1
|
Li Y, Li X, Wu W, Liu P, Liu J, Jiang H, Deng L, Ni C, Wu X, Zhao Y, Ren J. Insights into the roles of macrophages in Klebsiella pneumoniae infections: a comprehensive review. Cell Mol Biol Lett 2025; 30:34. [PMID: 40140770 PMCID: PMC11948646 DOI: 10.1186/s11658-025-00717-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Klebsiella pneumoniae (KP) infections represent a significant global health challenge, characterized by severe inflammatory sequelae and escalating antimicrobial resistance. This comprehensive review elucidates the complex interplay between macrophages and KP, encompassing pathogen recognition mechanisms, macrophage activation states, cellular death pathways, and emerging immunotherapeutic strategies. We critically analyze current literature on macrophage pattern recognition receptor engagement with KP-associated molecular patterns. The review examines the spectrum of macrophage responses to KP infection, including classical M1 polarization and the newly described M(Kp) phenotype, alongside metabolic reprogramming events such as glycolytic enhancement and immune responsive gene 1 (IRG1)-itaconate upregulation. We systematically evaluate macrophage fate decisions in response to KP, including autophagy, apoptosis, pyroptosis, and necroptosis. Furthermore, we provide a critical assessment of potential future therapeutic modalities. Given the limitations of current treatment paradigms, elucidating macrophage-KP interactions is imperative. Insights gained from this analysis may inform the development of novel immunomodulatory approaches to augment conventional antimicrobial therapies, potentially transforming the clinical management of KP infections.
Collapse
Affiliation(s)
- Yangguang Li
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xuanheng Li
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wenqi Wu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Peizhao Liu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Juanhan Liu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Haiyang Jiang
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Liting Deng
- School of Medicine, Southeast University, Nanjing, 210000, China
| | - Chujun Ni
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Yun Zhao
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210009, China.
- Clinical Translational Research Center for Surgical Infection and Immunity of Nanjing Medical University, Nanjing, China.
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
2
|
Jomova K, Alomar SY, Valko R, Liska J, Nepovimova E, Kuca K, Valko M. Flavonoids and their role in oxidative stress, inflammation, and human diseases. Chem Biol Interact 2025:111489. [PMID: 40147618 DOI: 10.1016/j.cbi.2025.111489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 02/23/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Oxidative stress and chronic inflammation are important drivers in the pathogenesis and progression of many chronic diseases, such as cancers of the breast, kidney, lung, and others, autoimmune diseases (rheumatoid arthritis), cardiovascular diseases (hypertension, atherosclerosis, arrhythmia), neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease), mental disorders (depression, schizophrenia, bipolar disorder), gastrointestinal disorders (inflammatory bowel disease, colorectal cancer), and other disorders. With the increasing demand for less toxic and more tolerable therapies, flavonoids have the potential to effectively modulate the responsiveness to conventional therapy and radiotherapy. Flavonoids are polyphenolic compounds found in fruits, vegetables, grains, and plant-derived beverages. Six of the twelve structurally different flavonoid subgroups are of dietary significance and include anthocyanidins (e.g. pelargonidin, cyanidin), flavan-3-ols (e.g. epicatechin, epigallocatechin), flavonols (e.g. quercetin, kaempferol), flavones (e.g. luteolin, baicalein), flavanones (e.g. hesperetin, naringenin), and isoflavones (daidzein, genistein). The health benefits of flavonoids are related to their structural characteristics, such as the number and position of hydroxyl groups and the presence of C2=C3 double bonds, which predetermine their ability to chelate metal ions, terminate ROS (e.g. hydroxyl radicals formed by the Fenton reaction), and interact with biological targets to trigger a biological response. Based on these structural characteristics, flavonoids can exert both antioxidant or prooxidant properties, modulate the activity of ROS-scavenging enzymes and the expression and activation of proinflammatory cytokines (e.g., interleukin-1beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α)), induce apoptosis and autophagy, and target key signaling pathways, such as the nuclear factor erythroid 2-related factor 2 (Nrf2) and Bcl-2 family of proteins. This review aims to briefly discuss the mutually interconnected aspects of oxidative and inflammatory mechanisms, such as lipid peroxidation, protein oxidation, DNA damage, and the mechanism and resolution of inflammation. The major part of this article discusses the role of flavonoids in alleviating oxidative stress and inflammation, two common components of many human diseases. The results of epidemiological studies on flavonoids are also presented.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University in Nitra, Nitra, 949 74 Slovakia
| | - Suliman Y Alomar
- Zoology Department, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Richard Valko
- Zoology Department, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Jan Liska
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic; Center of Advanced Innovation Technologies, VSB-Technical University of Ostrava, 708 00, Ostrava-Poruba, Czech Republic
| | - Kamil Kuca
- Center of Advanced Innovation Technologies, VSB-Technical University of Ostrava, 708 00, Ostrava-Poruba, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, 5005 Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovakia.
| |
Collapse
|
3
|
Yang S, Fan L, Yin L, Zhao Y, Li W, Zhao R, Jia X, Dong F, Zheng Z, Zhao D, Wang J. Ginseng exosomes modulate M1/M2 polarisation by activating autophagy and target IKK/IкB/NF-кB to alleviate inflammatory bowel disease. J Nanobiotechnology 2025; 23:198. [PMID: 40065319 PMCID: PMC11895377 DOI: 10.1186/s12951-025-03292-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Exosomes are involved in intercellular communication and regulation of the inflammatory microenvironment. In a previous study, we demonstrated that fresh ginseng exosomes (GEs) alleviated inflammatory bowel disease. However, the precise mechanism by which GEs activate the immune system and subsequently inhibit the formation of intestinal inflammatory microenvironment remains unknown. METHODS Herein, we investigated the effects of GEs on autophagy, macrophage polarisation, intestinal inflammation, and the epithelial barrier by means of transcriptome sequencing, network pharmacology, transmission electron microscopy, immunoblotting, flow cytometry and small molecule inhibitors. RESULTS GEs significantly activated autophagy and M2-like macrophage polarisation, which could be blocked by the autophagy inhibitor 3-methyladenine. In the co-culture system of macrophages and intestinal epithelial cells, macrophages treated with GEs secreted more interleukin-10 (IL-10) and significantly reduced Nitric oxide (NO) levels in intestinal epithelial cells in vitro. Furthermore, GEs acted directly on intestinal epithelial cells through the IKK/IкB/NF-кB signalling pathway to reduce inflammation and restore the intestinal barrier. Orally administered GEs could restore disrupted colonic barriers, alleviate inflammatory bowel responses, and regulate the polarisation of intestinal macrophages in vivo. CONCLUSION In summary, GEs may be a potential treatment for inflammatory bowel disease, and targeting autophagy and macrophage polarisation may help alleviate intestinal inflammation.
Collapse
Affiliation(s)
- Song Yang
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin Province, China
| | - Liangliang Fan
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin Province, China
| | - Lijia Yin
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin Province, China
| | - Yueming Zhao
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin Province, China
| | - Wenjing Li
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin Province, China
| | - Ronghua Zhao
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin Province, China
| | - Xuxia Jia
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin Province, China
| | - Fusong Dong
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin Province, China
| | - Ze Zheng
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin Province, China
| | - Daqing Zhao
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin Province, China
| | - Jiawen Wang
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin Province, China.
- Division of Cardiovascular Medicine, Department of Medicine, Solna, Karolinska Institutet, 17176, Stockholm, Sweden.
| |
Collapse
|
4
|
Li M, Zhang Q, Wang Y, Xie J, Liang T, Liu Z, Xiang X, Zhou Q, Gong Z. From adhesion to invasion: the multifaceted roles of Mycobacterium tuberculosis lipoproteins. J Drug Target 2025:1-10. [PMID: 39993287 DOI: 10.1080/1061186x.2025.2472208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/13/2025] [Accepted: 02/17/2025] [Indexed: 02/26/2025]
Abstract
Tuberculosis (TB) is caused by Mycobacterium tuberculosis, which poses a significant threat to human health. Lipoproteins are predominantly found in the M. tuberculosis cell wall during infection of the invading host. The cell wall interacts closely with the host cell in direct contact. The M. tuberculosis genome encodes at least 99 lipoproteins with diverse functions, including ABC transport, cell wall metabolism, adhesion, cell invasion, and signal transduction, among others. Different lipoproteins play important roles in bacterial survival, infection of host cells, vaccine development, and gene regulation for drug targeting. Although only a subset of these lipoproteins has been functionally investigated, most of them require further study. This review summarises the progress of research related to the synthesis of M. tuberculosis lipoproteins and their involvement in the functions of material transport, immune response, virulence mechanism, vaccine development, signalling, enzyme, and drug regulation.
Collapse
Affiliation(s)
- Min Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiao Zhang
- Cultivation Base of Provincial-Ministry Joint State Key Laboratory of Ecological Environment and Biological Resources in Three Gorges Reservoir Area, School of Life Sciences, Institute of Modern Biomedicine, Southwest University, Chongqing, China
| | - Yun Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jianping Xie
- Cultivation Base of Provincial-Ministry Joint State Key Laboratory of Ecological Environment and Biological Resources in Three Gorges Reservoir Area, School of Life Sciences, Institute of Modern Biomedicine, Southwest University, Chongqing, China
| | - Tian Liang
- Cultivation Base of Provincial-Ministry Joint State Key Laboratory of Ecological Environment and Biological Resources in Three Gorges Reservoir Area, School of Life Sciences, Institute of Modern Biomedicine, Southwest University, Chongqing, China
| | - Zhou Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaohong Xiang
- School of Pharmacy, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Qiang Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhen Gong
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Khadour FA, Khadour YA, Xu T. NLRP3 overexpression exacerbated synovium tissue degeneration in juvenile collagen-induced arthritis. Sci Rep 2025; 15:7024. [PMID: 40016261 PMCID: PMC11868420 DOI: 10.1038/s41598-025-86720-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 01/13/2025] [Indexed: 03/01/2025] Open
Abstract
Juvenile idiopathic arthritis (JIA) can lead to synovial inflammation. JIA is a chronic autoimmune inflammatory condition that primarily affects children. It is recognized as the most prevalent form of arthritis in the pediatric population and is associated with significant impairment and disability. As an inflammatory regulator, Nod-like receptor 3 (NLRP3) has been implicated in various autoimmune diseases. However, the specific mechanism by which NLRP3 impacts the progress of JIA remains unclear. Therefore, we conducted this study to investigate the specific mechanism of NLRP3 on the progress of synovial inflammation in juvenile collagen-induced arthritis (CIA). The CIA model was established using Sprague‒Dawley (SD) rats aged 2-3 weeks. In this study, we investigated the potential role of NLRP3 on JIA by regulating the NLRP3-NF-κB axis in CIA rats. To verify the effect of NLRP3 on JIA, the expression of NLRP3 was knocked down or overexpressed by an adeno-associated virus injected into the knee joint of the CIA rats. In this study, we observed that NLRP3 plays an important role in the development of juvenile CIA, and knocking down NLRP3 inhibited inflammation and alleviated synovium inflammation. We also demonstrated that the expression of NLRP3 was increased in synovial tissue, and NLRP3 could upregulate the NF-κB signal pathway and influence inflammation. Moreover, we also found that increases in the expression of NLRP3 impairs autophagy capacity and increases activation of the pyroptosis pathway in the synovium of the juvenile CIA rats. The results demonstrated that NLRP3 interferes with synovial inflammation in juvenile CIA. These results provide new insight into the mechanism by which NLRP3 impacts the development of JIA and suggest that targeting the NLRP3 inflammasome may represent a promising therapeutic strategy for managing JIA.
Collapse
MESH Headings
- Animals
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- Synovial Membrane/metabolism
- Synovial Membrane/pathology
- Rats
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Experimental/genetics
- Rats, Sprague-Dawley
- Arthritis, Juvenile/metabolism
- Arthritis, Juvenile/pathology
- Arthritis, Juvenile/genetics
- NF-kappa B/metabolism
- Male
- Signal Transduction
- Disease Models, Animal
- Inflammation/metabolism
- Inflammation/pathology
- Inflammation/genetics
- Inflammasomes/metabolism
Collapse
Affiliation(s)
- Fater A Khadour
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
- Department of Rehabilitation, Faculty of Medicine, Al Baath University, Homs, Syria
- Department of Physical Therapy, Health Science Faculty, Al-Baath University, Homs, Syria
| | - Younes A Khadour
- Department of Rehabilitation, Faculty of Medicine, Al Baath University, Homs, Syria
- Department of Physical Therapy, Cairo University, Cairo, 11835, Egypt
| | - Tao Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China.
| |
Collapse
|
6
|
Li S, Mingoia S, Montégut L, Lambertucci F, Chen H, Dong Y, De Palma FDE, Scuderi SA, Rong Y, Carbonnier V, Martins I, Maiuri MC, Kroemer G. Atlas of expression of acyl CoA binding protein/diazepam binding inhibitor (ACBP/DBI) in human and mouse. Cell Death Dis 2025; 16:134. [PMID: 40011442 DOI: 10.1038/s41419-025-07447-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/14/2025] [Accepted: 02/11/2025] [Indexed: 02/28/2025]
Abstract
Acyl CoA binding protein encoded by diazepam binding inhibitor (ACBP/DBI) is a tissue hormone that stimulates lipo-anabolic responses and inhibits autophagy, thus contributing to aging and age-related diseases. Protein expression profiling of ACBP/DBI was performed on mouse tissues to identify organs in which this major tissue hormone is expressed. Transcriptomic and proteomic data bases corroborated a high level of human-mouse interspecies conservation of ACBP/DBI expression in different organs. Single-cell RNA-seq data confirmed that ACBP/DBI was strongly expressed by parenchymatous cells from specific human and mouse organs (e.g., kidney, large intestine, liver, lung) as well as by myeloid or glial cells from other organs (e.g., adipose tissue, brain, eye) following a pattern that was conserved among the two species. We identified a panel of 44 mRNAs that are strongly co-expressed with ACBP/DBI mRNA in normal and malignant human and normal mouse tissues. Of note, 22 (50%) of these co-expressed mRNAs encode proteins localized at mitochondria, and mRNAs with metabolism-related functions are strongly overrepresented (66%). Systematic data mining was performed to identify transcription factors that regulate ACBP/DBI expression in human and mouse. Several transcription factors, including growth response 1 (EGR1), E2F Transcription Factor 1 (E2F1, which interacts with retinoblastoma, RB) and transformation-related protein 53 (TRP53, best known as p53), which are endowed with oncosuppressive effects, consistently repress ACBP/DBI expression as well as its co-expressed mRNAs across multiple datasets, suggesting a mechanistic basis for a coregulation network. Furthermore, we identified multiple transcription factors that transactivate ACBP/DBI gene expression together with its coregulation network. Altogether, this study indicates the existence of conserved mechanisms determining the expression of ACBP/DBI in specific cell types of the mammalian organism.
Collapse
Affiliation(s)
- Sijing Li
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Silvia Mingoia
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Department of Pharmacological Sciences, University of Piemonte Orientale, Novara, Italy
| | - Léa Montégut
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Flavia Lambertucci
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Hui Chen
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Yanbing Dong
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, Paris, France
| | - Fatima Domenica Elisa De Palma
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, Napoli, Italy
| | - Sarah Adriana Scuderi
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Yan Rong
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, Paris, France
| | - Vincent Carbonnier
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Isabelle Martins
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Maria Chiara Maiuri
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, Napoli, Italy.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
7
|
Guo J, Li Y, Ma K, Su G. Enhancing autophagy mitigates LPS-induced neuroinflammation by inhibiting microglial M1 polarization and neuronophagocytosis. Front Cell Neurosci 2025; 19:1546848. [PMID: 40051676 PMCID: PMC11882556 DOI: 10.3389/fncel.2025.1546848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/10/2025] [Indexed: 03/09/2025] Open
Abstract
Background Autophagy, a regulator of inflammation, has been implicated in various central nervous system pathologies. Despite this, the role and mechanisms of autophagy in lipopolysaccharide (LPS)-induced neuroinflammation are not clear. This study investigated whether autophagy can play a neuroprotective role in LPS-induced neuroinflammation. Methods Primary microglial cells and male C57BL/6 J mice were treated with LPS, autophagy inhibitors (3-methyladenine, 3-MA), or autophagy activators (rapamycin). Cell viability, NF-κB pathway activation, pro-inflammatory cytokine expression, M1 polarization, autophagy markers, and neuronal damage were evaluated via various techniques including CCK-8 assay, Western blot analysis, ELISA, immunohistochemistry, and histological staining. Results LPS (1 μg/mL) effectively inhibited cell viability, stimulated the expression of IκB-α and NF-κB, and simultaneously suppressed autophagy protein expression. The pro-inflammatory cytokines IL-1β and IL-6 showed a significant increase. Contrary to the effect of 3-MA, the rapamycin treatment inhibited the polarization of microglia cells to the M1 type in the various groups of microglia cells after LPS stimulation. This was evidenced by decreased expression of cytokines IL-1β, IL-6, and CD86, and increased expression of Arg-1, IL-10, and CD206. In vivo experiments found that mice with injections of LPS and 3-MA in the lateral ventricle showed significantly increased expression of IκB-α and NF-κB in brain tissues, elevated levels of pro-inflammatory cytokines, decreased autophagy levels, and increased necrotic neurons. There was increased aggregation of microglia cells and increased neuronophagocytosis. Conversely, mice injected with rapamycin showed enhanced neuronal cell autophagy, decreased expression of pro-inflammatory cytokines and apoptosis, and reduced neuronophagocytosis. Conclusion Enhancing autophagy can effectively mitigate LPS-induced neuroinflammation by inhibiting microglial M1 polarization and neuronophagocytosis, thereby protecting neuronal integrity. These findings suggest potential therapeutic strategies targeting autophagy in neuroinflammatory conditions.
Collapse
Affiliation(s)
- Jingjing Guo
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of General Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yun Li
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kun Ma
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Pediatrics, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Guohai Su
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Cardiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
8
|
He J, He M, Sun M, Chen H, Dou Z, Nie R, Zhou J, Tang Q, Che C, Liu J, Li T. The Mechanism of Acupuncture Regulating Autophagy: Progress and Prospect. Biomolecules 2025; 15:263. [PMID: 40001566 PMCID: PMC11852493 DOI: 10.3390/biom15020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/08/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Autophagy plays a crucial role in the physiopathological mechanisms of diseases by regulating cellular functions and maintaining cellular homeostasis, which has garnered extensive attention from researchers worldwide. The holistic regulation and bidirectional regulation effects of acupuncture can modulate cellular autophagy, promoting or restoring the homeostasis of the body's internal environment to achieve therapeutic outcomes. This paper systematically reviews the research progress on the use of acupuncture for treating various diseases via the autophagy pathway, summarizes signal pathways related to acupuncture regulating autophagy, and analyzes the deficiencies present in the existing research. The review results indicate that the mechanism of action of acupuncture on autophagy dysfunction is reflected in the changes in LC3, Beclin1, p53, and autophagy-associated (ATG) protein expression, and regulates signaling pathways and key proteins or genes. The regulatory effect of acupuncture on autophagy capacity is bidirectional: it inhibits the abnormal activation of autophagy to prevent exacerbation of injury and reduce apoptosis, while also activating or enhancing autophagy to promote the elimination of inflammation and reduce oxidative stress. Further analysis suggests that the mechanisms of acupuncture regulating autophagy are insufficiently explored. Future research should prioritize the development of more appropriate animal models, analyzing the accuracy of relevant pathways and the specificity of indicators, exploring the synergistic effects among targets and signaling pathways, clarifying the regulatory mechanisms of acupuncture at various stages of autophagy, and evaluating the efficacy of acupuncture in autophagy modulating. This paper offers valuable insights into the regulation of autophagy by acupuncture.
Collapse
Affiliation(s)
- Jing He
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun 130117, China; (J.H.); (H.C.); (Z.D.); (R.N.); (Q.T.); (C.C.)
| | - Min He
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China;
| | - Mengmeng Sun
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China;
| | - Hongxiu Chen
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun 130117, China; (J.H.); (H.C.); (Z.D.); (R.N.); (Q.T.); (C.C.)
| | - Zhiqiang Dou
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun 130117, China; (J.H.); (H.C.); (Z.D.); (R.N.); (Q.T.); (C.C.)
| | - Ru Nie
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun 130117, China; (J.H.); (H.C.); (Z.D.); (R.N.); (Q.T.); (C.C.)
| | - Jun Zhou
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Qingqing Tang
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun 130117, China; (J.H.); (H.C.); (Z.D.); (R.N.); (Q.T.); (C.C.)
| | - Cong Che
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun 130117, China; (J.H.); (H.C.); (Z.D.); (R.N.); (Q.T.); (C.C.)
| | - Jie Liu
- Academic Affairs Office, Changchun University of Chinese Medicine, Changchun 130117, China;
| | - Tie Li
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun 130117, China; (J.H.); (H.C.); (Z.D.); (R.N.); (Q.T.); (C.C.)
| |
Collapse
|
9
|
Wu Z, Yu L, Hu Y, Bao W, Wu S. Paeoniflorin Inhibits Porcine Circovirus Type 2 Replication by Inhibiting Autophagy and Targeting AKT/mTOR Signaling. Vet Sci 2025; 12:117. [PMID: 40005877 PMCID: PMC11860941 DOI: 10.3390/vetsci12020117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
Porcine circovirus type 2 (PCV2) is an important pathogen that leads to great economic losses to the swine industry. Paeoniflorin (PF), a novel plant extract, has been reported to have antiviral properties. However, the role of paeoniflorin in regulating PCV2 replication remains unclear. Here, we used the CCK8 assay to demonstrate that PF within safe concentrations (0-275 mM) significantly inhibits PCV2 replication in a dose-dependent manner in porcine kidney cells. Subsequently, comparative transcriptome and functional verification revealed that PF probably inherits PCV2 replication via targeting AKT/mTOR signaling. Further experimental data show that the AKT/mTOR signaling pathway is highly relevant to autophagy. Thus, experimental data from Western blot, qPCR, and the indirect immunofluorescence test indicate that PF inhibits PCV2 replication by inhibiting autophagy by targeting the AKT/mTOR signaling pathway. Together, our results provide insight into the mechanism of paeoniflorin in regulating PCV2 replication and offer new ideas for the treatment of PCV2 infection in pigs.
Collapse
Affiliation(s)
- Zhengchang Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.W.); (L.Y.); (Y.H.); (W.B.)
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Luchen Yu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.W.); (L.Y.); (Y.H.); (W.B.)
| | - Yueqing Hu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.W.); (L.Y.); (Y.H.); (W.B.)
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.W.); (L.Y.); (Y.H.); (W.B.)
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.W.); (L.Y.); (Y.H.); (W.B.)
| |
Collapse
|
10
|
Wan X, Zhang Y, Zhang K, Mou Y, Jin X, Huang X. The alterations of ocular surface metabolism and the related immunity inflammation in dry eye. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2025; 5:1-12. [PMID: 39758836 PMCID: PMC11699629 DOI: 10.1016/j.aopr.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 01/07/2025]
Abstract
Background Dry eye disease (DED) stands as a prominent ocular condition of global prevalence, emerging as a growing concern within public health. However, the underlying mechanisms involved in its pathogenesis remain largely unknown. In recent years, with the development of metabolomics, numerous studies have reported alterations in ocular surface metabolism in DED and offered fresh perspectives on the development of DED. Main text The metabolic changes of the ocular surface of DED patients are closely intertwined with the cellular metabolism process and immune inflammation changes. This article expounds upon the correlation between ocular surface metabolism and immune inflammation alterations in DED in terms of glycolysis, lipid metabolism, amino acid metabolism, cellular signaling pathways, and immune inflammation regulation. Conclusions The alterations in ocular surface metabolism of patients with dry eye are closely associated with their inflammatory status. Our work contributes novel insights into the pathogenesis of dry eye diseases and offers innovative molecular targets for diagnosing, detecting, and managing DED patients.
Collapse
Affiliation(s)
- Xiaojie Wan
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Yu Zhang
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Kaiye Zhang
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Yujie Mou
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Xiuming Jin
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Xiaodan Huang
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| |
Collapse
|
11
|
Zhou Y, Zhang Y, Li Y, Liu L, Zhuang M, Xiao Y. IL-27 attenuated macrophage injury and inflammation induced by Mycobacterium tuberculosis by activating autophagy. In Vitro Cell Dev Biol Anim 2025; 61:245-256. [PMID: 39455490 DOI: 10.1007/s11626-024-00989-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Interleukin-27 (IL-27) is a cytokine that is reported to be highly expressed in the peripheral blood of patients with pulmonary tuberculosis (PTB). IL-27-mediated signaling pathways, which exhibit anti- Mycobacterium tuberculosis (Mtb) properties, have also been demonstrated in macrophages infected with Mtb. However, the exact mechanism remains unclear. This study aimed to clarify the potential molecular mechanisms through which IL-27 enhances macrophage resistance to Mtb infection. Both normal and PTB patients provided bronchoalveolar lavage fluid (BALF). Peripheral blood mononuclear cells (PBMCs) were isolated from healthy individuals and stimulated with 50 ng/mL macrophage-colony stimulating factor (M-CSF) to obtain monocyte-derived macrophages (MDMs). Using 100 ng/mL phorbol 12-myristate 13-acetate (PMA), THP-1 cells were induced to differentiate into THP-1-derived macrophage-like cells (TDMs). Both MDMs and TDMs were subsequently infected with the Mtb strain H37Rv and treated with 50 ng/mL IL-27 prior to infection. The damage and inflammation of macrophages were examined using flow cytometry, enzyme-linked immunosorbent assay (ELISA), and Western blotting. Patients with PTB had elevated levels of IL-27 in their BALF. Preconditioning with IL-27 was shown to reduce H37Rv-induced MDMs and TDMs apoptosis while also decreasing the levels of Cleaved Caspase-3, Bax and the proinflammatory cytokines TNF-α, IL-1β, and IL-6, promoting the expression of Bcl-2 and the anti-inflammatory factors IL-10 and IL-4. Silencing of the IL-27 receptor IL-27Ra increased macrophage damage and inflammation triggered by H37Rv. Mechanistically, IL-27 activates autophagy by inhibiting TLR4/NF-κB signaling and activating the PI3K/AKT signaling pathway, thereby inhibiting H37Rv-induced macrophage apoptosis and the inflammatory response. Our study suggests that IL-27 alleviates H37Rv-induced macrophage injury and the inflammatory response by activating autophagy and that IL-27 may be a new target for the treatment of PTB.
Collapse
Affiliation(s)
- Yushan Zhou
- Respiratory and Critical Care Medicine Ward 1, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, Yunnan, China
| | - Yuxuan Zhang
- Respiratory and Critical Care Medicine Ward 1, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, Yunnan, China
| | - Yanli Li
- Respiratory and Critical Care Medicine Ward 1, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, Yunnan, China
| | - Liqiong Liu
- Respiratory and Critical Care Medicine Ward 1, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, Yunnan, China
| | - Min Zhuang
- Respiratory and Critical Care Medicine Ward 1, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, Yunnan, China
| | - Yi Xiao
- Respiratory and Critical Care Medicine Ward 1, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, Yunnan, China.
| |
Collapse
|
12
|
Malik AA, Shariq M, Sheikh JA, Zarin S, Ahuja Y, Fayaz H, Alam A, Ehtesham NZ, Hasnain SE. Activation of the lysosomal damage response and selective autophagy: the coordinated actions of galectins, TRIM proteins, and CGAS-STING1 in providing immunity against Mycobacterium tuberculosis. Crit Rev Microbiol 2025; 51:108-127. [PMID: 38470107 DOI: 10.1080/1040841x.2024.2321494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/16/2024] [Accepted: 02/14/2024] [Indexed: 03/13/2024]
Abstract
Autophagy is a crucial immune defense mechanism that controls the survival and pathogenesis of M. tb by maintaining cell physiology during stress and pathogen attack. The E3-Ub ligases (PRKN, SMURF1, and NEDD4) and autophagy receptors (SQSTM1, TAX1BP1, CALCOCO2, OPTN, and NBR1) play key roles in this process. Galectins (LGALSs), which bind to sugars and are involved in identifying damaged cell membranes caused by intracellular pathogens such as M. tb, are essential. These include LGALS3, LGALS8, and LGALS9, which respond to endomembrane damage and regulate endomembrane damage caused by toxic chemicals, protein aggregates, and intracellular pathogens, including M. tb. They also activate selective autophagy and de novo endolysosome biogenesis. LGALS3, LGALS9, and LGALS8 interact with various components to activate autophagy and repair damage, while CGAS-STING1 plays a critical role in providing immunity against M. tb by activating selective autophagy and producing type I IFNs with antimycobacterial functions. STING1 activates cGAMP-dependent autophagy which provides immunity against various pathogens. Additionally, cytoplasmic surveillance pathways activated by ds-DNA, such as inflammasomes mediated by NLRP3 and AIM2 complexes, control M. tb. Modulation of E3-Ub ligases with small regulatory molecules of LGALSs and TRIM proteins could be a novel host-based therapeutic approach for controlling TB.
Collapse
Affiliation(s)
- Asrar Ahmad Malik
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Mohd Shariq
- ICMR-National Institute of Pathology, New Delhi, India
| | - Javaid Ahmad Sheikh
- Department of Biotechnology, School of Chemical and Life Sciences, New Delhi, India
| | - Sheeba Zarin
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, New Delhi, India
| | - Yashika Ahuja
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Haleema Fayaz
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Anwar Alam
- Department of Biotechnology, School of Science and Engineering Technology, Sharda University, Greater Noida, India
| | - Nasreen Z Ehtesham
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Seyed E Hasnain
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
13
|
Kodali M, Madhu LN, Somayaji Y, Attaluri S, Huard C, Panda PK, Shankar G, Rao S, Shuai B, Gonzalez JJ, Oake C, Hering C, Babu RS, Kotian S, Shetty AK. Residual microglia following short-term PLX5622 treatment in 5xFAD mice exhibit diminished NLRP3 inflammasome and mTOR signaling, and enhanced autophagy. Aging Cell 2025; 24:e14398. [PMID: 39571180 PMCID: PMC11822669 DOI: 10.1111/acel.14398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 11/27/2024] Open
Abstract
While moderately activated microglia in Alzheimer's disease (AD) are pivotal in clearing amyloid beta (Aβ), hyperactivated microglia perpetuate neuroinflammation. Prior investigations reported that the elimination of ~80% of microglia through inhibition of the colony-stimulating factor 1 receptor (CSF1R) during the advanced stage of neuroinflammation in 5xFamilial AD (5xFAD) mice mitigates synapse loss and neurodegeneration. Furthermore, prolonged CSF1R inhibition diminished the development of parenchymal plaques. Nonetheless, the effects of short-term CSF1R inhibition during the early stages of neuroinflammation on residual microglia are unknown. Therefore, we investigated the effects of 10-day CSF1R inhibition using PLX5622 in three-month-old female 5xFAD mice, a stage characterized by the onset of neuroinflammation and minimal Aβ plaques. We observed ~65% microglia depletion in the hippocampus and cerebral cortex. The leftover microglia displayed a noninflammatory phenotype with reduced NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome complexes. Moreover, plaque-associated microglia were reduced with diminished Clec7a expression. Additionally, phosphorylated S6 ribosomal protein and the protein sequestosome 1 analysis suggested reduced mechanistic targets of rapamycin (mTOR) signaling and autophagy in microglia and neurons within the hippocampus and cerebral cortex. Biochemical assays validated the inhibition of NLRP3 inflammasome activation, decreased mTOR signaling in the hippocampus and cerebral cortex, and enhanced autophagy in the hippocampus. However, short-term CSF1R inhibition did not influence Aβ plaques, soluble Aβ-42 levels, astrocyte hypertrophy, or hippocampal neurogenesis. Thus, short-term CSF1R inhibition during the early stages of neuroinflammation in 5xFAD mice promotes the retention of homeostatic microglia with diminished inflammasome activation and mTOR signaling, alongside increased autophagy.
Collapse
Affiliation(s)
- Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Cell Biology and GeneticsTexas A&M University Health Science Center School of MedicineCollege StationTexasUSA
| | - Leelavathi N. Madhu
- Institute for Regenerative Medicine, Department of Cell Biology and GeneticsTexas A&M University Health Science Center School of MedicineCollege StationTexasUSA
| | - Yogish Somayaji
- Institute for Regenerative Medicine, Department of Cell Biology and GeneticsTexas A&M University Health Science Center School of MedicineCollege StationTexasUSA
| | - Sahithi Attaluri
- Institute for Regenerative Medicine, Department of Cell Biology and GeneticsTexas A&M University Health Science Center School of MedicineCollege StationTexasUSA
| | - Charles Huard
- Institute for Regenerative Medicine, Department of Cell Biology and GeneticsTexas A&M University Health Science Center School of MedicineCollege StationTexasUSA
| | - Prashanta Kumar Panda
- Institute for Regenerative Medicine, Department of Cell Biology and GeneticsTexas A&M University Health Science Center School of MedicineCollege StationTexasUSA
| | - Goutham Shankar
- Institute for Regenerative Medicine, Department of Cell Biology and GeneticsTexas A&M University Health Science Center School of MedicineCollege StationTexasUSA
| | - Shama Rao
- Institute for Regenerative Medicine, Department of Cell Biology and GeneticsTexas A&M University Health Science Center School of MedicineCollege StationTexasUSA
| | - Bing Shuai
- Institute for Regenerative Medicine, Department of Cell Biology and GeneticsTexas A&M University Health Science Center School of MedicineCollege StationTexasUSA
| | - Jenny J. Gonzalez
- Institute for Regenerative Medicine, Department of Cell Biology and GeneticsTexas A&M University Health Science Center School of MedicineCollege StationTexasUSA
| | - Chris Oake
- Institute for Regenerative Medicine, Department of Cell Biology and GeneticsTexas A&M University Health Science Center School of MedicineCollege StationTexasUSA
| | - Catherine Hering
- Institute for Regenerative Medicine, Department of Cell Biology and GeneticsTexas A&M University Health Science Center School of MedicineCollege StationTexasUSA
| | - Roshni Sara Babu
- Institute for Regenerative Medicine, Department of Cell Biology and GeneticsTexas A&M University Health Science Center School of MedicineCollege StationTexasUSA
| | - Sanya Kotian
- Institute for Regenerative Medicine, Department of Cell Biology and GeneticsTexas A&M University Health Science Center School of MedicineCollege StationTexasUSA
| | - Ashok K. Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and GeneticsTexas A&M University Health Science Center School of MedicineCollege StationTexasUSA
| |
Collapse
|
14
|
Chen DD, Zhang JX, Li ZC, Zhang C, Xu X, Cui BJ, Xu N, Wang YY, Zhou CJ, Zhou L, Lu LF, Li S. Ammonium chloride mitigates the amplification of fish virus by blocking autophagy-dependent replication. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:265-277. [PMID: 40073239 DOI: 10.1093/jimmun/vkae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/24/2024] [Indexed: 03/14/2025]
Abstract
Ammonia fertilizer, primarily composed of ammonium chloride, is widely used in pond fish farming throughout Asia. Despite the belief that it possesses antiviral properties, the underlying mechanisms remain unclear. Ammonium chloride (NH4Cl) has been demonstrated to act as a potent inhibitor of autophagy, which is used by many fish viruses to promote their proliferation during infection. It was therefore hypothesized that the antiviral effect of ammonia fertilizers was likely due to the inhibition of autophagy in viruses. The present study sought to evaluate the antiviral effect of NH4Cl in a model of several fish cells and zebrafish. The findings demonstrated that the administration of NH4Cl after viral infection inhibited the proliferation of a variety of fish viruses, encompassing both DNA and RNA viruses. Further studies have indicated that NH4Cl obstructed autophagy-dependent virus proliferation of spring viremia of carp virus (SVCV) by inhibiting autophagic flux. The molecular mechanism revealed that SVCV contributed to the polyubiquitination of interferon regulatory factor 3 (IRF3) and promoted the degradation of IRF3 through cargo receptor sequestosome 1 (SQSTM1/p62)-mediated selective autophagy. However, NH4Cl was observed to inhibit SVCV-mediated selective autophagy of IRF3, thereby facilitating the production of interferon. Furthermore, the SVCV N protein was of critical importance in this process. Nevertheless, NH4Cl impeded this degradation process by inhibiting the autophagy pathway. The study found that NH4Cl was highly efficacious in controlling fish virus infection both in vivo and in vitro. It can therefore be concluded that the antiviral effect of ammonia fertilizers was, at least in part, due to the inhibition of viral autophagy.
Collapse
Affiliation(s)
- Dan-Dan Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Xin Zhang
- School of Life Science, Hubei University, Wuhan, China
| | - Zhuo-Cong Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Can Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Xu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Bao-Jie Cui
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Na Xu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang-Yang Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chu-Jing Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Li Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Long-Feng Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shun Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
15
|
Tao G, Wang X, Wang J, Ye Y, Zhang M, Lang Y, Ding S. Dihydro-resveratrol ameliorates NLRP3 inflammasome-mediated neuroinflammation via Bnip3-dependent mitophagy in Alzheimer's disease. Br J Pharmacol 2025; 182:1005-1024. [PMID: 39467709 DOI: 10.1111/bph.17373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND AND PURPOSE Dihydro-resveratrol (DHR), a polyphenol derivative, that has been demonstrated to suppress inflammation-mediated injury. However, it is still unknown whether it has anti-neuroinflammatory and neuroprotective effects, and a therapeutic action in Alzheimer's disease (AD). EXPERIMENTAL APPROACH The anti-inflammatory and anti-Alzheimer's disease actions of dihydro-resveratrol were investigated using lipopolysaccharide (LPS) and AD mice models, and primary microglial cells. The changes in behaviour in mice were detected by the Morris water maze test and open-field test. Flow cytometry assay, western blotting, immunofluorescence assays and co-immunoprecipitation were used to investigate the changes in the NLRP3 inflammasome activation and mitophagy. KEY RESULTS In this study, in vivo observations indicated that the administration of dihydro-resveratrol (DHR) dramatically restored spatial learning, memory ability, autophagy and mitophagy, attenuated NLRP3 inflammasome activation, neuroinflammation and amyloid precursor protein pathology in LPS mice and AD mice. In addition, the inhibition of autophagy and mitophagy, or the activation of NLRP3 in vivo greatly abolished DHR-generated therapeutic efficacy on neuroinflammation, amyloid precursor protein pathology and cognitive loss. Further examination indicated that the application of DHR after the LPS and ATP exposure significantly inhibited the NLRP3 inflammasome activation, neuroinflammation and enhanced autophagic and mitophagic activation in microglia. Additionally, in vitro results show that DHR protects microglial cells against LPS and ATP-induced cytotoxicity by inhibiting NLRP3 inflammasome through activating Bnip3-dependent mitophagy and ULK phosphorylation. CONCLUSIONS AND IMPLICATIONS In summary, these findings suggest that dihydro-resveratrol (DHR) possesses potent anti-neuroinflammatory property and can act as a potential therapeutic agent for the treatment of AD.
Collapse
Affiliation(s)
- Guorong Tao
- Laboratory Animal Center, Fudan University, Shanghai, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuebao Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Huangshi Love & Health Hospital, Hubei Polytechnic University, Huangshi, China
| | - Yiru Ye
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Minxue Zhang
- Laboratory Animal Center, Fudan University, Shanghai, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan Lang
- Laboratory Animal Center, Fudan University, Shanghai, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Saidan Ding
- Laboratory Animal Center, Fudan University, Shanghai, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
16
|
Liu J, Shu T, Mu Y, Zheng W, Lu X, Tao H. Curdione combined with borneol treats bacterial mixed HPV infection by regulating the crosstalk among immune cells. Front Immunol 2025; 16:1503355. [PMID: 39911394 PMCID: PMC11794296 DOI: 10.3389/fimmu.2025.1503355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025] Open
Abstract
Background Human papillomavirus (HPV) infection is a worldwide reproductive system disease. Baofukang suppository, a traditional herbal preparation that includes curdione and borneol, has been reported to treat bacterial vaginosis (BV) and HPV infection in China. However, the therapeutic mechanism is still unknown. This study aims to explore the molecular mechanisms of curdione and borneol in treating HPV infection. Methods We conducted a retrospective cohort analysis of medical records from a single-center study involving 205 HPV patients, focusing on the correlation between HPV clearance and co-infection with other pathogens, confirming the efficacy of Baofukang suppository. Bioinformatics and network pharmacology approaches were employed to identify therapeutic targets of Baofukang suppository for BV/HPV co-infections. qRT-PCR, Western blot, immunofluorescence staining, and flow cytometry were utilized to validate the therapeutic targets of curdione and borneol, along with the associated immune molecular changes. Finally, the molecular mechanisms and therapeutic efficacy of curdione and borneol were confirmed in vivo using an LPS/TC-1 cervical orthotopic injection model. Results Curdione and borneol selectively inhibit the secretion of interleukin-6 (IL-6) and interleukin-1β (IL-1β) by macrophages. The reduction in IL-6 and IL-1β levels effectively inhibits the expression of CD274 (Programmed death ligand 1, PD-L1) in infected epithelial cells by inhibiting STAT3 phosphorylation, thereby suppressing their immune evasion capabilities. Furthermore, curdione and borneol enhance the expression of tumor necrosis factor α (TNF-α) and caspase 1 (CASP1) in macrophages, as well as the expression of interleukin 12 (IL-12) and interleukin 23 (IL-23) in dendritic cells (DCs). The expression of these inflammatory factors effectively promotes the migration and differentiation of T cells to the site of infection, completing the clearance of infected epithelial cells. Conclusion The main components of Baofukang suppository, curdione and borneol, inhibit the progression of HPV infection and the occurrence of cervical cancer by modulating the communication between innate and adaptive immunity, promoting the recruitment and recognition of CD8+ T cells to eliminate HPV-infected epithelial cells.
Collapse
Affiliation(s)
- Jingwei Liu
- Department of Gynecology, Wuhu Maternal and Child Health (MCH) Center, Wuhu, China
- School of Clinical Medicine, Wannan Medical College, Wuhu, China
| | - Tong Shu
- Graduate School, Wannan Medical College, Wuhu, China
| | - Yiheng Mu
- Graduate School, Wannan Medical College, Wuhu, China
| | - Wanlin Zheng
- Graduate School, Wannan Medical College, Wuhu, China
| | - Xiaohuan Lu
- Department of Plastic Surgery, The Second Affiliated Hospital of Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, The Second Affiliated Hospital of Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hong Tao
- Department of Gynecology, Wuhu Maternal and Child Health (MCH) Center, Wuhu, China
- School of Clinical Medicine, Wannan Medical College, Wuhu, China
| |
Collapse
|
17
|
XIAO H, JI H, ZHOU N, XIAO Y, SHI D. Autophagy inhibits nuclear factor kappa B and mitogen-activated protein kinase (MAPK) inflammatory signaling pathways and modulates cytokine release in murine microglia following Streptococcus suis serotype 2 infection. J Vet Med Sci 2025; 87:68-74. [PMID: 39603605 PMCID: PMC11735217 DOI: 10.1292/jvms.24-0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024] Open
Abstract
Autophagy within macrophages serves as a vital mechanism for modulating inflammatory responses to central nervous system infections caused by Streptococcus suis in both humans and swine. However, the mechanism by which autophagy regulates inflammation during S. suis infection is unclear. This study investigated the mechanism by which autophagy serves as a defense against S. suis infection in mouse microglial cells (BV2). Initially, we examined how S. suis infection triggers the adenosine monophosphate-activated protein kinase (AMPK)/ mammalian target of rapamycin (mTOR) autophagic cascade and the nuclear factor kappa B (NF-κB) and, mitogen-activated protein kinase (MAPK) inflammatory signaling pathways using western blot within BV2 cells. We then demonstrated that treatment with autophagy inhibitors, inducers, and siRNA of autophagy genes changed the levels of C-C motif ligand 2 (CCL2), CCL3, CCL5, and tumor necrosis factor α (TNF-α), and p-p65, p-p38, p- c-Jun N-terminal kinase (JNK) and p-Extracellular signal-regulated kinase (ERK) activity within BV2 cells. We found that S. suis infection induced AMPK/mTOR autophagy pathway, NF-κB and MAPK pathway in BV2 cells. Further, Autophagy inhibits S. suis infection-induced NF-κB and MAPK signaling and subsequent inflammatory factors CCL2, CCL3, CCL5, and TNF-α. Collectively, these findings suggest that AMPK/mTOR-regulated autophagy has an inhibitory effect on pro-inflammatory cytokines and chemokines by regulating the NF-κB and MAPK pathways during S. suis infection.
Collapse
Affiliation(s)
- Hongde XIAO
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Hui JI
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Naiji ZHOU
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yuncai XIAO
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Deshi SHI
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
18
|
Zeng X, Chen Y, Wang J, He M, Qiu J, Huang Y. Targeting autophagy to enhance chemotherapy and immunotherapy in oral cancer. Front Immunol 2025; 15:1535649. [PMID: 39840028 PMCID: PMC11747659 DOI: 10.3389/fimmu.2024.1535649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Oral cancer is a highly malignant disease characterized by recurrence, metastasis, and poor prognosis. Autophagy, a catabolic process induced under stress conditions, has been shown to play a dual role in oral cancer development and therapy. Recent studies have identified that autophagy activation in oral epithelial cells suppresses cancer cell survival by inhibiting key pathways such as the mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase (MAPK), while activating the adenosine monophosphate-activated protein kinase (AMPK) pathway. Inducing autophagy promotes degradation of eukaryotic initiation factor 4E, thus reducing metastasis and enhancing the efficacy of chemotherapy, radiotherapy, and immunotherapy. Furthermore, autophagy induction can modulate the tumor immune microenvironment and enhance antitumor immunity. This review comprehensively summarizes the relationship between autophagy and oral cancer, focusing on its mechanisms and therapeutic potential when combined with conventional treatments. While promising, the precise mechanisms and clinical applications of autophagy inducers in oral cancer therapy remain to be elucidated, offering new directions for future research to improve treatment outcomes and reduce recurrence.
Collapse
Affiliation(s)
- Xiaoli Zeng
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Jiangxi "Flagship" Oncology Department of Synergy for Chinese and Western Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Oncology, Jiangxi Clinical Medical Research Center for Cancer, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yue Chen
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Oncology, Jiangxi Clinical Medical Research Center for Cancer, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jing Wang
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Oncology, Jiangxi Clinical Medical Research Center for Cancer, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Miao He
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Oncology, Jiangxi Clinical Medical Research Center for Cancer, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junyao Qiu
- Department of Gastroenterology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi, China
| | - Yun Huang
- Department of Otolaryngology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi, China
| |
Collapse
|
19
|
Arumugam P, Saha K, Nighot P. Intestinal Epithelial Tight Junction Barrier Regulation by Novel Pathways. Inflamm Bowel Dis 2025; 31:259-271. [PMID: 39321109 DOI: 10.1093/ibd/izae232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Indexed: 09/27/2024]
Abstract
Intestinal epithelial tight junctions (TJs), a dynamically regulated barrier structure composed of occludin and claudin family of proteins, mediate the interaction between the host and the external environment by allowing selective paracellular permeability between the luminal and serosal compartments of the intestine. TJs are highly dynamic structures and can undergo constant architectural remodeling in response to various external stimuli. This is mediated by an array of intracellular signaling pathways that alters TJ protein expression and localization. Dysfunctional regulation of TJ components compromising the barrier homeostasis is an important pathogenic factor for pathological conditions including inflammatory bowel disease (IBD). Previous studies have elucidated the significance of TJ barrier integrity and key regulatory mechanisms through various in vitro and in vivo models. In recent years, considerable efforts have been made to understand the crosstalk between various signaling pathways that regulate formation and disassembly of TJs. This review provides a comprehensive view on the novel mechanisms that regulate the TJ barrier and permeability. We discuss the latest evidence on how ion transport, cytoskeleton and extracellular matrix proteins, signaling pathways, and cell survival mechanism of autophagy regulate intestinal TJ barrier function. We also provide a perspective on the context-specific outcomes of the TJ barrier modulation. The knowledge on the diverse TJ barrier regulatory mechanisms will provide further insights on the relevance of the TJ barrier defects and potential target molecules/pathways for IBD.
Collapse
Affiliation(s)
- Priya Arumugam
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Kushal Saha
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Prashant Nighot
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA, USA
| |
Collapse
|
20
|
Zhao YX, Sun YY, Li LY, Li XF, Li HD, Chen X, Xia R, Yang YL, Jiang XY, Zuo LQ, Meng XM, Wang H, Huang C, Li J. Rab11b promotes M1-like macrophage polarization by restraining autophagic degradation of NLRP3 in alcohol-associated liver disease. Acta Pharmacol Sin 2025; 46:134-146. [PMID: 38992121 PMCID: PMC11695811 DOI: 10.1038/s41401-024-01333-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/02/2024] [Indexed: 07/13/2024]
Abstract
Macrophage polarization is vital to mounting a host defense or repairing tissue in various liver diseases. Excessive activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome is related to the orchestration of inflammation and alcohol-associated liver disease (ALD) pathology. Rab GTPases play critical roles in regulating vesicular transport. In this study we investigated the role of Rab11b in ALD, aiming to identify effective therapeutic targets. Here, we first demonstrated a decreased expression of Rab11b in macrophages from ALD mice. Knockdown of Rab11b by macrophage-specific adeno-associated virus can alleviate alcohol induced liver inflammation, injury and steatosis. We found that LPS and alcohol stimulation promoted Rab11b transferring from the nucleus to the cytoplasm in bone marrow-derived macrophages (BMDM) cells. Rab11b specifically activated the NLRP3 inflammasome in BMDMs and RAW264.7 cells to induce M1 macrophage polarization. Rab11b overexpression in BMDMs inhibited autophagic flux, leading to the suppression of LC3B-mediated NLRP3 degradation. We conclude that impaired Rab11b could alleviate alcohol-induced liver injury via autophagy-mediated NLRP3 degradation.
Collapse
Affiliation(s)
- Yu-Xin Zhao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Ying-Yin Sun
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Liang-Yun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Xiao-Feng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Hai-di Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Xin Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Ran Xia
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Ying-Li Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Xin-Yu Jiang
- The Second School of Clinical Medicine, Anhui Medical University, Hefei, 230032, China
| | - Long-Quan Zuo
- Department of Pharmacy, Hospital of Armed Police of Anhui Province, Hefei, 230032, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Hua Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China.
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
21
|
Peng H, Kaplan N, Liu M, Jiang H, Lavker RM. Keeping an Eye Out for Autophagy in the Cornea: Sample Preparation for Single-Cell RNA-Sequencing. Methods Mol Biol 2025; 2879:113-122. [PMID: 37930627 PMCID: PMC11162605 DOI: 10.1007/7651_2023_502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Single-cell RNA-sequencing (scRNA-seq) is a powerful technique that can barcode individual cells and thus used to obtain a gene expression profile for every individual cell within a tissue. This makes scRNA-seq an excellent method for characterizing rare cell populations such as stem cells. We describe how scRNA-seq can be utilized to examine limbal epithelial stem cell population as well as investigate the contribution of autophagy to the function of limbal epithelial stem cells. To accomplish this, we used the Beclin1 heterozygous (Beclin1 het) mouse, a well-established model of autophagy deficiency. We provide a protocol that we developed for the isolation of viable, single-cell suspensions of limbal/corneal tissues, as well as the analysis of scRNA-seq data.
Collapse
Affiliation(s)
- Han Peng
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - Nihal Kaplan
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - Min Liu
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - Huimin Jiang
- Department of Dermatology, Northwestern University, Chicago, IL, USA
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Robert M Lavker
- Department of Dermatology, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
22
|
Doghish AS, Abulsoud AI, Nassar YA, Nasr SM, Mohammed OA, Abdel-Reheim MA, Rizk NI, Lutfy RH, Abdel Mageed SS, Ismail MA, Abd-Elhalim HM, Awad FA, Fayez SZ, Elimam H, Mansour RM. Harnessing miRNAs: A Novel Approach to Diagnosis and Treatment of Tuberculosis. J Biochem Mol Toxicol 2025; 39:e70119. [PMID: 39799557 DOI: 10.1002/jbt.70119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/09/2024] [Accepted: 12/21/2024] [Indexed: 01/15/2025]
Abstract
Mycobacterium tuberculosis (Mtb) complex, responsible for tuberculosis (TB) infection, continues to be a predominant global cause of mortality due to intricate host-pathogen interactions that affect disease progression. MicroRNAs (miRNAs), essential posttranscriptional regulators, have become pivotal modulators of these relationships. Recent findings indicate that miRNAs actively regulate immunological responses to Mtb complex by modulating autophagy, apoptosis, and immune cell activities. This has resulted in increased interest in miRNAs as prospective diagnostic indicators for TB, especially in differentiating active infection from latent or inactive stages. Variations in miRNA expression during Mtb infection indicate disease progression and offer insights into the immune response. Furthermore, miRNAs present potential as therapeutic targets in host-directed therapy (HDT) techniques for TB infection. This work examines the function of miRNAs in TB pathogenesis, with the objective of identifying particular miRNAs that regulate the immune response to the Mtb complex, evaluating their diagnostic value and exploring their therapeutic implications in host-directed therapy for TB infection. The objective is to enhance comprehension of how miRNAs can facilitate improved diagnosis and treatment of TB.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Yara A Nassar
- Department of Botany, Biotechnology and Its Application Program, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Sami Mohamed Nasr
- Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Giza, Egypt
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | | | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, Egypt
| | - Radwa H Lutfy
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
| | - Menattallah A Ismail
- Applied Biotechnology Program, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Haytham M Abd-Elhalim
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
- Agricultural Research Center, Agricultural Genetic Engineering Research Institute, Giza, Egypt
| | - Farah A Awad
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Salma Zaki Fayez
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Reda M Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan, Egypt
- Molecular Biology and Biotechnology Department, School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
| |
Collapse
|
23
|
Jang E, Youn J. Contribution of long-lived plasma cells to antibody-mediated allograft rejection. CLINICAL TRANSPLANTATION AND RESEARCH 2024; 38:341-353. [PMID: 39690904 PMCID: PMC11732765 DOI: 10.4285/ctr.24.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 12/19/2024]
Abstract
Persistent alloantigens derived from allograft tissues can be recognized by the host's alloreactive immune system. This process enables cognate B cells to differentiate into plasma cells, which secrete donor-specific antibodies that are key drivers of antibody-mediated allograft rejection. A subset of these plasma cells can survive for extended periods in a suitable survival niche and mature into long-lived plasma cells (LLPCs), which are a cellular component of humoral memory. The current understanding of LLPCs is limited due to their scarcity, heterogeneity, and absence of unique markers. However, accumulating evidence indicates that LLPCs, unlike conventional short-lived plasma cells, can respond to extrinsic signals from their survival niches and can resist cell death associated with intracellular stress through cell-intrinsic mechanisms. Notably, they are refractory to traditional immunosuppressants and B cell depletion therapies. This resistance, coupled with their longevity, may explain why current treatments targeting antibody-mediated rejection are often ineffective. This review offers insights into the biology of LLPCs and discusses ongoing therapeutic trials that target LLPCs in the context of antibody-mediated allograft rejection.
Collapse
Affiliation(s)
- Eunkyeong Jang
- Laboratory of Autoimmunology, Department of Anatomy and Cell Biology, Hanyang University College of Medicine, Seoul, Korea
| | - Jeehee Youn
- Laboratory of Autoimmunology, Department of Anatomy and Cell Biology, Hanyang University College of Medicine, Seoul, Korea
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| |
Collapse
|
24
|
Pavlik P, Velecka E, Spidlova P. Breaking the cellular defense: the role of autophagy evasion in Francisella virulence. Front Cell Infect Microbiol 2024; 14:1523597. [PMID: 39776438 PMCID: PMC11703736 DOI: 10.3389/fcimb.2024.1523597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Many pathogens have evolved sophisticated strategies to evade autophagy, a crucial cellular defense mechanism that typically targets and degrades invading microorganisms. By subverting or inhibiting autophagy, these pathogens can create a more favorable environment for their replication and survival within the host. For instance, some bacteria secrete factors that block autophagosome formation, while others might escape from autophagosomes before degradation. These evasion tactics are critical for the pathogens' ability to establish and maintain infections. Understanding the mechanisms by which pathogens avoid autophagy is crucial for developing new therapeutic strategies, as enhancing autophagy could bolster the host's immune response and aid in the elimination of pathogenic bacteria. Francisella tularensis can manipulate host cell pathways to prevent its detection and destruction by autophagy, thereby enhancing its virulence. Given the potential for F. tularensis to be used as a bioterrorism agent due to its high infectivity and ability to cause severe disease, research into how this pathogen evades autophagy is of critical importance. By unraveling these mechanisms, new therapeutic approaches could be developed to enhance autophagic responses and strengthen host defense against this and other similarly evasive pathogens.
Collapse
Affiliation(s)
- Pavla Pavlik
- Department of Molecular Pathology and Biology, Military Faculty of Medicine, University of Defence, Hradec Kralove, Czechia
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Eva Velecka
- Department of Molecular Pathology and Biology, Military Faculty of Medicine, University of Defence, Hradec Kralove, Czechia
| | - Petra Spidlova
- Department of Molecular Pathology and Biology, Military Faculty of Medicine, University of Defence, Hradec Kralove, Czechia
| |
Collapse
|
25
|
Ogasawara D, Konrad DB, Tan ZY, Carey KL, Luo J, Won SJ, Li H, Carter TR, DeMeester KE, Njomen E, Schreiber SL, Xavier RJ, Melillo B, Cravatt BF. Chemical tools to expand the ligandable proteome: Diversity-oriented synthesis-based photoreactive stereoprobes. Cell Chem Biol 2024; 31:2138-2155.e32. [PMID: 39547236 PMCID: PMC11837778 DOI: 10.1016/j.chembiol.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/09/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024]
Abstract
Chemical proteomics enables the global analysis of small molecule-protein interactions in native biological systems and has emerged as a versatile approach for ligand discovery. The range of small molecules explored by chemical proteomics has, however, remained limited. Here, we describe a diversity-oriented synthesis (DOS)-inspired library of stereochemically defined compounds bearing diazirine and alkyne units for UV light-induced covalent modification and click chemistry enrichment of interacting proteins, respectively. We find that these "photo-stereoprobes" interact in a stereoselective manner with hundreds of proteins from various structural and functional classes in human cells and demonstrate that these interactions can form the basis for high-throughput screening-compatible NanoBRET assays. Integrated phenotypic screening and chemical proteomics identified photo-stereoprobes that modulate autophagy by engaging the mitochondrial serine protease CLPP. Our findings show the utility of DOS-inspired photo-stereoprobes for expanding the ligandable proteome, furnishing target engagement assays, and facilitating the discovery and characterization of bioactive compounds in phenotypic screens.
Collapse
Affiliation(s)
- Daisuke Ogasawara
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - David B Konrad
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Zher Yin Tan
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kimberly L Carey
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jessica Luo
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sang Joon Won
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Haoxin Li
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Trever R Carter
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kristen E DeMeester
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Evert Njomen
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stuart L Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Ramnik J Xavier
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Bruno Melillo
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
26
|
Yang L, Xiao L, Gao W, Huang X, Wei F, Zhang Q, Xiao Y. Macrophages at Low-Inflammatory Status Improved Osteogenesis via Autophagy Regulation. Tissue Eng Part A 2024; 30:e766-e779. [PMID: 33678009 DOI: 10.1089/ten.tea.2021.0015] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Accumulating evidence indicates that the interaction between immune and skeletal systems is vital in bone homeostasis. However, the detailed mechanisms between macrophage polarization and osteogenic differentiation of mesenchymal stromal cells (bone marrow-derived stromal cells [BMSCs]) remain largely unknown. We observed enhanced macrophage infiltration along with bone formation in vivo, which showed a transition from early-stage M1 phenotype to later stage M2 phenotype, cells at the transitional stage expressed both M1 and M2 markers that actively participated in osteogenesis, which was mimicked by stimulating macrophages with lower inflammatory stimulus (compared with typical M1). Using conditioned medium (CM) from M0, typical M1, low-inflammatory M1 (M1semi), and M2 macrophages, it was found that BMSCs treated with M1semi CM showed significantly induced migration, osteogenic differentiation, and mineralization, compared with others. Along with the induced osteogenesis, the autophagy level was the highest in M1semi CM-treated BMSCs, which was responsible for BMSC migration and osteogenic differentiation, as autophagy interruption significantly abolished this effect. This study indicated that low-inflammatory macrophages could activate autophagy in BMSCs to improve osteogenesis.
Collapse
Affiliation(s)
- Lan Yang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Lan Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, Australia
| | - Wendong Gao
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Xin Huang
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Fei Wei
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Qing Zhang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yin Xiao
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
27
|
Lyu J, Zhang H, Wang C, Pan M. New insight in treating autoimmune diseases by targeting autophagy. Autoimmunity 2024; 57:2351872. [PMID: 38739691 DOI: 10.1080/08916934.2024.2351872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024]
Abstract
Autophagy is a highly conserved biological process in eukaryotes, which degrades cellular misfolded proteins, damaged organelles and invasive pathogens in the lysosome-dependent manner. Autoimmune diseases caused by genetic elements, environments and aberrant immune responses severely impact patients' living quality and even threaten life. Recently, numerous studies have reported autophagy can regulate immune responses, and play an important role in autoimmune diseases. In this review, we summarised the features of autophagy and autophagy-related genes, enumerated some autophagy-related genes involved in autoimmune diseases, and further overviewed how to treat autoimmune diseases through targeting autophagy. Finally, we outlooked the prospect of relieving and curing autoimmune diseases by targeting autophagy pathway.
Collapse
Affiliation(s)
- Jiao Lyu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Hongqian Zhang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Chaoyang Wang
- The Key Medical Laboratory for Chemical Poison Detection of Henan Province, The Third People's Hospital of Henan Province, Zhengzhou, China
- Department of Biomedical Science, City University of Hong Kong, Hong Kong, China
| | - Mingyu Pan
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Department of Biomedical Science, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
28
|
Li Z, Zhang Y, Lei J, Wu Y. Autophagy in oral cancer: Promises and challenges (Review). Int J Mol Med 2024; 54:116. [PMID: 39422076 PMCID: PMC11518578 DOI: 10.3892/ijmm.2024.5440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Autophagy captures damaged or dysfunctional proteins and organelles through the lysosomal pathway to achieve proper cellular homeostasis. Autophagy possesses distinct characteristics and is given recognized functions in numerous physiological and pathological conditions, such as cancer. Early stage cancer development can be stopped by autophagy. After tumor cells have successfully undergone transformation and progressed to a late stage, the autophagy-mediated system of dynamic degradation and recycling will support cancer cell growth and adaptation to various cellular stress responses while preserving energy homeostasis. In the present study, the dual function that autophagy plays in various oral cancer development contexts and stages, the existing arguments for and against autophagy, and the ways in which autophagy contributes to oral cancer modifications, such as carcinogenesis, drug resistance, invasion, metastasis and self-proliferation, are reviewed. Special attention is paid to the mechanisms and functions of autophagy in oral cancer processes, and the most recent findings on the application of certain conventional drugs or natural compounds as novel agents that modulate autophagy in oral cancer are discussed. Overall, further research is needed to determine the validity and reliability of autophagy promotion and inhibition while maximizing the difficult challenge of increasing cancer suppression to improve clinical outcomes.
Collapse
Affiliation(s)
- Zhou Li
- Department of Stomatology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030000, P.R. China
- Shanxi Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, P.R. China
| | - Yao Zhang
- Shanxi Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, P.R. China
| | - Jianhua Lei
- Department of Stomatology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030000, P.R. China
| | - Yunxia Wu
- Department of Stomatology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030000, P.R. China
| |
Collapse
|
29
|
Zhao H, Zheng D, Chang Q, Zhang H, Shao Y, Li J, Cui W, Jiang Y, Tang L, Li Y, Wang X. IPEC-J2 Autophagy Induced by TLR4 and NSP6 Interactions Facilitate Porcine Epidemic Diarrhea Virus Replication. Viruses 2024; 16:1787. [PMID: 39599901 PMCID: PMC11598845 DOI: 10.3390/v16111787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Autophagy is an important cellular response against intracellular pathogens. However, some viruses have evolved mechanisms to hijack this defensive process to provide favorable conditions for virus replication in host cells. The porcine epidemic diarrhea virus (PEDV) has been shown to alter autophagy pathways; however, it is still unknown through which receptors PEDV induces autophagy in IPEC-J2 cells, whether autophagy facilitates PEDV replication, and which functional domains of PEDV proteins are primarily responsible for inducing autophagy. Here, we found that PEDV infection induces autophagy in host cells via distinct and uncoupled molecular pathways. RNA-seq technology was used to analyze the expression patterns of intracellular genes in PEDV-infected IPEC-J2 cells using transcriptomics. The results demonstrate that PEDV triggers autophagy via the cellular pathogen receptor TLR4 and the AKT-mTOR pathway. As evidenced by autophagosome detection, PEDV infection increases autophagosomes and light chain 3 (LC3)-II as well as downregulated AKT-mTOR phosphorylation. Our study revealed that the binding of the viral protein NSP61-2C (56-151aa) to TLR4 triggers autophagy and inactivates the AKT-mTOR pathway, both of which are critical for facilitating PEDV infection. Through screening and analysis, TLR4 was found to be a key gene involved in PEDV-induced autophagy. The screening of the key functional domains of NSP6 (56-151aa) for their ability to induce autophagy in IPEC-J2 cells provided a basis for the in-depth analysis of the pathogenic mechanism of PEDV infection-induced autophagy and promotion of self-replication and also provided an important target for the study of PEDV antiviral drugs. In conclusion, we elucidated that the PEDV infection of IPEC-J2 cells could induce autophagy and found that PEDV could use autophagy to promote its own replication.
Collapse
Affiliation(s)
- Haiyuan Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (H.Z.); (Q.C.); (Y.S.); (J.L.); (W.C.); (Y.J.)
| | - Dianzhong Zheng
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| | - Qinyuan Chang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (H.Z.); (Q.C.); (Y.S.); (J.L.); (W.C.); (Y.J.)
| | - Hailin Zhang
- Chongqing Academy of Animal Science, Chongqing 402460, China;
| | - Yilan Shao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (H.Z.); (Q.C.); (Y.S.); (J.L.); (W.C.); (Y.J.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (H.Z.); (Q.C.); (Y.S.); (J.L.); (W.C.); (Y.J.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (H.Z.); (Q.C.); (Y.S.); (J.L.); (W.C.); (Y.J.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (H.Z.); (Q.C.); (Y.S.); (J.L.); (W.C.); (Y.J.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (H.Z.); (Q.C.); (Y.S.); (J.L.); (W.C.); (Y.J.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (H.Z.); (Q.C.); (Y.S.); (J.L.); (W.C.); (Y.J.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Xiaona Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (H.Z.); (Q.C.); (Y.S.); (J.L.); (W.C.); (Y.J.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| |
Collapse
|
30
|
Shan C, Wang Y, Wang Y. The Crosstalk between Autophagy and Nrf2 Signaling in Cancer: from Biology to Clinical Applications. Int J Biol Sci 2024; 20:6181-6206. [PMID: 39664581 PMCID: PMC11628323 DOI: 10.7150/ijbs.103187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/29/2024] [Indexed: 12/13/2024] Open
Abstract
Autophagy is a catabolic process that has been conserved throughout evolution, serving to degrade and recycle cellular components and damaged organelles. Autophagy is activated under various stress conditions, such as nutrient deprivation, viral infections, and genotoxic stress, and operates in conjunction with other stress response pathways to mitigate oxidative damage and maintain cellular homeostasis. One such pathway is the Nrf2-Keap1-ARE signaling axis, which functions as an intrinsic antioxidant defense mechanism and has been implicated in cancer chemoprevention, tumor progression, and drug resistance. Recent research has identified a link between impaired autophagy, mediated by the autophagy receptor protein p62, and the activation of the Nrf2 pathway. Specifically, p62 facilitates Keap1 degradation through selective autophagy, leading to the translocation of Nrf2 into the nucleus, where it transcriptionally activates downstream antioxidant enzyme expression, thus safeguarding cells from oxidative stress. Furthermore, Nrf2 regulates p62 transcription, so a positive feedback loop involving p62, Keap1, and Nrf2 is established, which amplifies the protective effects on cells. This paper aims to provide a comprehensive review of the roles of Nrf2 and autophagy in cancer progression, the regulatory interactions between the Nrf2 pathway and autophagy, and the potential applications of the Nrf2-autophagy signaling axis in cancer therapy.
Collapse
Affiliation(s)
- Chan Shan
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
- Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yuan Wang
- Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yin Wang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
- Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| |
Collapse
|
31
|
Han Q, Zhao H, Chen M, Xue W, Li J, Sun L, Shang Y. Retinol binding protein 4 restricts PCV2 replication via selective autophagy degradation of viral ORF1 protein. Commun Biol 2024; 7:1438. [PMID: 39500783 PMCID: PMC11538477 DOI: 10.1038/s42003-024-07052-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024] Open
Abstract
Autophagy is a highly conserved degradative process that has been linked to various functions, including defending host cells against pathogens. Although the involvement of autophagy in porcine circovirus 2 (PCV2) infection has become apparent, it remains unclear whether selective autophagy plays a critical role in PCV2 restriction. Here we show that retinol-binding protein 4 (RBP4), an adipokine for retinol carrier, initiates the autophagic degradation of PCV2 ORF1 protein. PCV2 infection increases RBP4 protein levels through MAPK-eIF4E axis in living cells. Ectopic expression of RBP4 or recombinant RBP4 treatment promotes the degradation of ORF1 protein. Mechanistically, RBP4 activates TRAF6 to induce K63-linked ubiquitination of ORF1, leading to SQSTM1/p62-mediated selective autophagy for degradation. Consequently, RBP4 deficiency increases viral loads and exacerbates the pathogenicity of PCV2 in vivo. Collectively, these results identify RBP4 as a key host restriction factor of PCV2 and reveal a previously undescribed antiviral mechanism against PCV2 in infected cells.
Collapse
Affiliation(s)
- Qingbing Han
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Taian, Shandong, China
| | - Hejiao Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Taian, Shandong, China
| | - Meng Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Taian, Shandong, China
| | - Wenshuo Xue
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Taian, Shandong, China
| | - Jun Li
- Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lei Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yingli Shang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China.
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Taian, Shandong, China.
- Institute of Immunology, Shandong Agricultural University, Taian, Shandong, China.
| |
Collapse
|
32
|
Xue S, Lin Y, Chen H, Yang Z, Zha J, Jiang X, Han Z, Wang K. Mechanisms of autophagy and their implications in dermatological disorders. Front Immunol 2024; 15:1486627. [PMID: 39559368 PMCID: PMC11570406 DOI: 10.3389/fimmu.2024.1486627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/18/2024] [Indexed: 11/20/2024] Open
Abstract
Autophagy is a highly conserved cellular self-digestive process that underlies the maintenance of cellular homeostasis. Autophagy is classified into three types: macrophage, chaperone-mediated autophagy (CMA) and microphagy, which maintain cellular homeostasis through different mechanisms. Altered autophagy regulation affects the progression of various skin diseases, including psoriasis (PA), systemic lupus erythematosus (SLE), vitiligo, atopic dermatitis (AD), alopecia areata (AA) and systemic sclerosis (SSc). In this review, we review the existing literature focusing on three mechanisms of autophagy, namely macrophage, chaperone-mediated autophagy and microphagy, as well as the roles of autophagy in the above six dermatological disorders in order to aid in further studies in the future.
Collapse
Affiliation(s)
- Shenghao Xue
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Haoran Chen
- Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Zhengyu Yang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Junting Zha
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xuan Jiang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Zhongyu Han
- Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Ke Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| |
Collapse
|
33
|
Wang X, Lee JC. Staphylococcus aureus membrane vesicles: an evolving story. Trends Microbiol 2024; 32:1096-1105. [PMID: 38677977 PMCID: PMC11511790 DOI: 10.1016/j.tim.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/29/2024]
Abstract
Staphylococcus aureus is an important bacterial pathogen that causes a wide variety of human diseases in community and hospital settings. S. aureus employs a diverse array of virulence factors, both surface-associated and secreted, to promote colonization, infection, and immune evasion. Over the past decade, a growing body of research has shown that S. aureus generates extracellular membrane vesicles (MVs) that package a variety of bacterial components, many of which are virulence factors. In this review, we summarize recent advances in our understanding of S. aureus MVs and highlight their biogenesis, cargo, and potential role in the pathogenesis of staphylococcal infections. Lastly, we present some emerging questions in the field.
Collapse
Affiliation(s)
- Xiaogang Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA.
| | - Jean C Lee
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
34
|
Mittal E, Prasad GVRK, Upadhyay S, Sadadiwala J, Olive AJ, Yang G, Sassetti CM, Philips JA. Mycobacterium tuberculosis virulence lipid PDIM inhibits autophagy in mice. Nat Microbiol 2024; 9:2970-2984. [PMID: 39242815 DOI: 10.1038/s41564-024-01797-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 07/25/2024] [Indexed: 09/09/2024]
Abstract
Mycobacterium tuberculosis (Mtb) infects several lung macrophage populations, which have distinct abilities to restrict Mtb. What enables Mtb survival in certain macrophage populations is not well understood. Here we used transposon sequencing analysis of Mtb in wild-type and autophagy-deficient mouse macrophages lacking ATG5 or ATG7, and found that Mtb genes involved in phthiocerol dimycocerosate (PDIM) virulence lipid synthesis confer resistance to autophagy. Using ppsD mutant Mtb, we found that PDIM inhibits LC3-associated phagocytosis (LAP) by inhibiting phagosome recruitment of NADPH oxidase. In mice, PDIM protected Mtb from LAP and classical autophagy. During acute infection, PDIM was dispensable for Mtb survival in alveolar macrophages but required for survival in non-alveolar macrophages in an autophagy-dependent manner. During chronic infection, autophagy-deficient mice succumbed to infection with PDIM-deficient Mtb, with impairments in B-cell accumulation in lymphoid follicles. These findings demonstrate that PDIM contributes to Mtb virulence and immune evasion, revealing a contributory role for autophagy in B-cell responses.
Collapse
Affiliation(s)
- Ekansh Mittal
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
| | - G V R Krishna Prasad
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Sandeep Upadhyay
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Jully Sadadiwala
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Andrew J Olive
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA
| | - Guozhe Yang
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA
| | - Jennifer A Philips
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
35
|
Wang Y, Li J, Zhu J, Ma H, Zhuang B, Zhao J, Zhang F, Yu L. TgMIC6 inhibition of autophagy is partially responsible for the phenotypic differences between Chinese 1 Toxoplasma gondii strains. Int Immunopharmacol 2024; 140:112857. [PMID: 39116491 DOI: 10.1016/j.intimp.2024.112857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Chinese1 is the predominant Toxoplasma gondii lineage in China, and significant phenotypic differences are observed within the lineage. WH3 and WH6 are two representative strains of Chinese 1, which exhibit divergent virulence and pathogenicity in mice. However, virulence determinants and their modulating mechanisms remain elusive. A global genome expression analysis of the WH3 and WH6 transcriptional profiles identified microneme secretory protein 6 (MIC6), which may be associated with the phenotypic difference observed in WH3. In the present study, the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome-editing technique was used to generate a T. gondii microneme secretory protein (TgMIC6) knockout in WH3. Wild-type mice and different mouse and human cell lines were infected with the WH3, WH3-Δmic6, and WH6 strains. The survival rate of mice, related cytokine levels in serum, and the proliferation of parasites were observed. These results suggested that TgMIC6 is an important effector molecule that determines the differential virulence of WH3 in vivo and in vitro. Furthermore, MIC6 may enhance WH3 virulence via inhibition of host cell autophagy and activation of key molecules in the epidermal growth factor receptor (EGFR)-Akt-mammalian target of rapamycin (mTOR) classical autophagy pathway. CD40L was cleared in vivo by i.p injection of CD40L monoclonal antibody, and it was found that the virulence of WH3-Δmic6 to mice was restored to a certain extent in the absence of CD40L. This study elucidates the virulence determinants and immune escape strategies of Toxoplasma gondii in China. Moreover, these data will aid the development of effective strategies for the prevention and control of toxoplasmosis.
Collapse
Affiliation(s)
- Yang Wang
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jingyang Li
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Department of Medical Laboratory, The Third People's Hospital of Hefei, The Third Clinical Medical College of Hefei of Anhui Medical University, Hefei, China
| | - Jinjin Zhu
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Haiyang Ma
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Baocan Zhuang
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ji Zhao
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Famin Zhang
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Li Yu
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
36
|
Malik JA, Zafar MA, Singh S, Nanda S, Bashir H, Das DK, Lamba T, Khan MA, Kaur G, Agrewala JN. From defense to dysfunction: Autophagy's dual role in disease pathophysiology. Eur J Pharmacol 2024; 981:176856. [PMID: 39068979 DOI: 10.1016/j.ejphar.2024.176856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Autophagy is a fundamental pillar of cellular resilience, indispensable for maintaining cellular health and vitality. It coordinates the meticulous breakdown of cytoplasmic macromolecules as a guardian of cell metabolism, genomic integrity, and survival. In the complex play of biological warfare, autophagy emerges as a firm defender, bravely confronting various pathogenic, infectious, and cancerous adversaries. Nevertheless, its role transcends mere defense, wielding both protective and harmful effects in the complex landscape of disease pathogenesis. From the onslaught of infectious outbreaks to the devious progression of chronic lifestyle disorders, autophagy emerges as a central protagonist, convolutedly shaping the trajectory of cellular health and disease progression. In this article, we embark on a journey into the complicated web of molecular and immunological mechanisms that govern autophagy's profound influence over disease. Our focus sharpens on dissecting the impact of various autophagy-associated proteins on the kaleidoscope of immune responses, spanning the spectrum from infectious outbreaks to chronic lifestyle ailments. Through this voyage of discovery, we unveil the vast potential of autophagy as a therapeutic linchpin, offering tantalizing prospects for targeted interventions and innovative treatment modalities that promise to transform the landscape of disease management.
Collapse
Affiliation(s)
- Jonaid Ahmad Malik
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Mohammad Adeel Zafar
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India; Division of Immunology, Boston Children's Hospital Harvard Medical School Boston, MA, 02115, USA; Department of Pediatrics, Harvard Medical School Boston, MA, 02115, USA
| | - Sanpreet Singh
- Immunology Laboratory, Institute of Microbial Technology, Chandigarh, 160016, India; Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Sidhanta Nanda
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Hilal Bashir
- Immunology Laboratory, Institute of Microbial Technology, Chandigarh, 160016, India
| | - Deepjyoti Kumar Das
- Immunology Laboratory, Institute of Microbial Technology, Chandigarh, 160016, India
| | - Taruna Lamba
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Mohammad Affan Khan
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Gurpreet Kaur
- Department of Biotechnology, Chandigarh Group of Colleges, Landran, Mohali, Punjab, 140055, India
| | - Javed N Agrewala
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India.
| |
Collapse
|
37
|
Hamade H, Tsuda M, Oshima N, Stamps DT, Wong MH, Stamps JT, Thomas LS, Salumbides BC, Jin C, Nunnelee JS, Dhall D, Targan SR, Michelsen KS. Toll-like receptor 7 protects against intestinal inflammation and restricts the development of colonic tissue-resident memory CD8 + T cells. Front Immunol 2024; 15:1465175. [PMID: 39464882 PMCID: PMC11502343 DOI: 10.3389/fimmu.2024.1465175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction The maintenance of intestinal homeostasis depends on a complex interaction between the immune system, intestinal epithelial barrier, and microbiota. Alteration in one of these components could lead to the development of inflammatory bowel diseases (IBD). Variants within the autophagy gene ATG16L1 have been implicated in susceptibility and severity of Crohn's disease (CD). Individuals carrying the risk ATG16L1 T300A variant have higher caspase 3-dependent degradation of ATG16L1 resulting in impaired autophagy and increased cellular stress. ATG16L1-deficiency induces enhanced IL-1β secretion in dendritic cells in response to bacterial infection. Infection of ATG16L1-deficient mice with a persistent strain of murine norovirus renders these mice highly susceptible to dextran sulfate sodium colitis. Moreover, persistent norovirus infection leads to intestinal virus specific CD8+ T cells responses. Both Toll-like receptor 7 (TLR7), which recognizes single-stranded RNA viruses, and ATG16L1, which facilitates the delivery of viral nucleic acids to the autolysosome endosome, are required for anti-viral immune responses. Results and discussion However, the role of the enteric virome in IBD is still poorly understood. Here, we investigate the role of TLR7 and ATG16L1 in intestinal homeostasis and inflammation. At steady state, Tlr7-/- mice have a significant increase in large intestinal lamina propria (LP) granzyme B+ tissue-resident memory CD8+ T (TRM) cells compared to WT mice, reminiscent of persistent norovirus infection. Deletion of Atg16l1 in myeloid (Atg16l1ΔLyz2 ) or dendritic cells (Atg16l1ΔCd11c ) leads to a similar increase of LP TRM. Furthermore, Tlr7-/- and Atg16l1ΔCd11c mice were more susceptible to dextran sulfate sodium colitis with an increase in disease activity index, histoscore, and increased secretion of IFN-γ and TNF-α. Treatment of Atg16l1ΔCd11c mice with the TLR7 agonist Imiquimod attenuated colonic inflammation in these mice. Our data demonstrate that ATG16L1-deficiency in myeloid and dendritic cells leads to an increase in LP TRM and consequently to increased susceptibility to colitis by impairing the recognition of enteric viruses by TLR7. Conclusion In conclusion, the convergence of ATG16L1 and TLR7 signaling pathways plays an important role in the immune response to intestinal viruses. Our data suggest that activation of the TLR7 signaling pathway could be an attractive therapeutic target for CD patients with ATG16L1 risk variants.
Collapse
Affiliation(s)
- Hussein Hamade
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Masato Tsuda
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Naoki Oshima
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Dalton T. Stamps
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Michelle H. Wong
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jasmine T. Stamps
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Lisa S. Thomas
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Brenda C. Salumbides
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Caroline Jin
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jordan S. Nunnelee
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Deepti Dhall
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Stephan R. Targan
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Kathrin S. Michelsen
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
38
|
Emery MA, Beavers KM, Van Buren EW, Batiste R, Dimos B, Pellegrino MW, Mydlarz LD. Trade-off between photosymbiosis and innate immunity influences cnidarian's response to pathogenic bacteria. Proc Biol Sci 2024; 291:20240428. [PMID: 39353557 PMCID: PMC11444771 DOI: 10.1098/rspb.2024.0428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/18/2024] [Accepted: 08/09/2024] [Indexed: 10/04/2024] Open
Abstract
Mutualistic relationships with photosynthetic organisms are common in cnidarians, which form an intracellular symbiosis with dinoflagellates in the family Symbiodiniaceae. The establishment and maintenance of these symbionts are associated with the suppression of key host immune factors. Because of this, there are potential trade-offs between the nutrition that cnidarian hosts gain from their symbionts and their ability to successfully defend themselves from pathogens. To investigate these potential trade-offs, we utilized the facultatively symbiotic polyps of the upside-down jellyfish Cassiopea xamachana and exposed aposymbiotic and symbiotic polyps to the pathogen Serratia marcescens. Symbiotic polyps had a lower probability of survival following S. marcescens exposure. Gene expression analyses 24 hours following pathogen exposure indicate that symbiotic animals mounted a more damaging immune response, with higher levels of inflammation and oxidative stress likely resulting in more severe disruptions to cellular homeostasis. Underlying this more damaging immune response may be differences in constitutive and pathogen-induced expression of immune transcription factors between aposymbiotic and symbiotic polyps rather than broadscale immune suppression during symbiosis. Our findings indicate that in facultatively symbiotic polyps, hosting symbionts limits C. xamachana's ability to survive pathogen exposure, indicating a trade-off between symbiosis and immunity that has potential implications for coral disease research.
Collapse
Affiliation(s)
- Madison A. Emery
- Department of Biology, University of Texas at Arlington, Arlington, TX76019, USA
- Department of Integrative Biology, Michigan State University, East Lansing, MI48824, USA
| | - Kelsey M. Beavers
- Department of Biology, University of Texas at Arlington, Arlington, TX76019, USA
- Texas Advanced Computing Center, University of Texas at Austin, Austin, TX78758, USA
| | - Emily W. Van Buren
- Department of Biology, University of Texas at Arlington, Arlington, TX76019, USA
| | - Renee Batiste
- Department of Biology, University of Texas at Arlington, Arlington, TX76019, USA
| | - Bradford Dimos
- Department of Animal Sciences, Washington State University, Pullman, WA99163, USA
| | - Mark W. Pellegrino
- Department of Biology, University of Texas at Arlington, Arlington, TX76019, USA
| | - Laura D. Mydlarz
- Department of Biology, University of Texas at Arlington, Arlington, TX76019, USA
| |
Collapse
|
39
|
Ma RX. A detective story of intermittent fasting effect on immunity. Immunology 2024; 173:227-247. [PMID: 38922825 DOI: 10.1111/imm.13829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Intermittent fasting (IF) refers to periodic fasting routines, that caloric intake is minimized not by meal portion size reduction but by intermittently eliminating ingestion of one or several consecutive meals. IF can instigate comprehensive and multifaceted alterations in energy metabolism, these metabolic channels may aboundingly function as primordial mechanisms that interface with the immune system, instigating intricate immune transformations. This review delivers a comprehensive understanding of IF, paying particular attention to its influence on the immune system, thus seeking to bridge these two research domains. We explore how IF effects lipid metabolism, hormonal levels, circadian rhythm, autophagy, oxidative stress, gut microbiota, and intestinal barrier integrity, and conjecture about the mechanisms orchestrating the intersect between these factors and the immune system. Moreover, the review includes research findings on the implications of IF on the immune system and patients burdened with autoimmune diseases.
Collapse
Affiliation(s)
- Ru-Xue Ma
- School of Medical, Qinghai University, Xining, China
| |
Collapse
|
40
|
Li G, Zhang J, Zhao Z, Wang J, Li J, Xu W, Cui Z, Sun P, Yuan H, Wang T, Li K, Bai X, Ma X, Li P, Fu Y, Cao Y, Bao H, Li D, Liu Z, Zhu N, Tang L, Lu Z. RNF144B negatively regulates antiviral immunity by targeting MDA5 for autophagic degradation. EMBO Rep 2024; 25:4594-4624. [PMID: 39285245 PMCID: PMC11467429 DOI: 10.1038/s44319-024-00256-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
As a RIG-I-like receptor, MDA5 plays a critical role in antiviral innate immunity by acting as a cytoplasmic double-stranded RNA sensor capable of initiating type I interferon pathways. Here, we show that RNF144B specifically interacts with MDA5 and promotes K27/K33-linked polyubiquitination of MDA5 at lysine 23 and lysine 43, which promotes autophagic degradation of MDA5 by p62. Rnf144b deficiency greatly promotes IFN production and inhibits EMCV replication in vivo. Importantly, Rnf144b-/- mice has a significantly higher overall survival rate than wild-type mice upon EMCV infection. Collectively, our results identify RNF144B as a negative regulator of innate antiviral response by targeting CARDs of MDA5 and mediating autophagic degradation of MDA5.
Collapse
Affiliation(s)
- Guoxiu Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Jing Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| | - Zhixun Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Jian Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Jiaoyang Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Weihong Xu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Zhanding Cui
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Pu Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Hong Yuan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Tao Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Kun Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Xingwen Bai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Xueqing Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Pinghua Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Yuanfang Fu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Yimei Cao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Huifang Bao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Dong Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Zaixin Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Ning Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Lijie Tang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China.
| | - Zengjun Lu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| |
Collapse
|
41
|
Guo S, Zeng M, Wang Z, Zhang C, Fan Y, Ran M, Shi Q, Song Z. Single-cell transcriptome landscape of the kidney reveals potential innate immune regulation mechanisms in hybrid yellow catfish after Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109866. [PMID: 39214264 DOI: 10.1016/j.fsi.2024.109866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Aeromonas hydrophila, the pathogen that is the causative agent of motile Aeromonas septicemia (MAS) disease, commonly attacks freshwater fishes, including yellow catfish (Pelteobagrus fulvidraco). Although the kidney is one of the most important organs involved in immunity in fish, its role in disease progression has not been fully elucidated. Understanding the cellular composition and innate immune regulation mechanisms of the kidney of yellow catfish is important for the treatment of MAS. In this study, single-cell RNA sequencing (scRNA-seq) was performed on the kidney of hybrid yellow catfish (Pelteobagrus fulvidraco ♀ × Pelteobagrus vachelli ♂) after A. hydrophila infection. Nine types of kidney cells were identified using marker genes, and a transcription module of marker genes in the main immune cells of hybrid yellow catfish kidney tissue was constructed using in-situ hybridization. In addition, the single-cell transcriptome data showed that the differentially expressed genes of macrophages were primarily enriched in the Toll-like receptor and Nod-like receptor signaling pathways. The expression levels of genes involved in these pathways were upregulated in macrophages following A. hydrophila infection. Transmission electron microscopy and TUNEL analysis revealed the cellular characteristics of macrophages before and after A. hydrophila infection. These data provide empirical support for in-depth research on the role of the kidney in the innate immune response of hybrid yellow catfish.
Collapse
Affiliation(s)
- Shengtao Guo
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Mengsha Zeng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Zhongyi Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Chenhao Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yuxin Fan
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Miling Ran
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Qiong Shi
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Zhaobin Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
42
|
Li ZM, Duan SH, Yu TM, Li B, Zhang WK, Zhou CM, Yu XJ. Bunyavirus SFTSV NSs utilizes autophagy to escape the antiviral innate immune response. Autophagy 2024; 20:2133-2145. [PMID: 38762760 PMCID: PMC11423686 DOI: 10.1080/15548627.2024.2356505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) nonstructural protein (NSs) is an important viral virulence factor that sequesters multiple antiviral proteins into inclusion bodies to escape the antiviral innate immune response. However, the mechanism of the NSs restricting host innate immunity remains largely elusive. Here, we found that the NSs induced complete macroautophagy/autophagy by interacting with the CCD domain of BECN1, thereby promoting the formation of a BECN1-dependent autophagy initiation complex. Importantly, our data showed that the NSs sequestered antiviral proteins such as TBK1 into autophagic vesicles, and therefore promoted the degradation of TBK1 and other antiviral proteins. In addition, the 8A mutant of NSs reduced the induction of BECN1-dependent autophagy flux and degradation of antiviral immune proteins. In conclusion, our results indicated that SFTSV NSs sequesters antiviral proteins into autophagic vesicles for degradation and to escape antiviral immune responses.
Collapse
Affiliation(s)
- Ze-Min Li
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Shu-Hui Duan
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Tian-Mei Yu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Bang Li
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Wen-Kang Zhang
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Chuan-Min Zhou
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xue-Jie Yu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| |
Collapse
|
43
|
Fei S, Xia J, Mehmood N, Wang Y, Feng M, Sun J. Autophagy promotes replication of Bombyx mori Nucleopolyhedrovirus in insect cells. Int J Biol Macromol 2024; 277:134325. [PMID: 39089561 DOI: 10.1016/j.ijbiomac.2024.134325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/21/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
BmNPV is a pathogen that infects silkworms exclusively. Although the interaction between BmNPV and the silkworm has been widely noticed and studied, its specific mechanism has still not been elucidated. In this study, we investigated whether BmNPV infection induces the onset of host cell autophagy to enhance viral replication. We observed a significant increase in double- or single-membrane vesicles and an accumulation of enhanced green fluorescent protein eGFP-ATG8 spots in virus-infected cells 72 h after BmNPV infection, accompanied by a conversion of ATG8 to ATG8-PE. In addition, we observed changes in the mitochondrial morphology of BmN cells after BmNPV infection by transmission electron microscopy. By detecting the mitochondrial membrane potential, we found that BmNPV infection resulted in the decrease of mitochondrial membrane potential, and that eGFP-ATG8 was able to co-localise with mitochondria after virus infection of the cells. Moreover, the use of drugs to regulate the occurrence of autophagy affects the replication of cellular BmNPV. Our data demonstrates that BmNPV infection induces host cell autophagy and leads to cellular mitochondrial damage, which in turn may lead to mitochondrial autophagy, and that BmNPV-induced host autophagy promotes its replication in cells. These findings will provide clues for further understanding of host-virus interactions.
Collapse
Affiliation(s)
- Shigang Fei
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Junming Xia
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Nasir Mehmood
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yeyuan Wang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
44
|
Hu X, Wang W, Chen X, Kong C, Zhao X, Wang Z, Zhang H, Lu S. Trehalose Rescues Postmenopausal Osteoporosis Induced by Ovariectomy through Alleviating Osteoblast Pyroptosis via Promoting Autophagy. Biomedicines 2024; 12:2224. [PMID: 39457537 PMCID: PMC11505409 DOI: 10.3390/biomedicines12102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Osteoporosis, a prevalent bone metabolic disease, often requires long-term drug treatments that may lead to serious side effects. Trehalose, a natural disaccharide found in various organisms, has been shown to have a promoting effect on autophagy. However, whether trehalose can improve bone mass recovery in ovariectomized rats and its underlying mechanisms remains unclear. In this study, trehalose was administered to ovariectomized rats to evaluate its therapeutic potential for osteoporosis following ovariectomy. METHODS Micro-computed tomography (Micro-CT), hematoxylin and eosin (HE) and immunohistochemical staining techniques were utilized to evaluate the impact of trehalose on osteoporosis induced by ovariectomy (OVX) in mice, both in imaging and histological dimensions. Furthermore, the influence of trehalose on osteoblastogenesis and functional activity was quantified through Alizarin Red S (ARS) staining and immunoblotting assays. RESULTS Trehalose effectively mitigated bone loss, elevated autophagy and suppressed pyroptosis in ovariectomized rats. Furthermore, 3-methyladenine diminished the protective effects of trehalose, particularly in promoting autophagy and inhibiting pyroptosis. CONCLUSIONS Trehalose demonstrates significant potential in treating osteoporosis by suppressing NLRP3 inflammasome-driven pyroptosis, primarily through autophagy promotion. This suggests that trehalose could be a promising, safer alternative treatment for osteoporosis.
Collapse
Affiliation(s)
- Xinli Hu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China; (W.W.); (X.C.); (C.K.); (X.Z.); (Z.W.); (H.Z.); (S.L.)
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Wei Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China; (W.W.); (X.C.); (C.K.); (X.Z.); (Z.W.); (H.Z.); (S.L.)
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Xiaolong Chen
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China; (W.W.); (X.C.); (C.K.); (X.Z.); (Z.W.); (H.Z.); (S.L.)
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Chao Kong
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China; (W.W.); (X.C.); (C.K.); (X.Z.); (Z.W.); (H.Z.); (S.L.)
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Xuan Zhao
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China; (W.W.); (X.C.); (C.K.); (X.Z.); (Z.W.); (H.Z.); (S.L.)
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Zheng Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China; (W.W.); (X.C.); (C.K.); (X.Z.); (Z.W.); (H.Z.); (S.L.)
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Haojie Zhang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China; (W.W.); (X.C.); (C.K.); (X.Z.); (Z.W.); (H.Z.); (S.L.)
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China; (W.W.); (X.C.); (C.K.); (X.Z.); (Z.W.); (H.Z.); (S.L.)
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| |
Collapse
|
45
|
Cao D, Liu Y, Mei J, Yu S, Zeng C, Zhang J, Li Y. Identification of autophagy-related genes as potential biomarkers correlated with immune infiltration in bipolar disorder: a bioinformatics analysis. BMC Med Genomics 2024; 17:231. [PMID: 39272120 PMCID: PMC11395970 DOI: 10.1186/s12920-024-02003-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Bipolar disorder (BPD) is a kind of manic and depressive phase alternate episodes of serious mental illness, and it is correlated with well-documented cortical brain abnormalities. Emerging evidence supports that autophagy dysfunction in neuronal system contributes to pathophysiological changes in neurological disease. However, the role of autophagy in bipolar disorder has rarely been elucidated. This study aimed to identify the autophagy-related gene as a potential biomarker Correlated to immune infiltration in BPD. METHODS The microarray dataset GSE23848 and autophagy-related genes (ARGs) were downloaded. Differentially expressed genes (DEGs) between normal and BPD samples were screened using the R software. Machine learning algorithms were performed to screen the significant candidate biomarker from autophagy-related differentially expressed genes (ARDEGs). The correlation between the screened ARDEGs and infiltrating immune cells was explored through correlation analysis. RESULTS In this study, the autophagy pathway was abundantly enriched and activated in BPD, as indicated by Pathway enrichment analysis. We identified 16 ARDEGs in BPD compared to the normal group. A signature of 4 ARDEGs (ERN1, ATG3, CTSB, and EIF2AK3) was screened. ROC analysis showed that the above genes have good diagnostic performance. In addition, immune correlation analysis considered that the above four genes significantly correlated with immune cells in BPD. CONCLUSIONS Autophagy - immune cell axis mediates pathophysiological changes in BPD. Four important ARDEGs are prospective to be potential biomarkers associated with immune infiltration in BPD and helpful for the prediction or diagnosis of BPD.
Collapse
Affiliation(s)
- Dong Cao
- Department of Anesthesiology, Brain Research Center, Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, guangzhou, China
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107 Yanjiang West Road, Guangzhou, 510120, China
| | - Yafang Liu
- Department of Anesthesiology, Brain Research Center, Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107 Yanjiang West Road, Guangzhou, 510120, China
| | - Jinghong Mei
- Department of Anesthesiology, Brain Research Center, Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Shuailong Yu
- Department of Anesthesiology, Brain Research Center, Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Cong Zeng
- Department of Anesthesiology, Brain Research Center, Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jing Zhang
- Department of Anesthesiology, Brain Research Center, Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107 Yanjiang West Road, Guangzhou, 510120, China.
| | - Yujuan Li
- Department of Anesthesiology, Brain Research Center, Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107 Yanjiang West Road, Guangzhou, 510120, China.
| |
Collapse
|
46
|
Zhang S, Jiang Y, Yu Y, Ouyang X, Zhou D, Song Y, Jiao J. Autophagy: the misty lands of Chlamydia trachomatis infection. Front Cell Infect Microbiol 2024; 14:1442995. [PMID: 39310786 PMCID: PMC11412940 DOI: 10.3389/fcimb.2024.1442995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Chlamydia are Gram-negative, obligate intracellular bacterial pathogens that infect eukaryotic cells and reside within a host-derived vacuole known as the inclusion. To facilitate intracellular replication, these bacteria must engage in host-pathogen interactions to obtain nutrients and membranes required for the growth of the inclusion, thereby sustaining prolonged bacterial colonization. Autophagy is a highly conserved process that delivers cytoplasmic substrates to the lysosome for degradation. Pathogens have developed strategies to manipulate and/or exploit autophagy to promote their replication and persistence. This review delineates recent advances in elucidating the interplay between Chlamydia trachomatis infection and autophagy in recent years, emphasizing the intricate strategies employed by both the Chlamydia pathogens and host cells. Gaining a deeper understanding of these interactions could unveil novel strategies for the prevention and treatment of Chlamydia infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical
Sciences, Beijing, China
| | - Jun Jiao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical
Sciences, Beijing, China
| |
Collapse
|
47
|
Wu N, Zheng W, Zhou Y, Tian Y, Tang M, Feng X, Ashrafizadeh M, Wang Y, Niu X, Tambuwala M, Wang L, Tergaonkar V, Sethi G, Klionsky D, Huang L, Gu M. Autophagy in aging-related diseases and cancer: Principles, regulatory mechanisms and therapeutic potential. Ageing Res Rev 2024; 100:102428. [PMID: 39038742 DOI: 10.1016/j.arr.2024.102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Macroautophagy/autophagy is primarily accountable for the degradation of damaged organelles and toxic macromolecules in the cells. Regarding the essential function of autophagy for preserving cellular homeostasis, changes in, or dysfunction of, autophagy flux can lead to disease development. In the current paper, the complicated function of autophagy in aging-associated pathologies and cancer is evaluated, highlighting the underlying molecular mechanisms that can affect longevity and disease pathogenesis. As a natural biological process, a reduction in autophagy is observed with aging, resulting in an accumulation of cell damage and the development of different diseases, including neurological disorders, cardiovascular diseases, and cancer. The MTOR, AMPK, and ATG proteins demonstrate changes during aging, and they are promising therapeutic targets. Insulin/IGF1, TOR, PKA, AKT/PKB, caloric restriction and mitochondrial respiration are vital for lifespan regulation and can modulate or have an interaction with autophagy. The specific types of autophagy, such as mitophagy that degrades mitochondria, can regulate aging by affecting these organelles and eliminating those mitochondria with genomic mutations. Autophagy and its specific types contribute to the regulation of carcinogenesis and they are able to dually enhance or decrease cancer progression. Cancer hallmarks, including proliferation, metastasis, therapy resistance and immune reactions, are tightly regulated by autophagy, supporting the conclusion that autophagy is a promising target in cancer therapy.
Collapse
Affiliation(s)
- Na Wu
- Department of Infectious Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Wenhui Zheng
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yundong Zhou
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Yu Tian
- School of Public Health, Benedictine University, No.5700 College Road, Lisle, IL 60532, USA; Research Center, the Huizhou Central People's Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Min Tang
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing 401120, China
| | - Xiaoqiang Feng
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Xiaojia Niu
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Murtaza Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A⁎STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| | - Daniel Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Li Huang
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, China.
| | - Ming Gu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
48
|
Wang J, Huo X, Zhou H, Liu H, Li X, Lu N, Sun X. Identification of Autophagy-Related Candidate Genes in the Early Diagnosis of Alzheimer's Disease and Exploration of Potential Molecular Mechanisms. Mol Neurobiol 2024; 61:6584-6598. [PMID: 38329682 DOI: 10.1007/s12035-024-04011-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
This study aimed to identify autophagy-related candidate genes for the early diagnosis of Alzheimer's disease (AD) and elucidate their potential molecular mechanisms. Differentially expressed genes (DEGs) and phenotype-associated significant module genes were obtained using the "limma" package and weighted gene co-expression network analysis (WGCNA) based on hippocampal tissue datasets from AD patients and control samples. The intersection between the list of autophagy-related genes (ATGs), DEGs, and module genes was further investigated to obtain AD-autophagy-related differential expression genes (ATDEGs). Subsequently, the least absolute shrinkage and selection operator (LASSO) algorithm was utilized to identify hub genes, and a second intersection was performed with important module genes from the protein-protein interaction (PPI) network to obtain co-hub genes. Finally, a diagnostic model was constructed by receiver operating characteristic (ROC) analysis to determine the candidate genes with high diagnostic efficacy in the external validation set. Moreover, immune infiltration analysis was performed on AD patient brain tissues and explore the correlation between candidate genes and immune cells. We further analyzed the expression level of candidate genes in the SH-SY5Y cells with Aβ25-35 (25 µM). Among the 17 identified AD-ATDEGs, ATP6V1E1 stood out with area under the curve (AUC) values of 0.869, 0.817, and 0.714 in the external validation set, underscoring its high diagnostic efficacy in both hippocampal and peripheral blood contexts for AD patients. Meanwhile, ATP6V1E1 expression was positively correlated with effector memory CD4 + T cells, while negatively correlated with natural killer T cells and activated CD4 + T cells. Results from quantitative PCR (qPCR) and immunofluorescence assays indicated a reduction in ATP6V1E1 expression, aligning with our database analysis findings. In summary, ATP6V1E1 as a candidate gene provides a new perspective for the early identification and pathogenesis of AD.
Collapse
Affiliation(s)
- Jian Wang
- The Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, China.
- Hunan Guangxiu Hospital, Hunan Normal University, Changsha, China.
- Hunan Guangxiu Medical Imaging Diagnosis Center, Changsha, China.
| | - Xinhua Huo
- Hunan Guangxiu Hospital, Hunan Normal University, Changsha, China
| | - Huiqin Zhou
- Hunan Guangxiu Hospital, Hunan Normal University, Changsha, China
| | - Huasheng Liu
- Department of Radiology, Central South University, The Third Xiangya Hospital, Changsha, China
| | - Xiaofeng Li
- Hunan Guangxiu Hospital, Hunan Normal University, Changsha, China
| | - Na Lu
- Reproductive and Genetic Hospital of CITIC Xiangya, Changsha, China
| | - Xuan Sun
- The Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
49
|
Pei G, Balkema-Buschmann A, Dorhoi A. Disease tolerance as immune defense strategy in bats: One size fits all? PLoS Pathog 2024; 20:e1012471. [PMID: 39236038 PMCID: PMC11376593 DOI: 10.1371/journal.ppat.1012471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Bats are natural reservoirs for zoonotic pathogens, yet the determinants of microbial persistence as well as the specific functionality of their immune system remain largely enigmatic. Their propensity to harbor viruses lethal to humans and/or livestock, mostly in absence of clinical disease, makes bats stand out among mammals. Defending against pathogens relies on avoidance, resistance, and/or tolerance strategies. In bats, disease tolerance has recently gained increasing attention as a prevailing host defense paradigm. We here summarize the current knowledge on immune responses in bats in the context of infection with zoonotic agents and discuss concepts related to disease tolerance. Acknowledging the wide diversity of bats, the broad spectrum of bat-associated microbial species, and immune-related knowledge gaps, we identify research priorities necessary to provide evidence-based proofs for disease tolerance in bats. Since disease tolerance relies on networks of biological processes, we emphasize that investigations beyond the immune system, using novel technologies and computational biology, could jointly advance our knowledge about mechanisms conferring bats reservoir abilities. Although disease tolerance may not be the "one fit all" defense strategy, deciphering disease tolerance in bats could translate into novel therapies and inform prevention of spillover infections to humans and livestock.
Collapse
Affiliation(s)
- Gang Pei
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Anne Balkema-Buschmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Greifswald-Insel Riems, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
| |
Collapse
|
50
|
Song MH, Sun Y, Qiu XB. Hijacking autophagy for infection by flaviviruses. Virus Res 2024; 347:199422. [PMID: 38901564 PMCID: PMC11252935 DOI: 10.1016/j.virusres.2024.199422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Autophagy is a lysosomal degradative pathway, which regulates the homeostasis of eukaryotic cells. This pathway can degrade misfolded or aggregated proteins, clear damaged organelles, and eliminate intracellular pathogens, including viruses, bacteria, and parasites. But, not all types of viruses are eliminated by autophagy. Flaviviruses (e.g., Yellow fever, Japanese encephalitis, Hepatitis C, Dengue, Zika, and West Nile viruses) are single-stranded and enveloped RNA viruses, and transmitted to humans primarily through the bites of arthropods, leading to severe and widespread illnesses. Like the coronavirus SARS-CoV-II, flaviviruses hijack autophagy for their infection and escape from host immune clearance. Thus, it is possible to control these viral infections by inhibiting autophagy. In this review, we summarize recent research progresses on hijacking of autophagy by flaviviruses and discuss the feasibility of antiviral therapies using autophagy inhibitors.
Collapse
Affiliation(s)
- Ming-Hui Song
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yan Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Xiao-Bo Qiu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China.
| |
Collapse
|