1
|
Purazo ML, Ice RJ, Shimpi R, Hoenerhoff M, Pugacheva EN. NEDD9 Overexpression Causes Hyperproliferation of Luminal Cells and Cooperates with HER2 Oncogene in Tumor Initiation: A Novel Prognostic Marker in Breast Cancer. Cancers (Basel) 2023; 15:1119. [PMID: 36831460 PMCID: PMC9954084 DOI: 10.3390/cancers15041119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/23/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
HER2 overexpression occurs in 10-20% of breast cancer patients. HER2+ tumors are characterized by an increase in Ki67, early relapse, and increased metastasis. Little is known about the factors influencing early stages of HER2- tumorigenesis and diagnostic markers. Previously, it was shown that the deletion of NEDD9 in mouse models of HER2 cancer interferes with tumor growth, but the role of NEDD9 upregulation is currently unexplored. We report that NEDD9 is overexpressed in a significant subset of HER2+ breast cancers and correlates with a limited response to anti-HER2 therapy. To investigate the mechanisms through which NEDD9 influences HER2-dependent tumorigenesis, we generated MMTV-Cre-NEDD9 transgenic mice. The analysis of mammary glands shows extensive ductal epithelium hyperplasia, increased branching, and terminal end bud expansion. The addition of oncogene Erbb2 (neu) leads to the earlier development of early hyperplastic benign lesions (~16 weeks), with a significantly shorter latency than the control mice. Similarly, NEDD9 upregulation in MCF10A-derived acini leads to hyperplasia-like DCIS. This phenotype is associated with activation of ERK1/2 and AURKA kinases, leading to an increased proliferation of luminal cells. These findings indicate that NEDD9 is setting permissive conditions for HER2-induced tumorigenesis, thus identifying this protein as a potential diagnostic marker for early detection.
Collapse
Affiliation(s)
- Marc L. Purazo
- WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV 26505, USA
| | - Ryan J. Ice
- WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV 26505, USA
| | - Rahul Shimpi
- WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV 26505, USA
| | - Mark Hoenerhoff
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elena N. Pugacheva
- WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV 26505, USA
- Department of Biochemistry & Molecular Medicine, School of Medicine, West Virginia University, Morgantown, WV 26505, USA
| |
Collapse
|
2
|
NEDD9 sustains hexokinase expression to promote glycolysis. Oncogenesis 2022; 11:15. [PMID: 35410460 PMCID: PMC9001639 DOI: 10.1038/s41389-022-00391-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractElevated rates of glycolysis in cancer cells support tumor growth, in a process that typically depends on oncogene-induced increases in the expression and/or activity of enzymes in the glycolytic pathway. The NEDD9 scaffolding protein is upregulated in many advanced tumors, with increased NEDD9 promoting the activity of SRC and other effectors that promote invasion and metastasis. We here define a new role for NEDD9 in support of glycolysis. NEDD9 knockdown significantly impaired glycolysis in multiple lung cancer cell lines This was accompanied by post-transcriptional downregulation of steady-state levels of hexokinases (HK1 and HK2), which catalyze early steps in the glycolytic cascade, key rate limiting enzyme phosphofructokinase (PFK1), and downstream glyceraldehyde phosphate dehydrogenase (GAPDH). In mice, protein levels of HK1, HK2, PFK1, and GAPDH were depressed in Krastm4Tyj/J/Trp53tm1Brn/J (KP) non-small cell lung tumors with null versus wild type Nedd9. Reciprocally, depletion of HK1 or HK2 elevated NEDD9 expression, as did the treatment of cells with 2-deoxyglucose (2DG), an inhibitor of glycolysis; whereas overexpression of hexokinases promoted NEDD9 dephosphorylation, associated with reduced NEDD9 activity. Together, these data for the first time suggest a negative feedback circuit involving NEDD9 and glycolytic enzymes that may contribute to NEDD9 action in promoting the aggressive growth of advanced tumors.
Collapse
|
3
|
Deneka AY, Kopp MC, Nikonova AS, Gaponova AV, Kiseleva AA, Hensley HH, Flieder DB, Serebriiskii IG, Golemis EA. Nedd9 Restrains Autophagy to Limit Growth of Early Stage Non-Small Cell Lung Cancer. Cancer Res 2021; 81:3717-3726. [PMID: 34006524 DOI: 10.1158/0008-5472.can-20-3626] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/16/2021] [Accepted: 04/26/2021] [Indexed: 01/22/2023]
Abstract
Non-small cell lung cancer (NSCLC) is the most common cancer worldwide. With overall 5-year survival estimated at <17%, it is critical to identify factors that regulate NSCLC disease prognosis. NSCLC is commonly driven by mutations in KRAS and TP53, with activation of additional kinases such as SRC promoting tumor invasion. In this study, we investigated the role of NEDD9, a SRC activator and scaffolding protein, in NSCLC tumorigenesis. In an inducible model of NSCLC dependent on Kras mutation and Trp53 loss (KP mice), deletion of Nedd9 (KPN mice) led to the emergence of larger tumors characterized by accelerated rates of tumor growth and elevated proliferation. Orthotopic injection of KP and KPN tumors into the lungs of Nedd9-wild-type and -null mice indicated the effect of Nedd9 loss was cell-autonomous. Tumors in KPN mice displayed reduced activation of SRC and AKT, indicating that activation of these pathways did not mediate enhanced growth of KPN tumors. NSCLC tumor growth has been shown to require active autophagy, a process dependent on activation of the kinases LKB1 and AMPK. KPN tumors contained high levels of active LKB1 and AMPK and increased autophagy compared with KP tumors. Treatment with the autophagy inhibitor chloroquine completely eliminated the growth advantage of KPN tumors. These data for the first time identify NEDD9 as a negative regulator of LKB1/AMPK-dependent autophagy during early NSCLC tumor growth. SIGNIFICANCE: This study demonstrates a novel role for the scaffolding protein NEDD9 in regulating LKB1-AMPK signaling in early stage non-small cell lung cancer, suppressing autophagy and tumor growth.
Collapse
Affiliation(s)
- Alexander Y Deneka
- Program in Molecular Therapeutics Fox Chase Cancer Center, Philadelphia, PA.,Kazan Federal University, Kazan, Russian Federation, Kazan, Tatarstan, Russia
| | - Meghan C Kopp
- Program in Molecular Therapeutics Fox Chase Cancer Center, Philadelphia, PA.,Cancer Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Anna S Nikonova
- Program in Molecular Therapeutics Fox Chase Cancer Center, Philadelphia, PA
| | - Anna V Gaponova
- Program in Molecular Therapeutics Fox Chase Cancer Center, Philadelphia, PA
| | - Anna A Kiseleva
- Program in Molecular Therapeutics Fox Chase Cancer Center, Philadelphia, PA
| | - Harvey H Hensley
- Program in Molecular Therapeutics Fox Chase Cancer Center, Philadelphia, PA
| | - Douglas B Flieder
- Program in Molecular Therapeutics Fox Chase Cancer Center, Philadelphia, PA.,Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | - Erica A Golemis
- Program in Molecular Therapeutics Fox Chase Cancer Center, Philadelphia, PA.
| |
Collapse
|
4
|
Zhang Y, Xu B, Shi J, Li J, Lu X, Xu L, Yang H, Hamad N, Wang C, Napier D, He S, Liu C, Liu Z, Qian H, Chen L, Wei X, Zheng X, Huang JA, Thibault O, Craven R, Wei D, Pan Y, Zhou BP, Wu Y, Yang XH. BRD4 modulates vulnerability of triple-negative breast cancer to targeting of integrin-dependent signaling pathways. Cell Oncol (Dordr) 2020; 43:1049-1066. [PMID: 33006750 PMCID: PMC7716866 DOI: 10.1007/s13402-020-00537-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2020] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Stemming from a myriad of genetic and epigenetic alterations, triple-negative breast cancer (TNBC) is tied to poor clinical outcomes and aspires for individualized therapies. Here we investigated the therapeutic potential of co-inhibiting integrin-dependent signaling pathway and BRD4, a transcriptional and epigenetic mediator, for TNBC. METHODS Two independent patient cohorts were subjected to bioinformatic and IHC examination for clinical association of candidate cancer drivers. The efficacy and biological bases for co-targeting these drivers were interrogated using cancer cell lines, a protein kinase array, chemical inhibitors, RNAi/CRISPR/Cas9 approaches, and a 4 T1-Balb/c xenograft model. RESULTS We found that amplification of the chromosome 8q24 region occurred in nearly 20% of TNBC tumors, and that it coincided with co-upregulation or amplification of c-Myc and FAK, a key effector of integrin-dependent signaling. This co-upregulation at the mRNA or protein level correlated with a poor patient survival (p < 0.0109 or p < 0.0402, respectively). Furthermore, we found that 14 TNBC cell lines exhibited high vulnerabilities to the combination of JQ1 and VS-6063, potent pharmacological antagonists of the BRD4/c-Myc and integrin/FAK-dependent pathways, respectively. We also observed a cooperative inhibitory effect of JQ1 and VS-6063 on tumor growth and infiltration of Ly6G+ myeloid-derived suppressor cells in vivo. Finally, we found that JQ1 and VS-6063 cooperatively induced apoptotic cell death by altering XIAP, Bcl2/Bcl-xl and Bim levels, impairing c-Src/p130Cas-, PI3K/Akt- and RelA-associated signaling, and were linked to EMT-inducing transcription factor Snail- and Slug-dependent regulation. CONCLUSION Based on our results, we conclude that the BRD4/c-Myc- and integrin/FAK-dependent pathways act in concert to promote breast cancer cell survival and poor clinical outcomes. As such, they represent promising targets for a synthetic lethal-type of therapy against TNBC.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
- Department of Respiratory Medicine, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Bingwei Xu
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Junfeng Shi
- Department of Oncology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Jieming Li
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
- Center of Drug Discovery, China Pharmaceutical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Xinlan Lu
- Department of Medical Oncology, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi Province, People's Republic of China
| | - Li Xu
- Department of Statistics, University of Kentucky, Lexington, KY, USA
| | - Helen Yang
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Nevean Hamad
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Chi Wang
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Dana Napier
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Shuixiang He
- Department of Medical Oncology, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi Province, People's Republic of China
| | - Chunming Liu
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Zeyi Liu
- Department of Respiratory Medicine, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Hai Qian
- Center of Drug Discovery, China Pharmaceutical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Li Chen
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Xiaowei Wei
- Department of Oncology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Xucai Zheng
- The First Affiliated Hospital of University of Science & Technology of China and Provincial Hospital, Hefei, Anhui Province, People's Republic of China
| | - Jian-An Huang
- Department of Respiratory Medicine, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Olivier Thibault
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Rolf Craven
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Dongping Wei
- Department of Oncology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China.
| | - Yueyin Pan
- The First Affiliated Hospital of University of Science & Technology of China and Provincial Hospital, Hefei, Anhui Province, People's Republic of China.
| | - Binhua P Zhou
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA.
| | - Yadi Wu
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA.
| | - Xiuwei H Yang
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
5
|
Gabbasov R, Xiao F, Howe CG, Bickel LE, O'Brien SW, Benrubi D, Do TV, Zhou Y, Nicolas E, Cai KQ, Litwin S, Seo S, Golemis EA, Connolly DC. NEDD9 promotes oncogenic signaling, a stem/mesenchymal gene signature, and aggressive ovarian cancer growth in mice. Oncogene 2018; 37:4854-4870. [PMID: 29773902 PMCID: PMC6119087 DOI: 10.1038/s41388-018-0296-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 03/23/2018] [Accepted: 04/13/2018] [Indexed: 12/20/2022]
Abstract
Neural precursor cell expressed, developmentally downregulated 9 (NEDD9) supports oncogenic signaling in a number of solid and hematologic tumors. Little is known about the role of NEDD9 in ovarian carcinoma (OC), but available data suggest elevated mRNA and protein expression in advanced stage high-grade cancers. We used a transgenic MISIIR-TAg mouse OC model combined with genetic ablation of Nedd9 to investigate its action in the development and progression of OC. A Nedd9-/- genotype delayed tumor growth rate, reduced incidence of ascites, and reduced expression and activation of signaling proteins including SRC, STAT3, E-cadherin, and AURKA. Cell lines established from MISIIR-TAg;Nedd9-/- and MISIIR-TAg;Nedd9+/+ mice exhibited altered migration and invasion. Growth of these cells in a syngeneic allograft model indicated that systemic Nedd9 loss in the microenvironment had little impact on tumor allograft growth, but in a Nedd9 wild-type background Nedd9-/- allografts exhibited significantly reduced growth, dissemination, and oncogenic signaling compared to Nedd9+/+ allografts. Gene expression analysis revealed that Nedd9+/+ tumors exhibited more mesenchymal "stem-like" transcriptional program, including increased expression of Aldh1a1 and Aldh1a2. Conversely, loss of Nedd9 resulted in increased expression of differentiation genes, including fallopian tube markers Foxj1, Ovgp1, and Pax8. Collectively, these data suggest that tumor cell-intrinsic Nedd9 expression promotes OC development and progression by broad induction of oncogenic protein signaling and stem/mesenchymal gene expression.
Collapse
Affiliation(s)
- Rashid Gabbasov
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- Department of Biochemistry and Biotechnology, Kazan Federal University, Kazan, Russia
| | - Fang Xiao
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Caitlin G Howe
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Laura E Bickel
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Shane W O'Brien
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Daniel Benrubi
- Division of Gynecologic Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Thuy-Vy Do
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | - Kathy Q Cai
- Histopathology Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Samuel Litwin
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Sachiko Seo
- Department of Hematology & Oncology, National Cancer Research Center East, Kashiwa, Japan
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Denise C Connolly
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Feng H, Ou BC, Zhao JK, Yin S, Lu AG, Oechsle E, Thasler WE. Homogeneous pancreatic cancer spheroids mimic growth pattern of circulating tumor cell clusters and macrometastases: displaying heterogeneity and crater-like structure on inner layer. J Cancer Res Clin Oncol 2017; 143:1771-1786. [PMID: 28497169 DOI: 10.1007/s00432-017-2434-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 04/21/2017] [Indexed: 12/14/2022]
Abstract
PURPOSE Pancreatic cancer 3D in vitro models including multicellular tumor spheroid (MCTS), single cell-derived tumor spheroid (SCTS), tissue-derived tumor spheroid, and organotypic models provided powerful platforms to mimic in vivo tumor. Recent work supports that circulating tumor cell (CTC) clusters are more efficient in metastasis seeding than single CTCs. The purpose of this study is to establish 3D culture models which can mimic single CTC, monoclonal CTC clusters, and the expansion of macrometastases. METHODS Seven pancreatic ductal adenocarcinoma cell lines were used to establish MCTS and SCTS using hanging drop and ultra-low attachment plates. Spheroid immunofluorescence staining, spheroid formation assay, immunoblotting, and literature review were performed to investigate molecular biomarkers and the morphological characteristics of pancreatic tumor spheroids. RESULTS Single cells experienced different growth patterns to form SCTS, like signet ring-like cells, blastula-like structures, and solid core spheroids. However, golf ball-like hollow spheroids could also be detected, especially when DanG and Capan-1 cells were cultivated with fibroblast-conditioned medium (p < 0.05). The size of golf ball-like hollow spheroids hardly grew after getting matured. Only DanG and Capan-1 could establish SCTS- and MCTS-derived hollow spheroids using hanging drop plates and ultra-low attachment plates. Other PDA cell lines could also establish tumor spheroid with hanging drop plates by adding methylated cellulose. Tumor spheroids derived from pancreatic cancer cell line DanG possessed asymmetrically distributed proliferation center, immune-checkpoint properties. ß-catenin, Ki-67, and F-actin were active surrounding the crater-like structure distributing on the inner layer of viable rim cover of the spheroids, which was relevant to well-differentiated tumor cells. CONCLUSIONS It is possible to establish 3D CTC cluster models from homogenous PDA cell lines using hanging drop and ultra-low attachment plates. PDA cell line displays its own intrinsic properties or heterogeneity. The mechanism of formation of the crater-like structure as well as golf ball-like structure needs further exploration.
Collapse
Affiliation(s)
- Hao Feng
- Department of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Medical Faculty, University Hospital of LMU Munich, 81377, Munich, Germany.
| | - Bao-Chi Ou
- Department of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Jing-Kun Zhao
- Department of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Shuai Yin
- Medical Faculty, University Hospital of LMU Munich, 81377, Munich, Germany
| | - Ai-Guo Lu
- Department of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Eva Oechsle
- Medical Faculty, University Hospital of LMU Munich, 81377, Munich, Germany
- Eurofins BioPharma Product Testing Germany, 82152, Munich, Germany
| | - Wolfgang E Thasler
- Department of General and Visceral Surgery, Red Cross Hospital, 80634, Munich, Germany.
| |
Collapse
|
7
|
Zeinieh M, Salehi A, Rajkumar V, Barker PA. p75NTR-dependent Rac1 activation requires receptor cleavage and activation of an NRAGE and NEDD9 signaling cascade. J Cell Sci 2016; 128:447-59. [PMID: 25472715 DOI: 10.1242/jcs.152173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The p75 neurotrophin receptor (p75NTR, also known as tumor necrosis factor receptor superfamily member 16) is implicated in diverse cellular events, but fundamental aspects of its signaling mechanisms remain unclear. To address this, we have established a novel bioassay to characterize signaling cascades activated by p75NTR. We show that in COS7 cells, p75NTR expression causes a large increase in cell surface area that relies on the activation of Rac1, and we demonstrate that the p75NTR-dependent COS7 phenotype is dependent on ADAM17- and c-secretase-dependent cleavage of p75NTR and generation of the p75NTR intracellular domain (p75NTRICD). We show that the p75NTR adaptor protein NRAGE (also known as MAGED1) acts downstream of the p75NTRICD in this cascade and, through a yeast two-hybrid screen, identify NEDD9, a Cas family adaptor protein, as a novel NRAGE-binding partner that mediates p75NTR-dependent Rac1 activation and cell spreading. Our results demonstrate a crucial role for p75NTR cleavage in small GTPase activation and define a novel Rac1 activation pathway involving the p75NTRICD, NRAGE andNEDD9.
Collapse
|
8
|
Pathak HB, Zhou Y, Sethi G, Hirst J, Schilder RJ, Golemis EA, Godwin AK. A Synthetic Lethality Screen Using a Focused siRNA Library to Identify Sensitizers to Dasatinib Therapy for the Treatment of Epithelial Ovarian Cancer. PLoS One 2015; 10:e0144126. [PMID: 26637171 PMCID: PMC4670180 DOI: 10.1371/journal.pone.0144126] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/15/2015] [Indexed: 02/07/2023] Open
Abstract
Molecular targeted therapies have been the focus of recent clinical trials for the treatment of patients with recurrent epithelial ovarian cancer (EOC). The majority have not fared well as monotherapies for improving survival of these patients. Poor bioavailability, lack of predictive biomarkers, and the presence of multiple survival pathways can all diminish the success of a targeted agent. Dasatinib is a tyrosine kinase inhibitor of the Src-family kinases (SFK) and in preclinical studies shown to have substantial activity in EOC. However, when evaluated in a phase 2 clinical trial for patients with recurrent or persistent EOC, it was found to have minimal activity. We hypothesized that synthetic lethality screens performed using a cogently designed siRNA library would identify second-site molecular targets that could synergize with SFK inhibition and improve dasatinib efficacy. Using a systematic approach, we performed primary siRNA screening using a library focused on 638 genes corresponding to a network centered on EGFR, HER2, and the SFK-scaffolding proteins BCAR1, NEDD9, and EFS to screen EOC cells in combination with dasatinib. We followed up with validation studies including deconvolution screening, quantitative PCR to confirm effective gene silencing, correlation of gene expression with dasatinib sensitivity, and assessment of the clinical relevance of hits using TCGA ovarian cancer data. A refined list of five candidates (CSNK2A1, DAG1, GRB2, PRKCE, and VAV1) was identified as showing the greatest potential for improving sensitivity to dasatinib in EOC. Of these, CSNK2A1, which codes for the catalytic alpha subunit of protein kinase CK2, was selected for additional evaluation. Synergistic activity of the clinically relevant inhibitor of CK2, CX-4945, with dasatinib in reducing cell proliferation and increasing apoptosis was observed across multiple EOC cell lines. This overall approach to improving drug efficacy can be applied to other targeted agents that have similarly shown poor clinical activity.
Collapse
Affiliation(s)
- Harsh B. Pathak
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- University of Kansas Cancer Center, Kansas City, Kansas, United States of America
- * E-mail:
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Geetika Sethi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jeff Hirst
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Russell J. Schilder
- Department of Gynecologic Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Erica A. Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Andrew K. Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- University of Kansas Cancer Center, Kansas City, Kansas, United States of America
| |
Collapse
|
9
|
Castillo-Lluva S, Hontecillas-Prieto L, Blanco-Gómez A, Del Mar Sáez-Freire M, García-Cenador B, García-Criado J, Pérez-Andrés M, Orfao A, Cañamero M, Mao JH, Gridley T, Castellanos-Martín A, Pérez-Losada J. A new role of SNAI2 in postlactational involution of the mammary gland links it to luminal breast cancer development. Oncogene 2015; 34:4777-90. [PMID: 26096931 PMCID: PMC4560637 DOI: 10.1038/onc.2015.224] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 04/25/2015] [Accepted: 05/16/2015] [Indexed: 12/30/2022]
Abstract
Breast cancer is a major cause of mortality in women. The transcription factor SNAI2 has been implicated in the pathogenesis of several types of cancer, including breast cancer of basal origin. Here we show that SNAI2 is also important in the development of breast cancer of luminal origin in MMTV-ErbB2 mice. SNAI2 deficiency leads to longer latency and fewer luminal tumors, both of these being characteristics of pretumoral origin. These effects were associated with reduced proliferation and a decreased ability to generate mammospheres in normal mammary glands. However, the capacity to metastasize was not modified. Under conditions of increased ERBB2 oncogenic activity after pregnancy plus SNAI2 deficiency, both pretumoral defects-latency and tumor load-were compensated. However, the incidence of lung metastases was dramatically reduced. Furthermore, SNAI2 was required for proper postlactational involution of the breast. At 3 days post lactational involution, the mammary glands of Snai2-deficient mice exhibited lower levels of pSTAT3 and higher levels of pAKT1, resulting in decreased apoptosis. Abundant noninvoluted ducts were still present at 30 days post lactation, with a greater number of residual ERBB2+ cells. These results suggest that this defect in involution leads to an increase in the number of susceptible target cells for transformation, to the recovery of the capacity to generate mammospheres and to an increase in the number of tumors. Our work demonstrates the participation of SNAI2 in the pathogenesis of luminal breast cancer, and reveals an unexpected connection between the processes of postlactational involution and breast tumorigenesis in Snai2-null mutant mice.
Collapse
Affiliation(s)
- S Castillo-Lluva
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca/CSIC, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - L Hontecillas-Prieto
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca/CSIC, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - A Blanco-Gómez
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca/CSIC, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - M Del Mar Sáez-Freire
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca/CSIC, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - B García-Cenador
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
- Departamento de Cirugía, Universidad de Salamanca, Salamanca, Spain
| | - J García-Criado
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
- Departamento de Cirugía, Universidad de Salamanca, Salamanca, Spain
| | - M Pérez-Andrés
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca/CSIC, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
- Unidad de Citometría de flujo, Universidad de Salamanca, IBSAL, Salamanca, Spain
| | - A Orfao
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca/CSIC, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
- Unidad de Citometría de flujo, Universidad de Salamanca, IBSAL, Salamanca, Spain
| | - M Cañamero
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - J H Mao
- Life Sciences Division, Lawrence Berkeley National Laboratory (LBNL), University of California, Berkeley, Berkeley, CA, USA
| | - T Gridley
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - A Castellanos-Martín
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca/CSIC, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - J Pérez-Losada
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca/CSIC, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| |
Collapse
|
10
|
Abstract
The members of the Cas protein family (p130Cas/BCAR1, Nedd9/HEF1, EFS and CASS4) are scaffold proteins required for the assembly of signal transduction complexes in response to several stimuli, such as growth factors, hormones and extracellular matrix components. Given their ability to integrate and coordinate multiple signalling events, Cas proteins have emerged as crucial players in the control of mammary cell proliferation, survival and differentiation. More importantly, it has been found that alterations of their expression levels result in aberrant signalling cascades, which promote initiation and progression of breast cancer. Based on the increasing data from in vitro, mouse model and clinical studies, in this review we will focus on two Cas proteins, p130Cas/BCAR1 and Nedd9, and their coupled signalling pathways, to examine their role in mammary cell transformation and in the acquirement of invasiveness and drug resistance of breast cancer cells.
Collapse
Affiliation(s)
- Giusy Tornillo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy; European Cancer Stem Cell Research Institute and Cardiff School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | | | | |
Collapse
|
11
|
Shagisultanova E, Gaponova AV, Gabbasov R, Nicolas E, Golemis EA. Preclinical and clinical studies of the NEDD9 scaffold protein in cancer and other diseases. Gene 2015; 567:1-11. [PMID: 25967390 DOI: 10.1016/j.gene.2015.04.086] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 12/17/2022]
Abstract
Cancer progression requires a significant reprogramming of cellular signaling to support the essential tumor-specific processes that include hyperproliferation, invasion (for solid tumors) and survival of metastatic colonies. NEDD9 (also known as CasL and HEF1) encodes a multi-domain scaffolding protein that assembles signaling complexes regulating multiple cellular processes relevant to cancer. These include responsiveness to signals emanating from the T and B cell receptors, integrins, chemokine receptors, and receptor tyrosine kinases, as well as cytoplasmic oncogenes such as BCR-ABL and FAK- and SRC-family kinases. Downstream, NEDD9 regulation of partners including CRKL, WAVE, PI3K/AKT, ERK, E-cadherin, Aurora-A (AURKA), HDAC6, and others allow NEDD9 to influence functions as pleiotropic as migration, invasion, survival, ciliary resorption, and mitosis. In this review, we summarize a growing body of preclinical and clinical data that indicate that while NEDD9 is itself non-oncogenic, changes in expression of NEDD9 (most commonly elevation of expression) are common features of tumors, and directly impact tumor aggressiveness, metastasis, and response to at least some targeted agents inhibiting NEDD9-interacting proteins. These data strongly support the relevance of further development of NEDD9 as a biomarker for therapeutic resistance. Finally, we briefly discuss emerging evidence supporting involvement of NEDD9 in additional pathological conditions, including stroke and polycystic kidney disease.
Collapse
Affiliation(s)
- Elena Shagisultanova
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Anna V Gaponova
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Rashid Gabbasov
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Department of Genetics, Kazan Federal University (Volga Region), Kazan, Tatarstan, Russia
| | - Emmanuelle Nicolas
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
12
|
New signaling pathways govern the host response to C. albicans infection in various niches. Genome Res 2015; 25:679-89. [PMID: 25858952 PMCID: PMC4417116 DOI: 10.1101/gr.187427.114] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/19/2015] [Indexed: 02/02/2023]
Abstract
Candida albicans, the major invasive fungal pathogen of humans, can cause both debilitating mucosal infections and fatal invasive infections. Understanding the complex nature of the host-pathogen interaction in each of these contexts is essential to developing desperately needed therapies to treat fungal infections. RNA-seq enables a systems-level understanding of infection by facilitating comprehensive analysis of transcriptomes from multiple species (e.g., host and pathogen) simultaneously. We used RNA-seq to characterize the transcriptomes of both C. albicans and human endothelial cells or oral epithelial cells during in vitro infection. Network analysis of the differentially expressed genes identified the activation of several signaling pathways that have not previously been associated with the host response to fungal pathogens. Using an siRNA knockdown approach, we demonstrate that two of these pathways-platelet-derived growth factor BB (PDGF BB) and neural precursor-cell-expressed developmentally down-regulated protein 9 (NEDD9)-govern the host-pathogen interaction by regulating the uptake of C. albicans by host cells. Using RNA-seq analysis of a mouse model of hematogenously disseminated candidiasis (HDC) and episodes of vulvovaginal candidiasis (VVC) in humans, we found evidence that many of the same signaling pathways are activated during mucosal (VVC) and/or disseminated (HDC) infections in vivo. Our analyses have uncovered several signaling pathways at the interface between C. albicans and host cells in various contexts of infection, and suggest that PDGF BB and NEDD9 play important roles in this interaction. In addition, these data provide a valuable community resource for better understanding host-fungal pathogen interactions.
Collapse
|
13
|
Iglesias JM, Leis O, Pérez Ruiz E, Gumuzio Barrie J, Garcia-Garcia F, Aduriz A, Beloqui I, Hernandez-Garcia S, Lopez-Mato MP, Dopazo J, Pandiella A, Menendez JA, Martin AG. The Activation of the Sox2 RR2 Pluripotency Transcriptional Reporter in Human Breast Cancer Cell Lines is Dynamic and Labels Cells with Higher Tumorigenic Potential. Front Oncol 2014; 4:308. [PMID: 25414831 PMCID: PMC4220105 DOI: 10.3389/fonc.2014.00308] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/17/2014] [Indexed: 01/19/2023] Open
Abstract
The striking similarity displayed at the mechanistic level between tumorigenesis and the generation of induced pluripotent stem cells and the fact that genes and pathways relevant for embryonic development are reactivated during tumor progression highlights the link between pluripotency and cancer. Based on these observations, we tested whether it is possible to use a pluripotency-associated transcriptional reporter, whose activation is driven by the SRR2 enhancer from the Sox2 gene promoter (named S4+ reporter), to isolate cancer stem cells (CSCs) from breast cancer cell lines. The S4+ pluripotency transcriptional reporter allows the isolation of cells with enhanced tumorigenic potential and its activation was switched on and off in the cell lines studied, reflecting a plastic cellular process. Microarray analysis comparing the populations in which the reporter construct is active versus inactive showed that positive cells expressed higher mRNA levels of cytokines (IL-8, IL-6, TNF) and genes (such as ATF3, SNAI2, and KLF6) previously related with the CSC phenotype in breast cancer.
Collapse
Affiliation(s)
- Juan Manuel Iglesias
- Regulation of Cell Growth Laboratory, Fundacion Inbiomed, San Sebastian, Spain
- Synpromics Ltd, Edinburgh, UK
| | - Olatz Leis
- Regulation of Cell Growth Laboratory, Fundacion Inbiomed, San Sebastian, Spain
- StemTek Therapeutics, Bilbao, Spain
| | | | - Juan Gumuzio Barrie
- Regulation of Cell Growth Laboratory, Fundacion Inbiomed, San Sebastian, Spain
- StemTek Therapeutics, Bilbao, Spain
| | - Francisco Garcia-Garcia
- Computational Genomics Institute, Centro de Investigación Principe Felipe (CIPF), Valencia, Spain
- Functional Genomics Node, Centro de Investigación Principe Felipe (CIPF), Spanish National Institute of Bioinformatics (INB), Valencia, Spain
| | - Ariane Aduriz
- Regulation of Cell Growth Laboratory, Fundacion Inbiomed, San Sebastian, Spain
| | - Izaskun Beloqui
- Regulation of Cell Growth Laboratory, Fundacion Inbiomed, San Sebastian, Spain
| | | | | | - Joaquin Dopazo
- Computational Genomics Institute, Centro de Investigación Principe Felipe (CIPF), Valencia, Spain
- Functional Genomics Node, Centro de Investigación Principe Felipe (CIPF), Spanish National Institute of Bioinformatics (INB), Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | | | - Javier A. Menendez
- Translational Research Laboratory, Catalan Institute of Oncology (ICO), Girona, Spain
- Girona Biomedical Research Institute (IDIBGi), Girona, Spain
| | - Angel Garcia Martin
- Regulation of Cell Growth Laboratory, Fundacion Inbiomed, San Sebastian, Spain
- StemTek Therapeutics, Bilbao, Spain
| |
Collapse
|
14
|
Loskutov YV, Kozyulina PY, Kozyreva VK, Ice RJ, Jones BC, Roston TJ, Smolkin MB, Ivanov AV, Wysolmerski RB, Pugacheva EN. NEDD9/Arf6-dependent endocytic trafficking of matrix metalloproteinase 14: a novel mechanism for blocking mesenchymal cell invasion and metastasis of breast cancer. Oncogene 2014; 34:3662-75. [PMID: 25241893 PMCID: PMC4369482 DOI: 10.1038/onc.2014.297] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/20/2014] [Accepted: 07/31/2014] [Indexed: 12/14/2022]
Abstract
NEDD9 is an established marker of invasive and metastatic cancers. NEDD9 downregulation has been shown to dramatically reduce cell invasion and metastasis in multiple tumors. The mechanisms by which NEDD9 regulates invasion are largely unknown. In the current study, we have found that NEDD9 is required for MMP14 enzymatic recovery/recycling through the late endosomes to enable disengagement of tissue inhibitor of matrix metalloproteinase 2 (TIMP2) and tumor invasion. Depletion of NEDD9 decreases targeting of the MMP14/TIMP2 complex to late endosomes and increases trafficking of MMP14 from early/sorting endosomes back to the surface in a small GTPase Arf6-dependent manner. NEDD9 directly binds to Arf6-GAP, ARAP3, and Arf6 effector GGA3 thereby facilitating the Arf6 inactivation required for MMP14/TIMP2 targeting to late endosomes. Re-expression of NEDD9 or a decrease in Arf6 activity is sufficient to restore MMP14 activity and the invasive properties of tumor cells. Importantly, NEDD9 inhibition by Vivo-Morpholinos, an antisense therapy, decreases primary tumor growth and metastasis in xenograft models of breast cancer. Collectively, our findings uncover a novel mechanism to control tumor cells dissemination through NEDD9/Arf6-dependent regulation of MMP14/TIMP2 trafficking, and validates NEDD9 as a clinically relevant therapeutic target to treat metastatic cancer.
Collapse
Affiliation(s)
- Y V Loskutov
- Mary Babb Randolph Cancer Center, West Virginia University School of Medicine, Morgantown, WV, USA
| | - P Y Kozyulina
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV, USA
| | - V K Kozyreva
- Mary Babb Randolph Cancer Center, West Virginia University School of Medicine, Morgantown, WV, USA
| | - R J Ice
- Mary Babb Randolph Cancer Center, West Virginia University School of Medicine, Morgantown, WV, USA
| | - B C Jones
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV, USA
| | - T J Roston
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV, USA
| | - M B Smolkin
- Department of Pathology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - A V Ivanov
- 1] Mary Babb Randolph Cancer Center, West Virginia University School of Medicine, Morgantown, WV, USA [2] Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV, USA
| | - R B Wysolmerski
- 1] Mary Babb Randolph Cancer Center, West Virginia University School of Medicine, Morgantown, WV, USA [2] Department of Neurobiology and Anatomy, West Virginia University School of Medicine, Morgantown, WV, USA
| | - E N Pugacheva
- 1] Mary Babb Randolph Cancer Center, West Virginia University School of Medicine, Morgantown, WV, USA [2] Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
15
|
Bilici A. Prognostic factors related with survival in patients with pancreatic adenocarcinoma. World J Gastroenterol 2014; 20:10802-10812. [PMID: 25152583 PMCID: PMC4138460 DOI: 10.3748/wjg.v20.i31.10802] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 01/27/2014] [Accepted: 04/09/2014] [Indexed: 02/06/2023] Open
Abstract
The prognosis in patients with pancreatic cancer is poor and this cancer is the fourth leading cause of cancer-related death worldwide. Although surgical resection is the only curative treatment of choice for pancreatic cancer, the majority of patients are diagnosed at an advanced stage, thus only 10%-15% of them are suitable for curative resection and the overall survival is less than 5%. Chemotherapy for metastatic disease is to palliate symptoms of patients and to improve survival. Therefore, prognostic factors are important and a correct definition of poor prognostic factors may help to guide more aggressive adjuvant or aggressive treatment protocols in patients with pancreatic cancer. This article reviews the prognostic factors affecting survival of patients with pancreatic cancer in the light of recent advances in the literature.
Collapse
|
16
|
Abstract
Mutations inactivating the cilia-localized Pkd1 protein result in autosomal dominant polycystic kidney disease (ADPKD), a serious inherited syndrome affecting ∼ 1 in 500 people, in which accumulation of renal cysts eventually destroys kidney function. Severity of ADPKD varies throughout the population, for reasons thought to involve differences both in intragenic Pkd1 mutations and in modifier alleles. The scaffolding protein NEDD9, commonly dysregulated during cancer progression, interacts with Aurora-A (AURKA) kinase to control ciliary resorption, and with Src and other partners to influence proliferative signaling pathways often activated in ADPKD. We here demonstrate Nedd9 expression is deregulated in human ADPKD and a mouse ADPKD model. Although genetic ablation of Nedd9 does not independently influence cystogenesis, constitutive absence of Nedd9 strongly promotes cyst formation in the tamoxifen-inducible Pkd1fl/fl;Cre/Esr1(+) mouse model of ADPKD. This cystogenic effect is associated with striking morphological defects in the cilia of Pkd1(-/-);Nedd9(-/-) mice, associated with specific loss of ciliary localization of adenylase cyclase III in the doubly mutant genotype. Ciliary phenotypes imply a failure of Aurora-A activation: Compatible with this idea, Pkd1(-/-);Nedd9(-/-) mice had ciliary resorption defects, and treatment of Pkd1(-/-) mice with a clinical Aurora-A kinase inhibitor exacerbated cystogenesis. In addition, activation of the ADPKD-associated signaling effectors Src, Erk, and the mTOR effector S6 was enhanced, and Ca(2+) response to external stimuli was reduced, in Pkd1(-/-);Nedd9(-/-) versus Pkd1(-/-) mice. Together, these results indicated an important modifier action of Nedd9 on ADPKD pathogenesis involving failure to activate Aurora-A.
Collapse
|
17
|
Nikonova AS, Gaponova AV, Kudinov AE, Golemis EA. CAS proteins in health and disease: an update. IUBMB Life 2014; 66:387-95. [PMID: 24962474 DOI: 10.1002/iub.1282] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 06/07/2014] [Indexed: 12/30/2022]
Abstract
The CAS family of scaffolding proteins has increasingly attracted scrutiny as important for regulation of cancer-associated signaling. BCAR1 (also known as p130Cas), NEDD9 (HEF1, Cas-L), EFS (Sin), and CASS4 (HEPL) are regulated by and mediate cell attachment, growth factor, and chemokine signaling. Altered expression and activity of CAS proteins are now known to promote metastasis and drug resistance in cancer, influence normal development, and contribute to the pathogenesis of heart and pulmonary disease. In this article, we provide an update on recently published studies describing signals regulating and regulated by CAS proteins, and evidence for biological activity of CAS proteins in normal development, cancer, and other pathological conditions.
Collapse
Affiliation(s)
- Anna S Nikonova
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
18
|
Zhang Q, Wang H, Ma Y, Zhang J, He X, Ma J, Zhao ZS. Overexpression of Nedd9 is a prognostic marker of human gastric cancer. Med Oncol 2014; 31:33. [PMID: 24906654 DOI: 10.1007/s12032-014-0033-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 05/10/2014] [Indexed: 01/06/2023]
Abstract
The present study was designed to evaluate the expression and prognostic significance of neural precursor cell-expressed, developmentally downregulated 9 (Nedd9) in patients with gastric cancer. Overexpression of Nedd9 was detected in a number of human cancers and was associated with progression and poor prognosis of the diseases. The expression of Nedd9 and focal adhesion kinase (FAK) were detected using the tissue microarray technique and immunohistochemical method and compared with clinicopathological parameters of patients with gastric cancer. The expressions of Nedd9 and FAK were upregulated in gastric cancer lesions compared with their expression in adjacent non-malignant tissues. High expression of Nedd9 correlated with age, location of tumor, tumor size, depth of invasion, vessel invasion, lymph node metastasis, and distant metastasis, and also with expression of FAK. Further, multivariate analysis suggested that expression of Nedd9 and FAK were independent prognostic indicators for gastric cancer. Cumulative 5-year survival rates of patients with high expression of both Nedd9 and FAK was significantly lower than those with low expression of both. Nedd9 was implicated in the progression of gastric cancer. Based on the TNM stage, Nedd9 and FAK proteins could be useful prognostic marker to predict tumor progression and prognosis in gastric cancer.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Surgery, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | | | | | | | | | | | | |
Collapse
|
19
|
McLaughlin SL, Ice RJ, Rajulapati A, Kozyulina PY, Livengood RH, Kozyreva VK, Loskutov YV, Culp MV, Weed SA, Ivanov AV, Pugacheva EN. NEDD9 depletion leads to MMP14 inactivation by TIMP2 and prevents invasion and metastasis. Mol Cancer Res 2013; 12:69-81. [PMID: 24202705 DOI: 10.1158/1541-7786.mcr-13-0300] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED The scaffolding protein NEDD9 is an established prometastatic marker in several cancers. Nevertheless, the molecular mechanisms of NEDD9-driven metastasis in cancers remain ill-defined. Here, using a comprehensive breast cancer tissue microarray, it was shown that increased levels of NEDD9 protein significantly correlated with the transition from carcinoma in situ to invasive carcinoma. Similarly, it was shown that NEDD9 overexpression is a hallmark of highly invasive breast cancer cells. Moreover, NEDD9 expression is crucial for the protease-dependent mesenchymal invasion of cancer cells at the primary site but not at the metastatic site. Depletion of NEDD9 is sufficient to suppress invasion of tumor cells in vitro and in vivo, leading to decreased circulating tumor cells and lung metastases in xenograft models. Mechanistically, NEDD9 localized to invasive pseudopods and was required for local matrix degradation. Depletion of NEDD9 impaired invasion of cancer cells through inactivation of membrane-bound matrix metalloproteinase MMP14 by excess TIMP2 on the cell surface. Inactivation of MMP14 is accompanied by reduced collagenolytic activity of soluble metalloproteinases MMP2 and MMP9. Reexpression of NEDD9 is sufficient to restore the activity of MMP14 and the invasive properties of breast cancer cells in vitro and in vivo. Collectively, these findings uncover critical steps in NEDD9-dependent invasion of breast cancer cells. IMPLICATIONS This study provides a mechanistic basis for potential therapeutic interventions to prevent metastasis.
Collapse
Affiliation(s)
- Sarah L McLaughlin
- Department of Biochemistry and Mary Babb Randolph Cancer Center, PO Box 9142, 1 Medical Center Drive, West Virginia University School of Medicine, Morgantown, WV 26506.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
The overexpression of scaffolding protein NEDD9 promotes migration and invasion in cervical cancer via tyrosine phosphorylated FAK and SRC. PLoS One 2013; 8:e74594. [PMID: 24058594 PMCID: PMC3776827 DOI: 10.1371/journal.pone.0074594] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 08/05/2013] [Indexed: 01/01/2023] Open
Abstract
NEDD9, a focal adhesion scaffolding protein, has been recently proposed to regulate invasion and metastasis in some cancer types, but unknown in cervical cancer. The aim of this study was to determine if NEDD9 was involved in the progression and metastasis of cervical cancer. The experimental results showed NEDD9 protein was overexpressed in cervical cancer compared with normal cervical epithelium tissues. Overexpression of NEDD9 was correlated with histological grading, lymph node metastasis, and FIGO stage of cervical cancer. Silencing NEDD9 resulted in tyrosine dephosphorylation of FAK and SRC oncoproteins, and decreased cell migration and invasion in the cervical carcinoma SiHa and HeLa cells. Overexpression of NEDD9 led to tyrosine phosphorylation of FAK and SRC oncoproteins, and increased cell migration and invasion. Moreover, tyrosine phosphorylation of NEDD9 was significantly decreased via suppressing tyrosine phosphorylation of FAK or SRC, suggesting a positive feedback loop of tyrosine phosphorylation between NEDD9 and FAK or SRC. In addition, our data showed that silencing NEDD9 decreased Vimentin expression and increased E-cadherin expression in cervical cancer cells, and vice versa. E-cadherin was subject to regulation of NEDD9, FAK and SRC, but altered neither tyrosine-phosphorylated nor total NEDD9. Our findings suggest that NEDD9 is overexpressed in cervical cancer tissues and cells, and overexpressed NEDD9 promotes migration and invasion in cervical carcinoma cells, probably via a positive feedback loop of tyrosine phosphorylation between NEDD9 and FAK or SRC.
Collapse
|