1
|
Nicchio IG, Cirelli T, Quil LCDC, Camilli AC, Scarel-Caminaga RM, Leite FRM. Understanding the peroxisome proliferator-activated receptor gamma (PPAR-γ) role in periodontitis and diabetes mellitus: A molecular perspective. Biochem Pharmacol 2025; 237:116908. [PMID: 40157459 DOI: 10.1016/j.bcp.2025.116908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/19/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Periodontitis and Type 2 Diabetes Mellitus (T2DM) are chronic conditions with dysregulated immune responses. Periodontitis involves immune dysfunction and dysbiotic biofilms, leading to tissue destruction. T2DM is marked by insulin resistance and systemic inflammation, driving metabolic and tissue damage. Both conditions share activation of key pathways, including Nuclear Factor Kappa B (NF-κB), Activator Protein-1 (AP-1), and Signal Transducer and Activator of Transcription (STAT) proteins, reinforcing an inflammatory feedback loop. This review highlights the role of Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ), a transcription factor central to lipid and glucose metabolism, adipogenesis, and immune regulation. PPAR-γ activation has been shown to suppress inflammatory mediators such as Tumor Necrosis Factor Alpha (TNF-α) and Interleukin 6 (IL-6) through the inhibition of NF-κB, AP-1, and STAT pathways, thereby potentially disrupting the inflammatory-metabolic cycle that drives both diseases. PPAR-γ agonists, including thiazolidinediones (TZDs) and endogenous ligands such as 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), show promise in reducing inflammation and improving insulin sensitivity, but they are limited by adverse effects. Therapies, including Selective Peroxisome Proliferator-Activated Receptor Modulators (SPPARMs), have been developed to offer a more targeted approach, allowing for selective modulation of PPAR-γ activity to retain its anti-inflammatory benefits while minimizing their side effects. By integrating insights into PPAR-γ's molecular mechanisms, this review underscores its therapeutic potential in mitigating inflammation and enhancing metabolic control.
Collapse
Affiliation(s)
- Ingra Gagno Nicchio
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil; Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil.
| | - Thamiris Cirelli
- Department of Dentistry, Centro Universitário das Faculdades Associadas, São João da Boa Vista 13870-377, SP, Brazil.
| | - Lucas César da Costa Quil
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil; Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil.
| | - Angelo Constantino Camilli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil.
| | - Raquel Mantuaneli Scarel-Caminaga
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil.
| | - Fabio Renato Manzolli Leite
- National Dental Research Institute Singapore, National Dental Centre Singapore, 168938, Singapore; Oral Health Academic Clinical Programme, Duke-NUS Medical School, 169857, Singapore.
| |
Collapse
|
2
|
Gheita HA, Shafey GM, Aziz MM, Fadel NA. Mitigation of radiation mediated testicular dysfunction by α-tocopheryl succinate: PPAR-γ related pathway. BMC Complement Med Ther 2025; 25:211. [PMID: 40490803 DOI: 10.1186/s12906-025-04950-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 05/29/2025] [Indexed: 06/11/2025] Open
Abstract
BACKGROUND Radiation exposure of sensitive organs during radiotherapy merits extraordinary consideration, particularly when the concern is about fertility. Although alpha-tocopheryl (vitamin E) is a potent antioxidant, many studies have demonstrated the radioprotective impact of alpha-tocopheryl acetate ester, emphasizing its antioxidant and anti-apoptotic effects; fewer studies were conducted using the succinate ester without any declaration of its anti-inflammatory effect in the concerned pathology. Accordingly, the current study was conducted to evaluate the dual antioxidant and anti-inflammatory role of alpha-tocopheryl succinate (α-TCS) in reproductive toxicity induced by gamma-irradiation. METHODS Animals were subjected to 6 Gy of whole-body gamma radiation and received α-TCS (200 mg/kg, P.O.) pre- and post-radiation. After the termination of the experiment, serum testosterone was estimated, and the testis weight was recorded. Besides, the testicular content of oxidative balance markers [malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT)] and inflammatory response markers [interleukin-1β (IL-1β), nuclear factor-kappa B (NF-κB) p65, peroxisome proliferator-activated receptor-γ (PPAR-γ)] were assessed. RESULTS Irradiated (IR) rats showed disturbances in the testicular function and abnormal incidental lesions, as demonstrated in the histopathological examinations. They exhibited marked alterations in the testicular oxidative balance, verified by the rise of lipid peroxidation end product (MDA) and depletion of antioxidant enzymes (CAT and SOD). Also, radiation exposure triggered an inflammatory response, which was evidenced by suppression of PPAR-γ and intensified expression of NF-κB p65 subunit, with subsequent elevation in IL-1β testicular content. Conversely, administering α-TCS to IR rats maintained the testicular architecture and ultrastructure while also preserving testicular function. Treatment with α-TCS restored the oxidative balance (MDA, SOD and CAT) and reduced testicular content of pro-inflammatory cytokine IL-1β via interference with the NF-κB p65/ PPAR-γ signaling pathway. CONCLUSIONS The current study sheds light on the crucial radioprotective role of α-TCS as a PPAR-γ agonist in maintaining testicular function partially through suppressing NF-κB activation and its downstream pro-inflammatory mediators.
Collapse
Affiliation(s)
- Heba A Gheita
- Drug Radiation Research Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Ghada M Shafey
- Drug Radiation Research Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Maha M Aziz
- Drug Radiation Research Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Noha A Fadel
- Drug Radiation Research Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| |
Collapse
|
3
|
Singh A, Chaudhary R. Potentials of peroxisome proliferator-activated receptor (PPAR) α, β/δ, and γ: An in-depth and comprehensive review of their molecular mechanisms, cellular Signalling, immune responses and therapeutic implications in multiple diseases. Int Immunopharmacol 2025; 155:114616. [PMID: 40222274 DOI: 10.1016/j.intimp.2025.114616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/21/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025]
Abstract
Peroxisome proliferator-activated receptors (PPARs), ligand-activated transcription factors, have emerged as a key regulator of various biological processes, underscoring their relevance in the pathophysiology and treatment of numerous diseases. PPARs are primarily recognized for their critical role in lipid and glucose metabolism, which underpins their therapeutic applications in managing type 2 diabetes mellitus. Beyond metabolic disorders, they have gained attention for their involvement in immune modulation, making them potential targets for autoimmune-related inflammatory diseases. Furthermore, PPAR's ability to regulate proliferation, differentiation, and apoptosis has positioned them as promising candidates in oncology. Their anti-inflammatory and anti-fibrotic properties further highlight their potential in dermatological and cardiovascular conditions, where dysregulated inflammatory responses contribute to disease progression. Recent advancements have elucidated the molecular mechanisms of different PPAR isoforms, including their regulation of key signalling pathways such as NF-κB and MAPK, which are crucial in inflammation and cellular stress responses. Additionally, their interactions with co-factors and post-translational modifications further diversify their functional roles. The therapeutic potential of various PPAR agonists has been extensively explored, although challenges related to side effects and target specificity remain. This growing body of evidence underscores the significance of PPARs in understanding the molecular basis of diseases and advancing therapeutic interventions, paving way for targeted treatment approach across a wide spectrum of medical conditions. Here, we provide a comprehensive and detailed perspective of PPARs and their potential across different health conditions to advance our understanding, elucidate underlying mechanisms, and facilitate the development of potential treatment strategies.
Collapse
Affiliation(s)
- Alpana Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India.
| |
Collapse
|
4
|
Wang Y, Feng X, Li Y, Niu S, Li J, Shi H, Wang G, Wang L. Targeting inflammation and necroptosis in diabetic kidney disease: A novel approach via PPARα modulation. Int Immunopharmacol 2025; 154:114562. [PMID: 40174339 DOI: 10.1016/j.intimp.2025.114562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/14/2025] [Accepted: 03/23/2025] [Indexed: 04/04/2025]
Abstract
BACKGROUND Renal tubular interstitial inflammation is a central driver of the pathogenesis of diabetic kidney disease (DKD). Peroxisome proliferator-activated receptor alpha (PPARα), predominantly expressed in renal tubular epithelial cells (TECs), plays a key role in regulating inflammation. However, the precise molecular mechanisms through which PPARα exerts its protective effects in DKD remain unclear. METHODS Single-cell RNA sequencing data from the GEO database revealed a marked reduction in PPARα expression in the proximal TECs of early-stage DKD patients. To investigate its potential role, we utilized an AAV9-PPARα viral vector to induce PPARα overexpression in TECs within a DKD mouse model. RNA sequencing of kidney tissues from both DKD and PPARα-overexpressing DKD mice was performed to identify key differentially expressed genes and signaling pathways. These findings were subsequently validated by in vitro and in vivo experiments. RESULTS PPARα overexpression significantly improved renal function, reduced interstitial fibrosis, attenuated inflammatory cytokine expression, and markedly decreased M1 macrophage infiltration. Notably, PPARα inhibited RIP1/RIP3/MLKL-mediated necroptosis in TECs, resulting in a substantial delay in DKD progression. Furthermore, NF-κB signaling played a crucial role in PPARα-mediated regulation of inflammation and necroptosis in TECs. CONCLUSION In summary, PPARα plays a pivotal role in modulating inflammation and necroptosis in DKD. Targeting PPARα in TECs represents a promising therapeutic strategy for slowing the progression of DKD and potentially reversing early renal damage. These findings open up new avenues for PPARα-targeted therapies in DKD and other chronic kidney diseases.
Collapse
Affiliation(s)
- Yu Wang
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Xiaojian Feng
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Yue Li
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Songlin Niu
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Jinxin Li
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Honghong Shi
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Gaoling Wang
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Lihua Wang
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
5
|
Islas-Espinoza AM, Ramos-Rodríguez II, Escoto-Rosales MJ, Pizaña-Encarnación JM, Morales-Galindo DK, Caram-Salas NL, Déciga-Campos M, Rodríguez-Palma EJ, Granados-Soto V. Cannabidiol reduces neuropathic pain and cognitive impairments through activation of spinal PPARγ. THE JOURNAL OF PAIN 2025; 30:105378. [PMID: 40112940 DOI: 10.1016/j.jpain.2025.105378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/05/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
The purpose of this study was to evaluate the participation of spinal peroxisome proliferator-activated receptor gamma (PPARγ) in the antiallodynic effect of cannabidiol, the expression of PPARγ in sites relevant to the spinal nociceptive processing, and the effect of this cannabinoid on cognitive deficits induced by neuropathic pain in female mice. Either acute or repeated treatment with cannabidiol reduced tactile allodynia and spontaneous pain (flinching) in female neuropathic mice. Cannabidiol induced a greater effect in female mice. Pioglitazone partially reduced tactile allodynia, and this effect was fully blocked by the PPARγ antagonist GW9662. Likewise, intrathecal injection of cannabidiol reduced tactile allodynia, while PPARγ antagonist GW9662 or 5-HT1A receptor antagonist WAY-100635, but not the PPARα antagonist GW6479, partially prevented this effect. GW9662 and WAY-100635 administrated per se did not modify tactile allodynia in neuropathic female mice. Co-administration of GW9662 and WAY-100635 fully prevented the antiallodynic effect of cannabidiol in mice. Nerve injury up-regulated PPARγ expression at the spinal cord and dorsal root ganglia, while cannabidiol further enhanced nerve injury-induced up-regulation of PPARγ expression in both tissues. Repeated intrathecal injection of cannabidiol reduced tactile allodynia and several pain makers (ERK, p-ERK, p38MAPK and p-p38MAPK). In addition, this treatment restored nerve injury-induced interleukin-10 down-regulation and increased PPARγ expression at the spinal cord. Repeated treatment with cannabidiol also improved nerve injury-induced cognitive impairment in mice. These results provide compelling evidence for the involvement of PPARγ in the antiallodynic effect of cannabidiol in mice and highlight its multifaceted therapeutic potential in neuropathic pain management and its comorbidities. PERSPECTIVE: The present study reveals cannabidiol's dual effects in female mice by reducing neuropathic pain through spinal PPARγ and 5-HT1A receptor activation and ameliorating nerve injury-induced cognitive impairment. These findings may assist clinicians seeking new therapeutic approaches for managing neuropathic pain and its associated cognitive deficits.
Collapse
Affiliation(s)
- Ana Mara Islas-Espinoza
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Itzel I Ramos-Rodríguez
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | - María J Escoto-Rosales
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Juan M Pizaña-Encarnación
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Diana K Morales-Galindo
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Nadia L Caram-Salas
- Investigadora por México, Consejo Nacional de Humanidades, Ciencias y Tecnologías (Conahcyt), Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, Mexico; Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, Mexico
| | - Myrna Déciga-Campos
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Erick J Rodríguez-Palma
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico.
| |
Collapse
|
6
|
Fecho K, Tucker N, Beasley JM, Auerbach SS, Bizon C, Tropsha A. Elucidating the mechanistic relationships between peroxisome proliferator-activated receptors and hepatic fibrosis using the ROBOKOP knowledge graph. FRONTIERS IN TOXICOLOGY 2025; 7:1549268. [PMID: 40330554 PMCID: PMC12052891 DOI: 10.3389/ftox.2025.1549268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/14/2025] [Indexed: 05/08/2025] Open
Abstract
We developed the Reasoning Over Biomedical Objects linked in Knowledge Oriented Pathways (ROBOKOP) application as an open-source knowledge graph system to support evidence-based biomedical discovery and hypothesis generation. This study aimed to apply ROBOKOP to suggest biological mechanisms that might explain the hypothesized relationship between exposure to the herbicide and lipid-lowering drug clofibrate, an activator of peroxisome proliferator-activated receptor-α (PPARA), and hepatic fibrosis. We queried ROBOKOP to first establish that it could demonstrate a relationship between clofibrate and PPARA as a validation test and second to identify intermediary genes and biological processes or activities that might relate the activation of PPARA by clofibrate to hepatic fibrosis. Queries of ROBOKOP returned several paths relating clofibrate, PPARA, and hepatic fibrosis. One path suggested the following: clofibrate - affects / increases_ expression_ of / increases_ activity_ of / increases_ response_ to / decreases_ response_ to / is_ related_ to - PPARA - is_ actively_ involved_ in - cellular response to lipid - actively_ involves - CCL2 - is_ genetically_ associated_ with - hepatic fibrosis. This result established a relationship between clofibrate and PPARA and further suggested that PPARA is actively involved in the cellular response to lipids, which actively involves the chemokine ligand CCL2, a gene genetically associated with hepatic fibrosis; thus, we can infer that PPARA, upon activation by clofibrate, plays a role in hepatic fibrosis. We conclude that ROBOKOP can be used to derive insights into biological mechanisms that might explain relationships between environmental exposures and liver toxicity.
Collapse
Affiliation(s)
- Karamarie Fecho
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Copperline Professional Solutions, LLC, Pittsboro, NC, United States
| | - Nyssa Tucker
- UNC Eshelman School of Pharmacy and Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jon-Michael Beasley
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Scott S. Auerbach
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Chris Bizon
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Alexander Tropsha
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Predictive, LLC, Raleigh, NC, United States
| |
Collapse
|
7
|
Modak D, Ghosh S, Sarkar S, Roy SK, Chakraborty A, Ray A, Patel CN, Georrge JJ, Thakur S, Bhattacharjee S. Unveiling the mechanism of amelioration of adjuvant-induced rheumatoid arthritis by Drynaria quercifolia rhizome extract using network pharmacology and gene expression-based studies. Sci Rep 2025; 15:11981. [PMID: 40199969 PMCID: PMC11978801 DOI: 10.1038/s41598-025-87461-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/20/2025] [Indexed: 04/10/2025] Open
Abstract
Rhizomes of Drynaria quercifolia have long been traditionally used to manage rheumatic pain. However, there is limited research supporting this traditional practice and insufficient evidence demonstrating the molecular mechanisms of action of plant-derived bioactives in rheumatoid arthritis (RA). The current study aims to identify the effective components in Drynaria quercifolia methanol rhizome extract (DME) and their probable pharmacological mechanisms in alleviating Rheumatoid Arthritis (RA) using network-pharmacology, molecular docking, molecular-dynamics simulations, and gene expression-based validation. Gas chromatography-mass spectrometry (GC-MS) based screening identified 41 volatile phytocomponents from DME having drug-like potentiality. Network pharmacology-based screening revealed 117 therapeutic targets for RA of which 11 have been identified as core targets. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that key target genes were mostly enriched in the inflammatory response associated with multiple signalling pathways. Molecular docking and molecular dynamics studies revealed that key target proteins like serine/threonine-protein kinase (AKT1), peroxisome proliferator-activated receptor alpha (PPARA), and peroxisome proliferator-activated receptor gamma (PPARG), exhibited strong binding affinity and stable interactions with multiple phytocomponents present in DME. For experimental verification FCA (Freund's complete adjuvant)-induced chronic arthritis model employed for further molecular investigation. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) results validated that DME significantly (p ≤ 0.05) regulate the expression of key identified target genes AKT and PPARG in experimental RA model. Moreover, this study further confirmed that DME significantly (p ≤ 0.05) downregulated pro-inflammatory mediators like COX-2, IL-6 and TNF-α at gene and protein levels and also normalized (p ≤ 0.05) different oxidative stress parameters in both the low and high dose groups of DME-treated arthritic animals. In conclusion, the network-based in silico approach indicated that the phytocomponents present in DME probably act in a synergistic way to modulate key identified targets associated with RA, which was further validated by experimental studies. Therefore, DME could be a potential alternative in immunomodulatory therapies to combat RA and related chronic inflammatory conditions.
Collapse
Affiliation(s)
- Debabrata Modak
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, Darjeeling, 734013, West Bengal, India
- Department of Bioinformatics, University of North Bengal, Raja Rammohunpur, Darjeeling, 734013, West Bengal, India
| | - Subhajit Ghosh
- Department of Bioinformatics, University of North Bengal, Raja Rammohunpur, Darjeeling, 734013, West Bengal, India
| | - Sourav Sarkar
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, Darjeeling, 734013, West Bengal, India
| | - Sudipta K Roy
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, Darjeeling, 734013, West Bengal, India
| | - Ayan Chakraborty
- Virus Research and Diagnostic Laboratory, North Bengal Medical College and Hospital, Darjeeling, 734012, West Bengal, India
| | - Arpita Ray
- Genetics and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Darjeeling, 734013, West Bengal, India
| | - Chirag N Patel
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Biotechnology Research Center, Technology Innovation Institute, Abu Dhabi, United Arab Emirates
| | - John J Georrge
- Department of Bioinformatics, University of North Bengal, Raja Rammohunpur, Darjeeling, 734013, West Bengal, India
| | - Subarna Thakur
- Department of Bioinformatics, University of North Bengal, Raja Rammohunpur, Darjeeling, 734013, West Bengal, India.
| | - Soumen Bhattacharjee
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, Darjeeling, 734013, West Bengal, India.
| |
Collapse
|
8
|
Jalil AT, Al-Kazzaz HH, Hassan FA, Mohammed SH, Merza MS, Aslandook T, Elewadi A, Fadhil A, Alsalamy A. Metabolic Reprogramming of Anti-cancer T Cells: Targeting AMPK and PPAR to Optimize Cancer Immunotherapy. Indian J Clin Biochem 2025; 40:165-175. [PMID: 40123631 PMCID: PMC11928344 DOI: 10.1007/s12291-023-01166-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/17/2023] [Indexed: 03/25/2025]
Abstract
Cancer treatment era has been revolutionized by the novel therapeutic methods such as immunotherapy in recent years. Immunotherapy-based approaches are considered effective and reliable methods that has brought hope to eradicate certain cancers. Nonetheless, there are some issues, considered as critical obstacles in successful cancer immunotherapy. Such issues are attributed to the ability of the tumor cells in providing a tolerant microenvironment that impairs the immune responses, and help the cancer cells evade the immunogenic cell death. It has been suggested that the re-activation and maintenance of effector immune cells may become possible by metabolic reprogramming. Several signaling pathways have been noticed with the possibility of metabolic reprogramming of tumor-specific T cells, to overcome the metabolic restrictions in the tumor microenvironment; and among them, AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptors (PPAR) have been investigated the most as the main energy sensors and regulators of mitochondrial biogenesis. The synergic effects of AMPK activators and/or PPAR agonists in cancer immunotherapy have been reported. In this review, we compare the roles of AMPK activators and PPAR agonists, and the efficacy of their combination in metabolic reprogramming of cytotoxic T cells in favoring cancer immunotherapy.
Collapse
Affiliation(s)
| | - Hassan Hadi Al-Kazzaz
- College of Medical and Health Technology, Al-Zahraa University for Women, Karbala, Iraq
| | - Firas A. Hassan
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
| | | | - Muna S. Merza
- Department of Prosthetic Dental Techniques, Al-Mustaqbal University College, Hillah, Iraq
| | - Tahani Aslandook
- Department of Dentistry, Al-Turath University College, Baghdad, Iraq
| | - Ahmed Elewadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
| | - Ali Fadhil
- College of Medical Techniques, Al-Farahidi University, Baghdad, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja’afar Al-Sadiq University, Al-Muthanna, 66002 Iraq
| |
Collapse
|
9
|
Yang S, Yang S, Luo A. Phthalates and uterine disorders. REVIEWS ON ENVIRONMENTAL HEALTH 2025; 40:97-114. [PMID: 38452364 DOI: 10.1515/reveh-2023-0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/26/2024] [Indexed: 03/09/2024]
Abstract
Humans are ubiquitously exposed to environmental endocrine disrupting chemicals such as phthalates. Phthalates can migrate out of products and enter the human body through ingestion, inhalation, or dermal application, can have potential estrogenic/antiestrogenic and/or androgenic/antiandrogenic activity, and are involved in many diseases. As a female reproductive organ that is regulated by hormones such as estrogen, progesterone and androgen, the uterus can develop several disorders such as leiomyoma, endometriosis and abnormal bleeding. In this review, we summarize the hormone-like activities of phthalates, in vitro studies of endometrial cells exposed to phthalates, epigenetic modifications in the uterus induced by phthalate exposure, and associations between phthalate exposure and uterine disorders such as leiomyoma and endometriosis. Moreover, we also discuss the current research gaps in understanding the relationship between phthalate exposure and uterine disorders.
Collapse
Affiliation(s)
- Shuhong Yang
- Department of Obstetrics and Gynecology, 10487 National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, People's Republic of China
| | - Shuhao Yang
- Department of Obstetrics and Gynecology, 10487 National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, People's Republic of China
| | - Aiyue Luo
- Department of Obstetrics and Gynecology, 10487 National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, People's Republic of China
| |
Collapse
|
10
|
Bi J, Guo Q, Gong Y, Chen X, Wu H, Song L, Xu Y, Ou M, Wang Z, Chen J, Jiang C, Liu A, Li G, Zhang G. Troglitazone Reduction of Intracellular Mycobacterium tuberculosis Survival Via Macrophage Autophagy Through LKB1-AMPKα Signaling. J Infect Dis 2025; 231:e553-e565. [PMID: 39450555 PMCID: PMC11911799 DOI: 10.1093/infdis/jiae523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/07/2024] [Accepted: 10/23/2024] [Indexed: 10/26/2024] Open
Abstract
Tuberculosis caused by Mycobacterium tuberculosis (Mtb), results in significant disease and death worldwide. Host-directed therapy, including conventional drugs, is a promising antituberculosis strategy that shows synergistic antibacterial effects when combined with antituberculosis drugs. Here, the mycobactericidal effect of 3 antidiabetic drugs was examined. Of these, only troglitazone (Trog) enhanced the antimycobacterial effect in vitro and in vivo. This was due to Trog-mediated autophagy activation. Moreover, a knock-down experiment revealed that Trog activated autophagy and exhibited antimycobacterial activity through the serine/threonine-protein kinase STK11 (LKB1)-5'-AMP-activated protein kinase (AMPK) signaling pathway. Molecular docking and coimmunoprecipitation experiments demonstrated that Trog promoted LKB1 phosphorylation and activation by targeting STE20-related kinase adapter protein alpha (STRADA). Finally, we found that Trog inhibited the intracellular survival of clinical isoniazid-resistant Mtb, and the combination of Trog and isoniazid showed additive antibacterial effects against Mtb H37Rv. Taken together, antidiabetic Trog may be repurposed as a candidate for host-directed therapy and combined with first-line antituberculosis drugs.
Collapse
Affiliation(s)
- Jing Bi
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Qinglong Guo
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Yaqi Gong
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Xi Chen
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Haojia Wu
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Li Song
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Yating Xu
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Min Ou
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Zhaoqin Wang
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Jiean Chen
- Shenzhen Bay Laboratory, Pingshan Translational Medicine Center, Shenzhen, China
| | - Chenran Jiang
- Shenzhen Bay Laboratory, Pingshan Translational Medicine Center, Shenzhen, China
| | - Aimei Liu
- Department of Tuberculosis, Guangxi Chest Hospital, Liuzhou, China
| | - Guobao Li
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Guoliang Zhang
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
11
|
Yadav A, Ouyang X, Barkley M, Watson JC, Madamanchi K, Kramer J, Zhang J, Melkani G. Regulation of lipid dysmetabolism and neuroinflammation linked with Alzheimer's disease through modulation of Dgat2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.18.638929. [PMID: 40027815 PMCID: PMC11870505 DOI: 10.1101/2025.02.18.638929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder marked by amyloid-β (Aβ) plaque accumulation, cognitive decline, lipid dysregulation, and neuroinflammation. While mutations in the Amyloid Precursor Protein (APP) and Aβ42 accumulation contribute to AD, the mechanisms linking Aβ to lipid metabolism and neuroinflammation remain unclear. Using Drosophila models, we show that App NLG and Aβ42 expression causes locomotor deficits, disrupted sleep, memory impairments, lipid accumulation, synaptic loss, and neuroinflammation. Similar lipid and inflammatory changes are observed in the App NLG-F knock-in mouse model, reinforcing their role in AD pathogenesis. We identify diacylglycerol O-acyltransferase 2 (Dgat2), a key lipid metabolism enzyme, as a modulator of AD phenotypes. In Drosophila and mouse AD models, Dgat2 levels and its transcription factors are altered. Dgat2 knockdown in Drosophila reduced lipid accumulation, restored synaptic integrity, improved locomotor and cognitive function, and mitigated neuroinflammation. Additionally, Dgat2 modulation improved sleep and circadian rhythms. In App NLG-F mice, Dgat2 inhibition decreased neuroinflammation and reduced AD risk gene expression. These findings highlight the intricate link between amyloid pathology, lipid dysregulation, and neuroinflammation, suggesting that targeting Dgat2 may offer a novel therapeutic approach for AD. Conserved lipid homeostasis mechanisms across species provide valuable translational insights.
Collapse
|
12
|
Zhao W, Jia Z, Han J, Sun X. Boswellia Extract Promotes Healing and Resolving Inflammation in Oral Ulcers of Rat. J Oral Pathol Med 2025; 54:131-140. [PMID: 39871413 DOI: 10.1111/jop.13609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 11/11/2024] [Accepted: 12/10/2024] [Indexed: 01/29/2025]
Abstract
BACKGROUND Recurrent aphthous ulcers significantly impact patients' quality of life due to their painful and recurrent nature, necessitating more effective treatments. This study explores the therapeutic potential of Boswellia to treat recurrent aphthous ulcers by its anti-inflammatory and healing promotion effect in a rat oral ulcer model. METHODS Network pharmacology techniques were employed to elucidate Boswellia's active components and potential targets. Intersecting targets of Boswellia and oral ulcer-related genes were screened for protein-protein interaction network analysis and functional enrichment. An oral ulcer model in rats was used and rats were treated with Boswellia extract. The healing process was monitored by measuring the ulcer area and body weight changes. Histological analysis was performed, and the role of Boswellia in macrophage polarization was investigated through gene expression analysis and protein array tests. The underlying mechanism involving PPARγ activation was also explored. RESULTS Network pharmacology analysis revealed Boswellia's interaction with key genes and pathways associated with inflammation and lipid metabolism, such as MAPK3, PPARG, and PTGS2. Boswellia extract significantly accelerated oral ulcer healing and recovered weight loss in rats. Histological examinations revealed reduced tissue swelling and inflammatory cell infiltration in treated groups. Furthermore, Boswellia extract decreased infiltration of M1 macrophage presence while increasing M2 macrophage, indicating an inflammation-resolving effect. In vitro studies showed that Boswellia extract enhanced M2-related gene expression and decreased pro-inflammatory cytokines, which is PPARγ dependent. CONCLUSION Boswellia extract promotes oral ulcer healing and resolves inflammation, primarily through the modulation of macrophage polarization via PPARγ activation.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Oral Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhuoqun Jia
- Department of Oral Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jiao Han
- Department of Oral Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaojun Sun
- Department of Oral Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
13
|
Li Y, Xu X, Wu X, Li J, Chen S, Chen D, Li G, Tang Z. Cell polarization in ischemic stroke: molecular mechanisms and advances. Neural Regen Res 2025; 20:632-645. [PMID: 38886930 PMCID: PMC11433909 DOI: 10.4103/nrr.nrr-d-23-01336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/23/2023] [Accepted: 12/18/2023] [Indexed: 06/20/2024] Open
Abstract
Ischemic stroke is a cerebrovascular disease associated with high mortality and disability rates. Since the inflammation and immune response play a central role in driving ischemic damage, it becomes essential to modulate excessive inflammatory reactions to promote cell survival and facilitate tissue repair around the injury site. Various cell types are involved in the inflammatory response, including microglia, astrocytes, and neutrophils, each exhibiting distinct phenotypic profiles upon stimulation. They display either proinflammatory or anti-inflammatory states, a phenomenon known as 'cell polarization.' There are two cell polarization therapy strategies. The first involves inducing cells into a neuroprotective phenotype in vitro, then reintroducing them autologously. The second approach utilizes small molecular substances to directly affect cells in vivo. In this review, we elucidate the polarization dynamics of the three reactive cell populations (microglia, astrocytes, and neutrophils) in the context of ischemic stroke, and provide a comprehensive summary of the molecular mechanisms involved in their phenotypic switching. By unraveling the complexity of cell polarization, we hope to offer insights for future research on neuroinflammation and novel therapeutic strategies for ischemic stroke.
Collapse
Affiliation(s)
- Yuanwei Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaoxiao Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jiarui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shiling Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Danyang Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Gaigai Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
14
|
Li Z, Wang L, Tian C, Wang Z, Zhao H, Qi Y, Chen W, Wuyun Q, Amin B, Lian D, Zhu J, Zhang N, Zheng L, Xu G. Identification of hub biomarkers in liver post-metabolic and bariatric surgery using comprehensive machine learning (experimental studies). Int J Surg 2025; 111:1814-1824. [PMID: 39728595 DOI: 10.1097/js9.0000000000002179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/16/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND The global prevalence of non-alcoholic fatty liver disease (NAFLD) is approximately 30%, and the condition can progress to non-alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma. Metabolic and bariatric surgery (MBS) has been shown to be effective in treating obesity and related disorders, including NAFLD. OBJECTIVE In this study, comprehensive machine learning was used to identify biomarkers for precise treatment of NAFLD from the perspective of MBS. METHODS Differential expression and univariate logistic regression analyses were performed on lipid metabolism-related genes in a training dataset (GSE83452) and two validation datasets (GSE106737 and GSE48452) to identify consensus-predicted genes (CPGs). Subsequently, 13 machine learning algorithms were integrated into 99 combinations; among which the optimal combination was selected based on the total score of the area under the curve, accuracy, F-score, and recall in the two validation datasets. Hub genes were selected based on their importance ranking in the algorithms and the frequency of their occurrence. Finally, a mouse model of MBS was established, and the mRNA expression of the hub genes was validated via quantitative PCR. RESULTS A total of 12 CPGs were identified after intersecting the results of differential expression and logistic regression analyses on a Venn diagram. Four machine learning algorithms with the highest total scores were identified as optimal models. Additionally, PPARA, PLIN2, MED13, INSIG1, CPT1A, and ALOX5AP were identified as hub genes. The mRNA expression patterns of these genes in mice subjected to MBS were consistent with those observed in the three datasets. CONCLUSION Altogether, the six hub genes identified in this study are important for the treatment of NAFLD via MBS and hold substantial promise in guiding personalized treatment of NAFLD in clinical settings.
Collapse
Affiliation(s)
- Zhehong Li
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Liang Wang
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Chenxu Tian
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Zheng Wang
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hao Zhao
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yao Qi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Weijian Chen
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Qiqige Wuyun
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Buhe Amin
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Dongbo Lian
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jinxia Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Nengwei Zhang
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lifei Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Guangzhong Xu
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Koyama S, Etkins J, Jun J, Miller M, So GC, Gisch DL, Eadon MT. Utilization of Cannabidiol in Post-Organ-Transplant Care. Int J Mol Sci 2025; 26:699. [PMID: 39859413 PMCID: PMC11765766 DOI: 10.3390/ijms26020699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Cannabidiol (CBD) is one of the major phytochemical constituents of cannabis, Cannabis sativa, widely recognized for its therapeutic potential. While cannabis has been utilized for medicinal purposes since ancient times, its psychoactive and addictive properties led to its prohibition in 1937, with only the medical use being reauthorized in 1998. Unlike tetrahydrocannabinol (THC), CBD lacks psychoactive and addictive properties, yet the name that suggests its association with cannabis has significantly contributed to its public visibility. CBD exhibits diverse pharmacological properties, most notably anti-inflammatory effects. Additionally, it interacts with key drug-metabolizing enzyme families, including cytochrome P450 (CYP) and uridine 5'-diphospho-glucuronosyltransferase (UGT), which mediate phase I and phase II metabolism, respectively. By binding to these enzymes, CBD can inhibit the metabolism of co-administered drugs, which can potentially enhance their toxicity or therapeutic effects. Mild to moderate adverse events associated with CBD use have been reported. Advances in chemical formulation techniques have recently enabled strategies to minimize these effects. This review provides an overview of CBD, covering its historical background, recent clinical trials, adverse event profiles, and interactions with molecular targets such as receptors, channels, and enzymes. We particularly emphasize the mechanisms underlying its anti-inflammatory effects and interaction with drugs relevant to organ transplantation. Finally, we explore recent progress in the chemical formulation of CBD in order to enhance its bioavailability, which will enable decreasing the dose to use and increase its safety and efficacy.
Collapse
Affiliation(s)
- Sachiko Koyama
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.E.); (J.J.); (D.L.G.); (M.T.E.)
| | - Jumar Etkins
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.E.); (J.J.); (D.L.G.); (M.T.E.)
| | - Joshua Jun
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.E.); (J.J.); (D.L.G.); (M.T.E.)
| | - Matthew Miller
- College of Human Ecology, Cornell University, Ithaca, NY 14850, USA;
| | - Gerald C. So
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.E.); (J.J.); (D.L.G.); (M.T.E.)
| | - Debora L. Gisch
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.E.); (J.J.); (D.L.G.); (M.T.E.)
| | - Michael T. Eadon
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.E.); (J.J.); (D.L.G.); (M.T.E.)
| |
Collapse
|
16
|
Durmus S, Sahin S, Adrovic A, Barut K, Gelisgen R, Uzun H, Kasapcopur O. Interplay of NF-κB and PPAR-γ transcription factors in patients with juvenile systemic lupus erythematosus. Lupus Sci Med 2025; 12:e001263. [PMID: 39779243 PMCID: PMC11751921 DOI: 10.1136/lupus-2024-001263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025]
Abstract
OBJECTIVE Juvenile SLE (jSLE) is an autoimmune disease characterised by the presence of high levels of autoantibodies, predominantly targeting nuclear antigens, resulting in a breakdown of self-tolerance. However, its pathogenesis is multifactorial and poorly understood. The aim of this study was to evaluate the potential of nuclear factor-kappa B (NF-κB) and peroxisome proliferator-activated receptor-gamma (PPAR-γ) as biomarkers for jSLE. METHODS In this study, serum NF-κB and PPAR-γ levels were determined by immunoassay in 42 patients with jSLE. In addition, 19 juvenile systemic sclerosis (jSSc) and 25 age-matched healthy children were selected as patient control and healthy control, respectively. RESULTS Serum NF-κB levels in patients with jSLE demonstrated a positive trend towards elevation compared with the controls with no significant difference (p=0.030). In addition, serum NF-κB levels in patients with jSSc were significantly higher than that of the healthy controls (p=0.005). Serum PPAR-γ levels were tend to be lower in both patients with jSLE and jSSc compared with the controls, with no significant difference. Specifically, NF-κB levels were significantly higher in patients with jSLE with cumulative damage (PedSDI≥1) compared with those without, at p=0.044. Logistic regression showed that PPAR-γ levels lower than 2.42 ng/mL were associated with the development of jSLE (OR 7.59) and lower than 2.16 ng/mL for jSSc (OR 10.90). The combined high levels of NF-κB with low PPAR-γ increased the risk of developing jSSc by 21.33-fold. CONCLUSIONS The observed trend of elevated NF-κB levels and decreased PPAR-γ levels in our study suggests their potential as biomarkers associated with increased proinflammatory signalling in jSLE and jSSc. However, our findings must be regarded as hypothesis-generating and confirmed in larger datasets. Moreover, their roles in monitoring the course of a disease and guiding therapeutic strategies in juvenile systemic autoimmune diseases need to be clearly investigated. Further extension of these findings may lead to better management and improvement in the outcomes of such patients.
Collapse
Affiliation(s)
- Sinem Durmus
- Department of Medical Biochemistry, İzmir Katip Çelebi University Faculty of Medicine, Izmir, Türkiye
| | - Sezgin Sahin
- Department of Child Health and Diseases, Istanbul University-Cerrahpasa Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | - Amra Adrovic
- Department of Child Health and Diseases, Istanbul University-Cerrahpasa Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | - Kenan Barut
- Department of Child Health and Diseases, Istanbul University-Cerrahpasa Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | - Remise Gelisgen
- Department of Medical Biochemistry, Istanbul University-Cerrahpasa Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | - Hafize Uzun
- Department of Medical Biochemistry, Istanbul Atlas University Faculty of Medicine, Istanbul, Türkiye
| | - Ozgur Kasapcopur
- Department of Child Health and Diseases, Istanbul University-Cerrahpasa Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| |
Collapse
|
17
|
Yang Q, Liang Y, Inoue-Hatanaka T, Koh Z, Ilkenhans N, Suman E, Yu J, Zheng Y. PPARδ restrains the suppression function of intra-tumoral Tregs by limiting CIITA-MHC II expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628819. [PMID: 39763816 PMCID: PMC11702609 DOI: 10.1101/2024.12.16.628819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Regulatory T cells (Treg cells) play a critical role in suppressing anti-tumor immunity, often resulting in unfavorable clinical outcomes across numerous cancers. However, systemic Treg depletion, while augmenting anti-tumor responses, also triggers detrimental autoimmune disorders. Thus, dissecting the mechanisms by which Treg cells navigate and exert their functions within the tumor microenvironment (TME) is pivotal for devising innovative Treg-centric cancer therapies. Our study highlights the role of peroxisome proliferator-activated receptor β/δ (PPARδ), a nuclear hormone receptor involved in fatty acid metabolism. Remarkably, PPARδ ablation in Treg escalated tumor growth and augmented the immunosuppressive characteristics of the TME. This absence of PPARδ spurred an increased expression of genes central to antigen presentation, notably CIITA and MHC II. Our results showcase a novel association where the absence of CIITA in PPARδ-deficient Treg bolsters anti-tumor responses, casting CIITA as a pivotal downstream regulator of PPARδ within Treg. In vitro assays demonstrated that elevated CIITA levels enhance the suppressive capacity of Treg, facilitated by an antigen-independent interaction between Treg-MHC II and Tconv-TCR/CD4/Lag3. A significant revelation was the role of type 1 interferon as a TME signal that promotes the genesis of MHC II+ Treg; PPARδ deficiency intensifies this phenomenon by amplifying type 1 interferon signaling, mediated by a notable upsurge in JAK3 transcription and an increase of pSTAT1-Y701. In conclusion, the co-regulation between TME cues and PPARδ signaling shapes the adaptive and suppressive roles of Treg cells through the CIITA-MHC II pathway. Strategically targeting the potent MHC II+ Treg population could open a new avenue for cancer therapies by boosting anti-tumor defenses while curbing autoimmune threats.
Collapse
Affiliation(s)
- Qiyuan Yang
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Yuqiong Liang
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Tomoko Inoue-Hatanaka
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Zhiqian Koh
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Nadja Ilkenhans
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ethan Suman
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jingting Yu
- Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ye Zheng
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
18
|
Kim J, Kadayat TM, Lee JE, Kwon S, Jung K, Hwang JS, Kwon OB, Kim YJ, Choi YK, Park KG, Hwang H, Cho SJ, Lee T, Jeon YH, Chin J. Discovery of the therapeutic potential of PPARδ agonist bearing 1,3,4- thiadiazole in inflammatory disorders. Eur J Med Chem 2024; 279:116856. [PMID: 39270454 DOI: 10.1016/j.ejmech.2024.116856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
As a defense mechanism against deleterious stimuli, inflammation plays a vital role in the development of many disorders, including atherosclerosis, inflammatory bowel disease, experimental autoimmune encephalomyelitis, septic and non-septic shock, and non-alcoholic fatty liver disease (NAFLD). Despite the serious adverse effects of extended usage, traditional anti-inflammatory medications, such as steroidal and non-steroidal anti-inflammatory medicines (NSAIDs), are commonly used for alleviating symptoms of inflammation. The PPARδ subtype of peroxisome proliferator-activated receptors (PPARs) has attracted interest because of its potential for reducing inflammation and related disorders. In this study, a series of 1,3,4-thiadiazole derivatives were designed, synthesized, and evaluated. Compound 11 exhibited potent PPARδ agonistic activity with EC50 values 20 nM and strong selectivity over PPARα and PPARγ. Furthermore, compound 11 demonstrated favorable in vitro and in vivo pharmacokinetic properties. In vivo experiments using labeled macrophages and paw thickness measurements confirmed compound 11's potential to reduce macrophage infiltration and alleviate inflammation. These findings highlight compound 11 as a potent and promising therapeutic candidate for the treatment of acute inflammatory diseases and warrant further investigation to explore various biological roles.
Collapse
Affiliation(s)
- Jina Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea; BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Tara Man Kadayat
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Jae-Eon Lee
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Sugyeong Kwon
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Kyungjin Jung
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Ji Sun Hwang
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Oh-Bin Kwon
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Ye Jin Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Yeon-Kyung Choi
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Keun-Gyu Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Hayoung Hwang
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Sung Jin Cho
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea.
| | - Taeho Lee
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Yong Hyun Jeon
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea.
| | - Jungwook Chin
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea.
| |
Collapse
|
19
|
Fang B, Mo R, Lin X, Huang Q, Huang R. Multi-omics analysis provides new insights into mechanism of didymin on non-alcoholic fatty liver disease in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156016. [PMID: 39277989 DOI: 10.1016/j.phymed.2024.156016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/29/2024] [Accepted: 08/31/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases accompanied by lipid and glucose metabolism disorder. Didymin has been reported to have various hepatoprotective effects, however, its potential effects and mechanisms on NAFLD remain unclear from the perspective of the whole. PURPOSE To investigate the underlying mechanism of didymin against NAFLD using multi-omics technologies. METHODS Rats were fed with a high-fat diet (HFD) for 8 weeks to induce NAFLD, followed by didymin treatment for 8 weeks. Next, biochemical analysis and histopathological examinations were performed to evaluate the effects of didymin. The key regulating pathways were predicted using transcriptomics, metabolomics and proteomics, and the target pathways were then verified by detecting the key genes/proteins using various experiments. RESULTS Didymin markedly mitigated liver injury and excessive lipid droplet accretion. An integrative multi-omics analysis suggested that the PPAR signaling cascade and insulin signaling pathway might serve as pivotal mechanisms underlying the modulation of lipid and glucose homeostasis by didymin. Further dissection identified five pivotal genes (PPARα, PPARβ, FABP4, ANGPTL4, and PLIN2) and four genes (HK1, HK3, GCK, and PTPN1) as potential hubs within these pathways. Subsequent validation experiments, including qPCR and Western blot, demonstrated upregulated expression of PPARα and PPARβ, indicating the activation of the PPAR pathway by didymin. Concurrently, didymin appeared to modulate the insulin signaling pathway, as evidenced by the upregulated expression of HK1 and downregulated expression of PTPN1. Notably, the manipulation of PPARα, PPARβ, and PTPN1 expression in LO2 cells through silence or overexpression confirmed that didymin significantly reduced lipid accumulation, with its molecular targets likely being the PPAR and insulin pathways. CONCLUSIONS Our findings demonstrate that didymin has a protective effect on NAFLD, and its underlying mechanism may be associated with the regulation of the PPAR and insulin signaling pathways.
Collapse
Affiliation(s)
- Bin Fang
- Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Rou Mo
- Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Xing Lin
- Guangxi Medical University, Nanning, Guangxi, 530021, PR China.
| | - Quanfang Huang
- Guangxi University of Chinese Medicine First Affiliated Hospital, Nanning, Guangxi 530023, PR China.
| | - Renbin Huang
- Guangxi Medical University, Nanning, Guangxi, 530021, PR China.
| |
Collapse
|
20
|
Sonego AB, Prado DS, Uliana DL, Cunha TM, Grace AA, Resstel LBM. Pioglitazone attenuates behavioral and electrophysiological dysfunctions induced by two-hit model of schizophrenia in adult rodent offspring. Eur Neuropsychopharmacol 2024; 89:28-40. [PMID: 39332147 PMCID: PMC11606766 DOI: 10.1016/j.euroneuro.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 09/29/2024]
Abstract
Maternal infection and stress exposure, especially during childhood and adolescence, have been implicated as risk factors for schizophrenia. Both insults induce an exacerbated inflammatory response, which could mediate disturbance of neurodevelopmental processes and, ultimately, malfunctioning of neural systems observed in this disorder. Thus, anti-inflammatory drugs, such as PPARγ agonists, may potentially be used to prevent the development of schizophrenia. Microglia culture was prepared from the offspring of saline or poly(I:C)-injected mice. The cells were pretreated with pioglitazone and then, stimulated by LPS. Proinflammatory mediators and phagocytic activity were measured. Also, pregnant rats were injected with saline or poly(I:C) on GD17. The offspring were subjected to footshock during adolescence and subsequently injected with pioglitazone or vehicle. At adulthood, behavior and dopaminergic activity were evaluated. Pioglitazone reduced proinflammatory mediators induced by poly(I:C) microglia stimulated by LPS without affecting their decreased phagocytic activity. The PPARγ agonist also prevented the emergence of social and cognitive impairments, as well as attenuated the increased number of spontaneously active dopamine neurons in the VTA, observed in both males and females from poly(I:C) and stress group. Therefore, pioglitazone could potentially prevent the emergence of the schizophrenia-like alterations induced by the two-hit model via reduction of microglial activation.
Collapse
Affiliation(s)
- Andreza B Sonego
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil; Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, A210 Langley Hall, 15260, Pittsburgh, PA, USA.
| | - Douglas S Prado
- Department of Immunology, University of Pittsburgh, The Assembly Building, 15213, Pittsburgh, PA, USA
| | - Daniela L Uliana
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, A210 Langley Hall, 15260, Pittsburgh, PA, USA
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, A210 Langley Hall, 15260, Pittsburgh, PA, USA
| | - Leonardo B M Resstel
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| |
Collapse
|
21
|
Wen B, Huang Y, Deng G, Yan Q, Jia L. Gut microbiota analysis and LC-MS-based metabolomics to investigate AMPK/NF-κB regulated by Clostridium butyricum in the treatment of acute pancreatitis. J Transl Med 2024; 22:1072. [PMID: 39604956 PMCID: PMC11600808 DOI: 10.1186/s12967-024-05764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/14/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Acute pancreatitis (AP) is an inflammatory condition with potentially life-threatening complications. This study investigates the therapeutic potential of Clostridium butyricum for modulating the inflammatory cascade through the AMPK/NF-κB signaling pathway, focusing on inflammation induced by AP. LC-MS analysis of serum samples from AP patients highlighted the regulation of lipid metabolism and inflammation, and found that metabolites involved in the inhibition of NF-κB phosphorylation and the AMPK activation pathway were downregulated. We hypothesized that pre-administration of Clostridium butyricum and its culture supernatant could mitigate AP-induced damage by modulating the AMPK/NF-κB pathway. METHODS Lipopolysaccharide (LPS)-induced cell inflammation models. LPS combined with CAE induced acute pancreatitis in mice. We divided mice into four groups: Con, AP, AP + C.Buty (AP with Clostridium butyricum treatment), and AP + CFS (AP with culture supernatant treatment). Analyses were performed using WB, RT-qPCR, Elisa, flow cytometry, IHC, and HE, respectively. RESULTS Our study shows that CFS can reduce the apoptosis of LPS-induced cellular inflammation and reduce the release of LPS-induced cytoinflammatory factors through the AMPK/NF-κB pathway in vitro. In vivo, Clostridium butyricum and its supernatant significantly reduced inflammatory markers, and corrected histopathological alterations in AP mice. Gut microbiota analysis further supported these results, showing that Clostridium butyricum and its supernatant could restore the balance of intestinal flora disrupted by AP. CONCLUSIONS Mechanistically, our results indicated that the therapeutic effects of Clostridium butyricum are mediated through the activation of AMPK, leading to the inhibition of the NF-κB pathway, thereby reducing the production of pro-inflammatory cytokines. Clostridium butyricum and its culture supernatant exert a protective effect against AP-induced damage by modulating the AMPK/NF-κB signaling pathway. Future studies will further elucidate the molecular mechanisms underlying the beneficial effects of Clostridium butyricum in AP and explore its clinical applicability in human subjects.
Collapse
Affiliation(s)
- Biyan Wen
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510013, China
- Department of Gastroenterology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510180, China
| | - Yaoxing Huang
- Department of Gastroenterology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510180, China
| | - Guiqing Deng
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510013, China
| | - Qingqing Yan
- Department of Gastroenterology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510180, China
| | - Lin Jia
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510013, China.
- Department of Gastroenterology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510180, China.
| |
Collapse
|
22
|
Zhuravlev A, Gavrilyuk V, Chen X, Aksenov V, Kuhn H, Ivanov I. Structural and Functional Biology of Mammalian ALOX Isoforms with Particular Emphasis on Enzyme Dimerization and Their Allosteric Properties. Int J Mol Sci 2024; 25:12058. [PMID: 39596127 PMCID: PMC11593649 DOI: 10.3390/ijms252212058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
The human genome involves six functional arachidonic acid (AA) lipoxygenase (ALOX) genes, and the corresponding enzymes (ALOX15, ALOX15B, ALOX12, ALOX12B, ALOXE3, ALOX5) have been implicated in cell differentiations and in the pathogenesis of inflammatory, hyperproliferative, metabolic, and neurological disorders. Humans express two different AA 15-lipoxygenating ALOX isoforms, and these enzymes are called ALOX15 (15-LOX1) and ALOX15B (15-LOX2). Chromosomal localization, sequence alignments, and comparison of the enzyme properties suggest that pig and mouse ALOX15 orthologs (leukocyte-type 12-LOX) on the one hand and rabbit and human ALOX15 orthologs on the other (reticulocyte-type 15-LOX1) belong to the same enzyme family despite their different reaction specificities with AA as a substrate. In contrast, human ALOX12 (platelet-type 12-LOX), as well as pig and mouse ALOX15 (leukocyte-type 12-LOX), belong to different enzyme families, although they exhibit a similar reaction specificity with AA as a substrate. The complex multiplicity of mammalian ALOX isoforms and the controversial enzyme nomenclatures are highly confusing and prompted us to summarize the current knowledge on the biological functions, enzymatic properties, and allosteric regulation mechanisms of mammalian ALOX15, ALOX15B, and ALOX12 orthologs that belong to three different enzyme sub-families.
Collapse
Affiliation(s)
- Alexander Zhuravlev
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadskogo pr. 86, Moscow 119571, Russia; (A.Z.); (V.A.); (I.I.)
| | - Viktor Gavrilyuk
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadskogo pr. 86, Moscow 119571, Russia; (A.Z.); (V.A.); (I.I.)
| | - Xin Chen
- Department of Biochemistry, Charite, University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany;
| | - Vladislav Aksenov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadskogo pr. 86, Moscow 119571, Russia; (A.Z.); (V.A.); (I.I.)
| | - Hartmut Kuhn
- Department of Biochemistry, Charite, University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany;
| | - Igor Ivanov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadskogo pr. 86, Moscow 119571, Russia; (A.Z.); (V.A.); (I.I.)
| |
Collapse
|
23
|
Masuyama S, Mizui M, Morita M, Shigeki T, Kato H, Yamamoto T, Sakaguchi Y, Inoue K, Namba-Hamano T, Matsui I, Okuno T, Yamamoto R, Takashima S, Isaka Y. Enhanced fatty acid oxidation by selective activation of PPARα alleviates autoimmunity through metabolic transformation in T-cells. Clin Immunol 2024; 268:110357. [PMID: 39243921 DOI: 10.1016/j.clim.2024.110357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
While fatty acid oxidation (FAO) in mitochondria is a primary energy source for quiescent lymphocytes, the impact of promoting FAO in activated lymphocytes undergoing metabolic reprogramming remains unclear. Here, we demonstrate that pemafibrate, a selective PPARα modulator used clinically for the treatment of hypertriglyceridemia, transforms metabolic system of T-cells and alleviates several autoimmune diseases. Pemafibrate suppresses Th17 cells but not Th1 cells, through the inhibition of glutaminolysis and glycolysis initiated by enhanced FAO. In contrast, a conventional PPARα agonist fenofibrate significantly inhibits cell growth by restraining overall metabolisms even at a dose insufficient to induce fatty acid oxidation. Clinically, patients receiving pemafibrate showed a significant decrease of Th17/Treg ratio in peripheral blood. Our results suggest that augmented FAO by pemafibrate-mediated selective activation of PPARα restrains metabolic programs of Th17 cells and could be a viable option for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Satoshi Masuyama
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masayuki Mizui
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Masashi Morita
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Nephrology, NHO Osaka Minami Medical Center, Japan
| | - Takatomo Shigeki
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hisakazu Kato
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takeshi Yamamoto
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yusuke Sakaguchi
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kazunori Inoue
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tomoko Namba-Hamano
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Isao Matsui
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tatsusada Okuno
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ryohei Yamamoto
- Department of Health Promotion Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Seiji Takashima
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
24
|
Patel MY, Yang R, Chakraborty N, Miller SA, DeMar JC, Batuure A, Wilder D, Long J, Hammamieh R, Gautam A. Impact of dietary changes on retinal neuronal plasticity in rodent models of physical and psychological trauma. Front Genet 2024; 15:1373447. [PMID: 39346777 PMCID: PMC11427283 DOI: 10.3389/fgene.2024.1373447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction Blast injury has been implicated as the major cause of traumatic brain injury (TBI) and ocular system injury, in military operations in Iraq and Afghanistan. Soldiers exposed to traumatic stress also have undiagnosed, chronic vision problems. Here we hypothesize that excessive intake of ω-6 fatty acid linoleic acid (LA) and insufficiency of dietary long chain ω-3 polyunsaturated fatty acids (PUFAs, e.g., docosahexaenoic acid; DHA) would dysregulate endocannabinoid-mediated neuronal plasticity and immune response. The study objective was to determine the effect of blast-TBI and traumatic stress on retinal gene expression and assess the role of dietary deficiency of long chain ω-3 PUFAs on the vulnerability to these injury models. Methods Linoleic acid was used as an independent variable to reflect the dietary increase in LA from 1 percent of energy (en%) to 8 en% present in the current western diets, and these custom LA diets were also devoid of long chain ω-3 PUFAs. Animals were exposed to a simulated blast overpressure wave followed by a weight drop head-concussion to induce TBI. A Separate group of rats were subjected to traumatic stress by a forced immersion underwater. Results Our findings showed that blast-TBI exposure, post 14 days, produced significant neuropathological changes such as axonal degeneration in the brain optic tracts from all the three diet groups, especially in rats fed the DHA-deprived 1 en% LA diet. Transcriptomic analysis showed that presence of DHA in the house chow diet prevented blast-induced disruption of neuronal plasticity by activating molecular networks like SNARE signaling, endocannabinoid pathway, and synaptic long-term depression when compared to DHA-deprived 8 en% LA diet group. Under traumatic stress, retinal synaptic function, neurovascular coupling, and opioid signaling mechanisms were dysregulated in rodents fed DHA-deficient diets (i.e., 8 en% LA and 1 en% LA), where reducing the levels of ω-6 linoleic acid from 8 en% to 1 en% was associated with increased neuronal plasticity and suppressed immune signaling. Conclusion The findings of our study suggest that deprivation of long chain ω-3 PUFAs in the diet affects endocannabinoid-mediated neuronal plasticity, vascular function and inflammatory response that could influence the resistance of veterans to TBI and psychological trauma.
Collapse
Affiliation(s)
- Mital Y Patel
- TechWerks, Arlington, United States
- Medical Readiness Systems Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Ruoting Yang
- Medical Readiness Systems Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Nabarun Chakraborty
- Medical Readiness Systems Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Stacy-Ann Miller
- Medical Readiness Systems Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - James C DeMar
- Medical Readiness Systems Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Andrew Batuure
- Blast-Induced Neurotrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Donna Wilder
- Blast-Induced Neurotrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Joseph Long
- Blast-Induced Neurotrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Rasha Hammamieh
- Medical Readiness Systems Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Aarti Gautam
- Medical Readiness Systems Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
25
|
Cao Y, Zhao LW, Chen ZX, Li SH. New insights in lipid metabolism: potential therapeutic targets for the treatment of Alzheimer's disease. Front Neurosci 2024; 18:1430465. [PMID: 39323915 PMCID: PMC11422391 DOI: 10.3389/fnins.2024.1430465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/14/2024] [Indexed: 09/27/2024] Open
Abstract
Alzheimer's disease (AD) is increasingly recognized as being intertwined with the dysregulation of lipid metabolism. Lipids are a significant class of nutrients vital to all organisms, playing crucial roles in cellular structure, energy storage, and signaling. Alterations in the levels of various lipids in AD brains and dysregulation of lipid pathways and transportation have been implicated in AD pathogenesis. Clinically, evidence for a high-fat diet firmly links disrupted lipid metabolism to the pathogenesis and progression of AD, although contradictory findings warrant further exploration. In view of the significance of various lipids in brain physiology, the discovery of complex and diverse mechanisms that connect lipid metabolism with AD-related pathophysiology will bring new hope for patients with AD, underscoring the importance of lipid metabolism in AD pathophysiology, and promising targets for therapeutic intervention. Specifically, cholesterol, sphingolipids, and fatty acids have been shown to influence amyloid-beta (Aβ) accumulation and tau hyperphosphorylation, which are hallmarks of AD pathology. Recent studies have highlighted the potential therapeutic targets within lipid metabolism, such as enhancing apolipoprotein E lipidation, activating liver X receptors and retinoid X receptors, and modulating peroxisome proliferator-activated receptors. Ongoing clinical trials are investigating the efficacy of these strategies, including the use of ketogenic diets, statin therapy, and novel compounds like NE3107. The implications of these findings suggest that targeting lipid metabolism could offer new avenues for the treatment and management of AD. By concentrating on alterations in lipid metabolism within the central nervous system and their contribution to AD development, this review aims to shed light on novel research directions and treatment approaches for combating AD, offering hope for the development of more effective management strategies.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Lin-Wei Zhao
- Department of Cardiology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou University Central China Fuwai Hospital, Zhengzhou, China
| | - Zi-Xin Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shao-Hua Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
26
|
Sun JL, Kim YJ, Cho W, Lim DS, Gwon HJ, Abd El-Aty AM, Nas MA, Jeong JH, Jung TW. Interleukin 38 improves insulin resistance in hyperlipidemic skeletal muscle cells via PPARδ/SIRT1-mediated suppression of STAT3 signaling and oxidative stress. Biochem Biophys Res Commun 2024; 722:150158. [PMID: 38795455 DOI: 10.1016/j.bbrc.2024.150158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
The cytokine interleukin-38 (IL-38), a recently discovered member of the IL-1 family, has been shown to regulate inflammation and improve hepatic endoplasmic reticulum stress and lipid metabolism in individuals with obesity. However, its impact on insulin signaling in skeletal muscle cells and the underlying mechanisms remain unclear. In vitro obesity models were established using palmitate treatment, and Western blot analysis was performed to assess target proteins. Commercial kits were used to measure glucose uptake in cultured myocytes. Our study showed that IL-38 treatment alleviated the impairment of insulin signaling, including IRS-1 and Akt phosphorylation, and increased glucose uptake in palmitate-treated C2C12 myocytes. Increased levels of STAT3-mediated signaling and oxidative stress were observed in these cells following palmitate treatment, and these effects were reversed by IL-38 treatment. In addition, IL-38 treatment upregulated the expression of PPARδ, SIRT1 and antioxidants. Knockdown of PPARδ or SIRT1 using appropriate siRNAs abrogated the effects of IL-38 on insulin signaling, oxidative stress, and the STAT3-dependent pathway. These results suggest that IL-38 alleviates insulin resistance by inhibiting STAT3-mediated signaling and oxidative stress in skeletal muscle cells through PPARδ/SIRT1. This study provides fundamental evidence to support the potential use of IL-38 as a safe therapeutic agent for the treatment of insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Jaw Long Sun
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Young Jin Kim
- Department of Surgery, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Wonjun Cho
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Do Su Lim
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Hyeon Ji Gwon
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211-Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, 25240, Turkey.
| | - Mehmet Akif Nas
- Department of Medical Education, Medical Faculty, Ataturk University, Erzurum, 25240, Turkey
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea.
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Madhvapathy SR, Bury MI, Wang LW, Ciatti JL, Avila R, Huang Y, Sharma AK, Rogers JA. Miniaturized implantable temperature sensors for the long-term monitoring of chronic intestinal inflammation. Nat Biomed Eng 2024; 8:1040-1052. [PMID: 38499643 DOI: 10.1038/s41551-024-01183-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/09/2024] [Indexed: 03/20/2024]
Abstract
Diagnosing and monitoring inflammatory bowel diseases, such as Crohn's disease, involves the use of endoscopic imaging, biopsies and serology. These infrequent tests cannot, however, identify sudden onsets and severe flare-ups to facilitate early intervention. Hence, about 70% of patients with Crohn's disease require surgical intestinal resections in their lifetime. Here we report wireless, miniaturized and implantable temperature sensors for the real-time chronic monitoring of disease progression, which we tested for nearly 4 months in a mouse model of Crohn's-disease-like ileitis. Local measurements of intestinal temperature via intraperitoneally implanted sensors held in place against abdominal muscular tissue via two sutures showed the development of ultradian rhythms at approximately 5 weeks before the visual emergence of inflammatory skip lesions. The ultradian rhythms showed correlations with variations in the concentrations of stress hormones and inflammatory cytokines in blood. Decreasing average temperatures over the span of approximately 23 weeks were accompanied by an increasing percentage of inflammatory species in ileal lesions. These miniaturized temperature sensors may aid the early treatment of inflammatory bowel diseases upon the detection of episodic flare-ups.
Collapse
Affiliation(s)
- Surabhi R Madhvapathy
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Matthew I Bury
- Division of Pediatric Urology, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Stanley Manne Children's Research Institute, Louis A. Simpson and Kimberly K. Querrey Biomedical Research Center, Chicago, IL, USA
| | - Larry W Wang
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Joanna L Ciatti
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Raudel Avila
- Department of Mechanical Engineering, Rice University, Houston, TX, USA
| | - Yonggang Huang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
- Department of Civil Engineering, Northwestern University, Evanston, IL, USA
| | - Arun K Sharma
- Division of Pediatric Urology, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.
- Stanley Manne Children's Research Institute, Louis A. Simpson and Kimberly K. Querrey Biomedical Research Center, Chicago, IL, USA.
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
| | - John A Rogers
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
28
|
Amelimojarad M, Amelimojarad M, Cui X. The emerging role of brain neuroinflammatory responses in Alzheimer's disease. Front Aging Neurosci 2024; 16:1391517. [PMID: 39021707 PMCID: PMC11253199 DOI: 10.3389/fnagi.2024.1391517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
As the most common cause of dementia, Alzheimer's disease (AD) is characterized by neurodegeneration and synaptic loss with an increasing prevalence in the elderly. Increased inflammatory responses triggers brain cells to produce pro-inflammatory cytokines and accelerates the Aβ accumulation, tau protein hyper-phosphorylation leading to neurodegeneration. Therefore, in this paper, we discuss the current understanding of how inflammation affects brain activity to induce AD pathology, the inflammatory biomarkers and possible therapies that combat inflammation for AD.
Collapse
Affiliation(s)
| | | | - Xiaonan Cui
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
29
|
Dotsenko V, Tewes B, Hils M, Pasternack R, Isola J, Taavela J, Popp A, Sarin J, Huhtala H, Hiltunen P, Zimmermann T, Mohrbacher R, Greinwald R, Lundin KEA, Schuppan D, Mäki M, Viiri K. Transcriptomic analysis of intestine following administration of a transglutaminase 2 inhibitor to prevent gluten-induced intestinal damage in celiac disease. Nat Immunol 2024; 25:1218-1230. [PMID: 38914866 PMCID: PMC11224021 DOI: 10.1038/s41590-024-01867-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 05/13/2024] [Indexed: 06/26/2024]
Abstract
Transglutaminase 2 (TG2) plays a pivotal role in the pathogenesis of celiac disease (CeD) by deamidating dietary gluten peptides, which facilitates antigenic presentation and a strong anti-gluten T cell response. Here, we elucidate the molecular mechanisms underlying the efficacy of the TG2 inhibitor ZED1227 by performing transcriptional analysis of duodenal biopsies from individuals with CeD on a long-term gluten-free diet before and after a 6-week gluten challenge combined with 100 mg per day ZED1227 or placebo. At the transcriptome level, orally administered ZED1227 effectively prevented gluten-induced intestinal damage and inflammation, providing molecular-level evidence that TG2 inhibition is an effective strategy for treating CeD. ZED1227 treatment preserved transcriptome signatures associated with mucosal morphology, inflammation, cell differentiation and nutrient absorption to the level of the gluten-free diet group. Nearly half of the gluten-induced gene expression changes in CeD were associated with the epithelial interferon-γ response. Moreover, data suggest that deamidated gluten-induced adaptive immunity is a sufficient step to set the stage for CeD pathogenesis. Our results, with the limited sample size, also suggest that individuals with CeD might benefit from an HLA-DQ2/HLA-DQ8 stratification based on gene doses to maximally eliminate the interferon-γ-induced mucosal damage triggered by gluten.
Collapse
Affiliation(s)
- Valeriia Dotsenko
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | | | | | | | - Jorma Isola
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Jilab Inc, Tampere, Finland
| | - Juha Taavela
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, Finland
| | - Alina Popp
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
- University of Medicine and Pharmacy 'Carol Davila' and National Institute for Mother and Child Health, Bucharest, Romania
| | | | - Heini Huhtala
- Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Pauliina Hiltunen
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
| | | | | | | | - Knut E A Lundin
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Detlef Schuppan
- Institute of Translational Immunology and Celiac Center, Medical Center, Johannes-Gutenberg University, Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Markku Mäki
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Keijo Viiri
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland.
| |
Collapse
|
30
|
AmeliMojarad M, AmeliMojarad M. The neuroinflammatory role of microglia in Alzheimer's disease and their associated therapeutic targets. CNS Neurosci Ther 2024; 30:e14856. [PMID: 39031970 PMCID: PMC11259573 DOI: 10.1111/cns.14856] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/22/2024] Open
Abstract
INTRODUCTION Alzheimer's disease (AD), the main cause of dementia, is characterized by synaptic loss and neurodegeneration. Amyloid-β (Aβ) accumulation, hyperphosphorylation of tau protein, and neurofibrillary tangles (NFTs) in the brain are considered to be the initiating factors of AD. However, this hypothesis falls short of explaining many aspects of AD pathogenesis. Recently, there has been mounting evidence that neuroinflammation plays a key role in the pathophysiology of AD and causes neurodegeneration by over-activating microglia and releasing inflammatory mediators. METHODS PubMed, Web of Science, EMBASE, and MEDLINE were used for searching and summarizing all the recent publications related to inflammation and its association with Alzheimer's disease. RESULTS Our review shows how inflammatory dysregulation influences AD pathology as well as the roles of microglia in neuroinflammation, the possible microglia-associated therapeutic targets, top neuroinflammatory biomarkers, and anti-inflammatory drugs that combat inflammation. CONCLUSION In conclusion, microglial inflammatory reactions are important factors in AD pathogenesis and need to be discussed in more detail for promising therapeutic strategies.
Collapse
Affiliation(s)
- Melika AmeliMojarad
- Department of Bioprocess Engineering, Institute of Industrial and Environmental BiotechnologyNational Institute of Genetic Engineering and BiotechnologyTehranIran
| | - Mandana AmeliMojarad
- Department of Bioprocess Engineering, Institute of Industrial and Environmental BiotechnologyNational Institute of Genetic Engineering and BiotechnologyTehranIran
| |
Collapse
|
31
|
Morosini C, Vivarelli F, Rullo L, Volino E, Losapio LM, Paolini M, Romualdi P, Canistro D, Candeletti S. Unburned Tobacco Smoke Affects Neuroinflammation-Related Pathways in the Rat Mesolimbic System. Int J Mol Sci 2024; 25:5259. [PMID: 38791298 PMCID: PMC11120663 DOI: 10.3390/ijms25105259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Tobacco use disorder represents a significant public health challenge due to its association with various diseases. Despite awareness efforts, smoking rates remain high, partly due to ineffective cessation methods and the spread of new electronic devices. This study investigated the impact of prolonged nicotine exposure via a heat-not-burn (HnB) device on selected genes and signaling proteins involved in inflammatory processes in the rat ventral tegmental area (VTA) and nucleus accumbens (NAc), two brain regions associated with addiction to different drugs, including nicotine. The results showed a reduction in mRNA levels for PPARα and PPARγ, two nuclear receptors and anti-inflammatory transcription factors, along with the dysregulation of gene expression of the epigenetic modulator KDM6s, in both investigated brain areas. Moreover, decreased PTEN mRNA levels and higher AKT phosphorylation were detected in the VTA of HnB-exposed rats with respect to their control counterparts. Finally, significant alterations in ERK 1/2 phosphorylation were observed in both mesolimbic areas, with VTA decrease and NAc increase, respectively. Overall, the results suggest that HnB aerosol exposure disrupts intracellular pathways potentially involved in the development and maintenance of the neuroinflammatory state. Moreover, these data highlight that, similar to conventional cigarettes, HnB devices use affects specific signaling pathways shaping neuroinflammatory process in the VTA and NAc, thus triggering mechanisms that are currently considered as potentially relevant for the development of addictive behavior.
Collapse
Affiliation(s)
- Camilla Morosini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, 40126 Bologna, Italy; (C.M.); (F.V.); (E.V.); (L.M.L.); (M.P.); (D.C.); (S.C.)
| | - Fabio Vivarelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, 40126 Bologna, Italy; (C.M.); (F.V.); (E.V.); (L.M.L.); (M.P.); (D.C.); (S.C.)
| | - Laura Rullo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, 40126 Bologna, Italy; (C.M.); (F.V.); (E.V.); (L.M.L.); (M.P.); (D.C.); (S.C.)
| | - Emilia Volino
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, 40126 Bologna, Italy; (C.M.); (F.V.); (E.V.); (L.M.L.); (M.P.); (D.C.); (S.C.)
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum–University of Bologna, 40126 Bologna, Italy
| | - Loredana Maria Losapio
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, 40126 Bologna, Italy; (C.M.); (F.V.); (E.V.); (L.M.L.); (M.P.); (D.C.); (S.C.)
| | - Moreno Paolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, 40126 Bologna, Italy; (C.M.); (F.V.); (E.V.); (L.M.L.); (M.P.); (D.C.); (S.C.)
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, 40126 Bologna, Italy; (C.M.); (F.V.); (E.V.); (L.M.L.); (M.P.); (D.C.); (S.C.)
| | - Donatella Canistro
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, 40126 Bologna, Italy; (C.M.); (F.V.); (E.V.); (L.M.L.); (M.P.); (D.C.); (S.C.)
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, 40126 Bologna, Italy; (C.M.); (F.V.); (E.V.); (L.M.L.); (M.P.); (D.C.); (S.C.)
| |
Collapse
|
32
|
Hamilton HL, Kinscherf NA, Balmer G, Bresque M, Salamat SM, Vargas MR, Pehar M. FABP7 drives an inflammatory response in human astrocytes and is upregulated in Alzheimer's disease. GeroScience 2024; 46:1607-1625. [PMID: 37688656 PMCID: PMC10828232 DOI: 10.1007/s11357-023-00916-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/15/2023] [Indexed: 09/11/2023] Open
Abstract
Alzheimer's disease (AD), the most common cause of dementia in the elderly, is characterized by the accumulation of intracellular neurofibrillary tangles, extracellular amyloid plaques, and neuroinflammation. In partnership with microglial cells, astrocytes are key players in the regulation of neuroinflammation. Fatty acid binding protein 7 (FABP7) belongs to a family of conserved proteins that regulate lipid metabolism, energy homeostasis, and inflammation. FABP7 expression is largely restricted to astrocytes and radial glia-like cells in the adult central nervous system. We observed that treatment of primary hippocampal astrocyte cultures with amyloid β fragment 25-35 (Aβ25-35) induces FABP7 upregulation. In addition, FABP7 expression is upregulated in the brain of APP/PS1 mice, a widely used AD mouse model. Co-immunostaining with specific astrocyte markers revealed increased FABP7 expression in astrocytes. Moreover, astrocytes surrounding amyloid plaques displayed increased FABP7 staining when compared to non-plaque-associated astrocytes. A similar result was obtained in the brain of AD patients. Whole transcriptome RNA sequencing analysis of human astrocytes differentiated from induced pluripotent stem cells (i-astrocytes) overexpressing FABP7 identified 500 transcripts with at least a 2-fold change in expression. Gene Ontology enrichment analysis identified (i) positive regulation of cytokine production and (ii) inflammatory response as the top two statistically significant overrepresented biological processes. We confirmed that wild-type FABP7 overexpression induces an NF-κB-driven inflammatory response in human i-astrocytes. On the other hand, the expression of a ligand-binding impaired mutant FABP7 did not induce NF-κB activation. Together, our results suggest that the upregulation of FABP7 in astrocytes could contribute to the neuroinflammation observed in AD.
Collapse
Affiliation(s)
- Haylee L Hamilton
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, 600 Highland Avenue, CSC K6/447, Madison, WI, 53792, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Noah A Kinscherf
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, 600 Highland Avenue, CSC K6/447, Madison, WI, 53792, USA
| | - Garrett Balmer
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, USA
| | - Mariana Bresque
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, USA
| | - Shahriar M Salamat
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neurological Surgery, University of Wisconsin Madison, Madison, WI, USA
| | - Marcelo R Vargas
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, USA
| | - Mariana Pehar
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, 600 Highland Avenue, CSC K6/447, Madison, WI, 53792, USA.
- Geriatric Research Education Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
33
|
Cross RW, Woolsey C, Chu VC, Babusis D, Bannister R, Vermillion MS, Geleziunas R, Barrett KT, Bunyan E, Nguyen AQ, Cihlar T, Porter DP, Prasad AN, Deer DJ, Borisevich V, Agans KN, Martinez J, Harrison MB, Dobias NS, Fenton KA, Bilello JP, Geisbert TW. Oral administration of obeldesivir protects nonhuman primates against Sudan ebolavirus. Science 2024; 383:eadk6176. [PMID: 38484056 DOI: 10.1126/science.adk6176] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/24/2024] [Indexed: 03/19/2024]
Abstract
Obeldesivir (ODV, GS-5245) is an orally administered prodrug of the parent nucleoside of remdesivir (RDV) and is presently in phase 3 trials for COVID-19 treatment. In this work, we show that ODV and its circulating parent nucleoside metabolite, GS-441524, have similar in vitro antiviral activity against filoviruses, including Marburg virus, Ebola virus, and Sudan virus (SUDV). We also report that once-daily oral ODV treatment of cynomolgus monkeys for 10 days beginning 24 hours after SUDV exposure confers 100% protection against lethal infection. Transcriptomics data show that ODV treatment delayed the onset of inflammation and correlated with antigen presentation and lymphocyte activation. Our results offer promise for the further development of ODV to control outbreaks of filovirus disease more rapidly.
Collapse
Affiliation(s)
- Robert W Cross
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Courtney Woolsey
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | - Abhishek N Prasad
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Daniel J Deer
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Viktoriya Borisevich
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Krystle N Agans
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jasmine Martinez
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mack B Harrison
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Natalie S Dobias
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Karla A Fenton
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Thomas W Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
34
|
Janssen AWF, Jansen Holleboom W, Rijkers D, Louisse J, Hoekstra SA, Schild S, Vrolijk MF, Hoogenboom RLAP, Beekmann K. Determination of in vitro immunotoxic potencies of a series of perfluoralkylsubstances (PFASs) in human Namalwa B lymphocyte and human Jurkat T lymphocyte cells. FRONTIERS IN TOXICOLOGY 2024; 6:1347965. [PMID: 38549690 PMCID: PMC10976438 DOI: 10.3389/ftox.2024.1347965] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/01/2024] [Indexed: 01/05/2025] Open
Abstract
Exposure to PFASs is associated to several adverse health effects, such as immunotoxicity. Immunotoxic effects of PFOA and PFOS, including a reduced antibody response in both experimental animals and humans, have been reported. However, there is limited understanding of the underlying mechanisms involved. Moreover, there is only a restricted amount of immunotoxicity data available for a limited number of PFASs. In the current study the effects of 15 PFASs, including short- and long-chain perfluorinated carboxylic and sulfonic acids, fluorotelomer alcohols, and perfluoralkyl ether carboxylic acids were studied on the expression of recombinant activating gene 1 (RAG1) and RAG2 in the Namalwa human B lymphoma cell line, and on the human IL-2 promotor activity in Jurkat T-cells. Concentration-response data were subsequently used to derive in vitro relative potencies through benchmark dose analysis. In vitro relative potency factors (RPFs) were obtained for 6 and 9 PFASs based on their effect on RAG1 and RAG2 gene expression in Namalwa B-cells, respectively, and for 10 PFASs based on their inhibitory effect on IL-2 promotor activity in Jurkat T-cells. The most potent substances were HFPO-TA for the reduction of RAG1 and RAG2 gene expression in Namalwa cells (RPFs of 2.1 and 2.3 respectively), and PFDA on IL-2 promoter activity (RPF of 9.1). RAG1 and RAG2 play a crucial role in V (D)J gene recombination, a process for acquiring a varied array of antibodies crucial for antigen recognition. Hence, the effects observed in Namalwa cells might indicate a PFAS-induced impairment of generating a diverse range of B-cells essential for antigen recognition. The observed outcomes in the Jurkat T-cells suggest a possible PFAS-induced reduction of T-cell activation, which may contribute to a decline in the T-cell dependent antibody response. Altogether, the present study provides potential mechanistic insights into the reported PFAS-induced decreased antibody response. Additionally, the presented in vitro models may represent useful tools for assessing the immunotoxic potential of PFASs and prioritization for further risk assessment.
Collapse
Affiliation(s)
- Aafke W. F. Janssen
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Wageningen, Netherlands
| | - Wendy Jansen Holleboom
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Wageningen, Netherlands
| | - Deborah Rijkers
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Wageningen, Netherlands
| | - Jochem Louisse
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Wageningen, Netherlands
- European Food Safety Authority, Parma, Italy
| | - Sjoerdtje A. Hoekstra
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Wageningen, Netherlands
| | - Sanne Schild
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Wageningen, Netherlands
| | - Misha F. Vrolijk
- Department of Pharmacology and Toxicology, Maastricht University, Maastricht, Netherlands
| | - Ron L. A. P. Hoogenboom
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Wageningen, Netherlands
| | - Karsten Beekmann
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
35
|
Herb M. NADPH Oxidase 3: Beyond the Inner Ear. Antioxidants (Basel) 2024; 13:219. [PMID: 38397817 PMCID: PMC10886416 DOI: 10.3390/antiox13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism with damaging effects on cellular structures. The discovery and description of NADPH oxidases (Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising. After intensive research, seven Nox isoforms were discovered, described and extensively studied. Among them, the NADPH oxidase 3 is the perhaps most underrated Nox isoform, since it was firstly discovered in the inner ear. This stigma of Nox3 as "being only expressed in the inner ear" was also used by me several times. Therefore, the question arose whether this sentence is still valid or even usable. To this end, this review solely focuses on Nox3 and summarizes its discovery, the structural components, the activating and regulating factors, the expression in cells, tissues and organs, as well as the beneficial and detrimental effects of Nox3-mediated ROS production on body functions. Furthermore, the involvement of Nox3-derived ROS in diseases progression and, accordingly, as a potential target for disease treatment, will be discussed.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
36
|
Barosova R, Baranovicova E, Hanusrichterova J, Mokra D. Metabolomics in Animal Models of Bronchial Asthma and Its Translational Importance for Clinics. Int J Mol Sci 2023; 25:459. [PMID: 38203630 PMCID: PMC10779398 DOI: 10.3390/ijms25010459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Bronchial asthma is an extremely heterogenous chronic respiratory disorder with several distinct endotypes and phenotypes. These subtypes differ not only in the pathophysiological changes and/or clinical features but also in their response to the treatment. Therefore, precise diagnostics represent a fundamental condition for effective therapy. In the diagnostic process, metabolomic approaches have been increasingly used, providing detailed information on the metabolic alterations associated with human asthma. Further information is brought by metabolomic analysis of samples obtained from animal models. This article summarizes the current knowledge on metabolomic changes in human and animal studies of asthma and reveals that alterations in lipid metabolism, amino acid metabolism, purine metabolism, glycolysis and the tricarboxylic acid cycle found in the animal studies resemble, to a large extent, the changes found in human patients with asthma. The findings indicate that, despite the limitations of animal modeling in asthma, pre-clinical testing and metabolomic analysis of animal samples may, together with metabolomic analysis of human samples, contribute to a novel way of personalized treatment of asthma patients.
Collapse
Affiliation(s)
- Romana Barosova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (R.B.); (J.H.)
| | - Eva Baranovicova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Juliana Hanusrichterova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (R.B.); (J.H.)
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Daniela Mokra
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (R.B.); (J.H.)
| |
Collapse
|
37
|
Wei R, Han X, Li M, Ji Y, Zhang L, Christodoulou MI, Hameed Aga NJ, Zhang C, Gao R, Liu J, Fu J, Lu G, Xiao X, Liu X, Yang PC, McInnes IB, Sun Y, Gao P, Qin C, Huang SK, Zhou Y, Xu D. The nuclear cytokine IL-37a controls lethal cytokine storms primarily via IL-1R8-independent transcriptional upregulation of PPARγ. Cell Mol Immunol 2023; 20:1428-1444. [PMID: 37891333 PMCID: PMC10687103 DOI: 10.1038/s41423-023-01091-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Cytokine storms are crucial in the development of various inflammatory diseases, including sepsis and autoimmune disorders. The immunosuppressive cytokine INTERLEUKIN (IL)-37 consists of five isoforms (IL-37a-e). We identified IL-37a as a nuclear cytokine for the first time. Compared to IL-37b, IL-37a demonstrated greater efficacy in protecting against Toll-like receptor-induced cytokine hypersecretion and lethal endotoxic shock. The full-length (FL) form of IL-37a and the N-terminal fragment, which is processed by elastase, could translocate into cell nuclei through a distinctive nuclear localization sequence (NLS)/importin nuclear transport pathway. These forms exerted their regulatory effects independent of the IL-1R8 receptor by transcriptionally upregulating the nuclear receptor peroxisome proliferator-activated receptor (PPARγ). This process involved the recruitment of the H3K4 methyltransferase complex WDR5/MLL4/C/EBPβ and H3K4me1/2 to the enhancer/promoter of Pparg. The receptor-independent regulatory pathway of the nuclear IL-37a-PPARγ axis and receptor-dependent signaling by secreted IL-37a maintain homeostasis and are potential therapeutic targets for various inflammatory diseases, including sepsis.
Collapse
Affiliation(s)
- Rongfei Wei
- Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biom--acromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao Han
- NHC Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Mengyuan Li
- Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China
| | - Yuan Ji
- Department of General Practice Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Lianfeng Zhang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China
| | - Maria-Ioanna Christodoulou
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
- Tumor Immunology and Biomarkers Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, 2404, Cyprus
| | | | - Caiyan Zhang
- NHC Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ran Gao
- Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China
| | - Jiangning Liu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China
| | - Jinrong Fu
- NHC Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Guoping Lu
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaojun Xiao
- Institute of Allergy and Immunology, Health Science Center, Shenzhen University, Shenzhen, China
| | - Xiaoyu Liu
- Institute of Allergy and Immunology, Health Science Center, Shenzhen University, Shenzhen, China
| | - Ping-Chang Yang
- Institute of Allergy and Immunology, Health Science Center, Shenzhen University, Shenzhen, China
| | - Iain B McInnes
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Ying Sun
- Department of Immunology, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Peisong Gao
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chuan Qin
- Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China.
| | - Shau-Ku Huang
- Department of General Practice Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China.
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- National Institute of Environmental Health Sciences, National Health Research Institutes, Taiwan, China.
| | - Yufeng Zhou
- NHC Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- State-level Regional Children's Medical Center, Children's Hospital of Fudan University at Xiamen (Xiamen Children's Hospital), Fujian Provincial Key Laboratory of Neonatal Diseases, Xiamen, China.
| | - Damo Xu
- Department of General Practice Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China.
- Institute of Allergy and Immunology, Health Science Center, Shenzhen University, Shenzhen, China.
| |
Collapse
|
38
|
Soumya SJ, Abhinand CS, Nair AS, Sonu PS, Mohanadasan Nair G, Gangaprasad AN, Nair AS, Nair AJ. Chrysin inhibits adipogenesis by modulating PPARγ: in silico and in vitro studies. J Biomol Struct Dyn 2023; 42:11425-11434. [PMID: 37794770 DOI: 10.1080/07391102.2023.2262596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/17/2023] [Indexed: 10/06/2023]
Abstract
Adipose tissue is the major storage site of lipids and plays a vital role in energy homeostasis. Adipogenesis is a well-regulated process wherein preadipocytes differentiate into adipocytes. It requires the sequential activation of numerous transcription factors, including peroxisome proliferator activated receptor-γ (PPAR-γ). Phytochemicals have been reported to regulate adipogenesis and flavonoids represent the most researched groups of phytochemicals with regard to their effect on adipogenesis. Chrysin is a naturally occurring flavone and is reported to have anti-inflammatory effects in obese conditions. The present study was aimed to examine the effect of chrysin on adipogenesis. In silico Molecular docking, dynamic simulation studies and in vitro cell-based assays showed that chrysin inhibited adipogenesis by modulating key adipogenic transcription factor PPARγ. Enhanced adipogenesis leads to obesity and targeting adipogenesis is potential in regulating adipose tissue development. So, these investigations may provide important information for designing therapeutic interventions to control adiposity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sasikumar Jalajakumari Soumya
- Inter University Centre for Genomics and Gene Technology (IUCGGT), Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, India
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Chandran Sheela Abhinand
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, Kerala, India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Arya Saseendran Nair
- Inter University Centre for Genomics and Gene Technology (IUCGGT), Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Priji Sathyan Sonu
- Inter University Centre for Genomics and Gene Technology (IUCGGT), Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Govindapillai Mohanadasan Nair
- Inter University Centre for Genomics and Gene Technology (IUCGGT), Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Appukuttan Nair Gangaprasad
- Inter University Centre for Genomics and Gene Technology (IUCGGT), Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Achuthsankar S Nair
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Ananthakrishnan Jayakumaran Nair
- Inter University Centre for Genomics and Gene Technology (IUCGGT), Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, India
| |
Collapse
|
39
|
Fuior EV, Zvintzou E, Filippatos T, Giannatou K, Mparnia V, Simionescu M, Gafencu AV, Kypreos KE. Peroxisome Proliferator-Activated Receptor α in Lipoprotein Metabolism and Atherosclerotic Cardiovascular Disease. Biomedicines 2023; 11:2696. [PMID: 37893070 PMCID: PMC10604751 DOI: 10.3390/biomedicines11102696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a group of ligand-binding transcription factors with pivotal action in regulating pleiotropic signaling pathways of energetic metabolism, immune responses and cell proliferation and differentiation. A significant body of evidence indicates that the PPARα receptor is an important modulator of plasma lipid and lipoprotein metabolism, with pluripotent effects influencing the lipid and apolipoprotein cargo of both atherogenic and antiatherogenic lipoproteins and their functionality. Clinical evidence supports an important role of PPARα agonists (fibric acid derivatives) in the treatment of hypertriglyceridemia and/or low high-density lipoprotein (HDL) cholesterol levels, although the effects of clinical trials are contradictory and point to a reduction in the risk of nonfatal and fatal myocardial infarction events. In this manuscript, we provide an up-to-date critical review of the existing relevant literature.
Collapse
Affiliation(s)
- Elena Valeria Fuior
- Institute of Cellular Biology and Pathology, “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (E.V.F.); (E.Z.); (M.S.)
| | - Evangelia Zvintzou
- Institute of Cellular Biology and Pathology, “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (E.V.F.); (E.Z.); (M.S.)
- Pharmacology Laboratory, Department of Medicine, University of Patras, 26500 Rio Achaias, Greece; (K.G.); (V.M.)
| | - Theodosios Filippatos
- Internal Medicine Clinic, Department of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Katerina Giannatou
- Pharmacology Laboratory, Department of Medicine, University of Patras, 26500 Rio Achaias, Greece; (K.G.); (V.M.)
| | - Victoria Mparnia
- Pharmacology Laboratory, Department of Medicine, University of Patras, 26500 Rio Achaias, Greece; (K.G.); (V.M.)
| | - Maya Simionescu
- Institute of Cellular Biology and Pathology, “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (E.V.F.); (E.Z.); (M.S.)
| | - Anca Violeta Gafencu
- Institute of Cellular Biology and Pathology, “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (E.V.F.); (E.Z.); (M.S.)
| | - Kyriakos E. Kypreos
- Institute of Cellular Biology and Pathology, “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (E.V.F.); (E.Z.); (M.S.)
- Pharmacology Laboratory, Department of Medicine, University of Patras, 26500 Rio Achaias, Greece; (K.G.); (V.M.)
- Department of Life Sciences, School of Sciences, European University Cyprus, 2404 Nicosia, Cyprus
| |
Collapse
|
40
|
Nguyen M, Aslam MA, Nguyen Y, Javaid HM, Pham L, Huh JY, Kim G. Design and Synthesis of l-1'-Homologated Adenosine Derivatives as Potential Anti-inflammatory Agents. ACS OMEGA 2023; 8:36361-36369. [PMID: 37810713 PMCID: PMC10552512 DOI: 10.1021/acsomega.3c05029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023]
Abstract
Inflammatory responses are fundamental protective warning mechanisms. However, in certain instances, they contribute significantly to the development of several chronic diseases such as cancer. Based on previous studies of truncated 1'-homologated adenosine derivatives, l-nucleosides and their nucleobase-modified quinolone analogues were designed, synthesized, and evaluated for anti-inflammatory activities. The target molecules were synthesized via the key intramolecular cyclization of monotosylate and Mitsunobu condensation from the natural product, d-ribose. All compounds tested and showed potent anti-inflammatory activities, as indicated by their inhibition of LPS-induced IL-1β secretion from the RAW 264.7 macrophages. Gene expressions of pro-inflammatory cytokines showed that all compounds, except 3a and 3b, significantly reduced LPS-induced IL-1β and IL-6 mRNA expressions. The half-maximal inhibitory concentrations (IC50) of 2g and 2h against IL-1β were 1.08 and 2.28 μM, respectively. In contrast, only 2d, 2g, and 3d effectively reversed LPS-induced TNFα mRNA expression. Our mechanistic study revealed that LPS-induced phosphorylation of NF-κB was significantly downregulated by all compounds tested, providing evidence that the NF-κB signaling pathway is involved in their anti-inflammatory activities. Among the compounds tested, 2g and 2h had the most potent anti-inflammatory effects, as shown by the extent of decrease in pro-inflammatory gene expression, protein secretion, and NF-κB phosphorylation. These findings suggest that the l-truncated 1'-homologated adenosine skeleton and its nucleobase-modified analogues have therapeutic potential as treatments for various human diseases by mediating inflammatory processes.
Collapse
Affiliation(s)
| | | | - Yen Nguyen
- College of Pharmacy and Research Institute
of Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Hafiz Muhammad
Ahmad Javaid
- College of Pharmacy and Research Institute
of Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Linh Pham
- College of Pharmacy and Research Institute
of Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Joo Young Huh
- College of Pharmacy and Research Institute
of Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Gyudong Kim
- College of Pharmacy and Research Institute
of Drug Development, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
41
|
Li M, Wang M, Wen Y, Zhang H, Zhao G, Gao Q. Signaling pathways in macrophages: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2023; 4:e349. [PMID: 37706196 PMCID: PMC10495745 DOI: 10.1002/mco2.349] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 09/15/2023] Open
Abstract
Macrophages play diverse roles in development, homeostasis, and immunity. Accordingly, the dysfunction of macrophages is involved in the occurrence and progression of various diseases, such as coronavirus disease 2019 and atherosclerosis. The protective or pathogenic effect that macrophages exert in different conditions largely depends on their functional plasticity, which is regulated via signal transduction such as Janus kinase-signal transducer and activator of transcription, Wnt and Notch pathways, stimulated by environmental cues. Over the past few decades, the molecular mechanisms of signaling pathways in macrophages have been gradually elucidated, providing more alternative therapeutic targets for diseases treatment. Here, we provide an overview of the basic physiology of macrophages and expound the regulatory pathways within them. We also address the crucial role macrophages play in the pathogenesis of diseases, including autoimmune, neurodegenerative, metabolic, infectious diseases, and cancer, with a focus on advances in macrophage-targeted strategies exploring modulation of components and regulators of signaling pathways. Last, we discuss the challenges and possible solutions of macrophage-targeted therapy in clinical applications. We hope that this comprehensive review will provide directions for further research on therapeutic strategies targeting macrophage signaling pathways, which are promising to improve the efficacy of disease treatment.
Collapse
Affiliation(s)
- Ming Li
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Mengjie Wang
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuanjia Wen
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hongfei Zhang
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Guang‐Nian Zhao
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qinglei Gao
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
42
|
Tian D, Meng J, Li L, Xue H, Geng Q, Miao Y, Xu M, Wang R, Zhang X, Wu Y. Hydrogen sulfide ameliorates senescence in vascular endothelial cells through ameliorating inflammation and activating PPARδ/SGLT2/STAT3 signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1358-1369. [PMID: 37587757 PMCID: PMC10520484 DOI: 10.3724/abbs.2023156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/13/2023] [Indexed: 08/18/2023] Open
Abstract
Mounting evidence demonstrates that hydrogen sulfide (H 2S) promotes anti-inflammatory molecules and inhibits pro-inflammatory cytokines in endothelial cells (ECs). This study aims to investigate the favorable action of H 2S on endothelial function in senescence by inhibiting the production of inflammatory molecules. Senescent ECs exhibit a reduction in H 2S, endothelial nitric oxide synthase (eNOS) and peroxisome proliferator-activated receptor δ (PPARδ), coupled with increased inflammatory molecules, sodium glucose transporter type 2 (SGLT2) and phosphorylation of STAT3, which could be reversed by the administration of a slow but sustained release agent of H 2S, GYY4137. Decreased production of eNOS and upregulated p-STAT3 and SGLT2 levels in senescent ECs are reversed by replenishment of the SGLT2 inhibitor EMPA and the PPARδ agonist GW501516. The PPARδ antagonist GSK0660 attenuates eNOS expression and increases the production of p-STAT3 and SGLT2. However, supplementation with GYY4137 has no beneficial effect on GSK0660-treated ECs. GYY4137, GW501516 and EMPA preserve endothelial-dependent relaxation (EDR) in D-gal-treated aortae, while GSK0660 destroys aortic relaxation even with GYY4137 supplementation. In summary, senescent ECs manifest aggravated the expressions of the inflammatory molecules SGLT2 and p-STAT3 and decreased the productions of PPARδ, eNOS and CSE. H 2S ameliorates endothelial dysfunction through the anti-inflammatory effect of the PPARδ/SGLT2/p-STAT3 signaling pathway in senescent ECs and may be a potential therapeutic target for anti-ageing treatment.
Collapse
Affiliation(s)
- Danyang Tian
- Department of PhysiologyHebei Medical UniversityShijiazhuang050017China
- Department of PharmacologyTianjin Key Laboratory of Inflammatory BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjin300070China
| | - Jinqi Meng
- Department of SportsHebei Medical UniversityShijiazhuang050017China
| | - Lin Li
- College of PharmacyHebei Medical UniversityShijiazhuang050017China
| | - Hongmei Xue
- Department of PhysiologyHebei Medical UniversityShijiazhuang050017China
| | - Qi Geng
- Hebei Key Lab of Laboratory Animal ScienceHebei Medical UniversityShijiazhuang050017China
| | - Yuxin Miao
- Department of PhysiologyHebei Medical UniversityShijiazhuang050017China
| | - Meng Xu
- Department of PhysiologyHebei Medical UniversityShijiazhuang050017China
| | - Ru Wang
- Department of PhysiologyHebei Medical UniversityShijiazhuang050017China
| | - Xiangjian Zhang
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular DiseaseShijiazhuang050017China
| | - Yuming Wu
- Department of PhysiologyHebei Medical UniversityShijiazhuang050017China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular DiseaseShijiazhuang050017China
- The Key Laboratory of Neural and Vascular BiologyMinistry of EducationShijiazhuang050017China
| |
Collapse
|
43
|
Wei P, Kou W, Fu J, Chen Z, Pan F. Pparα knockout in mice increases the Th17 development by facilitating the IKKα/RORγt and IKKα/Foxp3 complexes. Commun Biol 2023; 6:721. [PMID: 37452099 PMCID: PMC10349144 DOI: 10.1038/s42003-023-05104-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
The helper CD4+ T cell-type 17 (Th17) cells and regulatory CD4+ T cells (Tregs) are balanced through numerous molecular regulators, particularly metabolic factors, and their alteration causes immune dysregulation. Herein, we report that peroxisome proliferator of activated receptor-alpha (Pparα), a lipid metabolism regulator, suppresses Th17 differentiation. We demonstrated that Pparα ablation improves Th17 and pro-Th17 factor HIF-1α by enhancing the expression and nuclear localization of NFκB-activator IκB kinase-alpha (IKKα). Unexpectedly, we found that IKKα directly interacts with RORγt and enhances the expression of Il17a gene. Meanwhile, IKKα also interacts with Foxp3, leading to the post-translational regulation of Foxp3 by elevating its proteasomal degradation, and influencing Th17 development. Pparα deficiency leads to enhanced Th17 development in vivo and is associated with enhanced pathology in a murine experimental autoimmune encephalomyelitis (EAE) model. Overall, our data indicate that Pparα may serve as a potential therapeutic target for autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Ping Wei
- Department of Otolaryngology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Kou
- Department of Otolaryngology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), 1068 Xueyuan Avenue, Shenzhen, 518055, PR China
| | - Juan Fu
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zuojia Chen
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Fan Pan
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), 1068 Xueyuan Avenue, Shenzhen, 518055, PR China.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
44
|
Zhuravlev A, Cruz A, Aksenov V, Golovanov A, Lluch JM, Kuhn H, González-Lafont À, Ivanov I. Different Structures-Similar Effect: Do Substituted 5-(4-Methoxyphenyl)-1 H-indoles and 5-(4-Methoxyphenyl)-1 H-imidazoles Represent a Common Pharmacophore for Substrate Selective Inhibition of Linoleate Oxygenase Activity of ALOX15? Molecules 2023; 28:5418. [PMID: 37513289 PMCID: PMC10383952 DOI: 10.3390/molecules28145418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Mammalian 15-lipoxygenases (ALOX15) are lipid peroxidizing enzymes that exhibit variable functionality in different cancer and inflammation models. The pathophysiological role of linoleic acid- and arachidonic acid-derived ALOX15 metabolites rendered this enzyme a target for pharmacological research. Several indole and imidazole derivatives inhibit the catalytic activity of rabbit ALOX15 in a substrate-specific manner, but the molecular basis for this allosteric inhibition remains unclear. Here, we attempt to define a common pharmacophore, which is critical for this allosteric inhibition. We found that substituted imidazoles induce weaker inhibitory effects when compared with the indole derivatives. In silico docking studies and molecular dynamics simulations using a dimeric allosteric enzyme model, in which the inhibitor occupies the substrate-binding pocket of one monomer, whereas the substrate fatty acid is bound at the catalytic center of another monomer within the ALOX15 dimer, indicated that chemical modification of the core pharmacophore alters the enzyme-inhibitor interactions, inducing a reduced inhibitory potency. In our dimeric ALOX15 model, the structural differences induced by inhibitor binding are translated to the hydrophobic dimerization cluster and affect the structures of enzyme-substrate complexes. These data are of particular importance since substrate-specific inhibition may contribute to elucidation of the putative roles of ALOX15 metabolites derived from different polyunsaturated fatty acids in mammalian pathophysiology.
Collapse
Affiliation(s)
- Alexander Zhuravlev
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, Vernadskogo pr. 86, 119571 Moscow, Russia
| | - Alejandro Cruz
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Vladislav Aksenov
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, Vernadskogo pr. 86, 119571 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklihio-Maklaja Str., 16/10c4, 117997 Moscow, Russia
| | - Alexey Golovanov
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, Vernadskogo pr. 86, 119571 Moscow, Russia
| | - José M Lluch
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Hartmut Kuhn
- Department of Biochemistry, Charite-University Medicine Berlin, Corporate Member of Free University Berlin and Humboldt University Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Àngels González-Lafont
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Igor Ivanov
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, Vernadskogo pr. 86, 119571 Moscow, Russia
| |
Collapse
|
45
|
Hammoudeh N, Soukkarieh C, Murphy DJ, Hanano A. Mammalian lipid droplets: structural, pathological, immunological and anti-toxicological roles. Prog Lipid Res 2023; 91:101233. [PMID: 37156444 DOI: 10.1016/j.plipres.2023.101233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Mammalian lipid droplets (LDs) are specialized cytosolic organelles consisting of a neutral lipid core surrounded by a membrane made up of a phospholipid monolayer and a specific population of proteins that varies according to the location and function of each LD. Over the past decade, there have been significant advances in the understanding of LD biogenesis and functions. LDs are now recognized as dynamic organelles that participate in many aspects of cellular homeostasis plus other vital functions. LD biogenesis is a complex, highly-regulated process with assembly occurring on the endoplasmic reticulum although aspects of the underpinning molecular mechanisms remain elusive. For example, it is unclear how many enzymes participate in the biosynthesis of the neutral lipid components of LDs and how this process is coordinated in response to different metabolic cues to promote or suppress LD formation and turnover. In addition to enzymes involved in the biosynthesis of neutral lipids, various scaffolding proteins play roles in coordinating LD formation. Despite their lack of ultrastructural diversity, LDs in different mammalian cell types are involved in a wide range of biological functions. These include roles in membrane homeostasis, regulation of hypoxia, neoplastic inflammatory responses, cellular oxidative status, lipid peroxidation, and protection against potentially toxic intracellular fatty acids and lipophilic xenobiotics. Herein, the roles of mammalian LDs and their associated proteins are reviewed with a particular focus on their roles in pathological, immunological and anti-toxicological processes.
Collapse
Affiliation(s)
- Nour Hammoudeh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Denis J Murphy
- School of Applied Sciences, University of South Wales, Pontypridd, CF37 1DL, Wales, United Kingdom..
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria..
| |
Collapse
|
46
|
Soop GL, Husøy T, Wojewodzic MW, Hjertholm H, Spyropoulou A, Katsanou ES, Batakis P, Kyriakopoulou K, Machera K, Dirven H, Lindeman B, Duale N. Transcriptional analysis in peripheral blood cells of individuals with elevated phthalate exposure - Results of the EuroMix study. ENVIRONMENTAL RESEARCH 2023; 222:115377. [PMID: 36709869 DOI: 10.1016/j.envres.2023.115377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/11/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Exposure to phthalates is widespread in Europe. Phthalates are considered endocrine disrupting compounds and are classified as toxic for reproduction. However how phthalates affect the transcriptome in humans remains largely unknown. To investigate the effects of phthalate exposure on the transcriptomic profile we conducted RNA sequencing on peripheral blood samples from the Norwegian EuroMix cohort. We compared gene expression changes between participants with high, medium, and low exposure of six phthalates and 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH). Comparing high and low exposure groups, DINCH was the compound that showed the highest number of differentially expressed genes (126 genes) followed by mono-n-butyl phthalate (MnBP; 89 genes) and mono-iso-nonyl phthalate (MiBP; 70 genes). Distributions between up- or down-regulated genes were similar across the different phthalates and DINCH. All phthalates including DINCH shared common differentially expressed genes ranging from 3 to 37 overlaps. Enriched Gene Ontology (GO) and biological pathway analysis revealed that most of the differentially expressed genes were associated with general cellular metabolism GO terms. MnBP and DINCH, particularly, showed a marked enrichment in various immunological function pathways including neutrophil degranulation, adaptive immune system and signaling by interleukins. Furthermore, the association between genes involved in the peroxisome proliferator activated receptor (PPAR) signaling pathway and phthalates, including DINCH, was evaluated. In total, 15 genes showed positive or negative associations across 5 phthalates and DINCH. MnBP and MiBP were the phthalate metabolites with the highest number of associations: 8 and 4 PPAR signaling pathway genes, respectively. Overall, we have performed an association study between phthalate exposure levels and modulation of transcriptomic profiles in human peripheral blood cells. DINCH, which is often mentioned as a substitute for phthalates, had comparable effects on differential gene expression in peripheral blood cells as phthalates.
Collapse
Affiliation(s)
- Graciela López Soop
- Department of Climate and Environment, Division of Chemical Toxicology, Norwegian Institute of Public Health, Lovisenberggate 8, Oslo, Norway
| | - Trine Husøy
- Department of Climate and Environment, Division of Food Safety, Norwegian Institute of Public Health, Lovisenberggate 8, Oslo, Norway
| | - Marcin Wlodzimierz Wojewodzic
- Department of Climate and Environment, Division of Chemical Toxicology, Norwegian Institute of Public Health, Lovisenberggate 8, Oslo, Norway
| | - Hege Hjertholm
- Department of Climate and Environment, Division of Chemical Toxicology, Norwegian Institute of Public Health, Lovisenberggate 8, Oslo, Norway
| | - Anastasia Spyropoulou
- Benaki Phytopathological Institute, Laboratory of Toxicological Control of Pesticides, 8th Stefanou Delta Str., Kifissia, Attica, Greece
| | - Effrosyni S Katsanou
- Benaki Phytopathological Institute, Laboratory of Toxicological Control of Pesticides, 8th Stefanou Delta Str., Kifissia, Attica, Greece; European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Petros Batakis
- Benaki Phytopathological Institute, Laboratory of Toxicological Control of Pesticides, 8th Stefanou Delta Str., Kifissia, Attica, Greece
| | - Katerina Kyriakopoulou
- Phytopathological Institute, Laboratory of Environmental Control of Pesticides, 8th Stefanou Delta Str., Kifissia, Attica, Greece
| | - Kyriaki Machera
- Benaki Phytopathological Institute, Laboratory of Toxicological Control of Pesticides, 8th Stefanou Delta Str., Kifissia, Attica, Greece
| | - Hubert Dirven
- Department of Climate and Environment, Division of Chemical Toxicology, Norwegian Institute of Public Health, Lovisenberggate 8, Oslo, Norway
| | - Birgitte Lindeman
- Department of Climate and Environment, Division of Chemical Toxicology, Norwegian Institute of Public Health, Lovisenberggate 8, Oslo, Norway
| | - Nur Duale
- Department of Climate and Environment, Division of Chemical Toxicology, Norwegian Institute of Public Health, Lovisenberggate 8, Oslo, Norway.
| |
Collapse
|
47
|
Hyun YE, An S, Kim M, Park IG, Yoon S, Javaid HMA, Vu TNL, Kim G, Choi H, Lee HW, Noh M, Huh JY, Choi S, Kim HR, Jeong LS. Structure–Activity Relationships of Truncated 1′-Homologated Carbaadenosine Derivatives as New PPARγ/δ Ligands: A Study on Sugar Puckering Affecting Binding to PPARs. J Med Chem 2023; 66:4961-4978. [PMID: 36967575 DOI: 10.1021/acs.jmedchem.2c02071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are associated with the regulation of metabolic homeostasis. Based on a previous report that 1'-homologated 4'-thionucleoside acts as a dual PPARγ/δ modulator, carbocyclic nucleosides 2-5 with various sugar conformations were synthesized to determine whether sugar puckering affects binding to PPARs. (S)-conformer 2 was synthesized using Charette asymmetric cyclopropanation, whereas (N)-conformer 3 was synthesized using stereoselective Simmons-Smith cyclopropanation. All synthesized nucleosides did not exhibit binding affinity to PPARα but exhibited significant binding affinities to PPARγ/δ. The binding affinity of final nucleosides to PPARγ did not differ significantly based on their conformation, but their affinity to PPARδ depended greatly on their conformation, correlated with adiponectin production. (N)-conformer 3h was discovered to be the most potent PPARδ antagonist with good adiponectin production, which exhibited the most effective activity in inhibiting the mRNA levels of LPS-induced IL-1β expression in RAW 264.7 macrophages, implicating its anti-inflammatory activity.
Collapse
|
48
|
Son M, Kim GY, Yang Y, Ha S, Kim J, Kim D, Chung HY, Moon HR, Chung KW. PPAR Pan Agonist MHY2013 Alleviates Renal Fibrosis in a Mouse Model by Reducing Fibroblast Activation and Epithelial Inflammation. Int J Mol Sci 2023; 24:ijms24054882. [PMID: 36902313 PMCID: PMC10002481 DOI: 10.3390/ijms24054882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The peroxisome proliferator-activated receptor (PPAR) nuclear receptor has been an interesting target for the treatment of chronic diseases. Although the efficacy of PPAR pan agonists in several metabolic diseases has been well studied, the effect of PPAR pan agonists on kidney fibrosis development has not been demonstrated. To evaluate the effect of the PPAR pan agonist MHY2013, a folic acid (FA)-induced in vivo kidney fibrosis model was used. MHY2013 treatment significantly controlled decline in kidney function, tubule dilation, and FA-induced kidney damage. The extent of fibrosis determined using biochemical and histological methods showed that MHY2013 effectively blocked the development of fibrosis. Pro-inflammatory responses, including cytokine and chemokine expression, inflammatory cell infiltration, and NF-κB activation, were all reduced with MHY2013 treatment. To demonstrate the anti-fibrotic and anti-inflammatory mechanisms of MHY2013, in vitro studies were conducted using NRK49F kidney fibroblasts and NRK52E kidney epithelial cells. In the NRK49F kidney fibroblasts, MHY2013 treatment significantly reduced TGF-β-induced fibroblast activation. The gene and protein expressions of collagen I and α-smooth muscle actin were significantly reduced with MHY2013 treatment. Using PPAR transfection, we found that PPARγ played a major role in blocking fibroblast activation. In addition, MHY2013 significantly reduced LPS-induced NF-κB activation and chemokine expression mainly through PPARβ activation. Taken together, our results suggest that administration of the PPAR pan agonist effectively prevented renal fibrosis in both in vitro and in vivo models of kidney fibrosis, implicating the therapeutic potential of PPAR agonists against chronic kidney diseases.
Collapse
Affiliation(s)
- Minjung Son
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Ga Young Kim
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Yejin Yang
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Sugyeong Ha
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Jeongwon Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Doyeon Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Hyung Ryong Moon
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
- Correspondence: (H.R.M.); (K.W.C.); Tel.: +82-51-510-2815 (H.R.M.); +82-51-510-2819 (K.W.C.); Fax: +82-51-518-2812 (K.W.C.)
| | - Ki Wung Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
- Correspondence: (H.R.M.); (K.W.C.); Tel.: +82-51-510-2815 (H.R.M.); +82-51-510-2819 (K.W.C.); Fax: +82-51-518-2812 (K.W.C.)
| |
Collapse
|
49
|
Kautiainen R, Aleksonis H, King TZ. A Systematic Review of Host Genomic Variation and Neuropsychological Outcomes for Pediatric Cancer Survivors. Neuropsychol Rev 2023; 33:278-306. [PMID: 35305234 DOI: 10.1007/s11065-022-09539-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 01/25/2022] [Indexed: 10/18/2022]
Abstract
Pediatric survivors of brain tumors and acute lymphoblastic leukemia (ALL) are at risk for long-term deficits in their neuropsychological functioning. Researchers have begun examining associations between germline single nucleotide polymorphisms (SNPs), which interact with cancer treatment, and neuropsychological outcomes. This review synthesizes the impact of treatment-related toxicity from germline SNPs by neuropsychological domain (i.e., working memory, processing speed, psychological functioning) in pediatric survivors. By focusing on specific neuropsychological domains, this review will examine outcome measurement and critique methodology. Fourteen studies were identified and included in this review using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). All studies were published in peer-reviewed journals in English by November 24th, 2021. Reviewed studies were not of sufficient quality for a meta-analysis due to varying measurement strategies, gaps in reported descriptive variables, and low power. All neuropsychological domains evaluated in this review had associations with SNPs, except fine motor and visual integration abilities. Only five SNPs had consistent neuropsychological findings in more than one study or cohort. Future research and replication studies should use validated measures of discrete skills that are central to empirically validated models of survivors' long-term outcomes (i.e., attention, working memory, processing speed). Researchers should examine SNPs across pathophysiological pathways to investigate additive genetic risk in pediatric cancer survivors. Two SNPs were identified that confer resiliency in neuropsychological functioning, and future work should investigate resiliency genotypes and their underlying biological mechanisms.
Collapse
Affiliation(s)
- Rella Kautiainen
- Department of Psychology, Georgia State University, Atlanta, Georgia
| | - Holly Aleksonis
- Department of Psychology, Georgia State University, Atlanta, Georgia
| | - Tricia Z King
- Department of Psychology and the Neuroscience Institute, Georgia State University, Atlanta, Georgia.
| |
Collapse
|
50
|
Yin F. Lipid metabolism and Alzheimer's disease: clinical evidence, mechanistic link and therapeutic promise. FEBS J 2023; 290:1420-1453. [PMID: 34997690 PMCID: PMC9259766 DOI: 10.1111/febs.16344] [Citation(s) in RCA: 164] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative disorder with multifactorial etiology, intersecting genetic and environmental risk factors, and a lack of disease-modifying therapeutics. While the abnormal accumulation of lipids was described in the very first report of AD neuropathology, it was not until recent decades that lipid dyshomeostasis became a focus of AD research. Clinically, lipidomic and metabolomic studies have consistently shown alterations in the levels of various lipid classes emerging in early stages of AD brains. Mechanistically, decades of discovery research have revealed multifaceted interactions between lipid metabolism and key AD pathogenic mechanisms including amyloidogenesis, bioenergetic deficit, oxidative stress, neuroinflammation, and myelin degeneration. In the present review, converging evidence defining lipid dyshomeostasis in AD is summarized, followed by discussions on mechanisms by which lipid metabolism contributes to pathogenesis and modifies disease risk. Furthermore, lipid-targeting therapeutic strategies, and the modification of their efficacy by disease stage, ApoE status, and metabolic and vascular profiles, are reviewed.
Collapse
Affiliation(s)
- Fei Yin
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, AZ, USA.,Department of Pharmacology, College of Medicine Tucson, University of Arizona, Tucson, AZ, USA.,Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, USA
| |
Collapse
|