1
|
Zheng M, Zhang S, Wang Y, Xie N, Wang X, Lv J, Pang X, Li X. Utilization of Native CRISPR-Cas9 System for Expression of Glucagon-like Peptide-1 in Lacticaseibacillus paracasei. Foods 2025; 14:1785. [PMID: 40428564 PMCID: PMC12111759 DOI: 10.3390/foods14101785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2025] [Revised: 05/03/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Type 2 diabetes is one of the main causes of cardiovascular diseases, kidney diseases, and visual impairments, posing a global healthcare challenge. The current treatment of this disease, involving glucagon-like peptide-1 (GLP-1), is faced with problems such as frequent injections and plasmid instability. In this study, we used the native clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 (CRISPR-Cas9) system of Lacticaseibacillus paracasei to develop a novel, genetically stable, and orally administrable strain expressing human GLP-1. Integration and subsequent expression of glp-1 gene were confirmed by genomic sequencing, qPCR, and Nano LC-MS. The engineered strain demonstrated stable genomic integration and sustained high-level expression of GLP-1 over multiple generations. This innovative approach provides a promising strategy for the oral delivery of therapeutic peptides, potentially enhancing patient compliance and improving the treatment of diabetes and other chronic diseases requiring peptide-based therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaoyang Pang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.Z.); (S.Z.); (Y.W.); (N.X.); (X.W.); (J.L.)
| | - Xu Li
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.Z.); (S.Z.); (Y.W.); (N.X.); (X.W.); (J.L.)
| |
Collapse
|
2
|
Zhang Z, Yang Y, Huang L, Yuan L, Huang S, Zeng Z, Cao Y, Wei X, Wang X, Shi M, Zhong M. Nanotechnology-driven advances in intranasal vaccine delivery systems against infectious diseases. Front Immunol 2025; 16:1573037. [PMID: 40416956 PMCID: PMC12098542 DOI: 10.3389/fimmu.2025.1573037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/11/2025] [Indexed: 05/27/2025] Open
Abstract
Outbreaks of emerging and re-emerging infectious diseases have consistently threatened human health. Since vaccinations are a powerful tool for preventing infectious illnesses, developing new vaccines is essential. Compared to traditional injectable vaccines, mucosal vaccines have the potential to offer more effective immune protection at mucosal sites. Mucosal immunization strategies include sublingual, oral, intranasal, genital, and rectal routes, in which intranasal immunization being the most efficient and applicable method for mucosal vaccine delivery. Nevertheless, low antigen availability and weak immunogenicity making it challenging to elicit a potent immune response when administered intranasally, necessitating the incorporation of immune delivery systems. However, there is a notable absence of reviews that summarize the intranasal vaccine delivery system against infectious disease. Therefore, this review summarizes the recent advances in intranasal delivery systems, classified by physical and chemical properties, and proposes potential improvement strategies for clinical translation. This review elucidates the potential and current status of intranasal delivery systems, while also serving as a reference point for the future development of intranasal vaccines.
Collapse
Affiliation(s)
- Zhihan Zhang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yumeng Yang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Liwen Huang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Lei Yuan
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Sijian Huang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Zihang Zeng
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yuan Cao
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, Hubei, China
- Analytical & Testing Center, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Xianghong Wei
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Xiaomei Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Mingsong Shi
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, China
| | - Maohua Zhong
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
3
|
Tobias J, Heinl S, Dendinovic K, Ramić A, Schmid A, Daniel C, Wiedermann U. The benefits of Lactiplantibacillus plantarum: From immunomodulator to vaccine vector. Immunol Lett 2025; 272:106971. [PMID: 39765312 DOI: 10.1016/j.imlet.2025.106971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Probiotics have been increasingly recognized for positively influencing many aspects of human health. Lactiplantibacillus plantarum (L. plantarum), a non-pathogenic bacterium, previously known as Lactobacillus plantarum, is one of the lactic acid bacteria commonly used in fermentation. The probiotic properties of L. plantarum have highlighted its health benefits to humans when consumed in adequate amounts. L. plantarum strains primarily enter the body orally and alter intestinal microflora and modulate the immune responses in their host; thereby benefiting human health. Furthermore, the use of L. plantarum as vaccine vectors delivering mucosal antigens has been shown to be a promising strategy. These aspects, from Immunomodulation to vaccine delivery by L. plantarum in preclinical settings, are highlighted in this review. Along these lines, construction of a recombinant L. plantarum strain expressing a B cell multi-peptide, as a future vaccine to modulate immunity and confer anti-tumor effect by targeting Her-2/neu-overexpressing cancers in local and distal sites, is also presented and discussed.
Collapse
Affiliation(s)
- Joshua Tobias
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Stefan Heinl
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Kristina Dendinovic
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ajša Ramić
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Anna Schmid
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Catherine Daniel
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Shamshirgaran MA, Golchin M. Oral and parenteral vaccination of broiler chickens with Recombinant NetB antigen from Clostridium perfringens confers significant protection against necrotic enteritis. BMC Vet Res 2025; 21:167. [PMID: 40087742 PMCID: PMC11907976 DOI: 10.1186/s12917-025-04624-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 02/24/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Necrotic enteritis is a devastating economic disease caused by Clostridium perfringens in poultry. NetB toxin from C. perfringens type G is the major responsible cause of necrotic enteritis. After the ban on growth-promoting antibiotics, alternative effective intervention approaches such as the vaccination of birds were considered critical to control necrotic enteritis. To date, no commercial vaccines with proven efficacy have been approved against necrotic enteritis. In this study, we evaluated the efficacy of the oral and parenteral vaccines based on NetB antigen from C. perfringens to choose the best prime-boosting vaccination strategy against necrotic enteritis. The broiler chickens were orally vaccinated with either previously developed recombinant probiotic bacterium, Lactobacillus casei strain expressing NetB toxoid, followed by a parenteral booster by the purified recombinant NetB toxoid (oral/parenteral), or the recombinant NetB toxoid alone (parenteral-only). RESULTS Immunizations of birds with these vaccines elicited strong specific anti-NetB antibody responses and provided significant protection against the infectious challenge. Additionally, the vaccinated birds represented significant mean body weight gains compared with birds in control groups during the experiment. CONCLUSIONS The current study showed that oral and parenteral vaccines using NetB antigen from C. perfringens could provide significant protection against necrotic enteritis in broiler chickens.
Collapse
Affiliation(s)
- Mohammad Ali Shamshirgaran
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, 76169-133, Iran
| | - Mehdi Golchin
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, 76169-133, Iran.
| |
Collapse
|
5
|
Wiull K, Holmgren E, Svensson S, Eijsink VGH, Grönlund H, Mathiesen G. Surface display of two neoantigens on Lactiplantibacillus plantarum. Sci Rep 2025; 15:7769. [PMID: 40044906 PMCID: PMC11882890 DOI: 10.1038/s41598-025-91180-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 02/18/2025] [Indexed: 03/09/2025] Open
Abstract
Lactic acid bacteria, such as Lactiplantibacillus plantarum, are becoming increasingly popular hosts for combining production and delivery of therapeutic proteins to immune cells. Soluble antigens are susceptible to rapid proteolysis, hence anchoring of antigens to bacterial cells, which likely protects the antigen, is a preferred delivery strategy that may increase immune responses. In cancer research, personalized immunotherapy has high potential and, in this respect, the so-called neoantigens that accumulate in tumor cells are promising tumor specific targets. Here, we demonstrate that, when using the inducible pSIP expression system, L. plantarum can produce and surface display two neoantigens, NAG1 and ETV6. The antigens could be targeted to both the cell membrane and the cell wall, utilizing four different anchoring methods. The production level and the degree of surface exposure of the antigens varied among the anchors. Flow cytometry analysis showed that antigens anchored to the cell wall were more exposed than those anchored to the cell membrane. To our knowledge these are the first reports of neoantigens being produced and surface-displayed in Lactobacillales.
Collapse
Affiliation(s)
- Kamilla Wiull
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway.
| | - Erik Holmgren
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Hans Grönlund
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- NEOGAP Therapeutics AB, Stockholm, Sweden
| | - Geir Mathiesen
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
6
|
Shamshirgaran MA, Golchin M. Necrotic enteritis in chickens: a comprehensive review of vaccine advancements over the last two decades. Avian Pathol 2025; 54:1-26. [PMID: 39190009 DOI: 10.1080/03079457.2024.2398028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/29/2024] [Accepted: 08/26/2024] [Indexed: 08/28/2024]
Abstract
ABSTRACTNecrotic enteritis (NE) is a severe gastrointestinal disease that poses a significant threat to poultry, leading to progressive deterioration of the small intestine, reduced performance, and increased mortality rates, causing economic losses in the poultry industry. The elimination of antimicrobial agents from chicken feed has imposed a need to explore alternative approaches for NE control, with vaccination emerging as a promising strategy to counteract the detrimental consequences associated with NE. This comprehensive review presents an overview of the extensive efforts made in NE vaccination from 2004 to 2023. The review focuses on the development and evaluation of vaccine candidates designed to combat NE. Rigorous evaluations were conducted in both experimental chickens and broiler chickens, the target population, to assess the vaccines' capacity to elicit an immune response and provide substantial protection against toxin challenges and experimental NE infections. The review encompasses the design of vaccine candidates, the antigens employed, in vivo immune responses, and the efficacy of these vaccines in protecting birds from experimental NE infection. This review contributes to the existing knowledge of NE vaccination strategies, offering valuable insights for future research and development in this field.
Collapse
Affiliation(s)
- Mohammad Ali Shamshirgaran
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mehdi Golchin
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
7
|
Bousbaine D, Bauman KD, Chen YE, Lalgudi PV, Nguyen TTD, Swenson JM, Yu VK, Tsang E, Conlan S, Li DB, Jbara A, Zhao A, Naziripour A, Veinbachs A, Lee YE, Phung JL, Dimas A, Jain S, Meng X, Pham TPT, McLaughlin MI, Barkal LJ, Gribonika I, Van Rompay KKA, Kong HH, Segre JA, Belkaid Y, Barnes CO, Fischbach MA. Discovery and engineering of the antibody response to a prominent skin commensal. Nature 2025; 638:1054-1064. [PMID: 39662508 PMCID: PMC12045117 DOI: 10.1038/s41586-024-08489-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
The ubiquitous skin colonist Staphylococcus epidermidis elicits a CD8+ T cell response pre-emptively, in the absence of an infection1. However, the scope and purpose of this anticommensal immune programme are not well defined, limiting our ability to harness it therapeutically. Here, we show that this colonist also induces a potent, durable and specific antibody response that is conserved in humans and non-human primates. A series of S. epidermidis cell-wall mutants revealed that the cell surface protein Aap is a predominant target. By colonizing mice with a strain of S. epidermidis in which the parallel β-helix domain of Aap is replaced by tetanus toxin fragment C, we elicit a potent neutralizing antibody response that protects mice against a lethal challenge. A similar strain of S. epidermidis expressing an Aap-SpyCatcher chimera can be conjugated with recombinant immunogens; the resulting labelled commensal elicits high antibody titres under conditions of physiologic colonization, including a robust IgA response in the nasal and pulmonary mucosa. Thus, immunity to a common skin colonist involves a coordinated T and B cell response, the latter of which can be redirected against pathogens as a new form of topical vaccination.
Collapse
Affiliation(s)
- Djenet Bousbaine
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Katherine D Bauman
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Y Erin Chen
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Pranav V Lalgudi
- ChEM-H Institute, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Tam T D Nguyen
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Joyce M Swenson
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Victor K Yu
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Eunice Tsang
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Sean Conlan
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - David B Li
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Amina Jbara
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Aishan Zhao
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Arash Naziripour
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Alessandra Veinbachs
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Yu E Lee
- ChEM-H Institute, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Jennie L Phung
- ChEM-H Institute, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Alex Dimas
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Sunit Jain
- Chan Zuckerberg Biohub, Stanford, CA, USA
| | - Xiandong Meng
- ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Thi Phuong Thao Pham
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Martin I McLaughlin
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Layla J Barkal
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- ChEM-H Institute, Stanford University, Stanford, CA, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Inta Gribonika
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, CA, USA
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA, USA
| | - Heidi H Kong
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julia A Segre
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Christopher O Barnes
- ChEM-H Institute, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, Stanford, CA, USA
| | - Michael A Fischbach
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- ChEM-H Institute, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, Stanford, CA, USA.
| |
Collapse
|
8
|
Zhang Y, Zhao K, Liu Y, Xu J, Zhang H, Yin Z, Xu P, Jiang Z, Wang S, Mao H, Xu X, Hu C. An oral probiotic vaccine loaded by Lactobacillus casei effectively increases defense against GCRV infection in grass carp. Vaccine 2025; 45:126660. [PMID: 39729770 DOI: 10.1016/j.vaccine.2024.126660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
For a long time, grass carp culture in China has been severely affected by Grass Carp hemorrhagic disease caused by Grass Carp Reovirus (GCRV). At present, vaccines have been widely used for protecting aquatic organisms against infectious diseases, among which oral immunization with Lactobacillus casei is safe and highly effective. This vaccination route has the advantages of easy administration and noninvasive delivery. In this study, the recombinant LC-pVE5523-VP5 was constructed by using the outer capsid protein VP5 of GCRV as the immunogen and pVE5523 as the secretory expression vector. The bacterial powder was prepared from fermented broth by using the vacuum freeze-drying technology. The dried bacterial powder was subsequently mixed with feed and then pressed to pellets. After oral administration of the feed mixed with the recombinant L.casei powder, the expression of the immune-related genes (IFN I, IgM et al.) in grass carp was upregulated significantly. With the increased duration of oral immunization period, serum IgM level was also increased in grass carp. The survival analysis was carried out on the basis of grass carp in response to GCRV challenge. The result showed that the survival rate in the immunized group (74 %) was significantly higher than that in the control group (35 %). The amount of virus replication was also investigated in vaccine-treated fish. The result suggested that the virus content in fish tissue was also significantly less than that of the non-immunized group. The LC-pVE5523-VP5 was still present in the fish intestines 15 days after vaccination. These results indicated that the oral LC-pVE5523-VP5 can effectively protect grass carps from GCRV infection.
Collapse
Affiliation(s)
- Yansong Zhang
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Kaiwen Zhao
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Yulong Liu
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Jingen Xu
- Jiujiang Academy of Agriculture Sciences, Jiujiang 332000, China
| | - Hongying Zhang
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Zijia Yin
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Pengxia Xu
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Zeyin Jiang
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Shanghong Wang
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Huiling Mao
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Xiaowen Xu
- School of Life Science, Nanchang University, Nanchang 330031, China; Chongqing Research Institute of Nanchang University 402660, China.
| | - Chengyu Hu
- School of Life Science, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
9
|
Haghighi FH, Farsiani H. Is Lactococcus lactis a Suitable Candidate for Use as a Vaccine Delivery System Against Helicobacter pylori? Curr Microbiol 2024; 82:30. [PMID: 39643816 DOI: 10.1007/s00284-024-03994-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/15/2024] [Indexed: 12/09/2024]
Abstract
Helicobacter pylori was described in 1979. This bacterium, which thrives in the harsh conditions of the stomach, is typically acquired during childhood and can remain colonized for life. Approximately, 90% of the global population is affected, and H. pylori is linked to various conditions, including gastritis, peptic ulcers, lymphoproliferative gastric lymphoma, and even gastric cancer. Currently, antibiotics are the primary treatment method, but the associated challenges of antibiotic use have led to the consideration of oral vaccination as a viable preventive measure against this infection. However, the stomach's harsh environment characterized by its acidic conditions and numerous proteolytic enzymes poses significant obstacles to the development and effectiveness of oral vaccines. To address these challenges, researchers have proposed and evaluated several delivery systems. One of the most promising options is the use of probiotics. Among the various probiotics, Lactococcus lactis stands out as a suitable candidate for oral vaccine delivery against H. pylori due to the advancements in genetic engineering that have been applied to it. This review article discusses the limitations of current treatment strategies and rationalizes the shift toward vaccination, particularly oral vaccination for this infection. It also explores the advantages and challenges of using probiotic bacteria, with a focus on L. lactis as a delivery system. Ultimately, despite the existing challenges, L. lactis continues to be recognized as a promising delivery system. Nonetheless, further research is essential to fully assess its effectiveness and address the challenges associated with this approach.
Collapse
Affiliation(s)
- Faria Hasanzadeh Haghighi
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Farsiani
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Azadi-Square, Medical Campus, Mashhad, 9177948564, Iran.
| |
Collapse
|
10
|
Khalifa A, Alkuwayti MA, Abdallah BM, Ali EM, Ibrahim HIM. Probiotic and Rice-Derived Compound Combination Mitigates Colitis Severity. Pharmaceuticals (Basel) 2024; 17:1463. [PMID: 39598375 PMCID: PMC11597685 DOI: 10.3390/ph17111463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/07/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND This study investigated the ability of Enterococcus lactis (E. lactis) and Hasawi rice protein lysate (HPL) to suppress colitis induced by dextran sulfate sodium (DSS) in miceColitis is characterized by inflammation of the colon, and exploring potential therapeutic agents could lead to improved management strategies. METHODS Male mice were subjected to DSS treatment to induce colitis, followed by supplementation with E. lactis and/or HPL. The study assessed various parameters, including disease activity index (DAI) scores, gut permeability measured using FITC-dextran, and superoxide dismutase (SOD) activity in excised colon tissues from both treated and untreated control groups. RESULTS E. lactis supplementation significantly alleviated DSS-induced colitis, as evidenced by improved DAI scores and enhanced gut permeability. Notably, E. lactis combined with HPL (0.1 mg/108) exhibited superior tolerance to a 0.5% pancreatin solution compared to E. lactis alone. Both E. lactis and the combination treatment significantly increased SOD activity (5.6 ± 0.23 SOD U/mg protein for E. lactis and 6.7 ± 0.23 SOD U/mg protein for the combination) relative to the Azoxymethane (AOM)/DSS group, suggesting a reduction in oxidative stress. Additionally, pro-inflammatory markers were significantly reduced in the group receiving both E. lactis and HPL compared to the E. lactis-only group. Levels of proteins associated with cell death, such as PCNA, PTEN, VEGF, COX-2, and STAT-3, were significantly decreased by 14.8% to 80% following E. lactis supplementation, with the combination treatment showing the most pronounced effects. CONCLUSIONS These findings suggest E. lactis supplementation may be beneficial for colitis, with HPL potential to enhance its effectiveness.
Collapse
Affiliation(s)
- Ashraf Khalifa
- Biological Science Department, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Mayyadah Abdullah Alkuwayti
- Biological Science Department, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Basem M. Abdallah
- Biological Science Department, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Enas M. Ali
- Biological Science Department, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Hairul Islam M. Ibrahim
- Biological Science Department, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Molecular Biology Division, Pondicherry Centre for Biological Sciences and Educational Trust, Pondicherry 605004, India
| |
Collapse
|
11
|
Song Y, Li J, Wu Y. Evolving understanding of autoimmune mechanisms and new therapeutic strategies of autoimmune disorders. Signal Transduct Target Ther 2024; 9:263. [PMID: 39362875 PMCID: PMC11452214 DOI: 10.1038/s41392-024-01952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/09/2024] [Accepted: 08/07/2024] [Indexed: 10/05/2024] Open
Abstract
Autoimmune disorders are characterized by aberrant T cell and B cell reactivity to the body's own components, resulting in tissue destruction and organ dysfunction. Autoimmune diseases affect a wide range of people in many parts of the world and have become one of the major concerns in public health. In recent years, there have been substantial progress in our understanding of the epidemiology, risk factors, pathogenesis and mechanisms of autoimmune diseases. Current approved therapeutic interventions for autoimmune diseases are mainly non-specific immunomodulators and may cause broad immunosuppression that leads to serious adverse effects. To overcome the limitations of immunosuppressive drugs in treating autoimmune diseases, precise and target-specific strategies are urgently needed. To date, significant advances have been made in our understanding of the mechanisms of immune tolerance, offering a new avenue for developing antigen-specific immunotherapies for autoimmune diseases. These antigen-specific approaches have shown great potential in various preclinical animal models and recently been evaluated in clinical trials. This review describes the common epidemiology, clinical manifestation and mechanisms of autoimmune diseases, with a focus on typical autoimmune diseases including multiple sclerosis, type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosus, and sjögren's syndrome. We discuss the current therapeutics developed in this field, highlight the recent advances in the use of nanomaterials and mRNA vaccine techniques to induce antigen-specific immune tolerance.
Collapse
Affiliation(s)
- Yi Song
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian Li
- Chongqing International Institute for Immunology, Chongqing, China.
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
12
|
Liu J, Wong G, Li H, Yang Y, Cao Y, Li Y, Wu Y, Zhang Z, Jin C, Wang X, Chen Y, Su B, Wang Z, Wang Q, Cao Y, Chen G, Qian Z, Zhao J, Wu G. Biosafety and immunology: An interdisciplinary field for health priority. BIOSAFETY AND HEALTH 2024; 6:310-318. [PMID: 40078733 PMCID: PMC11894974 DOI: 10.1016/j.bsheal.2024.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 03/14/2025] Open
Abstract
Biosafety hazards can trigger a host immune response after infection, invasion, or contact with the host. Whether infection with a microorganism results in disease or biosafety concerns depends to a large extent on the immune status of the population. Therefore, it is essential to investigate the immunological characteristics of the host and the mechanisms of biological threats and agents to protect the host more effectively. Emerging and re-emerging infectious diseases, such as the current coronavirus disease 2019 (COVID-19) pandemic, have raised concerns regarding both biosafety and immunology worldwide. Interdisciplinary studies involved in biosafety and immunology are relevant in many fields, including the development of vaccines and other immune interventions such as monoclonal antibodies and T-cells, herd immunity (or population-level barrier immunity), immunopathology, and multispecies immunity, i.e., animals and even plants. Meanwhile, advances in immunological science and technology are occurring rapidly, resulting in important research achievements that may contribute to the recognition of emerging biosafety hazards, as well as early warning, prevention, and defense systems. This review provides an overview of the interdisciplinary field of biosafety and immunology. Close collaboration and innovative application of immunology in the field of biosafety is becoming essential for human health.
Collapse
Affiliation(s)
- Jun Liu
- NHC Key Laboratory of Biosafety, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Gary Wong
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh 12000, Cambodia
| | - Hui Li
- Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yan Yang
- NHC Key Laboratory of Biosafety, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yuxi Cao
- NHC Key Laboratory of Biosafety, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yongfeng Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150040, China
| | - Yan Wu
- Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, and School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Zijie Zhang
- State Key Laboratory for Conservation and Utilization of Bio-resource and School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Cong Jin
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xi Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yongwen Chen
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 200025, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | | | - Qihui Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Guobing Chen
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Department of Microbiology and Immunology, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Zhaohui Qian
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Jincun Zhao
- Guangzhou Laboratory, Guangzhou 510005, China
| | - Guizhen Wu
- NHC Key Laboratory of Biosafety, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
13
|
Mao C, Eberle K, Chen X, Zhou Y, Li J, Xin H, Gao W. FcRider: a recombinant Fc nanoparticle with endogenous adjuvant activities for hybrid immunization. Antib Ther 2024; 7:295-306. [PMID: 39381134 PMCID: PMC11456856 DOI: 10.1093/abt/tbae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/15/2024] [Accepted: 08/21/2024] [Indexed: 10/10/2024] Open
Abstract
Active immunization (vaccination) induces long-lasting immunity with memory, which takes weeks to months to develop. Passive immunization (transfer of neutralizing antibodies) provides immediate protection, yet with high cost and effects being comparatively short-lived. No currently approved adjuvants are compatible with formulations to combine active and passive immunizations, not to mention their huge disparities in administration routes and dosage. To solve this, we engineered the Fc fragment of human IgG1 into a hexamer nanoparticle and expressed its afucosylated form in Fut8-/- CHO cells, naming it "FcRider." FcRider is highly soluble with long-term stability, easily produced at high levels equivalent to those of therapeutic antibodies, and is amenable to conventional antibody purification schemes. Most importantly, FcRider possesses endogenous adjuvant activities. Using SWHEL B cell receptor (BCR) transgenic mice, we found that HEL-FcRider induced GL7+ germinal center B cells and HEL-specific IgG. Similarly, immunizing mice with UFO-BG-FcRider, a fusion containing the stabilized human immunodeficiency virus-1 (HIV-1) Env protein as immunogen, promoted somatic hypermutation and generation of long CDR3 of the IgG heavy chains. Intramuscular injection of (Fba + Met6)3-FcRider, a fusion with two peptide epitopes from Candida albicans cell surface, stimulated strong antigen-specific IgG titers. In three different models, we showed that afucosylated FcRider functions as a multivalent immunogen displayer and stimulates antigen-specific B cells without any exogenous adjuvant. As an antibody derivative, afucosylated FcRider could be a novel platform combining vaccines and therapeutic antibodies, integrating active and passive immunizations into single-modality "hybrid immunization" to provide complete and long-lasting protection against infections, and may open new avenues in cancer immunotherapy as well.
Collapse
Affiliation(s)
- Changchuin Mao
- Antagen Pharmaceuticals, Inc., Canton, MA 02021, United States
| | - Karen Eberle
- Department of Microbiology and Immunology, Louisiana State University Health Science Center, New Orleans, LA 70112, United States
| | - Xiaojie Chen
- Base&Byte Biotechnology Co., Ltd., Changping District, Beijing 102206, PR China
| | - Yiming Zhou
- Base&Byte Biotechnology Co., Ltd., Changping District, Beijing 102206, PR China
| | - Jun Li
- Department of Biological Sciences, Florida International University, Miami, FL 33199, United States
| | - Hong Xin
- Department of Microbiology and Immunology, Louisiana State University Health Science Center, New Orleans, LA 70112, United States
| | - Wenda Gao
- Antagen Pharmaceuticals, Inc., Canton, MA 02021, United States
| |
Collapse
|
14
|
Gao P, Shen W, Bo T. The interaction between gut microbiota and hibernation in mammals. Front Microbiol 2024; 15:1433675. [PMID: 39323884 PMCID: PMC11423207 DOI: 10.3389/fmicb.2024.1433675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024] Open
Abstract
Hibernation, an evolved survival trait among animals, enables them to endure frigid temperatures and food scarcity during the winter months, and it is a widespread phenomenon observed in mammals. The gut microbiota, a crucial component of animal nutrition and health, exhibits particularly dynamic interactions in hibernating mammals. This manuscript comprehensively evaluates the impacts of fasting, hypothermia, and hypometabolism on the gut microbiota of hibernating mammals. It suggests that alterations in the gut microbiota may contribute significantly to the maintenance of energy metabolism and intestinal immune function during hibernation, mediated by their metabolites. By delving into these intricacies, we can gain a deeper understanding of how hibernating mammals adapt to their environments and the consequences of dietary modifications on the symbiotic relationship between the gut microbiota and the host. Additionally, this knowledge can inform our comprehension of the protective mechanisms underlying long-term fasting in non-hibernating species, including humans, providing valuable insights into nutritional strategies and health maintenance.
Collapse
Affiliation(s)
| | | | - Tingbei Bo
- School of Grassland Science, Beijing Forestry University, Beijing, China
| |
Collapse
|
15
|
Dasriya VL, Samtiya M, Ranveer S, Dhillon HS, Devi N, Sharma V, Nikam P, Puniya M, Chaudhary P, Chaudhary V, Behare PV, Dhewa T, Vemuri R, Raposo A, Puniya DV, Khedkar GD, Vishweswaraiah RH, Vij S, Alarifi SN, Han H, Puniya AK. Modulation of gut-microbiota through probiotics and dietary interventions to improve host health. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6359-6375. [PMID: 38334314 DOI: 10.1002/jsfa.13370] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/10/2024]
Abstract
Dietary patterns play an important role in regards to the modulation and control of the gut microbiome composition and function. The interaction between diet and microbiota plays an important role in order to maintain intestinal homeostasis, which ultimately affect the host's health. Diet directly impacts the microbes that inhabit the gastrointestinal tract (GIT), which then contributes to the production of secondary metabolites, such as short-chain fatty acids, neurotransmitters, and antimicrobial peptides. Dietary consumption with genetically modified probiotics can be the best vaccine delivery vector and protect cells from various illnesses. A holistic approach to disease prevention, treatment, and management takes these intrinsically linked diet-microbes, microbe-microbe interactions, and microbe-host interactions into account. Dietary components, such as fiber can modulate beneficial gut microbiota, and they have resulting ameliorative effects against metabolic disorders. Medical interventions, such as antibiotic drugs can conversely have detrimental effects on gut microbiota by disputing the balance between Bacteroides and firmicute, which contribute to continuing disease states. We summarize the known effects of various dietary components, such as fibers, carbohydrates, fatty acids, vitamins, minerals, proteins, phenolic acids, and antibiotics on the composition of the gut microbiota in this article in addition to the beneficial effect of genetically modified probiotics and consequentially their role in regards to shaping human health. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Mrinal Samtiya
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, India
| | - Soniya Ranveer
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | | | - Nishu Devi
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Vikas Sharma
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Pranali Nikam
- College of Dairy Science and Food Technology, Dau Shri Vasudev Chandrakar, Kamdhenu University, Raipur, India
| | - Monica Puniya
- Science and Standards Division, Food Safety and Standards Authority of India, FDA Bhawan, New Delhi, India
| | - Priya Chaudhary
- Microbiology Department, VCSG Government Institute of Medical Science and Research, Srinagar, India
| | - Vishu Chaudhary
- University Institute of Biotechnology, Chandigarh University, Sahibzada Ajit Singh Nagar, India
| | - Pradip V Behare
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Tejpal Dhewa
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, India
| | - Ravichandra Vemuri
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| | - Dharun Vijay Puniya
- Center of One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Gulab D Khedkar
- Paul Hebert Center for DNA Barcoding and Biodiversity Studies, Dr Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | | | - Shilpa Vij
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Sehad N Alarifi
- Department of Food and Nutrition Science, Al-Quwayiyah College of Sciences and Humanities, Shaqra University, Shaqraa, Saudi Arabia
| | - Heesup Han
- College of Hospitality and Tourism Management, Sejong University, Seoul, South Korea
| | - Anil Kumar Puniya
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
16
|
Biswas P, Khan A, Mallick AI. Targeted Bioimaging of Microencapsulated Recombinant LAB Vector Expressing Fluorescent Reporter Protein: A Non-invasive Approach for Microbial Tracking. ACS Biomater Sci Eng 2024; 10:5210-5225. [PMID: 39087888 DOI: 10.1021/acsbiomaterials.4c00597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Lactococcus lactis (L. lactis), the first genetically modified Generally Recognized As Safe (GRAS) category Lactic Acid producing Bacteria (LAB), is best known for its generalized health-promoting benefits and ability to express heterologous proteins. However, achieving the optimal probiotic effects requires a selective approach that would allow us to study in vivo microbial biodistribution, fate, and immunological consequences. Although the chemical conjugation of fluorophores and chromophores represent the standard procedure to tag microbial cells for various downstream applications, it requires a high-throughput synthesis scheme, which is often time-consuming and expensive. On the contrary, the genetic manipulation of LAB vector, either chromosomally or extra-chromosomally, to express bioluminescent or fluorescent reporter proteins has greatly enhanced our ability to monitor bacterial transit through a complex gut environment. However, with faster passage and quick washing out from the gut due to rhythmic contractions of the digestive tract, real-time tracking of LAB vectors, particularly non-commensal ones, remains problematic. To get a deeper insight into the biodistribution of non-commensal probiotic bacteria in vivo, we bioengineered L. lactis to express fluorescence reporter proteins, mCherry (bright red monomeric fluorescent protein) and mEGFP (monomeric enhanced green fluorescent protein), followed by microencapsulation with a mucoadhesive and biodegradable polymer, chitosan. We show that coating of recombinant Lactococcus lactis (rL. lactis) with chitosan polymer, cross-linked with tripolyphosphate (TPP), retains their ability to express the reporter proteins stably without altering the specificity and sensitivity of fluorescence detection in vitro and in vivo. Further, we provide evidence of enhanced intragastric stability by chitosan-TPP (CS) coating of rL. lactis cells, allowing us to study the spatiotemporal distribution for an extended time in the gut of two unrelated hosts, avian and murine. The present scheme involving genetic modification and chitosan encapsulation of non-commensal LAB vector demonstrates great promise as a non-invasive and intensive tool for active live tracking of gut microbes.
Collapse
Affiliation(s)
- Prakash Biswas
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Afruja Khan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Amirul Islam Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| |
Collapse
|
17
|
Huang L, Tang W, He L, Li M, Lin X, Hu A, Huang X, Wu Z, Wu Z, Chen S, Hu Y. Engineered probiotic Escherichia coli elicits immediate and long-term protection against influenza A virus in mice. Nat Commun 2024; 15:6802. [PMID: 39122688 PMCID: PMC11315933 DOI: 10.1038/s41467-024-51182-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Influenza virus infection remains a major global health problem and requires a universal vaccine with broad protection against different subtypes as well as a rapid-response vaccine to provide immediate protection in the event of an epidemic outbreak. Here, we show that intranasal administration of probiotic Escherichia coli Nissle 1917 activates innate immunity in the respiratory tract and provides immediate protection against influenza virus infection within 1 day. Based on this vehicle, a recombinant strain is engineered to express and secret five tandem repeats of the extracellular domain of matrix protein 2 from different influenza virus subtypes. Intranasal vaccination with this strain induces durable humoral and mucosal responses in the respiratory tract, and provides broad protection against the lethal challenge of divergent influenza viruses in female BALB/c mice. Our findings highlight a promising delivery platform for developing mucosal vaccines that provide immediate and sustained protection against respiratory pathogens.
Collapse
Affiliation(s)
- Ling Huang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Tang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Lina He
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Mengke Li
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xian Lin
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- Hubei JiangXia Laboratory, Wuhan, 430071, China
| | - Ao Hu
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xindi Huang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhouyu Wu
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiyong Wu
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiyun Chen
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Yangbo Hu
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
- Hubei JiangXia Laboratory, Wuhan, 430071, China.
| |
Collapse
|
18
|
Sangeetha Vijayan P, Xavier J, Valappil MP. A review of immune modulators and immunotherapy in infectious diseases. Mol Cell Biochem 2024; 479:1937-1955. [PMID: 37682390 DOI: 10.1007/s11010-023-04825-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/05/2023] [Indexed: 09/09/2023]
Abstract
The human immune system responds to harmful foreign invaders frequently encountered by the body and employs defense mechanisms to counteract such assaults. Various exogenous and endogenous factors play a prominent role in maintaining the balanced functioning of the immune system, which can result in immune suppression or immune stimulation. With the advent of different immune-modulatory agents, immune responses can be modulated or regulated to control infections and other health effects. Literature provides evidence on various immunomodulators from different sources and their role in modulating immune responses. Due to the limited efficacy of current drugs and the rise in drug resistance, there is a growing need for new therapies for infectious diseases. In this review, we aim to provide a comprehensive overview of different immune-modulating agents and immune therapies specifically focused on viral infectious diseases.
Collapse
Affiliation(s)
- P Sangeetha Vijayan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology [Govt. of India], Thiruvananthapuram, 695 012, Kerala, India
| | - Joseph Xavier
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology [Govt. of India], Thiruvananthapuram, 695 012, Kerala, India
| | - Mohanan Parayanthala Valappil
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology [Govt. of India], Thiruvananthapuram, 695 012, Kerala, India.
| |
Collapse
|
19
|
Saito S, Cao DY, Maekawa T, Tsuji NM, Okuno A. Lactococcus lactis subsp. cremoris C60 Upregulates Macrophage Function by Modifying Metabolic Preference in Enhanced Anti-Tumor Immunity. Cancers (Basel) 2024; 16:1928. [PMID: 38792006 PMCID: PMC11120145 DOI: 10.3390/cancers16101928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Lactococcus lactis subsp. cremoris C60 is a probiotic strain of lactic acid bacteria (LAB) which induces various immune modifications in myeloid lineage cells. These modifications subsequently regulate T cell function, resulting in enhanced immunity both locally and systemically. Here, we report that C60 suppresses tumor growth by enhancing macrophage function via metabolic alterations, thereby increasing adenosine triphosphate (ATP) production in a murine melanoma model. Intragastric (i.g.) administration of C60 significantly reduced tumor volume compared to saline administration in mice. The anti-tumor function of intratumor (IT) macrophage was upregulated in mice administered with C60, as evidenced by an increased inflammatory phenotype (M1) rather than an anti-inflammatory/reparative (M2) phenotype, along with enhanced antigen-presenting ability, resulting in increased tumor antigen-specific CD8+ T cells. Through this functional modification, we identified that C60 establishes a glycolysis-dominant metabolism, rather than fatty acid oxidation (FAO), in IT macrophages, leading to increased intracellular ATP levels. To address the question of why orally supplemented C60 exhibits functions in distal places, we found a possibility that bacterial cell wall components, which could be distributed throughout the body from the gut, may induce stimulatory signals in peripheral macrophages via Toll-like receptors (TLRs) signaling activation. Thus, C60 strengthens macrophage anti-tumor immunity by promoting a predominant metabolic shift towards glycolysis upon TLR-mediated stimulation, thereby increasing substantial energy production.
Collapse
Affiliation(s)
- Suguru Saito
- Department of Infection and Immunity, Division of Virology, Faculty of Medicine, Jichi Medical University, Shimotsuke, Tochigi 3290431, Japan
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Duo-Yao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Toshio Maekawa
- iFoodMed Inc., Tsuchiura, Ibaraki 3000873, Japan;
- Department of Pathology and Microbiology, Division of Immune Homeostasis, Nihon University School of Medicine, Itabashi, Tokyo 1738610, Japan;
| | - Noriko M. Tsuji
- Department of Pathology and Microbiology, Division of Immune Homeostasis, Nihon University School of Medicine, Itabashi, Tokyo 1738610, Japan;
- Department of Pathology and Microbiology, Division of Microbiology, Nihon University School of Medicine, Itabashi, Tokyo 1738610, Japan
- Department of Food Science, Jumonji University, Niiza, Saitama 3528510, Japan
| | - Alato Okuno
- Department of Health and Nutrition, Faculty of Human Design, Shibata Gakuen University, Hirosaki, Aomori 0368530, Japan
| |
Collapse
|
20
|
Murali SK, Mansell TJ. Next generation probiotics: Engineering live biotherapeutics. Biotechnol Adv 2024; 72:108336. [PMID: 38432422 DOI: 10.1016/j.biotechadv.2024.108336] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/10/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
The population dynamics of the human microbiome have been associated with inflammatory bowel disease, cancer, obesity, autoimmune diseases, and many other human disease states. An emerging paradigm in treatment is the administration of live engineered organisms, also called next-generation probiotics. However, the efficacy of these microbial therapies can be limited by the organism's overall performance in the harsh and nutrient-limited environment of the gut. In this review, we summarize the current state of the art use of bacterial and yeast strains as probiotics, highlight the recent development of genetic tools for engineering new therapeutic functions in these organisms, and report on the latest therapeutic applications of engineered probiotics, including recent clinical trials. We also discuss the supplementation of prebiotics as a method of manipulating the microbiome and improving the overall performance of engineered live biotherapeutics.
Collapse
Affiliation(s)
- Sanjeeva Kumar Murali
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA.
| | - Thomas J Mansell
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA; Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
21
|
Li F, Zhao H, Sui L, Yin F, Liu X, Guo G, Li J, Jiang Y, Cui W, Shan Z, Zhou H, Wang L, Qiao X, Tang L, Wang X, Li Y. Assessing immunogenicity of CRISPR-NCas9 engineered strain against porcine epidemic diarrhea virus. Appl Microbiol Biotechnol 2024; 108:248. [PMID: 38430229 PMCID: PMC10908614 DOI: 10.1007/s00253-023-12989-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 03/03/2024]
Abstract
Porcine epidemic diarrhea (PED) caused by porcine epidemic diarrhea virus (PEDV), is an acute and highly infectious disease, resulting in substantial economic losses in the pig industry. Given that PEDV primarily infects the mucosal surfaces of the intestinal tract, it is crucial to improve the mucosal immunity to prevent viral invasion. Lactic acid bacteria (LAB) oral vaccines offer unique advantages and potential applications in combatting mucosal infectious diseases, making them an ideal approach for controlling PED outbreaks. However, traditional LAB oral vaccines use plasmids for exogenous protein expression and antibiotic genes as selection markers. Antibiotic genes can be diffused through transposition, transfer, or homologous recombination, resulting in the generation of drug-resistant strains. To overcome these issues, genome-editing technology has been developed to achieve gene expression in LAB genomes. In this study, we used the CRISPR-NCas9 system to integrate the PEDV S1 gene into the genome of alanine racemase-deficient Lactobacillus paracasei △Alr HLJ-27 (L. paracasei △Alr HLJ-27) at the thymidylate synthase (thyA) site, generating a strain, S1/△Alr HLJ-27. We conducted immunization assays in mice and piglets to evaluate the level of immune response and evaluated its protective effect against PEDV through challenge tests in piglets. Oral administration of the strain S1/△Alr HLJ-27 in mice and piglets elicited mucosal, humoral, and cellular immune responses. The strain also exhibited a certain level of resistance against PEDV infection in piglets. These results demonstrate the potential of S1/△Alr HLJ-27 as an oral vaccine candidate for PEDV control. KEY POINTS: • A strain S1/△Alr HLJ-27 was constructed as the candidate for an oral vaccine. • Immunogenicity response and challenge test was carried out to analyze the ability of the strain. • The strain S1/△Alr HLJ-27 could provide protection for piglets to a certain extent.
Collapse
Affiliation(s)
- Fengsai Li
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
| | - Haiyuan Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Ling Sui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Fangjie Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xinzi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Guihai Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Zhifu Shan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Xiaona Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China.
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China.
| |
Collapse
|
22
|
Wu Y, Liu P, Liao Q, Jin T, Wu Z, Guomin W, Wang H, Chu PK. Cotton Fibers with a Lactic Acid-Like Surface for Re-establishment of Protective Lactobacillus Microbiota by Selectively Inhibiting Vaginal Pathogens. Adv Healthc Mater 2024; 13:e2302736. [PMID: 38061349 DOI: 10.1002/adhm.202302736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/05/2023] [Indexed: 12/26/2023]
Abstract
Failure to reconstruct the Lactobacillus microbiota is the major reason for the recurrence of vaginal infection. However, most empiric therapies focus on the efficacy of pathogen elimination but do not sufficiently consider the viability of Lactobacillus. Herein, cotton fibers with a lactic acid-like surface (LC) are fabricated by NaIO4 oxidation and L-isoserine grafting. The lactic acid analog chain ends and imine structure of LC can penetrate cell walls to cause protein cleavage in Escherichia coli and Candida albicans and inhibit vaginal pathogens. Meanwhile, the viability of Lactobacillus acidophilus is unaffected by the LC treatment, thus revealing a selective way to suppress pathogens as well as provide a positive route to re-establish protective microbiota in the vaginal tract. Moreover, LC has excellent properties such as good biosafety, antiadhesion, water absorption, and weight retention. The strategy proposed here not only is practical, but also provides insights into the treatment of vaginal infections.
Collapse
Affiliation(s)
- Yuzheng Wu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Pei Liu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Qing Liao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Nuclear Science and Technology and CAS Key Laboratory of Geospace Environment, University of Science and Technology of China, Hefei, 230026, China
| | - Tao Jin
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- School of Nuclear Science and Technology and CAS Key Laboratory of Geospace Environment, University of Science and Technology of China, Hefei, 230026, China
| | - Zhengwei Wu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Wang Guomin
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
23
|
Bousbaine D, Bauman KD, Chen YE, Yu VK, Lalgudi PV, Naziripour A, Veinbachs A, Phung JL, Nguyen TTD, Swenson JM, Lee YE, Dimas A, Jain S, Meng X, Pham TPT, Zhao A, Barkal L, Gribonika I, Van Rompay KKA, Belkaid Y, Barnes CO, Fischbach MA. Discovery and engineering of the antibody response against a prominent skin commensal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576900. [PMID: 38328052 PMCID: PMC10849572 DOI: 10.1101/2024.01.23.576900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The ubiquitous skin colonist Staphylococcus epidermidis elicits a CD8 + T cell response pre-emptively, in the absence of an infection 1 . However, the scope and purpose of this anti-commensal immune program are not well defined, limiting our ability to harness it therapeutically. Here, we show that this colonist also induces a potent, durable, and specific antibody response that is conserved in humans and non-human primates. A series of S. epidermidis cell-wall mutants revealed that the cell surface protein Aap is a predominant target. By colonizing mice with a strain of S. epidermidis in which the parallel β-helix domain of Aap is replaced by tetanus toxin fragment C, we elicit a potent neutralizing antibody response that protects mice against a lethal challenge. A similar strain of S. epidermidis expressing an Aap-SpyCatcher chimera can be conjugated with recombinant immunogens; the resulting labeled commensal elicits high titers of antibody under conditions of physiologic colonization, including a robust IgA response in the nasal mucosa. Thus, immunity to a common skin colonist involves a coordinated T and B cell response, the latter of which can be redirected against pathogens as a novel form of topical vaccination.
Collapse
|
24
|
Blanch‐Asensio M, Dey S, Tadimarri VS, Sankaran S. Expanding the genetic programmability of Lactiplantibacillus plantarum. Microb Biotechnol 2024; 17:e14335. [PMID: 37638848 PMCID: PMC10832526 DOI: 10.1111/1751-7915.14335] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/05/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023] Open
Abstract
Lactobacilli are ubiquitous in nature and symbiotically provide health benefits for countless organisms including humans, animals and plants. They are vital for the fermented food industry and are being extensively explored for healthcare applications. For all these reasons, there is considerable interest in enhancing and controlling their capabilities through the engineering of genetic modules and circuits. One of the most robust and reliable microbial chassis for these synthetic biology applications is the widely used Lactiplantibacillus plantarum species. However, the genetic toolkit needed to advance its applicability remains poorly equipped. This mini-review highlights the genetic parts that have been discovered to achieve food-grade recombinant protein production and speculates on lessons learned from these studies for L. plantarum engineering. Furthermore, strategies to identify, create and optimize genetic parts for real-time regulation of gene expression and enhancement of biosafety are also suggested.
Collapse
Affiliation(s)
- Marc Blanch‐Asensio
- Bioprogrammable Materials, INM—Leibniz Institute for New MaterialsSaarbrückenGermany
| | - Sourik Dey
- Bioprogrammable Materials, INM—Leibniz Institute for New MaterialsSaarbrückenGermany
| | - Varun Sai Tadimarri
- Bioprogrammable Materials, INM—Leibniz Institute for New MaterialsSaarbrückenGermany
| | - Shrikrishnan Sankaran
- Bioprogrammable Materials, INM—Leibniz Institute for New MaterialsSaarbrückenGermany
| |
Collapse
|
25
|
Oshima S, Namai F, Sato T, Shimosato T. Development of a Single-Chain Fragment Variable that Binds to the SARS-CoV-2 Spike Protein Produced by Genetically Modified Lactic Acid Bacteria. Mol Biotechnol 2024; 66:151-160. [PMID: 37060514 PMCID: PMC10105526 DOI: 10.1007/s12033-023-00741-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/29/2023] [Indexed: 04/16/2023]
Abstract
SARS-CoV-2 enters cells via binding of the surface-exposed spike protein RBD to host cell ACE2 receptors. Therefore, in this study, we designed a scFv (single-chain fragment variable) based on the amino acid sequence of CC12.1, a neutralizing antibody found in the serum of patients with COVID-19. scFv is a low-molecular-weight antibody designed based on the antibody-antigen recognition site. Compared with the original antibody, scFv has the advantages of high tissue penetration and low production cost. In this study, we constructed gmLAB (genetically modified lactic acid bacteria) by incorporating the designed scFv into a gene expression vector and introducing it into lactic acid bacteria, aiming to develop microbial therapeutics against COVID-19. In addition, gmLAB were also constructed to produce GFP-fused scFv as a means of visualizing scFv. Expression of each scFv was confirmed by Western blotting, and the ability to bind to the RBD was investigated by ELISA. This study is the first to design a scFv against the RBD of SARS-CoV-2 using gmLAB and could be applied in the future.
Collapse
Affiliation(s)
- Suzuka Oshima
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano, 399-4598, Japan
| | - Fu Namai
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano, 399-4598, Japan
| | - Takashi Sato
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano, 399-4598, Japan.
| | - Takeshi Shimosato
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano, 399-4598, Japan.
| |
Collapse
|
26
|
Bravo M, Diaz-Chamorro S, Garrido-Jiménez S, Blanco J, Simón I, García W, Montero MJ, Gonçalves P, Martínez C, Cumplido-Laso G, Benítez DA, Mulero-Navarro S, Centeno F, Román ÁC, Fernández-Llario P, Cerrato R, Carvajal-González JM. Immunomodulatory effects of inactivated Ligilactobacillus salivarius CECT 9609 on respiratory epithelial cells. Vet Res 2023; 54:91. [PMID: 37845774 PMCID: PMC10580541 DOI: 10.1186/s13567-023-01228-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/07/2023] [Indexed: 10/18/2023] Open
Abstract
The microbiota in humans and animals play crucial roles in defense against pathogens and offer a promising natural source for immunomodulatory products. However, the development of physiologically relevant model systems and protocols for testing such products remains challenging. In this study, we present an experimental condition where various natural products derived from the registered lactic acid bacteria Ligilactobacillus salivarius CECT 9609, known for their immunomodulatory activity, were tested. These products included live and inactivated bacteria, as well as fermentation products at different concentrations and culture times. Using our established model system, we observed no morphological changes in the airway epithelium upon exposure to Pasteurella multocida, a common respiratory pathogen. However, early molecular changes associated with the innate immune response were detected through transcript analysis. By employing diverse methodologies ranging from microscopy to next-generation sequencing (NGS), we characterized the interaction of these natural products with the airway epithelium and their potential beneficial effects in the presence of P. multocida infection. In particular, our discovery highlights that among all Ligilactobacillus salivarius CECT 9609 products tested, only inactivated cells preserve the conformation and morphology of respiratory epithelial cells, while also reversing or altering the natural immune responses triggered by Pasteurella multocida. These findings lay the groundwork for further exploration into the protective role of these bacteria and their derivatives.
Collapse
Affiliation(s)
| | - Selene Diaz-Chamorro
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain
| | - Sergio Garrido-Jiménez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain
| | | | | | | | | | | | | | - Guadalupe Cumplido-Laso
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain
| | - Dixan Agustín Benítez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain
| | - Sonia Mulero-Navarro
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain
| | - Francisco Centeno
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain
| | - Ángel Carlos Román
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain
| | | | | | - José María Carvajal-González
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain.
| |
Collapse
|
27
|
Chau ECT, Kwong TC, Pang CK, Chan LT, Chan AML, Yao X, Tam JSL, Chan SW, Leung GPH, Tai WCS, Kwan YW. A Novel Probiotic-Based Oral Vaccine against SARS-CoV-2 Omicron Variant B.1.1.529. Int J Mol Sci 2023; 24:13931. [PMID: 37762235 PMCID: PMC10530581 DOI: 10.3390/ijms241813931] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
COVID-19 pandemic, caused by the SARS-CoV-2 virus, is still affecting the entire world via the rapid emergence of new contagious variants. Vaccination remains the most effective prevention strategy for viral infection, yet not all countries have sufficient access to vaccines due to limitations in manufacturing and transportation. Thus, there is an urgent need to develop an easy-to-use, safe, and low-cost vaccination approach. Genetically modified microorganisms, especially probiotics, are now commonly recognized as attractive vehicles for delivering bioactive molecules via oral and mucosal routes. In this study, Lactobacillus casei has been selected as the oral vaccine candidate based on its' natural immunoadjuvant properties and the ability to resist acidic gastric environment, to express antigens of SARS-CoV-2 Omicron variant B.1.1.529 with B-cell and T-cell epitopes. This newly developed vaccine, OMGVac, was shown to elicit a robust IgG systemic immune response against the spike protein of Omicron variant B.1.1.529 in Golden Syrian hamsters. No adverse effects were found throughout this study, and the overall safety was evaluated in terms of physiological and histopathological examinations of different organs harvested. In addition, this study illustrated the use of the recombinant probiotic as a live delivery vector in the initiation of systemic immunity, which shed light on the future development of next-generation vaccines to combat emerging infectious diseases.
Collapse
Affiliation(s)
- Eddie Chung Ting Chau
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; (E.C.T.C.); (T.C.K.); (C.K.P.); (L.T.C.); (A.M.L.C.); (X.Y.)
| | - Tsz Ching Kwong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; (E.C.T.C.); (T.C.K.); (C.K.P.); (L.T.C.); (A.M.L.C.); (X.Y.)
| | - Chun Keung Pang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; (E.C.T.C.); (T.C.K.); (C.K.P.); (L.T.C.); (A.M.L.C.); (X.Y.)
| | - Lee Tung Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; (E.C.T.C.); (T.C.K.); (C.K.P.); (L.T.C.); (A.M.L.C.); (X.Y.)
| | - Andrew Man Lok Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; (E.C.T.C.); (T.C.K.); (C.K.P.); (L.T.C.); (A.M.L.C.); (X.Y.)
| | - Xiaoqiang Yao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; (E.C.T.C.); (T.C.K.); (C.K.P.); (L.T.C.); (A.M.L.C.); (X.Y.)
| | - John Siu Lun Tam
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; (J.S.L.T.); (W.C.S.T.)
| | - Shun Wan Chan
- Department of Food and Health Sciences, Faculty of Science and Technology, Technological and Higher Education Institute of Hong Kong, Hong Kong, China;
| | - George Pak Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China;
| | - William Chi Shing Tai
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; (J.S.L.T.); (W.C.S.T.)
| | - Yiu Wa Kwan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; (E.C.T.C.); (T.C.K.); (C.K.P.); (L.T.C.); (A.M.L.C.); (X.Y.)
| |
Collapse
|
28
|
Wei G, Liu Q, Wang X, Zhou Z, Zhao X, Zhou W, Liu W, Zhang Y, Liu S, Zhu C, Wei H. A probiotic nanozyme hydrogel regulates vaginal microenvironment for Candida vaginitis therapy. SCIENCE ADVANCES 2023; 9:eadg0949. [PMID: 37196095 DOI: 10.1126/sciadv.adg0949] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/14/2023] [Indexed: 05/19/2023]
Abstract
Molecular therapeutics are limited for Candida vaginitis because they damage normal cells and tissues of vagina, aggravating the imbalance of vaginal microbiota and increasing the recurrence. To tackle this limitation, through the combination of peroxidase-like rGO@FeS2 nanozymes [reduced graphene oxide (rGO)] with Lactobacillus-produced lactic acid and H2O2, a responsive hyaluronic acid (HA) hydrogel rGO@FeS2/Lactobacillus@HA (FeLab) is developed. FeLab has simultaneous anti-Candida albicans and vaginal microbiota-modulating activities. In particular, the hydroxyl radical produced from rGO@FeS2 nanozymes and Lactobacillus kills C. albicans isolated from clinical specimens without affecting Lactobacillus. In mice with Candida vaginitis, FeLab has obvious anti-C. albicans activity but hardly damages vaginal mucosa cells, which is beneficial to vaginal mucosa repair. Moreover, a higher proportion of Firmicutes (especially Lactobacillus) and a decrease in Proteobacteria reshape a healthy vaginal microbiota to reduce the recurrence. These results provide a combined therapeutic of nanozymes and probiotics with translational promise for Candida vaginitis therapy.
Collapse
Affiliation(s)
- Gen Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Quanyi Liu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoyu Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zijun Zhou
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiaozhi Zhao
- Department of Andrology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Wanqing Zhou
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Wanling Liu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yihong Zhang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Shujie Liu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Chenxin Zhu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
29
|
Alias NAR, Hoo WPY, Siak PY, Othman SS, Mohammed Alitheen NB, In LLA, Abdul Rahim R, Song AAL. Effect of Secretion Efficiency of Mutant KRAS Neoantigen by Lactococcus lactis on the Immune Response of a Mucosal Vaccine Delivery Vehicle Targeting Colorectal Cancer. Int J Mol Sci 2023; 24:8928. [PMID: 37240273 PMCID: PMC10219268 DOI: 10.3390/ijms24108928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Colorectal cancer (CRC) is often caused by mutations in the KRAS oncogene, making KRAS neoantigens a promising vaccine candidate for immunotherapy. Secreting KRAS antigens using live Generally Recognized as Safe (GRAS) vaccine delivery hosts such as Lactococcus lactis is deemed to be an effective strategy in inducing specific desired responses. Recently, through the engineering of a novel signal peptide SPK1 from Pediococcus pentosaceus, an optimized secretion system was developed in the L. lactis NZ9000 host. In this study, the potential of the L. lactis NZ9000 as a vaccine delivery host for the production of two KRAS oncopeptides (mutant 68V-DT and wild-type KRAS) through the use of the signal peptide SPK1 and its mutated derivative (SPKM19) was investigated. The expression and secretion efficiency analyses of KRAS peptides from L. lactis were performed in vitro and in vivo in BALB/c mice. Contradictory to our previous study using the reporter staphylococcal nuclease (NUC), the yield of secreted KRAS antigens mediated by the target mutant signal peptide SPKM19 was significantly lower (by ~1.3-folds) compared to the wild-type SPK1. Consistently, a superior elevation of IgA response against KRAS aided by SPK1 rather than mutant SPKM19 was observed. Despite the lower specific IgA response for SPKM19, a positive IgA immune response from mice intestinal washes was successfully triggered following immunization. Size and secondary conformation of the mature proteins are suggested to be the contributing factors for these discrepancies. This study proves the potential of L. lactis NZ9000 as a host for oral vaccine delivery due to its ability to evoke the desired mucosal immune response in the gastrointestinal tract of mice.
Collapse
Affiliation(s)
- Nur Aqlili Riana Alias
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.A.R.A.); (S.S.O.); (N.B.M.A.); (R.A.R.)
| | - Winfrey Pui Yee Hoo
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia;
| | - Pui Yan Siak
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, Port Dickson 71010, Malaysia;
| | - Siti Sarah Othman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.A.R.A.); (S.S.O.); (N.B.M.A.); (R.A.R.)
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Noorjahan Banu Mohammed Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.A.R.A.); (S.S.O.); (N.B.M.A.); (R.A.R.)
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Lionel Lian Aun In
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University Kuala Lumpur, Cheras 56000, Malaysia;
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.A.R.A.); (S.S.O.); (N.B.M.A.); (R.A.R.)
- National Institutes of Biotechnology Malaysia, Argo-Biotechnology Institute Malaysia Complex, Serdang 43400, Malaysia
| | - Adelene Ai-Lian Song
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
30
|
Hwang IC, Valeriano VD, Song JH, Pereira M, Oh JK, Han K, Engstrand L, Kang DK. Mucosal immunization with lactiplantibacillus plantarum-displaying recombinant SARS-CoV-2 epitopes on the surface induces humoral and mucosal immune responses in mice. Microb Cell Fact 2023; 22:96. [PMID: 37161468 PMCID: PMC10169176 DOI: 10.1186/s12934-023-02100-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND The use of probiotic lactic acid bacteria as a mucosal vaccine vector is considered a promising alternative compared to the use of other microorganisms because of its "Generally Regarded as Safe" status, its potential adjuvant properties, and its tolerogenicity to the host. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease (COVID-19), is highly transmissible and pathogenic. This study aimed to determine the potential of Lactiplantibacillus plantarum expressing SARS-CoV-2 epitopes as a mucosal vaccine against SARS-CoV-2. RESULTS In this study, the possible antigenic determinants of the spike (S1-1, S1-2, S1-3, and S1-4), membrane (ME1 and ME2), and envelope (E) proteins of SARS-CoV-2 were predicted, and recombinant L. plantarum strains surface-displaying these epitopes were constructed. Subsequently, the immune responses induced by these recombinant strains were compared in vitro and in vivo. Most surface-displayed epitopes induced pro-inflammatory cytokines [tumor necrosis factor alpha (TNF-α and interleukin (IL)-6] and anti-inflammatory cytokines (IL-10) in lipopolysaccharide-induced RAW 264.7, with the highest anti-inflammatory to pro-inflammatory cytokine ratio in the S1-1 and S1-2 groups, followed by that in the S1-3 group. When orally administered of recombinant L. plantarum expressing SARS-CoV-2 epitopes in mice, all epitopes most increased the expression of IL-4, along with induced levels of TNF-α, interferon-gamma, and IL-10, specifically in spike protein groups. Thus, the surface expression of epitopes from the spike S1 protein in L. plantarum showed potential immunoregulatory effects, suggesting its ability to potentially circumvent hyperinflammatory states relevant to monocyte/macrophage cell activation. At 35 days post immunization (dpi), serum IgG levels showed a marked increase in the S1-1, S1-2, and S1-3 groups. Fecal IgA levels increased significantly from 21 dpi in all the antigen groups, but the boosting effect after 35 dpi was explicitly observed in the S1-1, S1-2, and S1-3 groups. Thus, the oral administration of SARS-CoV-2 antigens into mice induced significant humoral and mucosal immune responses. CONCLUSION This study suggests that L. plantarum is a potential vector that can effectively deliver SARS-CoV-2 epitopes to intestinal mucosal sites and could serve as a novel approach for SARS-CoV-2 mucosal vaccine development.
Collapse
Affiliation(s)
- In-Chan Hwang
- Department of Animal Resources Science, Dankook University, Cheonan, 31116, Republic of Korea
| | - Valerie Diane Valeriano
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Ji Hoon Song
- Department of Animal Resources Science, Dankook University, Cheonan, 31116, Republic of Korea
| | - Marcela Pereira
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Ju Kyoung Oh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Kyudong Han
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
31
|
Zhang D, Zhang J, Kalimuthu S, Liu J, Song ZM, He BB, Cai P, Zhong Z, Feng C, Neelakantan P, Li YX. A systematically biosynthetic investigation of lactic acid bacteria reveals diverse antagonistic bacteriocins that potentially shape the human microbiome. MICROBIOME 2023; 11:91. [PMID: 37101246 PMCID: PMC10134562 DOI: 10.1186/s40168-023-01540-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/31/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Lactic acid bacteria (LAB) produce various bioactive secondary metabolites (SMs), which endow LAB with a protective role for the host. However, the biosynthetic potentials of LAB-derived SMs remain elusive, particularly in their diversity, abundance, and distribution in the human microbiome. Thus, it is still unknown to what extent LAB-derived SMs are involved in microbiome homeostasis. RESULTS Here, we systematically investigate the biosynthetic potential of LAB from 31,977 LAB genomes, identifying 130,051 secondary metabolite biosynthetic gene clusters (BGCs) of 2,849 gene cluster families (GCFs). Most of these GCFs are species-specific or even strain-specific and uncharacterized yet. Analyzing 748 human-associated metagenomes, we gain an insight into the profile of LAB BGCs, which are highly diverse and niche-specific in the human microbiome. We discover that most LAB BGCs may encode bacteriocins with pervasive antagonistic activities predicted by machine learning models, potentially playing protective roles in the human microbiome. Class II bacteriocins, one of the most abundant and diverse LAB SMs, are particularly enriched and predominant in the vaginal microbiome. We utilized metagenomic and metatranscriptomic analyses to guide our discovery of functional class II bacteriocins. Our findings suggest that these antibacterial bacteriocins have the potential to regulate microbial communities in the vagina, thereby contributing to the maintenance of microbiome homeostasis. CONCLUSIONS Our study systematically investigates LAB biosynthetic potential and their profiles in the human microbiome, linking them to the antagonistic contributions to microbiome homeostasis via omics analysis. These discoveries of the diverse and prevalent antagonistic SMs are expected to stimulate the mechanism study of LAB's protective roles for the microbiome and host, highlighting the potential of LAB and their bacteriocins as therapeutic alternatives. Video Abstract.
Collapse
Affiliation(s)
- Dengwei Zhang
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jian Zhang
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Shanthini Kalimuthu
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Jing Liu
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zhi-Man Song
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Bei-Bei He
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Peiyan Cai
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zheng Zhong
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chenchen Feng
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Prasanna Neelakantan
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Yong-Xin Li
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
32
|
Ren J, He F, Yu D, Xu H, Li N, Cao Z, Wen J. 16S rRNA Gene Amplicon Sequencing of Gut Microbiota Affected by Four Probiotic Strains in Mice. Vet Sci 2023; 10:vetsci10040288. [PMID: 37104443 PMCID: PMC10145630 DOI: 10.3390/vetsci10040288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/23/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
Probiotics, also referred to as "living microorganisms," are mostly present in the genitals and the guts of animals. They can increase an animal's immunity, aid in digestion and absorption, control gut microbiota, protect against sickness, and even fight cancer. However, the differences in the effects of different types of probiotics on host gut microbiota composition are still unclear. In this study, 21-day-old specific pathogen-free (SPF) mice were gavaged with Lactobacillus acidophilus (La), Lactiplantibacillus plantarum (Lp), Bacillus subtilis (Bs), Enterococcus faecalis (Ef), LB broth medium, and MRS broth medium. We sequenced 16S rRNA from fecal samples from each group 14 d after gavaging. According to the results, there were significant differences among the six groups of samples in Firmicutes, Bacteroidetes, Proteobacteria, Bacteroidetes, Actinobacteria, and Desferribacter (p < 0.01) at the phylum level. Lactobacillus, Erysipelaceae Clostridium, Bacteroides, Brautella, Trichospiraceae Clostridium, Verummicroaceae Ruminococcus, Ruminococcus, Prevotella, Shigella, and Clostridium Clostridium differed significantly at the genus level (p < 0.01). Four kinds of probiotic changes in the composition and structure of the gut microbiota in mice were observed, but they did not cause changes in the diversity of the gut microbiota. In conclusion, the use of different probiotics resulted in different changes in the gut microbiota of the mice, including genera that some probiotics decreased and genera that some pathogens increased. According to the results of this study, different probiotic strains have different effects on the gut microbiota of mice, which may provide new ideas for the mechanism of action and application of microecological agents.
Collapse
Affiliation(s)
- Jianwei Ren
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Fang He
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Detao Yu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Hang Xu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Nianfeng Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhi Cao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Jianxin Wen
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
33
|
Wang Q, Guo H, Mao W, Qian X, Liu Y. The Oral Delivery System of Modified GLP-1 by Probiotics for T2DM. Pharmaceutics 2023; 15:pharmaceutics15041202. [PMID: 37111687 PMCID: PMC10143976 DOI: 10.3390/pharmaceutics15041202] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The glucagon-like peptide-1 (GLP-1) is a peptide with incretin activity and plays an important role in glycemic control as well as the improvement of insulin resistance in type 2 diabetes mellitus (T2DM). However, the short half-life of the native GLP-1 in circulation poses difficulties for clinical practice. To improve the proteolytic stability and delivery properties of GLP-1, a protease-resistant modified GLP-1 (mGLP-1) was constructed with added arginine to ensure the structural integrity of the released mGLP-1 in vivo. The model probiotic Lactobacillus plantarum WCFS1 was chosen as the oral delivery vehicle with controllable endogenous genetic tools driven for mGLP-1 secretory constitutive expression. The feasibility of our design was explored in db/db mice which showed an improvement in diabetic symptoms related to decreased pancreatic glucagon, elevated pancreatic β-cell proportion, and increased insulin sensitivity. In conclusion, this study provides a novel strategy for the oral delivery of mGLP-1 and further probiotic transformation.
Collapse
Affiliation(s)
- Qing Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haixin Guo
- Shanghai TriApex Biotechnology Co., Ltd., Shanghai 201315, China
| | - Wenwei Mao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiuping Qian
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yangang Liu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
34
|
Zhao T, Yang B, Li H, Hao Z, Cong W, Kang Y. Lp-pPG-611.1-LPS as an immune enhancer provides effective protection against Aeromonas veronii infection in Carassius auratus. Ann N Y Acad Sci 2023; 1520:115-126. [PMID: 36477764 DOI: 10.1111/nyas.14942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aeromonas veronii (A. veronii) is an important zoonotic pathogen that causes substantial economic losses in aquaculture. In this study, we aimed to develop a safe and effective immune enhancer to protect Carassius auratus (C. auratus) from A. veronii infections. With recognized safety, lactic acid bacteria are used as antigen delivery vehicles to present antigens. Lipopolysaccharide (LPS), a protective antigen, induces immune responses in animals. Therefore, we created recombinant Lactobacillus plantarum (L. plantarum) with surface-displayed LPS of A. veronii TH0426 and tested its effects on immune responses in C. auratus. The results showed that recombinant L. plantarum Lp-pPG-611.1-LPS, as an immune enhancer, could improve the innate and adaptive immune responses of C. auratus when it was added to the diet of C. auratus. The challenge test showed that the survival rate of C. auratus fed with L. plantarum Lp-pPG-611.1-LPS was higher than that of the control groups, indicating that the recombinant L. plantarum Lp-pPG-611.1-LPS increased the resistance of C. auratus to A. veronii infection. The present results provide a theoretical basis for the development of recombinant L. plantarum Lp-pPG-611.1-LPS as an immune enhancer in aquaculture.
Collapse
Affiliation(s)
- Tong Zhao
- Marine College, Shandong University, Weihai, China.,College of Veterinary Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Bintong Yang
- Marine College, Shandong University, Weihai, China
| | - Hongjin Li
- Marine College, Shandong University, Weihai, China.,College of Veterinary Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Zhipeng Hao
- Marine College, Shandong University, Weihai, China
| | - Wei Cong
- Marine College, Shandong University, Weihai, China
| | - Yuanhuan Kang
- Marine College, Shandong University, Weihai, China.,Shandong Key Laboratory of Animal Microecological Preparation, Shandong Baolai-Leelai Bio-Tech Co., Ltd, Tai'an, China
| |
Collapse
|
35
|
Shamshirgaran MA, Golchin M, Salehi M, Kheirandish R. Evaluation the efficacy of oral immunization of broiler chickens with a recombinant Lactobacillus casei vaccine vector expressing the Carboxy-terminal fragment of α-toxin from Clostridium perfringens. BMC Vet Res 2023; 19:13. [PMID: 36658534 PMCID: PMC9850811 DOI: 10.1186/s12917-023-03566-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Clostridium perfringens (C. perfringens) is a serious anaerobic enteric pathogen causing necrotic enteritis (NE) in broiler chickens. Following the ban on antibiotics as growth promoters in animal feedstuffs, there has been a remarkable rise in occurrence of NE which resulted in considering alternative approaches, particularly vaccination. The objective of this work was to evaluate the recombinant Lactobacillus casei (L. casei) expressing the C-terminal domain of α-toxin from C. perfringens as a potential probiotic-based vaccine candidate to immunize the broiler chickens against NE. RESULTS The broiler chickens immunized orally with recombinant vaccine strain were significantly protected against experimental NE challenge, and developed specific serum anti-α antibodies. Additionally, the immunized birds showed higher body weight gains compared with control groups during the challenge experiment. CONCLUSIONS The current study showed that oral immunization of broiler chickens with a safe probiotic-based vector vaccine expressing α-toxin from C. perfringens could provide protective immunity against NE in birds.
Collapse
Affiliation(s)
- Mohammad Ali Shamshirgaran
- grid.412503.10000 0000 9826 9569Division of Microbiology, Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Post Box: 76169-133, Kerman, 7616914111 Iran
| | - Mehdi Golchin
- grid.412503.10000 0000 9826 9569Division of Microbiology, Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Post Box: 76169-133, Kerman, 7616914111 Iran
| | - Mahmoud Salehi
- grid.412503.10000 0000 9826 9569Division of Poultry Diseases, Department of Clinical Science, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Reza Kheirandish
- grid.412503.10000 0000 9826 9569Division of Pathology, Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
36
|
Sun L, Zhao N, Li H, Wang B, Li H, Zhang X, Zhao X. Construction of a Lactobacillus plantarum-based claudin-3 targeting delivery system for the development of vaccines against Eimeria tenella. Vaccine 2023; 41:756-765. [PMID: 36526500 DOI: 10.1016/j.vaccine.2022.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/06/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Avian coccidiosis causes huge economic losses to the poultry industry worldwide and currently lacks effective live vector vaccines. Achieving efficient antigen delivery to mucosa-associated lymphoid tissue (MALT) is critical for improving the effectiveness of vaccines. Here, chicken claudin-3 (CLDN3), a tight junction protein expressed in MALT, was identified as a target, and the C-terminal region of Clostridium perfringens enterotoxin (C-CPE) was proven to bind to chicken CLDN3. Then, a CLDN3-targeting Lactobacillus plantarum NC8-expressing C-CPE surface display system (NC8/GFP-C-CPE) was constructed to successfully express the heterologous protein on the surface of L. plantarum. The colonization level of NC8/GFP-C-CPE was significantly increased compared to the non-targeting strain and could persist in the intestine for at least 72 h. An oral vaccine strain expressing five EGF domains of Eimeria tenella microneme protein 8 (EtMIC8-EGF) (NC8/EtMIC8-EGF-C-CPE) was constructed to evaluate the protective efficacy against E. tenella infection. The results revealed that CLDN3-targeting L. plantarum induced stronger mucosal immunity in gut-associated lymphoid tissues (GALT) as well as humoral responses and conferred better protection in terms of parasite replication and pathology than the non-targeting strain. Overall, we successfully constructed a CLDN3-targeting L. plantarum NC8 surface display system characterized by MALT-targeting, which is an efficient antigen delivery system to confer enhanced protective efficacy in chickens against E. tenella infection.
Collapse
Affiliation(s)
- Lingyu Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Ningning Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Huihui Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Bingxiang Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Hongmei Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Xiao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China.
| | - Xiaomin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City 271018, Shandong Province, China.
| |
Collapse
|
37
|
Zhao Z, Wang H, Zhang D, Guan Y, Siddiqui SA, Feng-Shan X, Cong B. Oral vaccination with recombinant Lactobacillus casei expressing Aeromonas hydrophila Aha1 against A. hydrophila infections in common carps. Virulence 2022; 13:794-807. [PMID: 35499101 PMCID: PMC9067532 DOI: 10.1080/21505594.2022.2063484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/03/2022] Open
Abstract
The immunogenicity of Aha1, an OMP of Aeromonas hydrophila mediating the adhesion of bacteria onto the mucosal surface of hosts has been established. In this study, recombinant vectors, pPG1 and pPG2, carrying a 1366 bp DNA fragment that was responsible for encoding the 49 kDa Aha1 from A. hydrophila were constructed, respectively, then electroporated into a probiotic strain Lactobacillus casei CC16 separately to generate two types of recombinants, L. casei-pPG1-Aha1 (Lc-pPG1-Aha1) and L. casei-pPG2-Aha1 (Lc-pPG2-Aha1). Subsequently, these were orally administered into common carps to examine their immunogenicity. The expression and localization of the expressed Aha1 protein relative to the carrier L. casei was validated via Western blotting, flow cytometry, and immune fluorescence separately. The recombinant vaccines produced were shown high efficacies, stimulated higher level of antibodies and AKP, ACP, SOD, LZM, C3, C4 in serum in hosts. Immune-related gene expressions of cytokines including IL-10, IL-1β, TNF-α, IFN-γ in the livers, spleens, HK, and intestines were up-regulated significantly. Besides, a more potent phagocytosis response was observed in immunized fish, and higher survival rates were presented in common carps immunized with Lc-pPG1-Aha1 (60%) and Lc-pPG2-Aha1 (50%) after re-infection with virulent strain A. hydrophila. Moreover, the recombinant L. casei were shown a stronger propensity for survivability in the intestine in immunized fish. Taken together, the recombinant L. casei strains might be promising candidates for oral vaccination against A. hydrophila infections in common carps.
Collapse
Affiliation(s)
- Zelin Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Hong Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Dongxing Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Yongchao Guan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Shahrood Ahmad Siddiqui
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Xiao Feng-Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Bo Cong
- Institute of special animal and plant sciences of CAAS, Changchun, Jilin, China
| |
Collapse
|
38
|
Dieye Y, Nguer CM, Thiam F, Diouara AAM, Fall C. Recombinant Helicobacter pylori Vaccine Delivery Vehicle: A Promising Tool to Treat Infections and Combat Antimicrobial Resistance. Antibiotics (Basel) 2022; 11:antibiotics11121701. [PMID: 36551358 PMCID: PMC9774608 DOI: 10.3390/antibiotics11121701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Antimicrobial resistance (AMR) has become a global public health threat. Experts agree that unless proper actions are taken, the number of deaths due to AMR will increase. Many strategies are being pursued to tackle AMR, one of the most important being the development of efficient vaccines. Similar to other bacterial pathogens, AMR in Helicobacter pylori (Hp) is rising worldwide. Hp infects half of the human population and its prevalence ranges from <10% in developed countries to up to 90% in low-income countries. Currently, there is no vaccine available for Hp. This review provides a brief summary of the use of antibiotic-based treatment for Hp infection and its related AMR problems together with a brief description of the status of vaccine development for Hp. It is mainly dedicated to genetic tools and strategies that can be used to develop an oral recombinant Hp vaccine delivery platform that is (i) completely attenuated, (ii) can survive, synthesize in situ and deliver antigens, DNA vaccines, and adjuvants to antigen-presenting cells at the gastric mucosa, and (iii) possibly activate desired compartments of the gut-associated mucosal immune system. Recombinant Hp vaccine delivery vehicles can be used for therapeutic or prophylactic vaccination for Hp and other microbial pathogens.
Collapse
Affiliation(s)
- Yakhya Dieye
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique, Université Cheikh Anta Diop, Dakar BP 5085, Senegal
- Pôle de Microbiologie, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar BP 220, Senegal
- Correspondence: or ; Tel.: +221-784-578-766
| | - Cheikh Momar Nguer
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique, Université Cheikh Anta Diop, Dakar BP 5085, Senegal
| | - Fatou Thiam
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique, Université Cheikh Anta Diop, Dakar BP 5085, Senegal
| | - Abou Abdallah Malick Diouara
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique, Université Cheikh Anta Diop, Dakar BP 5085, Senegal
| | - Cheikh Fall
- Pôle de Microbiologie, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar BP 220, Senegal
| |
Collapse
|
39
|
Lactic Acid Bacteria as Mucosal Immunity Enhancers and Antivirals through Oral Delivery. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2040064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mucosal vaccination offer an advantage over systemic inoculation from the immunological viewpoint. The development of an efficient vaccine is now a priority for emerging diseases such as COVID-19, that was declared a pandemic in 2020 and caused millions of deaths globally. Lactic acid bacteria (LAB) especially Lactobacillus are the vital microbiota of the gut, which is observed as having valuable effects on animals’ and human health. LAB produce lactic acid as the major by-product of carbohydrate degradation and play a significant role in innate immunity enhancement. LAB have significant characteristics to mimic pathogen infections and intrinsically possess adjuvant properties to enhance mucosal immunity. Increasing demand and deliberations are being substantially focused on probiotic organisms that can enhance mucosal immunity against viral diseases. LAB can also strengthen their host’s antiviral defense system by producing antiviral peptides, and releasing metabolites that prevent viral infections and adhesion to mucosal surfaces. From the perspectives of “one health” and the use of probiotics, conventional belief has opened up a new horizon on the use of LAB as antivirals. The major interest of this review is to depict the beneficial use of LAB as antivirals and mucosal immunity enhancers against viral diseases.
Collapse
|
40
|
Seixas AMM, Sousa SA, Leitão JH. Antibody-Based Immunotherapies as a Tool for Tackling Multidrug-Resistant Bacterial Infections. Vaccines (Basel) 2022; 10:1789. [PMID: 36366297 PMCID: PMC9695245 DOI: 10.3390/vaccines10111789] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 07/27/2023] Open
Abstract
The discovery of antimicrobials is an outstanding achievement of mankind that led to the development of modern medicine. However, increasing antimicrobial resistance observed worldwide is rendering commercially available antimicrobials ineffective. This problem results from the bacterial ability to adapt to selective pressure, leading to the development or acquisition of multiple types of resistance mechanisms that can severely affect the efficacy of antimicrobials. The misuse, over-prescription, and poor treatment adherence by patients are factors strongly aggravating this issue, with an epidemic of infections untreatable by first-line therapies occurring over decades. Alternatives are required to tackle this problem, and immunotherapies are emerging as pathogen-specific and nonresistance-generating alternatives to antimicrobials. In this work, four types of antibody formats and their potential for the development of antibody-based immunotherapies against bacteria are discussed. These antibody isotypes include conventional mammalian polyclonal antibodies that are used for the neutralization of toxins; conventional mammalian monoclonal antibodies that currently have 100 IgG mAbs approved for therapeutic use; immunoglobulin Y found in birds and an excellent source of high-quality polyclonal antibodies able to be purified noninvasively from egg yolks; and single domain antibodies (also known as nanobodies), a recently discovered antibody format (found in camelids and nurse sharks) that allows for a low-cost synthesis in microbial systems, access to hidden or hard-to-reach epitopes, and exhibits a high modularity for the development of complex structures.
Collapse
Affiliation(s)
- António M. M. Seixas
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Sílvia A. Sousa
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Jorge H. Leitão
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
41
|
Liu Y, Feng J, Pan H, Zhang X, Zhang Y. Genetically engineered bacterium: Principles, practices, and prospects. Front Microbiol 2022; 13:997587. [PMID: 36312915 PMCID: PMC9606703 DOI: 10.3389/fmicb.2022.997587] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/23/2022] [Indexed: 12/24/2022] Open
Abstract
Advances in synthetic biology and the clinical application of bacteriotherapy enable the use of genetically engineered bacteria (GEB) to combat various diseases. GEB act as a small 'machine factory' in the intestine or other tissues to continuously produce heterologous proteins or molecular compounds and, thus, diagnose or cure disease or work as an adjuvant reagent for disease treatment by regulating the immune system. Although the achievements of GEBs in the treatment or adjuvant therapy of diseases are promising, the practical implementation of this new therapeutic modality remains a grand challenge, especially at the initial stage. In this review, we introduce the development of GEBs and their advantages in disease management, summarize the latest research advances in microbial genetic techniques, and discuss their administration routes, performance indicators and the limitations of GEBs used as platforms for disease management. We also present several examples of GEB applications in the treatment of cancers and metabolic diseases and further highlight their great potential for clinical application in the near future.
Collapse
Affiliation(s)
- Yiting Liu
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Jing Feng
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Hangcheng Pan
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Xiuwei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Yunlei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
- Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
42
|
Immunogenic Modification of Ligilactobacillus agilis by Specific Amino Acid Substitution of Flagellin. Appl Environ Microbiol 2022; 88:e0127722. [PMID: 36173204 PMCID: PMC9599256 DOI: 10.1128/aem.01277-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Ligilactobacillus agilis is a flagellated motile commensal microbe that resides in the gastrointestinal tract of mammals and birds. Flagellin, the major subunit protein of flagellar filament, from pathogenic bacteria is generally a proinflammatory molecule that stimulates immune cells via Toll-like receptor 5 (TLR5). Interestingly, the flagellins of L. agilis are known to be immunologically attenuated despite the fact that the structure of the proteins, including the TLR5 recognition site, is highly conserved among bacteria. The results of our previous study suggested that this is attributed to the differences in three specific amino acids within the conserved TLR5 recognition site; however, this hypothesis remains to be confirmed. In this study, a series of recombinant L. agilis flagellins, with amino acid substitutions at the TLR5 recognition site, were constructed, and their immunogenic activity was evaluated in vitro. Then, an L. agilis strain with an active immunogenic TLR5 recognition site was generated. In vitro and in vivo immunological studies revealed that the mutant L. agilis strain with the modified flagellin was more immunogenic than the wild-type strain. In conclusion, the specific amino acid residues in L. agilis flagellins likely contribute to the discrimination between pathogens and commensals by the host defense system. Additionally, the immunogenically potent L. agilis mutants may serve as a useful platform for oral vaccine delivery. IMPORTANCE The interactions between gut microbes and immune cells play an important role in the health and disease of hosts. Ligilactobacillus agilis is a flagellated commensal bacterium found in the gut of mammals and birds. However, the flagellin proteins of L. agilis are immunologically attenuated and barely induce TLR5-dependent inflammation, unlike the flagellins of several pathogenic bacteria. This study demonstrated that three specific amino acids in the flagellin protein are responsible for this low immunogenicity in L. agilis. The results obtained herein improve our understanding of the symbiosis between gut microbes and their hosts.
Collapse
|
43
|
Shamshirgaran MA, Golchin M, Mohammadi E. Lactobacillus casei displaying Clostridium perfringens NetB antigen protects chickens against necrotic enteritis. Appl Microbiol Biotechnol 2022; 106:6441-6453. [PMID: 36063180 DOI: 10.1007/s00253-022-12155-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/15/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022]
Abstract
Necrotic enteritis is a serious economical disease of poultry caused by Clostridium perfringens. NetB toxin of Clostridium perfringens is considered the causative agent of necrotic enteritis. Following the withdrawal of in-feed antibiotic growth promoters, there has been an urgent need to develop alternative approaches such as vaccination. Currently, there are no commercially available vaccines to control necrotic enteritis especially in broiler chickens as the target population. In the present study, we constructed a recombinant Lactobacillus casei strain expressing NetB protein of C. perfringens on the cell surface and used this probiotic-based vaccine strain to immunize broiler chickens orally against experimental induction of necrotic enteritis. The birds immunized with the oral vaccine strain were significantly protected against necrotic enteritis challenge and developed strong serum anti-NetB antibody responses to NetB protein. Furthermore, the immunized birds showed higher body weight gains during the challenge experiment compared with control birds. This study showed, for the first time, that a probiotic-based vector vaccine could be a promising vaccine candidate to provide protection against necrotic enteritis in broiler chickens. KEYPOINTS: • The probiotic L. casei carrying pT1NX-netB plasmid displayed NetB antigen on the cell surface. • The LC-NetB vaccine strain induced high anti-toxin antibody response in broiler chickens. • The LC-NetB vector vaccine provided significant protection against experimental NE challenge.
Collapse
Affiliation(s)
- Mohammad Ali Shamshirgaran
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, 7616914111, Kerman, Iran
| | - Mehdi Golchin
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, 7616914111, Kerman, Iran.
| | - Elham Mohammadi
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, 7616914111, Kerman, Iran
| |
Collapse
|
44
|
In vivo monitoring of Lactiplantibacillus plantarum in the nasal and vaginal mucosa using infrared fluorescence. Appl Microbiol Biotechnol 2022; 106:6239-6251. [PMID: 35999391 PMCID: PMC9398905 DOI: 10.1007/s00253-022-12121-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/20/2022] [Accepted: 08/03/2022] [Indexed: 11/02/2022]
Abstract
Lactic acid bacteria (LAB) of the genus Lactiplantibacillus have been explored as potential mucosal vaccine vectors due to their ability to elicit an immune response against expressed foreign antigens and to their safety. However, tools for monitoring LAB distribution and persistence at the mucosal surfaces are needed. Here, we characterize Lactiplantibacillus plantarum bacteria expressing the infrared fluorescent protein IRFP713 for exploring their in vivo distribution in the mucosa and potential use as a mucosal vaccine vector. This bacterial species is commonly used as a vaginal probiotic and was recently found to have a niche in the human nose. Three different fluorescent L. plantarum strains were obtained using the nisin-inducible pNZRK-IRFP713 plasmid which contains the nisRK genes, showing stable and constitutive expression of IRFP713 in vitro. One of these strains was further monitored in BALB/c mice using near-infrared fluorescence, indicating successful colonization of the nasal and vaginal mucosae for up to 72 h. This study thus provides a tool for the in vivo spatiotemporal monitoring of lactiplantibacilli, allowing non-invasive bacterial detection in these mucosal sites. KEY POINTS: • Stable and constitutive expression of the IRFP713 protein was obtained in different L. plantarum strains. • IRFP713+ L. plantarum 3.12.1 was monitored in vivo using near-infrared fluorescence. • Residence times observed after intranasal and vaginal inoculation were 24-72 h.
Collapse
|
45
|
Levit R, Cortes-Perez NG, de Moreno de Leblanc A, Loiseau J, Aucouturier A, Langella P, LeBlanc JG, Bermúdez-Humarán LG. Use of genetically modified lactic acid bacteria and bifidobacteria as live delivery vectors for human and animal health. Gut Microbes 2022; 14:2110821. [PMID: 35960855 PMCID: PMC9377234 DOI: 10.1080/19490976.2022.2110821] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
There is now strong evidence to support the interest in using lactic acid bacteria (LAB)in particular, strains of lactococci and lactobacilli, as well as bifidobacteria, for the development of new live vectors for human and animal health purposes. LAB are Gram-positive bacteria that have been used for millennia in the production of fermented foods. In addition, numerous studies have shown that genetically modified LAB and bifodobacteria can induce a systemic and mucosal immune response against certain antigens when administered mucosally. They are therefore good candidates for the development of new mucosal delivery strategies and are attractive alternatives to vaccines based on attenuated pathogenic bacteria whose use presents health risks. This article reviews the most recent research and advances in the use of LAB and bifidobacteria as live delivery vectors for human and animal health.
Collapse
Affiliation(s)
- Romina Levit
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (T4000ILC) San Miguel de Tucumán, Tucumán, Argentina
| | - Naima G. Cortes-Perez
- Université Paris-Saclay, INRAE, AgroParisTech, UMR 0496, 78350 Jouy-en-Josas, France
| | - Alejandra de Moreno de Leblanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (T4000ILC) San Miguel de Tucumán, Tucumán, Argentina
| | - Jade Loiseau
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| | - Anne Aucouturier
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| | - Philippe Langella
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| | - Jean Guy LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (T4000ILC) San Miguel de Tucumán, Tucumán, Argentina
| | - Luis G. Bermúdez-Humarán
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France,CONTACT Luis G. Bermúdez-Humarán Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| |
Collapse
|
46
|
Erginkaya Z, Konuray-Altun G. Potential biotherapeutic properties of lactic acid bacteria in foods. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
47
|
Ren Y, Lu X, Yang Z, Lei H. Protective immunity induced by oral vaccination with a recombinant Lactococcus lactis vaccine against H5Nx in chickens. BMC Vet Res 2022; 18:3. [PMID: 34980121 PMCID: PMC8720943 DOI: 10.1186/s12917-021-03109-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 12/13/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The development of an influenza vaccine for poultry that provides broadly protective immunity against influenza H5Nx viruses is a challenging goal. RESULTS Lactococcus lactis (L. lactis)/pNZ8149-HA1-M2 expressing hemagglutinin-1 (HA1) of A/chicken/Vietnam/NCVD-15A59/2015 (H5N6) and the conserved M2 gene of A/Vietnam/1203/2004 (H5N1) was generated. L. lactis/pNZ8149-HA1-M2 could induce significant humoral, mucosal and cell-mediated immune responses, as well as neutralization antibodies. Importantly, L. lactis/pNZ8149-HA1-M2 could prevent disease symptoms without significant weight loss and confer protective immunity in a chicken model against lethal challenge with divergent influenza H5Nx viruses, including H5N6 and H5N1. CONCLUSIONS L. lactis/pNZ8149-HA1-M2 can serve as a promising vaccine candidate in poultry industry for providing protection against H5Nx virus infection in the field application.
Collapse
Affiliation(s)
- Yi Ren
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Xin Lu
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Zhonghe Yang
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Han Lei
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| |
Collapse
|
48
|
Guli M, Winarsih S, Barlianto W, Illiandri O, Sumarno SP. Mechanism of Lactobacillus reuteri Probiotic in Increasing Intestinal Mucosal Immune System. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Probiotics are defined as live microorganisms which, when consumed in adequate quantities as food ingredients, provide health benefits to the host. Lactobacillus, Bifidobacterium, and Saccharomyces, are three probiotics that are intensively used as probiotics in humans and animals. Probiotics have beneficial effects on health when given adequate amounts. The concept of probiotics on human health, namely modulating the gut microbiota and its effect on the host. Probiotics play an important role in maintaining intestinal integrity through a number of different interactions, including changes in cytokine expression in the mucosa. Probiotics compete with intestinal pathogens for mucosal receptors, thereby increasing interepithelial resistance. Probiotics such as Lactobacillus casei sp GG strain was used as a prophylaxis that could increase the expression of epithelial mucin, thereby reducing the translocation of pathogenic bacteria. Abnormal local immune response is characterized by decreased secretion of IgA, thus allowing enterocyte attachment and local translocation of bacterial antigens, which are the main stimulation of pathological events. Colonic stasis can promote the growth of pathogenic bacteria which allows malignant porin bacterial strains to thrive. The gut microbiota has a major influence on human health. The microbial population has an important role in the host, such as the metabolic activity of probiotics producing energy and nutrient absorption, developing the host immune system, and preventing colonization and infection of pathogens. Lactobacillus reuteri is a hetero-fermentative bacterium that lives in the digestive tract of humans. L. reuteri has been used to treat infant necrotizing pseudomembrane. In this paper, the mechanism of L reuteri to increase host immunological response will be reviewed.
Collapse
|
49
|
Debnath N, Thakur M, Khushboo, Negi NP, Gautam V, Kumar Yadav A, Kumar D. Insight of oral vaccines as an alternative approach to health and disease management: An innovative intuition and challenges. Biotechnol Bioeng 2021; 119:327-346. [PMID: 34755343 DOI: 10.1002/bit.27987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/06/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022]
Abstract
Vaccination is the most suitable and persuasive healthcare program for the prohibition of various deadly diseases. However, the higher production cost and purification strategies are out of reach for the developing nations. In this scenario, development of edible vaccine turns out to be the most promising alternative for remodeling the pharmaceutical industry with reduced production and purification costs. Generally, oral route of vaccination is mostly preferred due to its safety, compliance, low manufacturing cost and most importantly the ability to induce immunity in both systemic and mucosal sites. Genetically modified microorganisms and plants could efficiently be used as vehicles for edible vaccines. Edible vaccines are supposed to reduce the risk associated with traditional vaccines. Currently, oral vaccines are available in the market for several viral and bacterial diseases like cholera, hepatitis B, malaria, rabies etc. Herein, the review focuses on the breakthrough events in the area of edible vaccines associated with dietary microbes and plants for better control over diseases.
Collapse
Affiliation(s)
- Nabendu Debnath
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu & Kashmir (UT), India
| | - Mony Thakur
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Khushboo
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Neelam P Negi
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Vibhav Gautam
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashok Kumar Yadav
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu & Kashmir (UT), India
| | - Deepak Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
50
|
Chen G, Yang Z, Cao C, Xiao X, Huang Y, Tian L, Bai W. Subacute safety assessment of recombinant Lactococcus lactis on the gut microbiota of male Sprague-Dawley rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5807-5812. [PMID: 33792042 DOI: 10.1002/jsfa.11231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/06/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Lactococcus lactis strain pGSMT/MG1363 is a genetically modified microorganism (GMM) that constitutively expresses human metallothionein-I fusion protein to combine with intracellular lead. Unlike traditional probiotics, pGSMT/MG1363 lacks a history of safe use in food. Administration of microorganism could influence the gut microbial community and consequently confer health benefits or cause disadvantages to the host. To date, little has been done to assess the influence of recombinant strain pGSMT/MG1363 on the stability of gut microbiota. RESULTS Liver, testis and kidney sections of male Sprague-Dawley rats orally administered pGSMT/MG1363 for 6 weeks showed normal structure and no pathological damage. There were no adverse effects on the analyzed serum biochemical parameters between the pGSMT/MG1363 group and the MG1363 group. Principal coordinate analysis showed that, compared with the MG1363 group, the 6-week-old fecal gut microbiota of rats fed with pGSMT/MG1363 was not significantly different (Adonis, P = 0.802). pGSMT/MG1363 treatment for 6 weeks did not significantly change the relative abundance of gut microbiota at the phylum and genus levels in comparison with MG1363 treatment. CONCLUSION Compared to the non-GM strain MG1363 group, administration of the recombinant strain pGSMT/MG1363 for 6 weeks showed no adverse effects on the analyzed physiological parameters and gut microbial compositions of male Sprague-Dawley rats. The results suggested that, in terms of gut microbiota stability, pGSMT/MG1363 could be considered as safe as MG1363, at least for short-term intake. Further toxicological evaluations still need to be considered before drawing a definite conclusion concerning the safe use of pGSMT/MG1363. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guowei Chen
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Zixin Yang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Chunting Cao
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Xue Xiao
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yadong Huang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| |
Collapse
|