1
|
Wang J, Li Z, Zhao Q. Receptor tyrosine kinase-like orphan receptor serves as a potential target in cancer immunotherapy. J Leukoc Biol 2025; 117:qiae141. [PMID: 38973261 DOI: 10.1093/jleuko/qiae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/16/2024] [Indexed: 07/09/2024] Open
Abstract
Receptor tyrosine kinase-like orphan receptor (ROR), consisting of ROR1 and ROR2, is a conserved family of receptor tyrosine kinase superfamily that plays crucial roles during embryonic development with limited expression in adult normal tissues. However, it is overexpressed in a range of hematological malignancies and solid tumors and functions in cellular processes including cell survival, polarity, and migration, serving as a potential target in cancer immunotherapy. This review summarizes the expression and structure of ROR in developmental morphogenesis and its function in cancers associated with Wnt5a signaling and highlights the cancer immunotherapy strategies targeting ROR.
Collapse
Affiliation(s)
- Jiaqi Wang
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Zhoufang Li
- Core Research Facilities, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qi Zhao
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China
| |
Collapse
|
2
|
Jiang A, Li J, He Z, Liu Y, Qiao K, Fang Y, Qu L, Luo P, Lin A, Wang L. Renal cancer: signaling pathways and advances in targeted therapies. MedComm (Beijing) 2024; 5:e676. [PMID: 39092291 PMCID: PMC11292401 DOI: 10.1002/mco2.676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
Renal cancer is a highlyheterogeneous malignancy characterized by rising global incidence and mortalityrates. The complex interplay and dysregulation of multiple signaling pathways,including von Hippel-Lindau (VHL)/hypoxia-inducible factor (HIF), phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR), Hippo-yes-associated protein (YAP), Wnt/ß-catenin, cyclic adenosine monophosphate (cAMP), and hepatocyte growth factor (HGF)/c-Met, contribute to theinitiation and progression of renal cancer. Although surgical resection is thestandard treatment for localized renal cancer, recurrence and metastasiscontinue to pose significant challenges. Advanced renal cancer is associatedwith a poor prognosis, and current therapies, such as targeted agents andimmunotherapies, have limitations. This review presents a comprehensiveoverview of the molecular mechanisms underlying aberrant signaling pathways inrenal cancer, emphasizing their intricate crosstalk and synergisticinteractions. We discuss recent advancements in targeted therapies, includingtyrosine kinase inhibitors, and immunotherapies, such as checkpoint inhibitors.Moreover, we underscore the importance of multiomics approaches and networkanalysis in elucidating the complex regulatory networks governing renal cancerpathogenesis. By integrating cutting-edge research and clinical insights, this review contributesto the development of innovative diagnostic and therapeutic strategies, whichhave the potential to improve risk stratification, precision medicine, andultimately, patient outcomes in renal cancer.
Collapse
Affiliation(s)
- Aimin Jiang
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Jinxin Li
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Ziwei He
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Ying Liu
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Kun Qiao
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Yu Fang
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Le Qu
- Department of UrologyJinling HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Peng Luo
- Department of OncologyZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Anqi Lin
- Department of OncologyZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Linhui Wang
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| |
Collapse
|
3
|
DA XIA, GE HAN, SHI JUNFENG, ZHU CHUNHUA, WANG GUOZHU, FANG YUAN, XU JIN. ROR2 promotes invasion and chemoresistance of triple-negative breast cancer cells by activating PI3K/AKT/mTOR signaling. Oncol Res 2024; 32:1209-1219. [PMID: 38948021 PMCID: PMC11209745 DOI: 10.32604/or.2024.045433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/15/2024] [Indexed: 07/02/2024] Open
Abstract
Objective This study aimed to investigate the role of receptor tyrosine kinase-like orphan receptor 2 (ROR2) in triple-negative breast cancer (TNBC). Methods ROR2 expression in primary TNBC and metastatic TNBC tissues was analyzed by immunohistochemical staining and PCR. ROR2 expression in TNBC cell lines was detected by PCR and Western blot analysis. The migration, invasion and chemosensitivity of TNBC cells with overexpression or knockdown of ROR2 were examined. Results ROR2 expression was high in metastatic TNBC tissues. ROR2 knockdown suppressed the migration, invasion and chemoresistance of TNBC cells. ROR2 overexpression in MDA-MB-435 cells promoted the migration, invasion, and chemoresistance. Moreover, ROR2 knockdown in HC1599 and MDA-MB-435 adriamycin-resistant cells enhanced chemosensitivity to adriamycin. ROR2 could activate PI3K/AKT/mTOR signaling in TNBC cells. Conclusion ROR2 is upregulated and promotes metastatic phenotypes of TNBC by activating PI3K/AKT/mTOR signaling.
Collapse
Affiliation(s)
- XIA DA
- Department of Breast and Thyroid, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - HAN GE
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - JUNFENG SHI
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - CHUNHUA ZHU
- Department of Breast and Thyroid, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - GUOZHU WANG
- Department of Breast and Thyroid, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - YUAN FANG
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - JIN XU
- Department of Breast and Thyroid, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Wakizaka K, Kamiyama T, Kakisaka T, Orimo T, Nagatsu A, Aiyama T, Shichi S, Taketomi A. Expression of Wnt5a and ROR2, Components of the Noncanonical Wnt-Signaling Pathway, is Associated with Tumor Differentiation in Hepatocellular Carcinoma. Ann Surg Oncol 2024; 31:262-271. [PMID: 37814183 PMCID: PMC10695870 DOI: 10.1245/s10434-023-14402-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/15/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Wnt5a is the key ligand of the noncanonical Wnt pathway, and receptor tyrosine kinase-like orphan receptor 2 (ROR2) is a receptor associated with Wnt5a. The association between the noncanonical Wnt-signaling pathway and carcinogenesis in hepatocellular carcinoma (HCC) is unclear. This study investigated the significance of ROR2 expression in HCC. METHODS The study examined ROR2 expression in liver cancer cell lines. Immunohistochemical staining of ROR2 was performed on 243 resected HCC specimens. The study investigated ROR2 expression and its association with clinicopathologic factors and prognosis. RESULTS Findings showed that ROR2 was expressed in well-differentiated Huh7 and HepG2 cells, but not in poorly differentiated HLE and HLF cells. Expression of ROR2 was positive in 147 (60.5%) and negative in 96 (39.5%) HCC specimens. A significant association was shown between ROR2 negativity and high alpha-fetoprotein (AFP) level (P = 0.006), poor differentiation (P = 0.015), and Wnt5a negativity (P = 0.024). The 5-year overall survival (OS) rate for the ROR2-negative group (64.2 %) tended to be worse than for the ROR2-positive group (73.8%), but the difference was not significant (P = 0.312). The 5-year OS rate was 78.7% for the ROR2+Wnt5a+ group, 71.3 % for the ROR2+Wnt5a- group, 80.8% for the ROR2-Wnt5a+ group, and 60.5 % for the ROR2-Wnt5a- group. The OS in the ROR2-Wnt5a- group was significantly poorer than in the ROR2+Wnt5a+ group (P = 0.030). The multivariate analysis showed that Wnt5a-ROR2- was an independent prognostic factor (hazard ratio, 2.058; 95% confidence interval, 1.013-4.180; P = 0.045). CONCLUSIONS The combination of ROR2 and Wnt5a may be a prognostic indicator for HCC. The Wnt5a/ROR2 signal pathway may be involved in the differentiation of HCC. This pathway may be a new therapeutic target for HCC.
Collapse
Affiliation(s)
- Kazuki Wakizaka
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Toshiya Kamiyama
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
- Department of Surgery, Seiwa Memorial Hospital, Sapporo, Japan
| | - Tatsuhiko Kakisaka
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tatsuya Orimo
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Akihisa Nagatsu
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takeshi Aiyama
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shunsuke Shichi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
5
|
Guo R, Guo YZ, Zhou Q, Li G, Du Z, Shi Y, Xing Q. ROR2 deficit may induce the tetralogy of Fallot via down-regulating of β-catenin/SOX3/HSPA6 in vitro and in vivo. J Cell Mol Med 2023; 27:3539-3552. [PMID: 37749917 PMCID: PMC10660643 DOI: 10.1111/jcmm.17969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/26/2023] [Accepted: 09/08/2023] [Indexed: 09/27/2023] Open
Abstract
Tetralogy of Fallot (TOF) is the highly conventional appearance of cyanotic congenital heart disease. Our study aimed to assess the involvement of receptor tyrosine kinase-like orphan receptor 2 (ROR2) in TOF and elucidate the specific mechanism. Upon investigation of human tissue samples, we observed a decrease in ROR2 expression in TOF patients compared to healthy control individuals. Transcriptome analysis revealed diminished ROR2 expression in TOF pathological samples relative to normal tissues. Of the 2246 genes that exhibited altered expression, 886 were upregulated, while 1360 were down-regulated. KEGG analysis and GO analysis of the differentially expressed genes indicated that these genes were significantly enriched in the Wnt signalling pathway, apoptosis and cardiac development function. Importantly, ROR2 was the only gene shared among the three pathways. Furthermore, interference with ROR2 promotes apoptosis and curtails cell proliferation in vitro. The knockdown of the ROR2 gene in AC16 cells resulted in a significant decrease in Edu-positive cells. Flow cytometry studies indicated an increase in the percentage of cells in the S phase. In contrast, the G2/M cell cycle transition was blocked in the ROR2-knockdown group, leading to a significant increase in apoptosis. Moreover, the CCK-8 cell viability assay demonstrated a reduced proliferation in the ROR2-knockdown group. Furthermore, both in vivo and in vitro data indicated that the expression of HSPA6 (Recombinant Heat Shock 70 kDa Protein6), an essential gene enriched in cardiac tissue and associated with apoptosis, was down-regulated following ROR2 knockdown mediated by the β-catenin/SOX3 signalling pathway. In conclusion, low expression of ROR2 plays a crucial role in the occurrence and development of TOF, which may be related to the downregulation of HSPA6 through the β-catenin/SOX3 signalling pathway.
Collapse
Affiliation(s)
- Rui Guo
- Qingdao UniversityQingdaoChina
| | | | - Qing Zhou
- The Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Guoju Li
- An Affiliated Hospital of Women and ChildrenQingdao UniversityQingdaoChina
| | - Zhanghui Du
- An Affiliated Hospital of Women and ChildrenQingdao UniversityQingdaoChina
| | - Yefei Shi
- Xuzhou Medical UniversityXuzhouChina
| | - Quansheng Xing
- An Affiliated Hospital of Women and ChildrenQingdao UniversityQingdaoChina
| |
Collapse
|
6
|
Konopelski Snavely SE, Srinivasan S, Dreyer CA, Tan J, Carraway KL, Ho HYH. Non-canonical WNT5A-ROR signaling: New perspectives on an ancient developmental pathway. Curr Top Dev Biol 2023; 153:195-227. [PMID: 36967195 PMCID: PMC11042798 DOI: 10.1016/bs.ctdb.2023.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Deciphering non-canonical WNT signaling has proven to be both fascinating and challenging. Discovered almost 30 years ago, non-canonical WNT ligands signal independently of the transcriptional co-activator β-catenin to regulate a wide range of morphogenetic processes during development. The molecular and cellular mechanisms that underlie non-canonical WNT function, however, remain nebulous. Recent results from various model systems have converged to define a core non-canonical WNT pathway consisting of the prototypic non-canonical WNT ligand, WNT5A, the receptor tyrosine kinase ROR, the seven transmembrane receptor Frizzled and the cytoplasmic scaffold protein Dishevelled. Importantly, mutations in each of these signaling components cause Robinow syndrome, a congenital disorder characterized by profound tissue morphogenetic abnormalities. Moreover, dysregulation of the pathway has also been linked to cancer metastasis. As new knowledge concerning the WNT5A-ROR pathway continues to grow, modeling these mutations will likely provide crucial insights into both the physiological regulation of the pathway and the etiology of WNT5A-ROR-driven diseases.
Collapse
Affiliation(s)
- Sara E Konopelski Snavely
- Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA, United States
| | - Srisathya Srinivasan
- Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA, United States
| | - Courtney A Dreyer
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, School of Medicine, Sacramento, CA, United States
| | - Jia Tan
- Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA, United States
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, School of Medicine, Sacramento, CA, United States
| | - Hsin-Yi Henry Ho
- Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA, United States.
| |
Collapse
|
7
|
Castro MV, Barbero GA, Máscolo P, Villanueva MB, Nsengimana J, Newton-Bishop J, Illescas E, Quezada MJ, Lopez-Bergami P. ROR2 promotes epithelial-mesenchymal transition by hyperactivating ERK in melanoma. J Cell Commun Signal 2023; 17:75-88. [PMID: 35723796 PMCID: PMC10030744 DOI: 10.1007/s12079-022-00683-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
Receptor tyrosine kinase-like orphan receptor 2 (ROR2) is a protein with important functions during embryogenesis that is dysregulated in human cancer. An intriguing feature of this receptor is that it plays opposite roles in different tumor types either promoting or inhibiting tumor progression. Understanding the complex role of this receptor requires a more profound exploration of both the altered biological and molecular mechanisms. Here, we describe that ROR2 promotes Epithelial-Mesenchymal Transition (EMT) by inducing cadherin switch and the upregulation of the transcription factors ZEB1, Twist, Slug, Snail, and HIF1A, together with a mesenchymal phenotype and increased migration. We show that ROR2 activates both p38 and ERK mitogen-activated protein kinase pathways independently of Wnt5a. Further, we demonstrated that the upregulation of EMT-related proteins depends on the hyperactivation of the ERK pathway far above the typical high constitutive activity observed in melanoma. In addition, ROR2 also promoted ERK phosphorylation, EMT, invasion, and necrosis in xenotransplanted mice. ROR2 also associates with EMT in tumor samples from melanoma patients where analysis of large cohorts revealed that increased ROR2 levels are linked to EMT signatures. This important role of ROR2 translates into melanoma patient' s prognosis since elevated ROR2 levels reduced overall survival and distant metastasis-free survival of patients with lymph node metastasis. In sum, these results demonstrate that ROR2 contributes to melanoma progression by inducing EMT and necrosis and can be an attractive therapeutic target for melanoma.
Collapse
Affiliation(s)
- María Victoria Castro
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, 6th Floor, Lab 602., 1405, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1425, Buenos Aires, Argentina
| | - Gastón Alexis Barbero
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, 6th Floor, Lab 602., 1405, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1425, Buenos Aires, Argentina
| | - Paula Máscolo
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, 6th Floor, Lab 602., 1405, Buenos Aires, Argentina
| | - María Belén Villanueva
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, 6th Floor, Lab 602., 1405, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1425, Buenos Aires, Argentina
| | - Jérémie Nsengimana
- Biostatistics Research Group, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | | | - Edith Illescas
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, 6th Floor, Lab 602., 1405, Buenos Aires, Argentina
| | - María Josefina Quezada
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, 6th Floor, Lab 602., 1405, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1425, Buenos Aires, Argentina
| | - Pablo Lopez-Bergami
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, 6th Floor, Lab 602., 1405, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1425, Buenos Aires, Argentina.
| |
Collapse
|
8
|
RNF7 Facilitated the Tumorigenesis of Pancreatic Cancer by Activating PI3K/Akt Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:1728463. [PMID: 36644576 PMCID: PMC9833898 DOI: 10.1155/2023/1728463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/03/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023]
Abstract
RING finger protein-7 (RNF7) functions as a positive regulator in the progression of multiple malignancies. However, the underlying mechanism by which RNF7 contributes to pancreatic cancer (PC) is lacking. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to test the level of RNF7expression in PC cell lines and tissues. The role of RNF7 in PC tumorigenesis was analyzed by Cell Counting Kit-8 (CCK-8). 5-Ethynyl-20-deoxyuridine (EdU), wound-healing/Transwell assays, as well as a subcutaneous tumorigenesis model were constructed to assess the role of RNF7 in PC cells. The association between RNF7 and PI3K/Akt signaling were assessed by western blot and further confirmed by rescue experiments. The PC patients with upregulated expression of RNF7 had poor survival. Overexpression of RNF7 significantly facilitated PC proliferative and migrative and invasive properties in vitro and vivo; however, knockdown of RNF7exhibited the opposite results. Mechanistically, RNF7 promoted PANC-1 and SW1990 cell growth through impacting the activation of the PI3K/Akt signaling pathway. Our data demonstrated that RNF7 promoted PC tumorigenesis via activating the PI3K/Akt signaling pathway and might be regarded as one of the potential therapies to PC.
Collapse
|
9
|
Castro MV, Lopez-Bergami P. Cellular and molecular mechanisms implicated in the dual role of ROR2 in cancer. Crit Rev Oncol Hematol 2022; 170:103595. [PMID: 35032666 DOI: 10.1016/j.critrevonc.2022.103595] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 02/07/2023] Open
Abstract
ROR1 and ROR2 are Wnt receptors that are critical for β-catenin-independent Wnt pathways and have been linked to processes driving tumor progression, such as cell proliferation, survival, invasion, and therapy resistance. Both receptors have garnered interest as potential therapeutic targets since they are largely absent in adult tissue, are overexpressed in several cancers, and, as members of the receptor tyrosine kinase family, are easier to target than all other components of the pathway. Unlike ROR1 which always promotes tumorigenesis, ROR2 has a very complex role in cancer acting either to promote or inhibit tumor progression in different tumor types. In the present article, we summarize the findings on ROR2 expression in cancer patients and its impact on clinical outcome. Further, we review the biological processes and signaling pathways regulated by ROR2 that explain its dual role in cancer. Finally, we describe the ongoing strategies to target ROR2 in cancer.
Collapse
Affiliation(s)
- María Victoria Castro
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, 1405, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, 1425, Argentina
| | - Pablo Lopez-Bergami
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, 1405, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, 1425, Argentina.
| |
Collapse
|
10
|
Ceci C, Lacal PM, Graziani G. Antibody-drug conjugates: Resurgent anticancer agents with multi-targeted therapeutic potential. Pharmacol Ther 2022; 236:108106. [PMID: 34990642 DOI: 10.1016/j.pharmthera.2021.108106] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022]
Abstract
Antibody-drug conjugates (ADCs) constitute a relatively new group of anticancer agents, whose first appearance took place about two decades ago, but a renewed interest occurred in recent years, following the success of anti-cancer immunotherapy with monoclonal antibodies. Indeed, an ADC combines the selectivity of a monoclonal antibody with the cell killing properties of a chemotherapeutic agent (payload), joined together through an appropriate linker. The antibody moiety targets a specific cell surface antigen expressed by tumor cells and/or cells of the tumor microenvironment and acts as a carrier that delivers the cytotoxic payload within the tumor mass. Despite advantages in terms of selectivity and potency, the development of ADCs is not devoid of challenges, due to: i) low tumor selectivity when the target antigens are not exclusively expressed by cancer cells; ii) premature release of the cytotoxic drug into the bloodstream as a consequence of linker instability; iii) development of tumor resistance mechanisms to the payload. All these factors may result in lack of efficacy and/or in no safety improvement compared to unconjugated cytotoxic agents. Nevertheless, the development of antibodies engineered to remain inert until activated in the tumor (e.g., antibodies activated proteolytically after internalization or by the acidic conditions of the tumor microenvironment) together with the discovery of innovative targets and cytotoxic or immunomodulatory payloads, have allowed the design of next-generation ADCs that are expected to possess improved therapeutic properties. This review provides an overview of approved ADCs, with related advantages and limitations, and of novel targets exploited by ADCs that are presently under clinical investigation.
Collapse
Affiliation(s)
- Claudia Ceci
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | | | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; IDI-IRCCS, Via Monti di Creta 104, 00167 Rome, Italy.
| |
Collapse
|
11
|
Zahra MH, Nawara HM, Hassan G, Afify SM, Seno A, Seno M. Cancer Stem Cells Contribute to Drug Resistance in Multiple Different Ways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1393:125-139. [PMID: 36587305 DOI: 10.1007/978-3-031-12974-2_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Many tumors are resistant to conventional cancer therapies because a tumor is composed of heterogeneous cell population. Especially, subpopulation of cancer stem cells, which have self-renewal and differentiation properties and responsible for the tumor initiation, is generally considered resistant to chemo-, radio-, and immune therapy. Understanding the mechanism of drug resistance in cancer stem cells should lead to establish more effective therapeutic strategies. Actually, different molecular mechanisms are conceivable for cancer stem cells acquiring drug resistance. These mechanisms include not only cytoplasmic signaling pathways but also the intercellular communications in the tumor microenvironment. Recently, a great deal of successful reports challenged to elucidate the mechanisms of drug resistance and to develop novel treatments targeting cancer stem cells.
Collapse
Affiliation(s)
- Maram H Zahra
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.
| | - Hend M Nawara
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.
| | - Ghmkin Hassan
- Department of Genomic Oncology and Oral Medicine, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Said M Afify
- Division of Biochemistry, Chemistry Department, Faculty of Science, Menoufia University, Shebin El Koum-Menoufia, Shebeen El-Kom, 32511, Egypt
| | - Akimasa Seno
- Laboratory of Natural Food & Medicine, Co., Ltd, Okayama University Incubator, Okayama, 700-8530, Japan
| | - Masaharu Seno
- Laboratory of Natural Food & Medicine, Co., Ltd, Okayama University Incubator, Okayama, 700-8530, Japan.
| |
Collapse
|
12
|
Yoshida T, Ohe C, Ikeda J, Atsumi N, Saito R, Taniguchi H, Ohsugi H, Sugi M, Tsuta K, Matsuda T, Kinoshita H. Integration of NRP1, RGS5, and FOXM1 expression, and tumour necrosis, as a postoperative prognostic classifier based on molecular subtypes of clear cell renal cell carcinoma. J Pathol Clin Res 2021; 7:590-603. [PMID: 34212534 PMCID: PMC8503898 DOI: 10.1002/cjp2.232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/16/2021] [Accepted: 06/02/2021] [Indexed: 12/16/2022]
Abstract
Molecular mechanisms of progression of clear cell renal cell carcinoma (ccRCC) have been proven with recent genomic or transcriptional analyses. However, it is still difficult to apply these analyses to daily clinical practice owing to economical and practical issues. Here, we established a pathology-based, postoperative prognostic classification based on the well-validated transcriptional classifier, ClearCode34, in ccRCC. A total of 342 cases with available tissue were identified and randomly allocated into a discovery cohort (n = 138) and a validation cohort (n = 204). Levels of mRNA were quantified using a nCounter Digital Analyzer, and the ccA/ccB subtypes were determined. Histological and immunohistochemistry (IHC) analyses were subsequently performed to establish a pathology-based classification based on the mRNA levels. Finally, the prognostic ability of the new classifier was evaluated in both the discovery and validation cohorts. Of 138 cases in the discovery cohort, 78 (56.5%) and 60 (43.5%) were assigned to the ccA and ccB subtypes, respectively. Proangiogenic genes, neuropilin 1 (NRP1) and regulator of G protein signalling 5 (RGS5), were especially overexpressed in all ccRCC samples and were enriched in ccA-assigned tumours. Histologically, tumour necrosis and the sarcomatoid feature were associated with the ccB subtype. In IHC analyses, expression of NRP1, RGS5, and forkhead box M1 (FOXM1), an epithelial-mesenchymal transition-related factor, significantly correlated with the ccA/ccB subtypes. Combining these three IHC factors and tumour necrosis, we developed the IHC/histology-based classifier, which showed good concordance with the ClearCode34 classifier with an accuracy of 0.80. The established classification significantly stratified relapse-free, cancer-specific, and overall survival rates in both the discovery and validation cohorts. The novel molecular pathology classifier integrating NRP1, RGS5, FOXM1, and tumour necrosis may enable the stratification of oncological outcomes for patients with ccRCC undergoing resection surgery.
Collapse
Affiliation(s)
- Takashi Yoshida
- Department of Urology and AndrologyKansai Medical UniversityHirakataJapan
| | - Chisato Ohe
- Department of Pathology and Laboratory MedicineKansai Medical UniversityHirakataJapan
| | - Junichi Ikeda
- Department of Pathology and Laboratory MedicineKansai Medical UniversityHirakataJapan
| | - Naho Atsumi
- Department of Pathology and Laboratory MedicineKansai Medical UniversityHirakataJapan
| | - Ryoichi Saito
- Department of Urology and AndrologyKansai Medical UniversityHirakataJapan
| | - Hisanori Taniguchi
- Department of Urology and AndrologyKansai Medical UniversityHirakataJapan
| | - Haruyuki Ohsugi
- Department of Urology and AndrologyKansai Medical UniversityHirakataJapan
| | - Motohiko Sugi
- Department of Urology and AndrologyKansai Medical UniversityHirakataJapan
| | - Koji Tsuta
- Department of Pathology and Laboratory MedicineKansai Medical UniversityHirakataJapan
| | - Tadashi Matsuda
- Department of Urology and AndrologyKansai Medical UniversityHirakataJapan
| | - Hidefumi Kinoshita
- Department of Urology and AndrologyKansai Medical UniversityHirakataJapan
| |
Collapse
|
13
|
Prognostic Significance of ROR2 Expression in Patients with Urothelial Carcinoma. Biomedicines 2021; 9:biomedicines9081054. [PMID: 34440262 PMCID: PMC8392262 DOI: 10.3390/biomedicines9081054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 02/01/2023] Open
Abstract
We investigated the association of receptor tyrosine kinase-like orphan receptor 2 (ROR2) expression with clinicopathological features and oncologic outcomes in large urothelial carcinoma (UC) of the upper tract (UTUC) and urinary bladder (UBUC) cohorts. Through transcriptomic profiling of a published dataset (GSE31684), ROR2 was discovered to be the most upregulated gene during UC progression, focusing on the JNK cascade (GO:0007254). Initially, the evaluation of ROR2 mRNA expression in 50 frozen UBUCs showed significantly upregulated levels in high-stage UC. Moreover, high ROR2 immunoexpression significantly correlated with high tumor stage, high tumor grade, lymph node metastasis, and vascular invasion (all p < 0.05). In multivariate analysis, after adjusting for standard clinicopathological features, ROR2 expression status was an independent prognosticator of cancer-specific survival and metastasis-free survival in UTUC and UBUC (all p < 0.01). In the subgroup analysis, it also significantly predicted bladder tumor recurrence in non-muscle invasive UBUC. Furthermore, the GO enrichment analysis showed that fatty acid, monocarboxylic acid, carboxylic acid metabolic processes, negative regulation of neutrophil migration, and negative regulation of granulocyte and neutrophil chemotaxis were significantly enriched by ROR2 dysregulation. In conclusion, high ROR2 immunoexpression was associated with aggressive pathological characteristics in UC and independently predicted worse prognosis, suggesting it could play roles in clinical risk stratification and therapy decisions.
Collapse
|
14
|
Menck K, Heinrichs S, Baden C, Bleckmann A. The WNT/ROR Pathway in Cancer: From Signaling to Therapeutic Intervention. Cells 2021; 10:cells10010142. [PMID: 33445713 PMCID: PMC7828172 DOI: 10.3390/cells10010142] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
The WNT pathway is one of the major signaling cascades frequently deregulated in human cancer. While research had initially focused on signal transduction centered on β-catenin as a key effector activating a pro-tumorigenic transcriptional response, nowadays it is known that WNT ligands can also induce a multitude of β-catenin-independent cellular pathways. Traditionally, these comprise WNT/planar cell polarity (PCP) and WNT/Ca2+ signaling. In addition, signaling via the receptor tyrosine kinase-like orphan receptors (RORs) has gained increasing attention in cancer research due to their overexpression in a multitude of tumor entities. Active WNT/ROR signaling has been linked to processes driving tumor development and progression, such as cell proliferation, survival, invasion, or therapy resistance. In adult tissue, the RORs are largely absent, which has spiked the interest in them for targeted cancer therapy. Promising results in preclinical and initial clinical studies are beginning to unravel the great potential of such treatment approaches. In this review, we summarize seminal findings on the structure and expression of the RORs in cancer, their downstream signaling, and its output in regard to tumor cell function. Furthermore, we present the current clinical anti-ROR treatment strategies and discuss the state-of-the-art, as well as the challenges of the different approaches.
Collapse
Affiliation(s)
- Kerstin Menck
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Münster, Germany; (K.M.); (S.H.); (C.B.)
- West German Cancer Center, University Hospital Münster, 48149 Münster, Germany
| | - Saskia Heinrichs
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Münster, Germany; (K.M.); (S.H.); (C.B.)
- West German Cancer Center, University Hospital Münster, 48149 Münster, Germany
| | - Cornelia Baden
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Münster, Germany; (K.M.); (S.H.); (C.B.)
- West German Cancer Center, University Hospital Münster, 48149 Münster, Germany
| | - Annalen Bleckmann
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Münster, Germany; (K.M.); (S.H.); (C.B.)
- West German Cancer Center, University Hospital Münster, 48149 Münster, Germany
- Department of Hematology/Medical Oncology, University Medical Center Göttingen, 37099 Göttingen, Germany
- Correspondence: ; Tel.: +49-0251-8352712
| |
Collapse
|
15
|
ROR1 is upregulated in endometrial cancer and represents a novel therapeutic target. Sci Rep 2020; 10:13906. [PMID: 32807831 PMCID: PMC7431863 DOI: 10.1038/s41598-020-70924-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
ROR1 and ROR2 are receptor tyrosine kinases with altered expression in a range of cancers. Silencing ROR1 or ROR2 in different tumour types has been shown to inhibit proliferation and decrease metastatic potential. The aim of this study was to investigate the role of ROR1 and ROR2 in endometrial cancer via immunohistochemistry (IHC) in a large endometrial cancer patient cohort (n = 499) and through in vitro analysis in endometrial cancer cell lines. Correlation was assessed between ROR1/2 expression and clinicopathological parameters. Kaplan Meier curves were produced for 5-year progression free survival (PFS) and overall survival (OS) with low/moderate versus high ROR1/2 intensity. Cox multivariate regression was applied to analyse the effect of selected covariates on the PFS and OS. The effect of ROR1 and/or ROR2 modulation on cell proliferation, adhesion, migration and invasion was analysed in two endometrial cancer cell lines (KLE and MFE-296). We observed a significant decrease in OS and PFS in patients with high ROR1 expression. ROR1 silencing and ROR2 overexpression significantly inhibited proliferation of KLE endometrial cancer cells and decreased migration. This study supports the oncogenic role of ROR1 in endometrial cancer, and warrants investigation of future application of ROR1-targeting therapies in endometrial cancer patients.
Collapse
|
16
|
Guo M, Ma G, Zhang X, Tang W, Shi J, Wang Q, Cheng Y, Zhang B, Xu J. ROR2 knockdown suppresses breast cancer growth through PI3K/ATK signaling. Aging (Albany NY) 2020; 12:13115-13127. [PMID: 32614787 PMCID: PMC7377870 DOI: 10.18632/aging.103400] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022]
Abstract
The receptor tyrosine kinase like orphan receptor 2 (ROR2) has been implicated in the pathogenesis of a variety of human cancers, including breast cancer. Here, we analyzed the clinical significance of ROR2 in breast cancer (BC) progression, and its function in the regulation of BC cell proliferation and growth. Analysis of ROR2 mRNA levels in 45 BC tissues and adjacent non-tumor tissues revealed that ROR2 expression was significantly increased in BC tissues, and that it correlated with tumor diameter. Kaplan-Meier disease-free survival (DFS) analysis demonstrated that BC patients with higher ROR2 expression had lower DFS. Knockdown of ROR2 suppressed in vitro proliferation of BC cells and promoted apoptosis, while ROR2 overexpression induced BC cell proliferation and suppressed apoptosis. Importantly, ROR2 suppression also reduced the tumor growth in mouse BC xenografts, indicating that ROR2 promotes BC tumorigenesis in vivo. In addition, our data revealed that ROR2 promotes proliferation of BC cells by activating the PI3K/AKT signaling pathway. Together, our results indicate that ROR2 acts as an oncogenic gene in breast cancer, and suggest that the ROR2/PI3K/AKT regulatory network contributes to breast cancer progression.
Collapse
Affiliation(s)
- Muhong Guo
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ge Ma
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Xiaolan Zhang
- Department of Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Weiwei Tang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Junfeng Shi
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qian Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ye Cheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Bin Zhang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jin Xu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
MMPs, tyrosine kinase signaling and extracellular matrix proteolysis in kidney cancer. Urol Oncol 2020; 39:316-321. [PMID: 32487351 DOI: 10.1016/j.urolonc.2020.04.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/19/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023]
Abstract
Patients diagnosed with metastatic renal cell carcinoma (RCC) have ∼12% chance for 5-year survival. The integrity of the extracellular matrix (ECM) that surrounds tumor cells influences their behavior and, when disturbed, it could facilitate local invasion and spread of tumor cells to distant sites. The interplay between von Hippel-Lindau/hypoxia inducible factor signaling axis and activated kinase networks results in aberrant ECM and tumor progression. Matrix metalloproteinases (MMPs) are proteolytic enzymes implicated in ECM remodeling, tumor angiogenesis, and immune cell infiltration. Understanding the cross-talk between kinase signaling and ECM proteolysis in RCC could provide insights into developing drugs that interfere specifically with the process of invasion. In this review, we discuss changes in the MMPs/ECM axis in RCC, prominent kinase signaling pathways implicated in MMPs induction, and comment on emerging extracellular regulatory networks that modulate MMPs activity.
Collapse
|
18
|
ROR2 suppresses metastasis of prostate cancer via regulation of miR-199a-5p-PIAS3-AKT2 signaling axis. Cell Death Dis 2020; 11:376. [PMID: 32415173 PMCID: PMC7228945 DOI: 10.1038/s41419-020-2587-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 12/18/2022]
Abstract
Bones are the most common metastatic sites for prostate cancer (PCa). Receptor tyrosine kinase-like orphan receptor 2 (ROR2), a noncanonical Wnt receptor, plays crucial roles in skeletal morphogenesis, osteoblast differentiation, and bone formation. The role of ROR2 in PCa metastasis is unclear. We analyzed online datasets from Oncomine as well as using IHC staining on tissue array to determine the relationship between ROR2 expression level and disease outcome of PCa. To investigate how ROR2 regulates migration and invasion of PCa cells, we performed transwell assay and orthotopic xenograft model in nude mice. We then applied the Micro-Western Array (MWA), a high-throughput western blotting platform to analyze the downstream signaling pathways being regulated by ROR2. Compared with nonmalignant PZ-HPV-7 and RWPE-1 cells, PCa cell lines express lower level of ROR2 protein. Constitutive expression of ROR2 in PC-3, DU-145, or C4-2B PCa cells significantly suppressed the cell migration, invasion, and epithelial-mesenchymal transition (EMT) proteins. MWA, western blotting, and microRNA analysis showed that elevation of ROR2 suppressed the expression of miR-199a-5p, which in turn increased the expression of PIAS3. The upregulation of PIAS3 then decreased AKT2 and the phosphorylation of AKT, resulting in the inhibition of migration and invasion of PCa cells both in vitro and in orthotopic xenograft mice model. IHC staining of tissue array and Oncomine datasets analysis indicated that the gene and protein level of ROR2 is much lower in metastatic prostate tumors as compared with primary tumors or adjacent normal prostate tissues. Low level of ROR2 correlated to poor survival and high recurrent frequency in PCa patients. In conclusion, we discovered that ROR2 suppresses PCa metastasis via regulation of PIAS3-PI3K-AKT2 signaling axis.
Collapse
|
19
|
Goydel RS, Weber J, Peng H, Qi J, Soden J, Freeth J, Park H, Rader C. Affinity maturation, humanization, and co-crystallization of a rabbit anti-human ROR2 monoclonal antibody for therapeutic applications. J Biol Chem 2020; 295:5995-6006. [PMID: 32193207 PMCID: PMC7196640 DOI: 10.1074/jbc.ra120.012791] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/17/2020] [Indexed: 01/07/2023] Open
Abstract
Antibodies are widely used as cancer therapeutics, but their current use is limited by the low number of antigens restricted to cancer cells. A receptor tyrosine kinase, receptor tyrosine kinase-like orphan receptor 2 (ROR2), is normally expressed only during embryogenesis and is tightly down-regulated in postnatal healthy tissues. However, it is up-regulated in a diverse set of hematologic and solid malignancies, thus ROR2 represents a candidate antigen for antibody-based cancer therapy. Here we describe the affinity maturation and humanization of a rabbit mAb that binds human and mouse ROR2 but not human ROR1 or other human cell-surface antigens. Co-crystallization of the parental rabbit mAb in complex with the human ROR2 kringle domain (hROR2-Kr) guided affinity maturation by heavy-chain complementarity-determining region 3 (HCDR3)-focused mutagenesis and selection. The affinity-matured rabbit mAb was then humanized by complementarity-determining region (CDR) grafting and framework fine tuning and again co-crystallized with hROR2-Kr. We show that the affinity-matured and humanized mAb retains strong affinity and specificity to ROR2 and, following conversion to a T cell-engaging bispecific antibody, has potent cytotoxicity toward ROR2-expressing cells. We anticipate that this humanized affinity-matured mAb will find application for antibody-based cancer therapy of ROR2-expressing neoplasms.
Collapse
Affiliation(s)
- Rebecca S. Goydel
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458
| | - Justus Weber
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458
| | - Haiyong Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458
| | - Junpeng Qi
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458
| | - Jo Soden
- Retrogenix Ltd., Chinley, High Peak SK23 6FJ, United Kingdom
| | - Jim Freeth
- Retrogenix Ltd., Chinley, High Peak SK23 6FJ, United Kingdom
| | - HaJeung Park
- X-Ray Crystallography Core, The Scripps Research Institute, Jupiter, Florida 33458
| | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, To whom correspondence should be addressed:
Dept. of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way #2C1, Jupiter, FL 33458. Tel.:
561-228-2053; E-mail:
| |
Collapse
|
20
|
Ikeda T, Nishita M, Hoshi K, Honda T, Kakeji Y, Minami Y. Mesenchymal stem cell-derived CXCL16 promotes progression of gastric cancer cells by STAT3-mediated expression of Ror1. Cancer Sci 2020; 111:1254-1265. [PMID: 32012403 PMCID: PMC7156785 DOI: 10.1111/cas.14339] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 12/13/2022] Open
Abstract
Bone marrow‐derived mesenchymal stem or stromal cells (MSC) have been shown to be recruited to various types of tumor tissues, where they interact with tumor cells to promote their proliferation, survival, invasion and metastasis, depending on the type of the tumor. We have previously shown that Ror2 receptor tyrosine kinase and its ligand, Wnt5a, are expressed in MSC, and Wnt5a‐Ror2 signaling in MSC induces expression of CXCL16, which, in turn, promotes proliferation of co–cultured MKN45 gastric cancer cells via the CXCL16‐CXCR6 axis. However, it remains unclear how CXCL16 regulates proliferation of MKN45 cells. Here, we show that knockdown of CXCL16 in MSC by siRNA suppresses not only proliferation but also migration of co–cultured MKN45 cells. We also show that MSC‐derived CXCL16 or recombinant CXCL16 upregulates expression of Ror1 through activation of STAT3 in MKN45 cells, leading to promotion of proliferation and migration of MKN45 cells in vitro. Furthermore, co–injection of MSC with MKN45 cells in nude mice promoted tumor formation in a manner dependent on expression of Ror1 in MKN45 cells, and anti–CXCL16 neutralizing antibody suppressed tumor formation of MKN45 cells co–injected with MSC. These results suggest that CXCL16 produced through Ror2‐mediated signaling in MSC within the tumor microenvironment acts on MKN45 cells in a paracrine manner to activate the CXCR6‐STAT3 pathway, which, in turn, induces expression of Ror1 in MKN45 cells, thereby promoting tumor progression.
Collapse
Affiliation(s)
- Taro Ikeda
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan.,Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Michiru Nishita
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan.,Department of Biochemistry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kyoka Hoshi
- Department of Biochemistry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Takashi Honda
- Department of Human Life Science, Fukushima Medical University School of Nursing, Fukushima, Japan
| | - Yoshihiro Kakeji
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| |
Collapse
|
21
|
Li J, Wu G, Xu Y, Li J, Ruan N, Chen Y, Zhang Q, Xia Q. Porcupine Inhibitor LGK974 Downregulates the Wnt Signaling Pathway and Inhibits Clear Cell Renal Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2527643. [PMID: 32104684 PMCID: PMC7040395 DOI: 10.1155/2020/2527643] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023]
Abstract
Targeted therapy for kidney cancer has achieved significant clinical results. However, because most patients who use targeted therapy will develop drug resistance, we still need to constantly explore new therapeutic targets. Although porcupine (PORCN) as a palmitoyltransferase plays a crucial role in the activation and secretion of Wnt proteins and affects the activity of the Wnt signaling pathway, little is known about the role of PORCN in clear cell renal cell carcinoma (ccRCC). We found that PORCN is highly expressed in renal cancer cell lines and patients with renal cell carcinoma with high expression of PORCN have a poor prognosis. Pathway analysis of PORCN and its related proteins showed that PORCN played a role through the Wnt signaling pathway, and there was a strong coexpression relationship between PORCN and Wnt proteins. Therefore, PORCN may be a potential and effective target for ccRCC. In the present study, we found that LGK974 could inhibit proliferation and colony formation and induce apoptosis in ccRCC cells. We also found that LGK974 could inhibit the migration and invasion of renal cell carcinoma and reduce the expression of mesenchymal markers. After treatment with LGK974, the expression level of β-catenin, a key protein in the classical Wnt pathway, was significantly decreased, and the expression levels of the target genes cyclin D1, c-Myc, MMP9, and MMP2 in the Wnt signaling pathway were also significantly decreased, which represented a significant decrease in the activity of the Wnt signaling pathway. At the same time, the cycle of renal cancer cells was significantly blocked. In conclusion, our results indicate that LGK974 could significantly inhibit the progression of renal cancer cells in a safe concentration range, so PORCN may be a safe and effective target for patients with renal cancer.
Collapse
Affiliation(s)
- Jianyi Li
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Guangzhen Wu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yingkun Xu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Jiatong Li
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Ningke Ruan
- The Nursing College of Zhengzhou University, Zhengzhou, China
| | - Yougen Chen
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Qi Zhang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Qinghua Xia
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
22
|
Abstract
Pseudokinases are members of the protein kinase superfamily but signal primarily through noncatalytic mechanisms. Many pseudokinases contribute to the pathologies of human diseases, yet they remain largely unexplored as drug targets owing to challenges associated with modulation of their biological functions. Our understanding of the structure and physiological roles of pseudokinases has improved substantially over the past decade, revealing intriguing similarities between pseudokinases and their catalytically active counterparts. Pseudokinases often adopt conformations that are analogous to those seen in catalytically active kinases and, in some cases, can also bind metal cations and/or nucleotides. Several clinically approved kinase inhibitors have been shown to influence the noncatalytic functions of active kinases, providing hope that similar properties in pseudokinases could be pharmacologically regulated. In this Review, we discuss known roles of pseudokinases in disease, their unique structural features and the progress that has been made towards developing pseudokinase-directed therapeutics.
Collapse
|
23
|
Endo M, Tanaka Y, Otsuka M, Minami Y. E2F1-Ror2 signaling mediates coordinated transcriptional regulation to promote G1/S phase transition in bFGF-stimulated NIH/3T3 fibroblasts. FASEB J 2020; 34:3413-3428. [PMID: 31922321 DOI: 10.1096/fj.201902849r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 01/18/2023]
Abstract
Ror2 signaling has been shown to regulate the cell cycle progression in normal and cancer cells. However, the molecular mechanism of the cell cycle progression upon activation of Ror2 signaling still remains unknown. Here, we found that the expression levels of Ror2 in G1-arrested NIH/3T3 fibroblasts are low and are rapidly increased following the cell cycle progression induced by basic fibroblast growth factor (bFGF) stimulation. By expressing wild-type or a dominant negative mutant of E2F1, we show that E2F1 mediates bFGF-induced expression of Ror2, and that E2F1 binds to the promoter of the Ror2 gene to activate its expression. We also found that G1/S phase transition of bFGF-stimulated NIH/3T3 cells is delayed by the suppressed expression of Ror2. RNA-seq analysis revealed that the suppressed expression of Ror2 results in the decreased expression of various E2F target genes concomitantly with increased expression of Forkhead box O (FoxO) target genes, including p21Cip1 , and p27Kip1 . Moreover, the inhibitory effect of Ror2 knockdown on the cell cycle progression can be restored by suppressed expression of p21Cip1 , p27Kip1 ,or FoxO3a. Collectively, these findings indicate that E2F1-Ror2 signaling mediates the transcriptional activation and inhibition of E2F1-driven and FoxO3a-driven cell cycle-regulated genes, respectively, thereby promoting G1/S phase transition of bFGF-stimulated NIH/3T3 cells.
Collapse
Affiliation(s)
- Mitsuharu Endo
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yuki Tanaka
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Mako Otsuka
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| |
Collapse
|
24
|
Vastrad C, Vastrad B. Investigation into the underlying molecular mechanisms of non-small cell lung cancer using bioinformatics analysis. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Li Y, Han X, Xu W, Rao Z, Li X. Purification and characterization of the extracellular region of human receptor tyrosine kinase like orphan receptor 2 (ROR2). Protein Expr Purif 2019; 158:74-80. [PMID: 30826310 DOI: 10.1016/j.pep.2019.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 11/25/2022]
Abstract
Receptor tyrosine kinase like orphan receptor 2 (ROR2) is a co-receptor for some Wnt proteins including Wnt5a that activate the noncanonical Wnt/planar cell polarity (PCP) signaling pathway. Upregulation of ROR2 is associated with several cancer forms. The extracellular region of ROR2, which contains an immunoglobulin (Ig)-like domain, a Frizzled like cysteine-rich domain (CRD) and a Kringle domain, is a potential anticancer drug target. The structural and biochemical properties of the ROR2 extracellular region remain largely unexplored. Here we describe the mapping and purification, using a baculovirus - insect cell system, of a near-full-length ROR2 extracellular fragment (residues 53-402), which is well-behaved and suitable for future structural and biochemical analysis. We show that the extracellular region of ROR2 per se is monomeric in solution. Different monoclonal antibodies raised against the purified ROR2 protein can specifically recognize the protein and can either inhibit or activate the PCP activity in a cell-based assay, and are thus potentially useful for future mechanistic and therapeutic/diagnostic studies. The biological relevance of these antibodies further demonstrates that the purified recombinant ROR2 protein is properly folded and biochemically active.
Collapse
Affiliation(s)
- Yuan Li
- Collage of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xu Han
- Collage of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wenqing Xu
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA.
| | - Zihe Rao
- Collage of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Xin Li
- Collage of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
26
|
Liu F, Li N, Yang W, Wang R, Yu J, Wang X. The expression analysis of NGAL and NGALR in clear cell renal cell carcinoma. Gene 2018; 676:269-278. [DOI: 10.1016/j.gene.2018.08.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 01/12/2023]
|
27
|
Roy JP, Halford MM, Stacker SA. The biochemistry, signalling and disease relevance of RYK and other WNT-binding receptor tyrosine kinases. Growth Factors 2018; 36:15-40. [PMID: 29806777 DOI: 10.1080/08977194.2018.1472089] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The receptor tyrosine kinases (RTKs) are a well-characterized family of growth factor receptors that have central roles in human disease and are frequently therapeutically targeted. The RYK, ROR, PTK7 and MuSK subfamilies make up an understudied subset of WNT-binding RTKs. Numerous developmental, stem cell and pathological roles of WNTs, in particular WNT5A, involve signalling via these WNT receptors. The WNT-binding RTKs have highly context-dependent signalling outputs and stimulate the β-catenin-dependent, planar cell polarity and/or WNT/Ca2+ pathways. RYK, ROR and PTK7 members have a pseudokinase domain in their intracellular regions. Alternative signalling mechanisms, including proteolytic cleavage and protein scaffolding functions, have been identified for these receptors. This review explores the structure, signalling, physiological and pathological roles of RYK, with particular attention paid to cancer and the possibility of therapeutically targeting RYK. The other WNT-binding RTKs are compared with RYK throughout to highlight the similarities and differences within this subset of WNT receptors.
Collapse
Affiliation(s)
- James P Roy
- a Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
- b Sir Peter MacCallum Department of Oncology , The University of Melbourne , Parkville , Australia
| | - Michael M Halford
- a Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
| | - Steven A Stacker
- a Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
- b Sir Peter MacCallum Department of Oncology , The University of Melbourne , Parkville , Australia
| |
Collapse
|
28
|
Dai B, Yan T, Zhang A. ROR2 receptor promotes the migration of osteosarcoma cells in response to Wnt5a. Cancer Cell Int 2017; 17:112. [PMID: 29213214 PMCID: PMC5707918 DOI: 10.1186/s12935-017-0482-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 11/18/2017] [Indexed: 02/02/2023] Open
Abstract
Background We have reported that the phosphatidylinositol-3 kinase (PI3K)/Akt/RhoA signaling pathway mediates Wnt5a-induced cell migration of osteosarcoma cells. However, the specific receptors responding to Wnt5a ligand remain poorly defined in osteosarcoma metastasis. Methods Wound healing assays were used to measure the migration rate of osteosarcoma cells transfected with shRNA or siRNA specific against ROR2 or indicated constructs. We evaluated the RhoA activation in osteosarcoma MG-63 and U2OS cells with RhoA activation assay. A panel of inhibitors of PI3K and Akt treated osteosarcoma cells and blocked kinase activity. Western blotting assays were employed to measure the expression and activation of Akt. Clonogenic assays were used to measure the cell proliferation of ROR2-knockdown or ROR2-overexpressed osteosarcoma cells. Results Wnt5a-induced osteosarcoma cell migration was largely abolished by shRNA or siRNA specific against ROR2. Overexpression of RhoA-CA (GFP-RhoA-V14) was able to rescue the Wnt5a-induced cell migration blocked by ROR2 knockdown. The Wnt5a-induced activation of RhoA was mostly blocked by ROR2 knockdown, and elevated by ROR2 overexpression, respectively. Furthermore, we found that Wnt5a-induced cell migration was significantly retarded by RhoA-siRNA transfection or pretreatment of HS-173 (PI3Kα inhibitor), MK-2206 (Akt inhibitor), A-674563 (Akt1 inhibitor), or CCT128930 (Akt2 inhibitor). The activation of Akt was upregulated or downregulated by transfected with ROR2-Flag or ROR2-siRNA, respectively. Lastly, Wnt5a/ROR2 signaling does not alter the cell proliferation of MG-63 osteosarcoma cells. Conclusions Taken together, we demonstrate that ROR2 receptor responding to Wnt5a ligand activates PI3K/Akt/RhoA signaling and promotes the migration of osteosarcoma cells.
Collapse
Affiliation(s)
- Bin Dai
- Department of Orthopedics, Binhai County People's Hospital, Binhai, 224500 Jiangsu China
| | - Ting Yan
- Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, School of Public Health, Nanjing Medical University, Nanjing, 211166 Jiangsu China
| | - Ailiang Zhang
- Spine Surgery, Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
| |
Collapse
|
29
|
Chen L, Zhao L, Ding M, Yang M, Yang W, Cui G, Shan B. Higher expression level of tyrosine kinase-like orphan receptor 2 and Wnt member 5a in papillary thyroid carcinoma is associated with poor prognosis. Oncol Lett 2017; 14:5966-5972. [PMID: 29113233 PMCID: PMC5661602 DOI: 10.3892/ol.2017.6989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/16/2017] [Indexed: 11/28/2022] Open
Abstract
The tyrosine kinase-like orphan receptor 2 (ROR2) has a wnt-mediated, pro-tumorigenic role in certain types of cancer. The present study was designed to assess the protein expression level of ROR2 and its putative ligand Wnt member 5a (Wnt5a), as well as the association with clinicopathological features in papillary thyroid carcinoma (PTC). A total of 58 patients were recruited, resulting in 58 human PTC tissue samples and their paired adjacent noncancerous tissue samples being obtained. The protein expression levels of ROR2 and Wnt5a were evaluated by immunohistochemistry and western blotting, and messenger RNA expression levels were determined by reverse transcription-quantitative polymerase chain reaction. ROR2 and Wnt5a protein and mRNA expression were significantly overexpressed in PTC tissues (P<0.05). The present study also revealed that ROR2 and Wnt5a were significantly associated with tumor stage and lymph node metastasis (P<0.05). There was a positive association between ROR2 and Wnt5a expression levels (r=0.857; P=0.007). In conclusion, ROR2 and Wnt5a may act as tumor suppressor genes in the development of PTC; overexpression of ROR2 and Wnt5a in PTC may be important for tumorigenesis and tumor development.
Collapse
Affiliation(s)
- Liang Chen
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China.,Department of Oncology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Lianmei Zhao
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Mingjian Ding
- Department of Oncology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Meng Yang
- Department of Oncology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Wenhua Yang
- Department of Oncology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Guozhong Cui
- Department of Oncology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Baoen Shan
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
30
|
Kamizaki K, Doi R, Hayashi M, Saji T, Kanagawa M, Toda T, Fukada SI, Ho HYH, Greenberg ME, Endo M, Minami Y. The Ror1 receptor tyrosine kinase plays a critical role in regulating satellite cell proliferation during regeneration of injured muscle. J Biol Chem 2017; 292:15939-15951. [PMID: 28790171 DOI: 10.1074/jbc.m117.785709] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 08/07/2017] [Indexed: 12/31/2022] Open
Abstract
The Ror family receptor tyrosine kinases, Ror1 and Ror2, play important roles in regulating developmental morphogenesis and tissue- and organogenesis, but their roles in tissue regeneration in adult animals remain largely unknown. In this study, we examined the expression and function of Ror1 and Ror2 during skeletal muscle regeneration. Using an in vivo skeletal muscle injury model, we show that expression of Ror1 and Ror2 in skeletal muscles is induced transiently by the inflammatory cytokines, TNF-α and IL-1β, after injury and that inhibition of TNF-α and IL-1β by neutralizing antibodies suppresses expression of Ror1 and Ror2 in injured muscles. Importantly, expression of Ror1, but not Ror2, was induced primarily in Pax7-positive satellite cells (SCs) after muscle injury, and administration of neutralizing antibodies decreased the proportion of Pax7-positive proliferative SCs after muscle injury. We also found that stimulation of a mouse myogenic cell line, C2C12 cells, with TNF-α or IL-1β induced expression of Ror1 via NF-κB activation and that suppressed expression of Ror1 inhibited their proliferative responses in SCs. Intriguingly, SC-specific depletion of Ror1 decreased the number of Pax7-positive SCs after muscle injury. Collectively, these findings indicate for the first time that Ror1 has a critical role in regulating SC proliferation during skeletal muscle regeneration. We conclude that Ror1 might be a suitable target in the development of diagnostic and therapeutic approaches to manage muscular disorders.
Collapse
Affiliation(s)
- Koki Kamizaki
- From the Division of Cell Physiology, Department of Physiology and Cell Biology, and
| | - Ryosuke Doi
- From the Division of Cell Physiology, Department of Physiology and Cell Biology, and
| | - Makoto Hayashi
- From the Division of Cell Physiology, Department of Physiology and Cell Biology, and
| | - Takeshi Saji
- From the Division of Cell Physiology, Department of Physiology and Cell Biology, and
| | - Motoi Kanagawa
- Division of Neurology/Molecular Brain Science, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Tatsushi Toda
- Division of Neurology/Molecular Brain Science, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - So-Ichiro Fukada
- the Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan, and
| | - Hsin-Yi Henry Ho
- the Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | | | - Mitsuharu Endo
- From the Division of Cell Physiology, Department of Physiology and Cell Biology, and
| | - Yasuhiro Minami
- From the Division of Cell Physiology, Department of Physiology and Cell Biology, and
| |
Collapse
|
31
|
Zhang W, Yan Y, Gu M, Wang X, Zhu H, Zhang S, Wang W. High expression levels of Wnt5a and Ror2 in laryngeal squamous cell carcinoma are associated with poor prognosis. Oncol Lett 2017; 14:2232-2238. [PMID: 28781662 PMCID: PMC5530173 DOI: 10.3892/ol.2017.6386] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 03/30/2017] [Indexed: 12/16/2022] Open
Abstract
The present study investigated the prognostic significance of Wnt family member 5a (Wnt5a) and receptor tyrosine kinase-like orphan receptor 2 (Ror2) expression in laryngeal squamous cell carcinoma (LSCC). The protein expression levels of Wnt5a and Ror2 were analyzed in specimens from 137 patients with LSCC, using immunohistochemical staining of tissue microarrays and pairs of LSCC and adjacent tissue samples, and examined the associations between the two markers and various clinicopathological parameters. The Wnt5a and Ror2 expression levels were significantly higher in LSCC tissues than in normal tissue samples (Wnt5a, P=0.015; Ror2, P=0.039), and were significantly associated with high tumor stage (P<0.001), lymph node metastasis (Wnt5a, P=0.029; Ror2, P=0.018), and with each other (P=0.002). Patients with LSCC with high Wnt5a or Ror2 expression had poorer prognosis compared with those with low Wnt5a (P=0.022) or Ror2 (P=0.038) expression. Thus, Wnt5a and Ror2 may affect LSCC development, and are potential biomarkers in LSCC.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Otorhinolaryngology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yongbing Yan
- Department of Otorhinolaryngology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Miao Gu
- Department of Otorhinolaryngology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xudong Wang
- Department of Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Huijun Zhu
- Department of Clinical Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Shu Zhang
- Department of Clinical Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Wei Wang
- Department of Clinical Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
32
|
Xu Y, Ma YH, Pang YX, Zhao Z, Lu JJ, Mao HL, Liu PS. Ectopic repression of receptor tyrosine kinase-like orphan receptor 2 inhibits malignant transformation of ovarian cancer cells by reversing epithelial-mesenchymal transition. Tumour Biol 2017; 39:1010428317701627. [PMID: 28475014 DOI: 10.1177/1010428317701627] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Receptor tyrosine kinase-like orphan receptor 2 is an enzyme-linked receptor which specifically modulates WNT5A signaling and plays an important role in tumorigenesis, invasion, and metastasis; however, the precise role of receptor tyrosine kinase-like orphan receptor 2 in cancer is controversial. The purpose of this study was to investigate the expression and role of receptor tyrosine kinase-like orphan receptor 2 in ovarian carcinoma and clarify the biological functions and interactions of receptor tyrosine kinase-like orphan receptor 2 with non-canonical Wnt pathways in ovarian cancer. The result of the human ovary tissue microarray revealed that the receptor tyrosine kinase-like orphan receptor 2-positive rate increased in malignant epithelial ovarian cancers and was extremely higher in the metastatic tumor tissues, which was also higher than that in the malignant ovarian tumor tissues. In addition, high expression of receptor tyrosine kinase-like orphan receptor 2 was closely related with ovarian cancer grading. The expression of receptor tyrosine kinase-like orphan receptor 2 protein was higher in SKOV3 and A2780 cells than OVCAR3 and 3AO cells. Knockdown of receptor tyrosine kinase-like orphan receptor 2 inhibited ovarian cancer cell proliferation, migration, invasion, and induced morphologic as well as digestive state alterations in stably transfected SKOV3 cells. Detailed study further revealed that silencing of receptor tyrosine kinase-like orphan receptor 2 reversed the epithelial-mesenchymal transition and inhibited non-canonical Wnt signaling. Our findings suggest that receptor tyrosine kinase-like orphan receptor 2 may be an important regulator of epithelial-mesenchymal transition, primarily regulated the non-canonical Wnt signaling pathway in ovarian cancer cells, and may display a promising therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Ying Xu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Yan-Hui Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Ying-Xin Pang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhe Zhao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Jing-Jing Lu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Hong-Luan Mao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Pei-Shu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
33
|
Sakamoto T, Kawano S, Matsubara R, Goto Y, Jinno T, Maruse Y, Kaneko N, Hashiguchi Y, Hattori T, Tanaka S, Kitamura R, Kiyoshima T, Nakamura S. Critical roles of Wnt5a-Ror2 signaling in aggressiveness of tongue squamous cell carcinoma and production of matrix metalloproteinase-2 via ΔNp63β-mediated epithelial-mesenchymal transition. Oral Oncol 2017; 69:15-25. [PMID: 28559016 DOI: 10.1016/j.oraloncology.2017.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/22/2017] [Accepted: 03/28/2017] [Indexed: 12/18/2022]
Abstract
OBJECTIVES We previously showed that ΔNp63β, a splicing variant of ΔNp63, mediated EMT and affected cell motility. DNA microarray was thus performed to elucidate the mechanism that ΔNp63β affects cell motility. As the results, Wnt5a was significantly down-regulated by ΔNp63β overexpression in tongue SCC cell line (SQUU-B) with EMT phenotype. MATERIALS AND METHODS Seven OSCC cell lines were used. Expression of ΔNp63, Wnt5a, its receptor Ror2, and matrix metalloproteinases (MMPs) were analyzed by RT-PCR, real-time PCR, and western blotting, and gelatin zymography. Furthermore, we examined the effects of siRNA for Wnt5a or Ror2 and recombinant human Wnt5a (rhWnt5a) on motility of tongue SCC cells. Biopsy specimens from tongue SCC patients were used for immunohistochemical staining of Wnt5a and Ror2. RESULTS Wnt5a and Ror2 were expressed only in SQUU-B cells without ΔNp63 expression, and negatively associated with ΔNp63 expression in other cells. ΔNp63β overexpression in SQUU-B cells decreased Wnt5a and Ror2 expression. By Wnt5a or Ror2 knockdown, cell motility was remarkably inhibited, but EMT markers expression was unaffected. MMP-2 expression and the activities inversely correlated with ΔNp63 expression, and were inhibited by Wnt5a or Ror2 knockdown. Cell motility and MMP-2 activities were recovered by adding rhWnt5a in the cells with Wnt5a knockdown, but not in those with Ror2 knockdown. Moreover, immunohistochemical analyses in tongue SCC specimens found that high expression of Wnt5a or Ror2 was associated with poorer prognosis. CONCLUSION Wnt5a-Ror2 signaling enhanced tongue SCC cell aggressiveness and promoted production of MMP-2 following ΔNp63β-mediated EMT.
Collapse
Affiliation(s)
- Taiki Sakamoto
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Shintaro Kawano
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Ryota Matsubara
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Yuichi Goto
- Maxillofacial Diagnostic and Surgical Sciences, Department of Oral and Maxillofacial Rehabilitation, Course of Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan.
| | - Teppei Jinno
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Yasuyuki Maruse
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Naoki Kaneko
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Yuma Hashiguchi
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Taichi Hattori
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Shoichi Tanaka
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Ryoji Kitamura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Seiji Nakamura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
34
|
Yang CM, Ji S, Li Y, Fu LY, Jiang T, Meng FD. Ror2, a Developmentally Regulated Kinase, Is Associated With Tumor Growth, Apoptosis, Migration, and Invasion in Renal Cell Carcinoma. Oncol Res 2017; 25:195-205. [PMID: 28277191 PMCID: PMC7840799 DOI: 10.3727/096504016x14732772150424] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Renal cell carcinoma (RCC) represents one of the most resistant tumors to radiation and chemotherapy. Current therapies for RCC patients are inefficient due to the lack of diagnostic and therapeutic markers. The expression of novel tumor-associated kinases has the potential to dramatically shape tumor cell behavior. Identifying tumor-associated kinases can lend insight into patterns of tumor growth and characteristics. In the present study, we investigated the receptor tyrosine kinase-like orphan receptor 2 (Ror2), a new tumor-associated kinase, in RCC primary tumors and cell lines. Knockdown of Ror2 expression in RCC cells with specific shRNA significantly reduced cell proliferation and induced apoptosis. Using in vitro migration and Matrigel invasion assays, we found that cell migration and invasive ability were also significantly inhibited. In RCC, Ror2 expression correlated with expression of genes involved at the cell cycle and migration, including PCNA, CDK1, TWIST, and MMP-2. Furthermore, in vivo xenograft studies in nude mice revealed that administration of a Ror2 shRNA plasmid significantly inhibited tumor growth. These findings suggest a novel pathway of tumor-promoting activity by Ror2 within renal carcinomas, with significant implications for unraveling the tumorigenesis of RCC.
Collapse
Affiliation(s)
- Chun-Ming Yang
- Department of Urology, The First Affiliated Hospital, China Medical University, Shenyang, P.R. China
| | | | | | | | | | | |
Collapse
|
35
|
Yan L, Du Q, Yao J, Liu R. ROR2 inhibits the proliferation of gastric carcinoma cells via activation of non-canonical Wnt signaling. Exp Ther Med 2016; 12:4128-4134. [PMID: 28101190 DOI: 10.3892/etm.2016.3883] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 06/23/2016] [Indexed: 12/12/2022] Open
Abstract
Gastric carcinoma is one of the most common human cancers and has a poor prognosis. Receptor tyrosine kinase-like orphan receptor 2 (ROR2), which is a non-canonical receptor of the Wnt signaling pathway, has been reported to be deregulated in numerous types of human cancers, including gastric carcinoma. However, the exact role of ROR2 in the regulation of the malignant phenotypes of gastric carcinoma, as well as the underlying molecular mechanism, remains largely unclear. The present study demonstrated that ROR2 was recurrently downregulated in gastric carcinoma tissues, as compared with their matched adjacent normal tissues. Furthermore, the expression levels of ROR2 were reduced in several common gastric carcinoma cell lines, as compared with normal gastric epithelial cells. Gastric carcinoma cells were transfected with ROR2 plasmids, and it was demonstrated that restoration of ROR2 expression significantly inhibited the proliferation and induced the apoptosis of gastric carcinoma cells by a Wnt5a-independent mechanism. In addition, it was observed that ROR2-overexpressing cells accumulated in the G0/G1 phase; thus suggesting that overexpression of ROR2 induced cell cycle arrest at the G0/G1 phase. An investigation of the underlying mechanism demonstrated that activation of the non-canonical Wnt signaling pathway inhibited canonical Wnt signal transduction, as demonstrated by the decreased level of β-catenin in nuclei, as well as the reduced expression levels of c-Myc. The results of the present study indicated a tumor suppressive role for ROR2 in gastric carcinoma growth in vitro, and suggested that ROR2 may be used as a molecular target for the treatment of gastric carcinoma.
Collapse
Affiliation(s)
- Likun Yan
- Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Qingguo Du
- Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Jianfeng Yao
- Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Ruiting Liu
- Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| |
Collapse
|
36
|
Endo M, Ubulkasim G, Kobayashi C, Onishi R, Aiba A, Minami Y. Critical role of Ror2 receptor tyrosine kinase in regulating cell cycle progression of reactive astrocytes following brain injury. Glia 2016; 65:182-197. [DOI: 10.1002/glia.23086] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 09/28/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Mitsuharu Endo
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine; Kobe University; Kobe 650-0017 Japan
| | - Guljahan Ubulkasim
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine; Kobe University; Kobe 650-0017 Japan
| | - Chiho Kobayashi
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine; Kobe University; Kobe 650-0017 Japan
| | - Reiko Onishi
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine; Kobe University; Kobe 650-0017 Japan
| | - Atsu Aiba
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Faculty of Medicine; The University of Tokyo; Bunkyo-ku, Tokyo 113-0033 Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine; Kobe University; Kobe 650-0017 Japan
| |
Collapse
|
37
|
Ma SSQ, Henry CE, Llamosas E, Higgins R, Daniels B, Hesson LB, Hawkins NJ, Ward RL, Ford CE. Validation of specificity of antibodies for immunohistochemistry: the case of ROR2. Virchows Arch 2016; 470:99-108. [PMID: 27631337 DOI: 10.1007/s00428-016-2019-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/07/2016] [Accepted: 09/01/2016] [Indexed: 02/06/2023]
Abstract
The Wnt signalling receptor receptor tyrosine kinase-like orphan receptor 2 (ROR2) is implicated in numerous human cancers. However, there have been conflicting reports regarding ROR2 expression, some studies showing upregulation and others downregulation of ROR2 in the same cancer type. The majority of these studies used immunohistochemistry (IHC) to detect ROR2 protein, without validation of the used antibodies. There appears to be currently no consensus on the antibody best suited for ROR2 detection or how ROR2 expression changes in various cancer types. We examined three commercially available ROR2 antibodies and found that only one bound specifically to ROR2. Another antibody cross-reacted with other proteins, and the third failed to detect ROR2 at all. ROR2 detection by IHC on 107 patient samples using the ROR2 specific antibody showed that the majority of colorectal cancers show loss of ROR2 protein. We found no association between ROR2 staining and poor patient survival, as had been previously reported. These results question the previously reported association between ROR2 and poor patient survival in colorectal cancer. Future studies should use fully validated antibodies when detecting ROR2 protein, as non-specific staining can lead to irrelevant observations and misinterpretations.
Collapse
Affiliation(s)
- Sean S Q Ma
- Adult Cancer Program, Level 2, Metastasis Research Group, Lowy Cancer Research Centre and School of Women's and Children's Health, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Claire E Henry
- Adult Cancer Program, Level 2, Metastasis Research Group, Lowy Cancer Research Centre and School of Women's and Children's Health, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Estelle Llamosas
- Adult Cancer Program, Level 2, Metastasis Research Group, Lowy Cancer Research Centre and School of Women's and Children's Health, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rupert Higgins
- Adult Cancer Program, Level 2, Metastasis Research Group, Lowy Cancer Research Centre and School of Women's and Children's Health, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Benjamin Daniels
- Faculty of Medicine, Medicines Policy Research Unit, Centre for Big Data Research in Health, UNSW, Sydney, Australia
| | - Luke B Hesson
- Colorectal Cancer Group, Adult Cancer Program, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | | | | | - Caroline E Ford
- Adult Cancer Program, Level 2, Metastasis Research Group, Lowy Cancer Research Centre and School of Women's and Children's Health, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
38
|
Arabzadeh S, Hossein G, Salehi-Dulabi Z, Zarnani AH. WNT5A-ROR2 is induced by inflammatory mediators and is involved in the migration of human ovarian cancer cell line SKOV-3. Cell Mol Biol Lett 2016; 21:9. [PMID: 28536612 PMCID: PMC5415827 DOI: 10.1186/s11658-016-0003-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/08/2015] [Indexed: 02/03/2023] Open
Abstract
Background Wnt5A, which is a member of the non-transforming Wnt protein family, is implicated in inflammatory processes. It is also highly expressed by ovarian cancer cells. ROR2, which is a member of the Ror-family of receptor tyrosine kinases, acts as a receptor or co-receptor for Wnt5A. The Wnt5A–ROR2 signaling pathway plays essential roles in the migration and invasion of several types of tumor cell and influences their cell polarity. We investigated the modulation of Wnt5A–ROR2 by inflammatory mediators and its involvement in the migration of the human ovarian cancer cell line SKOV-3. Methods SKOV-3 cells were treated with LPS (lipopolysaccharide), LTA (lipoteichoic acid) and recombinant human IL-6 alone or in combination with STAT3 inhibitor (S1155S31-201) or NF-kB inhibitor (BAY11-7082) for 4, 8, 12, 24 and 48 h. The Wnt5A and ROR2 expression levels were determined at the gene and protein levels. Cells were transfected with specific siRNA against Wnt5A in the absence or presence of human anti-ROR2 antibody and cell migration was assessed using transwells. Results There was a strong downregulation of Wnt5A expression in the presence of STAT3 or NF-kB inhibitors. Cell stimulation with LTA or IL-6 for 8 h led to significantly increased levels of Wnt5A (5- and 3-fold higher, respectively). LPS, LTA or IL-6 treatment significantly increased ROR2 expression (2-fold after 48 h). LPS- or LTA-induced Wnt5A or ROR2 expression was abrogated in the presence of STAT3 inhibitor (p < 0.001). IL-6-induced Wnt5A expression was abrogated by both STAT3 and NF-kB inhibitors (p < 0.001). Although not significant, IL-6-induced ROR2 expression showed a modest decrease when STAT3 inhibitor was used. Moreover, cell migration was decreased by 80 % in siRNA Wnt5A-transfected cells in the presence of anti-human ROR2 antibody (p < 0.001). Conclusions This study revealed for the first time that inflammatory mediators modulate Wnt5A and ROR2 through NF-kB and STAT3 transcription factors and this may play a role in ovarian cancer cell migration. The results described here provide new insight into the role of the Wnt5A–ROR2 complex in ovarian cancer progression in relation to inflammation.
Collapse
Affiliation(s)
- Somayeh Arabzadeh
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ghamartaj Hossein
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Zahra Salehi-Dulabi
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Amir Hassan Zarnani
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.,Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Lu C, Wang X, Zhu H, Feng J, Ni S, Huang J. Over-expression of ROR2 and Wnt5a cooperatively correlates with unfavorable prognosis in patients with non-small cell lung cancer. Oncotarget 2016; 6:24912-21. [PMID: 26305508 PMCID: PMC4694803 DOI: 10.18632/oncotarget.4701] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 07/09/2015] [Indexed: 01/27/2023] Open
Abstract
We investigated the expression of receptor tyrosine kinase-like orphan receptor (ROR) 2 and Wnt5a and their prognostic significance in non-small cell lung cancer (NSCLC). Tissue microarray-based immunohistochemical analysis was performed to determine the expression of ROR2 and Wnt5a in 219 patients. mRNA expression of ROR2 and Wnt5a was examined in 20 pairs of NSCLC and matched adjacent normal tissues by real-time PCR. Compared with non-tumorous tissues, both mRNA expression and protein product of ROR2 and Wnt5a genes were significantly increased in NSCLC. c2 analysis revealed that high ROR2 or Wnt5a expression in NSCLC was significantly associated with advanced TNM stage. High expression of both ROR2 and Wnt5a was also related to advanced TNM stage. Multivariate analyses suggested that ROR2, Wnt5a and TNM stage were independent prognostic factors in NSCLC. Our clinical findings suggest that high ROR2 or Wnt5a expression is associated with poor prognosis in NSCLC, and combined detection of ROR2 and Wnt5a is helpful in predicting the prognosis of NSCLC.
Collapse
Affiliation(s)
- Chenlin Lu
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xudong Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Huijun Zhu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jian Feng
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Songshi Ni
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jianfei Huang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
40
|
Zhang HJ, Tao J, Sheng L, Hu X, Rong RM, Xu M, Zhu TY. RETRACTED: Twist2 promotes kidney cancer cell proliferation and invasion via regulating ITGA6 and CD44 expression in the ECM-Receptor-Interaction pathway. Biomed Pharmacother 2016; 81:453-459. [PMID: 27261625 DOI: 10.1016/j.biopha.2016.02.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/18/2016] [Indexed: 01/18/2023] Open
Abstract
Twist2 is a member of the basic helix-loop-helix (bHLH) family and plays a critical role in tumorigenesis. Growing evidence proves that Twist2 involves in tumor progression; however, the role of Twist2 in human kidney cancer and its underlying mechanisms remain unclear. RT-PCR and Western blot analysis were used to detect the expression of Twist2 in kidney cancer cells and tissues. Cell proliferation, cell cycle, apoptosis, migration and invasion assay was measured by the Cell Count Kit-8 (CCK8), flow cytometry, wound healing and transwell analysis, respectively. Gene set enrichment analysis (GSEA) was used to identify correlation of Twist2 with ECM-Receptor-Interaction pathway. In this report, we show that Twist2 up-regulated in human kidney cancer tissues compared with normal kidney tissues. Twist2 promotes cell proliferation, inhibits cell apoptosis, augments cell migration and invasion in human kidney cancer-derived cell in vitro, and promotes tumor growth in vivo. Moreover, we found that knockdown of Twist2 decreased the levels of ITGA6 and CD44 which contribute to cell migration and invasion correlated with ECM-Receptor-Interaction pathway. This result indicates Twist2 may promote migration and invasion of kidney cancer cells by regulating ITGA6 and CD44 expression. Therefore, our data demonstrated that Twist2 involves in kidney cancer progression. The identification of the role Twist2 on the migration and invasion of kidney cancer provides a potential appropriate treatment after radical nephrectomy to get a better prognosis that reducing recurrence.
Collapse
Affiliation(s)
- Hao-Jie Zhang
- Department of Urology, Fudan University, Huadong Hospital, Shanghai 200040, China; Department of Urology, Fudan University, Zhongshan Hospital, Shanghai 200032, China
| | - Jing Tao
- Department of Urology, Fudan University, Huadong Hospital, Shanghai 200040, China
| | - Lu Sheng
- Department of Urology, Fudan University, Huadong Hospital, Shanghai 200040, China
| | - Xin Hu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Rui-Ming Rong
- Department of Urology, Fudan University, Zhongshan Hospital, Shanghai 200032, China
| | - Ming Xu
- Department of Urology, Fudan University, Zhongshan Hospital, Shanghai 200032, China
| | - Tong-Yu Zhu
- Department of Urology, Fudan University, Zhongshan Hospital, Shanghai 200032, China
| |
Collapse
|
41
|
Wnt Signaling in Renal Cell Carcinoma. Cancers (Basel) 2016; 8:cancers8060057. [PMID: 27322325 PMCID: PMC4931622 DOI: 10.3390/cancers8060057] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/31/2016] [Accepted: 06/12/2016] [Indexed: 01/09/2023] Open
Abstract
Renal cell carcinoma (RCC) accounts for 90% of all kidney cancers. Due to poor diagnosis, high resistance to the systemic therapies and the fact that most RCC cases occur sporadically, current research switched its focus on studying the molecular mechanisms underlying RCC. The aim is the discovery of new effective and less toxic anti-cancer drugs and novel diagnostic markers. Besides the PI3K/Akt/mTOR, HGF/Met and VHL/hypoxia cellular signaling pathways, the involvement of the Wnt/β-catenin pathway in RCC is commonly studied. Wnt signaling and its targeted genes are known to actively participate in different biological processes during embryonic development and renal cancer. Recently, studies have shown that targeting this pathway by alternating/inhibiting its intracellular signal transduction can reduce cancer cells viability and inhibit their growth. The targets and drugs identified show promising potential to serve as novel RCC therapeutics and prognostic markers. This review aims to summarize the current status quo regarding recent research on RCC focusing on the involvement of the Wnt/β-catenin pathway and how its understanding could facilitate the identification of potential therapeutic targets, new drugs and diagnostic biomarkers.
Collapse
|
42
|
Wnt5a and Ror2 expression associate with the disease progress of primary thyroid lymphoma. Tumour Biol 2016. [DOI: 10.1007/s13277-015-4470-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
43
|
Lyros O, Nie L, Moore T, Medda R, Otterson M, Behmaram B, Mackinnon A, Gockel I, Shaker R, Rafiee P. Dysregulation of WNT5A/ROR2 Signaling Characterizes the Progression of Barrett-Associated Esophageal Adenocarcinoma. Mol Cancer Res 2016; 14:647-59. [PMID: 27084312 DOI: 10.1158/1541-7786.mcr-15-0484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/30/2016] [Indexed: 11/16/2022]
Abstract
UNLABELLED The mechanism underlying the progression of normal esophageal mucosa to esophageal adenocarcinoma remains elusive. WNT5A is a noncanonical WNT, which mainly functions via the receptor tyrosine kinase-like orphan receptor 2 (ROR2), and has an unclear role in carcinogenesis. In this study, we aimed to determine the role of WNT5A/ROR2 signaling in esophageal adenocarcinoma. Analysis of WNT5A and ROR2 expression patterns in healthy controls, Barrett and esophageal adenocarcinoma patients' esophageal clinical specimens as well as in various esophageal cell lines demonstrated a ROR2 overexpression in esophageal adenocarcinoma tissues compared with Barrett and healthy mucosa, whereas WNT5A expression was found significantly downregulated toward esophageal adenocarcinoma formation. Treatment of esophageal adenocarcinoma OE33 cells with human recombinant WNT5A (rhWNT5A) significantly suppressed proliferation, survival, and migration in a dose-dependent fashion. rhWNT5A was found to inhibit TOPflash activity in ROR2 wild-type cells, whereas increased TOPflash activity in ROR2-knockdown OE33 cells. In addition, ROR2 knockdown alone abolished cell proliferation and weakened the migration properties of OE33 cells. These findings support an early dysregulation of the noncanonical WNT5A/ROR2 pathway in the pathogenesis of esophageal adenocarcinoma, with the loss of WNT5A expression together with the ROR2 overexpression to be consistent with tumor promotion. IMPLICATIONS The dysregulation of WNT5A/ROR2 noncanonical WNT signaling in Barrett-associated esophageal adenocarcinoma introduces possible prognostic markers and novel targets for tailored therapy of this malignancy. Mol Cancer Res; 14(7); 647-59. ©2016 AACR.
Collapse
Affiliation(s)
- Orestis Lyros
- Division of Gastroenterology & Hepatology, Medical College of Wisconsin, Milwaukee, Wisconsin. Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital, Leipzig, Germany
| | - Linghui Nie
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Tami Moore
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Rituparna Medda
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mary Otterson
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Behnaz Behmaram
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Ines Gockel
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital, Leipzig, Germany
| | - Reza Shaker
- Division of Gastroenterology & Hepatology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Parvaneh Rafiee
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
44
|
Zhang HJ, Tao J, Sheng L, Hu X, Rong RM, Xu M, Zhu TY. Twist2 promotes kidney cancer cell proliferation and invasion by regulating ITGA6 and CD44 expression in the ECM-receptor interaction pathway. Onco Targets Ther 2016; 9:1801-12. [PMID: 27099513 PMCID: PMC4821395 DOI: 10.2147/ott.s96535] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Twist2 is a member of the basic helix-loop-helix (bHLH) family and plays a critical role in tumorigenesis. Growing evidence has proven that Twist2 is involved in tumor progression; however, the role of Twist2 in human kidney cancer and its underlying mechanisms remain unclear. Real-time polymerase chain reaction and Western blot analysis were used to detect the expression of Twist2 in kidney cancer cells and tissues. Cell proliferation, cell cycle, apoptosis, migration, and invasion assay were analyzed using the Cell Count Kit-8, flow cytometry, wound healing, and Transwell analysis, respectively. In this study, we showed that Twist2 was upregulated in human kidney cancer tissues compared with normal kidney tissues. Twist2 promoted cell proliferation, inhibited cell apoptosis, and augmented cell migration and invasion in human kidney-cancer-derived cells in vitro. Twist2 also promoted tumor growth in vivo. Moreover, we found that the knockdown of Twist2 decreased the levels of ITGA6 and CD44 expression. This result indicates that Twist2 may promote migration and invasion of kidney cancer cells by regulating ITGA6 and CD44 expression. Therefore, our data demonstrated that Twist2 is involved in kidney cancer progression. The identification of the role of Twist2 in the migration and invasion of kidney cancer provides a potential appropriate treatment for human kidney cancer.
Collapse
Affiliation(s)
- Hao-Jie Zhang
- Department of Urology, Huadong Hospital, Fudan University, Shanghai, People's Republic of China; Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jing Tao
- Department of Urology, Huadong Hospital, Fudan University, Shanghai, People's Republic of China
| | - Lu Sheng
- Department of Urology, Huadong Hospital, Fudan University, Shanghai, People's Republic of China
| | - Xin Hu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Rui-Ming Rong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Ming Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Tong-Yu Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
45
|
Codocedo JF, Inestrosa NC. Wnt-5a-regulated miR-101b controls COX2 expression in hippocampal neurons. Biol Res 2016; 49:9. [PMID: 26895946 PMCID: PMC4759731 DOI: 10.1186/s40659-016-0071-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/12/2016] [Indexed: 02/07/2023] Open
Abstract
Background Wnt-5a is a member of the WNT family of secreted lipoglycoproteins, whose expression increases during development; moreover, Wnt-5a plays a key role in synaptic structure and function in the adult nervous system. However, the mechanism underlying these effects is still elusive. MicroRNAs (miRNAs) are a family of small non-coding RNAs that control the gene expression of their targets through hybridization with complementary sequences in the 3′ UTR, thereby inhibiting the translation of the target proteins. Several evidences indicate that the miRNAs are actively involved in the regulation of neuronal function. Results In the present study, we examined whether Wnt-5a modulates the levels of miRNAs in hippocampal neurons. Using PCR arrays, we identified a set of miRNAs that respond to Wnt-5a treatment. One of the most affected miRNAs was miR-101b, which targets cyclooxygenase-2 (COX2), an inducible enzyme that converts arachidonic acid to prostanoids, and has been involved in the injury/inflammatory response, and more recently in neuronal plasticity. Consistent with the Wnt-5a regulation of miR-101b, this Wnt ligand regulates COX2 expression in a time-dependent manner in cultured hippocampal neurons. Conclusion The biological processes induced by Wnt-5a in hippocampal neurons, involve the regulation of several miRNAs including miR-101b, which has the capacity to regulate several targets, including COX-2 in the central nervous system.
Collapse
Affiliation(s)
- Juan Francisco Codocedo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile. .,CARE, Biomedical Research Center, Pontificia Universidad Católica de Chile, Av. Alameda 340, 8331150, Santiago, Chile.
| | - Nibaldo C Inestrosa
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile. .,Faculty of Medicine, Center for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia. .,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile. .,CARE, Biomedical Research Center, Pontificia Universidad Católica de Chile, Av. Alameda 340, 8331150, Santiago, Chile.
| |
Collapse
|
46
|
Podleschny M, Grund A, Berger H, Rollwitz E, Borchers A. A PTK7/Ror2 Co-Receptor Complex Affects Xenopus Neural Crest Migration. PLoS One 2015; 10:e0145169. [PMID: 26680417 PMCID: PMC4683079 DOI: 10.1371/journal.pone.0145169] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 11/30/2015] [Indexed: 12/15/2022] Open
Abstract
Neural crest cells are a highly migratory pluripotent cell population that generates a wide array of different cell types and failure in their migration can result in severe birth defects and malformation syndromes. Neural crest migration is controlled by various means including chemotaxis, repellent guidance cues and cell-cell interaction. Non-canonical Wnt PCP (planar cell polarity) signaling has previously been shown to control cell-contact mediated neural crest cell guidance. PTK7 (protein tyrosine kinase 7) is a transmembrane pseudokinase and a known regulator of Wnt/PCP signaling, which is expressed in Xenopus neural crest cells and required for their migration. PTK7 functions as a Wnt co-receptor; however, it remains unclear by which means PTK7 affects neural crest migration. Expressing fluorescently labeled proteins in Xenopus neural crest cells we find that PTK7 co-localizes with the Ror2 Wnt-receptor. Further, co-immunoprecipitation experiments demonstrate that PTK7 interacts with Ror2. The PTK7/Ror2 interaction is likely relevant for neural crest migration, because Ror2 expression can rescue the PTK7 loss of function migration defect. Live cell imaging of explanted neural crest cells shows that PTK7 loss of function affects the formation of cell protrusions as well as cell motility. Co-expression of Ror2 can rescue these defects. In vivo analysis demonstrates that a kinase dead Ror2 mutant cannot rescue PTK7 loss of function. Thus, our data suggest that Ror2 can substitute for PTK7 and that the signaling function of its kinase domain is required for this effect.
Collapse
Affiliation(s)
- Martina Podleschny
- Faculty of Biology, Molecular Embryology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Anita Grund
- Faculty of Biology, Molecular Embryology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Hanna Berger
- Faculty of Biology, Molecular Embryology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Erik Rollwitz
- Faculty of Biology, Molecular Embryology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Annette Borchers
- Faculty of Biology, Molecular Embryology, Philipps-Universität Marburg, 35043 Marburg, Germany
- * E-mail:
| |
Collapse
|
47
|
Wang L, Yang D, Wang YH, Li X, Gao HM, Lv JY, Wang L, Xin SJ. Wnt5a and Ror2 expression associate with the disease progress of primary thyroid lymphoma. Tumour Biol 2015; 37:6085-90. [PMID: 26608372 PMCID: PMC4875128 DOI: 10.1007/s13277-015-4471-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/18/2014] [Indexed: 01/08/2023] Open
Abstract
Primary thyroid lymphoma (PTL) is a rare malignant thyroid tumor; its pathogenesis is closely related to chronic lymphocytic thyroiditis. The different pathological subtypes and stages of PTL have distinct clinical characteristics and prognosis, but the specific reasons are not clear. Wnt5a is a representative protein of non-canonical Wnt signaling. It plays an important role in many different types of tumors. This study is to explore the changes of Wnt5a and its receptor Ror2 in PTL development process and the clinical significance of their represent. We collected 22 PTL patient tumor specimens and clinical data. We observed the expression of Wnt5a and Ror2 in PTL tumor tissues by immunohistochemistry. Wnt5a was expressed positively in 12 (54.5 %) cases, and Ror2 was expressed positively in 18 (81.8 %) cases. The expression of Wnt5a had a significant difference in different pathological subtypes of PTL (P < 0.05). Wnt5a and Ror2 expression were associated with local invasion and clinical stage, respectively (P < 0.05), and had no significant correlation with age, gender, and tumor size. Although, no significant difference in overall survival was found between positive and negative groups of Wnt5a (P = 0.416) or Ror2 (P = 0.256), respectively. We still consider that Wnt5a and Ror2 play a complex and subtle role in the pathogenesis and progression of PTL and may become potential biomarkers and therapeutic targets of PTL.
Collapse
Affiliation(s)
- Lei Wang
- Department of Vascular and Thyroid Surgery, the First Affiliated Hospital, China Medical University, Shenyang, China
| | - Dong Yang
- Department of Vascular and Thyroid Surgery, the First Affiliated Hospital, China Medical University, Shenyang, China
| | - Ying-Hou Wang
- Department of General Surgery, NO.202 Hospital of PLA, Shenyang, China
| | - Xi Li
- Department of Vascular and Thyroid Surgery, the First Affiliated Hospital, China Medical University, Shenyang, China
| | - Hong-Ming Gao
- Department of Vascular and Thyroid Surgery, the First Affiliated Hospital, China Medical University, Shenyang, China
| | - Jun-Yuan Lv
- Department of Vascular and Thyroid Surgery, the First Affiliated Hospital, China Medical University, Shenyang, China
| | - Lei Wang
- Department of Vascular and Thyroid Surgery, the First Affiliated Hospital, China Medical University, Shenyang, China
| | - Shi-Jie Xin
- Department of Vascular and Thyroid Surgery, the First Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
48
|
Huang J, Shi Y, Li H, Tan D, Yang M, Wu X. Knockdown of receptor tyrosine kinase-like orphan receptor 2 inhibits cell proliferation and colony formation in osteosarcoma cells by inducing arrest in cell cycle progression. Oncol Lett 2015; 10:3705-3711. [PMID: 26788194 DOI: 10.3892/ol.2015.3797] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 08/13/2015] [Indexed: 11/06/2022] Open
Abstract
Osteosarcoma (OS) is the most common malignant tumor of the bone, with a high mortality rate and poor prognosis. Receptor tyrosine kinase-like orphan receptor 2 (ROR2) has been reported to be dysregulated in human malignancies. More recently, ROR2 has been demonstrated to promote OS cell migration and invasion. However, the role of ROR2 in the regulation of OS cell proliferation, as well as the underlying molecular mechanism, remains unclear. The present study aimed to investigate the underlying mechanism of ROR2 in osteosarcoma growth. Reverse transcription-quantitative polymerase chain reaction analysis and western blot analysis were used to examine the mRNA and protein expression. MTT assay, colony formation assay and cell cycle analysis were conducted to explore the function of ROR2 in osteosarcoma cells. In the present study, the expression of ROR2 was found to be frequently upregulated in OS tissues compared with matched adjacent normal tissues. It was also upregulated in the OS cell lines Saos-2, MG-63 and U-2 OS, relative to normal osteoblast hFOB 1.19 cells. Knockdown of ROR2 expression by transfection with ROR2-specific siRNA markedly inhibited the proliferation and colony formation of OS cells. Data from the cell cycle distribution assay revealed an accumulation of ROR2-knockdown cells in the G0/G1 phase, indicating that knockdown of ROR2 leads to an arrest in cell cycle progression. Mechanistic investigation revealed that the protein levels of c-myc, a target gene of the Wnt signaling, as well as cyclin D1, cyclin E and cyclin-dependent kinase 4 were markedly reduced in the ROR2-knockdown OS cells, suggesting that the inhibitory effect of ROR2 knockdown on OS cell proliferation is associated with the Wnt signaling pathway. In summary, the current study indicates an important role for ROR2 in the proliferation of OS cells. Therefore, ROR2 may be a promising therapeutic target in OS.
Collapse
Affiliation(s)
- Jianjun Huang
- The Second Department of Orthopedics, The First Affiliated Hospital of Jishou University, Jishou, Hunan 416000, P.R. China
| | - Ying Shi
- Teaching and Research Department of Pathology and Pathophysiology, Medical School of Jishou University, Jishou, Hunan 416000, P.R. China
| | - Hui Li
- Department of Immunology and Microbiology, Medical School of Jishou University, Jishou, Hunan 416000, P.R. China
| | - Dunyong Tan
- Department of Immunology and Microbiology, Medical School of Jishou University, Jishou, Hunan 416000, P.R. China
| | - Meisongzhu Yang
- Teaching and Research Department of Pathology and Pathophysiology, Medical School of Jishou University, Jishou, Hunan 416000, P.R. China
| | - Xiang Wu
- The Second Department of Orthopedics, The First Affiliated Hospital of Jishou University, Jishou, Hunan 416000, P.R. China
| |
Collapse
|
49
|
Abstract
Extensive molecular characterization of tumors has revealed that the activity of multiple signaling pathways is often simultaneously dampened or enhanced in cancer cells. Aberrant WNT signaling and tyrosine kinase signaling are two pathways that are frequently up- or downregulated in cancer. Although signaling pathways regulated by WNTs, tyrosine kinases, and other factors are often conceptualized as independent entities, the biological reality is likely much more complex. Understanding the mechanisms of crosstalk between multiple signal transduction networks is a key challenge for cancer researchers. The overall goals of this review are to describe mechanisms of crosstalk between WNT and tyrosine kinase pathways in cancer and to discuss how understanding intersections between WNT and tyrosine kinase signaling networks might be exploited to improve current therapies.
Collapse
Affiliation(s)
- Jaimie N Anastas
- Harvard Medical School Department of Cell Biology, Boston, MA; Boston Children's Hospital Division of Newborn Medicine, Boston, MA.
| |
Collapse
|
50
|
Huang J, Fan X, Wang X, Lu Y, Zhu H, Wang W, Zhang S, Wang Z. High ROR2 expression in tumor cells and stroma is correlated with poor prognosis in pancreatic ductal adenocarcinoma. Sci Rep 2015; 5:12991. [PMID: 26259918 PMCID: PMC4531333 DOI: 10.1038/srep12991] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 06/24/2015] [Indexed: 01/26/2023] Open
Abstract
RTK-like orphan receptor 2 (ROR2) is overexpressed in several cancers and has tumorigenic activity. However, the expression of ROR2 and its functional and prognostic significance have yet to be evaluated in pancreatic ductal adenocarcinoma (PDAC). Quantitative real-time polymerase chain reaction was used to characterize the expression of ROR2 mRNA in PDAC, corresponding peritumoral tissues, and PDAC cell lines. Immunohistochemical analysis with tissue microarrays was used to evaluate ROR2 expression in PDAC and to investigate the relationship of this expression to clinicopathological factors and prognosis. The expression of ROR2 mRNA and protein was significantly higher in PDAC than in normal pancreatic tissues. High cytoplasmic ROR2 expression in cancer cells was significantly associated with a primary tumor, distant metastasis, and TNM stage, and high stromal ROR2 expression was significantly associated with regional lymph node metastasis and TNM stage. The Kaplan–Meier method and Cox regression analyses showed that high ROR2 expression in tumor cytoplasm or stromal cells was significantly associated with malignant attributes and reduced survival in PDAC. We present strong evidence that ROR2 could be used as an indicator of poor prognosis and could represent a novel therapeutic target for PDAC.
Collapse
Affiliation(s)
- Jianfei Huang
- Department of Pathology, Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, China
| | - Xiangjun Fan
- Department of General Surgery, Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, China
| | - Xudong Wang
- Surgical Comprehensive Laboratory, Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, China
| | - Yuhua Lu
- 1] Department of General Surgery, Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, China [2] Surgical Comprehensive Laboratory, Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, China
| | - Huijun Zhu
- Department of Pathology, Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, China
| | - Wei Wang
- Department of Pathology, Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, China
| | - Shu Zhang
- Department of Pathology, Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, China
| | - Zhiwei Wang
- 1] Department of General Surgery, Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, China [2] Surgical Comprehensive Laboratory, Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, China
| |
Collapse
|