1
|
Du M, Li S, Jiang J, Ma X, Liu L, Wang T, Zhang J, Niu D. Advances in the Pathogenesis and Treatment Strategies for Type 1 Diabetes Mellitus. Int Immunopharmacol 2025; 148:114185. [PMID: 39893858 DOI: 10.1016/j.intimp.2025.114185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/26/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
Type 1 diabetes (T1D) is a complex autoimmune disorder distinguished by the infiltration of immune cells into pancreatic islets, primarily resulting in damage to pancreatic β-cells. Despite extensive research, the precise pathogenesis of T1D remains elusive, with its etiology linked to a complex interplay of genetic, immune, and environmental factors. While genetic predispositions, such as HLA and other susceptibility genes, are necessary, they do not fully account for disease development. Environmental influences such as viral infections and dietary factors may contribute to the disease by affecting the immune system and epigenetic modifications. Additionally, endogenous retroviruses (ERVs) might play a role in T1D pathogenesis. Current therapeutic approaches, including insulin replacement therapy, immune omodulatory therapy, autoantigen immunotherapy, organ transplantation, and genetic modification, offer potential to alter disease progression but are still constrained by limitations. This review presents updated knowledge on T1D, with a focus on risk factors, predisposing hypotheses, and recent advancements in therapeutic strategies.
Collapse
Affiliation(s)
- Meiheng Du
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang 311300, China
| | - Sihong Li
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang 311300, China
| | - Jun Jiang
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang 311300, China
| | - Xiang Ma
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang 311300, China
| | - Lu Liu
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang 311300, China
| | - Tao Wang
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, Jiangsu 211300, China
| | - Jufang Zhang
- Department of Plastic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China.
| | - Dong Niu
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
2
|
El Nahas R, Al-Aghbar MA, Herrero L, van Panhuys N, Espino-Guarch M. Applications of Genome-Editing Technologies for Type 1 Diabetes. Int J Mol Sci 2023; 25:344. [PMID: 38203514 PMCID: PMC10778854 DOI: 10.3390/ijms25010344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by the destruction of insulin-producing pancreatic β-cells by the immune system. Although conventional therapeutic modalities, such as insulin injection, remain a mainstay, recent years have witnessed the emergence of novel treatment approaches encompassing immunomodulatory therapies, such as stem cell and β-cell transplantation, along with revolutionary gene-editing techniques. Notably, recent research endeavors have enabled the reshaping of the T-cell repertoire, leading to the prevention of T1D development. Furthermore, CRISPR-Cas9 technology has demonstrated remarkable potential in targeting endogenous gene activation, ushering in a promising avenue for the precise guidance of mesenchymal stem cells (MSCs) toward differentiation into insulin-producing cells. This innovative approach holds substantial promise for the treatment of T1D. In this review, we focus on studies that have developed T1D models and treatments using gene-editing systems.
Collapse
Affiliation(s)
- Rana El Nahas
- Laboratory of Immunoregulation, Translational Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar; (R.E.N.); (M.A.A.-A.)
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), 08028 Barcelona, Spain;
| | - Mohammad Ameen Al-Aghbar
- Laboratory of Immunoregulation, Translational Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar; (R.E.N.); (M.A.A.-A.)
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), 08028 Barcelona, Spain;
| | - Nicholas van Panhuys
- Laboratory of Immunoregulation, Translational Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar; (R.E.N.); (M.A.A.-A.)
| | - Meritxell Espino-Guarch
- Laboratory of Immunoregulation, Translational Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar; (R.E.N.); (M.A.A.-A.)
| |
Collapse
|
3
|
Ansari MA, Chauhan W, Shoaib S, Alyahya SA, Ali M, Ashraf H, Alomary MN, Al-Suhaimi EA. Emerging therapeutic options in the management of diabetes: recent trends, challenges and future directions. Int J Obes (Lond) 2023; 47:1179-1199. [PMID: 37696926 DOI: 10.1038/s41366-023-01369-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/04/2023] [Accepted: 08/17/2023] [Indexed: 09/13/2023]
Abstract
Diabetes is a serious health issue that causes a progressive dysregulation of carbohydrate metabolism due to insufficient insulin hormone, leading to consistently high blood glucose levels. According to the epidemiological data, the prevalence of diabetes has been increasing globally, affecting millions of individuals. It is a long-term condition that increases the risk of various diseases caused by damage to small and large blood vessels. There are two main subtypes of diabetes: type 1 and type 2, with type 2 being the most prevalent. Genetic and molecular studies have identified several genetic variants and metabolic pathways that contribute to the development and progression of diabetes. Current treatments include gene therapy, stem cell therapy, statin therapy, and other drugs. Moreover, recent advancements in therapeutics have also focused on developing novel drugs targeting these pathways, including incretin mimetics, SGLT2 inhibitors, and GLP-1 receptor agonists, which have shown promising results in improving glycemic control and reducing the risk of complications. However, these treatments are often expensive, inaccessible to patients in underdeveloped countries, and can have severe side effects. Peptides, such as glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), are being explored as a potential therapy for diabetes. These peptides are postprandial glucose-dependent pancreatic beta-cell insulin secretagogues and have received much attention as a possible treatment option. Despite these advances, diabetes remains a major health challenge, and further research is needed to develop effective treatments and prevent its complications. This review covers various aspects of diabetes, including epidemiology, genetic and molecular basis, and recent advancements in therapeutics including herbal and synthetic peptides.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia.
| | - Waseem Chauhan
- Department of Hematology, Duke University, Durham, NC, 27710, USA
| | - Shoaib Shoaib
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Sami A Alyahya
- Wellness and Preventive Medicine Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Mubashshir Ali
- USF Health Byrd Alzheimer's Center and Neuroscience Institute, Department of Molecular Medicine, Tampa, FL, USA
| | - Hamid Ashraf
- Rajiv Gandhi Center for Diabetes and Endocrinology, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohammad N Alomary
- Advanced Diagnostic and Therapeutic Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia.
| | - Ebtesam A Al-Suhaimi
- King Abdulaziz & his Companions Foundation for Giftedness & Creativity, Riyadh, Saudi Arabia.
| |
Collapse
|
4
|
Lau HH, Gan SU, Lickert H, Shapiro AMJ, Lee KO, Teo AKK. Charting the next century of insulin replacement with cell and gene therapies. MED 2021; 2:1138-1162. [DOI: 10.1016/j.medj.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/24/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
|
5
|
Liberati D, Wyatt RC, Brigatti C, Marzinotto I, Ferrari M, Bazzigaluppi E, Bosi E, Gillard BT, Gillespie KM, Gorus F, Weets I, Balti E, Piemonti L, Achenbach P, Williams AJK, Lampasona V. A novel LIPS assay for insulin autoantibodies. Acta Diabetol 2018; 55:263-270. [PMID: 29305766 DOI: 10.1007/s00592-017-1082-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 11/20/2017] [Indexed: 12/26/2022]
Abstract
AIMS Insulin autoantibodies (IAA) are often the first marker of autoimmunity detected in children in the preclinical phase of type 1 diabetes (T1D). Currently, the vast majority of laboratories adopt the radiobinding micro-assay (RBA) for measuring IAA. Our aim was to replace RBA with a novel non-radioactive IAA Luciferase Immuno Precipitation System (LIPS) assay with improved performance. METHODS We developed (pro)insulin antigens with alternative placements of a NanoLuc™ luciferase reporter (NLuc). Performance in LIPS was evaluated by testing sera from new onset T1D (n = 80), blood donors (n = 123), schoolchildren (n = 186), first-degree relatives (FDRs) from the Bart's Oxford family study (n = 53) and from the Belgian Diabetes Registry (n = 136), coded sera from the Islet Autoantibody Standardization Program (IASP) (T1D n = 50, blood donors n = 90). RESULTS IAA LIPS based on B chain-NLuc proinsulin or B chain-NLuc insulin, in which NLuc was fused at the C-terminus of the insulin B chain, required only 2 μL of serum and a short incubation time, showed high concordance with RBA (Spearman r = 0.866 and 0.833, respectively), high assay performance (B chain-NLuc proinsulin ROC-AUC = 0.894 and B chain-NLuc insulin ROC-AUC = 0.916), and an adjusted sensitivity at 95% specificity ranking on par with the best assays submitted to the two most recent IASP workshops. In FDRs, the IAA LIPS showed improved discrimination of progressors to T1D compared to RBA. CONCLUSIONS We established a novel high-performance non-radioactive IAA LIPS that might replace the current gold standard RBA and find wide application in the study of the IAA response in T1D.
Collapse
Affiliation(s)
- Daniela Liberati
- Human Pathology Genomic Diagnostics Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rebecca C Wyatt
- Diabetes and Metabolism Unit, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Cristina Brigatti
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ilaria Marzinotto
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maurizio Ferrari
- Human Pathology Genomic Diagnostics Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Elena Bazzigaluppi
- Department of Laboratory Medicine, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Emanuele Bosi
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Ben T Gillard
- Diabetes and Metabolism Unit, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Kathleen M Gillespie
- Diabetes and Metabolism Unit, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Frans Gorus
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Clinical Chemistry, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Ilse Weets
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Clinical Chemistry, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Eric Balti
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Clinical Chemistry, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Peter Achenbach
- Institute of Diabetes Research, Helmholtz Zentrum München, and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Neuherberg, Germany
| | - Alistair J K Williams
- Diabetes and Metabolism Unit, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Vito Lampasona
- Human Pathology Genomic Diagnostics Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy.
| |
Collapse
|
6
|
Thulé PM, Lin Y, Jia D, Olson DE, Tang SC, Sambanis A. mRNA destabilization improves glycemic responsiveness of transcriptionally regulated hepatic insulin gene therapy in vitro and in vivo. J Gene Med 2017; 19. [PMID: 28181342 DOI: 10.1002/jgm.2946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Hepatic insulin gene therapy (HIGT) employing a glucose and insulin sensitive promoter to direct insulin transcription can lower blood sugars within 2 h of an intraperitoneal glucose challenge. However, post-challenge blood sugars frequently decline to below baseline. We hypothesize that this 'over-shoot' hypoglycemia results from sustained translation of long-lived transgene message, and that reducing pro-insulin message half-life will ameliorate post-challenge hypoglycemia. METHODS We compared pro-insulin message content and insulin secretion from primary rat hepatocytes expressing insulin from either a standard construct (2xfur), or a construct producing a destabilized pro-insulin message (InsTail), following exposure to stimulating or inhibitory conditions. RESULTS Hepatocytes transduced with a 2xfur construct accumulated pro-insulin message, and exhibited increased insulin secretion, under conditions that both inhibit or stimulate transcription. By contrast, pro-insulin message content remained stable in InsTail expressing cells, and insulin secretion increased less than 2xfur during prolonged stimulation. During transitions from stimulatory to inhibitory conditions, or vice versa, amounts of pro-insulin message changed more rapidly in InsTail expressing cells than 2xfur expressing cells. Importantly, insulin secretion increased during the transition from stimulation to inhibition in 2xfur expressing cells, although it remained unchanged in InsTail expressing cells. Use of the InsTail destabilized insulin message tended to more rapidly reduce glucose induced glycemic excursions, and limit post-load hypoglycemia in STZ-diabetic mice in vivo. CONCLUSIONS The data obtained in the present study suggest that combining transcriptional and post-transcriptional regulatory strategies may reduce undesirable glycemic excursion in models of HIGT.
Collapse
Affiliation(s)
- Peter M Thulé
- Atlanta VA Medical Center, Division of Endocrinology, Diabetes, & Lipids, Emory University School of Medicine, Decatur, Georgia, USA.,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Yulin Lin
- Atlanta VA Medical Center, Division of Endocrinology, Diabetes, & Lipids, Emory University School of Medicine, Decatur, Georgia, USA
| | - Dingwu Jia
- Atlanta VA Medical Center, Division of Endocrinology, Diabetes, & Lipids, Emory University School of Medicine, Decatur, Georgia, USA
| | - Darin E Olson
- Atlanta VA Medical Center, Division of Endocrinology, Diabetes, & Lipids, Emory University School of Medicine, Decatur, Georgia, USA
| | - Shiue-Cheng Tang
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA.,School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.,Department of Medical Science, National Tsing Hua University, Taiwan, USA
| | - Athanassios Sambanis
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA.,School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.,Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Qu S, Zhang T, Dong HH. Effect of hepatic insulin expression on lipid metabolism in diabetic mice. J Diabetes 2016; 8:314-23. [PMID: 25851734 DOI: 10.1111/1753-0407.12293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/27/2015] [Accepted: 03/21/2015] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Hypertriglyceridemia is a common lipid disorder that is characterized by elevated plasma levels of triglyceride (TG)-rich particles, such as very low-density lipoprotein (VLDL), in poorly controlled diabetes. The aim of the present study was to determine the potential therapeutic effect of hepatic insulin production on hypertriglyceridemia in mice. METHODS Mice were induced diabetic and hypertriglyceridemic by streptozotocin (STZ) treatment. Using an adenovirus-mediated gene transfer approach, we delivered rat preproinsulin cDNA into the liver of diabetic mice and then determined plasma TG metabolism. To investigate the mechanism by which hepatic insulin improves TG metabolism, we determined hepatic expression of apolipoprotein C-III (ApoC-III), a structural moiety and functional inhibitor of VLDL-TG catabolism. RESULTS Plasma VLDL-TG levels were markedly elevated in STZ-treated mice, and were accompanied by hyperglycemia and hypertriglyceridemia. These metabolic abnormalities were restored to near normal following hepatic insulin production in insulin vector-treated diabetic mice. In contrast, hypertriglyceridemia and hyperglycemia persisted in control vector-treated diabetic animals. Hepatic ApoC-III expression became deregulated secondary to insulin deficiency, contributing to impaired TG metabolism in diabetic mice. Hepatic insulin production suppressed excessive hepatic ApoC-III production to basal levels. CONCLUSION Hepatic insulin production is efficacious in correcting hypertriglyceridemia associated with insulin deficiency in diabetic mice.
Collapse
Affiliation(s)
- Shen Qu
- Department of Endocrinology & Metabolism, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ting Zhang
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - H Henry Dong
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Tiwari P. Recent Trends in Therapeutic Approaches for Diabetes Management: A Comprehensive Update. J Diabetes Res 2015; 2015:340838. [PMID: 26273667 PMCID: PMC4530263 DOI: 10.1155/2015/340838] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 04/30/2015] [Accepted: 05/01/2015] [Indexed: 01/09/2023] Open
Abstract
Diabetes highlights a growing epidemic imposing serious social economic crisis to the countries around the globe. Despite scientific breakthroughs, better healthcare facilities, and improved literacy rate, the disease continues to burden several sections, especially middle and low income countries. The present trends indicate the rise in premature death, posing a major threat to global development. Scientific and technological advances have witnessed the development of newer generation of drugs like sulphonylureas, biguanides, alpha glucosidase inhibitors, and thiazolidinediones with significant efficacy in reducing hyperglycemia. Recent approaches in drug discovery have contributed to the development of new class of therapeutics like Incretin mimetics, Amylin analogues, GIP analogs, Peroxisome proliferator activated receptors, and dipeptidyl peptidase-4 inhibitor as targets for potential drugs in diabetes treatment. Subsequently, the identification and clinical investigation of bioactive substances from plants have revolutionized the research on drug discovery and lead identification for diabetes management. With a focus on the emerging trends, the review article explores the current statistical prevalence of the disease, discussing the benefits and limitations of the commercially available drugs. Additionally, the critical areas in clinical diabetology are discussed, with respect to prospects of statins, nanotechnology, and stem cell technology as next generation therapeutics and why the herbal formulations are consistently popular choice for diabetes medication and management.
Collapse
Affiliation(s)
- Pragya Tiwari
- Department of Metabolic and Structural Biology, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. Box CIMAP, Lucknow, Uttar Pradesh 226015, India
- Molecular Biology and Biotechnology Division, ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, Uttar Pradesh 226002, India
| |
Collapse
|
9
|
|
10
|
Handorf AM, Sollinger HW, Alam T. Genetic Engineering of Surrogate <i>β</i> Cells for Treatment of Type 1 Diabetes Mellitus. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/jdm.2015.54037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Abstract
Glucagon-like peptide (GLP)-1 is an incretin hormone with several antidiabetic functions including stimulation of glucose-dependent insulin secretion, increase in insulin gene expression and beta-cell survival. Despite the initial technical difficulties and profound inefficiency of direct gene transfer into the pancreas that seriously restricted in vivo gene transfer experiments with GLP-1, recent exploitation of various routes of gene delivery and alternative means of gene transfer has permitted the detailed assessment of the therapeutic efficacy of GLP-1 in animal models of type 2 diabetes (T2DM). As a result, many clinical benefits of GLP-1 peptide/analogues observed in clinical trials involving induction of glucose tolerance, reduction of hyperglycaemia, suppression of appetite and food intake linked to weight loss have been replicated in animal models using gene therapy. Furthermore, GLP-1-centered gene therapy not only improved insulin sensitivity, but also reduced abdominal and/or hepatic fat associated with obesity-induced T2DM with drastic alterations in adipokine profiles in treated subjects. Thus, a comprehensive assessment of recent GLP-1-mediated gene therapy approaches with detailed analysis of current hurdles and resolutions, is discussed.
Collapse
|
12
|
Ren B, O'Brien BA, Byrne MR, Ch'ng E, Gatt PN, Swan MA, Nassif NT, Wei MQ, Gijsbers R, Debyser Z, Simpson AM. Long-term reversal of diabetes in non-obese diabetic mice by liver-directed gene therapy. J Gene Med 2013; 15:28-41. [PMID: 23293075 DOI: 10.1002/jgm.2692] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 10/01/2012] [Accepted: 12/20/2012] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) results from an autoimmune attack against the insulin-producing β-cells of the pancreas. The present study aimed to reverse T1D by gene therapy. METHODS We used a novel surgical technique, which involves isolating the liver from the circulation before the delivery of a lentiviral vector carrying furin-cleavable human insulin (INS-FUR) or empty vector to the livers of diabetic non-obese diabetic mice (NOD). This was compared with the direct injection of the vector into the portal circulation. Mice were monitored for body weight and blood glucose. Intravenous glucose tolerance tests were performed. Expression of insulin and pancreatic transcription factors was determined by the reverse transcriptase-polymerase chain reaction and immunohistochemistry and immunoelectron microscopy was used to localise insulin. RESULTS Using the novel surgical technique, we achieved long-term transduction (42% efficiency) of hepatocytes, restored normoglycaemia for 150 days (experimental endpoint) and re-established normal glucose tolerance. We showed the expression of β-cell transcription factors, murine insulin, glucagon and somatostatin, and hepatic storage of insulin in granules. The expression of hepatic markers, C/EBP-β, G6PC, AAT and GLUI was down-regulated in INS-FUR-treated livers. Liver function tests remained normal, with no evidence of intrahepatic inflammation or autoimmune destruction of the insulin-secreting liver tissue. By comparison, direct injection of INS-FUR reduced blood glucose levels, and no pancreatic transdifferentiation or normal glucose tolerance was observed. CONCLUSIONS This gene therapy protocol has, for the first time, permanently reversed T1D with normal glucose tolerance in NOD mice and, as such, represents a novel therapeutic strategy for the treatment of T1D.
Collapse
Affiliation(s)
- Binhai Ren
- School of Medical & Molecular Biosciences, University of Technology Sydney, Sydney, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Correction of Diabetic Hyperglycemia and Amelioration of Metabolic Anomalies by Minicircle DNA Mediated Glucose-Dependent Hepatic Insulin Production. PLoS One 2013; 8:e67515. [PMID: 23826312 PMCID: PMC3694888 DOI: 10.1371/journal.pone.0067515] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 05/23/2013] [Indexed: 11/19/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is caused by immune destruction of insulin-producing pancreatic β-cells. Commonly used insulin injection therapy does not provide a dynamic blood glucose control to prevent long-term systemic T1DM-associated damages. Donor shortage and the limited long-term success of islet transplants have stimulated the development of novel therapies for T1DM. Gene therapy-based glucose-regulated hepatic insulin production is a promising strategy to treat T1DM. We have developed gene constructs which cause glucose-concentration-dependent human insulin production in liver cells. A novel set of human insulin expression constructs containing a combination of elements to improve gene transcription, mRNA processing, and translation efficiency were generated as minicircle DNA preparations that lack bacterial and viral DNA. Hepatocytes transduced with the new constructs, ex vivo, produced large amounts of glucose-inducible human insulin. In vivo, insulin minicircle DNA (TA1m) treated streptozotocin (STZ)-diabetic rats demonstrated euglycemia when fasted or fed, ad libitum. Weight loss due to uncontrolled hyperglycemia was reversed in insulin gene treated diabetic rats to normal rate of weight gain, lasting ∼1 month. Intraperitoneal glucose tolerance test (IPGT) demonstrated in vivo glucose-responsive changes in insulin levels to correct hyperglycemia within 45 minutes. A single TA1m treatment raised serum albumin levels in diabetic rats to normal and significantly reduced hypertriglyceridemia and hypercholesterolemia. Elevated serum levels of aspartate transaminase, alanine aminotransferase, and alkaline phosphatase were restored to normal or greatly reduced in treated rats, indicating normalization of liver function. Non-viral insulin minicircle DNA-based TA1m mediated glucose-dependent insulin production in liver may represent a safe and promising approach to treat T1DM.
Collapse
|
14
|
|
15
|
Martín-Saavedra FM, Wilson CG, Voellmy R, Vilaboa N, Franceschi RT. Spatiotemporal control of vascular endothelial growth factor expression using a heat-shock-activated, rapamycin-dependent gene switch. Hum Gene Ther Methods 2013; 24:160-70. [PMID: 23527589 DOI: 10.1089/hgtb.2013.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A major challenge in regenerative medicine is to develop methods for delivering growth and differentiation factors in specific spatial and temporal patterns, thereby mimicking the natural processes of development and tissue repair. Heat shock (HS)-inducible gene expression systems can respond to spatial information provided by localized heating, but are by themselves incapable of sustained expression. Conversely, gene switches activated by small molecules provide tight temporal control and sustained expression, but lack mechanisms for spatial targeting. Here we combine the advantages of HS and ligand-activated systems by developing a novel rapamycin-regulated, HS-inducible gene switch that provides spatial and temporal control and sustained expression of transgenes such as firefly luciferase and vascular endothelial growth factor (VEGF). This gene circuit exhibits very low background in the uninduced state and can be repeatedly activated up to 1 month. Furthermore, dual regulation of VEGF induction in vivo is shown to stimulate localized vascularization, thereby providing a route for temporal and spatial control of angiogenesis.
Collapse
|
16
|
Ahn M, Gamble A, Witting SR, Magrisso J, Surendran S, Obici S, Morral N. Vector and helper genome rearrangements occur during production of helper-dependent adenoviral vectors. Hum Gene Ther Methods 2013; 24:1-10. [PMID: 23249343 PMCID: PMC4015077 DOI: 10.1089/hgtb.2012.198] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Helper-dependent adenoviral vectors (HD Ad) hold extreme promise for gene therapy of human diseases. All viral genes are deleted in HD Ad vectors, and therefore, the presence of a helper virus is required for their production. Current methods to minimize helper contamination in large-scale preparations rely on the use of the Cre/loxP system. The inclusion of loxP sites flanking the packaging signal results in its excision in the presence of Cre recombinase, preventing helper genome encapsidation. It is well established that the level of Cre recombinase activity is important in determining the degree of helper contamination. However, there is little information on other mechanisms that could also play an important role. We have generated several HD Ad vectors containing a rapalog-inducible system to regulate transgene expression, or LacZ under the control of the elongation factor 1 α promoter. Large-scale production of these vectors resulted in abundant helper contamination. Viral DNA analysis revealed the presence of rearrangements between vector and helper genomes. The rearrangements involved a helper DNA molecule with a fragment of the left arm of the HD Ad vector, including its ITR, packaging signal, and some stuffer sequence. Overall, our data suggest that helper DNA molecules that accumulate after Cre recombinase activity are prone to rearrangements, resulting in helper genomes that have incorporated a packaging signal from the vector. Helper particles with rearranged genomes have a growth advantage. This study identifies a novel mechanism leading to helper contamination during helper-dependent adenoviral vector production.
Collapse
Affiliation(s)
- Miwon Ahn
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Aisha Gamble
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Scott R. Witting
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Jack Magrisso
- Obesity Research Center, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH 45237
| | - Sneha Surendran
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Silvana Obici
- Obesity Research Center, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH 45237
| | - Núria Morral
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
17
|
Abstract
Current therapies for the treatment of type 1 diabetes include daily administration of exogenous insulin and, less frequently, whole-pancreas or islet transplantation. Insulin injections often result in inaccurate insulin doses, exposing the patient to hypo- and/or hyperglycemic episodes that lead to long-term complications. Islet transplantation is also limited by lack of high-quality islet donors, early graft failure, and chronic post-transplant immunosuppressive treatment. These barriers could be circumvented by designing a safe and efficient strategy to restore insulin production within the patient's body. Porcine islets have been considered as a possible alternative source of transplantable insulin-producing cells to replace human cadaveric islets. More recently, embryonic or induced pluripotent stem cells have also been examined for their ability to differentiate in vitro into pancreatic endocrine cells. Alternatively, it may be feasible to generate new β-cells by ectopic expression of key transcription factors in endogenous non-β-cells. Finally, engineering surrogate β-cells by in vivo delivery of the insulin gene to specific tissues is also being studied as a possible therapy for type 1 diabetes. In the present review, we discuss these different approaches to restore insulin production.
Collapse
Affiliation(s)
- Eva Tudurí
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
18
|
Abstract
Despite the fact that insulin injection can protect diabetic patients from developing diabetes-related complications, recent meta-analyses indicate that rapid and long-acting insulin analogues only provide a limited benefit compared with conventional insulin regarding glycemic control. As insulin deficiency is the main sequel of type-1 diabetes (T1D), transfer of the insulin gene-by-gene therapy is becoming an attractive treatment modality even though T1D is not caused by a single genetic defect. In contrast to human insulin and insulin analogues, insulin gene therapy targets to supplement patients not only with insulin but also with C-peptide. So far, insulin gene therapy has had limited success because of delayed and/or transient gene expression. Sustained insulin gene expression is now feasible using current gene-therapy vectors providing patients with basal insulin coverage, but management of postprandial hyperglycaemia is still difficult to accomplish because of the inability to properly control insulin secretion. Enteroendocrine cells of the gastrointestinal track (K cells and L cells) may be ideal targets for insulin gene therapy, but cell-targeting difficulties have limited practical implementation of insulin gene therapy for diabetes treatment. Therefore, recent gene transfer technologies developed to generate authentic beta cells through transdifferentiation are also highlighted in this review.
Collapse
|
19
|
Reversal of diabetes through gene therapy of diabetic rats by hepatic insulin expression via lentiviral transduction. Mol Ther 2012; 20:918-26. [PMID: 22354377 DOI: 10.1038/mt.2012.8] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Due to shortage of donor tissue a cure for type 1 diabetes by pancreas organ or islet transplantation is an option only for very few patients. Gene therapy is an alternative approach to cure the disease. Insulin generation in non-endocrine cells through genetic engineering is a promising therapeutic concept to achieve insulin independence in patients with diabetes. In the present study furin-cleavable human insulin was expressed in the liver of autoimmune-diabetic IDDM rats (LEW.1AR1/Ztm-iddm) and streptozotocin-diabetic rats after portal vein injection of INS-lentivirus. Within 5-7 days after the virus injection of 7 × 10(9) INS-lentiviral particles the blood glucose concentrations were normalized in the treated animals. This glucose lowering effect remained stable for the 1 year observation period. Human C-peptide as a marker for hepatic release of human insulin was in the range of 50-100 pmol/ml serum. Immunofluorescence staining of liver tissue was positive for insulin showing no signs of transdifferentiation into pancreatic β-cells. This study shows that the diabetic state can be efficiently reversed by insulin release from non-endocrine cells through a somatic gene therapy approach.
Collapse
|
20
|
Durvasula K, Thulé PM, Sambanis A. Combinatorial insulin secretion dynamics of recombinant hepatic and enteroendocrine cells. Biotechnol Bioeng 2011; 109:1074-82. [PMID: 22094821 DOI: 10.1002/bit.24373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 10/31/2011] [Indexed: 12/29/2022]
Abstract
One of the most promising cell-based therapies for combating insulin-dependent diabetes entails the use of genetically engineered non-β cells that secrete insulin in response to physiologic stimuli. A normal pancreatic β cell secretes insulin in a biphasic manner in response to glucose. The first phase is characterized by a transient stimulation of insulin to rapidly lower the blood glucose levels, which is followed by a second phase of insulin secretion to sustain the lowered blood glucose levels over a longer period of time. Previous studies have demonstrated hepatic and enteroendocrine cells to be appropriate hosts for recombinant insulin expression. Due to different insulin secretion kinetics from these cells, we hypothesized that a combination of the two cell types would mimic the biphasic insulin secretion of normal β cells with higher fidelity than either cell type alone. In this study, insulin secretion experiments were conducted with two hepatic cell lines (HepG2 and H4IIE) transduced with 1 of 3 adenoviruses expressing the insulin transgene and with a stably transfected recombinant intestinal cell line (GLUTag-INS). Insulin secretion was stimulated by exposing the cells to glucose only (hepatic cells), meat hydrolysate only (GLUTag-INS), or to a cocktail of the two secretagogues. It was found experimentally that the recombinant hepatic cells secreted insulin in a more sustained manner, whereas the recombinant intestinal cell line exhibited rapid insulin secretion kinetics upon stimulation. The insulin secretion profiles were computationally combined at different cell ratios to arrive at the combinatorial kinetics. Results indicate that combinations of these two cell types allow for tuning the first and second phase of insulin secretion better than either cell type alone. This work provides the basic framework in understanding the secretion kinetics of the combined system and advances it towards preclinical studies.
Collapse
Affiliation(s)
- Kiranmai Durvasula
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | | |
Collapse
|
21
|
PiggyBac transposon-based inducible gene expression in vivo after somatic cell gene transfer. Mol Ther 2009; 17:2115-20. [PMID: 19809403 DOI: 10.1038/mt.2009.234] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Somatic cell gene transfer has permitted inducible gene expression in vivo through coinfection of multiple viruses. We hypothesized that the highly efficient plasmid-based piggyBac transposon system would enable long-term inducible gene expression in mice in vivo. We used a multiple-transposon delivery strategy to create a tetracycline-inducible expression system in vitro in human cells by delivering the two genes on separate transposons for inducible reporter gene expression along with a separate selectable transposon marker. Evaluation of stable cell lines revealed 100% of selected clones exhibited inducible expression via stable expression from three separate transposons simultaneously. We next tested and found that piggyBac-mediated gene transfer to liver or lung could achieve stable reporter gene expression in mice in vivo in either immunocompetent or immune deficient animals. A single injection of piggyBac transposons could achieve long-term inducible gene expression in the livers of mice in vivo, confirming our multiple-transposon strategy used in cultured cells. The plasmid-based piggyBac transposon system enables constitutive or inducible gene expression in vivo for potential therapeutic and biological applications without using viral vectors.
Collapse
|
22
|
Tigges M, Fussenegger M. Recent advances in mammalian synthetic biology-design of synthetic transgene control networks. Curr Opin Biotechnol 2009; 20:449-60. [PMID: 19762224 DOI: 10.1016/j.copbio.2009.07.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/30/2009] [Accepted: 07/31/2009] [Indexed: 10/20/2022]
Abstract
Capitalizing on an era of functional genomic research, systems biology offers a systematic quantitative analysis of existing biological systems thereby providing the molecular inventory of biological parts that are currently being used for rational synthesis and engineering of complex biological systems with novel and potentially useful functions-an emerging discipline known as synthetic biology. During the past decade synthetic biology has rapidly developed from simple control devices fine-tuning the activity of single genes and proteins to multi-gene/protein-based transcription and signaling networks providing new insight into global control and molecular reaction dynamics, thereby enabling the design of novel drug-synthesis pathways as well as genetic devices with unmatched biological functions. While pioneering synthetic devices have first been designed as test, toy, and teaser systems for use in prokaryotes and lower eukaryotes, first examples of a systematic assembly of synthetic gene networks in mammalian cells has sketched the full potential of synthetic biology: foster novel therapeutic opportunities in gene and cell-based therapies. Here we provide a concise overview on the latest advances in mammalian synthetic biology.
Collapse
Affiliation(s)
- Marcel Tigges
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel CH-4058, Switzerland
| | | |
Collapse
|
23
|
Olson DE, Thulé PM. Gene transfer to induce insulin production for the treatment of diabetes mellitus. Expert Opin Drug Deliv 2008; 5:967-77. [DOI: 10.1517/17425247.5.9.967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Darin E Olson
- Assistant Professor of Internal Medicine Emory University School of Medicine, Atlanta VA Medical Center, Division of Endocrinology, Lipids & Metabolism, USA
| | - Peter M Thulé
- Associate Professor of Internal Medicine Emory University School of Medicine, Atlanta VA Medical Center, Division of Endocrinology, Lipids & Metabolism, USA ;
| |
Collapse
|
24
|
Muniappan L, Ozcan S. Induction of insulin secretion in engineered liver cells by nitric oxide. BMC PHYSIOLOGY 2007; 7:11. [PMID: 17941991 PMCID: PMC2121102 DOI: 10.1186/1472-6793-7-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 10/17/2007] [Indexed: 11/10/2022]
Abstract
BACKGROUND Type 1 Diabetes Mellitus results from an autoimmune destruction of the pancreatic beta cells, which produce insulin. The lack of insulin leads to chronic hyperglycemia and secondary complications, such as cardiovascular disease. The currently approved clinical treatments for diabetes mellitus often fail to achieve sustained and optimal glycemic control. Therefore, there is a great interest in the development of surrogate beta cells as a treatment for type 1 diabetes. Normally, pancreatic beta cells produce and secrete insulin only in response to increased blood glucose levels. However in many cases, insulin secretion from non-beta cells engineered to produce insulin occurs in a glucose-independent manner. In the present study we engineered liver cells to produce and secrete insulin and insulin secretion can be stimulated via the nitric oxide pathway. RESULTS Expression of either human insulin or the beta cell specific transcription factors PDX-1, NeuroD1 and MafA in the Hepa1-6 cell line or primary liver cells via adenoviral gene transfer, results in production and secretion of insulin. Although, the secretion of insulin is not significantly increased in response to high glucose, treatment of these engineered liver cells with L-arginine stimulates insulin secretion up to three-fold. This L-arginine-mediated insulin release is dependent on the production of nitric oxide. CONCLUSION Liver cells can be engineered to produce insulin and insulin secretion can be induced by treatment with L-arginine via the production of nitric oxide.
Collapse
Affiliation(s)
- Latha Muniappan
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, 741 South Limestone, BBSRB, Lexington, KY 40536, USA.
| | | |
Collapse
|
25
|
Ren B, O'Brien BA, Swan MA, Koina ME, Nassif N, Wei MQ, Simpson AM. Long-term correction of diabetes in rats after lentiviral hepatic insulin gene therapy. Diabetologia 2007; 50:1910-1920. [PMID: 17598085 PMCID: PMC1975734 DOI: 10.1007/s00125-007-0722-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 04/23/2007] [Indexed: 01/06/2023]
Abstract
AIMS/HYPOTHESIS Type 1 diabetes results from the autoimmune destruction of pancreatic beta cells. Exogenous insulin therapy cannot achieve precise physiological control of blood glucose concentrations, and debilitating complications develop. Lentiviral vectors are promising tools for liver-directed gene therapy. However, to date, transduction rates in vivo remain low in hepatocytes, without the induction of cell cycling. We investigated long-term transgene expression in quiescent hepatocytes in vitro and determined whether the lentiviral delivery of furin-cleavable insulin to the liver could reverse diabetes in rats. MATERIALS AND METHODS To improve transduction efficiency in vitro, we optimised hepatocyte isolation and maintenance protocols and, using an improved surgical delivery method, delivered furin-cleavable insulin alone or empty vector to the livers of streptozotocin-induced diabetic rats by means of a lentiviral vector. Rats were monitored for changes in body weight and blood glucose, and intravenous glucose tolerance tests were performed. Expression of insulin was determined by RT-PCR, immunohistochemistry and electron microscopy. RESULTS We achieved long-term transgene expression in quiescent hepatocytes in vitro (87 +/- 1.2% transduction efficiency), with up to 60 +/- 3.2% transduction in vivo. We normalised blood glucose for 500 days-a significantly longer period than previously reported-making this the first successful study using a lentiviral vector. This procedure resulted in the expression of genes encoding several beta cell transcription factors, some pancreatic endocrine transdifferentiation, hepatic insulin storage in granules, and restoration of glucose tolerance. Liver function tests remained normal. Importantly, pancreatic exocrine transdifferentiation did not occur. CONCLUSIONS/INTERPRETATION Our data suggest that this regimen may ultimately be employed for the treatment of type 1 diabetes.
Collapse
Affiliation(s)
- B Ren
- Department of Medical and Molecular Biosciences, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW, 2007, Australia
| | - B A O'Brien
- Department of Medical and Molecular Biosciences, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW, 2007, Australia
| | - M A Swan
- Anatomy and Histology, University of Sydney, Sydney, NSW, Australia
- Bosch Institute, University of Sydney, Sydney, NSW, Australia
| | - M E Koina
- Department of Medical and Molecular Biosciences, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW, 2007, Australia
- Department of Anatomical Pathology, Canberra Hospital, Canberra, ACT, Australia
| | - N Nassif
- Department of Medical and Molecular Biosciences, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW, 2007, Australia
| | - M Q Wei
- Gene Therapy Unit, University Department of Medicine, Prince Charles Hospital, Brisbane, QLD, Australia
| | - A M Simpson
- Department of Medical and Molecular Biosciences, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW, 2007, Australia.
| |
Collapse
|
26
|
|
27
|
Cotugno G, Formisano P, Giacco F, Colella P, Beguinot F, Auricchio A. AP20187-mediated activation of a chimeric insulin receptor results in insulin-like actions in skeletal muscle and liver of diabetic mice. Hum Gene Ther 2007; 18:106-17. [PMID: 17328681 DOI: 10.1089/hum.2006.116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Diabetes mellitus (DM) derives from either insulin deficiency (type 1) or resistance (type 2). Insulin regulates glucose metabolism and homeostasis by binding to a specific membrane receptor (IR) with tyrosine kinase activity, expressed by its canonical target tissues. General or tissue-specific IR ablation in mice results in complex metabolic abnormalities, which give partial insights into the role of IR signaling in glucose homeostasis and diabetes development. We generated a chimeric IR (LFv2IRE) inducible on administration of the small molecule drug AP20187. This represents a powerful tool to induce insulin receptor signaling in the hormone target tissues in DM animal models. Here we use adeno-associated viral (AAV) vectors to transduce muscle and liver of nonobese diabetic (NOD) mice with LFv2IRE. Systemic AP20187 administration results in time-dependent LFv2IRE tyrosine phosphorylation and activation of the insulin signaling pathway in both liver and muscle of AAV-treated NOD mice. AP20187 stimulation significantly increases hepatic glycogen content and muscular glucose uptake similarly to insulin. The LFv2IRE-AP20187 system represents a useful tool for regulated and rapid tissue-specific restoration of IR signaling and for dissection of insulin signaling and function in the hormone canonical and noncanonical target tissues.
Collapse
Affiliation(s)
- Gabriella Cotugno
- Telethon Institute of Genetics and Medicine (TIGEM), 80131 Naples, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Osten P, Grinevich V, Cetin A. Viral vectors: a wide range of choices and high levels of service. Handb Exp Pharmacol 2007:177-202. [PMID: 17203656 DOI: 10.1007/978-3-540-35109-2_8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Viruses are intracellular parasites with simple DNA or RNA genomes. Virus life revolves around three steps: infection of a host cell, replication of its genome within the host cell environment, and formation of new virions; this process is often but not always associated with pathogenic effects against the host organism. Since the mid-1980s, the main goal of viral vectorology has been to develop recombinant viral vectors for long-term gene delivery to mammalian cells, with minimal associated toxicity. Today, several viral vector systems are close to achieving this aim, providing stable transgenic expression in many different cell types and tissues. Here we review application characteristics of four vector systems, derived from adeno-associated viruses, adenoviruses, retroviruses and herpes simplex virus-1, for in vivo gene delivery. We discuss the transfer capacity of the expression vectors, the stability of their transgenic expression, the tropism of the recombinant viruses, the likelihood of induction of immunotoxicity, and the ease (or difficulty) of the virus production. In the end, we discuss applications of these vectors for delivery of three molecular systems for conditional mutagenesis, two for inducible transcriptional control of transgenic expression (the tet and the dimerizer systems), and the third one for inducible control of endogenous gene expression based on RNA interference.
Collapse
Affiliation(s)
- P Osten
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.
| | | | | |
Collapse
|
29
|
Chistiakov DA, Tyurina I. Current strategies and perspectives in insulin gene therapy for diabetes. Expert Rev Endocrinol Metab 2007; 2:27-34. [PMID: 30743746 DOI: 10.1586/17446651.2.1.27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Insulin gene therapy is an approach that might overcome the weakness of islet cell therapy owing to its vulnerability to autoimmune attack. There are several mandatory conditions for successful insulin gene therapy. Efficient insulin gene therapy should have an effective insulin gene delivery mechanism, a system of regulation of the insulin biosynthesis that responds to glucose within extremely narrow physiological limits, a system of insulin processing into its active form and a choice of appropriate target cells, which possess biochemical characteristics similar to β cells, but are not targets for β-cell-specific self-reactivity. In this article, advantages and disadvantages of non-β-cell types that are most likely to be used for generating surrogate insulin-producing β cells are compared. Current achievements in insulin gene therapy are critically evaluated and future challenges are discussed.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- a Assistant Professor, University of Pittsburgh Medical Center, Department of Pathology, 3550 Terrace Street, Pittsburgh, PA, 15261, USA.
| | - Inna Tyurina
- b Executive Manager and Consultant, Public Relations and Consulting Group 'Imya', 8th Tekstilschikov Street 11, 109129, Moscow, Russia.
| |
Collapse
|
30
|
Abstract
It is feasible to restrict transgene expression to a tissue or region in need of therapy by using promoters that respond to focusable physical stimuli. The most extensively investigated promoters of this type are radiation-inducible promoters and heat shock protein gene promoters that can be activated by directed, transient heat. Temporal regulation of transgenes can be achieved by various two- or three-component gene switches that are triggered by an appropriate small molecule inducer. The most commonly considered gene switches that are reviewed herein are based on small molecule-responsive transactivators derived from bacterial tetracycline repressor, insect or mammalian steroid receptors, or mammalian FKBP12/FRAP. A new generation of gene switches combines a heat shock protein gene promoter and a small molecule-responsive gene switch and can provide for both spatial and temporal regulation of transgene activity.
Collapse
Affiliation(s)
- Nuria Vilaboa
- Unidad de Investigación, Hospital Universitario La Paz, Madrid, Spain
| | | |
Collapse
|
31
|
Koh JT, Ge C, Zhao M, Wang Z, Krebsbach PH, Zhao Z, Franceschi RT. Use of a stringent dimerizer-regulated gene expression system for controlled BMP2 delivery. Mol Ther 2006; 14:684-91. [PMID: 16905364 DOI: 10.1016/j.ymthe.2006.05.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 05/24/2006] [Accepted: 05/31/2006] [Indexed: 11/25/2022] Open
Abstract
Gene therapy using constitutively active viral promoters to drive expression of bone morphogenetic proteins (BMPs) has been extensively evaluated as a strategy for inducing bone regeneration. However, this approach offers little control over the concentration, timing, or duration of BMP synthesis. To gain greater control over BMP kinetics, we developed a new inducible system for the controlled expression of BMP2 using a two-component transcription factor that is dimerized with rapamycin (Rap). This approach provided stringent control over BMP2 synthesis with no BMP expression detected in the uninduced state. Rapamycin or the less immunosuppressive analogue, AP21967, rapidly and reversibly induced BMP2 in a dose-dependent manner (range 0.1-10 nM). Subcutaneous implants of fibroblasts containing the Rap-inducible system in syngeneic C57BL/6 mice were highly responsive to ip Rap injection (0.1-1 mg/kg). Peak BMP2 levels were detected within 24 h of a single Rap injection and declined to undetectable levels after 8-10 days. Alternate-day Rap injections (1 mg/kg) for 6 weeks induced subcutaneous ectopic bone formation. Rap-dependent healing of a critical-sized cranial defect was also achieved using this system. This regulated BMP2 expression system will be extremely useful for examining the role of timing and sequence of BMP delivery on bone regeneration.
Collapse
Affiliation(s)
- Jeong-Tae Koh
- Department of Periodontics and Oral Medicine, School of Dentistry, and Center for Craniofacial Regeneration, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The most intensively studied autoimmune disorder, type 1 diabetes mellitus (DM1), has attracted perhaps the greatest interest for gene-based therapeutic and prophylactic interventions. The final clinical manifestation of this immunologically and genetically complex disease, the absence of insulin, is the major starting point for almost all the gene therapy modalities attempted to date. Insulin replacement by transplantation of islets of Langerhans or surrogate beta cells is the obvious choice, but the allogeneic nature of the transplants activates potent antidonor immunoreactivity necessitating gene and cell-based immunosuppressive strategies as an alternative to the toxic pharmacologic immunosuppressives indicated for classic solid organ transplants. Accumulating knowledge of the cellular mechanisms involved in onset, however, have yielded promising tolerance induction prophylactic approaches using genes and cells. Despite the early successes in a number of animal models, the true test of efficacy in humans remains to be demonstrated.
Collapse
Affiliation(s)
- Nick Giannoukakis
- Diabetes Institute, Pediatric Research Section, Children's Hospital of Pittsburgh and University of Pittsburgh, Rangos Research Center, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
33
|
Abstract
Pharmacologic transgene-expression dosing is considered essential for future gene therapy scenarios. Genetic interventions require precise transcription or translation fine-tuning of therapeutic transgenes to enable their titration into the therapeutic window, to adapt them to daily changing dosing regimes of the patient, to integrate them seamlessly into the patient's transcriptome orchestra, and to terminate their expression after successful therapy. In recent years, decisive progress has been achieved in designing high-precision trigger-inducible mammalian transgene control modalities responsive to clinically licensed and inert heterologous molecules or to endogenous physiologic signals. Availability of a portfolio of compatible transcription control systems has enabled assembly of higher-order control circuitries providing simultaneous or independent control of several transgenes and the design of (semi-)synthetic gene networks, which emulate digital expression switches, regulatory transcription cascades, epigenetic expression imprinting, and cellular transcription memories. This review provides an overview of cutting-edge developments in transgene control systems, of the design of synthetic gene networks, and of the delivery of such systems for the prototype treatment of prominent human disease phenotypes.
Collapse
Affiliation(s)
- Wilfried Weber
- Institute for Chemical and Bio-Engineering, Swiss Federal Institute of Technology Zurich-ETH Zurich, ETH Hoenggerberg HCI F 115, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
34
|
Sanftner LM, Rivera VM, Suzuki BM, Feng L, Berk L, Zhou S, Forsayeth JR, Clackson T, Cunningham J. Dimerizer regulation of AADC expression and behavioral response in AAV-transduced 6-OHDA lesioned rats. Mol Ther 2006; 13:167-74. [PMID: 16126007 DOI: 10.1016/j.ymthe.2005.06.480] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 05/31/2005] [Accepted: 06/07/2005] [Indexed: 11/23/2022] Open
Abstract
Recombinant AAV vectors containing a dimerizer-inducible system of transcriptional activation provide a strategy for control of therapeutic gene expression in the CNS. Here we explored this system for regulated expression of human aromatic L-amino acid decarboxylase (hAADC) in a rodent model of Parkinson disease. Expression of hAADC, the enzyme that converts L-dopa to dopamine, was dependent on reconstitution of a functional transcription factor (TF) by the dimerizer rapamycin. Two vectors, AAV-CMV-TF and AAV-Z12-hAADC, were infused into striata of 6-OHDA-lesioned rats. Rapamycin-induced increases in expression of hAADC repeatedly produced robust rotational behavior in response to low doses of L-dopa. Seven weeks after vector infusion, AADC expression in brain was quantitated by both stereology and Western blot analysis following the final rapamycin treatment. While a low level of hAADC was observed in rats that were not induced with rapamycin, this basal expression was not significant enough to elicit a rotational response to L-dopa. This study demonstrated a robust behavioral response of parkinsonian rats to regulated hAADC expression. Recombinant AAV vectors controlled by rapamycin or its analogs show promise as candidates for CNS therapies in which regulation of the transgene is desired.
Collapse
|
35
|
Burger C, Nash K, Mandel RJ. Recombinant adeno-associated viral vectors in the nervous system. Hum Gene Ther 2005; 16:781-91. [PMID: 16000060 DOI: 10.1089/hum.2005.16.781] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recombinant adeno-associated virus 2 (rAAV2) has been extensively used as a gene delivery vector for the nervous system. It targets primarily neurons in the nervous system and results in sustained long-term expression of transgenes. New rAAV serotypes have been characterized and demonstrated to have improved transduction efficiencies in various regions of the brain and spinal cord. This review discusses some properties of rAAV that have been studied in the nervous system such as cell tropism, duration of transgene expression, and distribution of viral transduction, as well as immunity and regulation of transgene expression issues, all of which are important for optimization of the use of rAAV in the nervous system.
Collapse
Affiliation(s)
- Corinna Burger
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | | | | |
Collapse
|
36
|
Goverdhana S, Puntel M, Xiong W, Zirger JM, Barcia C, Curtin JF, Soffer EB, Mondkar S, King GD, Hu J, Sciascia SA, Candolfi M, Greengold DS, Lowenstein PR, Castro MG. Regulatable gene expression systems for gene therapy applications: progress and future challenges. Mol Ther 2005; 12:189-211. [PMID: 15946903 PMCID: PMC2676204 DOI: 10.1016/j.ymthe.2005.03.022] [Citation(s) in RCA: 192] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 02/16/2005] [Accepted: 03/14/2005] [Indexed: 11/19/2022] Open
Abstract
Gene therapy aims to revert diseased phenotypes by the use of both viral and nonviral gene delivery systems. Substantial progress has been made in making gene transfer vehicles more efficient, less toxic, and nonimmunogenic and in allowing long-term transgene expression. One of the key issues in successfully implementing gene therapies in the clinical setting is to be able to regulate gene expression very tightly and consistently as and when it is needed. The regulation ought to be achievable using a compound that should be nontoxic, be able to penetrate into the desired target tissue or organ, and have a half-life of a few hours (as opposed to minutes or days) so that when withdrawn or added (depending on the regulatable system used) gene expression can be turned "on" or "off" quickly and effectively. Also, the genetic switches employed should ideally be nonimmunogenic in the host. The ability to switch transgenes on and off would be of paramount importance not only when the therapy is no longer needed, but also in the case of the development of adverse side effects to the therapy. Many regulatable systems are currently under development and some, i.e., the tetracycline-dependent transcriptional switch, have been used successfully for in vivo preclinical applications. Despite this, there are no examples of switches that have been employed in a human clinical trial. In this review, we aim to highlight the main regulatable systems currently under development, the gene transfer systems employed for their expression, and also the preclinical models in which they have been used successfully. We also discuss the substantial challenges that still remain before these regulatable switches can be employed in the clinical setting.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - M. G. Castro
- To whom correspondence and reprint requests should be addressed. Fax: +1 (310) 423 7308. E-mail:
| |
Collapse
|
37
|
Chen NKF, Sivalingam J, Tan SY, Kon OL. Plasmid-electroporated primary hepatocytes acquire quasi-physiological secretion of human insulin and restore euglycemia in diabetic mice. Gene Ther 2005; 12:655-67. [PMID: 15703765 DOI: 10.1038/sj.gt.3302446] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We describe the durable correction of streptozotocin-induced murine diabetes by in vivo implantation of primary mouse hepatocytes electroporated ex vivo with a human proinsulin cDNA plasmid construct controlled by glucose and zinc regulatory elements. Transfected hepatocytes increased insulin transgene transcription and secretion within 10-20 min of exposure to 25 mM glucose or 60 microM zinc. Insulin release did not occur from secretory granules. Electroporated Rosa26 hepatocytes ( approximately 8 x 10(5) viable cells) were implanted in C57BL/6J diabetic mice in one of three sites: unresected liver, regenerating liver or mesentery. Control diabetic mice were implanted with untransfected hepatocytes. At 30 days after implantation, 8/15 control mice were alive, while 19/19 treated mice were alive. The ratio of body weight on day 30/nadir body weight was significantly higher for all treated groups compared with controls. All eight surviving control mice were hyperglycemic 30 days post-implantation, while 16/19 treated diabetic mice remained normoglycemic. Treated mice had lower mean glucose values (P< or =0.001) without fasting hypoglycemia and better glucose tolerance (P< or =0.0003) than untreated controls. All (6/6) diabetic mice implanted in regenerating liver and 71% (5/7) implanted in unresected liver were alive 77 days after implantation. Engrafted hepatocytes were identified, mainly around central veins, by staining for beta-galactosidase activity and with anti-human insulin antibody.
Collapse
Affiliation(s)
- N K F Chen
- Division of Medical Sciences, National Cancer Centre, Singapore, Republic of Singapore
| | | | | | | |
Collapse
|
38
|
Burger C, Nash K, Mandel RJ. Recombinant Adeno-Associated Viral Vectors in the Nervous System. Hum Gene Ther 2005. [DOI: 10.1089/hum.2005.16.ft-64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
39
|
Cotugno G, Pollock R, Formisano P, Linher K, Beguinot F, Auricchio A. Pharmacological regulation of the insulin receptor signaling pathway mimics insulin action in cells transduced with viral vectors. Hum Gene Ther 2005; 15:1101-8. [PMID: 15610610 DOI: 10.1089/hum.2004.15.1101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diabetes mellitus derives from either insulin deficiency (type I) or resistance (type II). Homozygous mutations in the insulin receptor (IR) gene cause the rare leprechaunism and Rabson-Mendenhall syndromes, severe forms of hyperinsulinemic insulin resistance for which no therapy is currently available. Systems have been developed that allow protein-protein interactions to be brought under the control of small-molecule dimerizer drugs. As a potential tool to rescue glucose homeostasis at will in both insulin and insulin receptor deficiencies, we developed a recombinant chimeric insulin receptor (LFv2IRE) that can be homodimerized and activated by the small-molecule dimerizer AP20187. In HepG2 cells transduced with adeno-associated viral (AAV) vectors encoding LFv2IRE, AP20187 induces LFv2IRE homodimerization and transphosphorylation minutes after drug administration, resulting in the phosphorylation of a canonical substrate of the insulin receptor tyrosine kinase, IRS-1. AP20187 activation of LFv2IRE is dependent on the dose of drug and the amount of chimeric receptor expressed in AAV-transduced cells. Finally, AP20187-dependent activation of LFv2IRE results in insulin-like effects, such as induction of glycogen synthase activity and cellular proliferation. In vivo LFv2IRE transduction of insulin target tissues followed by AP20187 dosing may represent a therapeutic strategy to be tested in animal models of insulin resistance due to insulin receptor deficiency or of type I diabetes. This system may also represent a useful tool to dissect in vivo the independent contribution of insulin target tissues to hormone action.
Collapse
Affiliation(s)
- Gabriella Cotugno
- Telethon Institute of Genetics and Medicine (TIGEM), 80131 Naples, Italy
| | | | | | | | | | | |
Collapse
|
40
|
Rivera VM, Gao GP, Grant RL, Schnell MA, Zoltick PW, Rozamus LW, Clackson T, Wilson JM. Long-term pharmacologically regulated expression of erythropoietin in primates following AAV-mediated gene transfer. Blood 2005; 105:1424-30. [PMID: 15507527 DOI: 10.1182/blood-2004-06-2501] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractGene therapy is a potential route for the delivery of secreted therapeutic proteins, but pharmacologic control of expression will generally be required for optimal safety and efficacy. Previous attempts to achieve regulated expression in largeanimal models have been thwarted by transient expression or immune responses to regulatory proteins. We evaluated the ability of the dimerizer-regulated gene expression system to achieve controlled, long-term production of erythropoietin (Epo) following intramuscular administration of adeno-associated virus (AAV) vectors to 16 primates. All animals showed dose-responsive and completely reversible elevation of Epo and hematocrit in response to the dimerizer rapamycin, or analogs with reduced immunosuppressive activity, administered intravenously or orally. Animals that received optimized dual vectors showed persistent regulated expression for the duration of the study, with no apparent immune response to Epo or the regulatory proteins. Similar results were obtained with single vectors incorporating both the Epo and regulatory genes, including those packaged into serotype 1 AAV vectors to allow use of lower viral doses. For the longest-studied animal, regulated expression has persisted for more than 6 years and 26 induction cycles. These data indicate that one-time or infrequent gene transfer followed by dimerizer regulation is a promising approach for delivery of therapeutic proteins.
Collapse
Affiliation(s)
- Victor M Rivera
- ARIAD Gene Therapeutics Inc, 26 Landsdowne St, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Park YM, Woo S, Lee GT, Ko JY, Lee Y, Zhao ZS, Kim HJ, Ahn CW, Cha BS, Kim KS, Park CW, Lee HC. Safety and efficacy of adeno-associated viral vector-mediated insulin gene transfer via portal vein to the livers of streptozotocin-induced diabetic Sprague-Dawley rats. J Gene Med 2005; 7:621-9. [PMID: 15651056 DOI: 10.1002/jgm.708] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Previous studies demonstrating the efficacy of insulin gene therapy have mostly involved use of adenoviral vectors or naked DNA to deliver the insulin gene. However, this procedure may not guarantee long-term insulin production. To improve the performance, we prepared recombinant adeno-associated viral vectors (rAAV) harboring the gene encoding a furin-modified human insulin under the cytomegalovirus (CMV) promoter [rAAV-hPPI(F12)]. METHODS Streptozotocin (STZ)-induced diabetic Sprague-Dawley rats were used as a diabetic animal model. The levels of blood glucose, insulin, and HbA1c were measured to test the effect. An intraperitoneal glucose tolerance test was performed to test the capability of blood glucose disposal. Immunohistochemical staining and Northern blot analyses were performed to survey the expression pattern of the therapeutic insulin gene. RESULTS STZ-induced diabetic Sprague-Dawley rats infused via the portal vein with rAAV-hPPI(F12) produced human insulin and after a 6-h fast were normoglycemic for over 90 days post-treatment, whereas diabetic rats treated with recombinant adenoviral vector harboring the hPPI(F12) gene [rAV-hPPI(F12)] were normoglycemic only for days 3 to 13 post-treatment. Insulin mRNA was detected mainly in the liver of the rAAV-hPPI(F12)-treated diabetic rats. The glucose tolerance capability of the rAAV-hPPI(F12)-treated diabetic rats was comparable to that of non-diabetic rats, even without injection of recombinant insulin. Furthermore, blood HbA1c concentrations in rAAV-hPPI(F12)-treated diabetic rats were reduced to almost the normal level. Importantly, studies of rAV or rAAV vector-dependent side effects on the targeted liver strongly suggested that only rAAV treatment caused no side effects. CONCLUSIONS These results demonstrate that our rAAV-mediated in vivo insulin gene therapy provides safer maintenance of the insulin gene expression required for long-term and thus more effective blood glycemic control.
Collapse
Affiliation(s)
- Young Mi Park
- Brain Korea 21 Project for Medical Science, College of Medicine, Yonsei University, Seoul 120-752, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Fujimoto K, Sasaki T, Nemoto M, Nakai N, Sakai K, Yamasaki K, Hiki Y, Ohashi T, Eto Y, Tajima N. Enhanced insulin secretion from engineered 3T3-L1 preadipocytes by induction of cellular differentiation. Mol Cell Biochem 2005; 268:1-8. [PMID: 15724431 DOI: 10.1007/s11010-005-0608-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have established insulin-secreting cell line, L1-INS/fur cells, by engineering 3T3-L1 murine preadipocytes with human preproinsulin cDNA. Analysis with HPLC, mass spectrometry and immunological assay identified human insulin in the culture medium. Notably, secretion of insulin from L1-INS/fur cell was increased 8.2 times higher after induction of cellular differentiation. The increment of insulin secretion during differentiation was further enhanced by additive treatment with thiazolidinedione, a promoting agent of adipocyte differentiation. This observation strongly suggests that the enhancement of insulin secretion is tightly associated with cellular differentiation process itself. Expression rate of the insulin transgene was not changed after the additional treatment with thiazolidinedione. On the other hand, furin gene expression by Northern analysis showed an increase, and Western analysis revealed even more reduction in cellular content of proinsulin. These results indicate that mechanism of the observed enhancement in insulin secretion during the differentiation is mainly due to increased capacity of the proinsulin processing by induction of furin. Results of our present study will provide important information on cell-based therapy using undifferentiated progenitors and tissue stem cells.
Collapse
Affiliation(s)
- Kei Fujimoto
- Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Chernajovsky Y, Gould DJ, Podhajcer OL. Gene therapy for autoimmune diseases: quo vadis? Nat Rev Immunol 2004; 4:800-11. [PMID: 15459671 DOI: 10.1038/nri1459] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Biological therapies using antibodies and cytokines are becoming widespread for the treatment of chronic inflammatory autoimmune diseases. However, these treatments have several limitations - such as expense, the need for repeated injections and unwanted side-effects - that can be overcome by genetic delivery. This review summarizes the ingenuity, sophistication and variety of gene-therapy approaches that have been taken in the design of therapeutic molecules and vectors, the engineering of cells and the regulation of gene expression for the targeting of disease outcome. We focus our attention on multiple sclerosis, type 1 diabetes and rheumatoid arthritis.
Collapse
Affiliation(s)
- Yuti Chernajovsky
- Bone and Joint Research Unit, William Harvey Research Institute, Barts and The London, Queen Mary's School of Medicine and Dentistry, University of London, Charterhouse Square, London EC1M 6BQ, UK.
| | | | | |
Collapse
|
44
|
Abstract
Gene therapy has been hyped as a possible 'cure' for diabetes mellitus in the near future ever since insulin was first cloned and expressed in cultured cells in the late 1970s. In the past decade, however, the bar for gene therapy for diabetes has been raised because of recent advances in the clinical management of diabetes. Although current treatment modalities fall far short of a cure, they produce greatly improved, if imperfect, glycemic control. In this context, we review the latest advances in in vivo gene therapy and conclude that the most widely applied strategy of insulin gene transfer does not measure up to the existing treatment options, whereas the recently proved concept of induced islet neogenesis has the potential of bettering the currently available therapy. Much work remains to be done, however, before this regimen can be taken from the bench to the bedside.
Collapse
Affiliation(s)
- Lawrence Chan
- Division of Diabetes, Endocrinology & Metabolism, Department of Medicine, Baylor College of Medicine, Texas Medical Center, Houston, TX 77030, USA.
| | | | | |
Collapse
|
45
|
Toniatti C, Bujard H, Cortese R, Ciliberto G. Gene therapy progress and prospects: transcription regulatory systems. Gene Ther 2004; 11:649-57. [PMID: 14985790 DOI: 10.1038/sj.gt.3302251] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The clinical efficacy and safety as well as the application range of gene therapy will be broadened by developing systems capable of finely modulating the expression of therapeutic genes. Transgene regulation will be crucial for maintaining appropriate levels of a gene product within the therapeutic range, thus preventing toxicity. Moreover, the possibility to modulate, stop or resume transgene expression in response to disease evolution would facilitate the combination of gene therapy with more conventional therapeutic modalities. The development of ligand-dependent transcription regulatory systems is thus of great importance. Here, we summarize the most recent progress in the field.
Collapse
Affiliation(s)
- C Toniatti
- 1I.R.B.M.-P. Angeletti, Via Pontina Km. 30.600, 00040 Pomezia, Rome, Italy
| | | | | | | |
Collapse
|
46
|
Sirin O, Park F. Regulating gene expression using self-inactivating lentiviral vectors containing the mifepristone-inducible system. Gene 2004; 323:67-77. [PMID: 14659880 DOI: 10.1016/j.gene.2003.09.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Methods to regulate gene expression in vitro and in vivo are currently areas of intense research. The present study, therefore, was designed to determine the efficacy of transgene expression using the GeneSwitch mifepristone-regulatable system within the context of an integrating HIV-1 vector. Lentiviral transfer plasmids expressing the red (DsRed2) and green fluorescent protein (EGFP) markers were constructed for in vitro assessment on the basal and mifepristone-induced cell activation levels by FACS analyses. In our design, efficient cell activation and transgene expression were found using a binary lentivector system i.e., the trans-activator, Switch, and the inducible promoter-transgene expression cassette were cloned into separate vectors. Note that the Switch trans-activator performed optimally when cloned into the reverse-orientation, but the inducible promoter containing lentivector did not appear to be dependent upon the orientation within the lentivector backbone. This binary lentivector system resulted in tightly regulated transgene expression, with low basal cell activation in the absence of mifepristone (MFP). Upon induction, a 41- to 275-fold increase in the number of DsRed2- and EGFP-positive cells were detected (n=3). To determine the inducing ability of the GeneSwitch, we cloned the human alpha(1)-antitrypsin cDNA into the optimal lentiviral vector and transduced HeLa and Huh7 cells at increasing lentivector doses as determined by p24 Gag ELISA. We found that MFP could induce the expression of hAAT protein in HeLa cells from 310 to 15,000 ng hAAT/10(6) cells/24 h, which was a 48-fold induction. Similar results were observed in huH7 cells. In all, this study demonstrates that the GeneSwitch system can be designed within the context of a lentiviral vector for in vitro gene transfer, and this may also provide a viable method for temporally regulating gene expression for therapeutic applications in vivo or ex vivo.
Collapse
Affiliation(s)
- Olga Sirin
- Department of Medicine, Program in Gene Therapy, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | | |
Collapse
|
47
|
He CX, Shi D, Wu WJ, Ding YF, Feng DM, Lu B, Chen HM, Yao JH, Shen Q, Lu DR, Xue JL. Insulin expression in livers of diabetic mice mediated by hydrodynamics-based administration. World J Gastroenterol 2004; 10:567-72. [PMID: 14966918 PMCID: PMC4716981 DOI: 10.3748/wjg.v10.i4.567] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: Transfer and expression of insulin gene in vivo are an alternative strategy to improve glycemic control in type 1 diabetes. Hydrodynamics-based procedure has been proved to be very efficient to transfer naked DNA to mouse livers. The basal hepatic insulin production mediated by this rapid tail vein injection was studied to determine its effect on the resumption of glycemic control in type 1 diabetic mice.
METHODS: Engineered insulin cDNA was inserted into plasmid vectors under a CMV promoter, and transferred into STZ induced diabetic mice by hydrodynamic procedure. Glucose levels, body weight of treated mice, insulin levels, immunohistology of the liver, and quantity of insulin mRNA in the liver were assayed to identify the improvement of hyperglycemic complication after plasmid administration. Sleeping Beauty, a transposon system, was also used to prolong the insulin expression in the liver.
RESULTS: After plasmid administration, Plasma insulin was significantly increased in the diabetic mice and the livers were insulin-positive by immunostaining. At the same time the hyperglycemic complication was improved. The blood glucose levels of mice were reduced to normal. Glucose tolerance of the treated diabetic mice was improved. Body weight loss was also ameliorated. The rapid tail vein injection did not cause any fatal result.
CONCLUSION: Our results suggested that insulin gene could be efficiently transferred into the livers of diabetic mice via rapid tail vein injection and it resulted in high level of insulin expression. The basal hepatic insulin production mediated by hydrodynamics-based administration improved the glycemic control in type 1 diabetes dramatically and ameliorated diabetic syndromes. Hydrodynamics-based administration offers a simple and efficient way in the study of gene therapy for type 1 diabetes.
Collapse
Affiliation(s)
- Chen-Xia He
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wang J, Voutetakis A, Zheng C, Baum BJ. Rapamycin control of exocrine protein levels in saliva after adenoviral vector-mediated gene transfer. Gene Ther 2004; 11:729-33. [PMID: 14737095 DOI: 10.1038/sj.gt.3302225] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transgene-encoded therapeutic secretory proteins can be efficiently secreted from salivary glands into saliva or the bloodstream after adenoviral (Ad)-mediated gene transfer. Since transgene expression from conventional vectors is typically unregulated, we evaluated the rapamycin-based dimerizer regulation system for control of transgene expression in, and consequent exocrine protein secreted from, rat salivary glands. We used human growth hormone (hGH) as a surrogate exocrine secretory protein. Two Ad vectors, Ad C4ZF3, encoding activation and DNA binding domain fusion polypeptides, and Ad Z12-I-GH-2, encoding hGH, were constructed and shown useful in vitro. Thereafter, both vectors were delivered into submandibular glands by retroductal infusion. After 24 h, rapamycin (0, 1, 3 or 10 mg/kg) was administered, and 20 h later hGH levels in saliva were determined. Salivary hGH levels were rapamycin concentration dependent. At a rapamycin dose of 10 mg/kg, total salivary hGH was 693+/-197 ng and the hGH concentration in saliva was 4.6+/-1.3 microg/ml. Over a 16-day experimental period, three separate administrations of rapamycin (3 mg/kg) induced distinct elevations of salivary hGH (approximately 100-200 ng total hGH) that were entirely rapamycin dependent. This study demonstrates for the first time pharmacological control of transgenic exocrine protein production and presence in saliva after salivary gland gene transfer, and the potential for its application to the management of oral, oropharyngeal and upper gastrointestinal tract disorders.
Collapse
Affiliation(s)
- J Wang
- Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, DHHS, Bethesda, MD 20892-1190, USA
| | | | | | | |
Collapse
|
49
|
Abstract
The field of metabolic engineering encompasses a powerful set of tools that can be divided into (a) methods to model complex metabolic pathways and (b) techniques to manipulate these pathways for a desired metabolic outcome. These tools have recently seen increased utility in the medical arena, and this paper aims to review significant accomplishments made using these approaches. The modeling of metabolic pathways has been applied to better understand disease-state physiology in a variety of cellar, subcellular, and organ systems, including the liver, heart, mitochondria, and cancerous cells. Metabolic pathway engineering has been used to generate cells with novel biochemical functions for therapeutic use, and specific examples are provided in the areas of glycosylation engineering and dopamine-replacement therapy. In order to document the potential of applying both metabolic modeling and pathway manipulation, we describe pertinent advances in the field of diabetes research. Undoubtedly, as the field of metabolic engineering matures and is applied to a wider array of problems, new advances and therapeutic strategies will follow.
Collapse
Affiliation(s)
- Martin L Yarmush
- Center for Engineering in Medicine/Surgical Services, Massachusetts General Hospital, Shriners Burns Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
50
|
Abstract
Insulin-dependent diabetes mellitus (IDDM) is an autoimmune disease resulting in destruction of the pancreatic beta-cells in the islets of Langerhans. Commonly employed treatment of IDDM requires periodic insulin therapy, which is not ideal because of its inability to prevent chronic complications such as nephropathy, neuropathy and retinopathy. Although pancreas or islet transplantation are effective treatments that can reverse metabolic abnormalities and prevent or minimize many of the chronic complications of IDDM, their usefulness is limited as a result of shortage of donor pancreas organs. Gene therapy as a novel field of medicine holds tremendous therapeutic potential for a variety of human diseases including IDDM. This review focuses on the liver-based gene therapy for generation of surrogate pancreatic beta-cells for insulin replacement because of the innate ability of hepatocytes to sense and metabolically respond to changes in glucose levels and their high capacity to synthesize and secrete proteins. Recent advances in the use of gene therapy to prevent or regenerate beta-cells from autoimmune destruction are also discussed.
Collapse
Affiliation(s)
- Philipp C Nett
- Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, WI, USA
| | | | | |
Collapse
|