1
|
Dong H, Hao Y, Wang J, Chen D, Xu S, Ruan W. Japanese encephalitis virus NS1 inhibits IFN-β production by interacting with DDX3X. J Virol 2025; 99:e0007725. [PMID: 40231822 PMCID: PMC12090713 DOI: 10.1128/jvi.00077-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/26/2025] [Indexed: 04/16/2025] Open
Abstract
Japanese encephalitis virus (JEV) is the causative agent of Japanese encephalitis, which poses great threats to the pig farming industry and human health. To establish infection, JEV has evolved sophisticated strategies to overcome the innate immune responses and finish its life cycle. Previous studies have shown that non-structural protein 1 (NS1) is closely related to its pathogenesis, while its molecular mechanism remains elusive. In this study, host protein ATP-dependent RNA helicase DEAD-box helicase 3 X (DDX3X) was screened to bind with NS1, and both ectopically expressed and virally encoded NS1 further confirmed their interaction. We also proved that the β-roll and wing subdomains of NS1 were responsible for their interaction. In DDX3X-overexpressing cells, the replication of JEV was markedly inhibited, while the viral titers were elevated in DDX3X-silencing cells, indicating that DDX3X might serve as an anti-viral factor during JEV infection. Mechanically, overexpression of DDX3X promotes interferon-beta (IFN-β) transcription, while its transcription was decreased in DDX3X-silencing cells. Consistent with IFN-β, some interferon-stimulated genes (ISGs), including protein kinase R (PKR), myxovirus resistance 1 (MX1), guanylate-binding protein 1 (GBP1), and bone marrow stromal antigen 2 (BST2), were also positively related to the DDX3X expression. Taken together, JEV NS1 blocks IFN-β production by interacting with DDX3X to evade the host's innate immune response and facilitate virus replication. This finding will deepen our understanding of JEV immune-evasion strategies and provide targets for JEV attenuation.IMPORTANCEThis study focused on JEV, a threat to pig farming and human health. The key finding is that NS1 binds to host protein DDX3X via its β-roll and wing subdomains. JEV NS1 evades the host immune response by interacting with DDX3X to restrain type I interferon production. These results deepen our understanding of JEV's immune-evasion strategies and offer potential targets for JEV attenuation.
Collapse
Affiliation(s)
- Hao Dong
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Beijing University of Agriculture, Changping, Beijing, China
| | - Yue Hao
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Beijing University of Agriculture, Changping, Beijing, China
| | - Jue Wang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Beijing University of Agriculture, Changping, Beijing, China
| | - Dengjin Chen
- China Animal Husbandry Industry Co. Ltd., Beijing, China
| | - Shengkui Xu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Beijing University of Agriculture, Changping, Beijing, China
| | - Wenke Ruan
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Beijing University of Agriculture, Changping, Beijing, China
| |
Collapse
|
2
|
Hernández-Reyes Y, Fonseca-Rodríguez C, Freire R, Smits VAJ. DDX37 and DDX50 Maintain Genome Stability by Preventing Transcription-dependent R-loop Formation. J Mol Biol 2025; 437:169061. [PMID: 40043837 DOI: 10.1016/j.jmb.2025.169061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/19/2025] [Accepted: 02/26/2025] [Indexed: 03/16/2025]
Abstract
R-loops consist of an RNA-DNA hybrid and a displaced single-stranded DNA strand that play a central role in several biological processes. However, as the presence of aberrant R-loops forms a significant threat to genome stability, R-loop formation and resolution is strictly controlled by RNAse H and helicases. In a screening for RNA helicases, previously described as RNA-DNA hybrid interactors, that control genome integrity, we identified for the first time DDX37 and DDX50. Depletion of DDX37 and DDX50 promotes DNA damage, as demonstrated by H2AX phosphorylation and increased comet tail length. In addition, knock down of these RNA helicases decreases the DNA replication track length and leads to RPA focus formation, results that are indicative of replication stress. Downregulation of DDX37 and DDX50 triggers an increase in RNA-DNA hybrids, that can be reverted by the overexpression of RNase H1. Interestingly, inhibition of transcription prevented the increased RNA-DNA hybrid formation and DNA damage upon DDX37 or DDX50 depletion. Together these results demonstrate that DDX37 and DDX50 are important for resolving RNA-DNA hybrids appearing during transcription and thereby preventing DNA damage by replication stress.
Collapse
Affiliation(s)
- Yeray Hernández-Reyes
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Investigación Sanitaria de Canarias (IISC), Santa Cruz de Tenerife, Spain; Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain; Escuela de Doctorado y Estudio de Postgrado, Universidad de la Laguna, Santa Cruz de Tenerife, Spain
| | - Cintia Fonseca-Rodríguez
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Investigación Sanitaria de Canarias (IISC), Santa Cruz de Tenerife, Spain; Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain; Escuela de Doctorado y Estudio de Postgrado, Universidad de la Laguna, Santa Cruz de Tenerife, Spain
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Investigación Sanitaria de Canarias (IISC), Santa Cruz de Tenerife, Spain; Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain; Universidad Fernando Pessoa Canarias, Santa María de Guía, Las Palmas, Spain
| | - Veronique A J Smits
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Investigación Sanitaria de Canarias (IISC), Santa Cruz de Tenerife, Spain; Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain; Universidad Fernando Pessoa Canarias, Santa María de Guía, Las Palmas, Spain.
| |
Collapse
|
3
|
Moura DMN, Soares AL, da Silva A, Ribeiro JLAB, Sunter JD, Assis LA, Carrington M, de Melo Neto OP. Distinct modes of interaction within eIF4F-like complexes and susceptibility to the RocA inhibitor for the Trypanosoma brucei EIF4AI translation initiation factor. PLoS One 2025; 20:e0322812. [PMID: 40343969 PMCID: PMC12063893 DOI: 10.1371/journal.pone.0322812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/27/2025] [Indexed: 05/11/2025] Open
Abstract
Trypanosomatids are parasitic protozoa responsible for major human diseases which are characterized by unique gene expression mechanisms. mRNA translation in these parasites is associated with multiple eIF4F-like complexes, required for mRNA recruitment and ribosome binding. The eukaryotic eIF4F is generally known to require the action of eIF4A, an ATP-dependent RNA helicase, in order to function properly, but not all trypanosomatid eIF4F complexes might require EIF4AI, their single eIF4A homologue. In mammals, eIF4A is known to be targeted by specific inhibitors and can thus be considered a potential target for a selective inhibition of translation in these parasites. Here, aiming to better define the EIF4AI functionality, we started by investigating its interactome in Trypanosoma brucei, confirming a strong interaction with only one of five eIF4F-like complexes found in trypanosomatids, based on the EIF4E4/EIF4G3 subunits. Nevertheless, when the interactome of a mutant EIF4AI (DEAD/DQAD), known to be impacted on its ATPase activity, was investigated, the only eIF4F-like complex found was based on the EIF4E3/EIF4G4 pair, with many translation-related and other proteins also found with the mutant protein. When both wild-type and mutant proteins were also investigated through a fluorescent-based tethering assay, a stimulatory effect on mRNA expression was confirmed for EIF4AI, but not for the mutant protein. Sensitivity to the Rocaglamide A (RocA) inhibitor, which targets the mammalian eIF4A, was also investigated, with the inhibitor blocking the stimulation seen on the tethering assay. Parasite susceptibility to RocA was further assessed in T. brucei and Leishmania infantum, with both, and specially T. brucei, being much less susceptible to the drug than mammalian cells. This phenotype correlates with changes in EIF4AI within the RocA binding pocket where, in comparison with the mammalian eIF4A, a phenylalanine to valine substitution in the T. brucei EIF4AI likely impairs RocA binding. Our results help better define the EIF4AI mode of action in T. brucei and provide relevant data which might support future searches for specific EIF4AI inhibitors.
Collapse
Affiliation(s)
- Danielle M. N. Moura
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Amanda L. Soares
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Adalúcia da Silva
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - João L. A. B. Ribeiro
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Jack D. Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Ludmila A. Assis
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Mark Carrington
- Department of Biochemistry - University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
4
|
Cacciottolo R, Cauchi RJ. A critical genetic interaction between Gemin3/Ddx20 and translation initiation factor NAT1/eIF4G2 drives development. Dev Biol 2025; 521:37-51. [PMID: 39924071 DOI: 10.1016/j.ydbio.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Gemin3 (Gem3) or DEAD-box RNA helicase 20 (Ddx20) has been mostly implicated in the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs) as part of the SMN-Gemins complex. Nonetheless, several studies have hinted at its participation in diverse snRNP-independent activities. Here, we utilised a narrow unbiased genetic screen to discover novel Gem3 interactors in Drosophila with the aim of gaining better insights on its function in vivo. Through this approach, we identified a novel genetic interaction between Gem3 and NAT1, which encodes the Drosophila orthologue of translational regulator eIF4G2. Despite lack of a physical association, loss of NAT1 function was found to downregulate Gem3 mRNA levels. Extensive convergence in transcriptome alterations downstream of Gem3 and NAT1 silencing further supports a functional relationship between these factors in addition to showing a requirement for both in actin cytoskeleton organisation and organism development, particularly neurodevelopment. In confirmation, flies with either Gem3 or NAT1 depletion exhibited brain growth defects and reduced muscle contraction. Severe delays in developmental progression were also observed in a newly generated Gem3 hypomorphic mutant. Our data linking Gemin3 to a key component of the translational machinery support an emerging role for Gemin3 in translation that is also critical during organism development.
Collapse
Affiliation(s)
- Rebecca Cacciottolo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta
| | - Ruben J Cauchi
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta.
| |
Collapse
|
5
|
Yan Y, Yu C, Xie B, Zhou H, Zhang C, Tian L. Characterization and Early Response of the DEAD Gene Family to Heat Stress in Tomato. PLANTS (BASEL, SWITZERLAND) 2025; 14:1172. [PMID: 40284060 PMCID: PMC12030476 DOI: 10.3390/plants14081172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/31/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
The DEAD-box RNA helicase family, acting as a critical regulator in RNA metabolism, plays a vital role in plant growth, development, and adaptation to various stresses. Although a number of DEAD proteins have been reported to participate in heat stress response in several species, the response of DEAD-box RNA helicases to heat stress has not been comprehensively analyzed in tomato. In this study, 42 SlDEAD genes were identified from the tomato genome. Evolutionary analysis of DEAD family genes across different plant species reveals that DEAD family genes can be segregated into five groups. A comprehensive analysis of their physicochemical properties, gene structure, chromosome location, and conserved motifs unveils diversity among the members of the SlDEAD family. An investigation into the subcellular localization of seven SlDEAD proteins indicates that SlDEAD7, SlDEAD14, and SlDEAD26 are located in the endoplasmic reticulum, and SlDEAD40 is located in the endoplasmic reticulum and nucleus, whereas SlDEAD17, SlDEAD25, and SlDEAD35 are located in the chloroplast. The expression of 37 out of 42 SlDEAD genes was responsive to heat stress induction. During the early stage of high-temperature treatment, they exhibited five distinct expression patterns. These findings contribute to a deeper comprehension of the evolution, expansion complexity, and function of SlDEAD genes and provide insights into the potential role of SlDEAD genes in tomato tolerance to heat stress.
Collapse
Affiliation(s)
- Yanyan Yan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (C.Y.); (B.X.); (H.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Chao Yu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (C.Y.); (B.X.); (H.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Bolun Xie
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (C.Y.); (B.X.); (H.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Hui Zhou
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (C.Y.); (B.X.); (H.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Caiyu Zhang
- Institute of Agricultural Experiment Station of Changxing Substation, Zhejiang University, Hangzhou 310058, China;
| | - Li Tian
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (C.Y.); (B.X.); (H.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
6
|
Huang J, Du J, Liu Y, Lu L, Xu Y, Shi J, Liu Q, Li Q, Liu Y, Chen Y, Du M, Zhao Y, Huo L, Wang W, Ding C, Wei L, Wu J, Yuan YW, Chen J, Li R, Cui F, Zhang X. RH3 enhances antiviral defense by facilitating small RNA loading into Argonaute 2 at endoplasmic reticulum-chloroplast membrane contact sites. Nat Commun 2025; 16:1953. [PMID: 40000658 PMCID: PMC11862194 DOI: 10.1038/s41467-025-57296-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
While RNA silencing is crucial for plant resistance against viruses, the cellular connections between RNA silencing and antiviral responses in plants remain poorly understood. In this study, we aim to investigate this relationship by examining the subcellular localization of small RNA loading and viral replication in Arabidopsis. Our findings reveal that Argonaute 2 (AGO2), a key component of RNA silencing, loads small RNAs at the endoplasmic reticulum (ER)-chloroplast membrane contact sites (MCSs). We identify a chloroplast-localized protein, RNA helicase 3 (RH3), which interacts with AGO2 and facilitates the loading of small RNAs into AGO2 at these MCSs. Furthermore, we discover that MCSs serve as replication sites for certain plant viruses. RH3 also promotes the loading of viral-derived small RNAs into AGO2, thereby enhancing plant antiviral resistance. Overall, our study sheds light on the roles of RH3 in RNA silencing and plant antiviral defenses, providing valuable insights into the cytobiological connections between RNA silencing, viral replication, and antiviral immunity.
Collapse
Affiliation(s)
- Juan Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Du
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Lu Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanzhuo Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianfei Shi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yang Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaqiu Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Meng Du
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yiming Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liangxiao Huo
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Weiran Wang
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Chenxi Ding
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Liya Wei
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Jianguo Wu
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Unit 3043, Storrs, CT, 06269, USA
| | - Jinfeng Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ruixi Li
- SUSTech-PKU Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Hainan Seed Industry Laboratory, Sanya, 572025, China.
| |
Collapse
|
7
|
Sun H, Dai Q, Zhou B, Lan X, Qiu Y, Zhang Q, Wang D, Cui Y, Guo J, Hou L, Liu J, Zhou J. DDX21 Promotes PCV3 Replication by Binding to Cap Protein and Inhibiting Interferon Responses. Viruses 2025; 17:166. [PMID: 40006921 PMCID: PMC11861039 DOI: 10.3390/v17020166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Porcine circovirus type 3 (PCV3) is an emerging pathogen that causes porcine dermatitis, nephropathy syndrome-like symptoms, multisystemic inflammation, and reproductive failure. The PCV3 capsid (Cap) protein interacts with DDX21, which functions mainly through controlling interferon (IFN)-β levels. However, how the interaction between DDX21 and PCV3 Cap regulates viral replication remains unknown. In the present study, upon shRNA-mediated DDX21 depletion in PK-15 cells, we observed impaired PCV3 proliferation via a lentivirus-delivered system, as indicated by reduced replicase (Rep) protein levels and viral titers. Furthermore, DDX21 negatively regulated IFN-β and interferon-stimulated gene (ISG) levels, promoting PCV3 replication. Mechanistically, PCV3 Cap co-localized and interacted with DDX21, and the nuclear localization signal (NLS) of PCV3 Cap and 763GSRSNRFQNK772 at the C-terminal domain (CTD) of DDX21 were indispensable to the interaction. Moreover, PCV3 infection prevented the repression of DDX21 to facilitate its pro-viral activity. Taken together, these results show that DDX21 promotes PCV3 replication by binding to the PCV3 Cap protein and prohibiting IFN-β response, which provides important insight on the prevention and control of PCV3 infection.
Collapse
Affiliation(s)
- Haoyu Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Qianhong Dai
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Beiyi Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyuan Lan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yonghui Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Qianqian Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Dedong Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yongqiu Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jinshuo Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Lei Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jianwei Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
8
|
Bizen N, Takebayashi H. Diverse functions of DEAD-box proteins in oligodendrocyte development, differentiation, and homeostasis. J Neurochem 2025; 169:e16238. [PMID: 39374171 DOI: 10.1111/jnc.16238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024]
Abstract
Oligodendrocytes, a type of glial cell in the central nervous system, have a critical role in the formation of myelin around axons, facilitating saltatory conduction, and maintaining the integrity of nerve axons. The dysregulation of oligodendrocyte differentiation and homeostasis have been implicated in a wide range of neurological diseases, including dysmyelinating disorders (e.g., Pelizaeus-Merzbacher disease), demyelinating diseases (e.g., multiple sclerosis), Alzheimer's disease, and psychiatric disorders. Therefore, unraveling the mechanisms of oligodendrocyte development, differentiation, and homeostasis is essential for understanding the pathogenesis of these diseases and the development of therapeutic interventions. Numerous studies have identified and analyzed the functions of transcription factors, RNA metabolic factors, translation control factors, and intracellular and extracellular signals involved in the series of processes from oligodendrocyte fate determination to terminal differentiation. DEAD-box proteins, multifunctional RNA helicases that regulate various intracellular processes, including transcription, RNA processing, and translation, are increasingly recognized for their diverse roles in various aspects of oligodendrocyte development, differentiation, and maintenance of homeostasis. This review introduces the latest insights into the regulatory networks of oligodendrocyte biology mediated by DEAD-box proteins.
Collapse
Affiliation(s)
- Norihisa Bizen
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Center for Anatomical Studies, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
9
|
Xiao Y, Fan J, Li Z, Hou Y. DDX21 at the Nexus of RNA Metabolism, Cancer Oncogenesis, and Host-Virus Crosstalk: Decoding Its Biomarker Potential and Therapeutic Implications. Int J Mol Sci 2024; 25:13581. [PMID: 39769343 PMCID: PMC11676383 DOI: 10.3390/ijms252413581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/28/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
DDX21, a member of the DEAD-box RNA helicase family, plays a pivotal role in various aspects of RNA metabolism, including ribosomal RNA (rRNA) processing, transcription, and translation. Its diverse functions in cancer progression and viral infections have attracted considerable attention. DDX21 exerts a pivotal function through ribosomal DNA (rDNA) transcription and rRNA processing. DDX21 is involved in different biological processes of mRNA transcription. It interacts with transcription factors, modulates RNA polymerase II elongation, binds R-loops to regulate transcription, and participates in alternative splicing. The elevated expression of DDX21 has been observed in most cancers, where it influences tumorigenesis by affecting ribosome biogenesis, transcription, genome stability, and cell cycle regulation. Additionally, DDX21 plays a key role in the antiviral defense of host by interacting with viral proteins to regulate essential stages of the infection process. This review provides a thorough examination of the biological functions of DDX21, its involvement in cancer progression and viral infections, and its potential as both a biomarker and a therapeutic target. Future studies should aim to clarify the specific mechanisms of the activity of DDX21, advance the development of targeted therapies, and assess its clinical relevance across various cancer types and stages.
Collapse
Affiliation(s)
- Yalan Xiao
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (Y.X.); (J.F.)
| | - Jiankun Fan
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (Y.X.); (J.F.)
| | - Zhigang Li
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (Y.X.); (J.F.)
| | - Yu Hou
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (Y.X.); (J.F.)
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
10
|
Wang J, Wang Y, Zhang H, Ma H, Wang Q, Wang L, Fan Y, Tian X, Mei X, Zhang Z, Wang S, Yang Z. Evaluation of protective efficacy of recombinant Toxoplasma gondii DDX39 protein vaccine against acute and chronic T. gondii infection in mice. Acta Trop 2024; 260:107442. [PMID: 39461580 DOI: 10.1016/j.actatropica.2024.107442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Toxoplasma gondii, a pervasive parasite responsible for toxoplasmosis, poses significant health risks to humans and animals. In this study, we investigated the immunogenicity and protective efficacy of the recombinant T. gondii DDX39 protein formulated with ISA201 adjuvant (rTgDDX39) as a candidate vaccine against toxoplasmosis. The full-length of TgDDX39 gene was successfully amplified, cloned into the pET-30a vector, and expressed in BL21 (DE3) competent cells, which was purified and identified as a 57.1 kDa protein via sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Western blot analysis confirmed that rTgDDX39 was specifically recognized by serum from T. gondii-infected mice. Furthermore, immunization of rats with rTgDDX39 generated antiserum that could specifically recognize the native TgDDX39 protein in T. gondii tachyzoite lysates. Immunofluorescence assay revealed that TgDDX39 was primarily located in the nucleus and perinuclear region of tachyzoites. Our vaccination strategy significantly increased T cell proliferation, with CD4+T cells rising by 21.9% and CD8+T cells by 57.8% by the sixth week compared to the adjuvant control group. Additionally, high titers of anti-rTgDDX39 IgG antibodies were detected in vaccinated mice, with a notable induction of IgG1 and IgG2a isotypes, and IgG1/IgG2a > 1 suggests a Th2-biased immune response. Furthermore, in vitro and in vivo assays demonstrated that polyclonal antibodies raised against rTgDDX39 could inhibit the proliferation of T. gondii RH tachyzoites, highlighting the potential of these antibodies to neutralize this parasite effectively. This study provides compelling evidence of the immunogenicity and protective efficacy of rTgDDX39, supporting its potential as a potential candidate vaccine against toxoplasmosis. The protective efficacy of the vaccine was evaluated in mice challenged with acute (RH) and chronic (PRU) strains of T. gondii, showing a survival time extended to 17 days in the acute model, compared to 13.5 and 14 days in the control groups, and a significant 34% reduction in cyst burden in the chronic model. Additionally, the survival rate in the PRU-infected mice increased from 15 to 20% in the control groups to 45% in the vaccinated group. In vitro and in vivo assays demonstrated that polyclonal antibodies raised against rTgDDX39 could inhibit the proliferation of T. gondii RH tachyzoites, highlighting the potential of these antibodies to neutralize the parasite effectively. This study provides compelling evidence of the immunogenicity and protective efficacy of rTgDDX39, supporting its potential as a candidate vaccine against toxoplasmosis.
Collapse
MESH Headings
- Animals
- Toxoplasma/immunology
- Toxoplasma/genetics
- Protozoan Vaccines/immunology
- Protozoan Vaccines/genetics
- Mice
- Antibodies, Protozoan/blood
- Antibodies, Protozoan/immunology
- Protozoan Proteins/immunology
- Protozoan Proteins/genetics
- Female
- Recombinant Proteins/immunology
- Recombinant Proteins/genetics
- Toxoplasmosis/prevention & control
- Toxoplasmosis/immunology
- Toxoplasmosis, Animal/prevention & control
- Toxoplasmosis, Animal/immunology
- Mice, Inbred BALB C
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Rats
- Antigens, Protozoan/immunology
- Antigens, Protozoan/genetics
- Disease Models, Animal
- DEAD-box RNA Helicases/immunology
- DEAD-box RNA Helicases/genetics
- Adjuvants, Immunologic/administration & dosage
Collapse
Affiliation(s)
- Jinghui Wang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yuanfeng Wang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Haina Zhang
- Department of Rehabilitation, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Hangbin Ma
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Qiangqiang Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Longkang Wang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Youke Fan
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xiaowei Tian
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xuefang Mei
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Zhenchao Zhang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Shuai Wang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| | - Zhenke Yang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
11
|
Parkes AJ, Anandavijayan S, Lou-Hing A, Downs O, Killelea T, Martin L, Kapllanaj F, Bolt EL. Identification of a novel nuclease activity in human DDX49 helicase. ROYAL SOCIETY OPEN SCIENCE 2024; 11:241891. [PMID: 39698160 PMCID: PMC11651898 DOI: 10.1098/rsos.241891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024]
Abstract
Human DDX49 is an emerging target in cancer progression and retroviral diseases through its essential roles in nucleolar RNA processing. Here, we identify nuclease activity of human DDX49, which requires active site aspartate residues within a conserved region of metazoan DDX49s that is absent from yeast and archaeal DDX49 homologues. We provide evidence that DDX49 nuclease activity is facilitated by its helicase activity. Using CRISPR-Cas9 genetic editing, we show that a heterozygous (DDX49 +/-) U2OS cell line is defective at cell migration, a phenotype supporting the association of DDX49 with cancer cell invasiveness. Measurement of RNAs in DDX49 +/- indicates that DDX49 is required to sustain levels of 5.8S rRNA.
Collapse
Affiliation(s)
- Ashley J. Parkes
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - Anna Lou-Hing
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Olivia Downs
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Tom Killelea
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Louise Martin
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - Edward L. Bolt
- School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
12
|
Chen L, Jiang Y, Wang X, Wang L, Bao J, Lv Z, Sha X, Zheng Z, Chen Y, Ji K, Liu H. DExD-Box Helicase 21 Enhances Myometrial Contractions Through Thrombospondin-1-Mediated Increase in Cell Adhesion. J Cell Mol Med 2024; 28:e70268. [PMID: 39690141 DOI: 10.1111/jcmm.70268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/19/2024] Open
Abstract
During labour, the myometrium transitions from a quiescent to an actively contracting state, governed by changes in gene expression. Identifying the pivotal transcription regulators involved in these gene expression alterations offers a useful strategy for addressing abnormal myometrial contractions. This study determined that the transcriptional regulator DExD-Box Helicase 21 (DDX21) is upregulated in human myometrial tissues and myometrial smooth muscle cells (hMSMCs) during labour. DDX21 enhances hMSMC contractility through a mechanism that involves binding to thrombospondin 1 (THBS1) mRNA, a cell adhesion molecule, and promoting its transcription and subsequent protein expression. This upregulation of THBS1 increases cellular adhesion, which is crucial for effective myometrial contraction and for contractile function. Consequently, the DDX21-THBS1 pathway could be a potential target for modulating key functions required for effective myometrial contraction.
Collapse
Affiliation(s)
- Lina Chen
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yanmin Jiang
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaodi Wang
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lele Wang
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Junjie Bao
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zi Lv
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoyan Sha
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zheng Zheng
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yunshan Chen
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Kaiyuan Ji
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Huishu Liu
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Wang X, Hu G, Wang L, Lu Y, Liu Y, Yang S, Liao J, Zhao Q, Huang Q, Wang W, Guo W, Li H, Fu Y, Song Y, Cai Q, Zhang X, Wang X, Chen YQ, Zhang X, Yao H. DEAD-box RNA helicase 10 is required for 18S rRNA maturation by controlling the release of U3 snoRNA from pre-rRNA in embryonic stem cells. Nat Commun 2024; 15:10303. [PMID: 39604362 PMCID: PMC11603299 DOI: 10.1038/s41467-024-53822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Ribosome biogenesis plays a pivotal role in maintaining stem cell homeostasis, yet the precise regulatory mechanisms governing this process in mouse embryonic stem cells (mESCs) remain largely unknown. In this investigation, we ascertain that DEAD-box RNA helicase 10 (DDX10) is indispensable for upholding cellular homeostasis and the viability of mESCs. Positioned predominantly at the nucleolar dense fibrillar component (DFC) and granular component (GC), DDX10 predominantly binds to 45S ribosomal RNA (rRNA) and orchestrates ribosome biogenesis. Degradation of DDX10 prevents the release of U3 snoRNA from pre-rRNA, leading to perturbed pre-rRNA processing and compromised maturation of the 18S rRNA, thereby disrupting the biogenesis of the small ribosomal subunit. Moreover, DDX10 participates in the process of liquid-liquid phase separation (LLPS), which is necessary for efficient ribosome biogenesis. Notably, the NUP98-DDX10 fusion associated with acute myelocytic leukemia (AML) alters the cellular localization of DDX10 and results in loss of ability to regulate pre-rRNA processing. Collectively, this study reveals the critical role of DDX10 as a pivotal regulator of ribosome biogenesis in mESCs.
Collapse
Affiliation(s)
- Xiuqin Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Gongcheng Hu
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, China
| | - Lisha Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yuli Lu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yanjiang Liu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Shengxiong Yang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Junzhi Liao
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qian Zhao
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qiuling Huang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Wentao Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenjing Guo
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Heying Li
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yu Fu
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, China
| | - Yawei Song
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qingqing Cai
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaofei Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiangting Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yue-Qin Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaorong Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Hongjie Yao
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, China.
| |
Collapse
|
14
|
Ye Y, Zhang X, Wang C, Huang Y, Xu L, Liu H, Li K, Liu N, Wang Q, Zhang T, Assaraf YG, Lin Y. DAPK enhances DDX20 protein stability via suppression of TRIM25-mediated ubiquitination-based DDX20 degradation. Cancer Cell Int 2024; 24:382. [PMID: 39558224 PMCID: PMC11575006 DOI: 10.1186/s12935-024-03567-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024] Open
Abstract
We have previously found that the DAPK-DDX20 signaling axis exerts an anti-cancer activity in hepatocellular carcinoma (HCC) by inhibiting the GTPase activity of CDC42, thereby reducing the invasive and migratory capabilities of cancer cells without affecting cell proliferation. DDX20 serves as an intermediate protein regulated by DAPK in the control of CDC42. Specifically, DAPK enhances DDX20 protein levels by suppressing DDX20 degradation. However, the mechanism underlying DAPK regulation of DDX20 remains unclear. In the current study, we discovered that DDX20 is degraded through the ubiquitin-proteasome pathway and identified TRIM25 as the E3 ubiquitin ligase of DDX20. TRIM25 mediates the proteasomal degradation of DDX20 by binding to, and ubiquitinating the 1-244 amino acid region of DDX20. Moreover, DAPK interacts with this 1-244 segment of DDX20, inhibiting its ubiquitination and enhancing its stability, despite the lack of direct physical interaction between DAPK and the 1-244 region of DDX20. Remarkably, DAPK, TRIM25, and DDX20 form a ternary protein complex in cells, and knockdown of TRIM25 leads to a reduction in the cellular levels of the binary DAPK-DDX20 complex, suggesting that TRIM25 acts as an important intermediate protein linking DAPK and DDX20. TRIM25 functions as an oncogene in liver cancer, as shRNA-mediated silencing of TRIM25 inhibits cell migration and invasion. Therefore, these novel findings of the interaction among these three proteins not only enhances our knowledge of the downstream molecular network of DAPK and its possible role in the development of HCC, but also provides potential druggable targets for the future development of novel anticancer drug therapeutics.
Collapse
Affiliation(s)
- Yan Ye
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, 350000, Fujian, China
- Ganzhou Key Laboratory of Molecular Medicine, the Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, 341000, Jiangxi, China
| | - Xiuli Zhang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, 350000, Fujian, China
| | - Chenyi Wang
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Yide Huang
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Luyun Xu
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Hongxia Liu
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Ke Li
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Nannan Liu
- Department of Central Laboratory, Fuzhou Second Hospital, Fuzhou, 350007, Fujian, China
| | - Qingshui Wang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China.
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, 350000, Fujian, China.
| | - Tao Zhang
- Department of Central Laboratory, Fuzhou Second Hospital, Fuzhou, 350007, Fujian, China.
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Faculty of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel.
| | - Yao Lin
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China.
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, 350000, Fujian, China.
| |
Collapse
|
15
|
Luo Q, Zhang M, Lyu M, Ke C, Gao X. Structure and function of vasa gene in gonadal gametogenesis of Pacific abalone. Int J Biol Macromol 2024; 277:134449. [PMID: 39098680 DOI: 10.1016/j.ijbiomac.2024.134449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Pacific abalone (Haliotis discus hannai) is a marine gastropod mollusc with significant economic importance in both global fisheries and aquaculture. However, studies exploring the gonadal development and regulatory mechanisms of Haliotis discus hannai are limited. This study aimed to explore whether the vasa gene acted as a molecular marker for germ cells. Initially, the vasa gene was successfully cloned using the cDNA-end rapid amplification technique. The cloned gene had a 2478-bp-long open reading frame and encoded 825 amino acids. Then, a recombinant expression vector was constructed based on the Vasa protein, and an 87-kDa recombinant protein was prepared. Subsequently, a polyclonal antibody was prepared using the purified recombinant protein. The enzyme-linked immunosorbent assay (ELISA) confirmed the titer of the antibody to be ≥512 K. The immunohistochemical analysis revealed that Vasa was widely expressed in oogonia, Stage I oocytes, spermatogonia, and primary spermatocytes. The specific expression of Vasa in the hermaphroditic gonads of abalone was assessed using western blotting to investigate the effects of different photoperiods (12 L:12D, 24 L:0D, 18 L:6D, and 6 L:18D) on the gonadal development of abalone (P < 0.05), with higher expression levels observed in the ovarian proliferative and spermary maturing stages compared with other developmental stages (P < 0.05). Additionally, Vasa exhibited the highest expression in the spermary and ovary under a photoperiod of 18 L:6D (P < 0.05). These data demonstrated the key role of Vasa in developing germ cells in abalone. They shed light upon the molecular mechanism through which the photoperiod influenced Vasa expression and regulated gonadal development in abalone. The findings might provide theoretical references for analyzing the differentiation pattern of abalone germ cells and the genetic improvement and conservation of germplasm resources.
Collapse
Affiliation(s)
- Qi Luo
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Mo Zhang
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Mingxin Lyu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Caihuan Ke
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xiaolong Gao
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
16
|
Fan J, Li Z, Pei L, Hou Y. Post-transcriptional regulation of DEAD-box RNA helicases in hematopoietic malignancies. Genes Dis 2024; 11:101252. [PMID: 38993792 PMCID: PMC11237855 DOI: 10.1016/j.gendis.2024.101252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 02/01/2024] [Accepted: 02/11/2024] [Indexed: 07/13/2024] Open
Abstract
Hematopoiesis represents a meticulously regulated and dynamic biological process. Genetic aberrations affecting blood cells, induced by various factors, frequently give rise to hematological tumors. These instances are often accompanied by a multitude of abnormal post-transcriptional regulatory events, including RNA alternative splicing, RNA localization, RNA degradation, and storage. Notably, post-transcriptional regulation plays a pivotal role in preserving hematopoietic homeostasis. The DEAD-Box RNA helicase genes emerge as crucial post-transcriptional regulatory factors, intricately involved in sustaining normal hematopoiesis through diverse mechanisms such as RNA alternative splicing, RNA modification, and ribosome assembly. This review consolidates the existing knowledge on the role of DEAD-box RNA helicases in regulating normal hematopoiesis and underscores the pathogenicity of mutant DEAD-Box RNA helicases in malignant hematopoiesis. Emphasis is placed on elucidating both the positive and negative contributions of DEAD-box RNA helicases within the hematopoietic system.
Collapse
Affiliation(s)
- Jiankun Fan
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Zhigang Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Li Pei
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yu Hou
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
17
|
Zhang G, Yang R, Wang B, Yan Q, Zhao P, Zhang J, Su W, Yang L, Cui H. TRIP13 regulates progression of gastric cancer through stabilising the expression of DDX21. Cell Death Dis 2024; 15:622. [PMID: 39187490 PMCID: PMC11347623 DOI: 10.1038/s41419-024-07012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024]
Abstract
GC (Gastric cancer) is one of the most common malignant tumours, with over 95% of gastric cancer patients being adenocarcinoma and most gastric cancer patients having no apparent symptoms in the early stages. Finding biomarkers for early screening of gastric cancer and exploring new targets for gastric cancer treatment are urgent problems to be solved in the treatment of gastric cancer, with significant clinical outcomes for the survival rate of gastric cancer patients. The AAA+ family ATPase thyroid hormone receptor-interacting protein 13 (TRIP13) has been reported to play an essential role in developing various tumours. However, the biological function and molecular mechanism of TRIP13 in gastric cancer remain unclear. This study confirms that TRIP13 is highly expressed in gastric cancer tissue samples and that TRIP13 participates in the proliferation, migration, invasion in vitro, and tumourigenesis and metastasis in vivo of gastric cancer cells. Mechanistically, this study confirms that TRIP13 directly interacts with DDX21 and stabilises its expression by restraining its ubiquitination degradation, thereby promoting gastric cancer progression. Additionally, histone deacetylase 1 (HDAC1) is an upstream factor of TRIP13, which could target the TRIP13 promoter region to promote the proliferation, migration, and invasion of gastric cancer cells. These results indicate that TRIP13 serve is a promising biomarker for the treating of gastric cancer patients, and the HDAC1-TRIP13/DDX21 axis might provide a solid theoretical basis for clinical treatment of gastric cancer patients.
Collapse
Affiliation(s)
- Guanghui Zhang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China.
| | - Rui Yang
- Biomedical Laboratory, School of Medicine, Liaocheng University, Liaocheng, China
| | - Baiyan Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Qiujin Yan
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Peiyuan Zhao
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiaming Zhang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Weiyu Su
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lianhe Yang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.
| |
Collapse
|
18
|
Swarup A, Bolger TA. The Role of the RNA Helicase DDX3X in Medulloblastoma Progression. Biomolecules 2024; 14:803. [PMID: 39062517 PMCID: PMC11274571 DOI: 10.3390/biom14070803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Medulloblastoma is the most common pediatric brain cancer, with about five cases per million in the pediatric population. Current treatment strategies have a 5-year survival rate of 70% or more but frequently lead to long-term neurocognitive defects, and recurrence is relatively high. Genomic sequencing of medulloblastoma patients has shown that DDX3X, which encodes an RNA helicase involved in the process of translation initiation, is among the most commonly mutated genes in medulloblastoma. The identified mutations are 42 single-point amino acid substitutions and are mostly not complete loss-of-function mutations. The pathological mechanism of DDX3X mutations in the causation of medulloblastoma is poorly understood, but several studies have examined their role in promoting cancer progression. This review first discusses the known roles of DDX3X and its yeast ortholog Ded1 in translation initiation, cellular stress responses, viral replication, innate immunity, inflammatory programmed cell death, Wnt signaling, and brain development. It then examines our current understanding of the oncogenic mechanism of the DDX3X mutations in medulloblastoma, including the effect of these DDX3X mutations on growth, biochemical functions, translation, and stress responses. Further research on DDX3X's mechanism and targets is required to therapeutically target DDX3X and/or its downstream effects in medulloblastoma progression.
Collapse
Affiliation(s)
| | - Timothy A. Bolger
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
19
|
Yuan X, Wang Y, Li X, Zhong S, Zhou D, Lin X, Fang H, Yang Y, Wang M. Loss-of-function mutation in DDX53 associated with hereditary spastic paraplegia-like disorder. J Mol Med (Berl) 2024; 102:913-926. [PMID: 38753040 DOI: 10.1007/s00109-024-02454-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 06/29/2024]
Abstract
DEAD-box helicase 53 (DDX53) is a member of the DEAD-box protein family of RNA helicases. Unlike other family members that are responsible for RNA metabolism, the biological function of DDX53 and its impact on the human condition are unclear. Herein, we found a full-length DDX53 deletion mutation in a hereditary spastic paraplegia-like (HSP-like) patient with lower extremity spasticity, walking disorder, visual impairment, and lateral ventricular white matter lesions. Bioinformatic analysis revealed that DDX53 was mainly expressed in the cerebellar cortex and may function as a tissue-specific RNA helicase. Transcriptome analysis showed that the expression of multiple brain-associated genes involved in synapse organization, neuron function, and neuromuscular junctions was affected by DDX53 depletion. Moreover, RNA immunoprecipitation sequencing (RIP-seq) analysis showed that DDX53 interacted with 176 genes, and 96 of these genes were associated with the execution of neurofunction, particularly in the regulation of cell projection organization and nervous system development. Collectively, although a more specified cell or animal model is required to fully understand the functional role of DDX53 in the human brain, we report for the first time that the patient with DDX53 defects exhibits HSP-like symptoms and that DDX53 is essential for maintaining neuronal function, with loss-of-function mutation in DDX53 potentially leading to HSP due to impaired RNA metabolism in the nervous system. KEY MESSAGES: DDX53 deficiency was first reported to be associated with HSP disorder. DDX53 exhibited minimal impact on mitochondrial function. DDX53 impaired RNA metabolism in the nervous system.
Collapse
Affiliation(s)
- Xiangshu Yuan
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Ya Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiyuan Li
- Baylor Genetics, Houston, TX, 77030, USA
| | - Sheng Zhong
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Danyi Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xianlong Lin
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Hezhi Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Yanling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China.
| | - Maofeng Wang
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, 322100, Zhejiang, China.
| |
Collapse
|
20
|
Yañez AJ, Barrientos CA, Isla A, Aguilar M, Flores-Martin SN, Yuivar Y, Ojeda A, Ibieta P, Hernández M, Figueroa J, Avendaño-Herrera R, Mancilla M. Discovery and Characterization of the ddx41 Gene in Atlantic Salmon: Evolutionary Implications, Structural Functions, and Innate Immune Responses to Piscirickettsia salmonis and Renibacterium salmoninarum Infections. Int J Mol Sci 2024; 25:6346. [PMID: 38928053 PMCID: PMC11204154 DOI: 10.3390/ijms25126346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
The innate immune response in Salmo salar, mediated by pattern recognition receptors (PRRs), is crucial for defending against pathogens. This study examined DDX41 protein functions as a cytosolic/nuclear sensor for cyclic dinucleotides, RNA, and DNA from invasive intracellular bacteria. The investigation determined the existence, conservation, and functional expression of the ddx41 gene in S. salar. In silico predictions and experimental validations identified a single ddx41 gene on chromosome 5 in S. salar, showing 83.92% homology with its human counterpart. Transcriptomic analysis in salmon head kidney confirmed gene transcriptional integrity. Proteomic identification through mass spectrometry characterized three unique peptides with 99.99% statistical confidence. Phylogenetic analysis demonstrated significant evolutionary conservation across species. Functional gene expression analysis in SHK-1 cells infected by Piscirickettsia salmonis and Renibacterium salmoninarum indicated significant upregulation of DDX41, correlated with increased proinflammatory cytokine levels and activation of irf3 and interferon signaling pathways. In vivo studies corroborated DDX41 activation in immune responses, particularly when S. salar was challenged with P. salmonis, underscoring its potential in enhancing disease resistance. This is the first study to identify the DDX41 pathway as a key component in S. salar innate immune response to invading pathogens, establishing a basis for future research in salmonid disease resistance.
Collapse
Affiliation(s)
- Alejandro J. Yañez
- Laboratorio de Diagnóstico y Terapia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.A.B.); (A.I.); (M.A.); (S.N.F.-M.)
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile; (J.F.); (R.A.-H.)
| | - Claudia A. Barrientos
- Laboratorio de Diagnóstico y Terapia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.A.B.); (A.I.); (M.A.); (S.N.F.-M.)
| | - Adolfo Isla
- Laboratorio de Diagnóstico y Terapia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.A.B.); (A.I.); (M.A.); (S.N.F.-M.)
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile; (J.F.); (R.A.-H.)
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Valdivia 5090000, Chile
| | - Marcelo Aguilar
- Laboratorio de Diagnóstico y Terapia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.A.B.); (A.I.); (M.A.); (S.N.F.-M.)
| | - Sandra N. Flores-Martin
- Laboratorio de Diagnóstico y Terapia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.A.B.); (A.I.); (M.A.); (S.N.F.-M.)
| | - Yassef Yuivar
- ADL Diagnostic Chile, Sector la Vara, Puerto Montt 5480000, Chile; (Y.Y.); (A.O.)
| | - Adriana Ojeda
- ADL Diagnostic Chile, Sector la Vara, Puerto Montt 5480000, Chile; (Y.Y.); (A.O.)
| | - Pablo Ibieta
- TEKBios Ltda, Camino Pargua Km 8, Maullín 5580000, Chile;
| | - Mauricio Hernández
- Division of Biotechnology, MELISA Institute, San Pedro de la Paz 4133515, Chile;
| | - Jaime Figueroa
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile; (J.F.); (R.A.-H.)
- Laboratorio de Biología Molecular de Peces, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Rubén Avendaño-Herrera
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile; (J.F.); (R.A.-H.)
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar 2520000, Chile
| | - Marcos Mancilla
- ADL Diagnostic Chile, Sector la Vara, Puerto Montt 5480000, Chile; (Y.Y.); (A.O.)
| |
Collapse
|
21
|
Hussain A. DEAD Box RNA Helicases: Biochemical Properties, Role in RNA Processing and Ribosome Biogenesis. Cell Biochem Biophys 2024; 82:427-434. [PMID: 38430409 DOI: 10.1007/s12013-024-01240-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/20/2024] [Indexed: 03/03/2024]
Abstract
DEAD box RNA helicases are a versatile group of ATP dependent enzymes that play an essential role in cellular processes like transcription, RNA processing, ribosome biogenesis and translation. These enzymes perform structural rearrangement of complex RNA molecules and enhance the productive folding of RNA and organization of macromolecular complexes. In this review article besides providing the outline about structural organization of helicases, an in-depth discussion will be done on the biochemical properties of RNA helicases like their substrate binding, binding and hydrolysis of ATP and related conformational changes that are important for functioning of the RNA helicase enzymes. I will extensively discuss the physiological role of RNA helicases in RNA processing and ribosome biogenesis.
Collapse
Affiliation(s)
- Ashaq Hussain
- Centre for Cellular and Molecular Biology, Hyderabad, India.
| |
Collapse
|
22
|
Fofana M, Li Z, Li H, Li W, Wu L, Lu L, Liu Q. Decreased Ubiquitination and Acetylation of Histones 3 and 4 Are Associated with Obesity-Induced Disorders of Spermatogenesis in Mice. TOXICS 2024; 12:296. [PMID: 38668519 PMCID: PMC11055147 DOI: 10.3390/toxics12040296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Obesity, a chronic metabolic disorder, is related to cardiovascular diseases, diabetes, cancer, and reproductive disorders. The relationship between obesity and male infertility is now well recognized, but the mechanisms involved are unclear. We aimed to observe the effect of obesity on spermatogenesis and to investigate the role of histone ubiquitination and acetylation modifications in obesity-induced spermatogenesis disorders. METHODS Thirty male C57BL/6J mice were randomly divided into two groups. The control group was fed with a general maintenance diet (12% fat), while a high-fat diet (HFD) group was fed with 40% fat for 10 weeks; then, they were mated with normal females. The fertility of male mice was calculated, testicular and sperm morphology were observed, and the expression levels of key genes and the levels of histone acetylation and ubiquitination modification during spermatogenesis were detected. RESULTS The number of sperm was decreased, as well as the sperm motility, while the number of sperm with malformations was increased. In the testes, the mRNA and protein expression levels of gonadotropin-regulated testicular RNA helicase (GRTH/DDX25), chromosome region maintenance-1 protein (CRM1), high-mobility group B2 (HMGB2), phosphoglycerate kinase 2 (PGK2), and testicular angiotensin-converting enzyme (tACE) were decreased. Furthermore, obesity led to a decrease in ubiquitinated H2A (ubH2A) and reduced levels of histone H3 acetylation K18 (H3AcK18) and histone H4 acetylation K5, K8, K12, and K16 (H4tetraAck), which disrupted protamine 1 (Prm1) deposition in testis tissue. CONCLUSION These results suggest that low levels of histone ubiquitination and acetylation are linked with obesity-induced disorders during spermatogenesis, contributing to a better understanding of obesity-induced damage to male reproduction.
Collapse
Affiliation(s)
- Mahamadou Fofana
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (M.F.); (Z.L.); (H.L.); (W.L.)
| | - Zhenyang Li
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (M.F.); (Z.L.); (H.L.); (W.L.)
| | - Han Li
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (M.F.); (Z.L.); (H.L.); (W.L.)
| | - Wenqi Li
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (M.F.); (Z.L.); (H.L.); (W.L.)
| | - Lu Wu
- Suzhou Center for Disease Control and Prevention, Suzhou Institute for Advanced Study of Public Health, Suzhou School, Nanjing Medical University, Suzhou 215004, China;
| | - Lu Lu
- Animal Core Facility, The Key Laboratory of Model Animal, Jiangsu Animal Experimental Center for Medical and Pharmaceutical Research, Nanjing Medical University, Nanjing 211166, China
| | - Qizhan Liu
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (M.F.); (Z.L.); (H.L.); (W.L.)
- Suzhou Center for Disease Control and Prevention, Suzhou Institute for Advanced Study of Public Health, Suzhou School, Nanjing Medical University, Suzhou 215004, China;
| |
Collapse
|
23
|
Fan S, Zhang Y, Zhu S, Shen L. Plant RNA-binding proteins: Phase separation dynamics and functional mechanisms underlying plant development and stress responses. MOLECULAR PLANT 2024; 17:531-551. [PMID: 38419328 DOI: 10.1016/j.molp.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
RNA-binding proteins (RBPs) accompany RNA from synthesis to decay, mediating every aspect of RNA metabolism and impacting diverse cellular and developmental processes in eukaryotes. Many RBPs undergo phase separation along with their bound RNA to form and function in dynamic membraneless biomolecular condensates for spatiotemporal coordination or regulation of RNA metabolism. Increasing evidence suggests that phase-separating RBPs with RNA-binding domains and intrinsically disordered regions play important roles in plant development and stress adaptation. Here, we summarize the current knowledge about how dynamic partitioning of RBPs into condensates controls plant development and enables sensing of experimental changes to confer growth plasticity under stress conditions, with a focus on the dynamics and functional mechanisms of RBP-rich nuclear condensates and cytoplasmic granules in mediating RNA metabolism. We also discuss roles of multiple factors, such as environmental signals, protein modifications, and N6-methyladenosine RNA methylation, in modulating the phase separation behaviors of RBPs, and highlight the prospects and challenges for future research on phase-separating RBPs in crops.
Collapse
Affiliation(s)
- Sheng Fan
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Yu Zhang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Shaobo Zhu
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Lisha Shen
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 1 Research Link, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
24
|
Mu F, Zheng H, Zhao Q, Zhu M, Dong T, Kai L, Li Z. Genome-wide systematic survey and analysis of the RNA helicase gene family and their response to abiotic stress in sweetpotato. BMC PLANT BIOLOGY 2024; 24:193. [PMID: 38493089 PMCID: PMC10944623 DOI: 10.1186/s12870-024-04824-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/14/2024] [Indexed: 03/18/2024]
Abstract
Sweetpotato (Ipomoea batatas (L.) Lam.) holds a crucial position as one of the staple foods globally, however, its yields are frequently impacted by environmental stresses. In the realm of plant evolution and the response to abiotic stress, the RNA helicase family assumes a significant role. Despite this importance, a comprehensive understanding of the RNA helicase gene family in sweetpotato has been lacking. Therefore, we conducted a comprehensive genome-wide analysis of the sweetpotato RNA helicase family, encompassing aspects such as chromosome distribution, promoter elements, and motif compositions. This study aims to shed light on the intricate mechanisms underlying the stress responses and evolutionary adaptations in sweetpotato, thereby facilitating the development of strategies for enhancing its resilience and productivity. 300 RNA helicase genes were identified in sweetpotato and categorized into three subfamilies, namely IbDEAD, IbDEAH and IbDExDH. The collinearity relationship between the sweetpotato RNA helicase gene and 8 related homologous genes from other species was explored, providing a reliable foundation for further study of the sweetpotato RNA helicase gene family's evolution. Furthermore, through RNA-Seq analysis and qRT-PCR verification, it was observed that the expression of eight RNA helicase genes exhibited significant responsiveness to four abiotic stresses (cold, drought, heat, and salt) across various tissues of ten different sweetpotato varieties. Sweetpotato transgenic lines overexpressing the RNA helicase gene IbDExDH96 were generated using A.rhizogenes-mediated technology. This approach allowed for the preliminary investigation of the role of sweetpotato RNA helicase genes in the response to cold stress. Notably, the promoters of RNA helicase genes contained numerous cis-acting elements associated with temperature, hormone, and light response, highlighting their crucial role in sweetpotato abiotic stress response.
Collapse
Affiliation(s)
- Fangfang Mu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Hao Zheng
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Qiaorui Zhao
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Mingku Zhu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Tingting Dong
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Lei Kai
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Zongyun Li
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
25
|
Al-Hawary SIS, Rodrigues P, Bangali H, Hassan ZF, Elawady A. The role of long noncoding RNA DGCR5 in cancers: Focus on molecular targets. Cell Biochem Funct 2024; 42:e3949. [PMID: 38379219 DOI: 10.1002/cbf.3949] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/22/2024]
Abstract
Long noncoding RNAs (lncRNAs) are major components of cellular transcripts that are emerging as important players in various biological pathways. Due to their specific expression and functional diversity in a variety of cancers, lncRNAs have promising applications in cancer diagnosis, prognosis, and therapy. Studies have shown that lncRNA DiGeorge syndrome critical region gene 5 (DGCR5) with high specificity and accuracy has the potential to become biomarkers in cancers. LncRNA DGCR5 can be noninvasively extracted from body fluids, tissues, and cells, and can be used as independent or auxiliary biomarkers to improve the accuracy of diagnosis or prognosis. Now, the underlying mechanisms of lncRNAs such as DGCR5 were explored as therapeutic targets, which have been investigated in clinical trials of several cancers. The DGCR5 lacks an appropriate animal model, which is necessary to gain greater knowledge of their functions. While some studies on the uses of DGCR5 have been carried out, the small sample size makes them unreliable. In this review, we presented a compilation of recent publications addressing the potential of lncRNA DGCR5 that could be considered as biomarkers or therapeutic targets, with the hopes of providing promised implications for future cancer therapy.
Collapse
Affiliation(s)
| | - Paul Rodrigues
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Saudi Arabia
| | - Harun Bangali
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Saudi Arabia
| | | | - Ahmed Elawady
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
26
|
Ni Y, Zhuang Z. DDX24 promotes tumor progression by mediating hexokinase-1 induced glycolysis in gastric cancer. Cell Signal 2024; 114:110995. [PMID: 38043669 DOI: 10.1016/j.cellsig.2023.110995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/10/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
Metabolic reprogramming allows tumor cells to meet high demand of biogenesis and increased energy for rapid proliferation. Gastric cancer (GC) ranks among the most prevalent malignancies globally. Exploring the underlying mechanisms of glycolytic reprogramming in GC could provide new therapeutic target for GC treatment. Here, we showed that DEAD-box helicase 24 (DDX24) played a critical role in hexokinase-1 (HK1) induced glycolysis. DDX24 expression was significantly elevated in GC tissues and was closely associated with worse survival in GC patients. In addition, DDX24 promoted glucose uptake and lactate production in GC cells. Mechanistically, DDX24 could bind the HK1 mRNA and positively regulated HK1 level at the transcriptional level. Moreover, DDX24 promoted the proliferation, migration, and invasion ability of GC cells by upregulating HK1. Collectively, these results suggested that DDX24 was a critical player in the regulation of glycolytic reprogramming and also implicated DDX24 as a valuable therapeutic target for GC.
Collapse
Affiliation(s)
- Yuanyuan Ni
- Department of Oncology, the Second Affiliated Hospital of Soochow University, Suzhou 215008, Jiangsu Province, PR China; Department of Radiation Oncology, the Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, PR China
| | - Zhixiang Zhuang
- Department of Oncology, the Second Affiliated Hospital of Soochow University, Suzhou 215008, Jiangsu Province, PR China.
| |
Collapse
|
27
|
Li X, Jiang Y. Research Progress of Group II Intron Splicing Factors in Land Plant Mitochondria. Genes (Basel) 2024; 15:176. [PMID: 38397166 PMCID: PMC10887915 DOI: 10.3390/genes15020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Mitochondria are important organelles that provide energy for the life of cells. Group II introns are usually found in the mitochondrial genes of land plants. Correct splicing of group II introns is critical to mitochondrial gene expression, mitochondrial biological function, and plant growth and development. Ancestral group II introns are self-splicing ribozymes that can catalyze their own removal from pre-RNAs, while group II introns in land plant mitochondria went through degenerations in RNA structures, and thus they lost the ability to self-splice. Instead, splicing of these introns in the mitochondria of land plants is promoted by nuclear- and mitochondrial-encoded proteins. Many proteins involved in mitochondrial group II intron splicing have been characterized in land plants to date. Here, we present a summary of research progress on mitochondrial group II intron splicing in land plants, with a major focus on protein splicing factors and their probable functions on the splicing of mitochondrial group II introns.
Collapse
Affiliation(s)
| | - Yueshui Jiang
- School of Life Sciences, Qufu Normal University, Qufu 273165, China;
| |
Collapse
|
28
|
Tapescu I, Taschuk F, Pokharel SM, Zginnyk O, Ferretti M, Bailer PF, Whig K, Madden EA, Heise MT, Schultz DC, Cherry S. The RNA helicase DDX39A binds a conserved structure in chikungunya virus RNA to control infection. Mol Cell 2023; 83:4174-4189.e7. [PMID: 37949067 PMCID: PMC10722560 DOI: 10.1016/j.molcel.2023.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/25/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
Alphaviruses are a large group of re-emerging arthropod-borne RNA viruses. The compact viral RNA genomes harbor diverse structures that facilitate replication. These structures can be recognized by antiviral cellular RNA-binding proteins, including DExD-box (DDX) helicases, that bind viral RNAs to control infection. The full spectrum of antiviral DDXs and the structures that are recognized remain unclear. Genetic screening identified DDX39A as antiviral against the alphavirus chikungunya virus (CHIKV) and other medically relevant alphaviruses. Upon infection, the predominantly nuclear DDX39A accumulates in the cytoplasm inhibiting alphavirus replication, independent of the canonical interferon pathway. Biochemically, DDX39A binds to CHIKV genomic RNA, interacting with the 5' conserved sequence element (5'CSE), which is essential for the antiviral activity of DDX39A. Altogether, DDX39A relocalization and binding to a conserved structural element in the alphavirus genomic RNA attenuates infection, revealing a previously unknown layer to the cellular control of infection.
Collapse
Affiliation(s)
- Iulia Tapescu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA; Biochemistry and Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Frances Taschuk
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA; Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Swechha M Pokharel
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Oleksandr Zginnyk
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Max Ferretti
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter F Bailer
- Biochemistry and Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Kanupryia Whig
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily A Madden
- Department of Microbiology and Immunology, UNC-Chapel Hill, Chapel Hill, NC, USA
| | - Mark T Heise
- Department of Microbiology and Immunology, UNC-Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, UNC-Chapel Hill, Chapel Hill, NC, USA
| | - David C Schultz
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
29
|
Olkinuora A, Nieminen TT, Douglas S, Kauppinen A, Kontro M, Väänänen J, Kankainen M, Ristimäki A, Mäkinen M, Lahermo P, Heckman C, Saarela J, Salonen M, Lepistö A, Järvinen H, Mecklin JP, Kilpivaara O, Wartiovaara-Kautto U, Porkka K, Peltomäki P. Identification of DHX40 as a candidate susceptibility gene for colorectal and hematological neoplasia. Leukemia 2023; 37:2301-2305. [PMID: 37696923 PMCID: PMC10624609 DOI: 10.1038/s41375-023-02021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/15/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023]
Affiliation(s)
- Alisa Olkinuora
- Department of Medical and Clinical Genetics, University of Helsinki, 00014, Helsinki, Finland.
| | - Taina T Nieminen
- Department of Medical and Clinical Genetics, University of Helsinki, 00014, Helsinki, Finland.
| | - Suvi Douglas
- Department of Medical and Clinical Genetics, University of Helsinki, 00014, Helsinki, Finland
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Anni Kauppinen
- Department of Medical and Clinical Genetics, University of Helsinki, 00014, Helsinki, Finland
| | - Mika Kontro
- Department of Hematology, Helsinki University Hospital, Comprehensive Cancer Center and University of Helsinki, 00014, Helsinki, Finland
- HiLIFE Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014, Helsinki, Finland
- Foundation for the Finnish Cancer Institute, 00014, Helsinki, Finland
| | - Juho Väänänen
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Matti Kankainen
- HUSLAB Laboratory of Genetics, HUS Diagnostic Center, HUS, Helsinki University Hospital, 00029, Helsinki, Finland
- Hematology Research Unit Helsinki, University of Helsinki, 00014, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014, Helsinki, Finland
| | - Ari Ristimäki
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
- Department of Pathology, HUSLAB, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, 00014, Helsinki, Finland
| | - Markus Mäkinen
- Research Unit of Cancer and Translational Medicine, Department of Pathology, 90014, University of Oulu, and Department of Pathology, Oulu University Hospital, OYS, 90029, Oulu, Finland
| | - Päivi Lahermo
- HiLIFE Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014, Helsinki, Finland
| | - Caroline Heckman
- HiLIFE Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Janna Saarela
- HiLIFE Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014, Helsinki, Finland
- Centre for Molecular Medicine Norway, NCMM, University of Oslo, 0318, Oslo, Norway
| | - Milla Salonen
- Department of Medical and Clinical Genetics, University of Helsinki, 00014, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland
- Folkhälsan Research Center, 00290, Helsinki, Finland
| | - Anna Lepistö
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
- Department of Abdominal Surgery, Helsinki University Hospital and University of Helsinki, 00014, Helsinki, Finland
| | - Heikki Järvinen
- Department of Abdominal Surgery, Helsinki University Hospital and University of Helsinki, 00014, Helsinki, Finland
| | - Jukka-Pekka Mecklin
- Department of Education & Research and Surgery, Jyväskylä Central Hospital, 40620, Jyväskylä, Finland
- Department of Sports & Health Sciences, Jyväskylä University, 40014, Jyväskylä, Finland
| | - Outi Kilpivaara
- Department of Medical and Clinical Genetics, University of Helsinki, 00014, Helsinki, Finland
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
- HUSLAB Laboratory of Genetics, HUS Diagnostic Center, HUS, Helsinki University Hospital, 00029, Helsinki, Finland
| | - Ulla Wartiovaara-Kautto
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
- Department of Hematology, Helsinki University Hospital, Comprehensive Cancer Center and University of Helsinki, 00014, Helsinki, Finland
| | - Kimmo Porkka
- Department of Hematology, Helsinki University Hospital, Comprehensive Cancer Center and University of Helsinki, 00014, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
| | - Päivi Peltomäki
- Department of Medical and Clinical Genetics, University of Helsinki, 00014, Helsinki, Finland.
- HUSLAB Laboratory of Genetics, HUS Diagnostic Center, HUS, Helsinki University Hospital, 00029, Helsinki, Finland.
| |
Collapse
|
30
|
Taylor K, Piasecka A, Kajdasz A, Brzęk A, Polay Espinoza M, Bourgeois CF, Jankowski A, Borowiak M, Raczyńska KD, Sznajder ŁJ, Sobczak K. Modulatory role of RNA helicases in MBNL-dependent alternative splicing regulation. Cell Mol Life Sci 2023; 80:335. [PMID: 37882878 PMCID: PMC10602967 DOI: 10.1007/s00018-023-04927-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/14/2023] [Accepted: 08/17/2023] [Indexed: 10/27/2023]
Abstract
Muscleblind-like splicing regulators (MBNLs) activate or repress the inclusion of alternative splicing (AS) events, enabling the developmental transition of fetal mRNA splicing isoforms to their adult forms. Herein, we sought to elaborate the mechanism by which MBNLs mediate AS related to biological processes. We evaluated the functional role of DEAD-box (DDX) RNA helicases, DDX5 and DDX17 in MBNL-dependent AS regulation. Whole-transcriptome analysis and validation approaches revealed a handful of MBNLs-dependent AS events to be affected by DDX5 and DDX17 in mostly an opposite manner. The opposite expression patterns of these two groups of factors during muscle development and coordination of fetal-to-adult splicing transition indicate the importance of these proteins at early stages of development. The identified pathways of how the helicases modulate MBNL splicing activity include DDX5 and DDX17-dependent changes in the ratio of MBNL splicing isoforms and most likely changes in accessibility of MBNL-binding sites. Another pathway involves the mode of action of the helicases independent of MBNL activity. These findings lead to a deeper understanding of the network of interdependencies between RNA-binding proteins and constitute a valuable element in the discussion on developmental homeostasis and pathological states in which the studied protein factors play a significant role.
Collapse
Affiliation(s)
- Katarzyna Taylor
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| | - Agnieszka Piasecka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Arkadiusz Kajdasz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Aleksandra Brzęk
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Micaela Polay Espinoza
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 Allee d'Italie, 69364, Lyon, France
| | - Cyril F Bourgeois
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 Allee d'Italie, 69364, Lyon, France
| | - Artur Jankowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Małgorzata Borowiak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Katarzyna D Raczyńska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Łukasz J Sznajder
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV, 89154, USA
| | - Krzysztof Sobczak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|
31
|
Luo Z, Zhan Z, Qin X, Pan W, Liang M, Li C, Weng S, He J, Guo C. Interaction of Teleost Fish TRPV4 with DEAD Box RNA Helicase 1 Regulates Iridovirus Replication. J Virol 2023; 97:e0049523. [PMID: 37289063 PMCID: PMC10308943 DOI: 10.1128/jvi.00495-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023] Open
Abstract
Viral diseases are a significant risk to the aquaculture industry. Transient receptor potential vanilloid 4 (TRPV4) has been reported to be involved in regulating viral activity in mammals, but its regulatory effect on viruses in teleost fish remains unknown. Here, the role of the TRPV4-DEAD box RNA helicase 1 (DDX1) axis in viral infection was investigated in mandarin fish (Siniperca chuatsi). Our results showed that TRPV4 activation mediates Ca2+ influx and facilitates infectious spleen and kidney necrosis virus (ISKNV) replication, whereas this promotion was nearly eliminated by an M709D mutation in TRPV4, a channel Ca2+ permeability mutant. The concentration of cellular Ca2+ increased during ISKNV infection, and Ca2+ was critical for viral replication. TRPV4 interacted with DDX1, and the interaction was mediated primarily by the N-terminal domain (NTD) of TRPV4 and the C-terminal domain (CTD) of DDX1. This interaction was attenuated by TRPV4 activation, thereby enhancing ISKNV replication. DDX1 could bind to viral mRNAs and facilitate ISKNV replication, which required the ATPase/helicase activity of DDX1. Furthermore, the TRPV4-DDX1 axis was verified to regulate herpes simplex virus 1 replication in mammalian cells. These results suggested that the TRPV4-DDX1 axis plays an important role in viral replication. Our work provides a novel molecular mechanism for host involvement in viral regulation, which would be of benefit for new insights into the prevention and control of aquaculture diseases. IMPORTANCE In 2020, global aquaculture production reached a record of 122.6 million tons, with a total value of $281.5 billion. Meanwhile, frequent outbreaks of viral diseases have occurred in aquaculture, and about 10% of farmed aquatic animal production has been lost to infectious diseases, resulting in more than $10 billion in economic losses every year. Therefore, an understanding of the potential molecular mechanism of how aquatic organisms respond to and regulate viral replication is of great significance. Our study suggested that TRPV4 enables Ca2+ influx and interactions with DDX1 to collectively promote ISKNV replication, providing novel insights into the roles of the TRPV4-DDX1 axis in regulating the proviral effect of DDX1. This advances our understanding of viral disease outbreaks and would be of benefit for studies on preventing aquatic viral diseases.
Collapse
Affiliation(s)
- Zhiyong Luo
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Zhipeng Zhan
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Xiaowei Qin
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Weiqiang Pan
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Mincong Liang
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Chuanrui Li
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Shaoping Weng
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jianguo He
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Changjun Guo
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
32
|
Lin TC. Perturbation Analysis of a Prognostic DDX3X-Mediated Gene Expression Signature Identifies the Antimetastatic Potential of Chaetocin in Hepatocellular Carcinoma. Cells 2023; 12:1628. [PMID: 37371098 DOI: 10.3390/cells12121628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
ATP-dependent RNA helicase DDX3X, also known as DEAD (Asp-Glu-Ala-Asp) Box Polypeptide 3, X-Linked (DDX3X), is critical for RNA metabolism, and emerging evidence implicates ATP-dependent RNA helicase DDX3X's participation in various cellular processes to modulate cancer progression. In this study, the clinical significance of DDX3X was addressed, and DDX3X was identified as a biomarker for poor prognosis. An exploration of transcriptomic data from 373 liver cancer patients from The Cancer Genome Atlas (TCGA) using Ingenuity Pathway Analysis (IPA) suggested an association between DDX3X expression and cancer metastasis. Lentiviral-based silencing of DDX3X in a hepatocellular carcinoma (HCC) cell line resulted in the suppression of cell migration and invasion. The molecular mechanism regarding ATP-dependent RNA helicase DDX3X in liver cancer progression had been addressed in many studies. I focused on the biological application of the DDX3X-mediated gene expression signature in cancer therapeutics. An investigation of the DDX3X-correlated expression signature via the L1000 platform of Connectivity Map (BROAD Institute) first identified a histone methyltransferase inhibitor, chaetocin, as a novel compound for alleviating metastasis in HCC. In this study, the prognostic value of DDX3X and the antimetastatic property of chaetocin are presented to shed light on the development of anti-liver cancer strategies.
Collapse
Affiliation(s)
- Tsung-Chieh Lin
- Genomic Medicine Core Laboratory, Department of Medical Research and Development, Chang Gung Memorial Hospital, Linkou, Taoyuan City 333, Taiwan
- Department of Biomedical Sciences, Chang Gung University, Taoyuan City 333, Taiwan
| |
Collapse
|
33
|
Wu R, Wu G, Huang Y, Zhang H, Tang J, Li M, Qing L. vsiRNA18 derived from tobacco curly shoot virus can regulate virus infection in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2023; 24:466-473. [PMID: 36797647 PMCID: PMC10098052 DOI: 10.1111/mpp.13310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 05/03/2023]
Abstract
Virus-derived small interfering RNAs (vsiRNAs) play important roles in regulating host endogenous gene expression to promote virus infection and induce RNA silencing to suppress virus infection. However, to date, how vsiRNAs affect geminivirus infection in host plants has been less studied. In this study, we found that tobacco curly shoot virus (TbCSV)-derived vsiRNA18 (TvsiRNA18) can regulate TbCSV infection in Nicotiana benthamiana plants. The virus-mediated small RNA expression system and stable transformation technique were used to clarify the molecular role of TvsiRNA18 in TbCSV infection. The results indicate that TvsiRNA18 can aggravate disease symptoms in these plants and enhance viral DNA accumulation. ATP-dependent RNA helicase (ATP-dRH) was proven to be a target of TvsiRNA18, and down-regulation of ATP-dRH in plants was shown to induce virus-like leaf curling symptoms and increase TbCSV infection. These results suggest that TvsiRNA18 is an important regulator of TbCSV infection by suppressing ATP-dRH expression. This is the first report to demonstrate that TbCSV-derived vsiRNA can target host endogenous genes to affect symptom development, which helps to reveal the molecular mechanism of symptom occurrence after the virus infects the host.
Collapse
Affiliation(s)
- Rui Wu
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Gentu Wu
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Yongjie Huang
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Haolan Zhang
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Jiaxin Tang
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Mingjun Li
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Ling Qing
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
- National Citrus Engineering Research CenterSouthwest UniversityChongqingChina
| |
Collapse
|
34
|
Gao H, Wei H, Yang Y, Li H, Liang J, Ye J, Zhang F, Wang L, Shi H, Wang J, Han A. Phase separation of DDX21 promotes colorectal cancer metastasis via MCM5-dependent EMT pathway. Oncogene 2023; 42:1704-1715. [PMID: 37029300 DOI: 10.1038/s41388-023-02687-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/09/2023]
Abstract
RNA binding proteins (RBPs) contributes to cancer progression, but the underlying mechanism reminds unclear. Here, we find that DDX21, a representative RBP, is highly expressed in colorectal cancer (CRC), which leads to CRC cell migration and invasion in vitro, and CRC to liver metastasis and lung metastasis in vivo. This effect of DDX21 on CRC metastasis is correlated to the activation of Epithelial-mesenchymal transition (EMT) pathway. Moreover, we reveal that DDX21 protein is phase separated in vitro and in CRC cells, which controls CRC metastasis. Phase-separated DDX21 highly binds on MCM5 gene locus, which is markedly reduced when phase separation is disrupted by mutations on its intrinsically disordered region (IDR). The impaired metastatic ability of CRC upon DDX21 loss is restored by ectopic expression of MCM5, indicating MCM5 is a key downstream target of DDX21 for CRC metastasis. Furthermore, co-higher expressions of DDX21 and MCM5 is significantly correlated with poor survival outcomes of stage III and IV CRC patients, indicating the importance of this mechanism in CRC late and metastatic stage. Altogether, our results elucidate a new model of DDX21 in regulating CRC metastasis via phase separation.
Collapse
Affiliation(s)
- Huabin Gao
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Huiting Wei
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yang Yang
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Hui Li
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jiangtao Liang
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jiecheng Ye
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Fenfen Zhang
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Liyuan Wang
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Huijuan Shi
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Jia Wang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Anjia Han
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
35
|
Mishra AK, Hossain MM, Umar M, Sata TN, Yadav AK, Sah AK, Ismail M, Nayak B, Shalimar, Venugopal SK. DDX3-mediated miR-34 expression inhibits autophagy and HBV replication in hepatic cells. J Viral Hepat 2023; 30:327-334. [PMID: 36597176 DOI: 10.1111/jvh.13799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023]
Abstract
HBV entry to the host cells and its successful infection depends on its ability to modulate the host restriction factors. DEAD box RNA helicase, DDX3, is shown to inhibit HBV replication. However, the exact mechanism of inhibition still remains unclear. DDX3 is involved in multitude or RNA metabolism processes including biogenesis of miRNAs. In this study, we sought to determine the mechanism involved in DDX3-mediated HBV inhibition. First, we observed that HBx protein of HBV downregulated DDX3 expression in HBV-infected cells. Overexpression of DDX3 inhibited HBx, HBsAg and total viral load, while its knockdown reversed the result in Hep G2.2.15 cells. Expression of miR-34 was downregulated in HBV-infected cells. Overexpression of pHBV1.3 further confirmed that HBV downregulates miR-34 expression. Consistent with the previous finding that DDX3 is involved in miRNA biogenesis, we observed that expression of miR-34 positively corelated with DDX3 expression. miRNA target prediction tools showed that miR-34 can target autophagy pathway which is hijacked by HBV for the benefit of its own replication. Indeed, transfection with miR-34 oligos downregulated the expression of autophagy marker proteins in HBV-expressing cells. Overexpression of DDX3 in HBV-expressing cells, downregulated expression of autophagy proteins while silencing of DDX3 reversed the results. These results led us to conclude that DDX3 upregulates miR-34 expression and thus inhibits autophagy in HBV-expressing cells while HBx helps HBV evade DDX3-mediated inhibition by downregulating DDX3 expression in HBV-infected cells.
Collapse
Affiliation(s)
- Amit Kumar Mishra
- Lab of molecular medicine and Hepatology, FLSB, South Asian University, New Delhi, India
| | - Md Musa Hossain
- Lab of molecular medicine and Hepatology, FLSB, South Asian University, New Delhi, India
| | - Mohd Umar
- Lab of molecular medicine and Hepatology, FLSB, South Asian University, New Delhi, India
| | - Teja Naveen Sata
- Lab of molecular medicine and Hepatology, FLSB, South Asian University, New Delhi, India
| | - Ajay K Yadav
- Lab of molecular medicine and Hepatology, FLSB, South Asian University, New Delhi, India
| | - Amrendra Kumar Sah
- Lab of molecular medicine and Hepatology, FLSB, South Asian University, New Delhi, India
| | - Md Ismail
- Lab of molecular medicine and Hepatology, FLSB, South Asian University, New Delhi, India
| | - Baibaswata Nayak
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Shalimar
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
36
|
Gomez K, Schiavoni G, Nam Y, Reynier JB, Khamnei C, Aitken M, Palmieri G, Cossu A, Levine A, van Noesel C, Falini B, Pasqualucci L, Tiacci E, Rabadan R. Genomic landscape of virus-associated cancers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.14.23285775. [PMID: 36824731 PMCID: PMC9949223 DOI: 10.1101/2023.02.14.23285775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
It has been estimated that 15%-20% of human cancers are attributable to infections, mostly by carcinogenic viruses. The incidence varies worldwide, with a majority affecting developing countries. Here, we present a comparative analysis of virus-positive and virus-negative tumors in nine cancers linked to five viruses. We find that virus-positive tumors occur more frequently in males and show geographical disparities in incidence. Genomic analysis of 1,658 tumors reveals virus-positive tumors exhibit distinct mutation signatures and driver gene mutations and possess a lower somatic mutation burden compared to virus-negative tumors of the same cancer type. For example, compared to the respective virus-negative counterparts, virus-positive cases across different cancer histologies had less often mutations of TP53 and deletions of 9p21.3/ CDKN2 A- CDKN1A ; Epstein-Barr virus-positive (EBV+) gastric cancer had more frequent mutations of EIF4A1 and ARID1A and less marked mismatch repair deficiency signatures; and EBV-positive cHL had fewer somatic genetic lesions of JAK-STAT, NF-κB, PI3K-AKT and HLA-I genes and a less pronounced activity of the aberrant somatic hypermutation signature. In cHL, we also identify germline homozygosity in HLA class I as a potential risk factor for the development of EBV-positive Hodgkin lymphoma. Finally, an analysis of clinical trials of PD-(L)1 inhibitors in four virus-associated cancers suggested an association of viral infection with higher response rate in patients receiving such treatments, which was particularly evident in gastric cancer and head and neck squamous cell carcinoma. These results illustrate the epidemiological, genetic, prognostic, and therapeutic trends across virus-associated malignancies.
Collapse
|
37
|
The Terminal Extensions of Dbp7 Influence Growth and 60S Ribosomal Subunit Biogenesis in Saccharomyces cerevisiae. Int J Mol Sci 2023; 24:ijms24043460. [PMID: 36834876 PMCID: PMC9960301 DOI: 10.3390/ijms24043460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Ribosome synthesis is a complex process that involves a large set of protein trans-acting factors, among them DEx(D/H)-box helicases. These are enzymes that carry out remodelling activities onto RNAs by hydrolysing ATP. The nucleolar DEGD-box protein Dbp7 is required for the biogenesis of large 60S ribosomal subunits. Recently, we have shown that Dbp7 is an RNA helicase that regulates the dynamic base-pairing between the snR190 small nucleolar RNA and the precursors of the ribosomal RNA within early pre-60S ribosomal particles. As the rest of DEx(D/H)-box proteins, Dbp7 has a modular organization formed by a helicase core region, which contains conserved motifs, and variable, non-conserved N- and C-terminal extensions. The role of these extensions remains unknown. Herein, we show that the N-terminal domain of Dbp7 is necessary for efficient nuclear import of the protein. Indeed, a basic bipartite nuclear localization signal (NLS) could be identified in its N-terminal domain. Removal of this putative NLS impairs, but does not abolish, Dbp7 nuclear import. Both N- and C-terminal domains are required for normal growth and 60S ribosomal subunit synthesis. Furthermore, we have studied the role of these domains in the association of Dbp7 with pre-ribosomal particles. Altogether, our results show that the N- and C-terminal domains of Dbp7 are important for the optimal function of this protein during ribosome biogenesis.
Collapse
|
38
|
Shih CY, Chen YC, Lin HY, Chu CY. RNA Helicase DDX6 Regulates A-to-I Editing and Neuronal Differentiation in Human Cells. Int J Mol Sci 2023; 24:ijms24043197. [PMID: 36834609 PMCID: PMC9965400 DOI: 10.3390/ijms24043197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
The DEAD-box proteins, one family of RNA-binding proteins (RBPs), participate in post-transcriptional regulation of gene expression with multiple aspects. Among them, DDX6 is an essential component of the cytoplasmic RNA processing body (P-body) and is involved in translational repression, miRNA-meditated gene silencing, and RNA decay. In addition to the cytoplasmic function, DDX6 is also present in the nucleus, but the nuclear function remains unknown. To decipher the potential role of DDX6 in the nucleus, we performed mass spectrometry analysis of immunoprecipitated DDX6 from a HeLa nuclear extract. We found that adenosine deaminases that act on RNA 1 (ADAR1) interact with DDX6 in the nucleus. Utilizing our newly developed dual-fluorescence reporter assay, we elucidated the DDX6 function as negative regulators in cellular ADAR1p110 and ADAR2. In addition, depletion of DDX6 and ADARs results in the opposite effect on facilitation of RA-induced differentiation of neuronal lineage cells. Our data suggest the impact of DDX6 in regulation of the cellular RNA editing level, thus contributing to differentiation in the neuronal cell model.
Collapse
Affiliation(s)
- Chia-Yu Shih
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Yun-Chi Chen
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Heng-Yi Lin
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Chia-Ying Chu
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Center for Systems Biology, National Taiwan University, Taipei 10617, Taiwan
- Correspondence: ; Tel.: +886-2-33669876
| |
Collapse
|
39
|
Yu T, Liu T, Wang Y, Zhang S, Zhang W. Thermodynamics and kinetics of an A-U RNA base pair under force studied by molecular dynamics simulations. Phys Rev E 2023; 107:024404. [PMID: 36932572 DOI: 10.1103/physreve.107.024404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Mechanical force has been widely used to study RNA folding and unfolding. Understanding how the force affects the opening and closing of a single base pair, which is a basic step for RNA folding and unfolding and a fundamental behavior in some important biological activities, is crucial to understanding the mechanism of RNA folding and unfolding under mechanical force. In this work, we investigated the opening and closing process of an RNA base pair under mechanical force with constant-force stretching molecular dynamics simulations. It was found that high mechanical force results in overstretching, and the open state is a high-energy state. The enthalpy and entropy change of the base-pair opening-closing transition were obtained and the results at low forces were in good agreement with the nearest-neighbor model. The temperature and force dependence of the opening and closing rates were also obtained. The position of the transition state for the base-pair opening-closing transition under mechanical force was determined. The free energy barrier of opening a base pair without force is the enthalpy increase, and the work done by the force from the closed state to the transition state decreases the barrier and increases the opening rate. The free energy barrier of closing the base pair without force results from the entropy loss, and the work done by the force from the open state to the transition state increases the barrier and decreases the closing rate. The transition rates are strongly dependent on the temperature and force, while the transition path times are weakly dependent on force and temperature.
Collapse
Affiliation(s)
- Ting Yu
- Department of Physics, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Taigang Liu
- Department of Physics, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
| | - Yujie Wang
- Department of Physics, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
- Department of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou, Henan 466000, People's Republic of China
| | - Shuhao Zhang
- Department of Physics, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Wenbing Zhang
- Department of Physics, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| |
Collapse
|
40
|
Cui H, Yang J, Yang B, Hao Y, Shi X, Zhang D, Yang X, Zhang T, Zhao D, Yuan X, Chen X, Liu X, Zheng H, Zhang K. Cyproheptadine hydrochloride inhibits African swine fever viral replication in vitro. Microb Pathog 2023; 175:105957. [PMID: 36572196 DOI: 10.1016/j.micpath.2022.105957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/16/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
African swine fever (ASF) is an infectious disease caused by the African swine fever virus (ASFV), and has a high mortality rate. It has caused serious socioeconomic consequences worldwide. Currently, there are no available commercial vaccines or antiviral drug interventions. D1133L is one of the key genes for ASFV replication and antiviral drug screening. In this study, a virtual screening software program, PyRx, was used to screen libraries of compounds against the potential drug target D1133L. Twelve compounds with a high affinity for ASFV D1133L were screened, and cyproheptadine hydrochloride (periactin) was identified as a candidate drug. The periactin has little cytotoxicity, and which dose-dependently inhibited ASFV replication in vitro. Further research indicated that periactin could significantly down-regulate D1133L at the transcriptional and protein levels with RT-qPCR and western blot methods. This study has provided important candidate drugs for the prevention and treatment of ASF, as well as biological materials and new fields of view for the research and development of vaccines and drugs for ASFV.
Collapse
Affiliation(s)
- Huimei Cui
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, PR China
| | - Jinke Yang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, PR China
| | - Bo Yang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, PR China
| | - Yu Hao
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, PR China
| | - Xijuan Shi
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, PR China
| | - Dajun Zhang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, PR China
| | - Xing Yang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, PR China
| | - Ting Zhang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, PR China
| | - DengShuai Zhao
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, PR China
| | - Xingguo Yuan
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, PR China
| | - Xuehui Chen
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, PR China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, PR China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, PR China.
| | - Keshan Zhang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, PR China.
| |
Collapse
|
41
|
Banerjee M, Devi Rajeswari V. Inhibition of WNT signaling by conjugated microRNA nano-carriers: A new therapeutic approach for treating triple-negative breast cancer a perspective review. Crit Rev Oncol Hematol 2023; 182:103901. [PMID: 36584723 DOI: 10.1016/j.critrevonc.2022.103901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Triple-Negative Breast Cancer is the most aggressive form and accounts the 15%-25% of all breast cancer. Receptors are absent in triple-negative breast cancer, which makes them unresponsive to the current hormonal therapies. The patients with TNBC are left with the option of cytotoxic chemotherapy. The Wnt pathways are connected to cancer, and when activated, they result in mammary hyperplasia and tumors. The tumor suppressor microRNAs can block tumor cell proliferation, invasion, and migration, lead to cancer cell death, and are also known to down-regulate the WNT signaling. Nanoparticles with microRNA have been seen to be more effective when compared with their single release. In this review, we have tried to understand how Wnt signaling plays a crucial role in TNBC, EMT, metastasis, anti-drug resistance, and regulation of Wnt by microRNA. The role of nano-carriers in delivering micro-RNA. The clinical biomarkers, including the present state-of-the-art, involve novel pathways of Wnt.
Collapse
Affiliation(s)
- Manosi Banerjee
- Department of Biomedical Sciences, School of Bioscience and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - V Devi Rajeswari
- Department of Biomedical Sciences, School of Bioscience and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
42
|
Kumar D, Kumar H, Kumar V, Deep A, Sharma A, Marwaha MG, Marwaha RK. Mechanism-based approaches of 1,3,4 thiadiazole scaffolds as potent enzyme inhibitors for cytotoxicity and antiviral activity. MEDICINE IN DRUG DISCOVERY 2023. [DOI: 10.1016/j.medidd.2022.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
43
|
Westcott CE, Isom CM, Karki D, Sokoloski KJ. Dancing with the Devil: A Review of the Importance of Host RNA-Binding Proteins to Alphaviral RNAs during Infection. Viruses 2023; 15:164. [PMID: 36680204 PMCID: PMC9865062 DOI: 10.3390/v15010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/02/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Alphaviruses are arthropod-borne, single-stranded positive sense RNA viruses that rely on the engagement of host RNA-binding proteins to efficiently complete the viral lifecycle. Because of this reliance on host proteins, the identification of host/pathogen interactions and the subsequent characterization of their importance to viral infection has been an intensive area of study for several decades. Many of these host protein interaction studies have evaluated the Protein:Protein interactions of viral proteins during infection and a significant number of host proteins identified by these discovery efforts have been RNA Binding Proteins (RBPs). Considering this recognition, the field has shifted towards discovery efforts involving the direct identification of host factors that engage viral RNAs during infection using innovative discovery approaches. Collectively, these efforts have led to significant advancements in the understanding of alphaviral molecular biology; however, the precise extent and means by which many RBPs influence viral infection is unclear as their specific contributions to infection, as per any RNA:Protein interaction, have often been overlooked. The purpose of this review is to summarize the discovery of host/pathogen interactions during alphaviral infection with a specific emphasis on RBPs, to use new ontological analyses to reveal potential functional commonalities across alphaviral RBP interactants, and to identify host RBPs that have, and have yet to be, evaluated in their native context as RNA:Protein interactors.
Collapse
Affiliation(s)
- Claire E. Westcott
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Cierra M. Isom
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Deepa Karki
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Kevin J. Sokoloski
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
- Center for Predictive Medicine for Biodefense and Emerging Infectious Disease (CPM), University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
44
|
Ding Z, Meng YR, Fan YJ, Xu YZ. Roles of minor spliceosome in intron recognition and the convergence with the better understood major spliceosome. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1761. [PMID: 36056453 DOI: 10.1002/wrna.1761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/06/2022] [Accepted: 08/06/2022] [Indexed: 01/31/2023]
Abstract
Catalyzed by spliceosomes in the nucleus, RNA splicing removes intronic sequences from precursor RNAs in eukaryotes to generate mature RNA, which also significantly increases proteome complexity and fine-tunes gene expression. Most metazoans have two coexisting spliceosomes; the major spliceosome, which removes >99.5% of introns, and the minor spliceosome, which removes far fewer introns (only 770 at present have been predicted in the human genome). Both spliceosomes are large and dynamic machineries, each consisting of five small nuclear RNAs (snRNAs) and more than 100 proteins. However, the dynamic assembly, catalysis, and protein composition of the minor spliceosome are still poorly understood. With different splicing signals, minor introns are rare and usually distributed alone and flanked by major introns in genes, raising questions of how they are recognized by the minor spliceosome and how their processing deals with the splicing of neighboring major introns. Due to large numbers of introns and close similarities between the two machinery, cooperative, and competitive recognition by the two spliceosomes has been investigated. Functionally, many minor-intron-containing genes are evolutionarily conserved and essential. Mutations in the minor spliceosome exhibit a variety of developmental defects in plants and animals and are linked to numerous human diseases. Here, we review recent progress in the understanding of minor splicing, compare currently known components of the two spliceosomes, survey minor introns in a wide range of organisms, discuss cooperation and competition of the two spliceosomes in splicing of minor-intron-containing genes, and contributions of minor splicing mutations in development and diseases. This article is categorized under: RNA Processing > Processing of Small RNAs RNA Processing > Splicing Mechanisms RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry.
Collapse
Affiliation(s)
- Zhan Ding
- RNA Institute, State Key Laboratory of Virology, and Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei, China.,Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan-Ran Meng
- RNA Institute, State Key Laboratory of Virology, and Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei, China
| | - Yu-Jie Fan
- RNA Institute, State Key Laboratory of Virology, and Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei, China
| | - Yong-Zhen Xu
- RNA Institute, State Key Laboratory of Virology, and Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
45
|
Wang L, Guzmán M, Sola I, Enjuanes L, Zuñiga S. Cytoplasmic ribonucleoprotein complexes, RNA helicases and coronavirus infection. FRONTIERS IN VIROLOGY 2022. [DOI: 10.3389/fviro.2022.1078454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RNA metabolism in the eukaryotic cell includes the formation of ribonucleoprotein complexes (RNPs) that, depending on their protein components, have a different function. Cytoplasmic RNPs, such as stress granules (SGs) or P-bodies (PBs) are quite relevant during infections modulating viral and cellular RNA expression and as key players in the host cell antiviral response. RNA helicases are abundant components of RNPs and could have a significant effect on viral infection. This review focuses in the role that RNPs and RNA helicases have during coronavirus (CoVs) infection. CoVs are emerging highly pathogenic viruses with a large single-stranded RNA genome. During CoV infection, a complex network of RNA-protein interactions in different RNP structures is established. In general, RNA helicases and RNPs have an antiviral function, but there is limited knowledge on whether the viral protein interactions with cell components are mediators of this antiviral effect or are part of the CoV antiviral counteraction mechanism. Additional data is needed to elucidate the role of these RNA-protein interactions during CoV infection and their potential contribution to viral replication or pathogenesis.
Collapse
|
46
|
Characterization of ddx4 and dnd Homologs in Snakeskin Gourami ( Trichopodus pectoralis) and Their Expression Levels during Larval Development and in Gonads of Males and Females. Animals (Basel) 2022; 12:ani12233415. [PMID: 36496935 PMCID: PMC9735842 DOI: 10.3390/ani12233415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/10/2022] Open
Abstract
The purpose of this study was to clone and characterize ddx4 and dnd1 homologs in snakeskin gourami (Trichopodus pectoralis) and to determine their expression levels during larval development and in the gonads of males and females. Both cDNAs contained predicted regions that shared consensus motifs with the ddx4 family in teleosts and the dnd family in vertebrates. Phylogenetic tree construction analysis confirmed that these two genes were clustered in the families of teleosts. Both ddx4 and dnd1 mRNAs were detectable only in the gonads, particularly in germ cells. These two genes were expressed during early larval development. The expression of ddx4 was high during early larval development and decreased with increasing developmental age, whereas dnd1 expression increased with developmental age. In adult fish, the expression levels of both genes were higher in the ovary than in the testis. Overall, these findings provide valuable molecular information on ddx4 and dnd, and can be applied in future reproductive biological studies relating to sex dimorphism in snakeskin gourami.
Collapse
|
47
|
Weinreb JT, Bowman TV. Clinical and mechanistic insights into the roles of DDX41 in haematological malignancies. FEBS Lett 2022; 596:2736-2745. [PMID: 36036093 PMCID: PMC9669125 DOI: 10.1002/1873-3468.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 11/10/2022]
Abstract
DEAD-box Helicase 41 (DDX41) is a member of the DExD/H-box helicase family that has a variety of cellular functions. Of note, germline and somatic mutations in the DDX41 gene are prevalently found in myeloid malignancies. Here, we present a comprehensive and analytic review covering relevant clinical, translational and basic science findings on DDX41. We first describe the initial characterisation of DDX41 mutations in patients affected by myelodysplastic syndromes, their associated clinical characteristics, and current treatment modalities. We then cover the known cellular functions of DDX41, spanning from its discovery in Drosophila as a neuroregulator through its more recently described roles in inflammatory signalling, R-loop metabolism and snoRNA processing. We end with a summary of the identified basic functions of DDX41 that when perturbed may contribute to the underlying pathology of haematologic neoplasms.
Collapse
Affiliation(s)
- Joshua T. Weinreb
- Albert Einstein College of Medicine, Department of Developmental and Molecular Biology, Bronx, NY, USA
- Albert Einstein College of Medicine, Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Bronx, NY, USA
| | - Teresa V. Bowman
- Albert Einstein College of Medicine, Department of Developmental and Molecular Biology, Bronx, NY, USA
- Albert Einstein College of Medicine, Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Bronx, NY, USA
- Albert Einstein College of Medicine and the Montefiore Medical Center, Department of Oncology, Bronx, NY, USA
| |
Collapse
|
48
|
DDX17 promotes the growth and metastasis of lung adenocarcinoma. Cell Death Dis 2022; 8:425. [PMID: 36273228 PMCID: PMC9588018 DOI: 10.1038/s41420-022-01215-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/08/2022]
Abstract
DEAD box RNA helicase 17 (DDX17) has been shown to be an RNA binding protein involved in RNA metabolism and associated with cancer progression. However, the biological role of DDX17 in the pathogenesis of lung adenocarcinoma (LUAD) has not been well characterized. Here, we demonstrated that DDX17 promoted the proliferation, migration and invasion of H1299 and A549 lung adenocarcinoma cells. Analyses of public datasets showed that DDX17 is upregulated in LUAD specimens. Our tumor xenograft models confirmed the in vivo promoting role of DDX17 in the growth and metastasis of LUAD. Mechanistic analyses further revealed that DDX17 protein interacts with the mRNA of MYL9 and MAGEA6 and upregulates their levels. MYL9 could mediate the function of DDX17 to regulate the actin cytoskeleton rearrangement and cell adhesion, particularly by modulating the stress fiber and focal adhesion formation, whereas DDX17 might inhibit the autophagy process through MAGEA6/AMPKα1 axis in LUAD cells. Collectively, our study revealed the oncogenic role and pathways of DDX17 in LUAD.
Collapse
|
49
|
Zhao JZ, Xu LM, Ren GM, Shao YZ, Lu TY. Identification and characterization of DEAD-box RNA helicase DDX3 in rainbow trout (Oncorhynchus mykiss) and its relationship with infectious hematopoietic necrosis virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104493. [PMID: 35840014 DOI: 10.1016/j.dci.2022.104493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/05/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
DDX3, a member of the DEAD-box RNA helicase family and has highly conserved ATP-dependent RNA helicase activity, has important roles in RNA metabolism and innate anti-viral immune responses. In this study, five transcript variants of the DDX3 gene were cloned and characterized from rainbow trout (Oncorhynchus mykiss). These five transcript variants of DDX3 encoded proteins were 74.2 kDa (686 aa), 76.4 kDa (709 aa), 77.8 kDa (711 aa), 78.0 kDa (718 aa), and 78.8 kDa (729 aa) and the predicted isoelectric points were 6.91, 7.63, 7.63, 7.18, and 7.23, respectively. All rainbow trout DDX3 proteins contained two conserved RecA-like domains that were similar to the DDX3 protein reported in mammals. Phylogenetic analysis showed that the five cloned rainbow trout DDX3 were separate from mammals but clustered with fish, especially Northern pike (Esox lucius) and Nile tilapia (Oreochromis niloticus). RT-qPCR analysis showed that the DDX3 gene was broadly expressed in all tissues studied. The expression of DDX3 after infectious hematopoietic necrosis virus (IHNV) infection increased gradually after the early stage of IHNV infection, decreased gradually with the proliferation of IHNV in vivo (liver, spleen, and kidney), and was significantly decreased after the in vitro infection of epithelioma papulosum cyprini (EPC) and rainbow trout gonad cell line-2 (RTG-2) cell lines. We also found that rainbow trout DDX3 was significantly increased by a time-dependent mechanism after the poly I:C treatment of EPC and RTG cells; however no significant changes were observed with lipopolysaccharide (LPS) treatment. Knockdown of DDX3 by siRNA showed significantly increased IHNV replication in infected RTG cells. This study suggests that DDX3 has an important role in host defense against IHNV infection and these results may provide new insights into IHNV pathogenesis and antiviral drug research.
Collapse
Affiliation(s)
- Jing-Zhuang Zhao
- Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Harbin, 150070, PR China; Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, 150070, PR China.
| | - Li-Ming Xu
- Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Harbin, 150070, PR China.
| | - Guang-Ming Ren
- Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Harbin, 150070, PR China.
| | - Yi-Zhi Shao
- Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Harbin, 150070, PR China.
| | - Tong-Yan Lu
- Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Harbin, 150070, PR China.
| |
Collapse
|
50
|
Zhang L, Xu Y, Liu X, Qin M, Li S, Jiang T, Yang Y, Jiang CZ, Gao J, Hong B, Ma C. The chrysanthemum DEAD-box RNA helicase CmRH56 regulates rhizome outgrowth in response to drought stress. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5671-5681. [PMID: 35595538 DOI: 10.1093/jxb/erac213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Plants have evolved complex mechanisms to reprogram growth in response to drought stress. In herbaceous perennial plant species, the rhizome, which is normally an organ for propagation and food storage, can also support plant growth in stressful environments, and allows the plant to perennate and survive stress damage. However, the mechanisms that regulate rhizome growth in perennial herbs during abiotic stresses are unknown. Here, we identified a chrysanthemum (Chrysanthemum morifolium) DEAD-box RNA helicase gene, CmRH56, that is specifically expressed in the rhizome shoot apex. Knock down of CmRH56 transcript levels decreased the number of rhizomes and enhanced drought stress tolerance. We determined that CmRH56 represses the expression of a putative gibberellin (GA) catabolic gene, GA2 oxidase6 (CmGA2ox6). Exogenous GA treatment and silencing of CmGA2ox6 resulted in more rhizomes. These results demonstrate that CmRH56 suppresses rhizome outgrowth under drought stress conditions by blocking GA biosynthesis.
Collapse
Affiliation(s)
- Lili Zhang
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Yanjie Xu
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Xuening Liu
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Meizhu Qin
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Shenglan Li
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Tianhua Jiang
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Yingjie Yang
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Cai-Zhong Jiang
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA, USA
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Junping Gao
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Bo Hong
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Chao Ma
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|