1
|
Bauer Estrada K, Conde-Martínez N, Acosta-González A, Díaz-Barrera LE, Rodríguez-Castaño GP, Quintanilla-Carvajal MX. Synbiotics of encapsulated Limosilactobacillus fermentum K73 promotes in vitro favorable gut microbiota shifts and enhances short-chain fatty acid production in fecal samples of children with autism spectrum disorder. Food Res Int 2025; 209:116227. [PMID: 40253179 DOI: 10.1016/j.foodres.2025.116227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/23/2025] [Accepted: 03/11/2025] [Indexed: 04/21/2025]
Abstract
Modulation of the gut microbiota has emerged as a promising approach for addressing the gastrointestinal and neurodevelopmental symptoms associated with autism spectrum disorder (ASD). Consequently, this study aimed to evaluate the impact of four formulated synbiotics comprising Limoscilactobacillus fermentum K73, high-oleic palm oil and whey, on the gut microbiota composition of Colombian children with and without ASD. These components were encapsulated through high-shear emulsification and spray drying. The four synbiotics and their individual components were subjected to in vitro digestion and fermentation using samples of Colombian children gut microbiota. Short-chain fatty acids (SCFAs), including lactic, acetic, propionic, and butyric acids, were quantified using HPLC-DAD, while serotonin was determined by an ELISA kit after in vitro fermentations. Changes in microbial structure were assessed by the sequencing of the 16S rRNA gene via next-generation sequencing (NGS). The results revealed a decrease in the abundance of genera like Bacteroides and Dorea in ASD-associated samples after the treatment with the synbiotics. Conversely, an increase in the relative abundance of probiotic-related genera, including Lactobacillus, Streptococcus, and Anaerostipes, was observed. Furthermore, the analysis of SCFAs and serotonin indicated that the synbiotic intervention resulted in an elevated butyric acid and microbial serotonin synthesis, alongside a decrease in propionic acid, which is changes considered beneficial in the context of ASD. This evidence suggests that synbiotics of L. fermentum K73 could represent a promising live biotherapeutic strategy for modulating the gut microbiota of children with ASD.
Collapse
Affiliation(s)
- Katherine Bauer Estrada
- Biosciences Doctorate, Engineering Department, Universidad de La Sabana, Chía, Colombia; Engineering Department, Universidad de La Sabana, Chía, Colombia
| | | | - Alejandro Acosta-González
- Engineering Department, Universidad de La Sabana, Chía, Colombia; Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chía, Colombia
| | | | | | - María Ximena Quintanilla-Carvajal
- Engineering Department, Universidad de La Sabana, Chía, Colombia; Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chía, Colombia.
| |
Collapse
|
2
|
Keshet A, Hochwald O, Lavon A, Borenstein-Levin L, Shoer S, Godneva A, Glantz-Gashai Y, Cohen-Dolev N, Timstut F, Lotan-Pompan M, Solt I, Weinberger A, Segal E, Shilo S. Development of antibiotic resistome in premature infants. Cell Rep 2025; 44:115515. [PMID: 40198224 DOI: 10.1016/j.celrep.2025.115515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/17/2024] [Accepted: 03/14/2025] [Indexed: 04/10/2025] Open
Abstract
Preterm birth is a major concern in neonatal care, significantly impacting infant survival and long-term health. The gut microbiome, essential for infant development, often becomes imbalanced in preterm infants, making it crucial to understand the effects of antibiotics on its development. Our study analyzed weekly, 6-month, and 1-year stool samples from 100 preterm infants, correlating clinical data on antibiotic use and feeding patterns. Comparing infants who received no antibiotics with those given empirical post-birth treatment, we observed notable alterations in the gut microbiome's composition and an increase in antibiotic resistance gene abundance early in life. Although these effects diminished over time, their long-term clinical impacts remain unclear. Human milk feeding was associated with beneficial microbiota like Actinobacteriota and reduced antibiotic resistance genes, underscoring its protective role. This highlights the importance of judicious antibiotic use and promoting human milk to foster a healthy gut microbiome in preterm infants.
Collapse
Affiliation(s)
- Ayya Keshet
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ori Hochwald
- Neonatal Intensive Care Unit, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel; Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Amit Lavon
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Liron Borenstein-Levin
- Neonatal Intensive Care Unit, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel; Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Saar Shoer
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Anastasia Godneva
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yitav Glantz-Gashai
- Neonatal Intensive Care Unit, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Noa Cohen-Dolev
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Fanny Timstut
- Neonatal Intensive Care Unit, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Maya Lotan-Pompan
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ido Solt
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Israel
| | - Adina Weinberger
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Smadar Shilo
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel; The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel; Faculty of Medical and Health Sciences, Tel Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
3
|
Xiao P, Li Y, Li X, Ge T, Li D, Xu Q, Ruan Y, Xiao F, Xiao Y, Zhang T. Long-term safety of fecal microbiota transplantation in Chinese children from 2013 to 2023: a single-center retrospective study. BMC Microbiol 2025; 25:152. [PMID: 40098090 PMCID: PMC11912669 DOI: 10.1186/s12866-025-03858-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 03/03/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND The gut microbiome plays a vital role in influencing various health conditions. Fecal Microbiota Transplantation (FMT) has emerged as a rapid, safe, and effective method for modifying the microbiome. However, there is a lack of long-term safety data regarding FMT in children. This study presents the largest single-center analysis of the long-term safety outcomes of FMT in pediatric patients in China, featuring a substantial sample size and an extended follow-up period to thoroughly examine its safety in children. METHODS A retrospective study was conducted on 813 patients who underwent FMT treatments at our hospital from December 2013 to December 2023. All FMT procedures adhered to standardized protocols. The safety of these treatments was retrospectively assessed, focusing on adverse events (AEs) and serious adverse events (SAEs). AEs associated with FMT were categorized as short-term (within 48 h post-FMT) and long-term (within 3 months). Various potential influencing factors for AEs, including sex, age, route of administration, disease type, and consanguineous donor, were examined as independent variables. Significant independent factors and their associated risk ratios with 95% confidence intervals (CI) were determined through multivariate logistic regression analysis. A p-value of less than 0.05 was considered statistically significant. RESULTS A total of 813 patients underwent FMT, with a median age of 93 months (range 4-215) and 68.0% being males. The average follow-up time was 32.3 months (range 1-122). All short-term AEs resolved within 48 h, with an overall occurrence rate of 5.8% (47/813). The most common short-term AEs included vomiting (2.0%), abdominal pain (1.6%), diarrhea (0.9%), fever (0.7%), dysphoria (0.4%), and nausea (0.4%). Multivariable analysis revealed that patients with inflammatory bowel disease (IBD) (OR: 3.98, 95% CI: 1.78-8.92, P = 0.001) and those who received FMT via capsules (OR: 0.09, 95% CI: 0.03-0.27, P = 0.000) were independent risk factors for FMT-related AEs. All 813 patients were followed up for at least 1 month, with 78.8% followed for more than 12 months. No long-term AEs occurred during the longest follow-up period of 122 months. CONCLUSIONS FMT is a promising treatment option that appears to be safe and well tolerated. This study stands out for its substantial sample size, making it's the largest reported series in pediatrics, as well as for having the longest follow-up period for FMT in this population. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Pei Xiao
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, 355 Luding Road, Shanghai, 200062, China
| | - Youran Li
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, 355 Luding Road, Shanghai, 200062, China
| | - Xiaolu Li
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, 355 Luding Road, Shanghai, 200062, China
| | - Ting Ge
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, 355 Luding Road, Shanghai, 200062, China
| | - Dan Li
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, 355 Luding Road, Shanghai, 200062, China
| | - Qiao Xu
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, 355 Luding Road, Shanghai, 200062, China
| | - Yangming Ruan
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, 355 Luding Road, Shanghai, 200062, China
| | - Fangfei Xiao
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, 355 Luding Road, Shanghai, 200062, China
| | - Yongmei Xiao
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, 355 Luding Road, Shanghai, 200062, China
| | - Ting Zhang
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, 355 Luding Road, Shanghai, 200062, China.
- Institute of Pediatric Infection, Immunity and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Marangelo C, Marsiglia R, Nissen L, Scanu M, Toto F, Siroli L, Gottardi D, Braschi G, Chierico FD, Bordoni A, Gianotti A, Lanciotti R, Patrignani F, Putignani L, Vernocchi P. Functional foods acting on gut microbiota-related wellness: The multi-unit in vitro colon model to assess gut ecological and functional modulation. Food Res Int 2025; 202:115577. [PMID: 39967085 DOI: 10.1016/j.foodres.2024.115577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/20/2024] [Accepted: 12/28/2024] [Indexed: 02/20/2025]
Abstract
The aim of this study was to investigate the effect of a functional probiotic cheese (FPC) on gut microbiota (GM), after simulated digestion performed by a multi-unit in vitro colon model (MICODE). Squacquerone-like cheese was produced using the starter Streptococcus thermophilus (control, CTRL), and supplemented with the probiotic Lacticaseibacillus rhamnosus, which was either subjected to high pressure homogenization (LrH) or not (Lr). Samples were stratified by cheese type, storage time, and colonic fermentation phase. Samples were then digested with MICODE and digests were characterized for ecological and functional profiles. The lactobacilli detected in Lr and LrH cheeses (9.0 log CFU/g) were represented by the probiotic strain L. rhamnosus and remained unchanged after storage at 4 °C. Lactobacilli levels in CTRLs increased from 1.5 log CFU/g to 2.0 log CFU/g after six days at 4 °C, while total coliforms remained below 1.5 log CFU/g in all samples. Real-time qPCR indicated a positive GM response after FPC simulated digestion, highlighting an abundance of bifidobacteria, lactobacilli and Clostridium group IV in LrH samples. Metataxonomy revealed higher levels of Firmicutes and Proteobacteria (p ≤ 0.05) after simulated digestion, as well as Megasphaera, Escherichia, Prevotella and Dorea. Moreover, an increase of short and medium chain fatty acids were detected by metabolomics. Overexpression of inferred KEGG metabolic pathways showed mainly fatty acids, novobiocin and amino acid metabolism. Understanding how functional foods can modify the GM may lead to the development of targeted microbiome-based therapies and the exploitation of these foods for the benefit of human health.
Collapse
Affiliation(s)
- Chiara Marangelo
- Research Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Riccardo Marsiglia
- Research Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Lorenzo Nissen
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy; Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy; CRBA, Centre for Applied Biomedical Research, Alma Mater Studiorum - University of Bologna, Policlinico di Sant'Orsola, 40100 Bologna, Italy
| | - Matteo Scanu
- Research Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Francesca Toto
- Research Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Lorenzo Siroli
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy; Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy
| | - Davide Gottardi
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy; Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy
| | - Giacomo Braschi
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy; Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy
| | - Federica Del Chierico
- Research Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Alessandra Bordoni
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy; Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy
| | - Andrea Gianotti
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy; Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy; CRBA, Centre for Applied Biomedical Research, Alma Mater Studiorum - University of Bologna, Policlinico di Sant'Orsola, 40100 Bologna, Italy
| | - Rosalba Lanciotti
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy; Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy
| | - Francesca Patrignani
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy; Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy
| | - Lorenza Putignani
- Unit of Microbiomics and Research Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Pamela Vernocchi
- Research Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy.
| |
Collapse
|
5
|
Marzano V, Levi Mortera S, Putignani L. Insights on Wet and Dry Workflows for Human Gut Metaproteomics. Proteomics 2024:e202400242. [PMID: 39740098 DOI: 10.1002/pmic.202400242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025]
Abstract
The human gut microbiota (GM) is a community of microorganisms that resides in the gastrointestinal (GI) tract. Recognized as a critical element of human health, the functions of the GM extend beyond GI well-being to influence overall systemic health and susceptibility to disease. Among the other omic sciences, metaproteomics highlights additional facets that make it a highly valuable discipline in the study of GM. Indeed, it allows the protein inventory of complex microbial communities. Proteins with associated taxonomic membership and function are identified and quantified from their constituent peptides by liquid chromatography coupled to mass spectrometry analyses and by querying specific databases (DBs). The aim of this review was to compile comprehensive information on metaproteomic studies of the human GM, with a focus on the bacterial component, to assist newcomers in understanding the methods and types of research conducted in this field. The review outlines key steps in a metaproteomic-based study, such as protein extraction, DB selection, and bioinformatic workflow. The importance of standardization is emphasized. In addition, a list of previously published studies is provided as hints for researchers interested in investigating the role of GM in health and disease states.
Collapse
Affiliation(s)
- Valeria Marzano
- Research Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefano Levi Mortera
- Research Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lorenza Putignani
- Unit of Microbiomics and Research Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
6
|
Patloka O, Komprda T, Franke G. Review of the Relationships Between Human Gut Microbiome, Diet, and Obesity. Nutrients 2024; 16:3996. [PMID: 39683390 DOI: 10.3390/nu16233996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Obesity is a complex disease that increases the risk of other pathologies. Its prevention and long-term weight loss maintenance are problematic. Gut microbiome is considered a potential obesity modulator. The objective of the present study was to summarize recent findings regarding the relationships between obesity, gut microbiota, and diet (vegetable/animal proteins, high-fat diets, restriction of carbohydrates), with an emphasis on dietary fiber and resistant starch. The composition of the human gut microbiome and the methods of its quantification are described. Products of the gut microbiome metabolism, such as short-chain fatty acids and secondary bile acids, and their effects on the gut microbiota, intestinal barrier function and immune homeostasis are discussed in the context of obesity. The importance of dietary fiber and resistant starch is emphasized as far as effects of the host diet on the composition and function of the gut microbiome are concerned. The complex relationships between human gut microbiome and obesity are finally summarized.
Collapse
Affiliation(s)
- Ondřej Patloka
- Department of Food Technology, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Tomáš Komprda
- Department of Food Technology, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Gabriela Franke
- Department of Food Technology, Mendel University in Brno, 61300 Brno, Czech Republic
| |
Collapse
|
7
|
Ahmed K, Choi HN, Cho SR, Yim JE. Association of Firmicutes/Bacteroidetes Ratio with Body Mass Index in Korean Type 2 Diabetes Mellitus Patients. Metabolites 2024; 14:518. [PMID: 39452900 PMCID: PMC11509432 DOI: 10.3390/metabo14100518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The gut microbiome, which is the collection of microorganisms living in the gastrointestinal tract, has been shown to play a significant role in the development of metabolic disorders such as obesity and type 2 diabetes mellitus (T2DM). Studies have found that the ratio of Firmicutes to Bacteroidetes (F/B) is higher in obese individuals compared to lean individuals and tends to decrease with weight loss. However, the relationship between the F/B ratio and T2DM in Korean individuals, with or without obesity, is not fully understood. OBJECTIVE The objective of this study is to compare the F/B ratios and metabolic profiles of lean and obese Korean individuals with T2DM. METHODS In this study, 36 individuals with type 2 diabetes mellitus (T2DM) were recruited and classified into four groups (I, II, III, and IV) based on their body mass index (BMI). Group I had a BMI of less than 23.0, group II had a BMI between 23.0 and 24.9, group III had a BMI between 25.0 and 29.9, and group IV had a BMI of 30 kg/m2 or greater. Fecal samples were collected from all participants and sent to Chunlab Inc. (located in Seoul, Republic of Korea) for analysis. The changes in the major microbial phyla within the samples were investigated using quantitative real-time PCR. The collected data were then statistically analyzed using the SPSS program. RESULTS The levels of triglycerides and alanine transaminase in group I were significantly lower than in the other three groups. The amount of Actinobacteria in group IV was the highest among all four groups. The ratio of Firmicutes to Bacteroidetes increased as BMI increased, and this ratio was positively correlated with AST activity. CONCLUSIONS Our study showed that there is a correlation between the degree of obesity in individuals with diabetes and their gut microbiome. Additionally, the ratio of Firmicutes to Bacteroidetes (F/B ratio) may play a role in the metabolic effects of fatty liver disease, as it may contribute to obesity.
Collapse
Affiliation(s)
- Kainat Ahmed
- Interdisciplinary Program in Senior Human Ecology, Changwon National University, Changwon 51140, Republic of Korea;
| | - Ha-Neul Choi
- Department of Food and Nutrition, Changwon National University, Changwon 51140, Republic of Korea;
| | - Sung-Rae Cho
- Changwon Fatima Hospital, Department of Endocrinology, Changwon 51394, Republic of Korea;
| | - Jung-Eun Yim
- Interdisciplinary Program in Senior Human Ecology, Changwon National University, Changwon 51140, Republic of Korea;
- Department of Food and Nutrition, Changwon National University, Changwon 51140, Republic of Korea;
| |
Collapse
|
8
|
Abdul Kalam Saleena L, Chang SK, Simarani K, Arunachalam KD, Thammakulkrajang R, How YH, Pui LP. A comprehensive review of Bifidobacterium spp: as a probiotic, application in the food and therapeutic, and forthcoming trends. Crit Rev Microbiol 2024; 50:581-597. [PMID: 37551693 DOI: 10.1080/1040841x.2023.2243617] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/03/2023] [Accepted: 07/26/2023] [Indexed: 08/09/2023]
Abstract
Recently, more consumers are interested in purchasing probiotic food and beverage products that may improve their immune health. The market for functional foods and beverages that include Bifidobacterium is expanding because of their potential uses in both food and therapeutic applications. However, maintaining Bifidobacterium's viability during food processing and storage remains a challenge. Microencapsulation technique has been explored to improve the viability of Bifidobacterium. Despite the technical, microbiological, and economic challenges, the market potential for immune-supporting functional foods and beverages is significant. Additionally, there is a shift toward postbiotics as a solution for product innovation, a promising postbiotic product that can be incorporated into various food and beverage formats is also introduced in this review. As consumers become more health-conscious, future developments in the functional food and beverage market discussed in this review could serve as a reference for researchers and industrialist.
Collapse
Affiliation(s)
| | - Sui Kiat Chang
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman Kampar, Perak, Malaysia
| | - Khanom Simarani
- Faculty of Science, Institute Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Kantha Deivi Arunachalam
- Directorate of Research, Center For Environmental Nuclear Research, SRM Institute of Science and Technology, SRM Nagar, Chennai, India
- Faculty of Sciences, Marwadi University, Rajkot, India
| | | | - Yu Hsuan How
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Liew Phing Pui
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Kim B, Song A, Son A, Shin Y. Gut microbiota and epigenetic choreography: Implications for human health: A review. Medicine (Baltimore) 2024; 103:e39051. [PMID: 39029010 PMCID: PMC11398772 DOI: 10.1097/md.0000000000039051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
The interwoven relationship between gut microbiota and the epigenetic landscape constitutes a pivotal axis in understanding human health and disease. Governed by a myriad of dietary, genetic, and environmental influences, the gut microbiota orchestrates a sophisticated metabolic interplay, shaping nutrient utilization, immune responses, and defenses against pathogens. Recent strides in genomics and metabolomics have shed light on the intricate connections between these microbial influencers and the host's physiological dynamics, presenting a dynamic panorama across diverse disease spectra. DNA methylation and histone modifications, as key players in epigenetics, intricately align with the dynamic orchestration of the gut microbiota. This seamless collaboration, notably evident in conditions like inflammatory bowel disease and obesity, has captured the attention of researchers, prompting an exploration of its nuanced choreography. Nevertheless, challenges abound. Analyzing data is intricate due to the multifaceted nature of the gut microbiota and the limitations of current analytical methods. This underscores the need for a multidisciplinary approach, where diverse disciplines converge to pave innovative research pathways. The integration of insights from microbiome and epigenome studies assumes paramount importance in unraveling the complexities of this intricate partnership. Deciphering the synchronized interactions within this collaboration offers a deeper understanding of these delicate interplays, potentially heralding revolutionary strides in treatment modalities and strategies for enhancing public health.
Collapse
Affiliation(s)
- Bailee Kim
- Crescenta Valley High School, La Crescenta, CA
| | - Angel Song
- Harvard-Westlake School, Studio City, CA
| | - Andrew Son
- Bellarmine College Preparatory, San Jose, CA
| | - Yonghwan Shin
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA
| |
Collapse
|
10
|
Luzzi A, Briata IM, Di Napoli I, Giugliano S, Di Sabatino A, Rescigno M, Cena H. Prebiotics, probiotics, synbiotics and postbiotics to adolescents in metabolic syndrome. Clin Nutr 2024; 43:1433-1446. [PMID: 38704983 DOI: 10.1016/j.clnu.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/06/2023] [Accepted: 04/19/2024] [Indexed: 05/07/2024]
Abstract
The prevalence of childhood and adolescent obesity has globally reached alarming dimensions and many adolescents affected by obesity already present one or more obesity-related comorbidities. In recent years, emerging evidence supporting the role of gut microbiota in the pathophysiology of metabolic diseases has been reported and the use of prebiotics, probiotics, synbiotics and postbiotics as a strategy to manipulate gut microbiota has become popular. The aim of this review is to explore the relationship between gut microbiota and metabolic syndrome in adolescents and to discuss the potential use of prebiotics, probiotics, synbiotics and postbiotics for the prevention and treatment of this clinical picture in adolescence. According to the most recent literature, prebiotics, probiotics and synbiotics have no clear effect on MetS, but a possible modulation of anthropometric parameters has been observed after synbiotic supplementation. Only one study has examined the role of postbiotics in alleviating metabolic complications in children with obesity but not in adolescents. More extensive research is needed to support the conclusions drawn so far and to develop effective microbiome-based interventions that may help improving the quality of life of children and adolescents exposed to the increasing prevalence of MetS.
Collapse
Affiliation(s)
- Alessia Luzzi
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; Post Graduate Course in Food Science and Human Nutrition, Università Statale di Milano, 20122 Milan, Italy; Clinical Nutrition Unit, Department of General Medicine, ICS Maugeri IRCCS, 27100 Pavia, Italy.
| | - Irene Maria Briata
- Post Graduate Course in Food Science and Human Nutrition, Università Statale di Milano, 20122 Milan, Italy; Division of Medical Oncology, E.O. Ospedali Galliera, Genoa, Italy.
| | - Ilaria Di Napoli
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy.
| | - Silvia Giugliano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, MI, 20072, Italy.
| | - Antonio Di Sabatino
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; First Department of Internal Medicine, Fondazione IRCCS San Matteo, 27100 Pavia, Italy.
| | - Maria Rescigno
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, MI, 20072, Italy; IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy.
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; Clinical Nutrition Unit, Department of General Medicine, ICS Maugeri IRCCS, 27100 Pavia, Italy.
| |
Collapse
|
11
|
Liang H, Tao S, Wang Y, Zhao J, Yan C, Wu Y, Liu N, Qin Y. Astragalus polysaccharide: implication for intestinal barrier, anti-inflammation, and animal production. Front Nutr 2024; 11:1364739. [PMID: 38757131 PMCID: PMC11096541 DOI: 10.3389/fnut.2024.1364739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Intestine is responsible for nutrients absorption and plays a key role in defending against various dietary allergens, antigens, toxins, and pathogens. Accumulating evidence reported a critical role of intestine in maintaining animal and human health. Since the use of antibiotics as growth promoters in animal feed has been restricted in many countries, alternatives to antibiotics have been globally investigated, and polysaccharides are considered as environmentally friendly and promising alternatives to improve intestinal health, which has become a research hotspot due to its antibiotic substitution effect. Astragalus polysaccharide (APS), a biological macromolecule, is extracted from astragalus and has been reported to exhibit complex biological activities involved in intestinal barrier integrity maintenance, intestinal microbiota regulation, short-chain fatty acids (SCFAs) production, and immune response regulation, which are critical for intestine health. The biological activity of APS is related to its chemical structure. In this review, we outlined the source and structure of APS, highlighted recent findings on the regulation of APS on physical barrier, biochemical barrier, immunological barrier, and immune response as well as the latest progress of APS as an antibiotic substitute in animal production. We hope this review could provide scientific basis and new insights for the application of APS in nutrition, clinical medicine and health by understanding particular effects of APS on intestine health, anti-inflammation, and animal production.
Collapse
Affiliation(s)
- Hui Liang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Siming Tao
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Yanya Wang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Jing Zhao
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Chang Yan
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Yingjie Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Ning Liu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Yinghe Qin
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Liang Y, Yao X, Meng Z, Lan J, Qiu Y, Cen C, Feng Y. Gut microbial network signatures of early colonizers in preterm neonates with extrauterine growth restriction. BMC Microbiol 2024; 24:82. [PMID: 38461289 PMCID: PMC10924324 DOI: 10.1186/s12866-024-03234-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/25/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Extrauterine growth restriction (EUGR) represents a prevalent condition observed in preterm neonates, which poses potential adverse implications for both neonatal development and long-term health outcomes. The manifestation of EUGR has been intricately associated with perturbations in microbial and metabolic profiles. This study aimed to investigate the characteristics of the gut microbial network in early colonizers among preterm neonates with EUGR. METHODS Twenty-nine preterm infants participated in this study, comprising 14 subjects in the EUGR group and 15 in the normal growth (AGA) group. Meconium (D1) and fecal samples were collected at postnatal day 28 (D28) and 1 month after discharge (M1). Subsequently, total bacterial DNA was extracted and sequenced using the Illumina MiSeq system, targeting the V3-V4 hyper-variable regions of the 16S rRNA gene. RESULTS The outcomes of principal coordinates analysis (PCoA) and examination of the microbial network structure revealed distinctive developmental trajectories in the gut microbiome during the initial three months of life among preterm neonates with and without EUGR. Significant differences in microbial community were observed at the D1 (P = 0.039) and M1 phases (P = 0.036) between the EUGR and AGA groups, while a comparable microbial community was noted at the D28 phase (P = 0.414). Moreover, relative to the AGA group, the EUGR group exhibited significantly lower relative abundances of bacteria associated with secretion of short-chain fatty acids, including Lactobacillus (P = 0.041) and Parabacteroides (P = 0.033) at the D1 phase, Bifidobacterium at the D28 phase, and genera Dysgonomonas (P = 0.042), Dialister (P = 0.02), Dorea (P = 0.042), and Fusobacterium (P = 0.017) at the M1 phase. CONCLUSION Overall, the present findings offer crucial important insights into the distinctive gut microbial signatures exhibited by earlier colonizers in preterm neonates with EUGR. Further mechanistic studies are needed to establish whether these differences are the cause or a consequence of EUGR.
Collapse
Affiliation(s)
- Yumei Liang
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region, 533000, China
| | - Xiaomin Yao
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region, 533000, China
| | - Zida Meng
- Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region, 533000, China
| | - Jinyun Lan
- Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region, 533000, China
| | - Yanqing Qiu
- Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region, 533000, China
| | - Chao Cen
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region, 533000, China.
| | - Yanni Feng
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region, 533000, China.
| |
Collapse
|
13
|
Wang XA, Li JP, Lee MS, Yang SF, Chang YS, Chen L, Li CW, Chao YH. A common trajectory of gut microbiome development during the first month in healthy neonates with limited inter-individual environmental variations. Sci Rep 2024; 14:3264. [PMID: 38332050 PMCID: PMC10853277 DOI: 10.1038/s41598-024-53949-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/07/2024] [Indexed: 02/10/2024] Open
Abstract
The early development of the gut microbiome is governed by multiple factors and has significantly long-term effects on later-in-life health. To minimize inter-individual variations in the environment, we determined developmental trajectories of the gut microbiome in 28 healthy neonates during their stay at a postpartum center. Stool samples were collected at three time points: the first-pass meconium within 24 h of life, and at 7 and 28 days of age. Illumina sequencing of the V3-V4 region of 16S rRNA was used to investigate microbiota profiles. We found that there was a distinct microbiota structure at each time point, with a significant shift during the first week. Proteobacteria was most abundant in the first-pass meconium; Firmicutes and Actinobacteria increased with age and were substituted as the major components. Except for a short-term influence of different delivery modes on the microbiota composition, early microbiome development was not remarkably affected by gravidity, maternal intrapartum antibiotic treatment, premature rupture of membranes, or postnatal phototherapy. Hence, our data showed a similar developmental trajectory of the gut microbiome during the first month in healthy neonates when limited in environmental variations. Environmental factors external to the host were crucial in the early microbiome development.
Collapse
Affiliation(s)
- Xing-An Wang
- Department of Pediatrics, Chung Shan Medical University Hospital, No. 110, Sec. 1, Chien-Kuo N. Road, Taichung, 402, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ju-Pi Li
- Department of Pediatrics, Chung Shan Medical University Hospital, No. 110, Sec. 1, Chien-Kuo N. Road, Taichung, 402, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Maw-Sheng Lee
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Lee Women's Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Sheng Chang
- Department of Research and Development, AllBio Life Incorporation, Taichung, Taiwan
| | - Ling Chen
- Department of Research and Development, AllBio Life Incorporation, Taichung, Taiwan
| | - Chang-Wei Li
- Department of Research and Development, AllBio Life Incorporation, Taichung, Taiwan
| | - Yu-Hua Chao
- Department of Pediatrics, Chung Shan Medical University Hospital, No. 110, Sec. 1, Chien-Kuo N. Road, Taichung, 402, Taiwan.
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.
- Department of Clinical Pathology, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
14
|
Marzano V, Mortera SL, Marangelo C, Piazzesi A, Rapisarda F, Pane S, Del Chierico F, Vernocchi P, Romani L, Campana A, Palma P, Putignani L. The metaproteome of the gut microbiota in pediatric patients affected by COVID-19. Front Cell Infect Microbiol 2023; 13:1327889. [PMID: 38188629 PMCID: PMC10766818 DOI: 10.3389/fcimb.2023.1327889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction The gut microbiota (GM) play a significant role in the infectivity and severity of COVID-19 infection. However, the available literature primarily focuses on adult patients and it is known that the microbiota undergoes changes throughout the lifespan, with significant alterations occurring during infancy and subsequently stabilizing during adulthood. Moreover, children have exhibited milder symptoms of COVID-19 disease, which has been associated with the abundance of certain protective bacteria. Here, we examine the metaproteome of pediatric patients to uncover the biological mechanisms that underlie this protective effect of the GM. Methods We performed nanoliquid chromatography coupled with tandem mass spectrometry on a high resolution analytical platform, resulting in label free quantification of bacterial protein groups (PGs), along with functional annotations via COG and KEGG databases by MetaLab-MAG. Additionally, taxonomic assignment was possible through the use of the lowest common ancestor algorithm provided by Unipept software. Results A COVID-19 GM functional dissimilarity respect to healthy subjects was identified by univariate analysis. The alteration in COVID-19 GM function is primarily based on bacterial pathways that predominantly involve metabolic processes, such as those related to tryptophan, butanoate, fatty acid, and bile acid biosynthesis, as well as antibiotic resistance and virulence. Discussion These findings highlight the mechanisms by which the pediatric GM could contribute to protection against the more severe manifestations of the disease in children. Uncovering these mechanisms can, therefore, have important implications in the discovery of novel adjuvant therapies for severe COVID-19.
Collapse
Affiliation(s)
- Valeria Marzano
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Stefano Levi Mortera
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Chiara Marangelo
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Antonia Piazzesi
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Federica Rapisarda
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Stefania Pane
- Unit of Microbiomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Federica Del Chierico
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Pamela Vernocchi
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Lorenza Romani
- Unit of Infectious Disease, Bambino Gesu’ Children’s Hospital, IRCCS, Rome, Italy
| | - Andrea Campana
- Department of Pediatrics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Lorenza Putignani
- Unit of Microbiomics and Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | |
Collapse
|
15
|
González L, Paredes Sosa JL, Mosquito S, Filio Y, Romero PE, Ochoa TJ, Tsukayama P. Oral lactoferrin administration does not impact the diversity or composition of the infant gut microbiota in a Peruvian cohort. Microbiol Spectr 2023; 11:e0009623. [PMID: 37882571 PMCID: PMC10715004 DOI: 10.1128/spectrum.00096-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/05/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Previous studies have suggested that oral lactoferrin enhances diversity in the gut microbiota in infants while inhibiting the growth of opportunistic pathogens. However, the effect of lactoferrin on infant gut microbiota over time has yet to be thoroughly studied. Our study suggests that lactoferrin oral treatment in infants aged 12-18 months does not affect gut microbiome diversity and composition over time. To our knowledge, this is the first study to report the effect of lactoferrin on infant gut microbiome composition over time and helps elucidate its impact on infant health and its therapeutic potential.
Collapse
Affiliation(s)
- Luis González
- Laboratorio de Genómica Microbiana, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical Alexander von Humboldt, Lima, Peru
| | - Jose Luis Paredes Sosa
- Laboratorio de Genómica Microbiana, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Susan Mosquito
- Laboratorio de Genómica Microbiana, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Yesenia Filio
- Laboratorio de Genómica Microbiana, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Pedro E. Romero
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Theresa J. Ochoa
- Instituto de Medicina Tropical Alexander von Humboldt, Lima, Peru
| | - Pablo Tsukayama
- Laboratorio de Genómica Microbiana, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical Alexander von Humboldt, Lima, Peru
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
16
|
Marzano V, Levi Mortera S, Vernocchi P, Del Chierico F, Marangelo C, Guarrasi V, Gardini S, Dentici ML, Capolino R, Digilio MC, Di Donato M, Spasari I, Abreu MT, Dallapiccola B, Putignani L. Williams-Beuren syndrome shapes the gut microbiota metaproteome. Sci Rep 2023; 13:18963. [PMID: 37923896 PMCID: PMC10624682 DOI: 10.1038/s41598-023-46052-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023] Open
Abstract
Williams-Beuren syndrome (WBS) is a rare genetic neurodevelopmental disorder with multi-systemic manifestations. The evidence that most subjects with WBS face gastrointestinal (GI) comorbidities, have prompted us to carry out a metaproteomic investigation of their gut microbiota (GM) profile compared to age-matched healthy subjects (CTRLs). Metaproteomic analysis was carried out on fecal samples collected from 41 individuals with WBS, and compared with samples from 45 CTRLs. Stool were extracted for high yield in bacterial protein group (PG) content, trypsin-digested and analysed by nanoLiquid Chromatography-Mass Spectrometry. Label free quantification, taxonomic assignment by the lowest common ancestor (LCA) algorithm and functional annotations by COG and KEGG databases were performed. Data were statistically interpreted by multivariate and univariate analyses. A WBS GM functional dissimilarity respect to CTRLs, regardless age distribution, was reported. The alterations in function of WBSs GM was primarily based on bacterial pathways linked to carbohydrate transport and metabolism and energy production. Influence of diet, obesity, and GI symptoms was assessed, highlighting changes in GM biochemical patterns, according to WBS subsets' stratification. The LCA-derived ecology unveiled WBS-related functionally active bacterial signatures: Bacteroidetes related to over-expressed PGs, and Firmicutes, specifically the specie Faecalibacterium prausnitzii, linked to under-expressed PGs, suggesting a depletion of beneficial bacteria. These new evidences on WBS gut dysbiosis may offer novel targets for tailored interventions.
Collapse
Affiliation(s)
- Valeria Marzano
- Research Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefano Levi Mortera
- Research Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Pamela Vernocchi
- Research Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Federica Del Chierico
- Research Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Chiara Marangelo
- Research Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Valerio Guarrasi
- GenomeUp s.r.l., Rome, Italy
- Unit of Computer Systems and Bioinformatics, Department of Engineering, University Campus Bio-Medico of Rome, Rome, Italy
| | | | - Maria Lisa Dentici
- Genetics and Rare Diseases Research Division, Medical Genetics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rossella Capolino
- Genetics and Rare Diseases Research Division, Medical Genetics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Cristina Digilio
- Genetics and Rare Diseases Research Division, Medical Genetics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maddalena Di Donato
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Iolanda Spasari
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Teresa Abreu
- Division of Digestive Health and Liver Diseases, Department of Medicine, Crohn's and Colitis Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Bruno Dallapiccola
- Scientific Directorate, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lorenza Putignani
- Unit of Microbiomics and Research Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
17
|
Madej J, Atanassova T, McGuire S, Cohen B, Weidner M, Zhang Y, Horton DB. Acid-suppressive medication and incidence of chronic childhood immune-mediated diseases: A scoping review. Pediatr Allergy Immunol 2023; 34:e14042. [PMID: 38010007 PMCID: PMC10683867 DOI: 10.1111/pai.14042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Use of acid-suppressive medications (ASMs), for example, proton pump inhibitors (PPIs) and histamine-2 receptor antagonists (H2RAs), has been rising along with the incidence of pediatric immune-mediated diseases (IMDs). We conducted a scoping review to characterize the literature about prenatal or pediatric exposure to ASMs in relation to incident pediatric IMDs. METHODS Electronic searches were conducted to identify studies from 2001 to 2023 on (a) prenatal or pediatric exposure to PPIs and/or H2RAs and (b) the risk of developing chronic IMDs during childhood. Eligible studies after title/abstract and full-text screening underwent data abstraction. RESULTS Of 26 eligible studies, 11 focused on prenatal ASM exposure and 16 on pediatric exposure. Asthma was the most commonly investigated outcome (16 studies), followed by other allergic diseases (8), eosinophilic esophagitis (3), inflammatory bowel disease (2), and other autoimmune diseases (2). Positive associations between ASM exposure and pediatric IMD outcomes emerged in all but two recent studies, which reported null or negative associations with allergic diseases. The strength of associations was similar across exposure times (prenatal/pediatric), medications (PPIs/H2RAs), and outcomes. Dose-response relationships were often present (7/11 studies). Reported effects by trimester and age of exposure varied. Commonly reported limitations were residual confounding, exposure misclassification, and outcome misclassification. CONCLUSION In summary, prenatal or pediatric exposure to PPIs and/or H2RAs has frequently, but not exclusively, been associated with the development of asthma, other allergic diseases, and chronic gastrointestinal IMDs. However, concerns remain about confounding and other sources of bias. Prescribers and families should be aware of these possible risks of ASMs.
Collapse
Affiliation(s)
- Joanna Madej
- Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Tania Atanassova
- Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Sarah McGuire
- Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Barry Cohen
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Melissa Weidner
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Yingtng Zhang
- Robert Wood Johnson Library of Health Sciences, New Brunswick, New Jersey, USA
| | - Daniel B. Horton
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
- Rutgers Center for Pharmacoepidemiology and Treatment Science, Institute for Health, Health Care Policy and Aging Research, New Brunswick, New Jersey, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA
| |
Collapse
|
18
|
Pedroza Matute S, Iyavoo S. Exploring the gut microbiota: lifestyle choices, disease associations, and personal genomics. Front Nutr 2023; 10:1225120. [PMID: 37867494 PMCID: PMC10585655 DOI: 10.3389/fnut.2023.1225120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
The gut microbiota is a rich and dynamic ecosystem that actively interacts with the human body, playing a significant role in the state of health and disease of the host. Diet, exercise, mental health, and other factors have exhibited the ability to influence the gut bacterial composition, leading to changes that can prevent and improve, or favor and worsen, both intestinal and extra-intestinal conditions. Altered gut microbial states, or 'dysbiosis', associated with conditions and diseases are often characterized by shifts in bacterial abundance and diversity, including an impaired Firmicutes to Bacteroidetes ratio. By understanding the effect of lifestyle on the gut microbiota, personalized advice can be generated to suit each individual profile and foster the adoption of lifestyle changes that can both prevent and ameliorate dysbiosis. The delivery of effective and reliable advice, however, depends not only on the available research and current understanding of the topic, but also on the methods used to assess individuals and to discover the associations, which can introduce bias at multiple stages. The aim of this review is to summarize how human gut microbial variability is defined and what lifestyle choices and diseases have shown association with gut bacterial composition. Furthermore, popular methods to investigate the human gut microbiota are outlined, with a focus on the possible bias caused by the lack of use of standardized methods. Finally, an overview of the current state of personalized advice based on gut microbiota testing is presented, underlining its power and limitations.
Collapse
Affiliation(s)
| | - Sasitaran Iyavoo
- Nkaarco Diagnostics Limited, Norwich, United Kingdom
- School of Chemistry, College of Health and Science, University of Lincoln, Lincoln, United Kingdom
| |
Collapse
|
19
|
Iana E, Boboc C, Vlad AG, Cosoreanu MT, Anghel M, Boboc AA, Ioan A, Ionescu MI, Gavriliu L, Galos F. A Multifaced Aspect of Clostridium difficile Infection in Pediatric Patients with Inflammatory Bowel Disease: Case Series and Literature Review. J Pers Med 2023; 13:1413. [PMID: 37763180 PMCID: PMC10532824 DOI: 10.3390/jpm13091413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Children with inflammatory bowel disease (IBD) have an increased susceptibility to Clostridium difficile infection (CDI), with a rising incidence over time. Differentiating between CDI and IBD exacerbation is challenging due to overlapping symptoms. In our cohort of 55 pediatric IBD patients, 6 were diagnosed with CDI. Upon conducting a thorough patient evaluation and subsequent data analysis, an exhaustive review of the existing literature was undertaken. CDI is more prevalent in ulcerative colitis (UC) than Crohn's disease (CD) patients, as seen in our patients and in the existing literature. The management of a pediatric patient with IBD is itself a challenge for a clinician because of the chronic, possibly relapsing course, and substantial long-term morbidity. When CDI is added, it becomes even more demanding, since CDI leads to more severe disease in children with IBD. A multidisciplinary approach and intensive treatment for possible sepsis, anemia, hypoalbuminemia, and hydro-electrolytic and acid-base imbalances are frequently mandatory in patients with CDI and IBD, which leads to a significant health care burden in hospitalized children with IBD. After the infection is treated with antibiotic therapy, important considerations regarding the future treatment for the underlying IBD are also necessary; in most cases, a treatment escalation is required, as also seen in our study group.
Collapse
Affiliation(s)
- Elena Iana
- Department of Pediatrics, Marie Curie Emergency Children’s Hospital, 041451 Bucharest, Romania
| | - Catalin Boboc
- Department of Pediatrics, Marie Curie Emergency Children’s Hospital, 041451 Bucharest, Romania
| | - Andreea Gabriela Vlad
- Department of Pediatrics, Marie Curie Emergency Children’s Hospital, 041451 Bucharest, Romania
| | - Maria Teodora Cosoreanu
- Department of Pediatrics, Marie Curie Emergency Children’s Hospital, 041451 Bucharest, Romania
| | - Malina Anghel
- Department of Pediatrics, Marie Curie Emergency Children’s Hospital, 041451 Bucharest, Romania
| | - Anca Andreea Boboc
- Department of Pediatrics, Marie Curie Emergency Children’s Hospital, 041451 Bucharest, Romania
- Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Andreea Ioan
- Department of Pediatrics, Marie Curie Emergency Children’s Hospital, 041451 Bucharest, Romania
| | - Mara Ioana Ionescu
- Department of Pediatrics, Marie Curie Emergency Children’s Hospital, 041451 Bucharest, Romania
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Liana Gavriliu
- Department for Prevention of Healthcare-Associated Infections, Marie Curie Emergency Children’s Hospital, 041451 Bucharest, Romania
- Department of Infectious Disease, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Felicia Galos
- Department of Pediatrics, Marie Curie Emergency Children’s Hospital, 041451 Bucharest, Romania
- Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
20
|
Szukiewicz D. Insight into the Potential Mechanisms of Endocrine Disruption by Dietary Phytoestrogens in the Context of the Etiopathogenesis of Endometriosis. Int J Mol Sci 2023; 24:12195. [PMID: 37569571 PMCID: PMC10418522 DOI: 10.3390/ijms241512195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Phytoestrogens (PEs) are estrogen-like nonsteroidal compounds derived from plants (e.g., nuts, seeds, fruits, and vegetables) and fungi that are structurally similar to 17β-estradiol. PEs bind to all types of estrogen receptors, including ERα and ERβ receptors, nuclear receptors, and a membrane-bound estrogen receptor known as the G protein-coupled estrogen receptor (GPER). As endocrine-disrupting chemicals (EDCs) with pro- or antiestrogenic properties, PEs can potentially disrupt the hormonal regulation of homeostasis, resulting in developmental and reproductive abnormalities. However, a lack of PEs in the diet does not result in the development of deficiency symptoms. To properly assess the benefits and risks associated with the use of a PE-rich diet, it is necessary to distinguish between endocrine disruption (endocrine-mediated adverse effects) and nonspecific effects on the endocrine system. Endometriosis is an estrogen-dependent disease of unknown etiopathogenesis, in which tissue similar to the lining of the uterus (the endometrium) grows outside of the uterus with subsequent complications being manifested as a result of local inflammatory reactions. Endometriosis affects 10-15% of women of reproductive age and is associated with chronic pelvic pain, dysmenorrhea, dyspareunia, and infertility. In this review, the endocrine-disruptive actions of PEs are reviewed in the context of endometriosis to determine whether a PE-rich diet has a positive or negative effect on the risk and course of endometriosis.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
21
|
Chang YS, Li CW, Chen L, Wang XA, Lee MS, Chao YH. Early Gut Microbiota Profile in Healthy Neonates: Microbiome Analysis of the First-Pass Meconium Using Next-Generation Sequencing Technology. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1260. [PMID: 37508757 PMCID: PMC10377966 DOI: 10.3390/children10071260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Gut microbiome development during early life has significant long-term effects on health later in life. The first-pass meconium is not sterile, and it is important to know the initial founder of the subsequent gut microbiome. However, there is limited data on the microbiota profile of the first-pass meconium in healthy neonates. To determine the early gut microbiota profile, we analyzed 39 samples of the first-pass meconium from healthy neonates using 16S rRNA sequencing. Our results showed a similar profile of the microbiota composition in the first-pass meconium samples. Pseudomonas was the most abundant genus in most samples. The evenness of the microbial communities in the first-pass meconium was extremely poor, and the average Shannon diversity index was 1.31. An analysis of the relationship between perinatal characteristics and the meconium microbiome revealed that primigravidae babies had a significantly higher Shannon diversity index (p = 0.041), and the Bacteroidales order was a biomarker for the first-pass meconium of these neonates. The Shannon diversity index was not affected by the mode of delivery, maternal intrapartum antibiotic treatment, prolonged rupture of membranes, or birth weight. Our study extends previous research with further characterization of the gut microbiome in very early life.
Collapse
Affiliation(s)
- Yi-Sheng Chang
- Department of Research and Development, AllBio Life Incorporation, Taichung 402, Taiwan
| | - Chang-Wei Li
- Department of Research and Development, AllBio Life Incorporation, Taichung 402, Taiwan
| | - Ling Chen
- Department of Research and Development, AllBio Life Incorporation, Taichung 402, Taiwan
| | - Xing-An Wang
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Maw-Sheng Lee
- Department of Obstetrics and Gynecology, Lee Women's Hospital, Taichung 406, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yu-Hua Chao
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Clinical Pathology, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
22
|
Jacobs S, Payne C, Shaboodien S, Kgatla T, Pretorius A, Jumaar C, Sanni O, Butrous G, Maarman G. Gut microbiota crosstalk mechanisms are key in pulmonary hypertension: The involvement of melatonin is instrumental too. Pulm Circ 2023; 13:e12277. [PMID: 37583483 PMCID: PMC10423855 DOI: 10.1002/pul2.12277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/17/2023] Open
Abstract
The microbiota refers to a plethora of microorganisms with a gene pool of approximately three million, which inhabits the human gastrointestinal tract or gut. The latter, not only promotes the transport of nutrients, ions, and fluids from the lumen to the internal environment but is linked with the development of diseases including coronary artery disease, heart failure, and lung diseases. The exact mechanism of how the microbiota achieves crosstalk between itself and distant organs/tissues is not clear, but factors released to other organs may play a role, like inflammatory and genetic factors, and now we highlight melatonin as a novel mediator of the gut-lung crosstalk. Melatonin is present in high concentrations in the gut and the lung and has recently been linked to the pathogenesis of pulmonary hypertension (PH). In this comprehensive review of the literature, we suggest that melatonin is an important link between the gut microbiota and the development of PH (where suppressed melatonin-crosstalk between the gut and lungs could promote the development of PH). More studies are needed to investigate the link between the gut microbiota, melatonin and PH. Studies could also investigate whether microbiota genes play a role in the epigenetic aspects of PH. This is relevant because, for example, dysbiosis (caused by epigenetic factors) could reduce melatonin signaling between the gut and lungs, reduce subcellular melatonin concentrations in the gut/lungs, or reduce melatonin serum levels secondary to epigenetic factors. This area of research is largely unexplored and further studies are warranted.
Collapse
Affiliation(s)
- Steve Jacobs
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Carmen Payne
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Sara Shaboodien
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Thato Kgatla
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Amy Pretorius
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Chrisstoffel Jumaar
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Olakunle Sanni
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Ghazwan Butrous
- School of Pharmacy, Imperial College of LondonUniversity of KentCanterburyUK
| | - Gerald Maarman
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| |
Collapse
|
23
|
Del Chierico F, Marzano V, Scanu M, Reddel S, Dentici ML, Capolino R, Di Donato M, Spasari I, Fiscarelli EV, Digilio MC, Abreu MT, Dallapiccola B, Putignani L. Analysis of gut microbiota in patients with Williams-Beuren Syndrome reveals dysbiosis linked to clinical manifestations. Sci Rep 2023; 13:9797. [PMID: 37328513 PMCID: PMC10275996 DOI: 10.1038/s41598-023-36704-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023] Open
Abstract
Williams-Beuren syndrome (WBS) is a multisystem genetic disease caused by the deletion of a region of 1.5-1.8 Mb on chromosome 7q11.23. The elastin gene seems to account for several comorbidities and distinct clinical features such including cardiovascular disease, connective tissue abnormalities, growth retardation, and gastrointestinal (GI) symptoms. Increasing evidence points to alterations in gut microbiota composition as a primary or secondary cause of some GI or extra-intestinal characteristics. In this study, we performed the first exploratory analysis of gut microbiota in WBS patients compared to healthy subjects (CTRLs) using 16S rRNA amplicon sequencing, by investigating the gut dysbiosis in relation to diseases and comorbidities. We found that patients with WBS have significant dysbiosis compared to age-matched CTRLs, characterized by an increase in proinflammatory bacteria such as Pseudomonas, Gluconacetobacter and Eggerthella, and a reduction of anti-inflammatory bacteria including Akkermansia and Bifidobacterium. Microbial biomarkers associated with weight gain, GI symptoms and hypertension were identified. Gut microbiota profiling could represent a new tool that characterise intestinal dysbiosis to complement the clinical management of these patients. In particular, the administration of microbial-based treatments, alongside traditional therapies, could help in reducing or preventing the burden of these symptoms and improve the quality of life of these patients.
Collapse
Affiliation(s)
- Federica Del Chierico
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Valeria Marzano
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Matteo Scanu
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sofia Reddel
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Lisa Dentici
- Genetics and Rare Diseases Research Division and Medical Genetics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rossella Capolino
- Genetics and Rare Diseases Research Division and Medical Genetics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maddalena Di Donato
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Iolanda Spasari
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ersilia Vita Fiscarelli
- Research Unit of Diagnostical and Management Innovations, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Cristina Digilio
- Genetics and Rare Diseases Research Division and Medical Genetics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Teresa Abreu
- Crohn's and Colitis Center, Division of Digestive Health and Liver Diseases, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Bruno Dallapiccola
- Scientific Directorate, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lorenza Putignani
- Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
24
|
Zuccaro V, Ponziani FR, Bruno R. Editorial of Special Issues "Gut Microbiota-Host Interactions: From Symbiosis to Dysbiosis 2.0". Int J Mol Sci 2023; 24:ijms24108977. [PMID: 37240323 DOI: 10.3390/ijms24108977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
The gastrointestinal (GI) tract is where external agents meet the internal environment [...].
Collapse
Affiliation(s)
- Valentina Zuccaro
- Division of Infectious Diseases I, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Francesca Romana Ponziani
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Translational Medicine and Surgery Department, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Raffaele Bruno
- Division of Infectious Diseases I, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Medical, Surgical, Diagnostic and Pediatric Science, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
25
|
Wilson A, Bogie B, Chaaban H, Burge K. The Nonbacterial Microbiome: Fungal and Viral Contributions to the Preterm Infant Gut in Health and Disease. Microorganisms 2023; 11:909. [PMID: 37110332 PMCID: PMC10144239 DOI: 10.3390/microorganisms11040909] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
The intestinal microbiome is frequently implicated in necrotizing enterocolitis (NEC) pathogenesis. While no particular organism has been associated with NEC development, a general reduction in bacterial diversity and increase in pathobiont abundance has been noted preceding disease onset. However, nearly all evaluations of the preterm infant microbiome focus exclusively on the bacterial constituents, completely ignoring any fungi, protozoa, archaea, and viruses present. The abundance, diversity, and function of these nonbacterial microbes within the preterm intestinal ecosystem are largely unknown. Here, we review findings on the role of fungi and viruses, including bacteriophages, in preterm intestinal development and neonatal intestinal inflammation, with potential roles in NEC pathogenesis yet to be determined. In addition, we highlight the importance of host and environmental influences, interkingdom interactions, and the role of human milk in shaping fungal and viral abundance, diversity, and function within the preterm intestinal ecosystem.
Collapse
Affiliation(s)
| | | | - Hala Chaaban
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kathryn Burge
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
26
|
Combined Omics Analysis Further Unveils the Specific Role of Butyrate in Promoting Growth in Early-Weaning Animals. Int J Mol Sci 2023; 24:ijms24021787. [PMID: 36675302 PMCID: PMC9864007 DOI: 10.3390/ijms24021787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/08/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023] Open
Abstract
Abnormal mutations in the microbial structure of early-weaning mammals are an important cause of enteritis. Based on the multiple known beneficial functions of butyrate, we hypothesized that butyrate would alleviate the imbalance of intestinal homeostasis induced by early weaning in animals. However, the mechanisms of action between butyrate and intestinal microbes are still poorly explored. In this study, we aimed to investigate whether butyrate exerts beneficial effects on the structure of the intestinal flora of weanling rabbits and their intestinal homeostasis, growth and development, and we attempted to elucidate the potential mechanisms of action through a combined omics analysis. We found that dietary butyrate upregulated the transcription of tight junction-related proteins in the epithelial barrier and improved the intestinal microbial structure by suppressing harmful bacteria and promoting beneficial ones. Intestinal and plasma metabolomes were also altered. The bile acid secretion, α-linolenic acid, apoptotic, and prostate cancer pathways responded to the positive dietary butyrate-induced metabolic changes in the weanling rabbits, resulting in the inhibition of inflammation, improved antioxidant capacity, increased rates of cell proliferation and survival, and decreased levels of apoptosis. Additionally, dietary butyrate suppressed the release of pro-inflammatory factors and enhanced positive appetite regulation, which increased the average daily gain of the rabbits. These results demonstrated that dietary butyrate can help maintain the integrity of the intestinal epithelial barrier, improve the structural composition of the intestinal microflora, enhance organismal metabolism, inhibit inflammation, reduce post-weaning anorexia, and promote growth and development in early-weaning rabbits. These positive effects of dietary butyrate were exerted via the modulation of the microbe-gut-brain axis.
Collapse
|
27
|
Yan XX, Wu D. Intestinal microecology-based treatment for inflammatory bowel disease: Progress and prospects. World J Clin Cases 2023; 11:47-56. [PMID: 36687179 PMCID: PMC9846986 DOI: 10.12998/wjcc.v11.i1.47] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/11/2022] [Accepted: 12/15/2022] [Indexed: 01/04/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, recurrent, and debilitating disorder, and includes Crohn’s disease and ulcerative colitis. The pathogenesis of IBD is closely associated with intestinal dysbiosis, but has not yet been fully clarified. Genetic and environmental factors can influence IBD patients’ gut microbiota and metabolism, disrupt intestinal barriers, and trigger abnormal immune responses. Studies have reported the alteration of gut microbiota and metabolites in IBD, providing the basis for potential therapeutic options. Intestinal microbiota-based treatments such as pre/probiotics, metabolite supplementation, and fecal microbiota transplantation have been extensively studied, but their clinical efficacy remains controversial. Repairing the intestinal barrier and promoting mucosal healing have also been proposed. We here review the current clinical trials on intestinal microecology and discuss the prospect of research and practice in this field.
Collapse
Affiliation(s)
- Xia-Xiao Yan
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Dong Wu
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
28
|
Bauer-Estrada K, Sandoval-Cuellar C, Rojas-Muñoz Y, Quintanilla-Carvajal MX. The modulatory effect of encapsulated bioactives and probiotics on gut microbiota: improving health status through functional food. Food Funct 2023; 14:32-55. [PMID: 36515144 DOI: 10.1039/d2fo02723b] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The gut microbiota can be a determining factor of the health status of the host by its association with some diseases. It is known that dietary intake can modulate this microbiota through the consumption of compounds like essential oils, unsaturated fatty acids, non-digestible fiber, and probiotics, among others. However, these kinds of compounds can be damaged in the gastrointestinal tract as they pass through it to reach the intestine. This is due to the aggressive and changing conditions of this tract. For this reason, to guarantee that compounds arrive in the intestine at an adequate concentration to exert a modulatory effect on the gut microbiota, encapsulation should be sought. In this paper, we review the current research on compounds that modulate the gut microbiota, the encapsulation techniques used to protect the compounds through the gastrointestinal tract, in vitro models of this tract, and how these encapsulates interact with the gut microbiota. Finally, an overview of the regulatory status of these encapsulates is presented. The key findings are that prebiotics are the best modulators of gut microbiota fermentation metabolites. Also, probiotics promote an increase of beneficial gut microorganisms, which in some cases promotes their fermentation metabolites as well. Spray drying, freeze drying, and electrodynamics are notable encapsulation techniques that permit high encapsulation efficiency, high viability, and, together with wall materials, a high degree of protection against gastrointestinal conditions, allowing controlled release in the intestine and exerting a modulatory effect on gut microbiota.
Collapse
|
29
|
GÜNÜÇ S, ŞENDEMİR A. Cognitive, Emotional, Behavioral and Physiological Evaluation of the Relationship Between Brain and Gut Microbiota. PSIKIYATRIDE GUNCEL YAKLASIMLAR - CURRENT APPROACHES IN PSYCHIATRY 2022. [DOI: 10.18863/pgy.1034963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of this study is to examine the effect of gut microbiota on brain functions, mood and psychiatric disorders such as depression, anxiety and behavioral addictions, neurotransmitter levels, cognitive processes such as self-control, decision making and delayed gratification. In this context, the relevant literature was reviewed and the findings were evaluated. The relationships of the bidirectional communication between the brain-gut axis with cognitive, emotional, behavioral and physiological processes were explained with a diagram. As a result, although more research is needed on this subject, it has been observed that the brain-gut axis is bidirectionally established through neural, stress, endocrine and immune systems. In this bidirectional communication process, there are interactions in the context of cognitive, emotional, behavioral and other physiological factors. These factors both individually enter into bidirectional relationships with the brain and gut microbiota and are affected by the bidirectional communication between the brain and gut.
Collapse
|
30
|
Fu Y, Chen B, Liu Z, Wang H, Zhang F, Zhao Q, Zhu Y, Yong X, Shen Q. Effects of different foxtail millet addition amounts on the cognitive ability of mice. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Tonelli Enrico V, Vo N, Methe B, Morris A, Sowa G. An unexpected connection: A narrative review of the associations between Gut Microbiome and Musculoskeletal Pain. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2022; 31:3603-3615. [PMID: 36308543 PMCID: PMC9617047 DOI: 10.1007/s00586-022-07429-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE Multiple diverse factors contribute to musculoskeletal pain, a major cause of physical dysfunction and health-related costs worldwide. Rapidly growing evidence demonstrates that the gut microbiome has overarching influences on human health and the body's homeostasis and resilience to internal and external perturbations. This broad role of the gut microbiome is potentially relevant and connected to musculoskeletal pain, though the literature on the topic is limited. Thus, the literature on the topic of musculoskeletal pain and gut microbiome was explored. METHODS This narrative review explores the vast array of reported metabolites associated with inflammation and immune-metabolic response, which are known contributors to musculoskeletal pain. Moreover, it covers known modifiable (e.g., diet, lifestyle choices, exposure to prescription drugs, pollutants, and chemicals) and non-modifiable factors (e.g., gut architecture, genetics, age, birth history, and early feeding patterns) that are known to contribute to changes to the gut microbiome. Particular attention is devoted to modifiable factors, as the ultimate goal of researching this topic is to implement gut microbiome health interventions into clinical practice. RESULTS Overall, numerous associations exist in the literature that could converge on the gut microbiome's pivotal role in musculoskeletal health. Particularly, a variety of metabolites that are either directly produced or indirectly modulated by the gut microbiome have been highlighted. CONCLUSION The review highlights noticeable connections between the gut and musculoskeletal health, thus warranting future research to focus on the gut microbiome's role in musculoskeletal conditions.
Collapse
Affiliation(s)
- Valerio Tonelli Enrico
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, University of Pittsburgh, 200 Lothrop Street, Room E1612, BST, Pittsburgh, PA, 15261, USA.
- Department of Physical Therapy, University of Pittsburgh, 100 Technology Dr, Pittsburgh, PA, 15219, USA.
| | - Nam Vo
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, University of Pittsburgh, 200 Lothrop Street, Room E1612, BST, Pittsburgh, PA, 15261, USA
| | - Barbara Methe
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh, 1218 Scaife Hall 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Alison Morris
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh, 1218 Scaife Hall 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Gwendolyn Sowa
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, University of Pittsburgh, 200 Lothrop Street, Room E1612, BST, Pittsburgh, PA, 15261, USA
- Department of Physical Medicine and Rehabilitation, School of Medicine, University of Pittsburgh, Kaufmann Medical Building, Suite 910, 3471 Fifth Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
32
|
Larsen PE, Dai Y. Modeling interaction networks between host, diet, and bacteria predicts obesogenesis in a mouse model. Front Mol Biosci 2022; 9:1059094. [PMID: 36458093 PMCID: PMC9705962 DOI: 10.3389/fmolb.2022.1059094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/31/2022] [Indexed: 09/10/2024] Open
Abstract
Host-microbiome interactions are known to have substantial effects on human health, but the diversity of the human microbiome makes it difficult to definitively attribute specific microbiome features to a host phenotype. One approach to overcoming this challenge is to use animal models of host-microbiome interaction, but it must be determined that relevant aspects of host-microbiome interactions are reflected in the animal model. One such experimental validation is an experiment by Ridura et al. In that experiment, transplanting a microbiome from a human into a mouse also conferred the human donor's obesity phenotype. We have aggregated a collection of previously published host-microbiome mouse-model experiments and combined it with thousands of sequenced and annotated bacterial genomes and metametabolomic pathways. Three computational models were generated, each model reflecting an aspect of host-microbiome interactions: 1) Predict the change in microbiome community structure in response to host diet using a community interaction network, 2) Predict metagenomic data from microbiome community structure, and 3) Predict host obesogenesis from modeled microbiome metagenomic data. These computationally validated models were combined into an integrated model of host-microbiome-diet interactions and used to replicate the Ridura experiment in silico. The results of the computational models indicate that network-based models are significantly more predictive than similar but non-network-based models. Network-based models also provide additional insight into the molecular mechanisms of host-microbiome interaction by highlighting metabolites and metabolic pathways proposed to be associated with microbiome-based obesogenesis. While the models generated in this study are likely too specific to the animal models and experimental conditions used to train our models to be of general utility in a broader understanding of obesogenesis, the approach detailed here is expected to be a powerful tool of investigating multiple types of host-microbiome interactions.
Collapse
Affiliation(s)
- Peter E. Larsen
- Loyola Genomics Facility, Loyola University at Chicago Health Science Campus, Maywood, IL, United States
| | - Yang Dai
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
33
|
Wang JG, Liang Q, Dou HH, Ou Y. The global incidence of adverse events associated with fecal microbiota transplantation in children over the past 20 years: A systematic review and meta-analysis. J Gastroenterol Hepatol 2022; 37:2031-2038. [PMID: 36066910 DOI: 10.1111/jgh.15996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/25/2022] [Accepted: 09/03/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To understand the global incidence of the adverse events associated with fecal microbiota transplantation (FMT) in children over the past 20 years. METHODS We searched PubMed, Web of Science, Embase, and three Chinese databases (CNKI, Wanfang, and Chongqing Weipu) for high-quality articles written over the past 20 years and made selections based on the quality standard score. The study characteristics and incidences of adverse events were extracted from each article, meta-analysis was performed using the R.3.6.3 software, and randomized-effect or fixed-effect meta-analyses were used to determine the incidence of adverse events. Subgroup analysis was performed to determine heterogeneity. RESULTS A total of 18 articles involving 681 children were included in the analysis. The total effective rate of FMT in children was 85.75% (95% CI: 76.23-93.15%), of which the overall efficacy of FMT for the treatment of Clostridium difficile infection was 91.22% (95% CI: 83.49-96.68%) and the overall adverse event rate was 28.86% (95% CI: 19.56-39.15%), with a mild to moderate adverse event rate of 27.72% (95% CI: 17.86-38.83%) and a severe adverse event rate of 0.90% (95% CI: 0.33-1.76%). The most common mild to moderate adverse events were as follows: bellyache, 14.02% (95% CI: 5.43-25.77%); diarrhea, 7.75% (95% CI: 2.69-15.11%); and bloating, 7.36% (95% CI: 1.79-16.28%). Other adverse events included fever, 2.34%; vomiting, 3.12%; nausea, 1.50%; hematochezia, 2.30%; anorexia, 1.94%; and fatigue, 0.03%. The only death reported was in a study from China, in which the patient died of sepsis and liver failure 4 weeks after FMT. The other serious adverse event was an immunodeficiency patient with severe hematochezia. Another study in the United States described seven serious adverse events including one death that was not considered to be related to FMT; however, they did not describe the events in detail. There was no difference in the incidence of adverse events between the upper and lower gastrointestinal tracts (OR = 0.61, 95% CI: 0.02-15.42, P = 0.76). CONCLUSION Adverse events related to FMT in children are mostly mild to moderate, of short duration, and self-limiting. Therefore, the use of FMT in children is safe and worthy of widespread promotion.
Collapse
Affiliation(s)
- Ji-Gan Wang
- Department of Pediatrics, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Guangxi Clinical Research Center for Pediatric Diseases, Nanning, China
| | - Qing Liang
- Department of Pediatrics, Ethnic Hospital of Guangxi Zhuang Autonomous Region, Affiliated Ethnic Hospital of Guangxi Medical University, Nanning, China
| | - Hui-Hong Dou
- Department of Pediatrics, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Guangxi Clinical Research Center for Pediatric Diseases, Nanning, China
| | - Yuan Ou
- Department of Pediatrics, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Guangxi Clinical Research Center for Pediatric Diseases, Nanning, China
| |
Collapse
|
34
|
Di Profio E, Magenes VC, Fiore G, Agostinelli M, La Mendola A, Acunzo M, Francavilla R, Indrio F, Bosetti A, D’Auria E, Borghi E, Zuccotti G, Verduci E. Special Diets in Infants and Children and Impact on Gut Microbioma. Nutrients 2022; 14:3198. [PMID: 35956374 PMCID: PMC9370825 DOI: 10.3390/nu14153198] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 02/07/2023] Open
Abstract
Gut microbiota is a complex system that starts to take shape early in life. Several factors influence the rise of microbial gut colonization, such as term and mode of delivery, exposure to antibiotics, maternal diet, presence of siblings and family members, pets, genetics, local environment, and geographical location. Breastfeeding, complementary feeding, and later dietary patterns during infancy and toddlerhood are major players in the proper development of microbial communities. Nonetheless, if dysbiosis occurs, gut microbiota may remain impaired throughout life, leading to deleterious consequences, such as greater predisposition to non-communicable diseases, more susceptible immune system and altered gut-brain axis. Children with specific diseases (i.e., food allergies, inborn errors of metabolism, celiac disease) need a special formula and later a special diet, excluding certain foods or nutrients. We searched on PubMed/Medline, Scopus and Embase for relevant pediatric studies published over the last twenty years on gut microbiota dietary patterns and excluded case reports or series and letters. The aim of this review is to highlight the changes in the gut microbiota in infants and children fed with special formula or diets for therapeutic requirements and, its potential health implications, with respect to gut microbiota under standard diets.
Collapse
Affiliation(s)
- Elisabetta Di Profio
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Vittoria Carlotta Magenes
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Giulia Fiore
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Marta Agostinelli
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Alice La Mendola
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Miriam Acunzo
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Ruggiero Francavilla
- Pediatric Section, Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Flavia Indrio
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Alessandra Bosetti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Enza D’Auria
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Elisa Borghi
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, 20144 Milan, Italy
- Pediatric Clinical Research Center, Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20122 Milan, Italy
| | - Elvira Verduci
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| |
Collapse
|
35
|
Dwaib HS, AlZaim I, Ajouz G, Eid AH, El-Yazbi A. Sex Differences in Cardiovascular Impact of Early Metabolic Impairment: Interplay between Dysbiosis and Adipose Inflammation. Mol Pharmacol 2022; 102:481-500. [PMID: 34732528 DOI: 10.1124/molpharm.121.000338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/23/2021] [Indexed: 11/22/2022] Open
Abstract
The evolving view of gut microbiota has shifted toward describing the colonic flora as a dynamic organ in continuous interaction with systemic physiologic processes. Alterations of the normal gut bacterial profile, known as dysbiosis, has been linked to a wide array of pathologies. Of particular interest is the cardiovascular-metabolic disease continuum originating from positive energy intake and high-fat diets. Accumulating evidence suggests a role for sex hormones in modulating the gut microbiome community. Such a role provides an additional layer of modulation of the early inflammatory changes culminating in negative metabolic and cardiovascular outcomes. In this review, we will shed the light on the role of sex hormones in cardiovascular dysfunction mediated by high-fat diet-induced dysbiosis, together with the possible involvement of insulin resistance and adipose tissue inflammation. Insights into novel therapeutic interventions will be discussed as well. SIGNIFICANCE STATEMENT: Increasing evidence implicates a role for dysbiosis in the cardiovascular complications of metabolic dysfunction. This minireview summarizes the available data on the sex-based differences in gut microbiota alterations associated with dietary patterns leading to metabolic impairment. A role for a differential impact of adipose tissue inflammation across sexes in mediating the cardiovascular detrimental phenotype following diet-induced dysbiosis is proposed. Better understanding of this pathway will help introduce early approaches to mitigate cardiovascular deterioration in metabolic disease.
Collapse
Affiliation(s)
- Haneen S Dwaib
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ghina Ajouz
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ali H Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ahmed El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| |
Collapse
|
36
|
Paolini A, Baldassarre A, Bruno SP, Felli C, Muzi C, Ahmadi Badi S, Siadat SD, Sarshar M, Masotti A. Improving the Diagnostic Potential of Extracellular miRNAs Coupled to Multiomics Data by Exploiting the Power of Artificial Intelligence. Front Microbiol 2022; 13:888414. [PMID: 35756065 PMCID: PMC9218639 DOI: 10.3389/fmicb.2022.888414] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/11/2022] [Indexed: 12/15/2022] Open
Abstract
In recent years, the clinical use of extracellular miRNAs as potential biomarkers of disease has increasingly emerged as a new and powerful tool. Serum, urine, saliva and stool contain miRNAs that can exert regulatory effects not only in surrounding epithelial cells but can also modulate bacterial gene expression, thus acting as a “master regulator” of many biological processes. We think that in order to have a holistic picture of the health status of an individual, we have to consider comprehensively many “omics” data, such as miRNAs profiling form different parts of the body and their interactions with cells and bacteria. Moreover, Artificial Intelligence (AI) and Machine Learning (ML) algorithms coupled to other multiomics data (i.e., big data) could help researchers to classify better the patient’s molecular characteristics and drive clinicians to identify personalized therapeutic strategies. Here, we highlight how the integration of “multiomic” data (i.e., miRNAs profiling and microbiota signature) with other omics (i.e., metabolomics, exposomics) analyzed by AI algorithms could improve the diagnostic and prognostic potential of specific biomarkers of disease.
Collapse
Affiliation(s)
- Alessandro Paolini
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | | | - Stefania Paola Bruno
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy.,Department of Science, University Roma Tre, Rome, Italy
| | - Cristina Felli
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Chantal Muzi
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Sara Ahmadi Badi
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.,Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.,Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| |
Collapse
|
37
|
Lucafò M, Muzzo A, Marcuzzi M, Giorio L, Decorti G, Stocco G. Patient-derived organoids for therapy personalization in inflammatory bowel diseases. World J Gastroenterol 2022; 28:2636-2653. [PMID: 35979165 PMCID: PMC9260862 DOI: 10.3748/wjg.v28.i24.2636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/21/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders of the intestinal tract that have emerged as a growing problem in industrialized countries. Knowledge of IBD pathogenesis is still incomplete, and the most widely-accepted interpretation considers genetic factors, environmental stimuli, uncontrolled immune responses and altered intestinal microbiota composition as determinants of IBD, leading to dysfunction of the intestinal epithelial functions. In vitro models commonly used to study the intestinal barrier do not fully reflect the proper intestinal architecture. An important innovation is represented by organoids, 3D in vitro cell structures derived from stem cells that can self-organize into functional organ-specific structures. Organoids may be generated from induced pluripotent stem cells or adult intestinal stem cells of IBD patients and therefore retain their genetic and transcriptomic profile. These models are powerful pharmacological tools to better understand IBD pathogenesis, to study the mechanisms of action on the epithelial barrier of drugs already used in the treatment of IBD, and to evaluate novel target-directed molecules which could improve therapeutic strategies. The aim of this review is to illustrate the potential use of organoids for therapy personalization by focusing on the most significant advances in IBD research achieved through the use of adult stem cells-derived intestinal organoids.
Collapse
Affiliation(s)
- Marianna Lucafò
- Advanced Translational Diagnostics Laboratory, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, Trieste 34137, Italy
| | - Antonella Muzzo
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste 34127, Italy
| | - Martina Marcuzzi
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Lorenzo Giorio
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Giuliana Decorti
- Advanced Translational Diagnostics Laboratory, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, Trieste 34137, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste 34127, Italy
| | - Gabriele Stocco
- Advanced Translational Diagnostics Laboratory, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, Trieste 34137, Italy
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| |
Collapse
|
38
|
He Q, Si C, Sun Z, Chen Y, Zhang X. The Intervention of Prebiotics on Depression via the Gut-Brain Axis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123671. [PMID: 35744797 PMCID: PMC9230023 DOI: 10.3390/molecules27123671] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/20/2022] [Accepted: 06/05/2022] [Indexed: 12/12/2022]
Abstract
The imbalance of intestinal microbiota can cause the accumulation of endotoxin in the main circulation system of the human body, which has a great impact on human health. Increased work and life pressure have led to a rise in the number of people falling into depression, which has also reduced their quality of life. The gut–brain axis (GBA) is closely related to the pathological basis of depression, and intestinal microbiota can improve depressive symptoms through GBA. Previous studies have proven that prebiotics can modulate intestinal microbiota and thus participate in human health regulation. We reviewed the regulatory mechanism of intestinal microbiota on depression through GBA, and discussed the effects of prebiotics, including plant polysaccharides and polyphenols on the regulation of intestinal microbiota, providing new clues for the prevention and treatment of depression.
Collapse
Affiliation(s)
- Qinghui He
- Amway (China) R&D Centre Co., Ltd., Guangzhou 510730, China;
| | - Congcong Si
- Ningbo Tech-inno Health Industry Co., Ltd., Ningbo 315211, China; (C.S.); (Z.S.); (Y.C.)
| | - Zhenjiao Sun
- Ningbo Tech-inno Health Industry Co., Ltd., Ningbo 315211, China; (C.S.); (Z.S.); (Y.C.)
| | - Yuhui Chen
- Ningbo Tech-inno Health Industry Co., Ltd., Ningbo 315211, China; (C.S.); (Z.S.); (Y.C.)
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
- Correspondence:
| |
Collapse
|
39
|
Ye Y, Liu Y, Cheng K, Wu Z, Zhang P, Zhang X. Effects of Intestinal Flora on Irritable Bowel Syndrome and Therapeutic Significance of Polysaccharides. Front Nutr 2022; 9:810453. [PMID: 35634403 PMCID: PMC9131006 DOI: 10.3389/fnut.2022.810453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, the relevant research on intestinal flora has been in full swing, and it has become an extremely important research direction in clinical medicine and life science. Irritable bowel syndrome (IBS) is a common disease characterized by changes in intestinal function and accompanied by comorbid anxiety. At present, the pathogenic mechanism of IBS is not yet clear. The gut-brain axis (GBA), as a two-way information exchange system between the gut and the brain, has an important influence on the prevention of IBS. Present studies have shown that polysaccharides are important for maintaining the steady status of intestinal micro-environment. This review summarized the relationship between intestinal flora, GBA and immune activation, and provided a new idea for the preventive treatment of IBS from the perspective of polysaccharides.
Collapse
Affiliation(s)
- Yang Ye
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Kejun Cheng
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui, China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Peng Zhang
- Department of Student Affairs, Xinyang Normal University, Xinyang, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| |
Collapse
|
40
|
Wang X, Tsai T, Zuo B, Wei X, Deng F, Li Y, Maxwell CV, Yang H, Xiao Y, Zhao J. Donor age and body weight determine the effects of fecal microbiota transplantation on growth performance, and fecal microbiota development in recipient pigs. J Anim Sci Biotechnol 2022; 13:49. [PMID: 35399089 PMCID: PMC8996565 DOI: 10.1186/s40104-022-00696-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/20/2022] [Indexed: 01/11/2023] Open
Abstract
Background The application of fecal microbiota transplantation (FMT) to improve swine growth performance has been sporadically studied. Most of these studies used a single microbiota source and thus the effect of donor characteristics on recipient pigs’ fecal microbiota development and growth performance is largely unknown. Results In this study, we collected feces from six donors with heavy (H) or light (L) body weight and different ages (d 42, nursery; d 96, growing; and d 170, finisher) to evaluate their effects on the growth performance and fecal microbiota development of recipient pigs. Generally, recipients that received two doses of FMT from nursery and finisher stages donor at weaning (21 ± 2 days of age) inherited the donor’s growth pattern, while the pigs gavaged with grower stage material exerted a numerically greater weight gain than the control pigs regardless of donor BW. FMT from heavier donors (NH, GH, and FH) led to the recipients to have numerically increased growth compared to their lighter counterparts (NL, GL, and FL, respectively) throughout the growing and most finishing stages. This benefit could be attributed to the enrichment of ASV25 Faecalibacterium, ASV61 Faecalibacterium, ASV438 Coriobacteriaceae_unclassified, ASV144 Bulleidia, and ASV129 Oribacterium and decrease of ASV13 Escherichia during nursery stage. Fecal microbiota transplantation from growing and finishing donors influenced the microbial community significantly in recipient pigs during the nursery stage. FMT of older donors’ gut microbiota expedited recipients’ microbiota maturity on d 35 and 49, indicated by increased estimated microbiota ages. The age-associated bacterial taxa included ASV206 Ruminococcaceae, ASV211 Butyrivibrio, ASV416 Bacteroides, ASV2 Streptococcus, and ASV291 Veillonellaceae. The body weight differences between GL and GH pigs on d 104 were associated with the increased synthesis of the essential amino acid, lysine and methionine, mixed acid fermentation, expedited glycolysis, and sucrose/galactose degradation. Conclusions Overall, our study provided insights into how donor age and body weight affect FMT outcomes regarding growth performance, microbiota community shifts, and lower GI tract metabolic potentials. This study also provided guidance to select qualified donors for future fecal microbiota transplantation. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00696-1.
Collapse
|
41
|
Liu ZZ, Sun JH, Wang WJ. Gut microbiota in gastrointestinal diseases during pregnancy. World J Clin Cases 2022; 10:2976-2989. [PMID: 35647135 PMCID: PMC9082698 DOI: 10.12998/wjcc.v10.i10.2976] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/18/2021] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota (GM) is a micro-ecosystem composed of all microorganisms in the human intestine. The interaction between GM and the host plays an important role in maintaining normal physiological functions in the host. Dysbiosis of the GM may cause various diseases. GM has been demonstrated to be associated with human health and disease, and changes during individual development and disease. Pregnancy is a complicated physiological process. Hormones, the immune system, metabolism, and GM undergo drastic changes during pregnancy. Gastrointestinal diseases during pregnancy, such as hepatitis, intrahepatic cholestasis of pregnancy, and pre-eclampsia, can affect both maternal and fetal health. The dysregulation of GM during pregnancy may lead to a variety of diseases, including gastrointestinal diseases. Herein, we review recent research articles on GM in pregnancy-related gastrointestinal diseases, discuss the interaction of the GM with the host under normal physiological conditions, gastrointestinal diseases, and pregnancy-specific disorders. As more attention is paid to reproductive health, the pathogenic mechanism of GM in gastrointestinal diseases during pregnancy will be further studied to provide a theoretical basis for the use of probiotics to treat these diseases.
Collapse
Affiliation(s)
- Zhong-Zhen Liu
- BGI-Shenzhen, Shenzhen 518083, Guangdong Province, China
| | - Jing-Hua Sun
- BGI-Shenzhen, Shenzhen 518083, Guangdong Province, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Jing Wang
- BGI-Shenzhen, Shenzhen 518083, Guangdong Province, China
| |
Collapse
|
42
|
Najmi N, Megantara I, Andriani L, Goenawan H, Lesmana R. Importance of gut microbiome regulation for the prevention and recovery process after SARS-CoV-2 respiratory viral infection (Review). Biomed Rep 2022; 16:25. [PMID: 35251612 PMCID: PMC8889546 DOI: 10.3892/br.2022.1508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/09/2021] [Indexed: 01/08/2023] Open
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been reported to affect organs other than the lungs, including the liver, brain, kidneys and intestine, and gastrointestinal symptoms, such as nausea, vomiting, diarrhea and abdominal discomfort, have also been reported. Thus, SARS-CoV-2 could potentially directly or indirectly regulate the gut microbiome profile and its homeostasis. The abundance of Coprobacillus, Clostridium ramosum and Clostridium are associated with the severity of COVID-19, and Firmicutes, Bacteriodetes, Proteobacteria and Actinobacteria are also related to COVID-19 infection. The four phyla are correlated with the severity of COVID-19 infection in patients. The modulation of factors that control the physiological growth of the gut microbiome will determine the proportionate ratio of microbiome types (profile). Taken together, gut microbiome profile alterations in COVID-19 patients may have a cross effect with the modulation of cytokine levels in COVID-19 infection. With these findings, several factors that regulate gut microbiome homeostasis may support the degree of the clinical symptoms and hasten the recovery process after COVID-19 infection.
Collapse
Affiliation(s)
- Nuroh Najmi
- Department of Oral Biology, Faculty of Dentistry, Universitas Padjadjaran, Bandung, West Java 45363, Indonesia
- Division of Biological Activty Central Laboratory, Universitas Padjadjaran, Bandung, West Java 45363, Indonesia
| | - Imam Megantara
- Division of Biological Activty Central Laboratory, Universitas Padjadjaran, Bandung, West Java 45363, Indonesia
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java 45363, Indonesia
| | - Lovita Andriani
- Faculty of Animal Husbandry, Universitas Padjadjaran, Bandung, West Java 45363, Indonesia
| | - Hanna Goenawan
- Division of Biological Activty Central Laboratory, Universitas Padjadjaran, Bandung, West Java 45363, Indonesia
- Department of Biomedical Sciences, Physiology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java 45363, Indonesia
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Bandung, West Java 45363, Indonesia
| | - Ronny Lesmana
- Division of Biological Activty Central Laboratory, Universitas Padjadjaran, Bandung, West Java 45363, Indonesia
- Department of Biomedical Sciences, Physiology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java 45363, Indonesia
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Bandung, West Java 45363, Indonesia
| |
Collapse
|
43
|
Liu L, Shang L, Jin D, Wu X, Long B. General anesthesia bullies the gut: a toxic relationship with dysbiosis and cognitive dysfunction. Psychopharmacology (Berl) 2022; 239:709-728. [PMID: 35187594 DOI: 10.1007/s00213-022-06096-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022]
Abstract
Perioperative neurocognitive disorder (PND) is a common surgery outcome affecting up to a third of the elderly patients, and it is associated with high morbidity and increased risk for Alzheimer's disease development. PND is characterized by cognitive impairment that can manifest acutely in the form of postoperative delirium (POD) or after hospital discharge as postoperative cognitive dysfunction (POCD). Although POD and POCD are clinically distinct, their development seems to be mediated by a systemic inflammatory reaction triggered by surgical trauma that leads to dysfunction of the blood-brain barrier and facilitates the occurrence of neuroinflammation. Recent studies have suggested that the gut microbiota composition may play a pivotal role in the PND development by modulating the risk of neuroinflammation establishment. In fact, modulation of gut microbiome composition with pre- and probiotics seems to be effective for the prevention and treatment of PND in animals. Interestingly, general anesthetics seem to have major responsibility on the gut microbiota composition changes following surgery and, consequently, can be an important element in the process of PND initiation. This concept represents an important milestone for the understanding of PND pathogenesis and may unveil new opportunities for the development of preventive or mitigatory strategies against the development of these conditions. The aim of this review is to discuss how anesthetics used in general anesthesia can interact and alter the gut microbiome composition and contribute to PND development by favoring the emergence of neuroinflammation.
Collapse
Affiliation(s)
- Lidan Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Lihua Shang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Dongxue Jin
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Xiuying Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Bo Long
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China.
| |
Collapse
|
44
|
Abstract
Coronavirus disease 2019 (COVID-19) is the leading pandemic facing the world in 2019/2020; it is caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which necessitates clear understanding of the infectious agent. The virus manifests aggressive behavior with severe clinical presentation and high mortality rate, especially among the elderly and patients living with chronic diseases. In the recent years, the role of gut microbiota, in health and disease, has been progressively studied and highlighted. It is through gut microbiota-organ bidirectional pathways, such as gut-brain axis, gut-liver axis, and gut-lung axis, that the role of gut microbiota in prompting lung disease, among other diseases, has been proposed and accepted. It is also known that respiratory viral infections, such as COVID-19, induce alterations in the gut microbiota, which can influence immunity. Based on the fact that gut microbiota diversity is decreased in old age and in patients with certain chronic diseases, which constitute two of the primary fatality groups in COVID-19 infections, it can be assumed that the gut microbiota may play a role in COVID-19 pathology and fatality rate. Improving gut microbiota diversity through personalized nutrition and supplementation with prebiotics/probiotics will mend the immunity of the body and hence could be one of the prophylactic strategies by which the impact of COVID-19 can be minimized in the elderly and immunocompromised patients. In this chapter, the role of dysbiosis in COVID-19 will be clarified and the possibility of using co-supplementation of personalized prebiotics/probiotics with current therapies will be discussed.
Collapse
|
45
|
Pane S, Ristori MV, Gardini S, Russo A, Del Chierico F, Putignani L. Clinical Parasitology and Parasitome Maps as Old and New Tools to Improve Clinical Microbiomics. Pathogens 2021; 10:1550. [PMID: 34959505 PMCID: PMC8704233 DOI: 10.3390/pathogens10121550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/15/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022] Open
Abstract
A growing body of evidence shows that dysbiotic gut microbiota may correlate with a wide range of disorders; hence, the clinical use of microbiota maps and fecal microbiota transplantation (FMT) can be exploited in the clinic of some infectious diseases. Through direct or indirect ecological and functional competition, FMT may stimulate decolonization of pathogens or opportunistic pathogens, modulating immune response and colonic inflammation, and restoring intestinal homeostasis, which reduces host damage. Herein, we discuss how diagnostic parasitology may contribute to designing clinical metagenomic pipelines and FMT programs, especially in pediatric subjects. The consequences of more specialized diagnostics in the context of gut microbiota communities may improve the clinical parasitology and extend its applications to the prevention and treatment of several communicable and even noncommunicable disorders.
Collapse
Affiliation(s)
- Stefania Pane
- Microbiology and Diagnostic Immunology Unit, Unit of Microbiomics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.P.); (M.V.R.); (A.R.)
| | - Maria Vittoria Ristori
- Microbiology and Diagnostic Immunology Unit, Unit of Microbiomics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.P.); (M.V.R.); (A.R.)
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
| | | | - Alessandra Russo
- Microbiology and Diagnostic Immunology Unit, Unit of Microbiomics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.P.); (M.V.R.); (A.R.)
| | - Federica Del Chierico
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
| | - Lorenza Putignani
- Microbiology and Diagnostic Immunology Unit, Unit of Microbiomics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.P.); (M.V.R.); (A.R.)
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
| |
Collapse
|
46
|
Chen CC, Chiu CH. Current and future applications of fecal microbiota transplantation for children. Biomed J 2021; 45:11-18. [PMID: 34781002 PMCID: PMC9133305 DOI: 10.1016/j.bj.2021.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/23/2021] [Accepted: 11/07/2021] [Indexed: 12/18/2022] Open
Abstract
Fecal microbiota transplantation (FMT) is a new and adequate route to modify the microbial ecosystem in gastrointestinal tract of the hosts. Intestinal microbiota is highly associated with human health and disease. According to the reports of human clinical trials or case series, the application of FMT ranged from Clostridiodes difficile infection (CDI), inflammatory bowel disease (IBD), irritable bowel syndrome, refractory diarrhea, diabetes mellitus, metabolic syndrome, and even neurologic diseases, including Parkinson disease, and neuropsychiatric disorder (autism spectrum disorder, ASD). Although the current allowed indication of FMT is CDI in Taiwan, more application and development are expectable in the future. There is a relative rare data available for children in application of fecal microbiota transplantation. Thus, we review previous published research inspecting FMT in children, and address particular considerations when conducting FMT in pediatric patients.
Collapse
Affiliation(s)
- Chien-Chang Chen
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
47
|
Choudhury R, Middelkoop A, Boekhorst J, Gerrits WJJ, Kemp B, Bolhuis JE, Kleerebezem M. Early life feeding accelerates gut microbiome maturation and suppresses acute post-weaning stress in piglets. Environ Microbiol 2021; 23:7201-7213. [PMID: 34655283 PMCID: PMC9291500 DOI: 10.1111/1462-2920.15791] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/08/2021] [Accepted: 09/24/2021] [Indexed: 11/27/2022]
Abstract
Early life microbiome perturbations can have important effects on host development, physiology and behaviour. In this longitudinal study, we evaluated the impact of early feeding on gut microbiome colonization in neonatal piglets. Early‐fed (EF) piglets had access to a customized fibrous diet from 2 days after birth until weaning in addition to mother's milk, whereas control piglets suckled mother's milk only. Rectal swabs were collected at multiple time points until 6 weeks of age to investigate microbiota development using 16S rRNA gene profiling. The dynamic pre‐weaning microbiota colonization was followed by a relatively stable post‐weaning microbiota, represented by Prevotella, Roseburia, Faecalibacterium, Ruminococcus, Megasphaera, Catenibacterium and Subdoligranulum. EF piglets showed an accelerated microbiota maturation, characterized by increased microbial diversity, pre‐weaning emergence of post‐weaning‐associated microbes and a more rapid decline of typical pre‐weaning microbes. Furthermore, the individual eating behaviour scores of piglets quantitatively correlated with their accelerated microbiome. Importantly, EF piglets displayed a smoother relative weight gain and tended to reach a higher relative weight gain, in addition to reduced diarrhoea scores in the first week post‐weaning. Overall, these findings demonstrate the beneficial impact of early feeding on microbiota development as well as pig health and performance during the weaning transition.
Collapse
Affiliation(s)
- R Choudhury
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University & Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | - A Middelkoop
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | - J Boekhorst
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University & Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | - W J J Gerrits
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | - B Kemp
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | - J E Bolhuis
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | - M Kleerebezem
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University & Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| |
Collapse
|
48
|
Montanari C, Parolisi S, Borghi E, Putignani L, Bassanini G, Zuvadelli J, Bonfanti C, Tummolo A, Dionisi Vici C, Biasucci G, Burlina A, Carbone MT, Verduci E. Dysbiosis, Host Metabolism, and Non-communicable Diseases: Trialogue in the Inborn Errors of Metabolism. Front Physiol 2021; 12:716520. [PMID: 34588993 PMCID: PMC8475650 DOI: 10.3389/fphys.2021.716520] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Inborn errors of metabolism (IEMs) represent a complex system model, in need of a shift of approach exploring the main factors mediating the regulation of the system, internal or external and overcoming the traditional concept of biochemical and genetic defects. In this context, among the established factors influencing the metabolic flux, i.e., diet, lifestyle, antibiotics, xenobiotics, infectious agents, also the individual gut microbiota should be considered. A healthy gut microbiota contributes in maintaining human health by providing unique metabolic functions to the human host. Many patients with IEMs are on special diets, the main treatment for these diseases. Hence, IEMs represent a good model to evaluate how specific dietary patterns, in terms of macronutrients composition and quality of nutrients, can be related to a characteristic microbiota associated with a specific clinical phenotype (“enterophenotype”). In the present review, we aim at reporting the possible links existing between dysbiosis, a condition reported in IEMs patients, and a pro-inflammatory status, through an altered “gut-liver” cross-talk network and a major oxidative stress, with a repercussion on the health status of the patient, increasing the risk of non-communicable diseases (NCDs). On this basis, more attention should be paid to the nutritional status assessment and the clinical and biochemical signs of possible onset of comorbidities, with the goal of improving the long-term wellbeing in IEMs. A balanced intestinal ecosystem has been shown to positively contribute to patient health and its perturbation may influence the clinical spectrum of individuals with IEMs. For this, reaching eubiosis through the improvement of the quality of dietary products and mixtures, the use of pre-, pro- and postbiotics, could represent both a preventive and therapeutic strategy in these complex diseases.
Collapse
Affiliation(s)
- Chiara Montanari
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Sara Parolisi
- UOS Metabolic and Rare Diseases, AORN Santobono, Naples, Italy
| | - Elisa Borghi
- Department of Health Science, University of Milan, Milan, Italy
| | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Juri Zuvadelli
- Clinical Department of Pediatrics, ASST Santi Paolo e Carlo, San Paolo Hospital, University of Milan, Milan, Italy
| | - Cristina Bonfanti
- Rare Metabolic Disease Unit, Pediatric Department, Fondazione MBBM, San Gerardo Hospital, Monza, Italy
| | - Albina Tummolo
- Metabolic Diseases and Clinical Genetics Unit, Children's Hospital Giovanni XXIII, Bari, Italy
| | | | - Giacomo Biasucci
- Department of Paediatrics & Neonatology, Guglielmo da Saliceto Hospital, Piacenza, Italy
| | - Alberto Burlina
- Division of Inborn Metabolic Diseases, Department of Diagnostic Services, University Hospital of Padua, Padua, Italy
| | | | - Elvira Verduci
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy.,Department of Health Science, University of Milan, Milan, Italy
| |
Collapse
|
49
|
Neroni B, Evangelisti M, Radocchia G, Di Nardo G, Pantanella F, Villa MP, Schippa S. Relationship between sleep disorders and gut dysbiosis: what affects what? Sleep Med 2021; 87:1-7. [PMID: 34479058 DOI: 10.1016/j.sleep.2021.08.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/25/2022]
Abstract
Sleep plays a fundamental role in maintaining good psycho-physical health, it can influence hormone levels, mood, and weight. Recent studies, focused on the interconnection between intestinal microbiome and sleep disorders, have shown the growing importance of a healthy and balanced intestinal microbiome for the hosts health. Normally, gut microbiota and his host are linked by mutualistic relationship, that in some conditions, can be compromised by shifts in microbiota's composition, called dysbiosis. Both sleep problems and dysbiosis of the gut microbiome can lead to metabolic disorders and, in this review, we will explore what is present in literature on the link between sleep pathologies and intestinal dysbiosis.
Collapse
Affiliation(s)
- Bruna Neroni
- Department of Public Health and Infection Disease, Microbiology Section Sapienza University of Rome, Italy
| | | | - Giulia Radocchia
- Department of Public Health and Infection Disease, Microbiology Section Sapienza University of Rome, Italy
| | - Giovanni Di Nardo
- Sant'Andrea Hospital, NESMOS Department, Sapienza University of Rome, Italy
| | - Fabrizio Pantanella
- Department of Public Health and Infection Disease, Microbiology Section Sapienza University of Rome, Italy
| | - Maria Pia Villa
- Sant'Andrea Hospital, NESMOS Department, Sapienza University of Rome, Italy
| | - Serena Schippa
- Department of Public Health and Infection Disease, Microbiology Section Sapienza University of Rome, Italy.
| |
Collapse
|
50
|
Effect of Advanced Glycation End-Products and Excessive Calorie Intake on Diet-Induced Chronic Low-Grade Inflammation Biomarkers in Murine Models. Nutrients 2021; 13:nu13093091. [PMID: 34578967 PMCID: PMC8468789 DOI: 10.3390/nu13093091] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 08/29/2021] [Accepted: 09/02/2021] [Indexed: 12/29/2022] Open
Abstract
Chronic Low-Grade Inflammation (CLGI) is a non-overt inflammatory state characterized by a continuous activation of inflammation mediators associated with metabolic diseases. It has been linked to the overconsumption of Advanced Glycation End-Products (AGEs), and/or macronutrients which lead to an increase in local and systemic pro-inflammatory biomarkers in humans and animal models. This review provides a summary of research into biomarkers of diet-induced CLGI in murine models, with a focus on AGEs and obesogenic diets, and presents the physiological effects described in the literature. Diet-induced CLGI is associated with metabolic endotoxemia, and/or gut microbiota remodeling in rodents. The mechanisms identified so far are centered on pro-inflammatory axes such as the interaction between AGEs and their main receptor AGEs (RAGE) or increased levels of lipopolysaccharide. The use of murine models has helped to elucidate the local and systemic expression of CLGI mediators. These models have enabled significant advances in identification of diet-induced CLGI biomarkers and resultant physiological effects. Some limitations on the translational (murine → humans) use of biomarkers may arise, but murine models have greatly facilitated the testing of specific dietary components. However, there remains a lack of information at the whole-organism level of organization, as well as a lack of consensus on the best biomarker for use in CLGI studies and recommendations as to future research conclude this review.
Collapse
|