1
|
Jay A, Pondevida CM, Vahedi G. The epigenetic landscape of fate decisions in T cells. Nat Immunol 2025; 26:544-556. [PMID: 40108419 DOI: 10.1038/s41590-025-02113-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/14/2025] [Indexed: 03/22/2025]
Abstract
Specialized T cell subsets mediate adaptive immunity in response to cytokine signaling and specific transcription factor activity. The epigenetic landscape of T cells has an important role in facilitating and establishing T cell fate decisions. Here, we review the interplay between transcription factors, histone modifications, DNA methylation and three-dimensional chromatin organization to define key elements of the epigenetic landscape in T cells. We introduce key technologies in the areas of sequencing, microscopy and proteomics that have enabled the multi-scale profiling of the epigenetic landscape. We highlight the dramatic changes of the epigenetic landscape as multipotent progenitor cells commit to the T cell lineage during development and discuss the epigenetic changes that favor the emergence of CD4+ and CD8+ T cells. Finally, we discuss the inheritance of epigenetic marks and its potential effects on immune responses as well as therapeutic strategies with potential for epigenetic regulation.
Collapse
Affiliation(s)
- Atishay Jay
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Carlos M Pondevida
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Golnaz Vahedi
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Bock TJ, Colonne CK, Fiorenza S, Turtle CJ. Outcome correlates of approved CD19-targeted CAR T cells for large B cell lymphoma. Nat Rev Clin Oncol 2025; 22:241-261. [PMID: 39966627 DOI: 10.1038/s41571-025-00992-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 02/20/2025]
Abstract
CD19-targeted chimeric antigen receptor (CAR) T cells have provided a breakthrough in the treatment of patients with relapsed and/or refractory large B cell lymphoma (LBCL). Currently, three CD19-targeted CAR T cell products are approved by the FDA and various other regulators for the treatment of patients with LBCL: axicabtagene ciloleucel, tisagenlecleucel and lisocabtagene maraleucel. Response rates following infusion of these CD19-targeted CAR T cells have been promising; however, approximately half of treated patients show relapse within 2 years. Furthermore, receiving these agents can be associated with serious toxicities, including cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. In this Review, we summarize the factors associated with the efficacy, including response and survival outcomes, and toxicity of CD19-targeted CAR T cells in pivotal clinical trials and large real-world datasets describing the outcomes of patients with LBCL who received treatment with these products.
Collapse
MESH Headings
- Humans
- Antigens, CD19/immunology
- Antigens, CD19/therapeutic use
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/therapy
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/therapeutic use
- Treatment Outcome
- Receptors, Antigen, T-Cell/therapeutic use
- Receptors, Antigen, T-Cell/immunology
- Biological Products
Collapse
Affiliation(s)
- Tamara J Bock
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia.
| | - Chanukya K Colonne
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Salvatore Fiorenza
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Cameron J Turtle
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
- Royal North Shore Hospital, Sydney, New South Wales, Australia
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
3
|
Zhang K, Zhao T, Riaz F, Li Y, Wei P, Fang X, Zhou Z, Kou W, Pan F. Neuritin-specific antibody impedes the Treg-mediated suppression of anti-tumor immunity and enhances response to anti-PD1. Mol Immunol 2025; 181:148-159. [PMID: 40153952 DOI: 10.1016/j.molimm.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/08/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Regulatory T cells (Tregs) and effector T cells play critical roles in tumor immunity, with Tregs suppressing immune responses and contributing to an immunosuppressive tumor microenvironment (TME). Neuritin-1 (Nrn), a neuropeptide, has been identified to enhance Treg expansion. However, its role in T cell biology and tumor development remains unclear. We demonstrated that Nrn is highly expressed in the in-vitro-induced Tregs (iTregs). Functionally, Nrn promoted iTreg differentiation in a dose-dependent manner, while Nrn deletion or anti-Nrn antibody treatment significantly inhibited iTreg differentiation. Additionally, Nrn suppressed IL-2 transcription and secretion in T cells, impairing T cell activation and pro-inflammatory cytokine production. Treg-specific Nrn knockout mice exhibited reduced B16 melanoma tumor growth, decreased Treg infiltration, and increased effector T cell infiltration. Conversely, overexpression of Nrn accelerated B16 melanoma tumor progression by enhancing Treg-mediated suppression. Importantly, we developed the first anti-Nrn antibody, which effectively reduced tumour growth, decreased Treg infiltration, and enhanced effector T-cell activity. Importantly, anti-Nrn synergistically worked with anti-PD1 and improved the anti-PD1 response by reducing Tregs and increasing effector function in tumor-infiltrated T cells, resulting in enhanced tumor regression. Our findings identify Nrn as a critical regulator of Treg differentiation and effector T cell suppression, contributing to tumor progression. Targeting Nrn alone or combined with anti-PD1 therapy represents a promising strategy to enhance anti-tumor immunity.
Collapse
Affiliation(s)
- Kaimin Zhang
- Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), 1068 Xueyuan Avenue, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Taowen Zhao
- Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Fraooq Riaz
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology (SUAT), China
| | - Yikui Li
- Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Ping Wei
- Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), 1068 Xueyuan Avenue, Shenzhen 518055, China; Department of Pediatric Otolaryngology Head and Neck Surgery, West China Second University Hospital, Sichuan University, 1416, Section 1, Chenglong Avenue, Chengdu 610066, China
| | - Xiang Fang
- Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Zhiyi Zhou
- Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Wei Kou
- Department of Pediatric Otolaryngology Head and Neck Surgery, West China Second University Hospital, Sichuan University, 1416, Section 1, Chenglong Avenue, Chengdu 610066, China.
| | - Fan Pan
- Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), 1068 Xueyuan Avenue, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology (SUAT), China.
| |
Collapse
|
4
|
Fu MPY, Merrill SM, Korthauer K, Kobor MS. Examining cellular heterogeneity in human DNA methylation studies: Overview and recommendations. STAR Protoc 2025; 6:103638. [PMID: 39951379 DOI: 10.1016/j.xpro.2025.103638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/20/2024] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Intersample cellular heterogeneity (ISCH) is one of the largest contributors to DNA methylation (DNAme) variability. It is imperative to account for ISCH to accurately interpret analysis results in epigenome-wide association studies. We compiled this primer based on the current literature to guide researchers through the process of estimating and accounting for ISCH in DNA methylation studies. This primer outlines the procedure of bioinformatic ISCH prediction, including using reference-based and reference-free algorithms. It then follows with descriptions of several methods to account for ISCH in downstream analyses, including robust linear regression and principal-component-analysis-based adjustments. Finally, we outlined three methods for estimating differential DNAme signals in a cell-type-specific manner. Throughout the primer, we provided statistical and biological justification for our recommendations, as well as R code examples for ease of implementation.
Collapse
Affiliation(s)
- Maggie Po-Yuan Fu
- BC Children's Hospital Research Institute, Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Sarah Martin Merrill
- BC Children's Hospital Research Institute, Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; Department of Pyschiatry and Human Behavior, The Warren Alpert Medical School at Brown University, Providence, RI, USA
| | - Keegan Korthauer
- BC Children's Hospital Research Institute, Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; Department of Statistics, University of British Columbia, Vancouver, BC, Canada
| | - Michael Steffen Kobor
- BC Children's Hospital Research Institute, Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; Edwin S.H. Leong Centre for Healthy Aging, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
5
|
Tsurui T, Hosonuma M, Sasaki A, Maruyama Y, Amari Y, Funayama E, Tajima K, Toyoda H, Isobe J, Yamazaki Y, Baba Y, Shida M, Udaka Y, Mura E, Suzuki R, Iriguchi N, Ishiguro T, Hirasawa Y, Ohkuma R, Shimokawa M, Ariizumi H, Kubota Y, Horiike A, Wada S, Kuramasu A, Tsuji M, Kiuchi Y, Tsunoda T, Yoshimura K. Ki-67 expression in anti-programmed cell death protein-1 antibody-bound CD8 + T cells as a predictor of clinical benefit. Discov Oncol 2025; 16:348. [PMID: 40100476 PMCID: PMC11920542 DOI: 10.1007/s12672-025-02060-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/05/2025] [Indexed: 03/20/2025] Open
Abstract
AIMS Developing predictive biomarkers for immune checkpoint inhibitors (ICIs) is important. Programmed cell death protein-1 (PD-1) receptor occupancy by anti-PD-1 antibodies on circulating T cells varies among patients. However, the association between the exhaustion of these antibody-bound T cells and the clinical efficacy of ICIs remains unknown. Therefore, the present study was aimed at evaluating this association. METHODS This prospective cohort study included patients with advanced non-small cell lung cancer (NSCLC) and esophageal squamous cell carcinoma (ESCC) who received pembrolizumab therapy. Peripheral blood samples were collected during the second cycle of chemotherapy. We analyzed the relationship between exhaustion markers in pembrolizumab-bound (PB) T cells and clinical response. RESULTS A total of 21 patients were analyzed, including 12 patients with NSCLC and 9 patients with ESCC. The expression of Ki-67 in PB-CD8+ TCM and TEM was negatively correlated with both clinical response and overall survival. CONCLUSION The expression of Ki-67 of PB-CD8+ TCM and TEM can serve as a predictive biomarker for the clinical benefit of pembrolizumab therapy. Our study suggests that analyzing antibody-bound T cells could be a novel approach to predict the clinical outcomes of PD-1 blockade therapy.
Collapse
Affiliation(s)
- Toshiaki Tsurui
- Division of Medical Pharmacology, Showa University Graduate School of Medicine, Tokyo, Japan
- Department of Clinical Immuno-Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kitakarasuyama, Setagaya-Ku, Tokyo, 157-8577, Japan
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
- Pharmacological Research Center, Showa University, Tokyo, Japan
| | - Masahiro Hosonuma
- Division of Medical Pharmacology, Showa University Graduate School of Medicine, Tokyo, Japan
- Department of Clinical Immuno-Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kitakarasuyama, Setagaya-Ku, Tokyo, 157-8577, Japan
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
- Pharmacological Research Center, Showa University, Tokyo, Japan
| | - Aya Sasaki
- Division of Medical Pharmacology, Showa University Graduate School of Medicine, Tokyo, Japan
- Department of Clinical Immuno-Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kitakarasuyama, Setagaya-Ku, Tokyo, 157-8577, Japan
- Pharmacological Research Center, Showa University, Tokyo, Japan
- Department of Surgery, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Yuuki Maruyama
- Division of Medical Pharmacology, Showa University Graduate School of Medicine, Tokyo, Japan
- Department of Clinical Immuno-Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kitakarasuyama, Setagaya-Ku, Tokyo, 157-8577, Japan
- Pharmacological Research Center, Showa University, Tokyo, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Showa University School of Medicine, Tokyo, Japan
| | - Yasunobu Amari
- Department of Clinical Immuno-Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kitakarasuyama, Setagaya-Ku, Tokyo, 157-8577, Japan
- Pharmacological Research Center, Showa University, Tokyo, Japan
- Division of Clinical Pharmacology, Showa University Graduate School of Medicine, Tokyo, Japan
- Department of Otolaryngology, Showa University Fujigaoka Hospital, Kanagawa, Japan
| | - Eiji Funayama
- Department of Clinical Immuno-Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kitakarasuyama, Setagaya-Ku, Tokyo, 157-8577, Japan
- Pharmacological Research Center, Showa University, Tokyo, Japan
- Division of Pharmacology, Showa University Graduate School of Pharmacy, Tokyo, Japan
| | - Kohei Tajima
- Department of Clinical Immuno-Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kitakarasuyama, Setagaya-Ku, Tokyo, 157-8577, Japan
- Department of Gastroenterological Surgery, Tokai University School of Medicine, Kanagawa, Japan
| | - Hitoshi Toyoda
- Division of Medical Pharmacology, Showa University Graduate School of Medicine, Tokyo, Japan
- Department of Clinical Immuno-Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kitakarasuyama, Setagaya-Ku, Tokyo, 157-8577, Japan
- Pharmacological Research Center, Showa University, Tokyo, Japan
- Department of Orthopedic Surgery, Showa University School of Medicine, Tokyo, Japan
| | - Junya Isobe
- Department of Clinical Immuno-Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kitakarasuyama, Setagaya-Ku, Tokyo, 157-8577, Japan
- Department of Hospital Pharmaceutics, Showa University School of Pharmacy, Tokyo, Japan
| | - Yoshitaka Yamazaki
- Pharmacological Research Center, Showa University, Tokyo, Japan
- Division of Toxicology, Showa University Graduate School of Pharmacy, Tokyo, Japan
| | - Yuta Baba
- Department of Clinical Immuno-Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kitakarasuyama, Setagaya-Ku, Tokyo, 157-8577, Japan
- Department of Hematology, Showa University Fujigaoka Hospital, Kanagawa, Japan
| | - Midori Shida
- Department of Clinical Immuno-Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kitakarasuyama, Setagaya-Ku, Tokyo, 157-8577, Japan
| | - Yuko Udaka
- Division of Medical Pharmacology, Showa University Graduate School of Medicine, Tokyo, Japan
- Pharmacological Research Center, Showa University, Tokyo, Japan
| | - Emiko Mura
- Department of Medical Oncology, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Risako Suzuki
- Department of Medical Oncology, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Nana Iriguchi
- Department of Medical Oncology, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Tomoyuki Ishiguro
- Department of Medical Oncology, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Yuya Hirasawa
- Department of Medical Oncology, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Ryotaro Ohkuma
- Department of Medical Oncology, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Masahiro Shimokawa
- Department of Medical Oncology, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Hirotsugu Ariizumi
- Department of Medical Oncology, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Yutaro Kubota
- Department of Medical Oncology, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Atsushi Horiike
- Department of Medical Oncology, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Satoshi Wada
- Department of Medical Oncology, Showa University Graduate School of Medicine, Tokyo, Japan
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan
| | - Atsuo Kuramasu
- Department of Clinical Immuno-Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kitakarasuyama, Setagaya-Ku, Tokyo, 157-8577, Japan
| | - Mayumi Tsuji
- Pharmacological Research Center, Showa University, Tokyo, Japan
| | - Yuji Kiuchi
- Division of Medical Pharmacology, Showa University Graduate School of Medicine, Tokyo, Japan
- Pharmacological Research Center, Showa University, Tokyo, Japan
| | - Takuya Tsunoda
- Department of Medical Oncology, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Kiyoshi Yoshimura
- Department of Clinical Immuno-Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kitakarasuyama, Setagaya-Ku, Tokyo, 157-8577, Japan.
- Department of Medical Oncology, Showa University Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
6
|
Ji Y, Xiao C, Fan T, Deng Z, Wang D, Cai W, Li J, Liao T, Li C, He J. The epigenetic hallmarks of immune cells in cancer. Mol Cancer 2025; 24:66. [PMID: 40038722 DOI: 10.1186/s12943-025-02255-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/30/2025] [Indexed: 03/06/2025] Open
Abstract
Targeting the dysregulation of epigenetic mechanisms in cancer has emerged as a promising therapeutic strategy. Although the significant rationale progress of epigenetic therapies in blocking cancer cells, how epigenetic regulation shapes tumor microenvironment (TME) and establishes antitumor immunity remains less understood. Recent study focus has been put on the epigenetic-mediated changes in the fate of immune cells, including the differentiation, expansion, recruitment, functionalization, and exhaustion of T cells, natural killer (NK) cells, tumor-associated macrophages (TAMs), dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs), and B cells within the TME. Here, we review the latest molecular and clinical insights into how DNA modifications, histone modification, and epitranscriptome-related regulations shape immune cells of various cancers. We also discuss opportunities for leveraging epigenetic therapies to improve cancer immunotherapies. This review provides the epigenetic foundations of cancer immunity and proposes the future direction of combination therapies.
Collapse
Affiliation(s)
- Yu Ji
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Di Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wenpeng Cai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jia Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tianle Liao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
7
|
Huang Y, Liu P, Xu Y, Qian C, Wu T, Li T. Plasma Exosomes Derived from Patients with Primary Immune Thrombocytopenia Attenuate TBX21 + Regulatory T Cell-Mediated Immune Suppression via MiR-363-3p. Inflammation 2025:10.1007/s10753-025-02275-8. [PMID: 40032779 DOI: 10.1007/s10753-025-02275-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
Primary Immune Thrombocytopenia (ITP) is characterized by reduced immunosuppressive function of regulatory T cells (Tregs), contributing to immune imbalance and decreased platelet counts. However, the mechanisms behind this reduced efficacy of Tregs remain unclear. Our study used a variety of methods, including Treg function assays, cytokine analysis, and single-cell sequencing, to explore these mechanisms. We found that exosomes from ITP patients inhibited TBX21 expression in Tregs, and impaired their ability to suppress Th1 cells. At the single-cell level, Tregs with high TBX21 expression were identified, and the activity of the TBX21 regulon was found to be enhanced in early-stage Treg subpopulations. We also discovered that ARID3A interacted with SPI1 and TBX21 gene regions, indicating a regulatory relationship between ARID3A, SPI1, and TBX21. Additionally, exosomes in ITP patients' plasma contained elevated levels of miR-363-3p, which negatively correlated with platelet count. These exosomes transferred miR-363-3p to Tregs, downregulating ARID3A, SPI1, and TBX21 expression, thereby weakening Tregs' ability to suppress conventional CD4 + T cells. In conclusion, exosomes from ITP patients reduced Treg function through the ARID3A/SPI1/TBX21 axis by miR-363-3p, diminishing their ability to regulate Th1 cells and contributing to the immune dysfunction observed in ITP.
Collapse
Affiliation(s)
- Yuanlan Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Department of Blood Transfusion, Naval Specialty Medical Center, Naval Medical University, Shanghai, 200000, China
| | - Peng Liu
- Department of Blood Transfusion, No.971 Hospital of the PLA Navy, Qingdao, China
| | - Ying Xu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Cheng Qian
- Department of Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Tianqin Wu
- Suzhou100 Hospital, Suzhou, 215006, China
| | - Tengda Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
8
|
Zhang S, Wen Q, Su S, Wang Y, Wang J, Xie N, Zhu W, Wen X, Di L, Lu Y, Xu M, Wang M, Chen H, Duo J, Huang Y, Wan D, Tao Z, Zhao S, Chai G, Hao J, Da Y. Peripheral immune profiling highlights a dynamic role of low-density granulocytes in myasthenia gravis. J Autoimmun 2025; 152:103395. [PMID: 40043622 DOI: 10.1016/j.jaut.2025.103395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Myasthenia gravis (MG) is an autoimmune neuromuscular disease marked by dysregulation of several immune cell populations. Here we explored peripheral immune landscape, particularly the role of low-density granulocytes (LDGs). METHODS Single-cell and bulk RNA sequencing analyzed peripheral immune cells from MG patients pre- (n = 4) and after treatment (n = 2), as well as healthy controls (n = 3). Flow cytometry was employed for validating LDG subsets, and various functional assays were conducted to assess their impact on T cell proliferation and differentiation, NET formation, and ROS production. RESULTS Single-cell analysis highlighted a shift towards inflammatory Th1/Th17/Tfh subsets, an intense interferon-mediated immune response, and an expansion of immature myeloid subsets in MG. Flow cytometry showed increased LDGs correlated with disease severity. Unlike myeloid-derived suppressor cells, MG LDGs do not restrict T cell proliferation but induce a pro-inflammatory Th1/Th17 response. They also display enhanced spontaneous neutrophil extracellular traps (NETs) formation and basal reactive oxygen species (ROS) production. LDGs decreased after intravenous immunoglobulin and increased after prolonged immunotherapy in minimal manifestation status (MM), with reduced pro-inflammatory activity. Bulk RNA sequencing revealed significant transcriptional differences in LDGs, especially in cell cycle and granule protein genes. CONCLUSION Peripheral immune profiling sheds light on the intricate role of LDGs in MG. These cells, as a distinct subtype of neutrophils with a proinflammatory phenotype, are notable increased in MG, exacerbating chronic inflammation. Furthermore, immunotherapy expanded LDGs but reduced their proinflammatory capacities. The complex interplay of LDGs in MG underscores their potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qi Wen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shengyao Su
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yaye Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jingsi Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Nairong Xie
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenjia Zhu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xinmei Wen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Li Di
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yan Lu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Min Xu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Min Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hai Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jianying Duo
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yue Huang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Dongshan Wan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhen Tao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shufang Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guoliang Chai
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Junwei Hao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Yuwei Da
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
9
|
White E, Appay V. [Rejuvenation of CD8 + T cell responses in long-term treated people with HIV]. Med Sci (Paris) 2025; 41:229-232. [PMID: 40117545 DOI: 10.1051/medsci/2025031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025] Open
Affiliation(s)
- Eoghann White
- Université de Bordeaux, CNRS UMR 5164, Inserm ERL 1303, ImmunoConcEpT, Bordeaux, France
| | - Victor Appay
- Université de Bordeaux, CNRS UMR 5164, Inserm ERL 1303, ImmunoConcEpT, Bordeaux, France
| |
Collapse
|
10
|
Jin L, Zhang X, Wang J, Wang Y, Wang K, Wang Z, Wang P, Sun X, Hao J, Jin R, Lu D, Ge Q. Epigenetic Regulation of CD8 + Effector T Cell Differentiation by PDCD5. Eur J Immunol 2025; 55:e202451388. [PMID: 40111008 PMCID: PMC11924876 DOI: 10.1002/eji.202451388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/22/2025]
Abstract
Epigenetic modification plays a crucial role in establishing the transcriptional program that governs the differentiation of CD8+ effector T cells. However, the mechanisms by which this process is regulated at an early stage, prior to the expression of master transcription factors, are not yet fully understood. In this study, we have identified PDCD5 as an activation-induced molecule that is necessary for the proper differentiation and expansion of antigen-specific CD8+ effector T cells in a mouse model of chronic viral infection. The genetic deletion of Pdcd5 resulted in impaired differentiation and function of effector T cells, while T-cell activation, metabolic reprogramming, and the differentiation of memory/exhausted T cells were largely unaffected. At the molecular level, we observed reduced chromatin accessibility and transcriptional activity of Tbx21 and its regulated genes in Pdcd5-/- CD8+ T cells. We further identified that PRDM9 facilitates the H3K4me3 modification of genes associated with the effector phenotype in CD8+ T cells. The interaction between PDCD5 and PRDM9 promotes the nuclear translocation and lysine methyltransferase activity of PRDM9. Collectively, these findings highlight the crucial role of the PDCD5/PRDM9 axis in epigenetic reprogramming during the early stages of fate determination for effector CD8+ T cell fate.
Collapse
Affiliation(s)
- Lixue Jin
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science Center, Peking University, Beijing, China
| | - Xin Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Jingyi Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science Center, Peking University, Beijing, China
| | - Yujia Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science Center, Peking University, Beijing, China
| | - Ke Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science Center, Peking University, Beijing, China
| | - Zhuolin Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science Center, Peking University, Beijing, China
| | - Pingzhang Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science Center, Peking University, Beijing, China
| | - Xiuyuan Sun
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science Center, Peking University, Beijing, China
| | - Jie Hao
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science Center, Peking University, Beijing, China
| | - Rong Jin
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science Center, Peking University, Beijing, China
| | - Dan Lu
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Qing Ge
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science Center, Peking University, Beijing, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
11
|
Su B, Chen Q, Li X, Fang M, Wang Y, Song H, You H, Zhou Z, Wu Y, Zhao Z, Chen Y, Fan H, Li C, Jiang C, Sun T. A Methionine Allocation Nanoregulator for the Suppression of Cancer Stem Cells and Support to the Immune Cells by Epigenetic Regulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2415207. [PMID: 39985256 DOI: 10.1002/advs.202415207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/13/2025] [Indexed: 02/24/2025]
Abstract
Epigenetic dysregulation is prevalent in human cancers, affecting gene expression and metabolic patterns to meet the demands of malignant evolution and abnormal epigenetic processes, and resulting in a protumor immune microenvironment. Tumors require a steady supply of methionine for maintaining epigenetic flexibility, which is the only exogenous precursor of methyl donor S-adenosylmethionine for methylation, crucial for their resistance to therapies and survival in a nutrient-deficient microenvironment. Thus, tumor cells upregulate the Lat4 transporter to compete and deprive methionine in the microenvironment, sustaining their malignant phenotypes and also impairing immune cell functions. Addressing this methionine addiction is the key to overcoming drug resistance and improving immune response. Despite the challenge of lacking specific Lat4 inhibitors, an oxaliplatin prodrug crosslinked fluorinated polycation/anti-Lat4 small interfering RNA complex nanoregulator (AS-F-NP) has been designed and developed here. This nanoregulator restricted the greedy methionine uptake of tumor cells by knocking down Lat4, which in turn inhibited the malignant evolution of the tumor while restoring the viability and function of tumor-infiltrating immune cells.
Collapse
Affiliation(s)
- Boyu Su
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
| | - Qinjun Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
| | - Xuwen Li
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
| | - Mingzhu Fang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
| | - Yu Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
| | - Haolin Song
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
| | - Haoyu You
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
| | - Zheng Zhou
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
| | - Yuxing Wu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
| | - Zhenhao Zhao
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
| | - Yun Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
| | - Hongrui Fan
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
| | - Chufeng Li
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
| | - Chen Jiang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
- Department of Digestive Diseases, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Tao Sun
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
- Quzhou Fudan Institute, Quzhou, 324003, China
| |
Collapse
|
12
|
Li W, Luo P, Chen Q, Cheng L, Gan L, Zhang F, Zhong H, Zheng L, Qian B. Epigenetic modifications in bladder cancer: crosstalk between DNA methylation and miRNAs. Front Immunol 2025; 16:1518144. [PMID: 39981244 PMCID: PMC11841399 DOI: 10.3389/fimmu.2025.1518144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/22/2025] [Indexed: 02/22/2025] Open
Abstract
Bladder cancer (BC) is a malignant tumor characterized by a high incidence of urinary system diseases. The complex pathogenesis of BC has long been a focal point in medical research. With the robust development of epigenetics, the crucial role of epigenetic modifications in the occurrence and progression of BC has been elucidated. These modifications not only affect gene expression but also impact critical biological behaviors of tumor cells, including proliferation, differentiation, apoptosis, invasion, and metastasis. Notably, DNA methylation, an important epigenetic regulatory mechanism, often manifests as global hypomethylation or hypermethylation of specific gene promoter regions in BC. Alterations in this methylation pattern can lead to increased genomic instability, which profoundly influences the expression of proto-oncogenes and tumor suppressor genes. MiRNAs, as noncoding small RNAs, participate in various biological processes of BC by regulating target genes. Consequently, this work aims to explore the interaction mechanisms between DNA methylation and miRNAs in the occurrence and development of BC. Research has demonstrated that DNA methylation not only directly influences the expression of miRNA genes but also indirectly affects the maturation and functionality of miRNAs by modulating the methylation status of miRNA promoter regions. Simultaneously, miRNAs can regulate DNA methylation levels by targeting key enzymes such as DNA methyltransferases (DNMTs), thereby establishing a complex feedback regulatory network. A deeper understanding of the crosstalk mechanisms between DNA methylation and miRNAs in BC will contribute to elucidating the complexity and dynamics of epigenetic modifications in this disease, and may provide new molecular targets and strategies for the early diagnosis, treatment, and prognostic evaluation of BC.
Collapse
Affiliation(s)
- Wei Li
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Peiyue Luo
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Qi Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Le Cheng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Lifeng Gan
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Fangtao Zhang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Haidong Zhong
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Liying Zheng
- Department of Graduate, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Biao Qian
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| |
Collapse
|
13
|
Vasconcelos CRS, de Almeida MB, de Oliveira CP, Silva JL, Dias FGG, Rodrigues MA. Nuclear morphology, chromatin compaction, and epigenetic changes in lymphocytes of dogs infected with Ehrlichia canis. Vet Parasitol 2025; 334:110385. [PMID: 39729810 DOI: 10.1016/j.vetpar.2024.110385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
Canine monocytic ehrlichiosis (CME), induced by Ehrlichia canis, is an important infectious disease in dogs, characterized by various clinical signs and consequent immune dysfunction. This study aimed to characterize nuclear morphology, chromatin compaction, histone H3 acetylation, and DNA methylation in lymphocytes from dogs naturally infected with E. canis, compared with healthy controls. A total of 30 dogs were included in this study, comprising 15 healthy dogs and 15 dogs with confirmed E. canis infection, verified through polymerase chain reaction. Blood samples were collected from these dogs to isolate peripheral blood mononuclear cells. The isolated cells were prepared into smears and stained using the Feulgen reaction for subsequent analysis. These stained smears underwent video imaging analysis to assess nuclear morphology and chromatin parameters. Additionally, lymphocytes isolated from the PBMCs were analyzed to quantify global levels of histone H3 acetylation and DNA methylation. The results indicated significant increases in nuclear size and alterations in chromatin architecture in the lymphocytes of dogs with E. canis infection. A significant reduction in histone H3 acetylation was observed in this group, suggesting a potential mechanism of transcriptional repression. In contrast, no significant differences in DNA methylation were detected between the infected dogs and the healthy controls. In conclusion, our findings reveal distinct morphological and epigenetic alterations in lymphocytes associated with E. canis infection, thereby enhancing the understanding of the immune dysfunction observed in dogs with CME.
Collapse
Affiliation(s)
| | | | | | - Jhuan Luiz Silva
- Postgraduate Program in Animal Science, Franca University (UNIFRAN), Franca, São Paulo, Brazil
| | | | | |
Collapse
|
14
|
Tan RZ, Bai QX, Jia LH, Wang YB, Li T, Lin JY, Liu J, Su HW, Kantawong F, Wang L. Epigenetic regulation of macrophage function in kidney disease: New perspective on the interaction between epigenetics and immune modulation. Biomed Pharmacother 2025; 183:117842. [PMID: 39809127 DOI: 10.1016/j.biopha.2025.117842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/01/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025] Open
Abstract
The interaction between renal intrinsic cells and macrophages plays a crucial role in the onset and progression of kidney diseases. In recent years, epigenetic mechanisms such as DNA methylation, histone modification, and non-coding RNA regulation have become essential windows for understanding these processes. This review focuses on how renal intrinsic cells (including tubular epithelial cells, podocytes, and endothelial cells), renal cancer cells, and mesenchymal stem cells influence the function and polarization status of macrophages through their own epigenetic alterations, and how the epigenetic regulation of macrophages themselves responds to kidney damage, thus participating in renal inflammation, fibrosis, and repair. Moreover, therapeutic studies targeting these epigenetic interaction mechanisms have found that the application of histone deacetylase inhibitors, histone methyltransferase inhibitors, various nanomaterials, and locked nucleic acids against non-coding RNA have positive effects on the treatment of multiple kidney diseases. This review summarizes the latest research advancements in these epigenetic regulatory mechanisms and therapies, providing a theoretical foundation for further elucidating the pathogenesis of kidney diseases and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Rui-Zhi Tan
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China; Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Qiu-Xiang Bai
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Long-Hao Jia
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yi-Bing Wang
- Department of Medical Imaging, Southwest Medical University, Luzhou 646000, China
| | - Tong Li
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jing-Yi Lin
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jian Liu
- Department of Nephrology, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Hong-Wei Su
- Department of Urology, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
15
|
Huang Q, Xu L, Ye L. Functional subsets of tumor-specific CD8 + T cells in draining lymph nodes and tumor microenvironment. Curr Opin Immunol 2025; 92:102506. [PMID: 39591663 DOI: 10.1016/j.coi.2024.102506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/21/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024]
Abstract
Accumulating evidence demonstrates that tumor-specific CD8+ T cells in tumor-draining lymph nodes (TdLNs) act as an upstream reservoir of exhausted subsets within tumor microenvironment (TME). This reservoir primarily consists of progenitor exhausted CD8+ T (TPEX) cells and newly defined tumor-specific memory subsets (TTSM). We propose that these two subsets work together to mediate the antitumor effects of PD-1/PD-L1 immune checkpoint blockade (ICB) in a spatiotemporal manner. Although PD-1/PD-L1 ICB monotherapy drives the proliferation and further differentiation of these subsets, it does not alter the programmed differentiation trajectory from TTSM cells to TPEX cells, ultimately leading to the development of terminally exhausted CD8+ T cells. This phenomenon may partly explaining the frequent relapse in patients following initial ICB therapy. In this review, we focus on the phenotypic and functional heterogeneity of tumor-specific CD8+ T cells in both TdLNs and the TME and discuss the implications of these studies for ICB. Our insights aim to illuminate new strategies for advancing tumor immunotherapies.
Collapse
Affiliation(s)
- Qizhao Huang
- Institute of Immunological Innovation and Translation, Chongqing Medical University, Chongqing, China; Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Lifan Xu
- Institute of Immunology, Third Military Medical University, Chongqing, China; National Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China.
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, China.
| |
Collapse
|
16
|
Amodio G, Giacomini G, Boeri L, Raffo M, Cilio S, Pozzi E, Belladelli F, Negri F, Ferrara AM, d'Arma A, Santoni de Sio FR, Pagliardini L, Papaleo E, Ventimiglia E, Alfano M, Montorsi F, Salonia A, Gregori S. Specific types of male infertility are correlated with T cell exhaustion or senescence signatures. Nat Commun 2025; 16:971. [PMID: 39856063 PMCID: PMC11759947 DOI: 10.1038/s41467-025-56193-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
The association between male infertility and health status has yet to be unraveled. Here, by combining multiparameter phenotyping and scRNA-seq, we delineate the immune status of infertile men both at the semen and systemic levels. We first observe that young infertile men have a pro-inflammatory milieu with increased frequency of myeloid cells and inflammatory mediators in the seminal fluid and the peripheral blood, which are immune alterations typically observed in healthy elderly men. Transcriptomic profiling confirms the upregulation of genes associated with the interferon-gamma and -alpha responses in peripheral blood T cells of infertile men with oligo-astheno-teratozoospermia or non-obstructive azoospermia, with distinct T cell signatures of exhaustion and senescence discriminating the two infertile conditions. These findings provide evidence that subtypes of male infertility are characterized by specific immune signatures and unravel the potential link between infertility and the risk of developing secondary diseases.
Collapse
Affiliation(s)
- Giada Amodio
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS Ospedale San Raffaele, Milan, Italy
| | - Giorgia Giacomini
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS Ospedale San Raffaele, Milan, Italy
| | - Luca Boeri
- IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Department of Urology, Milan, Italy
| | - Massimiliano Raffo
- Division of Experimental Oncology/Unit of Urology; URI; IRCCS Ospedale San Raffaele, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Simone Cilio
- Division of Experimental Oncology/Unit of Urology; URI; IRCCS Ospedale San Raffaele, Milan, Italy
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, Urology Unit, University of Naples "Federico II", Naples, Italy
| | - Edoardo Pozzi
- Division of Experimental Oncology/Unit of Urology; URI; IRCCS Ospedale San Raffaele, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Federico Belladelli
- Division of Experimental Oncology/Unit of Urology; URI; IRCCS Ospedale San Raffaele, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Fausto Negri
- Division of Experimental Oncology/Unit of Urology; URI; IRCCS Ospedale San Raffaele, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Anna Maria Ferrara
- Division of Experimental Oncology/Unit of Urology; URI; IRCCS Ospedale San Raffaele, Milan, Italy
| | - Alessia d'Arma
- Division of Experimental Oncology/Unit of Urology; URI; IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Luca Pagliardini
- Reproductive Sciences Laboratory, Obstetrics and Gynaecology Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Enrico Papaleo
- Reproductive Sciences Laboratory, Obstetrics and Gynaecology Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Eugenio Ventimiglia
- Division of Experimental Oncology/Unit of Urology; URI; IRCCS Ospedale San Raffaele, Milan, Italy
| | - Massimo Alfano
- Division of Experimental Oncology/Unit of Urology; URI; IRCCS Ospedale San Raffaele, Milan, Italy
| | - Francesco Montorsi
- Division of Experimental Oncology/Unit of Urology; URI; IRCCS Ospedale San Raffaele, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Salonia
- Division of Experimental Oncology/Unit of Urology; URI; IRCCS Ospedale San Raffaele, Milan, Italy.
- University Vita-Salute San Raffaele, Milan, Italy.
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
17
|
Wei K, Li R, Zhao X, Xie B, Xie T, Sun Q, Chen Y, Wei P, Xu W, Guo X, Zhao Z, Feng H, Ni L, Dong C. TRIM28 is an essential regulator of three-dimensional chromatin state underpinning CD8 + T cell activation. Nat Commun 2025; 16:750. [PMID: 39820353 PMCID: PMC11739657 DOI: 10.1038/s41467-025-56029-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 01/04/2025] [Indexed: 01/19/2025] Open
Abstract
T cell activation is accompanied by extensive changes in epigenome. However, the high-ordered chromatin organization underpinning CD8+ T cell activation is not fully known. Here, we show extensive changes in the three-dimensional genome during CD8+ T cell activation, associated with changes in gene transcription. We show that CD8+ T-cell-specific deletion of Trim28 in mice disrupts autocrine IL-2 production and leads to impaired CD8+ T cell activation in vitro and in vivo. Mechanistically, TRIM28 binds to regulatory regions of genes associated with the formation of chromosomal loops during activation. At the loop anchor regions, TRIM28-occupancy overlaps with that of CTCF, a factor known for defining the boundaries of topologically associating domains and for forming of the loop anchors. In the absence of Trim28, RNA Pol II and cohesin binding to these regions diminishes, and the chromosomal structure required for the active state is disrupted. These results thus identify a critical role for TRIM28-dependent chromatin topology in gene transcription in activated CD8+ T cells.
Collapse
Affiliation(s)
- Kun Wei
- Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Ruifeng Li
- Institute for Immunology, Tsinghua University, Beijing, 100084, China
- Peking University-Tsinghua University Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaohong Zhao
- Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Bowen Xie
- Institute for Immunology, Tsinghua University, Beijing, 100084, China
- Peking University-Tsinghua University Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Tian Xie
- Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Qinli Sun
- Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Yongzhen Chen
- Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Peng Wei
- Institute for Immunology, Tsinghua University, Beijing, 100084, China
- Peking University-Tsinghua University Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wei Xu
- Institute for Immunology, Tsinghua University, Beijing, 100084, China
- Peking University-Tsinghua University Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xinyi Guo
- Institute for Immunology, Tsinghua University, Beijing, 100084, China
- Peking University-Tsinghua University Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zixuan Zhao
- Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Han Feng
- Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Ling Ni
- Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Chen Dong
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine- Affiliated Renji Hospital, Shanghai, 200127, China.
- Research Unit of Immune Regulation and Immune Diseases of Chinese Academy of Medical Sciences, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, 200127, China.
- Westlake University School of Medicine, Hangzhou, Zhejiang, 310030, China.
| |
Collapse
|
18
|
Hou Y, Zak J, Shi Y, Pratumchai I, Dinner B, Wang W, Qin K, Weber EW, Teijaro JR, Wu P. Transient EZH2 Suppression by Tazemetostat during In Vitro Expansion Maintains T-Cell Stemness and Improves Adoptive T-Cell Therapy. Cancer Immunol Res 2025; 13:47-65. [PMID: 39365901 PMCID: PMC11717634 DOI: 10.1158/2326-6066.cir-24-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/13/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
The histone methyltransferase enhancer of zeste homolog 2 (EZH2) plays important roles in T-cell differentiation, proliferation, and function. Previous studies have demonstrated that genetic deletion of EZH2 in CD8+ or total T cells impairs their antiviral and antitumor activities, cytokine production, and ability to expand upon rechallenge. Contrary to the detrimental role of deleting T cell-intrinsic EZH2, in this study, we demonstrated that transient inhibition of EZH2 in T cells prior to the phenotypic onset of exhaustion with a clinically approved inhibitor, tazemetostat (Taz), delayed their dysfunctional progression and preserved T-cell stemness and polyfunctionality but had no negative impact on cell proliferation. Taz-induced T-cell epigenetic reprogramming increased the expression of the self-renewal T-cell transcription factor TCF1 by reducing H3K27 methylation at its promoter preferentially in rapidly dividing T cells. In a murine melanoma model, T cells depleted of EZH2 induced poor tumor control, whereas adoptively transferred T cells pretreated with Taz exhibited superior antitumor immunity, especially when used in combination with anti-PD-1 blockade. Collectively, these data highlight the potential of transient epigenetic reprogramming by EZH2 inhibition to enhance adoptive T-cell immunotherapy.
Collapse
Affiliation(s)
- Yingqin Hou
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Authors contributed equally
| | - Jaroslav Zak
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Authors contributed equally
| | - Yujie Shi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Isaraphorn Pratumchai
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Brandon Dinner
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wenjian Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ke Qin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Evan W. Weber
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - John R. Teijaro
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
19
|
Wang R, Dong X, Zhang X, Liao J, Cui W, Li W. Exploring viral mimicry combined with epigenetics and tumor immunity: new perspectives in cancer therapy. Int J Biol Sci 2025; 21:958-973. [PMID: 39897033 PMCID: PMC11781167 DOI: 10.7150/ijbs.103877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/20/2024] [Indexed: 02/04/2025] Open
Abstract
Viral mimicry refers to an active antiviral response triggered by the activation of endogenous retroviruses (ERVs), usually manifested by the formation of double-stranded RNA (dsRNA) and activation of the cellular interferon response, which activates the immune system and produces anti-tumor effects. Epigenetic studies have shown that epigenetic modifications (e.g. DNA methylation, histone modifications, etc.) play a crucial role in tumorigenesis, progression, and treatment resistance. Particularly, alterations in DNA methylation may be closely associated with the suppression of ERVs expression, and treatment by demethylation may restore ERVs activity and thus strengthen the tumor immune response. Therefore, we propose that viral mimicry can induce immune responses in the tumor microenvironment by activating the expression of ERVs, and that epigenetic alterations may play a key regulatory role in this process. In this paper, we review the intersection of viral mimicry, epigenetics and tumor immunotherapy, and explore the possible interactions and synergistic effects among the three, aiming to provide a new theoretical basis and potential strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Ruirui Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University. Tongzipo Road 138, Changsha, Hunan, People's Republic of China
| | - Xin Dong
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiongjian Zhang
- Department of Radiology, The Third Xiangya Hospital of Central South University. Tongzipo Road 138, Changsha, Hunan, People's Republic of China
| | - Jinzhuang Liao
- Department of Radiology, The Third Xiangya Hospital of Central South University. Tongzipo Road 138, Changsha, Hunan, People's Republic of China
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Cui
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University. Tongzipo Road 138, Changsha, Hunan, People's Republic of China
| |
Collapse
|
20
|
Sasaki Y, Maeda T, Hojo M, Miura T, Ishikawa K, Funayama E, Okada K, Yamamoto Y. Synergistic anti-tumor effects of oncolytic virus and anti-programmed cell death protein 1 antibody combination therapy: For suppression of lymph node and distant metastasis in a murine melanoma model. Biochem Biophys Res Commun 2024; 740:151011. [PMID: 39571230 DOI: 10.1016/j.bbrc.2024.151011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 12/01/2024]
Abstract
It is believed that oncolytic viruses (OVs) exert both direct anti-tumor effects by intratumoral injection as well as indirect anti-tumor effects by activating systemic immunity. In phase III clinical trials, OV and anti-programmed cell death-1 (aPD-1) antibody combination therapy showed no significant differences in overall survival and progression-free survival in patients with unresectable advanced melanoma. In the study, OVs can exert only indirect anti-tumor effects in non-injected, systemic lesions. If the tumor is at a stage where both direct and indirect anti-tumor effects of OVs can be expected, OVs may further enhance the therapeutic effect, in addition to the clinically expected therapeutic effect. Therefore, we investigated whether canerpaturev (C-REV) and aPD-1 antibody combination therapy suppresses tumor progression in a murine melanoma model. Our findings showed that the C-REV and aPD-1 antibody combination therapy suppressed tumor progression in a murine melanoma model. The combination therapy stimulated systemic immunity in lymphoid tissues by activating helper T cells and B cells to enhance adaptive and humoral immunity, as well as by increasing effector/memory T cell fractions. Synergistically enhanced systemic anti-tumor effects suppressed lymph node and lung metastases. These findings suggest that direct anti-tumor effects by infecting and destroying cancer cells from within and indirect anti-tumor effects enhanced by the combination therapy worked simultaneously to suppress tumor progression. Our results may provide evidence to support the usefulness of OV and aPD-1 antibody combination therapy as a neoadjuvant therapy in the surgical treatment of melanoma.
Collapse
Affiliation(s)
- Yuki Sasaki
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan.
| | - Taku Maeda
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan.
| | - Masahiro Hojo
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan.
| | - Takahiro Miura
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan.
| | - Kosuke Ishikawa
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan.
| | - Emi Funayama
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan.
| | - Kazufumi Okada
- Data Science Center, Promotion Unit, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Japan.
| | - Yuhei Yamamoto
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan.
| |
Collapse
|
21
|
Zhang Y, Guo J, Chen Z, Chang Y, Zhang X, Liu Z, Li X, Zha X, Sun G, Li Y. Triclocarban disrupts the activation and differentiation of human CD8 + T cells by suppressing the vitamin D receptor signaling. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136096. [PMID: 39383692 DOI: 10.1016/j.jhazmat.2024.136096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Triclocarban (TCC) is a widely applied environmental endocrine-disrupting chemical (EDC). Similar to most of EDCs, TCC potentially damages the immunity of various species. However, whether and how TCC impacts the adaptive immunity in mammals has yet to be determined. Herein, we discovered that TCC disrupts the activation and differentiation of CD8+ T cells in primary human peripheral blood samples, purified CD8+ T cells, and in mice in vivo. Mechanistically, TCC might block the activation of the vitamin D receptor (VDR) and reduce the synthesis of cholesterol, a precursor of vitamin D, resulting in inhibition of VDR signaling due to the suppression of both its ligand and the receptor itself by TCC. Our findings elucidate the hazard and potential mechanisms of TCC in mammalian adaptive immunity and highlighted VDR as a potential therapeutic target for the immunodeficiency caused by TCC.
Collapse
Affiliation(s)
- Yikai Zhang
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China; Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China
| | - Jiafan Guo
- Department of Clinical Laboratory, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Zhixi Chen
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China
| | - Yiming Chang
- Department of Pediatrics, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Xingwei Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Zirui Liu
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China
| | - Xinye Li
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China
| | - Xianfeng Zha
- Department of Clinical Laboratory, First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| | - Guodong Sun
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China.
| | - Yangqiu Li
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
22
|
Liu Z, Li YR, Yang Y, Zhu Y, Yuan W, Hoffman T, Wu Y, Zhu E, Zarubova J, Shen J, Nan H, Yeh KW, Hasani-Sadrabadi MM, Zhu Y, Fang Y, Ge X, Li Z, Soto J, Hsiai T, Yang L, Li S. Viscoelastic synthetic antigen-presenting cells for augmenting the potency of cancer therapies. Nat Biomed Eng 2024; 8:1615-1633. [PMID: 39455719 DOI: 10.1038/s41551-024-01272-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
The use of synthetic antigen-presenting cells to activate and expand engineered T cells for the treatment of cancers typically results in therapies that are suboptimal in effectiveness and durability. Here we describe a high-throughput microfluidic system for the fabrication of synthetic cells mimicking the viscoelastic and T-cell-activation properties of antigen-presenting cells. Compared with rigid or elastic microspheres, the synthetic viscoelastic T-cell-activating cells (SynVACs) led to substantial enhancements in the expansion of human CD8+ T cells and to the suppression of the formation of regulatory T cells. Notably, activating and expanding chimaeric antigen receptor (CAR) T cells with SynVACs led to a CAR-transduction efficiency of approximately 90% and to substantial increases in T memory stem cells. The engineered CAR T cells eliminated tumour cells in a mouse model of human lymphoma, suppressed tumour growth in mice with human ovarian cancer xenografts, persisted for longer periods and reduced tumour-recurrence risk. Our findings underscore the crucial roles of viscoelasticity in T-cell engineering and highlight the utility of SynVACs in cancer therapy.
Collapse
Affiliation(s)
- Zeyang Liu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yan-Ruide Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Youcheng Yang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yu Zhu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Weihao Yuan
- Section of Restorative Dentistry, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Tyler Hoffman
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yifan Wu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Enbo Zhu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jana Zarubova
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jun Shen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Haochen Nan
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kun-Wei Yeh
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Yichen Zhu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ying Fang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xinyang Ge
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zhizhong Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jennifer Soto
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tzung Hsiai
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lili Yang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Guo X, Li X, Wang S, Shi Y, Huang J, Liu X, Lu Y, Zhang J, Luo L, You J. Optimizing Adoptive Cell Therapy for Solid Tumors via Epigenetic Regulation of T-cell Destiny. Adv Healthc Mater 2024; 13:e2402209. [PMID: 39301920 DOI: 10.1002/adhm.202402209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/03/2024] [Indexed: 09/22/2024]
Abstract
Adoptive cell therapy (ACT) emerged as a promising approach for cancer treatment, yet its application in solid tumors faced challenges such as inadequate tumor infiltration and cellular dysfunction. Histone acetylation is reported to play a crucial role in restoring T-cell function within tumor tissues. Building upon previous research, a novel strategy involving the co-loading of two drugs, G3C12 and vorinostat (SAHA), into PLGA microspheres to form G3C12+SAHA@PLGA is developed for intratumoral injection. The G3C12 peptide enhances adoptive T-cell recruitment to the tumor site by modulating the binding state of IFN-γ. While SAHA, a histone deacetylase inhibitor, promotes memory phenotypes of infiltrating T-cells and prevents their transition to an exhausted state. This synergistic approach effectively augmentes the efficacy of ACT in the "cold" tumor model (4T1) or the "hot" tumor model (CT26). These findings highlight the potential of combining epigenetic regulation with recruitment signaling as a means to enhance the therapeutic impact of ACT in treating solid tumors.
Collapse
Affiliation(s)
- Xuemeng Guo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Xiang Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Jiaxin Huang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Xu Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310006, P. R. China
- The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang, 310000, P. R. China
- Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang, 321299, P. R. China
| |
Collapse
|
24
|
Plaugher DR, Childress AR, Gosser CM, Esoe DP, Naughton KJ, Hao Z, Brainson CF. Therapeutic potential of tumor-infiltrating lymphocytes in non-small cell lung cancer. Cancer Lett 2024; 605:217281. [PMID: 39369769 PMCID: PMC11560632 DOI: 10.1016/j.canlet.2024.217281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide, with poor outcomes even for those diagnosed at early stages. Current standard-of-care for most non-small cell lung cancer (NSCLC) patients involves an array of chemotherapy, radiotherapy, immunotherapy, targeted therapy, and surgical resection depending on the stage and location of the cancer. While patient outcomes have certainly improved, advances in highly personalized care remain limited. However, there is growing excitement around harnessing the power of tumor-infiltrating lymphocytes (TILs) through the use of adoptive cell transfer (ACT) therapy. These TILs are naturally occurring, may already recognize tumor-specific antigens, and can have direct anti-cancer effect. In this review, we highlight comparisons of various ACTs, including a brief TIL history, show current advances and successes of TIL therapy in NSCLC, discuss the potential roles for epigenetics in T cell expansion, and highlight challenges and future directions of the field to combat NSCLC in a personalized manner.
Collapse
Affiliation(s)
- Daniel R Plaugher
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA.
| | - Avery R Childress
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Christian M Gosser
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Dave-Preston Esoe
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Kassandra J Naughton
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Zhonglin Hao
- Department of Internal Medicine - Medical Oncology, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Christine F Brainson
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
25
|
LaFleur MW, D’Andrea JM, Patterson DG, Streeter IS, Coxe MA, Osborn JF, Milling LE, Tjokrosurjo Q, Gillis JE, Nguyen TH, Schwartz MA, Hacohen N, Doench JG, Sharpe AH. In Vivo CRISPR Screening Reveals CHD7 as a Positive Regulator of Short-lived Effector Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1528-1541. [PMID: 39373572 PMCID: PMC11578095 DOI: 10.4049/jimmunol.2400213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024]
Abstract
CD8+ T cells differentiate into two subpopulations in response to acute viral infection: memory precursor effector cells (MPECs) and short-lived effector cells (SLECs). MPECs and SLECs are epigenetically distinct; however, the epigenetic regulators required for formation of these subpopulations are mostly unknown. In this study, we performed an in vivo CRISPR screen in murine naive CD8+ T cells to identify the epigenetic regulators required for MPEC and SLEC formation, using the acute lymphocytic choriomeningitis virus Armstrong infection model. We identified the ATP-dependent chromatin remodeler CHD7 (chromodomain-helicase DNA-binding protein 7) as a positive regulator of SLEC formation, as knockout (KO) of Chd7 reduced SLECs numerically. In contrast, KO of Chd7 increased the formation of central memory T cells following pathogen clearance yet attenuated memory cell expansion following a rechallenge. These findings establish CHD7 as a novel positive regulator of SLEC and a negative regulator of central memory T cell formation.
Collapse
Affiliation(s)
- Martin W. LaFleur
- Department of Immunology, Blavatnik Institute, Harvard
Medical School, Boston, MA 02115
- Gene Lay Institute of Immunology and Inflammation, Brigham
and Women’s Hospital, Massachusetts General Hospital, and Harvard Medical
School, Boston, MA 02115
| | - Jasmin M. D’Andrea
- Department of Immunology, Blavatnik Institute, Harvard
Medical School, Boston, MA 02115
- Gene Lay Institute of Immunology and Inflammation, Brigham
and Women’s Hospital, Massachusetts General Hospital, and Harvard Medical
School, Boston, MA 02115
| | - Dillon G. Patterson
- Department of Immunology, Blavatnik Institute, Harvard
Medical School, Boston, MA 02115
- Gene Lay Institute of Immunology and Inflammation, Brigham
and Women’s Hospital, Massachusetts General Hospital, and Harvard Medical
School, Boston, MA 02115
| | - Ivy S.L. Streeter
- Department of Immunology, Blavatnik Institute, Harvard
Medical School, Boston, MA 02115
- Gene Lay Institute of Immunology and Inflammation, Brigham
and Women’s Hospital, Massachusetts General Hospital, and Harvard Medical
School, Boston, MA 02115
| | - Matthew A. Coxe
- Department of Immunology, Blavatnik Institute, Harvard
Medical School, Boston, MA 02115
- Gene Lay Institute of Immunology and Inflammation, Brigham
and Women’s Hospital, Massachusetts General Hospital, and Harvard Medical
School, Boston, MA 02115
| | - Jossef F. Osborn
- Department of Immunology, Blavatnik Institute, Harvard
Medical School, Boston, MA 02115
- Gene Lay Institute of Immunology and Inflammation, Brigham
and Women’s Hospital, Massachusetts General Hospital, and Harvard Medical
School, Boston, MA 02115
| | - Lauren E. Milling
- Department of Immunology, Blavatnik Institute, Harvard
Medical School, Boston, MA 02115
- Gene Lay Institute of Immunology and Inflammation, Brigham
and Women’s Hospital, Massachusetts General Hospital, and Harvard Medical
School, Boston, MA 02115
| | - Qin Tjokrosurjo
- Department of Immunology, Blavatnik Institute, Harvard
Medical School, Boston, MA 02115
- Gene Lay Institute of Immunology and Inflammation, Brigham
and Women’s Hospital, Massachusetts General Hospital, and Harvard Medical
School, Boston, MA 02115
| | - Jacob E. Gillis
- Department of Immunology, Blavatnik Institute, Harvard
Medical School, Boston, MA 02115
- Gene Lay Institute of Immunology and Inflammation, Brigham
and Women’s Hospital, Massachusetts General Hospital, and Harvard Medical
School, Boston, MA 02115
| | - Thao H. Nguyen
- Department of Immunology, Blavatnik Institute, Harvard
Medical School, Boston, MA 02115
- Gene Lay Institute of Immunology and Inflammation, Brigham
and Women’s Hospital, Massachusetts General Hospital, and Harvard Medical
School, Boston, MA 02115
| | - Marc A. Schwartz
- Massachusetts General Hospital Cancer Center,
Department of Medicine, Massachusetts General Hospital, Harvard Medical School,
Boston, MA 02114
- Broad Institute of MIT and Harvard, Cambridge, MA
02142
- Division of Hematology/Oncology, Boston Children’s
Hospital, Boston, MA 02115
| | - Nir Hacohen
- Massachusetts General Hospital Cancer Center,
Department of Medicine, Massachusetts General Hospital, Harvard Medical School,
Boston, MA 02114
- Broad Institute of MIT and Harvard, Cambridge, MA
02142
| | | | - Arlene H. Sharpe
- Department of Immunology, Blavatnik Institute, Harvard
Medical School, Boston, MA 02115
- Gene Lay Institute of Immunology and Inflammation, Brigham
and Women’s Hospital, Massachusetts General Hospital, and Harvard Medical
School, Boston, MA 02115
- Broad Institute of MIT and Harvard, Cambridge, MA
02142
| |
Collapse
|
26
|
Zhang H, Luo X, Yang W, Wu Z, Zhao Z, Pei X, Zhang X, Chen C, Lei JH, Shi Q, Zhao Q, Chen Y, Wu W, Zeng Z, Ju HQ, Qiu M, Liu J, Shen B, Chen M, Chen J, Deng CX, Xu RH, Hou J. YTHDF2 upregulation and subcellular localization dictate CD8 T cell polyfunctionality in anti-tumor immunity. Nat Commun 2024; 15:9559. [PMID: 39500904 PMCID: PMC11538425 DOI: 10.1038/s41467-024-53997-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
RNA methylation is an important regulatory process to determine immune cell function but how it affects the anti-tumor activity of CD8 T cells is not fully understood. Here we show that the N6-methyladenosine (m6A) RNA reader YTHDF2 is highly expressed in early effector or effector-like CD8 T cells. We find that YTHDF2 facilitates nascent RNA synthesis, and m6A recognition is fundamental for this distinctively nuclear function of the protein, which also reinforces its autoregulation at the RNA level. Loss of YTHDF2 in T cells exacerbates tumor progression and confers unresponsiveness to PD-1 blockade in mice and in humans. In addition to initiating RNA decay that is necessary for mitochondrial fitness, YTHDF2 orchestrates chromatin changes that promote T cell polyfunctionality. YTHDF2 interacts with IKZF1/3, which is important for sustained transcription of their target genes. Accordingly, immunotherapy-induced efficacy could be largely restored in YTHDF2-deficient T cells through combinational use of IKZF1/3 inhibitor lenalidomide in a mouse model. Thus, YTHDF2 coordinates epi-transcriptional and transcriptional networks to potentiate T cell immunity, which could inform therapeutic intervention.
Collapse
Affiliation(s)
- Haiyan Zhang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontier Science Center for Precision Oncology, University of Macau, Macau, SAR, China
| | - Xiaojing Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Wei Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Translational Research Center, Zhuhai UM Science & Technology Research Institute, Zhuhai, China
| | - Zhiying Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Zhicong Zhao
- Department of Systems Biology, The Beckman Research Institute of City of Hope, Duarte, CA, USA
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Pei
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontier Science Center for Precision Oncology, University of Macau, Macau, SAR, China
| | - Xue Zhang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontier Science Center for Precision Oncology, University of Macau, Macau, SAR, China
| | - Chonghao Chen
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontier Science Center for Precision Oncology, University of Macau, Macau, SAR, China
| | - Josh Haipeng Lei
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontier Science Center for Precision Oncology, University of Macau, Macau, SAR, China
| | - Qingxia Shi
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontier Science Center for Precision Oncology, University of Macau, Macau, SAR, China
| | - Qi Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Yanxing Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Wenwei Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Zhaolei Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Huai-Qiang Ju
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Miaozhen Qiu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Jun Liu
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Minshan Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianjun Chen
- Department of Systems Biology, The Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Chu-Xia Deng
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontier Science Center for Precision Oncology, University of Macau, Macau, SAR, China
- Translational Research Center, Zhuhai UM Science & Technology Research Institute, Zhuhai, China
| | - Rui-Hua Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China.
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Jiajie Hou
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontier Science Center for Precision Oncology, University of Macau, Macau, SAR, China.
- Translational Research Center, Zhuhai UM Science & Technology Research Institute, Zhuhai, China.
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
27
|
Lam N, Lee Y, Farber DL. A guide to adaptive immune memory. Nat Rev Immunol 2024; 24:810-829. [PMID: 38831162 DOI: 10.1038/s41577-024-01040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 06/05/2024]
Abstract
Immune memory - comprising T cells, B cells and plasma cells and their secreted antibodies - is crucial for human survival. It enables the rapid and effective clearance of a pathogen after re-exposure, to minimize damage to the host. When antigen-experienced, memory T cells become activated, they proliferate and produce effector molecules at faster rates and in greater magnitudes than antigen-inexperienced, naive cells. Similarly, memory B cells become activated and differentiate into antibody-secreting cells more rapidly than naive B cells, and they undergo processes that increase their affinity for antigen. The ability of T cells and B cells to form memory cells after antigen exposure is the rationale behind vaccination. Understanding immune memory not only is crucial for the design of more-efficacious vaccines but also has important implications for immunotherapies in infectious disease and cancer. This 'guide to' article provides an overview of the current understanding of the phenotype, function, location, and pathways for the generation, maintenance and protective capacity of memory T cells and memory B cells.
Collapse
Affiliation(s)
- Nora Lam
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - YoonSeung Lee
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
28
|
Wang B, Bian Q. SATB1 prevents immune cell infiltration by regulating chromatin organization and gene expression of a chemokine gene cluster in T cells. Commun Biol 2024; 7:1304. [PMID: 39394451 PMCID: PMC11470149 DOI: 10.1038/s42003-024-07021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024] Open
Abstract
SATB1, a key regulator of T cell development, governs lineage-specific transcriptional programs upon T cell activation. The absence of SATB1 has been linked to the initiation and progression of autoimmunity. However, its precise roles in this process remain incompletely understood. Here we show that conditional knockout of Satb1 in CD4+ T cells in mice led to T cell hyperactivation and inflammatory cell infiltration across multiple organs. Transcriptional profiling on activated T cells revealed that the loss of SATB1 led to aberrant upregulation of CC chemokines. Treating Satb1 conditional knockout mice with CC chemokine receptor inhibitor alleviated inflammatory cell infiltration. Intriguingly, SATB1's transcriptional regulation of chemokine genes could not be attributed to its direct binding to chemokine promoters. Instead, SATB1 exerted its regulatory effects by controlling higher-order chromatin organization at a CC chemokine locus. The loss of SATB1 led to the emergence of a new chromatin domain encompassing the Ccl3, Ccl4, Ccl5, Ccl6, and Ccl9 genes and a distal enhancer, resulting in increased contacts between the enhancer and all five chemokine genes, thus inducing their upregulation. Collectively, these results demonstrate that SATB1 protects organs from immune cell infiltration by regulating chemokine expression, providing valuable insights into the development of autoimmunity-related phenotypes.
Collapse
Affiliation(s)
- Bao Wang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Bian
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
29
|
Chiec L, Bruno DS. Immunotherapy for Treatment of Pleural Mesothelioma: Current and Emerging Therapeutic Strategies. Int J Mol Sci 2024; 25:10861. [PMID: 39409190 PMCID: PMC11477297 DOI: 10.3390/ijms251910861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024] Open
Abstract
Pleural mesothelioma is a rare malignancy associated with asbestos exposure and very poor prognosis, with a 5-year overall survival of 12%. Outcomes may vary according to stage at time of diagnosis and histologic subtype. Most recently, clinical trials utilizing dual checkpoint inhibitor regimens and chemotherapy in combination with immune oncologic agents have demonstrated impactful changes in outcomes. In this article, we review studies that have led to the successful implementation of immunotherapy in clinical practice for the treatment of this disease and highlight ongoing clinical trials exploring the use of different immunotherapy strategies for the treatment of pleural mesothelioma. We also discuss the challenges of immunotherapy-based approaches in the context of mesothelioma and future strategies currently being investigated to overcome them.
Collapse
Affiliation(s)
- Lauren Chiec
- University Hospitals Seidman Cancer Center, Cleveland, OH 44106, USA
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Debora S. Bruno
- University Hospitals Seidman Cancer Center, Cleveland, OH 44106, USA
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
30
|
Cao C, Xu M, Wei Y, Peng T, Lin S, Liu X, Xu Y, Chu T, Liu S, Wu P, Hu B, Ding W, Li L, Ma D, Wu P. CXCR4 orchestrates the TOX-programmed exhausted phenotype of CD8 + T cells via JAK2/STAT3 pathway. CELL GENOMICS 2024; 4:100659. [PMID: 39317187 PMCID: PMC11602566 DOI: 10.1016/j.xgen.2024.100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/17/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024]
Abstract
Evidence from clinical trials suggests that CXCR4 antagonists enhance immunotherapy effectiveness in several cancers. However, the specific mechanisms through which CXCR4 contributes to immune cell phenotypes are not fully understood. Here, we employed single-cell transcriptomic analysis and identified CXCR4 as a marker gene in T cells, with CD8+PD-1high exhausted T (Tex) cells exhibiting high CXCR4 expression. By blocking CXCR4, the Tex phenotype was attenuated in vivo. Mechanistically, CXCR4-blocking T cells mitigated the Tex phenotype by regulating the JAK2-STAT3 pathway. Single-cell RNA/TCR/ATAC-seq confirmed that Cxcr4-deficient CD8+ T cells epigenetically mitigated the transition from functional to exhausted phenotypes. Notably, clinical sample analysis revealed that CXCR4+CD8+ T cells showed higher expression in patients with a non-complete pathological response. Collectively, these findings demonstrate the mechanism by which CXCR4 orchestrates CD8+ Tex cells and provide a rationale for combining CXCR4 antagonists with immunotherapy in clinical trials.
Collapse
Affiliation(s)
- Canhui Cao
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430199, China; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Miaochun Xu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430199, China; National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ye Wei
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430199, China; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ting Peng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430199, China; National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shitong Lin
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430199, China; National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaojie Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430199, China; National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yashi Xu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430199, China; National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Tian Chu
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430199, China; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shiyi Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430199, China; National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ping Wu
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430199, China; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bai Hu
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430199, China; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wencheng Ding
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430199, China; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Li Li
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430199, China; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ding Ma
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430199, China; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Peng Wu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430199, China; National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
31
|
Yang A, Poholek AC. Systems immunology approaches to study T cells in health and disease. NPJ Syst Biol Appl 2024; 10:117. [PMID: 39384819 PMCID: PMC11464710 DOI: 10.1038/s41540-024-00446-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/25/2024] [Indexed: 10/11/2024] Open
Abstract
T cells are dynamically regulated immune cells that are implicated in a variety of diseases ranging from infection, cancer and autoimmunity. Recent advancements in sequencing methods have provided valuable insights in the transcriptional and epigenetic regulation of T cells in various disease settings. In this review, we identify the key sequencing-based methods that have been applied to understand the transcriptomic and epigenomic regulation of T cells in diseases.
Collapse
Affiliation(s)
- Aaron Yang
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amanda C Poholek
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
32
|
Zandhuis ND, Guislain A, Popalzij A, Engels S, Popović B, Turner M, Wolkers MC. Regulation of IFN-γ production by ZFP36L2 in T cells is time-dependent. Eur J Immunol 2024; 54:e2451018. [PMID: 38980256 DOI: 10.1002/eji.202451018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024]
Abstract
CD8+ T cells kill target cells by releasing cytotoxic molecules and proinflammatory cytokines, such as TNF and IFN-γ. The magnitude and duration of cytokine production are defined by posttranscriptional regulation, and critical regulator herein are RNA-binding proteins (RBPs). Although the functional importance of RBPs in regulating cytokine production is established, the kinetics and mode of action through which RBPs control cytokine production are not well understood. Previously, we showed that the RBP ZFP36L2 blocks the translation of preformed cytokine encoding mRNA in quiescent memory T cells. Here, we uncover that ZFP36L2 regulates cytokine production in a time-dependent manner. T cell-specific deletion of ZFP36L2 (CD4-cre) had no effect on T-cell development or cytokine production during early time points (2-6 h) of T-cell activation. In contrast, ZFP36L2 specifically dampened the production of IFN-γ during prolonged T-cell activation (20-48 h). ZFP36L2 deficiency also resulted in increased production of IFN-γ production in tumor-infiltrating T cells that are chronically exposed to antigens. Mechanistically, ZFP36L2 regulates IFN-γ production at late time points of activation by destabilizing Ifng mRNA in an AU-rich element-dependent manner. Together, our results reveal that ZFP36L2 employs different regulatory nodules in effector and memory T cells to regulate cytokine production.
Collapse
Affiliation(s)
- Nordin D Zandhuis
- Sanquin Blood Supply Foundation, Department of Research, T cell differentiation Lab, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Landsteiner Laboratory, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Cancer center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Aurélie Guislain
- Sanquin Blood Supply Foundation, Department of Research, T cell differentiation Lab, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Landsteiner Laboratory, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Cancer center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Abeera Popalzij
- Sanquin Blood Supply Foundation, Department of Research, T cell differentiation Lab, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Landsteiner Laboratory, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Cancer center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Sander Engels
- Sanquin Blood Supply Foundation, Department of Research, T cell differentiation Lab, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Landsteiner Laboratory, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Cancer center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Branka Popović
- Sanquin Blood Supply Foundation, Department of Research, T cell differentiation Lab, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Landsteiner Laboratory, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Cancer center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Martin Turner
- Immunology Programme, The Babraham Institute, Cambridge, UK
| | - Monika C Wolkers
- Sanquin Blood Supply Foundation, Department of Research, T cell differentiation Lab, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Landsteiner Laboratory, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Cancer center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| |
Collapse
|
33
|
Fiorenza S, Zheng Y, Purushe J, Bock TJ, Sarthy J, Janssens DH, Sheih AS, Kimble EL, Kirchmeier D, Phi TD, Gauthier J, Hirayama AV, Riddell SR, Wu Q, Gottardo R, Maloney DG, Yang JYH, Henikoff S, Turtle CJ. Histone marks identify novel transcription factors that parse CAR-T subset-of-origin, clinical potential and expansion. Nat Commun 2024; 15:8309. [PMID: 39333103 PMCID: PMC11436946 DOI: 10.1038/s41467-024-52503-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024] Open
Abstract
Chimeric antigen receptor-modified T cell (CAR-T) immunotherapy has revolutionised blood cancer treatment. Parsing the genetic underpinnings of T cell quality and CAR-T efficacy is challenging. Transcriptomics inform CAR-T state, but the nature of dynamic transcription during activation hinders identification of transiently or minimally expressed genes, such as transcription factors, and over-emphasises effector and metabolism genes. Here we explore whether analyses of transcriptionally repressive and permissive histone methylation marks describe CAR-T cell functional states and therapeutic potential beyond transcriptomic analyses. Histone mark analyses improve identification of differences between naïve, central memory, and effector memory CD8 + T cell subsets of human origin, and CAR-T derived from these subsets. We find important differences between CAR-T manufactured from central memory cells of healthy donors and of patients. By examining CAR-T products from a clinical trial in lymphoma (NCT01865617), we find a novel association between the activity of the transcription factor KLF7 with in vivo CAR-T accumulation in patients and demonstrate that over-expression of KLF7 increases in vitro CAR-T proliferation and IL-2 production. In conclusion, histone marks provide a rich dataset for identification of functionally relevant genes not apparent by transcriptomics.
Collapse
Affiliation(s)
- S Fiorenza
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| | - Y Zheng
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Bioinformatics and Computational Biology Department, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - J Purushe
- Clinical Research Division, Fred Hutchinson Cancer Cente, Seattle, WA, USA
| | - T J Bock
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - J Sarthy
- Clinical Research Division, Fred Hutchinson Cancer Cente, Seattle, WA, USA
| | - D H Janssens
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - A S Sheih
- Clinical Research Division, Fred Hutchinson Cancer Cente, Seattle, WA, USA
| | - E L Kimble
- Clinical Research Division, Fred Hutchinson Cancer Cente, Seattle, WA, USA
| | - D Kirchmeier
- Clinical Research Division, Fred Hutchinson Cancer Cente, Seattle, WA, USA
| | - T D Phi
- Clinical Research Division, Fred Hutchinson Cancer Cente, Seattle, WA, USA
| | - J Gauthier
- Clinical Research Division, Fred Hutchinson Cancer Cente, Seattle, WA, USA
| | - A V Hirayama
- Clinical Research Division, Fred Hutchinson Cancer Cente, Seattle, WA, USA
| | - S R Riddell
- Clinical Research Division, Fred Hutchinson Cancer Cente, Seattle, WA, USA
| | - Q Wu
- Clinical Research Division, Fred Hutchinson Cancer Cente, Seattle, WA, USA
| | - R Gottardo
- Biomedical Data Sciences, Lausanne University Hospital, Lausanne, Switzerland
| | - D G Maloney
- Clinical Research Division, Fred Hutchinson Cancer Cente, Seattle, WA, USA
| | - J Y H Yang
- Sydney Precision Data Science Centre, The University of Sydney, Sydney, NSW, Australia
| | - S Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - C J Turtle
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Royal North Shore Hospital, St. Leonards, NSW, Australia
| |
Collapse
|
34
|
Wu Y, Liang X, Sun Y, Ning J, Dai Y, Jin S, Xu Y, Chen S, Pan L. A general pHLA-CD80 scaffold fusion protein to promote efficient antigen-specific T cell-based immunotherapy. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200827. [PMID: 39027379 PMCID: PMC11255371 DOI: 10.1016/j.omton.2024.200827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/23/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024]
Abstract
Inadequate antigen-specific T cells activation hampers immunotherapy due to complex antigen presentation. In addition, therapeutic in vivo T cell expansion is constrained by slow expansion rates and limited functionality. Herein, we introduce a model fusion protein termed antigen-presenting cell-mimic fusion protein (APC-mimic), designed to greatly mimicking the natural antigen presentation pattern of antigen-presenting cells and directly expand T cells both in vitro and in vivo. The APC-mimic comprises the cognate peptide-human leukocyte antigen (pHLA) complex and the co-stimulatory marker CD80, which are natural ligands on APCs. Following a single stimulation, APC-mimic leads to an approximately 400-fold increase in the polyclonal expansion of antigen-specific T cells compared with the untreated group in vitro without the requirement for specialized antigen-presenting cells. Through the combination of single-cell TCR sequencing (scTCR-seq) and single-cell RNA sequencing (scRNA-seq), we identify an approximately 600-fold monoclonal expansion clonotype among these polyclonal clonotypes. It also exhibits suitability for in vivo applications confirmed in the OT-1 mouse model. Furthermore, T cells expanded by APC-mimic effectively inhibits tumor growth in adoptive cell transfer (ACT) murine models. These findings pave the way for the versatile APC-mimic platform for personalized therapeutics, enabling direct expansion of polyfunctional antigen-specific T cell subsets in vitro and in vivo.
Collapse
Affiliation(s)
- Yue Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiao Liang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanping Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiangtao Ning
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yukun Dai
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shijie Jin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingchun Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuqing Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Precision Medicine on Tumor Therapeutics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
| | - Liqiang Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
35
|
Pospiech M, Beckford J, Kumar AMS, Tamizharasan M, Brito J, Liang G, Mangul S, Alachkar H. The DNA methylation landscape across the TCR loci in patients with acute myeloid leukemia. Int Immunopharmacol 2024; 138:112376. [PMID: 38917523 DOI: 10.1016/j.intimp.2024.112376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/09/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024]
Abstract
The capacity of T cells to initiate anti-leukemia immune responses is determined by the ability of their receptors (TCRs) to recognize leukemia neoantigens. Epigenetic mechanisms including DNA methylation contribute to shaping the TCR repertoire composition and diversity. The DNA hypomethylating agents (HMAs) have been widely used in the treatment of acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Whether DNA HMAs directly influence TCR gene loci methylation patterns remains unknown. By analyzing public datasets, we compared methylation patterns across TCR loci in AML patients and healthy controls. We also explored how HMAs influence TCR loci DNA methylation in patients with AML. While methylation patterns are largely conserved across the TCR loci, certain V genes exhibit high interindividual variability. Although overall methylation levels within the TCR loci did not show significant differences, specific sites, including 32 TRAV and 12 TRBV sites exhibited distinct methylation patterns when comparing T cells from healthy donors to those from patients with AML. In leukemic cells, decitabine treatment demethylates sites across the TRAV and TRBV genes. While not as significant, a similar pattern of demethylation is observed in T cells. Pretreatment AML samples exhibit higher methylation beta values in differentially methylated positions (DMPs) compared with non-DMPs. Methylation levels of certain TRAV and TRBV genes in leukemic cells are associated with patients' risk status. The presence of disease specific TCR loci methylated signatures that are associated with clinical outcome presents an opportunity for therapeutic intervention. HMAs can modulate the TCR loci methylation patterns, yet whether they could reprogram the TCR repertoire composition remains to be explored.
Collapse
MESH Headings
- Humans
- DNA Methylation
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/immunology
- Decitabine/pharmacology
- Decitabine/therapeutic use
- Receptors, Antigen, T-Cell/genetics
- T-Lymphocytes/immunology
- Epigenesis, Genetic
- Antimetabolites, Antineoplastic/therapeutic use
- Antimetabolites, Antineoplastic/pharmacology
Collapse
Affiliation(s)
- Mateusz Pospiech
- Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, the United States of America
| | - John Beckford
- Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, the United States of America
| | - Advaith Maya Sanjeev Kumar
- Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, the United States of America; Department of Computer Science, University of Southern California, Los Angeles, CA, the United States of America
| | - Mukund Tamizharasan
- Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, the United States of America; Department of Computer Science, University of Southern California, Los Angeles, CA, the United States of America
| | - Jaqueline Brito
- Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, the United States of America
| | - Gangning Liang
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, the United States of America
| | - Serghei Mangul
- Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, the United States of America
| | - Houda Alachkar
- Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, the United States of America.
| |
Collapse
|
36
|
Cisneros-Segura JA, Rodríguez-Rodríguez N, Albarrán-Godínez A, García-González HB, Rodríguez-Osorio CA, Valdés-Ferrer SI, Tapia-Urzúa G, Recillas-Targa F, Madera-Salcedo IK, Rosetti F, Crispín JC. Sepsis Impairs IFN-γ Production in CD8 T Cells through Changes in Local Chromatin Landscape. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:619-627. [PMID: 39037267 DOI: 10.4049/jimmunol.2300772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 06/27/2024] [Indexed: 07/23/2024]
Abstract
Sepsis is a complex condition of inflammatory and immune dysregulation, triggered by severe infection. In survivors, chronic inflammation and immune dysregulation linger, facilitating the emergence of infections. CD8 dysfunction contributes to immunosuppression in sepsis survivors. We devised an animal model that enabled us to identify and analyze CD8-intrinsic defects induced by sepsis. We adoptively transferred CD45.1 CD8 OT-I T cells into CD45.2 congenic mice and subjected them to cecal ligature and puncture, to induce abdominal sepsis. One month later, we isolated the transferred CD8 cells. Surface marker expression confirmed they had not been activated through the TCR. CD8 OT-I T cells isolated from septic (or sham-operated) mice were transferred to second recipients, which were challenged with OVA-expressing Listeria monocytogenes. We compared effector capacities between OT-I cells exposed to sepsis and control cells. Naive mice that received OT-I cells exposed to sepsis had higher bacterial burden and a shorter survival when challenged with OVA-expressing L. monocytogenes. OT-I cells isolated from septic mice produced less IFN-γ but had conserved activation, expansion potential, and cytotoxic function. We observed lower transcript levels of IFN-γ and of the long noncoding RNA Ifng-as1, a local regulator of the epigenetic landscape, in cells exposed to sepsis. Accordingly, local abundance of a histone modification characteristic of active promoter regions was reduced in sepsis-exposed CD8 T cells. Our results identify a mechanism through which inflammation in the context of sepsis affects CD8 T cell function intrinsically.
Collapse
Affiliation(s)
- J Alejandro Cisneros-Segura
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Noé Rodríguez-Rodríguez
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Adrián Albarrán-Godínez
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - H Benjamín García-González
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Carlos A Rodríguez-Osorio
- Departament of Critical Care, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Respiratory Intensive Care Unit, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico
| | - Sergio Iván Valdés-Ferrer
- Department of Neurology & Psychiatry, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Center for Biomedical Science, Feinstein Institutes for Medical Research, New York, NY
| | - Gustavo Tapia-Urzúa
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Félix Recillas-Targa
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Iris K Madera-Salcedo
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Florencia Rosetti
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José C Crispín
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Mexico City, Mexico
| |
Collapse
|
37
|
Tangella N, Cess CG, Ildefonso GV, Finley SD. Integrating mechanism-based T cell phenotypes into a model of tumor-immune cell interactions. APL Bioeng 2024; 8:036111. [PMID: 39175956 PMCID: PMC11341129 DOI: 10.1063/5.0205996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/21/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
Interactions between cancer cells and immune cells in the tumor microenvironment influence tumor growth and can contribute to the response to cancer immunotherapies. It is difficult to gain mechanistic insights into the effects of cell-cell interactions in tumors using a purely experimental approach. However, computational modeling enables quantitative investigation of the tumor microenvironment, and agent-based modeling, in particular, provides relevant biological insights into the spatial and temporal evolution of tumors. Here, we develop a novel agent-based model (ABM) to predict the consequences of intercellular interactions. Furthermore, we leverage our prior work that predicts the transitions of CD8+ T cells from a naïve state to a terminally differentiated state using Boolean modeling. Given the details incorporated to predict T cell state, we apply the integrated Boolean-ABM framework to study how the properties of CD8+ T cells influence the composition and spatial organization of tumors and the efficacy of an immune checkpoint blockade. Overall, we present a mechanistic understanding of tumor evolution that can be leveraged to study targeted immunotherapeutic strategies.
Collapse
Affiliation(s)
- Neel Tangella
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
| | - Colin G. Cess
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA
| | - Geena V. Ildefonso
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA
| | | |
Collapse
|
38
|
Yu Z, Sasidharan-Nair V, Buchta T, Bonifacius A, Khan F, Pietzsch B, Ahmadi H, Beckstette M, Niemz J, Hilgendorf P, Mausberg P, Keller A, Falk C, Busch DH, Schober K, Cicin-Sain L, Müller F, Brinkmann MM, Eiz-Vesper B, Floess S, Huehn J. DNA methylation profiling identifies TBKBP1 as potent amplifier of cytotoxic activity in CMV-specific human CD8+ T cells. PLoS Pathog 2024; 20:e1012581. [PMID: 39325839 PMCID: PMC11460711 DOI: 10.1371/journal.ppat.1012581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 10/08/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Epigenetic mechanisms stabilize gene expression patterns during CD8+ T cell differentiation. Although adoptive transfer of virus-specific T cells is clinically applied to reduce the risk of virus infection or reactivation in immunocompromised individuals, the DNA methylation pattern of virus-specific CD8+ T cells is largely unknown. Hence, we here performed whole-genome bisulfite sequencing of cytomegalovirus-specific human CD8+ T cells and found that they display a unique DNA methylation pattern consisting of 79 differentially methylated regions (DMRs) when compared to memory CD8+ T cells. Among the top demethylated DMRs in cytomegalovirus-specific CD8+ T cells was TBKBP1, coding for TBK-binding protein 1 that can interact with TANK-binding kinase 1 (TBK1) and mediate pro-inflammatory responses in innate immune cells downstream of intracellular virus sensing. Since TBKBP1 has not yet been reported in T cells, we aimed to unravel its role in virus-specific CD8+ T cells. TBKBP1 demethylation in terminal effector CD8+ T cells correlated with higher TBKBP1 expression at both mRNA and protein level, independent of alternative splicing of TBKBP1 transcripts. Notably, the distinct DNA methylation patterns in CD8+ T cell subsets was stable upon long-term in vitro culture. TBKBP1 overexpression resulted in enhanced TBK1 phosphorylation upon stimulation of CD8+ T cells and significantly improved their virus neutralization capacity. Collectively, our data demonstrate that TBKBP1 modulates virus-specific CD8+ T cell responses and could be exploited as therapeutic target to improve adoptive T cell therapies.
Collapse
Affiliation(s)
- Zheng Yu
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Varun Sasidharan-Nair
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Thalea Buchta
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Research Group Virology and Innate Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Agnes Bonifacius
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Thematical Translation Unit-Immunocompromised Host (TTU-IICH), partner site Hannover-Braunschweig, Germany
| | - Fawad Khan
- Department Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Centre for Individualized Infection Medicine (CIIM), a joint venture of HZI and Hannover Medical School, Hannover, Germany
| | - Beate Pietzsch
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Hosein Ahmadi
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Beckstette
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jana Niemz
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Philipp Hilgendorf
- Mikrobiologisches Institut–Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Philip Mausberg
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Andreas Keller
- Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken, Germany
| | - Christine Falk
- German Center for Infection Research (DZIF), Thematical Translation Unit-Immunocompromised Host (TTU-IICH), partner site Hannover-Braunschweig, Germany
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University Munich (TUM), Munich, Germany
- German Center for Infection Research (DZIF), Thematical Translation Unit-Immunocompromised Host (TTU-IICH), partner site Munich, Germany
| | - Kilian Schober
- Mikrobiologisches Institut–Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- FAU Profile Center Immunomedicine, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Luka Cicin-Sain
- German Center for Infection Research (DZIF), Thematical Translation Unit-Immunocompromised Host (TTU-IICH), partner site Hannover-Braunschweig, Germany
- Department Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Centre for Individualized Infection Medicine (CIIM), a joint venture of HZI and Hannover Medical School, Hannover, Germany
| | - Fabian Müller
- Integrative Cellular Biology and Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Melanie M. Brinkmann
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Research Group Virology and Innate Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Thematical Translation Unit-Immunocompromised Host (TTU-IICH), partner site Hannover-Braunschweig, Germany
| | - Stefan Floess
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jochen Huehn
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Cluster of Excellence Resolving Infection Susceptibility (RESIST; EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
39
|
Sparta B, Hamilton T, Natesan G, Aragones SD, Deeds EJ. Binomial models uncover biological variation during feature selection of droplet-based single-cell RNA sequencing. PLoS Comput Biol 2024; 20:e1012386. [PMID: 39241106 PMCID: PMC11410258 DOI: 10.1371/journal.pcbi.1012386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 09/18/2024] [Accepted: 08/05/2024] [Indexed: 09/08/2024] Open
Abstract
Effective analysis of single-cell RNA sequencing (scRNA-seq) data requires a rigorous distinction between technical noise and biological variation. In this work, we propose a simple feature selection model, termed "Differentially Distributed Genes" or DDGs, where a binomial sampling process for each mRNA species produces a null model of technical variation. Using scRNA-seq data where cell identities have been established a priori, we find that the DDG model of biological variation outperforms existing methods. We demonstrate that DDGs distinguish a validated set of real biologically varying genes, minimize neighborhood distortion, and enable accurate partitioning of cells into their established cell-type groups.
Collapse
Affiliation(s)
- Breanne Sparta
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, United States of America
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California, United States of America
| | - Timothy Hamilton
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California, United States of America
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, California, United States of America
| | - Gunalan Natesan
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California, United States of America
| | - Samuel D Aragones
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California, United States of America
| | - Eric J Deeds
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, United States of America
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California, United States of America
| |
Collapse
|
40
|
Qu Y, Gao N, Zhang S, Gao L, He B, Wang C, Gong C, Shi Q, Li Z, Yang S, Xiao Y. Role of N6-methyladenosine RNA modification in cancer. MedComm (Beijing) 2024; 5:e715. [PMID: 39252821 PMCID: PMC11381670 DOI: 10.1002/mco2.715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
N6-methyladenosine (m6A) is the most abundant modification of RNA in eukaryotic cells. Previous studies have shown that m6A is pivotal in diverse diseases especially cancer. m6A corelates with the initiation, progression, resistance, invasion, and metastasis of cancer. However, despite these insights, a comprehensive understanding of its specific roles and mechanisms within the complex landscape of cancer is still elusive. This review begins by outlining the key regulatory proteins of m6A modification and their posttranslational modifications (PTMs), as well as the role in chromatin accessibility and transcriptional activity within cancer cells. Additionally, it highlights that m6A modifications impact cancer progression by modulating programmed cell death mechanisms and affecting the tumor microenvironment through various cancer-associated immune cells. Furthermore, the review discusses how microorganisms can induce enduring epigenetic changes and oncogenic effect in microorganism-associated cancers by altering m6A modifications. Last, it delves into the role of m6A modification in cancer immunotherapy, encompassing RNA therapy, immune checkpoint blockade, cytokine therapy, adoptive cell transfer therapy, and direct targeting of m6A regulators. Overall, this review clarifies the multifaceted role of m6A modification in cancer and explores targeted therapies aimed at manipulating m6A modification, aiming to advance cancer research and improve patient outcomes.
Collapse
Affiliation(s)
- Yi Qu
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Nannan Gao
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Shengwei Zhang
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Limin Gao
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Bing He
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Chao Wang
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Chunli Gong
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Qiuyue Shi
- Department of Gastroenterology the First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Zhibin Li
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Shiming Yang
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Yufeng Xiao
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| |
Collapse
|
41
|
Cai W, Xiao C, Fan T, Deng Z, Wang D, Liu Y, Li C, He J. Targeting LSD1 in cancer: Molecular elucidation and recent advances. Cancer Lett 2024; 598:217093. [PMID: 38969160 DOI: 10.1016/j.canlet.2024.217093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/18/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
Histones are the main components of chromatin, functioning as an instructive scaffold to maintain chromosome structure and regulate gene expression. The dysregulation of histone modification is associated with various pathological processes, especially cancer initiation and development, and histone methylation plays a critical role. However, the specific mechanisms and potential therapeutic targets of histone methylation in cancer are not elucidated. Lys-specific demethylase 1A (LSD1) was the first identified demethylase that specifically removes methyl groups from histone 3 at lysine 4 or lysine 9, acting as a repressor or activator of gene expression. Recent studies have shown that LSD1 promotes cancer progression in multiple epigenetic regulation or non-epigenetic manners. Notably, LSD1 dysfunction is correlated with repressive cancer immunity. Many LSD1 inhibitors have been developed and clinical trials are exploring their efficacy in monotherapy, or combined with other therapies. In this review, we summarize the oncogenic mechanisms of LSD1 and the current applications of LSD1 inhibitors. We highlight that LSD1 is a promising target for cancer treatment. This review will provide the latest theoretical references for further understanding the research progress of oncology and epigenetics, deepening the updated appreciation of epigenetics in cancer.
Collapse
Affiliation(s)
- Wenpeng Cai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Di Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yixiao Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
42
|
Gong IY, Tran D, Saibil S, Laister RC, Kuruvilla J. Biomarkers of outcome in patients undergoing CD19 CAR-T therapy for large B cell lymphoma. Hemasphere 2024; 8:e130. [PMID: 39175824 PMCID: PMC11339649 DOI: 10.1002/hem3.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 08/24/2024] Open
Abstract
CD19-directed autologous chimeric antigen receptor T cell (CAR-T) therapy has transformed the management of relapsed/refractory (R/R) large B cell lymphoma (LBCL). Initially approved in the third line and beyond setting, CAR-T is now standard of care (SOC) for second-line treatment in patients with refractory disease or early relapse (progression within 12 months) following primary chemoimmunotherapy. Despite becoming SOC, most patients do not achieve complete response, and long-term cure is only observed in approximately 40% of patients. Accordingly, there is an urgent need to better understand the mechanisms of treatment failure and to identify patients that are unlikely to benefit from SOC CAR-T. The field needs robust biomarkers to predict treatment outcome, as better understanding of prognostic factors and mechanisms of resistance can inform on the design of novel treatment approaches for patients predicted to respond poorly to SOC CAR-T. This review aims to provide a comprehensive overview of clinical, molecular, imaging, and cellular features that have been shown to influence outcomes of CAR-T therapy in patients with R/R LBCL.
Collapse
Affiliation(s)
- Inna Y. Gong
- Princess Margaret Cancer CenterTorontoOntarioCanada
- Division of Medical Oncology and HematologyUniversity Health NetworkTorontoOntarioCanada
| | - Daisy Tran
- Princess Margaret Cancer CenterTorontoOntarioCanada
- Division of Medical Oncology and HematologyUniversity Health NetworkTorontoOntarioCanada
| | - Samuel Saibil
- Princess Margaret Cancer CenterTorontoOntarioCanada
- Division of Medical Oncology and HematologyUniversity Health NetworkTorontoOntarioCanada
- Department of ImmunologyUniversity of TorontoTorontoOntarioCanada
| | - Rob C. Laister
- Princess Margaret Cancer CenterTorontoOntarioCanada
- Division of Medical Oncology and HematologyUniversity Health NetworkTorontoOntarioCanada
| | - John Kuruvilla
- Princess Margaret Cancer CenterTorontoOntarioCanada
- Division of Medical Oncology and HematologyUniversity Health NetworkTorontoOntarioCanada
| |
Collapse
|
43
|
McCutcheon SR, Rohm D, Iglesias N, Gersbach CA. Epigenome editing technologies for discovery and medicine. Nat Biotechnol 2024; 42:1199-1217. [PMID: 39075148 DOI: 10.1038/s41587-024-02320-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/19/2024] [Indexed: 07/31/2024]
Abstract
Epigenome editing has rapidly evolved in recent years, with diverse applications that include elucidating gene regulation mechanisms, annotating coding and noncoding genome functions and programming cell state and lineage specification. Importantly, given the ubiquitous role of epigenetics in complex phenotypes, epigenome editing has unique potential to impact a broad spectrum of diseases. By leveraging powerful DNA-targeting technologies, such as CRISPR, epigenome editing exploits the heritable and reversible mechanisms of epigenetics to alter gene expression without introducing DNA breaks, inducing DNA damage or relying on DNA repair pathways.
Collapse
Affiliation(s)
- Sean R McCutcheon
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Dahlia Rohm
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Nahid Iglesias
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA.
| |
Collapse
|
44
|
Wang YY, Wang J, Wang S, Yang QC, Song A, Zhang MJ, Wang WD, Liu YT, Zhang J, Wang WM, Xu Z, Sun ZJ. Dual-Responsive Epigenetic Inhibitor Nanoprodrug Combined with Oncolytic Virus Synergistically Boost Cancer Immunotherapy by Igniting Gasdermin E-Mediated Pyroptosis. ACS NANO 2024. [PMID: 39038109 DOI: 10.1021/acsnano.4c03034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Cancer immunotherapy has emerged as a promising approach for the treatment of various cancers. However, the immunosuppressive tumor microenvironment (TME) limits the efficacy of current immunotherapies. In this study, we designed a dual-responsive DNA methyltransferase inhibitor nanoprodrug ACNPs for combination therapy with oncolytic herpes simplex virus (oHSV). We found that the epigenetic inhibitor 5-Azacytidine (5-Aza) upregulated gasdermin E (GSDME) expression at the gene level, whereas the oHSV decreased the ubiquitination and degradation of GSDME to elevate its levels. Based on these observations, we further discovered that ACNPs and oHSV synergistically enhanced GSDME-mediated pyroptosis. Additionally, the combination therapy of ACNPs and oHSV effectively inhibited tumor growth, remodeled the immunosuppressive TME, and improved the efficacy of immune checkpoint blockade (ICB) therapy. These results demonstrate the potential to overcome immunosuppression through synergistic combinations, offering a promising approach for cancer immunotherapy.
Collapse
Affiliation(s)
- Yuan-Yuan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, People's Republic of China
| | - Jingting Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, People's Republic of China
| | - Shuo Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, People's Republic of China
| | - Qi-Chao Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, People's Republic of China
| | - An Song
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, People's Republic of China
| | - Meng-Jie Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, People's Republic of China
| | - Wen-Da Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, People's Republic of China
| | - Yuan-Tong Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, People's Republic of China
| | - Junjie Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, People's Republic of China
| | - Wei-Ming Wang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Institute of Oral Precancerous Lesions, Xiangya Hospital, Research Center of Oral and Maxillofacial Tumor, National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, People's Republic of China
| | - Zhigang Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, People's Republic of China
- Yibin Academy of Southwest University, Yibin 644000, People's Republic of China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, People's Republic of China
| |
Collapse
|
45
|
Nakashima T, Kagoya Y. Current progress of CAR-T-cell therapy for patients with multiple myeloma. Int J Hematol 2024; 120:15-22. [PMID: 38777913 DOI: 10.1007/s12185-024-03794-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Currently available chimeric antigen receptor (CAR)-engineered T-cell therapies targeting B-cell maturation antigen (BCMA), namely, idecabtagene vicleucel and ciltacabtagene autoleucel, have shown marked efficacy against relapsed and refractory multiple myeloma. However, further improvement in CAR-T-cell function is warranted as most patients treated with these products eventually relapse due to various mechanisms such as antigen loss and T-cell dysfunction or disappearance. Strategies for improving CAR-T-cell function include targeting of dual antigens, enhancing cell longevity through genetic modification, and eliminating the immunosuppressive tumor microenvironment. Serious side effects can also occur after CAR-T-cell infusions. Although understanding of the molecular pathogenesis of cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome is growing, the unique movement disorder caused by BCMA-targeted therapy is less understood, and its molecular mechanisms must be further elucidated to establish better management strategies. In this article, we will review the current status of BCMA-targeting CAR-T-cell therapy. We will also highlight progress in the development of CAR-T cells targeting other antigens, as well as universal allogeneic CAR-T cells and bispecific antibodies.
Collapse
Affiliation(s)
- Takahiro Nakashima
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yuki Kagoya
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
46
|
Sun L, Jiao A, Liu H, Ding R, Yuan N, Yang B, Zhang C, Jia X, Wang G, Su Y, Zhang D, Shi L, Sun C, Zhang A, Zhang L, Zhang B. Targeting a disintegrin and metalloprotease (ADAM) 17-CD122 axis enhances CD8 + T cell effector differentiation and anti-tumor immunity. Signal Transduct Target Ther 2024; 9:152. [PMID: 38918390 PMCID: PMC11199508 DOI: 10.1038/s41392-024-01873-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 04/29/2024] [Accepted: 05/15/2024] [Indexed: 06/27/2024] Open
Abstract
CD8+ T cell immune responses are regulated by multi-layer networks, while the post-translational regulation remains largely unknown. Transmembrane ectodomain shedding is an important post-translational process orchestrating receptor expression and signal transduction through proteolytic cleavage of membrane proteins. Here, by targeting the sheddase A Disintegrin and Metalloprotease (ADAM)17, we defined a post-translational regulatory mechanism mediated by the ectodomain shedding in CD8+ T cells. Transcriptomic and proteomic analysis revealed the involvement of post-translational regulation in CD8+ T cells. T cell-specific deletion of ADAM17 led to a dramatic increase in effector CD8+ T cell differentiation and enhanced cytolytic effects to eliminate pathogens and tumors. Mechanistically, ADAM17 regulated CD8+ T cells through cleavage of membrane CD122. ADAM17 inhibition led to elevated CD122 expression and enhanced response to IL-2 and IL-15 stimulation in both mouse and human CD8+ T cells. Intriguingly, inhibition of ADAM17 in CD8+ T cells improved the efficacy of chimeric antigen receptor (CAR) T cells in solid tumors. Our findings reveal a critical post-translational regulation in CD8+ T cells, providing a potential therapeutic strategy of targeting ADAM17 for effective anti-tumor immunity.
Collapse
Affiliation(s)
- Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Haiyan Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Renyi Ding
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Ning Yuan
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Biao Yang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Xiaoxuan Jia
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Gang Wang
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Dan Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Lin Shi
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Chenming Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China.
| | - Aijun Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China.
| | - Lianjun Zhang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China.
- Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China.
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China.
| |
Collapse
|
47
|
Hao J, Li R, Zhao X, Liu X, Chen X, Xie T, Li X, Yao C, Sun Q, Wei K, Gou M, Chi X, Xu W, Ni L, Dong C. NR4A1 transcriptionally regulates the differentiation of stem-like CD8 + T cells in the tumor microenvironment. Cell Rep 2024; 43:114301. [PMID: 38823016 DOI: 10.1016/j.celrep.2024.114301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/11/2024] [Accepted: 05/15/2024] [Indexed: 06/03/2024] Open
Abstract
CD8+ T cells are rendered exhausted in tumor and chronic infection. Among heterogeneous exhausted T cells, a subpopulation of progenitor-like (Tpex) cells have been found important for long-term tumor or pathogen control and are also the main responders in immunotherapy. Using an RFP reporter mouse for the orphan nuclear receptor NR4A1, originally characterized as critical in T cell dysfunction, we discover that the reporter is highly expressed in Tpex cells in tumor and chronic infection. Enforced expression of Nr4a1 promotes Tpex cell accumulation, whereas tumor control is improved after Nr4a1 deletion, associated with increased effector function but decreased long-term maintenance of CD8+ T cells. Integrating chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) analysis, NR4A1 is found to bind and promote the expression of Tpex-related genes, as well as suppress terminal differentiation-associated genes. This study therefore has identified a key role of NR4A1 in Tpex regulation and provides a promising target for immunotherapy.
Collapse
Affiliation(s)
- Jing Hao
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China
| | - Ruifeng Li
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Xiaohong Zhao
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Xinwei Liu
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Xiang Chen
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Tian Xie
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Xiaoli Li
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Chenjun Yao
- Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Qinli Sun
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Kun Wei
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Mengting Gou
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China
| | - Xinxin Chi
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Wei Xu
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Ling Ni
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Chen Dong
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China; Westlake University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
48
|
Ali A, Zhang Y, DiPersio J. The invisible hand: How epigenetics shapes CAR T cell destiny. Mol Ther 2024; 32:1614-1616. [PMID: 38761798 PMCID: PMC11184405 DOI: 10.1016/j.ymthe.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024] Open
Affiliation(s)
- Alaa Ali
- Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, USA.
| | - Yi Zhang
- Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, USA; Center for Discovery and Innovation, Nutley, NJ, USA
| | - John DiPersio
- Washington University in Saint Louis, Saint Louis, MO, USA
| |
Collapse
|
49
|
Dixon M, Phan TA, Dallon JC, Tian JP. Mathematical model for IL-2-based cancer immunotherapy. Math Biosci 2024; 372:109187. [PMID: 38575057 PMCID: PMC11193449 DOI: 10.1016/j.mbs.2024.109187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/16/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
A basic mathematical model for IL-2-based cancer immunotherapy is proposed and studied. Our analysis shows that the outcome of therapy is mainly determined by three parameters, the relative death rate of CD4+ T cells, the relative death rate of CD8+ T cells, and the dose of IL-2 treatment. Minimal equilibrium tumor size can be reached with a large dose of IL-2 in the case that CD4+ T cells die out. However, in cases where CD4+ and CD8+ T cells persist, the final tumor size is independent of the IL-2 dose and is given by the relative death rate of CD4+ T cells. Two groups of in silico clinical trials show some short-term behaviors of IL-2 treatment. IL-2 administration can slow the proliferation of CD4+ T cells, while high doses for a short period of time over several days transiently increase the population of CD8+ T cells during treatment before it recedes to its equilibrium. IL-2 administration for a short period of time over many days suppresses the tumor population for a longer time before approaching its steady-state levels. This implies that intermittent administration of IL-2 may be a good strategy for controlling tumor size.
Collapse
Affiliation(s)
- Megan Dixon
- Department of Mathematics, Brigham Young University, Provo, UT 84602, USA.
| | - Tuan Anh Phan
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID 83844, USA.
| | - J C Dallon
- Department of Mathematics, Brigham Young University, Provo, UT 84602, USA.
| | - Jianjun Paul Tian
- Department of Mathematical Sciences, New Mexico State University, Las Cruces, NM 88001, USA.
| |
Collapse
|
50
|
Zhao W, Liang Z, Yao Y, Ge Y, An G, Duan L, Yao J. GGT5: a potential immunotherapy response inhibitor in gastric cancer by modulating GSH metabolism and sustaining memory CD8+ T cell infiltration. Cancer Immunol Immunother 2024; 73:131. [PMID: 38748299 PMCID: PMC11096297 DOI: 10.1007/s00262-024-03716-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
PURPOSE The variable responses to immunotherapy observed in gastric cancer (GC) patients can be attributed to the intricate nature of the tumor microenvironment. Glutathione (GSH) metabolism significantly influences the initiation and progression of gastric cancer. Consequently, targeting GSH metabolism holds promise for improving the effectiveness of Immune checkpoints inhibitors (ICIs). METHODS We investigated 16 genes related to GSH metabolism, sourced from the MSigDB database, using pan-cancer datasets from TCGA. The most representative prognosis-related gene was identified for further analysis. ScRNA-sequencing analysis was used to explore the tumor heterogeneity of GC, and the results were confirmed by Multiplex immunohistochemistry (mIHC). RESULTS Through DEGs, LASSO, univariate and multivariate Cox regression analyses, and survival analysis, we identified GGT5 as the hub gene in GSH metabolism with the potential to promote GC. Combining CIBERSORT, ssGSEA, and scRNA analysis, we constructed the immune architecture of GC. The subpopulations of T cells were isolated, revealing a strong association between GGT5 and memory CD8+ T cells. Furthermore, specimens from 10 GC patients receiving immunotherapy were collected. mIHC was used to assess the expression levels of GGT5 and memory CD8+ T cell markers. Our results established a positive correlation between GGT5 expression, the enrichment of memory CD8+ T cells, and a suboptimal response to immunotherapy. CONCLUSIONS Our study identifies GGT5, a hub gene in GSH metabolism, as a potential therapeutic target for inhibiting the response to immunotherapy in GC patients. These findings offer new insights into strategies for optimizing immunotherapy of GC.
Collapse
Affiliation(s)
- Wenjing Zhao
- Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ziwei Liang
- Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yongshi Yao
- Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yang Ge
- Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Guangyu An
- Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ling Duan
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiannan Yao
- Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|