
|
Effect of the normal mammary differentiation regulator ELF5 upon clinical outcomes of triple negative breast cancers patients. Breast Cancer 2018; 25:489-496. [PMID: 29396764 DOI: 10.1007/s12282-018-0842-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 01/28/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Elf5 is a transcription factor previously shown to be involved in regulating cell differentiation in both normal and pathological breast tissues. Pertinently, Elf5 was reported to interact with the FOXA1 transcription factor, a pivotal regulatory factor in a subset of AR overexpressing triple negative cancer (TNBC) cases. METHODS We examined the correlation among AR, FOXA1, and Elf5 expression in a series of TNBC cases. The cases were retrieved from surgical pathological files of Tohoku University Hospital Japan and consisted of 60 cases operated between the year 1999 and 2007. An additional cohort cases of 51 TNBC ductal carcinoma in situ was used to compare invasive and non-invasive TNBC. RESULTS In our cohort, 47% of all carcinomas were positive for Elf5, with a significantly higher proportion of Elf5 positive cases occurring in the younger age groups (p = 0.0061). Elf5 immunoreactivity was not associated with any other clinicopathological factors examined in this study. However, Elf5 expression was associated with decreased overall and disease-free survival of the patients (Peto-Peto modification of Gehan-Wilcoxon test, OS p = 0.132, DFS p = 0.1 (LI cutoff 10%); OS p = 0.038, DFS p = 0.021 (LI cutoff 50%)). Of particular interest, its effects on survival were more pronounced in the EGFR-/CK5/6- (non-basal surrogate) than the EGFR+ and/or CK5/6+ (basal-surrogate) subtype of TNBC. CONCLUSIONS Elf5 is present in TNBC and its status was significantly correlated with overall survival of the patients. Further studies examining possible interactions between Elf5 and other factors in TNBC could contribute to disentangling TNBC biology.
Collapse
|
13
|
Méndez-López LF, Davila-Velderrain J, Domínguez-Hüttinger E, Enríquez-Olguín C, Martínez-García JC, Alvarez-Buylla ER. Gene regulatory network underlying the immortalization of epithelial cells. BMC SYSTEMS BIOLOGY 2017; 11:24. [PMID: 28209158 PMCID: PMC5314717 DOI: 10.1186/s12918-017-0393-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/11/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Tumorigenic transformation of human epithelial cells in vitro has been described experimentally as the potential result of spontaneous immortalization. This process is characterized by a series of cell-state transitions, in which normal epithelial cells acquire first a senescent state which is later surpassed to attain a mesenchymal stem-like phenotype with a potentially tumorigenic behavior. In this paper we aim to provide a system-level mechanistic explanation to the emergence of these cell types, and to the time-ordered transition patterns that are common to neoplasias of epithelial origin. To this end, we first integrate published functional and well-curated molecular data of the components and interactions that have been found to be involved in such cell states and transitions into a network of 41 molecular components. We then reduce this initial network by removing simple mediators (i.e., linear pathways), and formalize the resulting regulatory core into logical rules that govern the dynamics of each of the network components as a function of the states of its regulators. RESULTS Computational dynamic analysis shows that our proposed Gene Regulatory Network model recovers exactly three attractors, each of them defined by a specific gene expression profile that corresponds to the epithelial, senescent, and mesenchymal stem-like cellular phenotypes, respectively. We show that although a mesenchymal stem-like state can be attained even under unperturbed physiological conditions, the likelihood of converging to this state is increased when pro-inflammatory conditions are simulated, providing a systems-level mechanistic explanation for the carcinogenic role of chronic inflammatory conditions observed in the clinic. We also found that the regulatory core yields an epigenetic landscape that restricts temporal patterns of progression between the steady states, such that recovered patterns resemble the time-ordered transitions observed during the spontaneous immortalization of epithelial cells, both in vivo and in vitro. CONCLUSION Our study strongly suggests that the in vitro tumorigenic transformation of epithelial cells, which strongly correlates with the patterns observed during the pathological progression of epithelial carcinogenesis in vivo, emerges from underlying regulatory networks involved in epithelial trans-differentiation during development.
Collapse
Affiliation(s)
- Luis Fernando Méndez-López
- Centro de Investigación y Desarrollo en Ciencias de la Salud (CIDICS), Universidad Autonoma de Nuevo Leon, A. P. 14-740, México, 07300 D.F México
| | | | - Elisa Domínguez-Hüttinger
- Instituto de Ecología, UNAM, Cd. Universitaria, México, 04510 D.F México
- Centro de Ciencias de la Complejidad, UNAM, Cd. Universitaria, México, 04510 D.F México
| | | | | | - Elena R. Alvarez-Buylla
- Instituto de Ecología, UNAM, Cd. Universitaria, México, 04510 D.F México
- Centro de Ciencias de la Complejidad, UNAM, Cd. Universitaria, México, 04510 D.F México
| |
Collapse
|
14
|
Yan H, Qiu L, Xie X, Yang H, Liu Y, Lin X, Huang H. ELF5 in epithelial ovarian carcinoma tissues and biological behavior in ovarian carcinoma cells. Oncol Rep 2017; 37:1412-1418. [PMID: 28184931 PMCID: PMC5364829 DOI: 10.3892/or.2017.5418] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/23/2017] [Indexed: 01/09/2023] Open
Abstract
The expression of E74-like factor 5 (ELF5) in epithelial ovarian carcinoma tissues and its effects on biological behavior in ovarian carcinoma cells were assessed in search for a new approach for gene treatment of epithelial ovarian carcinoma. RT-PCR technology was applied to detect the expression of ELF5 mRNA in epithelial ovarian carcinoma (n=49), borderline ovarian epithelial tumor (n=19), benign ovarian epithelial tumor (n=31) and normal ovarian tissues (n=40). Then, we transfected recombinant plasmid pcDNA3.1‑ELF5+EGFP into human ovarian carcinoma SKOV3 cells (recombinant plasmid group) in vitro and screened out stably transfected cells to conduct multiplication culture. Western blot analysis was performed to detect the expression of ELF5 protein in the different groups. Flow cytometry was employed to detect cell apoptosis and cycles. ELF5 mRNA in epithelial ovarian carcinoma and borderline ovarian epithelial tumor tissues were significantly lower (P<0.05) than those in benign ovarian epithelial tumor and normal ovarian tissues. ELF5 protein expression in the cells of recombinant plasmid group was significantly higher compared with empty plasmid and blank control groups. The capacity of cell reproductive recombinant plasmid group at each time point decreased (P<0.05). Flow cytometry detection showed that 67.03% of cells in recombinant plasmid group was blocked in G0/G1 phase (P<0.05), compared with empty plasmid group (37.17%) and blank control group (38.24%). Apoptotic rate of recombinant plasmid group was significantly lower (31.4±1.9%; P<0.05), compared with that of empty plasmid group (9.1±2.2%) and blank control group (8.7±1.5%), and the differences were statistically significant. In conclusion, ELF5 interfered with cell cycle of human ovarian carcinoma SKOV3 cells and promoted apoptosis of human ovarian carcinoma SKOV3 cells inhibiting their growth and invasive capacity; and thus providing a new approach to gene treatment of ovarian carcinoma.
Collapse
Affiliation(s)
- Hongchao Yan
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Linglin Qiu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Xiaolei Xie
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - He Yang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Yongli Liu
- Department of Obstetrics and Gynecology, The First People's Hospital of Xuzhou, Xuzhou, Jiangsu 221000, P.R. China
| | - Xiaoman Lin
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Hongxiang Huang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
15
|
Endo A, Tomizawa D, Aoki Y, Morio T, Mizutani S, Takagi M. EWSR1/ELF5 induces acute myeloid leukemia by inhibiting p53/p21 pathway. Cancer Sci 2016; 107:1745-1754. [PMID: 27627705 PMCID: PMC5198945 DOI: 10.1111/cas.13080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 08/26/2016] [Accepted: 09/09/2016] [Indexed: 02/06/2023] Open
Abstract
The Ewing sarcoma breakpoint region 1 (EWSR1) gene is known to fuse with various partner genes to promote the development of the Ewing sarcoma family of tumors and other sarcomas. In contrast, the association of EWSR1 chimeric fusion genes with leukemia has rarely been reported. We identified a novel EWSR1‐associated chimeric fusion gene in a patient with acute myeloid leukemia harboring 46, XY, t (11; 22) (p13; q12) karyotype abnormality. The patient was refractory to intensified chemotherapy including hematopoietic stem cell transplantation. Total RNA paired‐end sequencing identified a novel chimeric fusion gene as EWSR1/ELF5, a member of the E26 transformation‐specific transcription factor family. Transduction of EWSR1/ELF5 to NIH3T3 cells induced transformation by attenuating with the p53/p21‐dependent pathway. The injection of EWSR1/ELF5‐transduced NIH3T3 cells into NSG‐SCID mice systematically induced the development of tumors in vivo. These results revealed the oncogenic potency of EWSR1/ELF5.
Collapse
Affiliation(s)
- Akifumi Endo
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daisuke Tomizawa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan.,Division of Leukemia and Lymphoma, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Yuki Aoki
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Pediatric Oncology, National Cancer Center, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shuki Mizutani
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
16
|
Sano R, Nakajima T, Takahashi Y, Kubo R, Kobayashi M, Takahashi K, Takeshita H, Ogasawara K, Kominato Y. Epithelial Expression of Human ABO Blood Group Genes Is Dependent upon a Downstream Regulatory Element Functioning through an Epithelial Cell-specific Transcription Factor, Elf5. J Biol Chem 2016; 291:22594-22606. [PMID: 27587399 DOI: 10.1074/jbc.m116.730655] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/30/2016] [Indexed: 01/03/2023] Open
Abstract
The human ABO blood group system is of great importance in blood transfusion and organ transplantation. The ABO system is composed of complex carbohydrate structures that are biosynthesized by A- and B-transferases encoded by the ABO gene. However, the mechanisms regulating ABO gene expression in epithelial cells remain obscure. On the basis of DNase I-hypersensitive sites in and around ABO in epithelial cells, we prepared reporter plasmid constructs including these sites. Subsequent luciferase assays and histone modifications indicated a novel positive regulatory element, designated the +22.6-kb site, downstream from ABO, and this was shown to enhance ABO promoter activity in an epithelial cell-specific manner. Expression of ABO and B-antigen was reduced in gastric cancer KATOIII cells by biallelic deletion of the +22.6-kb site using the CRISPR/Cas9 system. Electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that the site bound to an epithelial cell-specific transcription factor, Elf5. Mutation of the Ets binding motifs to abrogate binding of this factor reduced the regulatory activity of the +22.6-kb site. Furthermore, ELF5 knockdown with shRNA reduced both endogenous transcription from ABO and B-antigen expression in KATOIII cells. Thus, Elf5 appeared to be involved in the enhancer potential of the +22.6-kb site. These results support the contention that ABO expression is dependent upon a downstream positive regulatory element functioning through a tissue-restricted transcription factor, Elf5, in epithelial cells.
Collapse
Affiliation(s)
- Rie Sano
- From the Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, 371-8511 Japan,
| | - Tamiko Nakajima
- From the Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, 371-8511 Japan
| | - Yoichiro Takahashi
- From the Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, 371-8511 Japan
| | - Rieko Kubo
- From the Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, 371-8511 Japan
| | - Momoko Kobayashi
- From the Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, 371-8511 Japan
| | - Keiko Takahashi
- From the Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, 371-8511 Japan
| | - Haruo Takeshita
- the Department of Legal Medicine, Shimane University School of Medicine, Izumo, Japan, and
| | | | - Yoshihiko Kominato
- From the Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, 371-8511 Japan
| |
Collapse
|
17
|
Piggin CL, Roden DL, Gallego-Ortega D, Lee HJ, Oakes SR, Ormandy CJ. ELF5 isoform expression is tissue-specific and significantly altered in cancer. Breast Cancer Res 2016; 18:4. [PMID: 26738740 PMCID: PMC4704400 DOI: 10.1186/s13058-015-0666-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/16/2015] [Indexed: 12/14/2022] Open
Abstract
Background E74-like factor 5 (ELF5) is an epithelial-specific member of the E26 transforming sequence (ETS) transcription factor family and a critical regulator of cell fate in the placenta, pulmonary bronchi, and milk-producing alveoli of the mammary gland. ELF5 also plays key roles in malignancy, particularly in basal-like and endocrine-resistant forms of breast cancer. Almost all genes undergo alternative transcription or splicing, which increases the diversity of protein structure and function. Although ELF5 has multiple isoforms, this has not been considered in previous studies of ELF5 function. Methods RNA-sequencing data for 6757 samples from The Cancer Genome Atlas were analyzed to characterize ELF5 isoform expression in multiple normal tissues and cancers. Extensive in vitro analysis of ELF5 isoforms, including a 116-gene quantitative polymerase chain reaction panel, was performed in breast cancer cell lines. Results ELF5 isoform expression was found to be tissue-specific due to alternative promoter use but altered in multiple cancer types. The normal breast expressed one main isoform, while in breast cancer there were subtype-specific alterations in expression. Expression of other ETS factors was also significantly altered in breast cancer, with the basal-like subtype demonstrating a distinct ETS expression profile. In vitro inducible expression of the full-length isoforms 1 and 2, as well as isoform 3 (lacking the Pointed domain) had similar phenotypic and transcriptional effects. Conclusions Alternative promoter use, conferring differential regulatory responses, is the main mechanism governing ELF5 action rather than differential transcriptional activity of the isoforms. This understanding of expression and function at the isoform level is a vital first step in realizing the potential of transcription factors such as ELF5 as prognostic markers or therapeutic targets in cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13058-015-0666-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Catherine L Piggin
- Cancer Division, Garvan Institute of Medical Research/The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia.
| | - Daniel L Roden
- Cancer Division, Garvan Institute of Medical Research/The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia.
| | - David Gallego-Ortega
- Cancer Division, Garvan Institute of Medical Research/The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia.
| | - Heather J Lee
- Cancer Division, Garvan Institute of Medical Research/The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia. .,Babraham Institute, Cambridge, CB22 3AT, UK.
| | - Samantha R Oakes
- Cancer Division, Garvan Institute of Medical Research/The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia.
| | - Christopher J Ormandy
- Cancer Division, Garvan Institute of Medical Research/The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia.
| |
Collapse
|
18
|
Koyama K, Takahara K, Inamoto T, Ibuki N, Minami K, Uehara H, Komura K, Nishida T, Sakamoto T, Hirano H, Nomi H, Kiyama S, Azuma H. E74-like factor inhibition induces reacquisition of hormone sensitiveness decreasing period circadian protein homolog 1 expression in prostate cancer cells. Prostate Int 2015; 3:16-21. [PMID: 26288799 PMCID: PMC4495571 DOI: 10.1016/j.prnil.2015.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 12/27/2014] [Indexed: 01/09/2023] Open
Abstract
Purpose Initiating as an androgen-dependent adenocarcinoma, prostate cancer (PCa) gradually progresses to a castrate-resistant disease following androgen deprivation therapy with a propensity to metastasize. Methods In order to resolve the mechanism of castrate-resistant PCa, we performed a cDNA-microarray assay of two PCa cell lines, LNCaP (androgen dependent) and C4-2 (androgen independent). Among them, we focused on a novel Ets transcription factor, E74-like factor 5 (ELF5), the expression level of which was extremely high in C4-2 in comparison with LNCaP both in the microarray analysis and real-time polymerase chain reaction analysis, and investigated the biological role in acquisition of androgen-refractory PCa growth. Results Western blot analysis and morphological analysis using confocal immunofluorescence microscopy demonstrated that ELF5 was expressed mainly in cytosol both in LNCaP and C4-2. Inhibition of ELF5 expression using ELF5-small interfering RNA in C4-2 induced decreased expression of androgen receptor corepressor, period circadian protein homolog 1, and MTT assay of C4-2 after ELF5 small interfering RNA transfection showed the same cell growth pattern of LNCaP. Conclusions Our in vitro experiments of cell growth and microarray analysis have demonstrated for the first time that decreased expression of period circadian protein homolog 1 due to ELF5 inhibition may induce the possibility of reacquisition of hormone sensitiveness of PCa cells. We suggest that ELF5 could be a novel potential target for the treatment of hormone-refractory PCa patients.
Collapse
Affiliation(s)
- Kohei Koyama
- Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Kiyoshi Takahara
- Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Teruo Inamoto
- Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Naokazu Ibuki
- Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Koichiro Minami
- Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Hirofumi Uehara
- Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Kazumasa Komura
- Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Takeshi Nishida
- Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Takeshi Sakamoto
- Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Hajime Hirano
- Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Hayahito Nomi
- Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Satoshi Kiyama
- Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Haruhito Azuma
- Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| |
Collapse
|
19
|
Huang HL, Wu YC, Su LJ, Huang YJ, Charoenkwan P, Chen WL, Lee HC, Chu WCC, Ho SY. Discovery of prognostic biomarkers for predicting lung cancer metastasis using microarray and survival data. BMC Bioinformatics 2015; 16:54. [PMID: 25881029 PMCID: PMC4349617 DOI: 10.1186/s12859-015-0463-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 01/13/2015] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Few studies have investigated prognostic biomarkers of distant metastases of lung cancer. One of the central difficulties in identifying biomarkers from microarray data is the availability of only a small number of samples, which results overtraining. Recently obtained evidence reveals that epithelial-mesenchymal transition (EMT) of tumor cells causes metastasis, which is detrimental to patients' survival. RESULTS This work proposes a novel optimization approach to discovering EMT-related prognostic biomarkers to predict the distant metastasis of lung cancer using both microarray and survival data. This weighted objective function maximizes both the accuracy of prediction of distant metastasis and the area between the disease-free survival curves of the non-distant and distant metastases. Seventy-eight patients with lung cancer and a follow-up time of 120 months are used to identify a set of gene markers and an independent cohort of 26 patients is used to evaluate the identified biomarkers. The medical records of the 78 patients show a significant difference between the disease-free survival times of the 37 non-distant- and the 41 distant-metastasis patients. The experimental results thus obtained are as follows. 1) The use of disease-free survival curves can compensate for the shortcoming of insufficient samples and greatly increase the test accuracy by 11.10%; and 2) the support vector machine with a set of 17 transcripts, such as CCL16 and CDKN2AIP, can yield a leave-one-out cross-validation accuracy of 93.59%, a test accuracy of 76.92%, a large disease-free survival area of 74.81%, and a mean survival prediction error of 3.99 months. The identified putative biomarkers are examined using related studies and signaling pathways to reveal the potential effectiveness of the biomarkers in prospective confirmatory studies. CONCLUSIONS The proposed new optimization approach to identifying prognostic biomarkers by combining multiple sources of data (microarray and survival) can facilitate the accurate selection of biomarkers that are most relevant to the disease while solving the problem of insufficient samples.
Collapse
Affiliation(s)
- Hui-Ling Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan. .,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.
| | - Yu-Chung Wu
- Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Li-Jen Su
- Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan, Taiwan.
| | - Yun-Ju Huang
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan.
| | - Phasit Charoenkwan
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan.
| | - Wen-Liang Chen
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.
| | - Hua-Chin Lee
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan. .,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.
| | | | - Shinn-Ying Ho
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan. .,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
20
|
Wang JY, Shyur SD, Lam FWS, Wu LSH. Polymorphisms of EHF-ELF5 genomic region and its association with pediatric asthma in the Taiwanese population. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2014; 49:879-884. [PMID: 25648666 DOI: 10.1016/j.jmii.2014.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 11/04/2014] [Accepted: 11/29/2014] [Indexed: 11/27/2022]
Abstract
BACKGROUND The EHF and ELF5 genes, located on chromosome 11p and linked to asthma phenotypes, are high-potential candidate genes conferring asthma susceptibility. The purpose of this study was to investigate the genetic association among single nucleotide polymorphisms (SNPs) of EHF and ELF5, and their relationship with asthma in the Taiwanese population. METHODS We selected and performed genotyping on 16 SNPs that encompass the genomic region of EHF and ELF5 in Taiwanese children with or without asthma. A total of 1983 children, 523 in the test group and 619 and 842 in two validation groups, were recruited for this study. RESULTS The SNP rs3910901, located in the 5' upstream region of ELF5, was found to have a weak association (p = 0.043) with asthma in the odds ratio analysis. The genotype distribution was similar in all comparison groups, but the CC genotype was more frequent in asthma patients. Logistic regression adjusted allergy comorbidity showed obviously diluted association. CONCLUSION The results indicated that SNP rs3910901 may have a minor impact on pediatric asthma in the Taiwanese population.
Collapse
Affiliation(s)
- Jiu-Yao Wang
- Department of Pediatrics and Institute of Molecular Medicine, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Shyh-Dar Shyur
- Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan
| | - Frada Wei-Sam Lam
- Division of Research Development, Vita Genomics Inc., Taipei, Taiwan
| | | |
Collapse
|
21
|
Panagopoulos I, Gorunova L, Davidson B, Heim S. Novel TNS3-MAP3K3 and ZFPM2-ELF5 fusion genes identified by RNA sequencing in multicystic mesothelioma with t(7;17)(p12;q23) and t(8;11)(q23;p13). Cancer Lett 2014; 357:502-9. [PMID: 25484136 DOI: 10.1016/j.canlet.2014.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/30/2014] [Accepted: 12/01/2014] [Indexed: 01/08/2023]
Abstract
Multicystic mesothelioma is a rare disease of unknown etiology and pathogenesis. Nothing has been known about the cytogenetic and molecular genetic features of these tumors. Here we present the first cytogenetically analyzed multicystic mesothelioma with the karyotype 46,XX,t(7;17)(p13;q23),t(8;11)(q23;p13). RNA-sequencing showed that the t(7;17)(p13;q23) generated a chimeric TNS3-MAP3K3 gene, which codes for a chimeric protein kinase, as well as the reciprocal MAP3K3-TNS3 in which the region of TNS3 coding for the SH2_Tensin_like region and the tensin phosphotyrosine-binding domain is under the control of the MAP3K3 promoter. The other translocation, t(8;11)(q23;p13), generated a chimeric ZFPM2-ELF5 gene which codes for a chimeric transcription factor in which the first 40 amino acids of ELF5 are replaced by the first 100 amino acids of ZFPM2. RT-PCR together with Sanger sequencing verified the presence of the above-mentioned fusion transcripts. The finding of acquired clonal chromosome abnormalities in cells cultured from the lesion and the presence of the TNS3-MAP3K3 chimeric protein kinase and the ZFPM2-ELF5 chimeric transcription factor confirm the neoplastic nature of multicystic mesothelioma.
Collapse
MESH Headings
- Adult
- Base Sequence
- Chromosome Banding
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 17/genetics
- Chromosomes, Human, Pair 7/genetics
- Chromosomes, Human, Pair 8/genetics
- DNA-Binding Proteins/genetics
- Diagnosis, Differential
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- In Situ Hybridization, Fluorescence
- Karyotype
- MAP Kinase Kinase Kinase 3/genetics
- Mesothelioma, Cystic/diagnosis
- Mesothelioma, Cystic/genetics
- Mesothelioma, Cystic/surgery
- Microfilament Proteins/genetics
- Molecular Sequence Data
- Oncogene Proteins, Fusion/genetics
- Proto-Oncogene Proteins c-ets/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, RNA/methods
- Tensins
- Transcription Factors/genetics
- Translocation, Genetic
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, PO Box 49534, Nydalen, NO-0424, Oslo 0310, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Ludmila Gorunova
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, PO Box 49534, Nydalen, NO-0424, Oslo 0310, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ben Davidson
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, PO Box 49534, Nydalen, NO-0424, Oslo 0310, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
22
|
Takayama M, Miyatake K, Nishida E. Identification and characterization of retinoic acid-responsive genes in mouse kidney development. Genes Cells 2014; 19:637-49. [PMID: 24962468 DOI: 10.1111/gtc.12163] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 05/20/2014] [Indexed: 12/12/2022]
Abstract
Retinoic acid (RA) signaling regulates a variety of developmental processes through controlling the expression of numerous genes. Here, we have identified and characterized RA-responsive genes in mouse kidney development. Analysis of isolated embryonic kidneys cultured in the presence and absence of RA identified 33 candidates of RA-responsive genes. Most of these candidate genes were down-regulated by treatment with the RA receptor antagonist. Many of them have potential binding sites for Elf5, one of the RA-responsive genes, in their promoter region. Whole-mount in situ hybridization showed that specific expression of Elf5 in the ureteric trunk depends on RA. RA-dependent expression in the ureteric trunk was also showed for the sodium channel subunit Scnn1b, which has been shown to be the marker gene of the collecting duct. In contrast, the expression of Ecm1, Tnfsf13b and IL-33 was detected in the stromal mesenchymal cells. Both Tnfsf13b and IL-33 were previously shown to cause nuclear factor κB (NF-κB) activation. We have showed that the inhibition of NF-κB signaling with specific inhibitors suppresses branching morphogenesis of the ureteric bud. Our study thus identifies and characterizes RA-dependent up-regulated genes in kidney development, and suggests an involvement of NF-κB signaling in the branching morphogenesis.
Collapse
Affiliation(s)
- Mami Takayama
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | | | | |
Collapse
|
23
|
Findlay VJ, LaRue AC, Turner DP, Watson PM, Watson DK. Understanding the role of ETS-mediated gene regulation in complex biological processes. Adv Cancer Res 2014; 119:1-61. [PMID: 23870508 DOI: 10.1016/b978-0-12-407190-2.00001-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ets factors are members of one of the largest families of evolutionarily conserved transcription factors, regulating critical functions in normal cell homeostasis, which when perturbed contribute to tumor progression. The well-documented alterations in ETS factor expression and function during cancer progression result in pleiotropic effects manifested by the downstream effect on their target genes. Multiple ETS factors bind to the same regulatory sites present on target genes, suggesting redundant or competitive functions. The anti- and prometastatic signatures obtained by examining specific ETS regulatory networks will significantly improve our ability to accurately predict tumor progression and advance our understanding of gene regulation in cancer. Coordination of multiple ETS gene functions also mediates interactions between tumor and stromal cells and thus contributes to the cancer phenotype. As such, these new insights may provide a novel view of the ETS gene family as well as a focal point for studying the complex biological control involved in tumor progression. One of the goals of molecular biology is to elucidate the mechanisms that contribute to the development and progression of cancer. Such an understanding of the molecular basis of cancer will provide new possibilities for: (1) earlier detection, as well as better diagnosis and staging of disease; (2) detection of minimal residual disease recurrences and evaluation of response to therapy; (3) prevention; and (4) novel treatment strategies. Increased understanding of ETS-regulated biological pathways will directly impact these areas.
Collapse
Affiliation(s)
- Victoria J Findlay
- Department of Pathology and Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | | | | |
Collapse
|
24
|
Crosstalk between breast cancer stem cells and metastatic niche: emerging molecular metastasis pathway? Tumour Biol 2013; 34:2019-30. [PMID: 23686802 DOI: 10.1007/s13277-013-0831-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 05/01/2013] [Indexed: 12/21/2022] Open
Abstract
Metastatic colonization represents the final step of metastasis, and is the major cause of cancer mortality. Metastasis as an "inefficient" process requires the right population of tumor cells in a suitable microenvironment to form secondary tumors. Cancer stem cells are the only capable population of tumor cells to progress to overt metastasis. On the other hand, the occurrence of appropriate microenvironmental conditions within the target tissue would be critical for metastasis formation. Metastatic niche seems to be the specialized microenvironment to support tumor initiating cells at the distant organ. Master regulators not only determine cancer stem cell state, but also may have regulatory roles in metastatic niche elements. Meanwhile, both cancer stem cell and metastatic niche may function like two sides of the metastatic coin. Hypoxia inducible factors have multiple roles in regulation of both sides of this coin. TGF-β superfamily, also, have been considered as master regulators of epithelial to mesenchymal transition and metastasis and may play crucial roles in regulation of metastatic niche as well. In this regard, we hypothesize the presence of a possible emerging molecular pathway in the biological process of breast cancer metastasis. In this process, non-Smad TGF-β-induced metastasis connects cancer stem cell and metastatic niche formation through a central path, "Metastasis Pathway".
Collapse
|
25
|
ELF5 suppresses estrogen sensitivity and underpins the acquisition of antiestrogen resistance in luminal breast cancer. PLoS Biol 2012; 10:e1001461. [PMID: 23300383 PMCID: PMC3531499 DOI: 10.1371/journal.pbio.1001461] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 11/14/2012] [Indexed: 12/22/2022] Open
Abstract
The transcription factor ELF5 is responsible for gene expression patterning underlying molecular subtypes of breast cancer and may mediate acquired resistance to anti-estrogen therapy. We have previously shown that during pregnancy the E-twenty-six (ETS) transcription factor ELF5 directs the differentiation of mammary progenitor cells toward the estrogen receptor (ER)-negative and milk producing cell lineage, raising the possibility that ELF5 may suppress the estrogen sensitivity of breast cancers. To test this we constructed inducible models of ELF5 expression in ER positive luminal breast cancer cells and interrogated them using transcript profiling and chromatin immunoprecipitation of DNA followed by DNA sequencing (ChIP-Seq). ELF5 suppressed ER and FOXA1 expression and broadly suppressed ER-driven patterns of gene expression including sets of genes distinguishing the luminal molecular subtype. Direct transcriptional targets of ELF5, which included FOXA1, EGFR, and MYC, accurately classified a large cohort of breast cancers into their intrinsic molecular subtypes, predicted ER status with high precision, and defined groups with differential prognosis. Knockdown of ELF5 in basal breast cancer cell lines suppressed basal patterns of gene expression and produced a shift in molecular subtype toward the claudin-low and normal-like groups. Luminal breast cancer cells that acquired resistance to the antiestrogen Tamoxifen showed greatly elevated levels of ELF5 and its transcriptional signature, and became dependent on ELF5 for proliferation, compared to the parental cells. Thus ELF5 provides a key transcriptional determinant of breast cancer molecular subtype by suppression of estrogen sensitivity in luminal breast cancer cells and promotion of basal characteristics in basal breast cancer cells, an action that may be utilised to acquire antiestrogen resistance. The molecular subtypes of breast cancer are distinguished by their intrinsic patterns of gene expression and can be used to group patients with different prognoses and treatment options. Although molecular subtyping tests are currently under evaluation, some of them are already in use to better tailor therapy for patients; however, the molecular events that are responsible for these different patterns of gene expression in breast cancer are largely undefined. The elucidation of their mechanistic basis would improve our understanding of the disease process and enhance the chances of developing better predictive and prognostic markers, new therapies, and interventions to overcome resistance to existing therapies. Here, we show that the transcription factor ELF5 is responsible for much of the patterning of gene expression that distinguishes the breast cancer subtypes. Additionally, our data suggest that ELF5 may also be involved in the development of resistance to therapies designed to stop estrogen stimulation of breast cancer. These effects of ELF5 appear to represent a partial carryover into breast cancer of its normal role in the mammary gland, where it is responsible for the development of milk-producing structures during pregnancy.
Collapse
|
26
|
Elf5 inhibits the epithelial-mesenchymal transition in mammary gland development and breast cancer metastasis by transcriptionally repressing Snail2. Nat Cell Biol 2012; 14:1212-22. [PMID: 23086238 PMCID: PMC3500637 DOI: 10.1038/ncb2607] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 09/20/2012] [Indexed: 12/28/2022]
Abstract
The epithelial-mesenchymal transition (EMT) is a complex process that occurs during organogenesis and in cancer metastasis. Despite recent progress, the molecular pathways connecting the physiological and pathological functions of EMT need to be better defined. Here we show that the transcription factor Elf5, a key regulator of mammary gland alveologenesis, controls EMT in both mammary gland development and metastasis. We uncovered this role for Elf5 through analyses of Elf5 conditional knockout animals, various in vitro and in vivo models of EMT and metastasis, an MMTV-neu transgenic model of mammary tumour progression and clinical breast cancer samples. Furthermore, we demonstrate that Elf5 suppresses EMT by directly repressing the transcription of Snail2, a master regulator of mammary stem cells and a known inducer of EMT. These findings establish Elf5 not only as a key cell lineage regulator during normal mammary gland development, but also as a suppressor of EMT and metastasis in breast cancer.
Collapse
|
27
|
Chakrabarti R, Wei Y, Romano RA, DeCoste C, Kang Y, Sinha S. Elf5 regulates mammary gland stem/progenitor cell fate by influencing notch signaling. Stem Cells 2012; 30:1496-508. [PMID: 22523003 DOI: 10.1002/stem.1112] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The transcription factor E74-like factor 5 (Elf5) functions downstream of the prolactin receptor signaling pathway and plays an important role in mammary gland development. Using conditional mouse knockouts, we have previously shown that Elf5-null mammary glands exhibit a complete failure of alveologenesis during pregnancy. The Elf5-null developmental phenotype is mediated through alteration in the expression of several critical genes involved in alveologenesis, particularly those belonging to the JAK/STAT pathway. Here, we demonstrate that in addition to regulating terminal differentiation of alveolar cells, Elf5 also plays a critical role in determining cell fate and in regulating the stem/progenitor function of the mammary epithelium. Targeted deletion of Elf5 in the mammary glands leads to accumulation of cell types with dual luminal/basal properties such as coexpression of K8 and K14 and an increase in CD61(+) luminal progenitor population during pregnancy. Further interrogation suggests that the abnormal increase in K14(+) K8(+) cells may represent the CD61(+) luminal progenitors blocked in differentiation. Remarkably, Elf5 deficiency in mammary epithelium also triggers an increase of adult mammary stem activity as evidenced by the accumulation of mammary stem cell (MaSC)-enriched cell population in both pregnant and virgin mice and further confirmed by mammosphere and transplantation assays. Additional support for this phenotype comes from the enriched MaSC gene signature based on transcriptomic analysis of the Elf5-null mammary gland. Finally, our biochemical studies suggest that Elf5 loss leads to hyperactivation of the Notch signaling pathway, which might constitute in part, the underlying molecular mechanism for the altered cell lineage decisions in Elf5-null mammary epithelial cells.
Collapse
Affiliation(s)
- Rumela Chakrabarti
- Department of Molecular Biology, Princeton University, Princeton, NJ 08554, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Lee HJ, Ormandy CJ. Elf5, hormones and cell fate. Trends Endocrinol Metab 2012; 23:292-8. [PMID: 22464677 DOI: 10.1016/j.tem.2012.02.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 02/16/2012] [Accepted: 02/22/2012] [Indexed: 01/05/2023]
Abstract
Recent elucidation of the stem and progenitor cell hierarchies that operate during normal tissue and organ development has provided a foundation for the development of new insights into the disease process. These hierarchies are established by genetic mechanisms, which specify and determine cell fate and act as cell-clade gatekeepers, upon which all multicellular organisms depend for viability. Perturbation of this gatekeeper function characterizes developmentally based diseases, such as cancer. Here, the emerging gatekeeper and master regulatory roles of the ETS transcription factor Elf5 in several diverse developmental scenarios is reviewed, and how this function intersects with hormonal and growth factor mediated regulation of these processes is shown.
Collapse
Affiliation(s)
- Heather J Lee
- Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria St., Darlinghurst, NSW 2010, Australia
| | | |
Collapse
|
29
|
Multiple roles of the epithelium-specific ETS transcription factor, ESE-1, in development and disease. J Transl Med 2012; 92:320-30. [PMID: 22157719 DOI: 10.1038/labinvest.2011.186] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The E26 transformation-specific (ETS) family of transcription factors comprises of 27 and 26 members in humans and mice, respectively, which are known to regulate many different biological processes, including cell proliferation, cell differentiation, embryonic development, neoplasia, hematopoiesis, angiogenesis, and inflammation. The epithelium-specific ETS transcription factor-1 (ESE-1) is a physiologically important ETS transcription factor, which has been shown to play a role in the pathogenesis of various diseases, and was originally characterized as having an epithelial-restricted expression pattern, thus placing it within the epithelium-specific ETS subfamily. Despite a large body of published work on ETS biology, much remains to be learned about the precise functions of ESE-1 and other epithelium-specific ETS factors in regulating diverse disease processes. Clues as to the specific function of ESE-1 in the setting of various diseases can be obtained from studies aimed at examining the expression of putative target genes regulated by ESE-1. Thus, this review will focus primarily on the various roles of ESE-1 in different pathophysiological processes, including regulation of epithelial cell differentiation during both intestinal development and lung regeneration; regulation of dendritic cell-driven T-cell differentiation during allergic airway inflammation; regulation of mammary gland development and breast cancer; and regulation of the effects of inflammatory stimuli within the setting of synovial joint and vascular inflammation. Understanding the exact mechanisms by which ESE-1 regulates these processes can have important implications for the treatment of a wide range of diseases.
Collapse
|
30
|
Lapinskas EJ, Svobodova S, Davis ID, Cebon J, Hertzog PJ, Pritchard MA. The Ets transcription factor ELF5 functions as a tumor suppressor in the kidney. Twin Res Hum Genet 2011; 14:316-22. [PMID: 21787113 DOI: 10.1375/twin.14.4.316] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Renal cell carcinoma is an important clinical disease with poorly understood etiology. ELF5 is an epithelial-specific member of the Ets family of transcription factors, characterized by the 80 amino acid Ets domain that binds the purine-rich GGAA/T Ets motif found in the promoter regions of a variety of genes. Since ELF5 is highly expressed in kidney and has been postulated to function as a tumor suppressor, at least in the context of the breast, we investigated its role in kidney cancer. In renal cell carcinoma ELF5 expression was consistently decreased in tumor samples versus normal. ELF5 mRNA was decreased in 94% of lesions tested and ELF5 protein was undetectable in 40/40 kidney-derived carcinomas. Re-expression of the ELF5 gene in 786-O renal carcinoma cells suppressed their tumorigenic capacity in vitro and in vivo. This work is the first to suggest that ELF5 has tumor suppressor activity in the kidney.
Collapse
Affiliation(s)
- Erika J Lapinskas
- Centre for Functional Genomics and Human Disease, Monash Institute of Medical Research, Monash University, Australia
| | | | | | | | | | | |
Collapse
|
31
|
Mhawech-Fauceglia P, Wang D, Kesterson J, Clark K, Monhollen L, Odunsi K, Lele S, Liu S. Microarray analysis reveals distinct gene expression profiles among different tumor histology, stage and disease outcomes in endometrial adenocarcinoma. PLoS One 2010; 5:e15415. [PMID: 21079744 DOI: 10.1371/journal.pone.0015415.s001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 09/27/2010] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Endometrial cancer is the most common gynecologic malignancy in developed countries and little is known about the underlying mechanism of stage and disease outcomes. The goal of this study was to identify differentially expressed genes (DEG) between late vs. early stage endometrioid adenocarcinoma (EAC) and uterine serous carcinoma (USC), as well as between disease outcomes in each of the two histological subtypes. METHODOLOGY/PRINCIPAL FINDING Gene expression profiles of 20 cancer samples were analyzed (EAC = 10, USC = 10) using the human genome wide illumina bead microarrays. There was little overlap in the DEG sets between late vs. early stages in EAC and USC, and there was an insignificant overlap in DEG sets between good and poor prognosis in EAC and USC. Remarkably, there was no overlap between the stage-derived DEGs and the prognosis-derived DEGs for each of the two histological subtypes. Further functional annotation of differentially expressed genes showed that the composition of enriched function terms were different among different DEG sets. Gene expression differences for selected genes of various stages and outcomes were confirmed by qRT-PCR with a high validation rate. CONCLUSION This data, although preliminary, suggests that there might be involvement of distinct groups of genes in tumor progression (late vs. early stage) in each of the EAC and USC. It also suggests that these genes are different from those involved in tumor outcome (good vs. poor prognosis). These involved genes, once clinically verified, may be important for predicting tumor progression and tumor outcome.
Collapse
|
32
|
Mhawech-Fauceglia P, Wang D, Kesterson J, Clark K, Monhollen L, Odunsi K, Lele S, Liu S. Microarray analysis reveals distinct gene expression profiles among different tumor histology, stage and disease outcomes in endometrial adenocarcinoma. PLoS One 2010. [PMID: 21079744 PMCID: PMC2975707 DOI: 10.1371/journal.pone.0015415] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Endometrial cancer is the most common gynecologic malignancy in developed
countries and little is known about the underlying mechanism of stage and
disease outcomes. The goal of this study was to identify differentially
expressed genes (DEG) between late vs. early stage endometrioid
adenocarcinoma (EAC) and uterine serous carcinoma (USC), as well as between
disease outcomes in each of the two histological subtypes. Methodology/Principal Finding Gene expression profiles of 20 cancer samples were analyzed
(EAC = 10, USC = 10) using the
human genome wide illumina bead microarrays. There was little overlap in the
DEG sets between late vs. early stages in EAC and USC, and there was an
insignificant overlap in DEG sets between good and poor prognosis in EAC and
USC. Remarkably, there was no overlap between the stage-derived DEGs and the
prognosis-derived DEGs for each of the two histological subtypes. Further
functional annotation of differentially expressed genes showed that the
composition of enriched function terms were different among different DEG
sets. Gene expression differences for selected genes of various stages and
outcomes were confirmed by qRT-PCR with a high validation rate. Conclusion This data, although preliminary, suggests that there might be involvement of
distinct groups of genes in tumor progression (late vs. early stage) in each
of the EAC and USC. It also suggests that these genes are different from
those involved in tumor outcome (good vs. poor prognosis). These involved
genes, once clinically verified, may be important for predicting tumor
progression and tumor outcome.
Collapse
Affiliation(s)
- Paulette Mhawech-Fauceglia
- Department of Pathology, Roswell Park Cancer
Institute, Buffalo, New York, United States of America
- * E-mail: (PMF); (SL)
| | - Dan Wang
- Department of Biostatistics, Roswell Park
Cancer Institute, Buffalo, New York, United States of America
| | - Joshua Kesterson
- Department of Gynecology-Oncology Surgery,
Roswell Park Cancer Institute, Buffalo, New York, United States of
America
| | - Kimberly Clark
- Department of Cancer Genetics, Roswell Park
Cancer Institute, Buffalo, New York, United States of America
| | - Laketa Monhollen
- Department of Pathology, Roswell Park Cancer
Institute, Buffalo, New York, United States of America
| | - Kunle Odunsi
- Department of Gynecology-Oncology Surgery,
Roswell Park Cancer Institute, Buffalo, New York, United States of
America
| | - Shashikant Lele
- Department of Gynecology-Oncology Surgery,
Roswell Park Cancer Institute, Buffalo, New York, United States of
America
| | - Song Liu
- Department of Biostatistics, Roswell Park
Cancer Institute, Buffalo, New York, United States of America
- * E-mail: (PMF); (SL)
| |
Collapse
|
33
|
Escamilla-Hernandez R, Chakrabarti R, Romano RA, Smalley K, Zhu Q, Lai W, Halfon MS, Buck MJ, Sinha S. Genome-wide search identifies Ccnd2 as a direct transcriptional target of Elf5 in mouse mammary gland. BMC Mol Biol 2010; 11:68. [PMID: 20831799 PMCID: PMC2949602 DOI: 10.1186/1471-2199-11-68] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 09/10/2010] [Indexed: 12/13/2022] Open
Abstract
Background The ETS transcription factor Elf5 (also known as ESE-2) is highly expressed in the mammary gland and plays an important role in its development and differentiation. Indeed studies in mice have illustrated an essential role for Elf5 in directing alveologenesis during pregnancy. Although the molecular mechanisms that underlie the developmental block in Elf5 null mammary glands are beginning to be unraveled, this investigation has been hampered by limited information about the identity of Elf5-target genes. To address this shortcoming, in this study we have performed ChIP-cloning experiments to identify the specific genomic segments that are occupied by Elf5 in pregnant mouse mammary glands. Results Sequencing and genomic localization of cis-regulatory regions bound by Elf5 in vivo has identified several potential target genes covering broad functional categories. A subset of these target genes demonstrates higher expression levels in Elf5-null mammary glands suggesting a repressive functional role for this transcription factor. Here we focus on one putative target of Elf5, the Ccnd2 gene that appeared in our screen. We identify a novel Elf5-binding segment upstream of the Ccnd2 gene and demonstrate that Elf5 can transcriptionally repress Ccnd2 by directly binding to the proximal promoter region. Finally, using Elf5-null mammary epithelial cells and mammary glands, we show that loss of Elf5 in vivo leads to up regulation of Ccnd2 and an altered expression pattern in luminal cells. Conclusions Identification of Elf5-targets is an essential first step in elucidating the transcriptional landscape that is shaped by this important regulator. Our studies offer new toolbox in examining the biological role of Elf5 in mammary gland development and differentiation.
Collapse
Affiliation(s)
- Rosalba Escamilla-Hernandez
- Department of Biochemistry, State University of New York at Buffalo, Center for Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Thakkar AD, Raj H, Chakrabarti D, Ravishankar, Saravanan N, Muthuvelan B, Balakrishnan A, Padigaru M. Identification of gene expression signature in estrogen receptor positive breast carcinoma. BIOMARKERS IN CANCER 2010; 2:1-15. [PMID: 24179381 PMCID: PMC3783308 DOI: 10.4137/bic.s3793] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A significant group of patient with estrogen receptor (ER) α positive breast tumors fails to appreciably respond to endocrine therapy. An increased understanding of the molecular basis of estrogen-mediated signal transduction and resultant gene expression may lead to novel strategies for treating breast cancer. In this study, we sought to identify the dysregulated genes in breast tumors related to ERα status. Microarray analyses of 31 tumor samples showed 108 genes differentially expressed in ERα (+) and ERα (−) primary breast tumors. Further analyses of gene lists indicated that a significant number of dysregulated genes were involved in mRNA transcription and cellular differentiation. The majority of these genes were found to have promoter-binding sites for E74-like factor 5 (ELF5; 54.6% genes), E2F transcription factor 1 (E2F1; 22.2% genes), and nuclear transcription factor Y alpha (NFYA; 32.4% genes). Six candidate genes (NTN4, SLC7A8, MLPH, ENPP1, LAMB2, and PLAT) with differential expression were selected for further validation studies using RT-qPCR (76 clinical specimen) and immunohistochemistry (48 clinical specimen). Our studies indicate significant over-expression of all the six genes in ERα (+) breast tumors as compared to ERα (−) breast tumors. In vitro studies using T-47D breast cancer cell line confirmed the estrogen dependant expression of four of the above six genes (SLC7A8, ENPP1, LAMB2, and PLAT). Collectively, our study provides further insights into the molecular basis of estrogen-dependent breast cancer and identifies “candidate biomarkers” that could be useful for predicting endocrine responsiveness.
Collapse
Affiliation(s)
- Arvind D Thakkar
- Department of Biomarker Discovery, Piramal Life Sciences Limited, Mumbai, Maharashtra, India
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Insulin, a key regulator of hormone responsive milk protein synthesis during lactogenesis in murine mammary explants. Funct Integr Genomics 2009; 10:87-95. [DOI: 10.1007/s10142-009-0140-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 08/27/2009] [Accepted: 09/11/2009] [Indexed: 11/25/2022]
|
36
|
Choi YS, Chakrabarti R, Escamilla-Hernandez R, Sinha S. Elf5 conditional knockout mice reveal its role as a master regulator in mammary alveolar development: failure of Stat5 activation and functional differentiation in the absence of Elf5. Dev Biol 2009; 329:227-41. [PMID: 19269284 DOI: 10.1016/j.ydbio.2009.02.032] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 02/20/2009] [Accepted: 02/20/2009] [Indexed: 01/21/2023]
Abstract
The transcription factor Elf5 plays an important role in mammary gland development. However, because of the embryonic lethality of Elf5 straight knockout mice, prior studies have been limited to experiments with Elf5 haploinsufficient animals, overexpression systems or transplants. Here, we have utilized K14-Cre to generate mammary-gland specific Elf5 conditional knockout mice. During pregnancy, Elf5-null mammary epithelium completely failed to initiate alveologenesis, and a characteristic of virgin ductal epithelial cells persisted postpartum. We demonstrate that the loss of Elf5 leads to the absence of alveolar secretory markers confirming previous published data. Interestingly, the developmental block due to a lack of Elf5 could not be restored by multiple gestations. Elf5-null mammary epithelial cells also display disorganized cell structures as evident by altered cell polarities, which might be the cause for collapsed lumina. We observe reduced levels of Stat5 and attenuated Stat5 activity as measured by p-Stat5 levels both in Elf5-null mammary glands as well as cultured mammary epithelial cells. This data suggests that the failure of alveolar and lactogenic differentiation due to the loss of Elf5 is mediated in part due to impaired Stat5 activity. In support of this hypothesis, we show by ChIP experiments that Stat5a promoter contains a conserved Elf5-binding site that is occupied by Elf5 in mammary glands. Mammary epithelia lacking Elf5 exhibited downregulation of several other critical genes involved in alveologenesis, suggesting Elf5 as a master regulator in alveolar development. We propose a model for Elf5-mediated alveolar development, in which Elf5 regulates the expression of key mediators of the PrlR/Jak2/Stat5 signaling pathway.
Collapse
Affiliation(s)
- Yeon Sook Choi
- Department of Biochemistry, State University of New York at Buffalo, Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203, USA
| | | | | | | |
Collapse
|
37
|
Regulation of epithelium-specific Ets-like factors ESE-1 and ESE-3 in airway epithelial cells: potential roles in airway inflammation. Cell Res 2008; 18:649-63. [PMID: 18475289 DOI: 10.1038/cr.2008.57] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Airway inflammation is the hallmark of many respiratory disorders, such as asthma and cystic fibrosis. Changes in airway gene expression triggered by inflammation play a key role in the pathogenesis of these diseases. Genetic linkage studies suggest that ESE-2 and ESE-3, which encode epithelium-specific Ets-domain-containing transcription factors, are candidate asthma susceptibility genes. We report here that the expression of another member of the Ets family transcription factors ESE-1, as well as ESE-3, is upregulated by the inflammatory cytokines interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) in bronchial epithelial cell lines. Treatment of these cells with IL-1beta and TNF-alpha resulted in a dramatic increase in mRNA expression for both ESE-1 and ESE-3. We demonstrate that the induced expression is mediated by activation of the transcription factor NF-kappaB. We have characterized the ESE-1 and ESE-3 promoters and have identified the NF-kappaB binding sequences that are required for the cytokine-induced expression. In addition, we also demonstrate that ESE-1 upregulates ESE-3 expression and downregulates its own induction by cytokines. Finally, we have shown that in Elf3 (homologous to human ESE-1) knockout mice, the expression of the inflammatory cytokine interleukin-6 (IL-6) is downregulated. Our findings suggest that ESE-1 and ESE-3 play an important role in airway inflammation.
Collapse
|
38
|
Oakes SR, Naylor MJ, Asselin-Labat ML, Blazek KD, Gardiner-Garden M, Hilton HN, Kazlauskas M, Pritchard MA, Chodosh LA, Pfeffer PL, Lindeman GJ, Visvader JE, Ormandy CJ. The Ets transcription factor Elf5 specifies mammary alveolar cell fate. Genes Dev 2008; 22:581-6. [PMID: 18316476 DOI: 10.1101/gad.1614608] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hormonal cues regulate mammary development, but the consequent transcriptional changes and cell fate decisions are largely undefined. We show that knockout of the prolactin-regulated Ets transcription factor Elf5 prevented formation of the secretory epithelium during pregnancy. Conversely, overexpression of Elf5 in an inducible transgenic model caused alveolar differentiation and milk secretion in virgin mice, disrupting ductal morphogenesis. CD61+ luminal progenitor cells accumulated in Elf5-deficient mammary glands and were diminished in glands with Elf5 overexpression. Thus Elf5 specifies the differentiation of CD61+ progenitors to establish the secretory alveolar lineage during pregnancy, providing a link between prolactin, transcriptional events, and alveolar development.
Collapse
Affiliation(s)
- Samantha R Oakes
- Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Metzger DE, Stahlman MT, Shannon JM. Misexpression of ELF5 disrupts lung branching and inhibits epithelial differentiation. Dev Biol 2008; 320:149-60. [PMID: 18544451 DOI: 10.1016/j.ydbio.2008.04.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 04/29/2008] [Accepted: 04/30/2008] [Indexed: 12/30/2022]
Abstract
ELF5, an Ets family transcription factor found exclusively in epithelial cells, is expressed in the distal lung epithelium during embryogenesis, then becomes restricted to proximal airways at the end of gestation and postnatally. To test the hypothesis that ELF5 represses distal epithelial differentiation, we generated a transgenic mouse model in which a doxycycline inducible HA-tagged mouse Elf5 transgene was placed under the control of the lung epithelium-specific human SFTPC promoter. We found that expressing high levels of ELF5 during early lung development disrupted branching morphogenesis and produced a dilated epithelium. The effects of ELF5 on morphogenesis were stage-dependent, since inducing the transgene on E16.5 had no effect on branching. ELF5 reduced expression of the distal lung epithelial differentiation markers Erm, Napsa and Sftpc, and type II cell ultrastructural differentiation was immature. ELF5 overexpression did not induce the proximal airway epithelial markers Ccsp and Foxj1, but did induce expression of p63, a marker of basal cells in the trachea and esophagus. High ELF5 levels also induced the expression of genes found in other endodermal epithelia but not normally associated with the lung. These results suggest that precise levels of ELF5 regulate the specification and differentiation of epithelial cells in the lung.
Collapse
Affiliation(s)
- David E Metzger
- Division of Pulmonary Biology, Cincinnati Children's Hosptial Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | | | | |
Collapse
|
40
|
Oakes SR, Rogers RL, Naylor MJ, Ormandy CJ. Prolactin regulation of mammary gland development. J Mammary Gland Biol Neoplasia 2008; 13:13-28. [PMID: 18219564 DOI: 10.1007/s10911-008-9069-5] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2007] [Accepted: 01/02/2008] [Indexed: 10/22/2022] Open
Abstract
Mammary morphogenesis is orchestrated with other reproductive events by pituitary-driven changes to the systemic hormone environment, initiating the formation of a mammary ductal network during puberty and the addition of secretory alveoli during pregnancy. Prolactin is the major driver of development during pregnancy via regulation of ovarian progesterone production (in many species) and direct effects on mammary epithelial cells (in all species). Together these hormones regulate two aspects of development that are the subject of intense interest: (1) a genomic regulatory network that integrates many additional spatial and temporal cues to control gene expression and (2), the activity of a stem and progenitor cell hierarchy. Amalgamation of these two aspects will increase our understanding of cell proliferation and differentiation within the mammary gland, with clear application to our attempts to control breast cancer. Here we focus on providing an over-view of prolactin action during development of the model murine mammary gland.
Collapse
Affiliation(s)
- Samantha R Oakes
- Development group, Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
| | | | | | | |
Collapse
|
41
|
Turner DP, Findlay VJ, Moussa O, Watson DK. Defining ETS transcription regulatory networks and their contribution to breast cancer progression. J Cell Biochem 2008; 102:549-59. [PMID: 17661355 DOI: 10.1002/jcb.21494] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
ETS factors are members of one of the largest families of evolutionarily conserved transcription factors, regulating critical functions in normal cell homeostasis, that when perturbed contribute to tumor progression. The well documented alterations in ETS factor expression and function during breast cancer progression result in pleiotropic effects manifested by the downstream effect on their target genes. Multiple ETS factors bind to the same regulatory sites present on target genes, suggesting redundant or competitive functions. Furthermore, additional events contribute to, or may be necessary for, target gene regulation. In order to advance our understanding of the ETS-dependent regulation of breast cancer progression and metastasis, this prospect article puts forward a model for examining the effects of simultaneous expression of multiple transcription factors on the transcriptome of non-metastatic and metastatic breast cancer. Compared to existing RNA profiles defined following expression of individual transcription factors, the anti- and pro-metastatic signatures obtained by examining specific ETS regulatory networks will significantly improve our ability to accurately predict tumor progression and advance our understanding of gene regulation in cancer. Coordination of multiple ETS gene functions also mediates interactions between tumor and stromal cells and thus contributes to the cancer phenotype. As such, these new insights may provide a novel view of the ETS gene family as well as a focal point for studying the complex biological control involved in tumor progression.
Collapse
Affiliation(s)
- David P Turner
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | |
Collapse
|
42
|
Qian Y, Zhang J, Yan B, Chen X. DEC1, a basic helix-loop-helix transcription factor and a novel target gene of the p53 family, mediates p53-dependent premature senescence. J Biol Chem 2007; 283:2896-905. [PMID: 18025081 DOI: 10.1074/jbc.m708624200] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cellular senescence plays an important role in tumor suppression. p53 tumor suppressor has been reported to be crucial in cellular senescence. However, the underlying mechanism is poorly understood. In this regard, a cDNA microarray assay was performed to identify p53 targets involved in senescence. Among the many candidates is DEC1, a basic helix-loop-helix transcription factor that has been recently shown to be up-regulated in K-ras-induced premature senescence. However, it is not clear whether DEC1 is capable of inducing senescence. Here, we found that DEC1 is a novel target gene of the p53 family and mediates p53-dependent premature senescence. Specifically, we showed that DEC1 is induced by the p53 family and DNA damage in a p53-dependent manner. We also found that the p53 family proteins bind to, and activate, the promoter of the DEC1 gene. In addition, we showed that overexpression of DEC1 induces G(1) arrest and promotes senescence. Moreover, we found that targeting endogenous DEC1 attenuates p53-mediated premature senescence in response to DNA damage. Furthermore, overexpression of DEC1 induces cellular senescence in p53-knockdown cells, albeit to a lesser extent. Finally, we showed that DEC1-induced senescence is p21-independent. Taken together, our data provided strong evidence that DEC1 is one of the effectors downstream of p53 to promote premature senescence.
Collapse
Affiliation(s)
- Yingjuan Qian
- University of California-Davis, Center for Comparative Oncology, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
43
|
Lei W, Jaramillo RJ, Harrod KS. Transactivation of lung lysozyme expression by Ets family member ESE-1. Am J Physiol Lung Cell Mol Physiol 2007; 293:L1359-68. [PMID: 17905856 DOI: 10.1152/ajplung.00130.2007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Epithelial-specific Ets (ESE) transcription factors, consisting of ESE-1, ESE-2, and ESE-3, are constitutively expressed in distinct epithelia of mucosal tissues, including the lung. Each ESE member exhibits alternative splicing and yields at least two isoforms (a and b) with transcriptional targets largely unidentified. The studies described herein define a novel role for ESE transcription factors in transactivation of the human lysozyme gene ( LYZ), an essential component of innate defense in lung epithelia. Of the six ESE isoforms, ESE-1a and ESE-1b transactivated LYZ promoter in reporter gene assays, whereas only ESE-1b dramatically upregulated transcription of endogenous LYZ in both nonpulmonary and pulmonary epithelial cells. Importantly, ESE-1a and ESE-1b could transactivate the LYZ promoter in cultured primary airway epithelial cells. ESE-2 and ESE-3 isoforms were unable to substantially transactivate the lysozyme promoter or upregulate transcription of endogenous LYZ. Two functional consensus Ets sites located in the proximal 130-bp LYZ promoter were responsive to ESE-1b as identified by site-directed mutagenesis and DNA binding assays. Short hairpin RNA attenuation of endogenous ESE-1b mRNA levels in lung epithelia resulted in decreased LYZ transcription. Furthermore, ESE-1 antibody specifically enriched the 130-bp proximal LYZ promoter in chromatin immunoprecipitation analyses. These findings define a novel role for ESE transcription factors in regulating lung innate defense and suggest distinct regulatory functions for ESE family members.
Collapse
Affiliation(s)
- Wanli Lei
- Infectious Disease Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest Dr. SE, Albuquerque, NM 87108, USA
| | | | | |
Collapse
|
44
|
Choi YS, Cheng J, Segre J, Sinha S. Generation and analysis of Elf5-LacZ mouse: unique and dynamic expression of Elf5 (ESE-2) in the inner root sheath of cycling hair follicles. Histochem Cell Biol 2007; 129:85-94. [DOI: 10.1007/s00418-007-0347-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2007] [Indexed: 01/20/2023]
|
45
|
Metzger DE, Xu Y, Shannon JM. Elf5 is an epithelium-specific, fibroblast growth factor-sensitive transcription factor in the embryonic lung. Dev Dyn 2007; 236:1175-92. [PMID: 17394208 DOI: 10.1002/dvdy.21133] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fibroblast growth factor (FGF) signaling has been shown to be essential for many aspects of normal lung development. To determine epithelial targets of FGF signaling, we cultured embryonic day (E) 11.5 mouse lungs for 24 hr in the presence or absence of the FGF receptor antagonist SU5402, which inhibited branching morphogenesis. Affymetrix gene chip analysis of treated and control epithelia identified several genes regulated by FGF signaling, including Elf5, a member of the Epithelial-specific Ets family of transcription factors. SU5402 reduced Elf5 expression in mesenchyme-free cultures of E12.5 epithelium, demonstrating that the inhibition was direct. In situ hybridization revealed that Elf5 had a dynamic pattern of expression during lung development. We found that expression of Elf5 was induced by FGF7 and FGF10, ligands that primarily bind FGFR2b. To further define the pathways by which FGFs activate Elf5 expression, we cultured E11.5 lung tips in the presence of compounds to inhibit FGF receptors (SU5402), PI3-Kinase/Akt-mediated signaling (LY294002), and MAP Kinase/Erk-mediated signaling (U0126). We found that SU5402 and LY294002 significantly reduced Elf5 expression, whereas U0126 had no effect. LY294002 also reduced Elf5 expression in cultures of purified epithelium. Finally, pAkt was coexpressed with Elf5 in the proximal epithelial airways of E17.5 lungs. These results demonstrate that Elf5 is an FGF-sensitive transcription factor in the lung with a dynamic pattern of expression and that FGF regulation of Elf5 by means of FGFR2b occurs through the PI3-Kinase/Akt pathway.
Collapse
Affiliation(s)
- David E Metzger
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA.
| | | | | |
Collapse
|
46
|
Choi Y, Sinha S. Determination of the consensus DNA-binding sequence and a transcriptional activation domain for ESE-2. Biochem J 2006; 398:497-507. [PMID: 16704374 PMCID: PMC1559455 DOI: 10.1042/bj20060375] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The ESE (epithelium-specific Ets) subfamily of Ets transcription factors plays an important role in regulating gene expression in a variety of epithelial cell types. Although ESE proteins have been shown to bind to regulatory elements of some epithelial genes, the optimal DNA-binding sequence has not been experimentally ascertained for any member of the ESE subfamily of transcription factors. This has made the identification and validation of their targets difficult. We are studying ESE-2 (Elf5), which is highly expressed in epithelial cells of many tissues including skin keratinocytes. Here, we identify the preferred DNA-binding site of ESE-2 by performing CASTing (cyclic amplification and selection of targets) experiments. Our analysis shows that the optimal ESE-2 consensus motif consists of a GGA core and an AT-rich 5'- and 3'-flanking sequences. Mutational and competition experiments demonstrate that the flanking sequences that confer high DNA-binding affinity for ESE-2 show considerable differences from the known consensus DNA-binding sites of other Ets proteins, thus reinforcing the idea that the flanking sequences may impart recognition specificity for Ets proteins. In addition, we have identified a novel isoform of murine ESE-2, ESE-2L, that is generated by use of a hitherto unreported new exon and an alternate promoter. Interestingly, transient transfection assays with an optimal ESE-2 responsive reporter show that both ESE-2 and ESE-2L are weak transactivators. However, similar studies utilizing GAL4 chimaeras of ESE-2 demonstrate that while the DNA-binding ETS (E twenty-six) domain functions as a repressor, the PNT (pointed domain) of ESE-2 can act as a potent transcriptional activation domain. This novel transactivating property of PNT is also shared by ESE-3, another ESE family member. Identification of the ESE-2 consensus site and characterization of the transcriptional activation properties of ESE-2 shed new light on its potential as a regulator of target genes.
Collapse
Affiliation(s)
- Yeon Sook Choi
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14214, U.S.A
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14214, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
47
|
Tummala R, Sinha S. Differentiation-specific transcriptional regulation of the ESE-2 gene by a novel keratinocyte-restricted factor. J Cell Biochem 2006; 97:766-81. [PMID: 16229011 DOI: 10.1002/jcb.20685] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epithelium specific Ets-2 (ESE-2), an epithelium-specific ETS-domain transcription factor, is highly expressed in differentiated keratinocytes. To understand the molecular mechanisms that govern the cell-type and differentiation-specific expression of ESE-2 in keratinocytes, we have focused our studies on the identification and characterization of its cis-regulatory elements. We first performed DNase I hypersensitive site mapping and demonstrated that the promoter region of ESE-2 is in open chromatin conformation in differentiated keratinocytes. Next, we performed transient transfection assays with several 5' serially deleted constructs containing segments of the ESE-2 promoter. These experiments have led to the identification of a short fragment that shows remarkable sequence conservation between several species and harbors most of the transcriptional activity. Interestingly, a high level of transcriptional activity was only observed when the transfected keratinocytes were induced to differentiate by increasing the calcium concentration in the cell-culture medium. To identify the factors that mediate the transcriptional activity, we analyzed this segment by mutational and electrophoretic mobility shift assays (EMSA) experiments. Our studies have identified a critical stretch of nucleotides that is important for both basal as well as calcium responsive reporter activity and that binds to a nuclear factor, keratinocyte restricted factor (KRF). KRF is a novel transcription factor that is restricted to nuclear extracts isolated from keratinocytes and that binds to unique DNA sequences, which do not resemble any known consensus binding motif for transcription factors. Our preliminary experiments shed light on the biochemical nature of KRF and set the stage for future studies in identification of KRF and testing its role in governing ESE-2 gene expression in vivo.
Collapse
Affiliation(s)
- Ramakumar Tummala
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | |
Collapse
|
48
|
Oakes SR, Hilton HN, Ormandy CJ. The alveolar switch: coordinating the proliferative cues and cell fate decisions that drive the formation of lobuloalveoli from ductal epithelium. Breast Cancer Res 2006; 8:207. [PMID: 16677418 PMCID: PMC1557712 DOI: 10.1186/bcr1411] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Massive tissue remodelling occurs within the mammary gland during pregnancy, resulting in the formation of lobuloalveoli that are capable of milk secretion. Endocrine signals generated predominantly by prolactin and progesterone operate the alveolar switch to initiate these developmental events. Here we review the current understanding of the components of the alveolar switch and conclude with an examination of the role of the ets transcription factor Elf5. We propose that Elf5 is a key regulator of the alveolar switch.
Collapse
Affiliation(s)
- Samantha R Oakes
- Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | - Heidi N Hilton
- Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | - Christopher J Ormandy
- Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
49
|
Harris J, Stanford PM, Sutherland K, Oakes SR, Naylor MJ, Robertson FG, Blazek KD, Kazlauskas M, Hilton HN, Wittlin S, Alexander WS, Lindeman GJ, Visvader JE, Ormandy CJ. Socs2 and elf5 mediate prolactin-induced mammary gland development. Mol Endocrinol 2006; 20:1177-87. [PMID: 16469767 DOI: 10.1210/me.2005-0473] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The proliferative phase of mammary alveolar morphogenesis is initiated during early pregnancy by rising levels of serum prolactin and progesterone, establishing a program of gene expression that is ultimately responsible for the development of the lobuloalveoli and the onset of lactation. To explore this largely unknown genetic program, we constructed transcript profiles derived from transplanted mammary glands formed by recombination of prolactin receptor (Prlr) knockout or wild-type mammary epithelium with wild-type mammary stroma. Comparison with profiles derived from prolactin-treated Scp2 mammary epithelial cells produced a small set of commonly prolactin-regulated genes that included the negative regulator of cytokine signaling, Socs2 (suppressor of cytokine signaling 2), and the ets transcription factor, E74-like factor 5 (Elf5). Homozygous null mutation of Socs2 rescued the failure of lactation and reduction of mammary signal transducer and activator of transcription 5 phosphorylation that characterizes Prlr heterozygous mice, demonstrating that mammary Socs2 is a key regulator of the prolactin-signaling pathway. Reexpression of Elf5 in Prlr nullizygous mammary epithelium restored lobuloalveolar development and milk production, demonstrating that Elf5 is a transcription factor capable of substituting for prolactin signaling. Thus, Socs2 and Elf5 are key members of the set of prolactin-regulated genes that mediate prolactin-driven mammary development.
Collapse
Affiliation(s)
- Jessica Harris
- Garvan Institute of Medical Research, St. Vincent's Hospital, Darlinghurst, New South Wales 2010, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Cancer can be defined as a genetic disease, resulting as a consequence of multiple events associated with initiation, promotion and metastatic growth. Cancer results from the loss of control of cellular homeostasis. Cell homeostasis is the result of the balance between proliferation and cell death, while cellular transformation can be viewed as a loss of relationship between these events. Oncogenes and tumour suppressor genes act as modulators of cell proliferation, while the balance of apoptotic and anti-apoptotic genes controls cell death. All cancer cells acquire similar sets of functional capacities: (1) independence from mitogenic/growth signals; (2) loss of sensitivity to "anti-growth" signals; (3) evade apoptosis; (4) Neo-angiogenic conversion; (5) release from senescence; and (6) invasiveness and metastasis. One of the goals of molecular biology is to elucidate the mechanisms that contribute to the development and progression of cancer. Such understanding of the molecular basis of cancer will provide new possibilities for: (1) earlier detection as well as better diagnosis and staging of disease with detection of minimal residual disease recurrences and evaluation of response to therapy; (2) prevention; and (3) novel treatment strategies. We feel that increased understanding of ETS-regulated biological pathways will directly impact these areas. ETS proteins are transcription factors that activate or repress the expression of genes that are involved in various biological processes, including cellular proliferation, differentiation, development, transformation and apoptosis. Identification of target genes that are regulated by a specific transcription factor is one of the most critical areas in understanding the molecular mechanisms that control transcription. Furthermore, identification of target gene promoters for normal and oncogenic transcription factors provides insight into the regulation of genes that are involved in control of normal cell growth, and differentiation, as well as provide information critical to understanding cancer development. This review will highlight the current understanding of ETS genes and their role in cancer.
Collapse
Affiliation(s)
- Arun Seth
- Molecular and Cellular Biology Research, Laboratory of Molecular Pathology, Sunnybrook and Women's College Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, Canada M4N 3M5.
| | | |
Collapse
|