1
|
Turnham RE, Pitea A, Jang GM, Xu Z, Lim HC, Choi AL, Von Dollen J, Levin RS, Webber JT, McCarthy E, Hu J, Li X, Che L, Singh A, Yoon A, Chan G, Kelley RK, Swaney DL, Zhang W, Bandyopadhyay S, Theis FJ, Eckhardt M, Chen X, Shokat KM, Ideker T, Krogan NJ, Gordan JD. HBV Remodels PP2A Complexes to Rewire Kinase Signaling in Hepatocellular Carcinoma. Cancer Res 2025; 85:660-674. [PMID: 39652575 PMCID: PMC11949624 DOI: 10.1158/0008-5472.can-24-0456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 09/09/2024] [Accepted: 12/04/2024] [Indexed: 02/18/2025]
Abstract
Hepatitis B virus (HBV) infections promote liver cancer initiation by inducing inflammation and cellular stress. Despite a primarily indirect effect on oncogenesis, HBV is associated with a recurrent genomic phenotype in hepatocellular carcinoma (HCC), suggesting that it impacts the biology of established HCC. Characterization of the interaction of HBV with host proteins and the mechanistic contributions of HBV to HCC initiation and maintenance could provide insights into HCC biology and uncover therapeutic vulnerabilities. In this study, we used affinity purification mass spectrometry to comprehensively map a network of 145 physical interactions between HBV and human proteins in HCC. A subset of the host factors targeted by HBV proteins were preferentially mutated in non-HBV-associated HCC, suggesting that their interaction with HBV influences HCC biology. HBV interacted with proteins involved in mRNA splicing, mitogenic signaling, and DNA repair, with the latter set interacting with the HBV oncoprotein X (HBx). HBx remodeled the PP2A phosphatase complex by excluding striatin regulatory subunits from the PP2A holoenzyme, and the HBx effects on PP2A caused Hippo kinase activation. In parallel, HBx activated mTOR complex 2, which can prevent YAP degradation. mTOR complex 2-mediated upregulation of YAP was observed in human HCC specimens and mouse HCC models and could be targeted with mTOR kinase inhibitors. Thus, HBV interaction with host proteins rewires HCC signaling rather than directly activating mitogenic pathways, providing an alternative paradigm for the cellular effects of a tumor-promoting virus. Significance: Integrative proteomic and genomic analysis of HBV/host interactions illuminated modifiers of hepatocellular carcinoma behavior and key signaling mechanisms in advanced disease, which suggested that HBV may have therapeutically actionable effects.
Collapse
Affiliation(s)
- Rigney E Turnham
- Division of Hematology/Oncology, University of California, San Francisco CA
- Quantitative Biosciences Institute, University of California, San Francisco CA
| | - Adriana Pitea
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Gwendolyn M Jang
- Quantitative Biosciences Institute, University of California, San Francisco CA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco CA
| | - Zhong Xu
- Department of Bioengineering, University of California, San Francisco CA
| | - Huat Chye Lim
- Division of Hematology/Oncology, University of California, San Francisco CA
- Quantitative Biosciences Institute, University of California, San Francisco CA
| | - Alex L Choi
- Division of Hematology/Oncology, University of California, San Francisco CA
- Quantitative Biosciences Institute, University of California, San Francisco CA
| | - John Von Dollen
- Quantitative Biosciences Institute, University of California, San Francisco CA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco CA
| | - Rebecca S. Levin
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco CA
| | - James T Webber
- Department of Bioengineering, University of California, San Francisco CA
| | - Elizabeth McCarthy
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco CA
| | - Junjie Hu
- Department of Bioengineering, University of California, San Francisco CA
| | - Xiaolei Li
- Department of Bioengineering, University of California, San Francisco CA
| | - Li Che
- Department of Bioengineering, University of California, San Francisco CA
| | - Ananya Singh
- Division of Hematology/Oncology, University of California, San Francisco CA
- Quantitative Biosciences Institute, University of California, San Francisco CA
| | - Alex Yoon
- Division of Hematology/Oncology, University of California, San Francisco CA
- Quantitative Biosciences Institute, University of California, San Francisco CA
| | - Gary Chan
- Division of Hematology/Oncology, University of California, San Francisco CA
- Quantitative Biosciences Institute, University of California, San Francisco CA
| | - Robin K Kelley
- Division of Hematology/Oncology, University of California, San Francisco CA
| | - Danielle L Swaney
- Quantitative Biosciences Institute, University of California, San Francisco CA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco CA
| | - Wei Zhang
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | | | - Fabian J Theis
- TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Manon Eckhardt
- Quantitative Biosciences Institute, University of California, San Francisco CA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco CA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA
| | - Xin Chen
- Department of Bioengineering, University of California, San Francisco CA
| | - Kevan M Shokat
- Quantitative Biosciences Institute, University of California, San Francisco CA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco CA
- Howard Hughes Medical Institute, University of California, San Francisco CA
| | - Trey Ideker
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Nevan J Krogan
- Quantitative Biosciences Institute, University of California, San Francisco CA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco CA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA
| | - John D Gordan
- Division of Hematology/Oncology, University of California, San Francisco CA
- Quantitative Biosciences Institute, University of California, San Francisco CA
| |
Collapse
|
2
|
Cigliano A, Liao W, Deiana GA, Rizzo D, Chen X, Calvisi DF. Preclinical Models of Hepatocellular Carcinoma: Current Utility, Limitations, and Challenges. Biomedicines 2024; 12:1624. [PMID: 39062197 PMCID: PMC11274649 DOI: 10.3390/biomedicines12071624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC), the predominant primary liver tumor, remains one of the most lethal cancers worldwide, despite the advances in therapy in recent years. In addition to the traditional chemically and dietary-induced HCC models, a broad spectrum of novel preclinical tools have been generated following the advent of transgenic, transposon, organoid, and in silico technologies to overcome this gloomy scenario. These models have become rapidly robust preclinical instruments to unravel the molecular pathogenesis of liver cancer and establish new therapeutic approaches against this deadly disease. The present review article aims to summarize and discuss the commonly used preclinical models for HCC, evaluating their strengths and weaknesses.
Collapse
Affiliation(s)
- Antonio Cigliano
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (G.A.D.); (D.R.)
| | - Weiting Liao
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA 94143, USA; (W.L.); (X.C.)
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Giovanni A. Deiana
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (G.A.D.); (D.R.)
| | - Davide Rizzo
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (G.A.D.); (D.R.)
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA 94143, USA; (W.L.); (X.C.)
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Diego F. Calvisi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (G.A.D.); (D.R.)
| |
Collapse
|
3
|
Voisin L, Lapouge M, Saba-El-Leil MK, Gombos M, Javary J, Trinh VQ, Meloche S. Syngeneic mouse model of YES-driven metastatic and proliferative hepatocellular carcinoma. Dis Model Mech 2024; 17:dmm050553. [PMID: 39051113 PMCID: PMC11552496 DOI: 10.1242/dmm.050553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/24/2024] [Indexed: 07/27/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a disease of high unmet medical need that has become a global health problem. The development of targeted therapies for HCC has been hindered by the incomplete understanding of HCC pathogenesis and the limited number of relevant preclinical animal models. We recently unveiled a previously uncharacterized YES kinase (encoded by YES1)-dependent oncogenic signaling pathway in HCC. To model this subset of HCC, we established a series of syngeneic cell lines from liver tumors of transgenic mice expressing activated human YES. The resulting cell lines (referred to as HepYF) were enriched for expression of stem cell and progenitor markers, proliferated rapidly, and were characterized by high SRC family kinase (SFK) activity and activated mitogenic signaling pathways. Transcriptomic analysis indicated that HepYF cells are representative of the most aggressive proliferation class G3 subgroup of HCC. HepYF cells formed rapidly growing metastatic tumors upon orthotopic implantation into syngeneic hosts. Treatment with sorafenib or the SFK inhibitor dasatinib markedly inhibited the growth of HepYF tumors. The new HepYF HCC cell lines provide relevant preclinical models to study the pathogenesis of HCC and test novel small-molecule inhibitor and immunotherapy approaches.
Collapse
Affiliation(s)
- Laure Voisin
- Institute for Research in Immunology and Cancer, Montreal, Quebec H3T 1J4, Canada
| | - Marjorie Lapouge
- Institute for Research in Immunology and Cancer, Montreal, Quebec H3T 1J4, Canada
| | - Marc K. Saba-El-Leil
- Institute for Research in Immunology and Cancer, Montreal, Quebec H3T 1J4, Canada
| | - Melania Gombos
- Institute for Research in Immunology and Cancer, Montreal, Quebec H3T 1J4, Canada
| | - Joaquim Javary
- Institute for Research in Immunology and Cancer, Montreal, Quebec H3T 1J4, Canada
| | - Vincent Q. Trinh
- Institute for Research in Immunology and Cancer, Montreal, Quebec H3T 1J4, Canada
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
- Department of Pathology and Cell Biology, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Sylvain Meloche
- Institute for Research in Immunology and Cancer, Montreal, Quebec H3T 1J4, Canada
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
4
|
Li L, Mohammed AH, Auda NA, Alsallameh SMS, Albekairi NA, Muhseen ZT, Butch CJ. Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation Analysis Reveal Insights into the Molecular Mechanism of Cordia myxa in the Treatment of Liver Cancer. BIOLOGY 2024; 13:315. [PMID: 38785796 PMCID: PMC11118918 DOI: 10.3390/biology13050315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Traditional treatments of cancer have faced various challenges, including toxicity, medication resistance, and financial burdens. On the other hand, bioactive phytochemicals employed in complementary alternative medicine have recently gained interest due to their ability to control a wide range of molecular pathways while being less harmful. As a result, we used a network pharmacology approach to study the possible regulatory mechanisms of active constituents of Cordia myxa for the treatment of liver cancer (LC). Active constituents were retrieved from the IMPPAT database and the literature review, and their targets were retrieved from the STITCH and Swiss Target Prediction databases. LC-related targets were retrieved from expression datasets (GSE39791, GSE76427, GSE22058, GSE87630, and GSE112790) through gene expression omnibus (GEO). The DAVID Gene Ontology (GO) database was used to annotate target proteins, while the Kyoto Encyclopedia and Genome Database (KEGG) was used to analyze signaling pathway enrichment. STRING and Cytoscape were used to create protein-protein interaction networks (PPI), while the degree scoring algorithm of CytoHubba was used to identify hub genes. The GEPIA2 server was used for survival analysis, and PyRx was used for molecular docking analysis. Survival and network analysis revealed that five genes named heat shot protein 90 AA1 (HSP90AA1), estrogen receptor 1 (ESR1), cytochrome P450 3A4 (CYP3A4), cyclin-dependent kinase 1 (CDK1), and matrix metalloproteinase-9 (MMP9) are linked with the survival of LC patients. Finally, we conclude that four extremely active ingredients, namely cosmosiin, rosmarinic acid, quercetin, and rubinin influence the expression of HSP90AA1, which may serve as a potential therapeutic target for LC. These results were further validated by molecular dynamics simulation analysis, which predicted the complexes with highly stable dynamics. The residues of the targeted protein showed a highly stable nature except for the N-terminal domain without affecting the drug binding. An integrated network pharmacology and docking study demonstrated that C. myxa had a promising preventative effect on LC by working on cancer-related signaling pathways.
Collapse
Affiliation(s)
- Li Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China;
| | - Alaulddin Hazim Mohammed
- School of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Nazar Aziz Auda
- Department of Medical Laboratories Techniques, College of Health and Medical Techniques, Gilgamesh Ahliya University (GAU), Baghdad 10022, Iraq; (N.A.A.); (S.M.S.A.)
| | - Sarah Mohammed Saeed Alsallameh
- Department of Medical Laboratories Techniques, College of Health and Medical Techniques, Gilgamesh Ahliya University (GAU), Baghdad 10022, Iraq; (N.A.A.); (S.M.S.A.)
| | - Norah A. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Ziyad Tariq Muhseen
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China;
- Department of Pharmacy, Al-Mustaqbal University, Hillah 51001, Iraq
| | - Christopher J. Butch
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China;
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| |
Collapse
|
5
|
Zhang Q, Liu Y, Ren L, Li J, Lin W, Lou L, Wang M, Li C, Jiang Y. Proteomic analysis of DEN and CCl 4-induced hepatocellular carcinoma mouse model. Sci Rep 2024; 14:8013. [PMID: 38580754 PMCID: PMC10997670 DOI: 10.1038/s41598-024-58587-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/01/2024] [Indexed: 04/07/2024] Open
Abstract
Hepatocellular carcinoma (HCC) seriously threatens human health, mostly developed from liver fibrosis or cirrhosis. Since diethylnitrosamine (DEN) and carbon tetrachloride (CCl4)-induced HCC mouse model almost recapitulates the characteristic of HCC with fibrosis and inflammation, it is taken as an essential tool to investigate the pathogenesis of HCC. However, a comprehensive understanding of the protein expression profile of this model is little. In this study, we performed proteomic analysis of this model to elucidate its proteomic characteristics. Compared with normal liver tissues, 432 differentially expressed proteins (DEPs) were identified in tumor tissues, among which 365 were up-regulated and 67 were down-regulated. Through Gene Ontology (GO) analysis, Ingenuity Pathway Analysis (IPA), protein-protein interaction networks (PPI) analysis and Gene-set enrichment analysis (GSEA) analysis of DEPs, we identified two distinguishing features of DEN and CCl4-induced HCC mouse model in protein expression, the upregulation of actin cytoskeleton and branched-chain amino acids metabolic reprogramming. In addition, matching DEPs from the mouse model to homologous proteins in the human HCC cohort revealed that the DEN and CCl4-induced HCC mouse model was relatively similar to the subtype of HCC with poor prognosis. Finally, combining clinical information from the HCC cohort, we screened seven proteins with prognostic significance, SMAD2, PTPN1, PCNA, MTHFD1L, MBOAT7, FABP5, and AGRN. Overall, we provided proteomic data of the DEN and CCl4-induced HCC mouse model and highlighted the important proteins and pathways in it, contributing to the rational application of this model in HCC research.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Medicle Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China
| | - Yuhui Liu
- State Key Laboratory of Medicle Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China
| | - Liangliang Ren
- State Key Laboratory of Medicle Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China
| | - Junqing Li
- State Key Laboratory of Medicle Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China
- School of Basic Medical Science, Anhui Medical University, Hefei, 230032, China
| | - Weiran Lin
- State Key Laboratory of Medicle Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China
| | - Lijuan Lou
- State Key Laboratory of Medicle Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China
| | - Minghan Wang
- State Key Laboratory of Medicle Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China
| | - Chaoying Li
- State Key Laboratory of Medicle Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China
| | - Ying Jiang
- State Key Laboratory of Medicle Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China.
- School of Basic Medical Science, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
6
|
Charles L, Sekar S, Osooly M, Javed S, Williams KC, Welch I, Barta I, Saatchi K, Häfeli UO. Development of an immunosuppressed orthotopic hepatocellular carcinoma rat model for the evaluation of chemo- and radioembolization therapies. Eur J Pharm Biopharm 2024; 196:114180. [PMID: 38237643 DOI: 10.1016/j.ejpb.2024.114180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 02/19/2024]
Abstract
Hepatocellular carcinoma (HCC) is widely known to be chemo-resistant and presents with significant liver disease resulting in low tolerability to systemic chemotherapy. As a counter measure, more targeted therapies such as trans-arterial chemoembolization (TACE) and trans-arterial radioembolization (TARE) have been developed. To further optimize these therapies, animal models are critical in elucidating the molecular events in disease progression and test new treatment options. The present study focuses on the development of a hepatoma bearing rat model. N1S1 rat hepatoma cells were transfected by a lentiviral method and injected into the liver of Sprague Dawley (SD) and Rowett Nude (RNU) rats. Longitudinal tumor growth was observed by bioluminescence imaging (BLI) and liver/tumor histology. In both models, tumors were visible within 4 days post cell inoculation. Tumor take rates were 52 % and 73 % for male and female SD rats, respectively, and 100 % for male RNU rats. By day 12 and 15 post inoculation, we recorded complete tumor regression in male and female SD rats. Liver histology showed advanced fibrosis in the tumor regressed SD rats, whilst RNU rats exhibited the characteristic sheet pattern of Novikoff tumor with mild liver fibrosis. Increased CD3 and TUNEL staining observed in SD rat livers may be key factors for tumor regression. Our data reveal that the immunocompetent SD rats are not recommended as a model for therapeutic investigations. The immunosuppressed RNU rats, however, are characterized by consistent and reliable tumor growth and thus a desirable model for future therapeutic investigations.
Collapse
Affiliation(s)
- Lovelyn Charles
- Faculty of Pharmaceutical Sciences, 2405 Wesbrook Mall, Vancouver, BC, V6T 1Z3, CANADA
| | - Sathiya Sekar
- Faculty of Pharmaceutical Sciences, 2405 Wesbrook Mall, Vancouver, BC, V6T 1Z3, CANADA
| | - Maryam Osooly
- Faculty of Pharmaceutical Sciences, 2405 Wesbrook Mall, Vancouver, BC, V6T 1Z3, CANADA
| | - Sumreen Javed
- Faculty of Pharmaceutical Sciences, 2405 Wesbrook Mall, Vancouver, BC, V6T 1Z3, CANADA
| | - Karla C Williams
- Faculty of Pharmaceutical Sciences, 2405 Wesbrook Mall, Vancouver, BC, V6T 1Z3, CANADA
| | - Ian Welch
- Centre of Comparative Medicine, University of British Columbia, 4145 Wesbrook Mall, Vancouver, BC V6T 1W5, CANADA
| | - Ingrid Barta
- Centre of Comparative Medicine, University of British Columbia, 4145 Wesbrook Mall, Vancouver, BC V6T 1W5, CANADA
| | - Katayoun Saatchi
- Faculty of Pharmaceutical Sciences, 2405 Wesbrook Mall, Vancouver, BC, V6T 1Z3, CANADA.
| | - Urs O Häfeli
- Faculty of Pharmaceutical Sciences, 2405 Wesbrook Mall, Vancouver, BC, V6T 1Z3, CANADA; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
7
|
Zheng HC, Xue H, Yun WJ. An overview of mouse models of hepatocellular carcinoma. Infect Agent Cancer 2023; 18:49. [PMID: 37670307 PMCID: PMC10481604 DOI: 10.1186/s13027-023-00524-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has become a severe burden on global health due to its high morbidity and mortality rates. However, effective treatments for HCC are limited. The lack of suitable preclinical models may contribute to a major failure of drug development for HCC. Here, we overview several well-established mouse models of HCC, including genetically engineered mice, chemically-induced models, implantation models, and humanized mice. Immunotherapy studies of HCC have been a hot topic. Therefore, we will introduce the application of mouse models of HCC in immunotherapy. This is followed by a discussion of some other models of HCC-related liver diseases, including non-alcoholic fatty liver disease (NAFLD), hepatitis B and C virus infection, and liver fibrosis and cirrhosis. Together these provide researchers with a current overview of the mouse models of HCC and assist in the application of appropriate models for their research.
Collapse
Affiliation(s)
- Hua-Chuan Zheng
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, China.
| | - Hang Xue
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| | - Wen-Jing Yun
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| |
Collapse
|
8
|
Xie M, Lin Z, Ji X, Luo X, Zhang Z, Sun M, Chen X, Zhang B, Liang H, Liu D, Feng Y, Wang Y, Li Y, Liu B, Huang W, Xia L. FGF19/FGFR4-mediated elevation of ETV4 facilitates hepatocellular carcinoma metastasis by upregulating PD-L1 and CCL2. J Hepatol 2023; 79:109-125. [PMID: 36907560 DOI: 10.1016/j.jhep.2023.02.036] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND & AIMS Metastasis remains the major reason for the high mortality of patients with hepatocellular carcinoma (HCC). This study was designed to investigate the role of E-twenty-six-specific sequence variant 4 (ETV4) in promoting HCC metastasis and to explore a new combination therapy strategy for ETV4-mediated HCC metastasis. METHODS PLC/PRF/5, MHCC97H, Hepa1-6, and H22 cells were used to establish orthotopic HCC models. Clodronate liposomes were used to clear macrophages in C57BL/6 mice. Gr-1 monoclonal antibody was used to clear myeloid-derived suppressor cells (MDSCs) in C57BL/6 mice. Flow cytometry and immunofluorescence were used to detect the changes of key immune cells in the tumour microenvironment. RESULTS ETV4 expression was positively related to higher tumour-node-metastasis (TNM) stage, poor tumour differentiation, microvascular invasion, and poor prognosis in human HCC. Overexpression of ETV4 in HCC cells transactivated PD-L1 and CCL2 expression, which increased tumour-associated macrophage (TAM) and MDSC infiltration and inhibited CD8+ T-cell accumulation. Knockdown of CCL2 by lentivirus or CCR2 inhibitor CCX872 treatment impaired ETV4-induced TAM and MDSC infiltration and HCC metastasis. Furthermore, FGF19/FGFR4 and HGF/c-MET jointly upregulated ETV4 expression through the ERK1/2 pathway. Additionally, ETV4 upregulated FGFR4 expression, and downregulation of FGFR4 decreased ETV4-enhanced HCC metastasis, which created a FGF19-ETV4-FGFR4 positive feedback loop. Finally, anti-PD-L1 combined with FGFR4 inhibitor BLU-554 or MAPK inhibitor trametinib prominently inhibited FGF19-ETV4 signalling-induced HCC metastasis. CONCLUSIONS ETV4 is a prognostic biomarker, and anti-PD-L1 combined with FGFR4 inhibitor BLU-554 or MAPK inhibitor trametinib may be effective strategies to inhibit HCC metastasis. IMPACT AND IMPLICATIONS Here, we reported that ETV4 increased PD-L1 and chemokine CCL2 expression in HCC cells, which resulted in TAM and MDSC accumulation and CD8+ T-cell inhibition to facilitate HCC metastasis. More importantly, we found that anti-PD-L1 combined with FGFR4 inhibitor BLU-554 or MAPK inhibitor trametinib markedly inhibited FGF19-ETV4 signalling-mediated HCC metastasis. This preclinical study will provide a theoretical basis for the development of new combination immunotherapy strategies for patients with HCC.
Collapse
Affiliation(s)
- Meng Xie
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuoying Lin
- Department of Gastroenterology, Shangrao People's Hospital, Shangrao, China
| | - Xiaoyu Ji
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyuan Luo
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zerui Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Chen
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, China
| | - Bixiang Zhang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, China
| | - Huifang Liang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, China
| | - Danfei Liu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangyang Feng
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Bifeng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, China.
| |
Collapse
|
9
|
Li J, Wang X, Ren M, He S, Zhao Y. Advances in experimental animal models of hepatocellular carcinoma. Cancer Med 2023; 12:15261-15276. [PMID: 37248746 PMCID: PMC10417182 DOI: 10.1002/cam4.6163] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/08/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor with insidious early symptoms, easy metastasis, postoperative recurrence, poor drug efficacy, and a high drug resistance rate when surgery is missed, leading to a low 5-year survival rate. Research on the pathogenesis and drugs is particularly important for clinical treatment. Animal models are crucial for basic research, which is conducive to studying pathogenesis and drug screening more conveniently and effectively. An appropriate animal model can better reflect disease occurrence and development, and the process of anti-tumor immune response in the human body. This review summarizes the classification, characteristics, and advances in experimental animal models of HCC to provide a reference for researchers on model selection.
Collapse
Affiliation(s)
- Jing Li
- Department of GastroenterologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Xin Wang
- Department of GastroenterologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Mudan Ren
- Department of GastroenterologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Shuixiang He
- Department of GastroenterologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Yan Zhao
- Department of GastroenterologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| |
Collapse
|
10
|
Sánchez-Meza J, Campos-Valdez M, Domínguez-Rosales JA, Godínez-Rubí JM, Rodríguez-Reyes SC, Martínez-López E, Zúñiga-González GM, Sánchez-Orozco LV. Chronic Administration of Diethylnitrosamine and 2-Acetylaminofluorene Induces Hepatocellular Carcinoma in Wistar Rats. Int J Mol Sci 2023; 24:ijms24098387. [PMID: 37176094 PMCID: PMC10179122 DOI: 10.3390/ijms24098387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
This study aimed to analyze the biochemical, histological, and gene expression alterations produced in a hepatocarcinogenesis model induced by the chronic administration of diethylnitrosamine (DEN) and 2-acetylaminofluorene (2-AAF) in Wistar rats. Thirteen rats weighing 180 to 200 g were divided into two groups: control and treated. Rats in the treated group were administered an intraperitoneal (i.p.) injection of DEN (50 mg/kg/week) and an intragastric (i.g.) dose of 2-AAF (25 mg/kg/week) for 18 weeks. The treated group had significant increases in their total cholesterol, HDL-C, AST, ALT, ALKP, and GGT levels. Furthermore, a histological analysis showed the loss of normal liver architecture with nuclear pleomorphism in the hepatocytes, atypical mitosis, and fibrous septa that were distributed between the portal triads and collagen fibers through the hepatic sinusoids. The gene expressions of 24 genes related to fibrosis, inflammation, apoptosis, cell growth, angiogenesis, lipid metabolism, and alpha-fetoprotein (AFP) were analyzed; only TGFβ, COL1α1, CYP2E1, CAT, SOD, IL6, TNF-α, and ALB showed significant differences when both groups were compared. Additionally, lung histopathological alterations were found in the treated group, suggesting metastasis. In this model, the chronic administration of DEN+2-AAF induces characteristic alterations of hepatocellular carcinoma in Wistar rats without AFP gene expression changes, highlighting different signatures in hepatocellular carcinoma heterogeneity.
Collapse
Affiliation(s)
- Jaime Sánchez-Meza
- Instituto de Enfermedades Crónico Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Marina Campos-Valdez
- Instituto de Enfermedades Crónico Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - José Alfredo Domínguez-Rosales
- Instituto de Enfermedades Crónico Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Juliana Marisol Godínez-Rubí
- Laboratorio de Patología Diagnóstica e Inmunohistoquímica, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Sarai Citlalic Rodríguez-Reyes
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Guadalajara 44340, Mexico
| | - Erika Martínez-López
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Guadalajara 44340, Mexico
| | - Guillermo M Zúñiga-González
- Laboratorio de Mutagénesis, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
| | - Laura Verónica Sánchez-Orozco
- Instituto de Enfermedades Crónico Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| |
Collapse
|
11
|
Gao H, Huang J, Wei Q, He C. Advances in Animal Models for Studying Bone Fracture Healing. Bioengineering (Basel) 2023; 10:bioengineering10020201. [PMID: 36829695 PMCID: PMC9952559 DOI: 10.3390/bioengineering10020201] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Fracture is a common traumatic injury that is mostly caused by traffic accidents, falls, and falls from height. Fracture healing is a long-term and complex process, and the mode of repair and rate of healing are influenced by a variety of factors. The prevention, treatment, and rehabilitation of fractures are issues that urgently need to be addressed. The preparation of the right animal model can accurately simulate the occurrence of fractures, identify and observe normal and abnormal healing processes, study disease mechanisms, and optimize and develop specific treatment methods. We summarize the current status of fracture healing research, the characteristics of different animal models and the modeling methods for different fracture types, analyze their advantages and disadvantages, and provide a reference basis for basic experimental fracture modeling.
Collapse
Affiliation(s)
- Hui Gao
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinming Huang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Quan Wei
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu 610041, China
- Correspondence: (Q.W.); (C.H.)
| | - Chengqi He
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu 610041, China
- Correspondence: (Q.W.); (C.H.)
| |
Collapse
|
12
|
Protocol for chronic hepatitis B virus infection mouse model development by patient-derived orthotopic xenografts. PLoS One 2022; 17:e0264266. [PMID: 35196351 PMCID: PMC8865695 DOI: 10.1371/journal.pone.0264266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/01/2022] [Indexed: 12/03/2022] Open
Abstract
Background According to the World Health Organization, more than 250 million people worldwide are chronically infected with the hepatitis B virus, and almost 800.000 patients die annually of mediated liver disorders. Therefore, adequate biological test systems are needed that could fully simulate the course of chronic hepatitis B virus infection, including in patients with hepatocellular carcinoma. Methods In this study, we will assess the effectiveness of existing protocols for isolation and cultivation of primary cells derived from patients with hepatocellular carcinoma in terms of the yield of viable cells and their ability to replicate the hepatitis B virus using isolation and cultivation methods for adhesive primary cells, flow cytometry and quantitative polymerase chain reaction. Another part of our study will be devoted to evaluating the effectiveness of hepatocellular carcinoma grafting methods to obtain patient-derived heterotopic and orthotopic xenograft mouse avatars using animal X-ray irradiation and surgery procedures and in vivo fluorescent signals visualization and measurements. Our study will be completed by histological methods. Discussion This will be the first extensive comparative study of the main modern methods and protocols for isolation and cultivation primary hepatocellular carcinoma cells and tumor engraftment to the mice. All protocols will be optimized and characterized using the: (1) efficiency of the method for isolation cells from removed hepatocellular carcinoma in terms of their quantity and viability; (2) efficiency of the primary cell cultivation protocol in terms of the rate of monolayer formation and hepatitis B virus replication; (3) efficiency of the grafting method in terms of the growth rate and the possibility of hepatitis B virus persistence and replication in mice. The most effective methods will be recommended for use in translational biomedical research.
Collapse
|
13
|
Liu JY, Chen YJ, Feng HH, Chen ZL, Wang YL, Yang JE, Zhuang SM. LncRNA SNHG17 interacts with LRPPRC to stabilize c-Myc protein and promote G1/S transition and cell proliferation. Cell Death Dis 2021; 12:970. [PMID: 34671012 PMCID: PMC8528917 DOI: 10.1038/s41419-021-04238-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/18/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022]
Abstract
Oncogenic c-Myc is a master regulator of G1/S transition. Long non-coding RNAs (lncRNAs) emerge as new regulators of various cell activities. Here, we found that lncRNA SnoRNA Host Gene 17 (SNHG17) was elevated at the early G1-phase of cell cycle. Both gain- and loss-of function studies disclosed that SNHG17 increased c-Myc protein level, accelerated G1/S transition and cell proliferation, and consequently promoted tumor cell growth in vitro and in vivo. Mechanistically, the 1-150-nt of SNHG17 physically interacted with the 1035-1369-aa of leucine rich pentatricopeptide repeat containing (LRPPRC) protein, and disrupting this interaction abrogated the promoting role of SNHG17 in c-Myc expression, G1/S transition, and cell proliferation. The effect of SNHG17 in stimulating cell proliferation was attenuated by silencing c-Myc or LRPPRC. Furthermore, silencing SNHG17 or LRPPRC increased the level of ubiquitylated c-Myc and reduced the stability of c-Myc protein. Analysis of human hepatocellular carcinoma (HCC) tissues revealed that SNHG17, LRPPRC, and c-Myc were significantly upregulated in HCC, and they showed a positive correlation with each other. High level of SNHG17 or LRPPRC was associated with worse survival of HCC patients. These data suggest that SNHG17 may inhibit c-Myc ubiquitination and thus enhance c-Myc level and facilitate proliferation by interacting with LRPPRC. Our findings identify a novel SNHG17-LRPPRC-c-Myc regulatory axis and elucidate its roles in G1/S transition and tumor growth, which may provide potential targets for cancer therapy.
Collapse
Affiliation(s)
- Jin-Yu Liu
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Xin Gang Xi Road 135#, Guangzhou, 510275, P. R. China.,Key Laboratory of Liver Disease of Guangdong Province, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ya-Jing Chen
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Xin Gang Xi Road 135#, Guangzhou, 510275, P. R. China
| | - Huan-Hui Feng
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Xin Gang Xi Road 135#, Guangzhou, 510275, P. R. China
| | - Zhan-Li Chen
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Xin Gang Xi Road 135#, Guangzhou, 510275, P. R. China
| | - Yun-Long Wang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Xin Gang Xi Road 135#, Guangzhou, 510275, P. R. China
| | - Jin-E Yang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Xin Gang Xi Road 135#, Guangzhou, 510275, P. R. China.
| | - Shi-Mei Zhuang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Xin Gang Xi Road 135#, Guangzhou, 510275, P. R. China. .,Key Laboratory of Liver Disease of Guangdong Province, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
14
|
Zhou HC, Liu CX, Pan WD, Shang LR, Zheng JL, Huang BY, Chen JY, Zheng L, Fang JH, Zhuang SM. Dual and opposing roles of the androgen receptor in VETC-dependent and invasion-dependent metastasis of hepatocellular carcinoma. J Hepatol 2021; 75:900-911. [PMID: 34004215 DOI: 10.1016/j.jhep.2021.04.053] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Contradictory roles of the androgen receptor (AR) in hepatocellular carcinoma (HCC) metastasis have been reported. We have shown that VETC (vessels encapsulating tumor clusters) mediates invasion-independent metastasis, whereas VETC- HCCs metastasize in an invasion-dependent manner. Herein, we aimed to reveal the roles of AR in HCC metastasis. METHODS Mouse xenograft models, clinical samples, and cell models were used. RESULTS AR expression was significantly lower in HCCs with a VETC pattern, portal vein tumor thrombus, endothelium-coated microemboli or high recurrence rates. Overexpressing AR in VETC+ hepatoma cells suppressed VETC formation and intrahepatic metastasis but promoted pulmonary metastasis of mouse xenografts. AR decreased the transcription of Angiopoietin-2 (Angpt2), a factor essential for VETC formation, by binding to the Angpt2 promoter. The roles of AR in inhibiting VETC formation and intrahepatic metastasis were attenuated by restoring Angpt2 expression, suggesting that AR may repress VETC-dependent intrahepatic metastasis by inhibiting Angpt2 expression and VETC formation. On the other hand, AR upregulated Rac1 expression, promoted lamellipodia formation and increased cell migration/invasion. A Rac1 inhibitor abrogated the AR-mediated promotion of migration/invasion and pulmonary metastasis of VETC+ hepatoma cells, but did not affect the AR-mediated inhibition of intrahepatic metastasis. Furthermore, an AR inhibitor decreased Rac1 expression and attenuated both intrahepatic and pulmonary metastasis of VETC- xenografts, an effect which was abrogated by restoring Rac1 expression. These data indicate that AR may facilitate the lung metastasis of VETC+ HCCs and both the liver/lung metastases of VETC- HCCs by upregulating Rac1 expression and then promoting migration/invasion. CONCLUSION AR plays dual and opposing roles in VETC-dependent and invasion-dependent metastasis, which highlights the complex functions of AR and the importance of individualized cancer therapy. LAY SUMMARY In this study, we uncovered the dual and opposing roles of the androgen receptor in VETC (vessels encapsulating tumor clusters)-dependent and invasion-dependent metastasis of hepatocellular carcinoma (HCC). We elucidated the underlying mechanisms of these processes, which provided novel insights into the complex regulatory network of the androgen receptor in HCC metastasis and may have important implications for precision medicine.
Collapse
Affiliation(s)
- Hui-Chao Zhou
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Chu-Xing Liu
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Wei-Dong Pan
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Li-Ru Shang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Jia-Lin Zheng
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Bi-Yu Huang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Jie-Ying Chen
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Limin Zheng
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Jian-Hong Fang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China.
| | - Shi-Mei Zhuang
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China; MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
15
|
Castro‐Gil MP, Sánchez‐Rodríguez R, Torres‐Mena JE, López‐Torres CD, Quintanar‐Jurado V, Gabiño‐López NB, Villa‐Treviño S, del‐Pozo‐Jauner L, Arellanes‐Robledo J, Pérez‐Carreón JI. Enrichment of progenitor cells by 2-acetylaminofluorene accelerates liver carcinogenesis induced by diethylnitrosamine in vivo. Mol Carcinog 2021; 60:377-390. [PMID: 33765333 PMCID: PMC8251613 DOI: 10.1002/mc.23298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/24/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023]
Abstract
The potential role of hepatocytes versus hepatic progenitor cells (HPC) on the onset and pathogenesis of hepatocellular carcinoma (HCC) has not been fully clarified. Because the administration of 2-acetylaminofluorene (2AAF) followed by a partial hepatectomy, selectively induces the HPC proliferation, we investigated the effects of chronic 2AAF administration on the HCC development caused by the chronic administration of the carcinogen diethylnitrosamine (DEN) for 16 weeks in the rat. DEN + 2AAF protocol impeded weight gain of animals but promoted prominent hepatomegaly and exacerbated liver alterations compared to DEN protocol alone. The tumor areas detected by γ-glutamyl transferase, prostaglandin reductase-1, and glutathione S-transferase Pi-1 liver cancer markers increased up to 80% as early as 12 weeks of treatment, meaning 6 weeks earlier than DEN alone. This protocol also increased the number of Ki67-positive cells and those of CD90 and CK19, two well-known progenitor cell markers. Interestingly, microarray analysis revealed that DEN + 2AAF protocol differentially modified the global gene expression signature and induced the differential expression of 30 genes identified as HPC markers as early as 6 weeks of treatment. In conclusion, 2AAF induces the early appearance of HPC markers and as a result, accelerates the hepatocarcinogenesis induced by DEN in the rat. Thus, since 2AAF simultaneously administrated with DEN enriches HPC during hepatocarcinogenesis, we propose that DEN + 2AAF protocol might be a useful tool to investigate the cellular origin of HCC with progenitor features.
Collapse
Affiliation(s)
| | - Ricardo Sánchez‐Rodríguez
- Foundation Istituto di Ricerca Pediatrica‐Città della SperanzaPadovaItaly
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | | | | | | | | | - Saúl Villa‐Treviño
- Department of Cell BiologyCenter for Research and Advanced Studies of the National Polytechnic InstituteCiudad de MéxicoMexico
| | | | - Jaime Arellanes‐Robledo
- Laboratory of Liver DiseasesNational Institute of Genomic MedicineCiudad de MéxicoMexico
- Directorate of CátedrasNational Council of Science and TechnologyCiudad de MéxicoMexico
| | | |
Collapse
|
16
|
Fan Y, Du Z, Ding Q, Zhang J, Op Den Winkel M, Gerbes AL, Liu M, Steib CJ. SEPT6 drives hepatocellular carcinoma cell proliferation, migration and invasion via the Hippo/YAP signaling pathway. Int J Oncol 2021; 58:25. [PMID: 33846777 PMCID: PMC8025964 DOI: 10.3892/ijo.2021.5205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Septin 6 (SEPT6) is a member of the GTP-binding protein family that is highly conserved in eukaryotes and regulates various biological functions, including filament dynamics, cytokinesis and cell migration. However, the functional importance of SEPT6 in hepatocellular carcinoma (HCC) is not completely understood. The present study aimed to investigate the expression levels and roles of SEPT6 in HCC, as well as the underlying mechanisms. The reverse transcription quantitative PCR, western blotting and immunohistochemistry staining results demonstrated that SEPT6 expression was significantly elevated in HCC tissues compared with corresponding adjacent non-tumor tissues, which indicated that SEPT6 expression may serve as a marker of poor prognosis for HCC. By performing plasmid transfection and G418 treatment, stable SEPT6-knockdown and SEPT6-overexpression cell lines were established. The Cell Counting Kit-8, flow cytometry and Transwell assay results demonstrated that SEPT6 overexpression significantly increased HCC cell proliferation, cell cycle transition, migration and invasion compared with the Vector group, whereas SEPT6 knockdown displayed significant suppressive effects on HCC cell lines in vitro compared with the control group. Mechanistically, SEPT6 might facilitate F-actin formation, which induced large tumor suppressor kinase 1 dephosphorylation, inhibited Hippo signaling, upregulated yes-associated protein (YAP) expression and nuclear translocation, and upregulated cyclin D1 and matrix metallopeptidase 2 (MMP2) expression. Furthermore, YAP overexpression significantly reversed SEPT6 knockdown-induced inhibitory effects on HCC, whereas YAP knockdown significantly inhibited the oncogenic effect of SEPT6 overexpression on HCC. Collectively, the present study demonstrated that SEPT6 may promote HCC progression by enhancing YAP activation, suggesting that targeting SEPT6 may serve as a novel therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Yuhui Fan
- Department of Medicine II, Liver Center Munich, University Hospital, Ludwig‑Maximilians‑University of Munich, Munich 81377, Germany
| | - Zhipeng Du
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qiang Ding
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jiang Zhang
- Department of Medicine II, Liver Center Munich, University Hospital, Ludwig‑Maximilians‑University of Munich, Munich 81377, Germany
| | - Mark Op Den Winkel
- Department of Medicine II, Liver Center Munich, University Hospital, Ludwig‑Maximilians‑University of Munich, Munich 81377, Germany
| | - Alexander L Gerbes
- Department of Medicine II, Liver Center Munich, University Hospital, Ludwig‑Maximilians‑University of Munich, Munich 81377, Germany
| | - Mei Liu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Christian J Steib
- Department of Medicine II, Liver Center Munich, University Hospital, Ludwig‑Maximilians‑University of Munich, Munich 81377, Germany
| |
Collapse
|
17
|
Efficacy of black garlic extract on anti-tumor and anti-oxidant activity enhancement in rats. CLINICAL NUTRITION OPEN SCIENCE 2021. [DOI: 10.1016/j.nutos.2021.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
18
|
He Q, Huang W, Liu D, Zhang T, Wang Y, Ji X, Xie M, Sun M, Tian D, Liu M, Xia L. Homeobox B5 promotes metastasis and poor prognosis in Hepatocellular Carcinoma, via FGFR4 and CXCL1 upregulation. Am J Cancer Res 2021; 11:5759-5777. [PMID: 33897880 PMCID: PMC8058721 DOI: 10.7150/thno.57659] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/17/2021] [Indexed: 02/07/2023] Open
Abstract
Background: Since metastasis remains the main reason for HCC-associated death, a better understanding of molecular mechanism underlying HCC metastasis is urgently needed. Here, we elucidated the role of Homeobox B5 (HOXB5), a member of the HOX transcriptional factor family, in promoting HCC metastasis. Method: The expression of HOXB5 and its functional targets fibroblast growth factor receptor 4 (FGFR4) and C-X-C motif chemokine ligand 1 (CXCL1) were detected by immunohistochemistry. Luciferase reporter and chromatin immunoprecipitation assays were performed to measure the transcriptional regulation of target genes by HOXB5. The effects of FGFR4 and CXCL1 on HOXB5-mediated metastasis were analyzed by an orthotopic metastasis model. Results: Elevated expression of HOXB5 had a positive correlation with poor tumour differentiation, higher TNM stage, and indicated unfavorable prognosis. Overexpression of HOXB5 promoted HCC metastasis through transactivating FGFR4 and CXCL1 expression, whereas knockdown of FGFR4 and CXCL1 decreased HOXB5-enhanced HCC metastasis. Moreover, HOXB5 overexpression in HCC cells promoted myeloid derived suppressor cells (MDSCs) infiltration through CXCL1/CXCR2 axis. Either depletion of MDSCs by anti-Gr1 or blocking CXCL1-CXCR2 axis by CXCR2 inhibitor impaired HOXB5-mediated HCC metastasis. In addition, fibroblast growth factor 19 (FGF19) contributed to the HOXB5 upregulation through PI3K/AKT/HIF1α pathway. Overexpression of FGF15 (an analog of FGF19 in mouse) promoted HCC metastasis, whereas knockdown of HOXB5 significantly inhibited FGF15-enhanced HCC metastasis in immunocompetent mice. HOXB5 expression was positively associated with CXCL1 expression and intratumoral MDSCs accumulation in human HCC tissues. Patients who co-expressed HOXB5/CXCL1 or HOXB5/CD11b exhibited the worst prognosis. Furthermore, the combination of FGFR4 inhibitor BLU-554 and CXCR2 inhibitor SB265610 dramatically decreased HOXB5-mediated HCC metastasis. Conclusion: HOXB5 was a potential prognostic biomarker in HCC patients and targeting this loop may provide a promising treatment strategy for the inhibition of HOXB5-mediated HCC metastasis.
Collapse
|
19
|
The GNAQ T96S Mutation Affects Cell Signaling and Enhances the Oncogenic Properties of Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22063284. [PMID: 33807071 PMCID: PMC8004934 DOI: 10.3390/ijms22063284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the most common malignant tumor in the liver, grows and metastasizes rapidly. Despite advances in treatment modalities, the five-year survival rate of HCC remains less than 30%. We sought genetic mutations that may affect the oncogenic properties of HCC, using The Cancer Genome Atlas (TCGA) data analysis. We found that the GNAQ T96S mutation (threonine 96 to serine alteration of the Gαq protein) was present in 12 out of 373 HCC patients (3.2%). To examine the effect of the GNAQ T96S mutation on HCC, we transfected the SK-Hep-1 cell line with the wild-type or the mutant GNAQ T96S expression vector. Transfection with the wild-type GNAQ expression vector enhanced anchorage-independent growth, migration, and the MAPK pathways in the SK-Hep-1 cells compared to control vector transfection. Moreover, cell proliferation, anchorage-independent growth, migration, and the MAPK pathways were further enhanced in the SK-Hep-1 cells transfected with the GNAQ T96S expression vector compared to the wild-type GNAQ-transfected cells. In silico structural analysis shows that the substitution of the GNAQ amino acid threonine 96 with a serine may destabilize the interaction between the regulator of G protein signaling (RGS) protein and GNAQ. This may reduce the inhibitory effect of RGS on GNAQ signaling, enhancing the GNAQ signaling pathway. Single nucleotide polymorphism (SNP) genotyping analysis for Korean HCC patients shows that the GNAQ T96S mutation was found in only one of the 456 patients (0.22%). Our data suggest that the GNAQ T96S hotspot mutation may play an oncogenic role in HCC by potentiating the GNAQ signal transduction pathway.
Collapse
|
20
|
Gong Y, Li D, Li L, Yang J, Ding H, Zhang C, Wen G, Wu C, Fang Z, Hou S, Yang Y. Smad3 C-terminal phosphorylation site mutation attenuates the hepatoprotective effect of salvianolic acid B against hepatocarcinogenesis. Food Chem Toxicol 2021; 147:111912. [DOI: 10.1016/j.fct.2020.111912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/28/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
|
21
|
Ju T, Wang S, Wang J, Yang F, Song Z, Xu H, Chen Y, Zhang J, Wang Z. A study on the effects of tumor-derived exosomes on hepatoma cells and hepatocytes by atomic force microscopy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5458-5467. [PMID: 33135693 DOI: 10.1039/d0ay01730b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tumor-derived exosomes (exos) are closely related to the occurrence, development and treatment of tumors. However, it is not clear how the exosomes affect the physical properties, which lead to the deterioration of the target cells. In this paper, atomic force microscopy (AFM) was used to study the effects of exosomes in HCC-LM3 cells and other cells (SMMC-7721 and HL-7702). The results showed that the HCC-LM3-exos (the exosomes secreted by HCC-LM3 cells, 50 μg mL-1) significantly promoted the proliferation and migration of HCC-LM3 cells. HCC-LM3-exos also promoted the proliferation and migration of SMMC-7721 and HL-7702 cells at 1000 and 1500 μg mL-1, respectively. With an increase in time and concentration, the proliferation effect was more significant. On comparing the mechanical properties of the three types of cells (HCC-LM3, SMMC-7721 and HL-7702 cells), the degradation degree and migration ability of the cells were from high to low in the above order. In turn, the surface roughness of the cells decreased, and adhesion and elastic modulus increased. With an increase in treatment time, surface roughness increased, while adhesion and elastic modulus decreased. These suggested that the HCC-LM3-exos could change the mechanical properties of cells, leading to their deterioration, and enhance their migration and invasion ability. In this paper, the effects of exosomes were analyzed from the perspective of the physical parameters of cells, which provide a new idea to study cancer metastasis and prognosis.
Collapse
Affiliation(s)
- Tuoyu Ju
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lin YL, Li Y. Study on the hepatocellular carcinoma model with metastasis. Genes Dis 2020; 7:336-350. [PMID: 32884988 PMCID: PMC7452459 DOI: 10.1016/j.gendis.2019.12.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/07/2019] [Accepted: 12/31/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death around the world due to advanced clinical stage at diagnosis, high incidence of recurrence and metastasis after surgical treatment. It is in urgent need to create appropriate animal models to explore the mechanism, patterns, risk factors, and therapeutic strategies of HCC metastasis and recurrence. However, most of the established models lack the phenotype of invasion and metastasis in patient, or have unstable phenotype. To establish HCC models with stable metastasis phenotype requires profound understanding in cancer metastasis biology and scientific methodology. Over the past 3 decades, HCC models with stable metastasis have been extensively studied. This paper reviewed the history and development of HCC animal models and cell models, focusing on the screening and maintaining of metastatic potential and phenotype. In-depth studies using these models vastly promote the understanding of cellular and molecular mechanisms and development of therapeutic strategies on HCC metastasis.
Collapse
Affiliation(s)
- Yu-Lin Lin
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Yan Li
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| |
Collapse
|
23
|
Song L, Zhang JG, Zheng L, Feng X, Hou J, Zhang HL, Liu SF. Establishment of rat liver cancer cell lines with different metastatic potential. Sci Rep 2020; 10:8329. [PMID: 32433581 PMCID: PMC7239898 DOI: 10.1038/s41598-020-65338-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/23/2020] [Indexed: 12/28/2022] Open
Abstract
The gloomy outcome of liver cancer is mainly due to the high rates of metastasis and recurrence, even after curative resection for early stage liver cancer. Our study was conducted to find the animal model suitable for the study of liver cancer metastasis. In our study, two liver cancer cells were obtained from N-nitrosodiethylamine (DEN) and N-nitrosomorpholine (NMOR) induced rats, and they were cultivated, screened and cloning cultivated. Bionomics of cells was analyzed. The results show that 2 cells had different metastatic potentiality. They were named Wrh-f2 and Wrh-s2, and they have the characteristics of Hepatocellular carcinoma cells. The bionomics of 2 cells showed: (1) The chromosome karyotype analysis showed that the mode of Wrh-f2 was 80–83 and Wrh-s2 was 55–57; (2) AFP positive cytoplasmic staining was observed in Wrh-f2 and Wrh-s2. Cytokeratin (CK) 7 and CK8 positive staining was present in Wrh-f2. CK8 positive staining was present in Wrh-s2; (3) The numbers of Wrh-f2 and Wrh-s2 that passed through the Transwells were 98 ± 12 and 55 ± 15;(4) Wrh-f2 had the significant higher colony formation (78%) than Wrh-s2(8%) (P < 0.01). (5) The animal models generated solid tumours when 2 cells were inoculated to nude mouse and rat. And Wrh-f2 developed stable pulmonary metastasis. The established cell lines with different metastatic potential showed obvious advantages over liver cancer in mimicking the biological properties of malignant liver cancer tumors. It provided a suitable model for the mechanism of liver cancer metastasis in vivo and in vitro.
Collapse
Affiliation(s)
- Lei Song
- Department of Laboratory Animal Science of Hebei Medical University, Heibei Key Laboratory of Laboratory Animals, Shijiazhuang, 050017, Hebei, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, 300193, China
| | - Jian-Gang Zhang
- Department of Pathology, The Third Hospital of Xingtai, Xingtai, 054000, Hebei, China
| | - Long Zheng
- Department of Laboratory Animal Science of Hebei Medical University, Heibei Key Laboratory of Laboratory Animals, Shijiazhuang, 050017, Hebei, China
| | - Xu Feng
- Department of Laboratory Animal Science of Hebei Medical University, Heibei Key Laboratory of Laboratory Animals, Shijiazhuang, 050017, Hebei, China
| | - Jie Hou
- Department of Laboratory Animal Science of Hebei Medical University, Heibei Key Laboratory of Laboratory Animals, Shijiazhuang, 050017, Hebei, China
| | - Huan-Ling Zhang
- Department of Laboratory Animal Science of Hebei Medical University, Heibei Key Laboratory of Laboratory Animals, Shijiazhuang, 050017, Hebei, China.
| | - Shu-Feng Liu
- Department of Laboratory Animal Science of Hebei Medical University, Heibei Key Laboratory of Laboratory Animals, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
24
|
van Tienderen GS, Groot Koerkamp B, IJzermans JNM, van der Laan LJW, Verstegen MMA. Recreating Tumour Complexity in a Dish: Organoid Models to Study Liver Cancer Cells and their Extracellular Environment. Cancers (Basel) 2019; 11:E1706. [PMID: 31683901 PMCID: PMC6896153 DOI: 10.3390/cancers11111706] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023] Open
Abstract
Primary liver cancer, consisting predominantly of hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), remains one of the most lethal malignancies worldwide. This high malignancy is related to the complex and dynamic interactions between tumour cells, stromal cells and the extracellular environment. Novel in vitro models that can recapitulate the tumour are essential in increasing our understanding of liver cancer. Herein, primary liver cancer-derived organoids have opened up new avenues due to their patient-specificity, self-organizing ability and potential recapitulation of many of the tumour properties. Organoids are solely of epithelial origin, but incorporation into co-culture models can enable the investigation of the cellular component of the tumour microenvironment. However, the extracellular component also plays a vital role in cancer progression and representation is lacking within current in vitro models. In this review, organoid technology is discussed in the context of liver cancer models through comparisons to other cell culture systems. In addition, the role of the tumour extracellular environment in primary liver cancer will be highlighted with an emphasis on its importance in in vitro modelling. Converging novel organoid-based models with models incorporating the native tumour microenvironment could lead to experimental models that can better recapitulate liver tumours in vivo.
Collapse
Affiliation(s)
- Gilles S van Tienderen
- Department of Surgery, Erasmus MC-University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands.
| | - Bas Groot Koerkamp
- Department of Surgery, Erasmus MC-University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands.
| | - Jan N M IJzermans
- Department of Surgery, Erasmus MC-University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands.
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC-University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands.
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC-University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands.
| |
Collapse
|
25
|
Animal Models of Hepatocellular Carcinoma: The Role of Immune System and Tumor Microenvironment. Cancers (Basel) 2019; 11:cancers11101487. [PMID: 31581753 PMCID: PMC6826986 DOI: 10.3390/cancers11101487] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer in adults and has one of the highest mortality rates of solid cancers. Ninety percent of HCCs are associated with liver fibrosis or cirrhosis developed from chronic liver injuries. The immune system of the liver contributes to the severity of the necrotic-inflammatory tissue damage, the establishment of fibrosis and cirrhosis, and the disease progression towards HCC. Immunotherapies have emerged as an exciting strategy for HCC treatment, but their effect is limited, and an extensive translation research is urgently needed to enhance anti-tumor efficacy and clinical success. Establishing HCC animal models that are analogous to human disease settings, i.e., mimicking the tumor microenvironment of HCC, is extremely challenging. Hence, this review discusses different animal models of HCC by summarizing their advantages and their limits with a specific focus on the role of the immune system and tumor microenvironment.
Collapse
|
26
|
Liu J, Chen S, Zou Z, Tan D, Liu X, Wang X. Pathological Pattern of Intrahepatic HBV in HCC is Phenocopied by PDX-Derived Mice: a Novel Model for Antiviral Treatment. Transl Oncol 2019; 12:1138-1146. [PMID: 31202090 PMCID: PMC6581976 DOI: 10.1016/j.tranon.2019.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) is one of the most prominent risk factors for hepatocellular carcinoma (HCC) development and virus-mediated cases represents more than 80% of HCC in East Asia, where it is endemic. Currently, the HBV status of pathological HCC is not fully clarified, especially by comparison to nontumorous tissues. Lack of clinicopathological animal models of HCC impedes clinical application of antiviral treatment in the field. MATERIALS AND METHODS A cohort sample of 14 HCC and corresponding stroma tissues were analyzed for pathological patterns of HBV antigens using immunohistochemistry; 10 fresh primary tumor tissues were inoculated into NOD/SCID mice and risk factors for patient-derived xenograft (PDX) model were identified by the univariate F test. Consistency of HBV features and cellular biomarkers between patient tissues and tumor grafts were examined. RESULTS In HCC, HBV surface antigen (HBsAg) was mainly absent. Only 9.9% of samples showed HBsAg positivity in the tumor tissue that was limited to benign hepatocytes. In contrast, HBV core antigen (HBcAg) exhibited positive staining in all HCC tissues, located mainly in the cytoplasm of tumor cells. Of 14 HCC cases, three were diagnosed as occult infection of HBV based on HBcAg expression. The successful rate for the PDX model was 20% (2/10). Tumor lesions on hepatic lobes of V and VI, severe liver dysfunction and higher CA125 showed p-values of 0.01, 0.035, and 0.01, respectively. HBsAg absence in original tumors of #6 and 8 patients were faithfully reproduced by engraftments. Mixed distribution of HBcAg in cellular compartments of original tumor cells was also observed in mice. ki67 was dramatically increased in tumor grafts. CONCLUSION We delineated pathological HBV profiles of HCC specimens and perilesional areas, which provided evidence for virus-based therapy in the future. PDX mice may phenocopy virological and cellular features of patient tissues, which is novel in the virus-related hepatocarcinogenesis field.
Collapse
Affiliation(s)
- Jiao Liu
- Department of Endoscope, the General Hospital of Shenyang Military Region, Shenyang 110000, PR China.
| | - Siyuan Chen
- Department of Gastroenterology, the Second Affiliated Hospital of Army Medical University, Chongqing 400007, PR China.
| | - Zhe Zou
- Department of Gastroenterology, the Second Affiliated Hospital of Army Medical University, Chongqing 400007, PR China.
| | - Dehong Tan
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Army Medical University, Chongqing 400007, PR China.
| | - Xiangde Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Army Medical University, Chongqing 400007, PR China.
| | - Xing Wang
- Department of Gastroenterology, the Second Affiliated Hospital of Army Medical University, Chongqing 400007, PR China.
| |
Collapse
|
27
|
Callegari E, Domenicali M, Shankaraiah RC, D'Abundo L, Guerriero P, Giannone F, Baldassarre M, Bassi C, Elamin BK, Zagatti B, Ferracin M, Fornari F, Altavilla G, Blandamura S, Silini EM, Gramantieri L, Sabbioni S, Negrini M. MicroRNA-Based Prophylaxis in a Mouse Model of Cirrhosis and Liver Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 14:239-250. [PMID: 30641476 PMCID: PMC6330511 DOI: 10.1016/j.omtn.2018.11.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 02/07/2023]
Abstract
Most hepatocellular carcinomas (HCCs) arise in the context of chronic liver disease and/or cirrhosis. Thus, chemoprevention in individuals at risk represents an important but yet unproven approach. In this study, we investigated the ability of microRNA (miRNA)-based molecules to prevent liver cancer development in a cirrhotic model. To this end, we developed a mouse model able to recapitulate the natural progression from fibrosis to HCC, and then we tested the prophylactic activity of an miRNA-based approach in the model. The experiments were carried out in the TG221 transgenic mouse, characterized by the overexpression of miR-221 in the liver and predisposed to the development of liver tumors. TG221 as well as wild-type mice were exposed to the hepatotoxin carbon tetrachloride (CCl4) to induce chronic liver damage. All mice developed liver cirrhosis, but only TG221 mice developed nodular lesions in 100% of cases within 6 months of age. The spectrum of lesions ranged from dysplastic foci to carcinomas. To investigate miRNA-based prophylactic approaches, anti-miR-221 oligonucleotides or miR-199a-3p mimics were administered to TG221 CCl4-treated mice. Compared to control animals, a significant reduction in number, size, and, most significantly, malignant phenotype of liver nodules was observed, thus demonstrating an important prophylactic action of miRNA-based molecules. In summary, in this article, we not only report a simple model of liver cancer in a cirrhotic background but also provide evidence for a potential miRNA-based approach to reduce the risk of HCC development.
Collapse
Affiliation(s)
- Elisa Callegari
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Marco Domenicali
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; Center for Applied Biomedical Research, St. Orsola-Malpighi University Hospital, 40138 Bologna, Italy
| | - Ram Charan Shankaraiah
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Lucilla D'Abundo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Paola Guerriero
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Ferdinando Giannone
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; Center for Applied Biomedical Research, St. Orsola-Malpighi University Hospital, 40138 Bologna, Italy
| | - Maurizio Baldassarre
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; Center for Applied Biomedical Research, St. Orsola-Malpighi University Hospital, 40138 Bologna, Italy
| | - Cristian Bassi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Bahaeldin K Elamin
- Department of Basic Sciences, College of Medicine, University of Bisha, 61922 Bisha, Saudi Arabia; Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Khartoum, 11115 Khartoum, Sudan
| | - Barbara Zagatti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy
| | - Francesca Fornari
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; Center for Applied Biomedical Research, St. Orsola-Malpighi University Hospital, 40138 Bologna, Italy
| | | | - Stella Blandamura
- Department of Medicine DIMED, University of Padova, 35121 Padova, Italy
| | - Enrico Maria Silini
- Section of Anatomy and Pathology, University Hospital of Parma, 43121 Parma, Italy
| | - Laura Gramantieri
- Center for Applied Biomedical Research, St. Orsola-Malpighi University Hospital, 40138 Bologna, Italy
| | - Silvia Sabbioni
- Department of Life Sciences and Biotechnologies, University of Ferrara, 44121 Ferrara, Italy
| | - Massimo Negrini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
28
|
Li W, Li Y, Siraj S, Jin H, Fan Y, Yang X, Huang X, Wang X, Wang J, Liu L, Du L, Chen Q. FUN14 Domain-Containing 1-Mediated Mitophagy Suppresses Hepatocarcinogenesis by Inhibition of Inflammasome Activation in Mice. Hepatology 2019; 69:604-621. [PMID: 30053328 DOI: 10.1002/hep.30191] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/22/2018] [Indexed: 12/20/2022]
Abstract
Mitochondria lie at the heart of innate immunity, and aberrant mitochondrial activity contributes to immune activation and chronic inflammatory diseases, including liver cancers. Mitophagy is a selective process for removing dysfunctional mitochondria. The link between mitophagy and inflammation in tumorigenesis remains largely unexplored. We observed that FUN14 domain-containing 1 (FUNDC1), a previously characterized mitophagy receptor, accumulates in most human hepatocellular carcinomas (HCCs), and we thus explored the role of FUNDC1-mediated mitophagy in HCC initiation and progression in a mouse model in which HCC is induced by the chemical carcinogen, diethylnitrosamine (DEN). We showed that specific knockout of FUNDC1 in hepatocytes promotes the initiation and progression of DEN-induced HCC, whereas FUNDC1 transgenic hepatocytes protect against development of HCC. Hepatocyte-specific FUNDC1 ablation results in the accumulation of dysfunctional mitochondria and triggers a cascade of events involving inflammasome activation and hyperactivation of Janus kinase/signal transducer and activator of transcription signaling. Specifically, cytosolic mitochondrial DNA (mtDNA) release and caspase-1 activation are increased in FUNDC1-depleted hepatocytes. This subsequently results in the elevated release of proinflammatory cytokines, such as interleukin-1β (IL1β) and hyperproliferation of hepatocytes. Conclusion: Our results suggest that FUNDC1 suppresses HCC initiation by reducing inflammasome activation and inflammatory responses in hepatocytes, whereas up-regulation of FUNDC1 expression at the late stage of tumor development may benefit tumor growth. Our study thus describes a mechanistic link between mitophagic modulation of inflammatory response and tumorigenesis, and further implies that FUNDC1-mediated mitophagy and its related inflammatory response may represent a therapeutic target for liver cancer.
Collapse
Affiliation(s)
- Wenhui Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanjun Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Sami Siraj
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Haojie Jin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuyuan Fan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinrong Yang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Xiaowu Huang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Xiaohui Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jun Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Du
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Quan Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
29
|
Zheng Y, Ming P, Zhu C, Si Y, Xu S, Chen A, Wang J, Zhang B. Hepatitis B virus X protein-induced SH2 domain-containing 5 (SH2D5) expression promotes hepatoma cell growth via an SH2D5-transketolase interaction. J Biol Chem 2019; 294:4815-4827. [PMID: 30659097 DOI: 10.1074/jbc.ra118.005739] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/09/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus X protein (HBx) critically contributes to the development of hepatocellular carcinoma (HCC). However, the mechanisms by which HBx promotes HCC remain unclear. In the present study, using a combination of gene expression profiling and immunohistochemistry, we found higher levels of SH2 domain-containing 5 (SH2D5) in liver tissue from HBV-associated HCC (HBV-HCC) patients than in adjacent nontumor tissues. Moreover, HBV infection elevated SH2D5 levels, and we observed that HBx plays an important role in SH2D5 induction. We also found that HBx triggers SH2D5 expression through the NF-κB and c-Jun kinase pathways. Employing SH2D5 overexpression or knockdown, we further demonstrate that SH2D5 promotes HCC cell proliferation both in vitro and in vivo While investigating the mechanism of SH2D5-mediated stimulation of HCC cell proliferation, we noted that HBV induces SH2D5 binding to transketolase (TKT), a pentose phosphate pathway enzyme, thereby promoting an interaction between and signal transducer and activator of transcription 3 (STAT3). Furthermore, HBx stimulated STAT3 phosphorylation at Tyr-705 and promoted the activity and downstream signaling pathway of STAT3 via the SH2D5-TKT interaction. Taken together, our results suggest that SH2D5 is an HBV-induced protein capable of binding to TKT, leading to induction of HCC cell proliferation.
Collapse
Affiliation(s)
| | | | | | - Yu Si
- the Department of Otolaryngology-Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120
| | - Shilei Xu
- the Department of General Surgery, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510530
| | - Aidong Chen
- the Department of Physiology, Nanjing Medical University, Nanjing 211166, and
| | - Jun Wang
- the Center of Clinical Laboratory, Fifth People's Hospital of Wuxi, affiliated with Jiangnan University, Wuxi, Jiangsu 214005, China
| | - Binghong Zhang
- Neonatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060,
| |
Collapse
|
30
|
Brown ZJ, Heinrich B, Greten TF. Mouse models of hepatocellular carcinoma: an overview and highlights for immunotherapy research. Nat Rev Gastroenterol Hepatol 2018; 15:536-554. [PMID: 29904153 DOI: 10.1038/s41575-018-0033-6] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mouse models are the basis of preclinical and translational research in hepatocellular carcinoma (HCC). Multiple methods exist to induce tumour formation in mice, including genetically engineered mouse models, chemotoxic agents, intrahepatic or intrasplenic injection of tumour cells and xenograft approaches. Additionally, as HCC generally develops in the context of diseased liver, methods exist to induce liver disease in mice to mimic viral hepatitis, fatty liver disease, fibrosis, alcohol-induced liver disease and cholestasis. Similar to HCC in humans, response to therapy in mouse models is monitored with imaging modalities such as CT or MRI, as well as additional techniques involving bioluminescence. As immunotherapy is increasingly applied to HCC, mouse models for these approaches are required for preclinical data. In studying cancer immunotherapy, it is important to consider aspects of antitumour immune responses and to produce a model that mimics the complexity of the immune system. This Review provides an overview of the different mouse models of HCC, presenting techniques to prepare an HCC mouse model and discussing different approaches to help researchers choose an appropriate model for a specific hypothesis. Specific aspects of immunotherapy research in HCC and the applied mouse models in this field are also highlighted.
Collapse
Affiliation(s)
- Zachary J Brown
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bernd Heinrich
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
31
|
Hubner EK, Lechler C, Kohnke-Ertel B, Zmoos AF, Sage J, Schmid RM, Ehmer U. An in vivo transfection system for inducible gene expression and gene silencing in murine hepatocytes. J Gene Med 2018; 19. [PMID: 28009940 DOI: 10.1002/jgm.2940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Hydrodynamic tail vein injection (HTVI) of transposon-based integration vectors is an established system for stably transfecting mouse hepatocytes in vivo that has been successfully employed to study key questions in liver biology and cancer. Refining the vectors for transposon-mediated hepatocyte transfection will further expand the range of applications of this technique in liver research. In the present study, we report an advanced transposon-based system for manipulating gene expression in hepatocytes in vivo. METHODS Transposon-based vector constructs were generated to enable the constitutive expression of inducible Cre recombinase (CreER) together with tetracycline-inducible transgene or miR-small hairpin RNA (shRNA) expression (Tet-ON system). Transposon and transposase expression vectors were co-injected into R26R-mTmG reporter mice by HTVI. Cre-mediated gene recombination was induced by tamoxifen, followed by the administration of doxycycline to drive tetracycline-inducible gene or shRNA expression. Expression was visualized by immunofluorescence staining in livers of injected mice. RESULTS After HTVI, Cre recombination by tamoxifen led to the expression of membrane-bound green fluorescent protein in transfected hepatocytes. Activation of inducible gene or shRNA expression was detected by immunostaining in up to one-third of transfected hepatocytes, with an efficiency dependent on the promoter driving the Tet-ON system. CONCLUSIONS Our vector system combines Cre-lox mediated gene mutation with inducible gene expression or gene knockdown, respectively. It provides the opportunity for rapid and specific modification of hepatocyte gene expression and can be a useful tool for genetic screening approaches and analysis of target genes specifically in genetically engineered mouse models.
Collapse
Affiliation(s)
- Eric K Hubner
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christian Lechler
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Birgit Kohnke-Ertel
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Anne-Flore Zmoos
- Department of Pediatrics and Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Julien Sage
- Department of Pediatrics and Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Roland M Schmid
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Ursula Ehmer
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
32
|
Lei X, Xu JF, Chang RM, Fang F, Zuo CH, Yang LY. JARID2 promotes invasion and metastasis of hepatocellular carcinoma by facilitating epithelial-mesenchymal transition through PTEN/AKT signaling. Oncotarget 2018; 7:40266-40284. [PMID: 27259236 PMCID: PMC5130007 DOI: 10.18632/oncotarget.9733] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 04/28/2016] [Indexed: 02/07/2023] Open
Abstract
JARID2 is crucial for maintenance of pluripotency and differentiation of embryonic stem cells. However, little is known about the role of JARID2 in metastasis of hepatocellular carcinoma (HCC). This study found that JARID2 expression was significantly higher in HCC tissues than that in adjacent non-tumor liver tissues (ANLTs), and its expression level correlated with HCC metastasis. High JARID2 expression was significantly correlated with multiple tumor nodules, high Edmondson-Steiner grade, microvascular invasion, advanced TNM stage and advanced BCLC stage (all P < 0.05) and indicated poor prognosis of HCC in training and validation cohorts (all P < 0.05) totaling 182 patients. High JARID2 expression was an independent and significant risk factor for disease-free survival (DFS; P = 0.017) and overall survival (OS; P = 0.041) after curative liver resection in training cohort, and also validated as an independent and significant risk factor for DFS (P = 0.033) and OS (P = 0.031) in validation cohort. Moreover, down-regulation of JARID2 dramatically inhibited HCC cell migration, invasion, proliferation in vitro and metastasis in vivo, whereas overexpression of JARID2 significantly increased migration, invasion, proliferation in vitro and metastasis in vivo. Mechanistically, the data showed that JARID2 exerted its function by repressing PTEN expression through increasing H3K27 trimethylation (H3K27me3) at PTEN promoter region, which subsequently resulted in activation of protein kinase B (AKT) and enhanced epithelial-mesenchymal transition (EMT). In conclusion, this study revealed that JARID2 promotes invasion and metastasis of HCC by facilitating EMT through PTEN/AKT signaling.
Collapse
Affiliation(s)
- Xiong Lei
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Jiang-Feng Xu
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Rui-Min Chang
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Feng Fang
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Chao-Hui Zuo
- Department of Abdominal Surgical Oncology, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Lian-Yue Yang
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Department of Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
33
|
Alcoholic Liver Disease Accelerates Early Hepatocellular Cancer in a Mouse Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1032:71-79. [PMID: 30362091 DOI: 10.1007/978-3-319-98788-0_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
HCC is a rapidly increasing cancer worldwide. Most HCC rises in the setting of chronic and advanced liver disease caused by viral hepatitis, alcohol use, non-alcoholic liver disease or their combination. We found that in the mouse model, alcohol alone does not induce HCC, however, it can promote HCC development after a carcinogen exposure. Multiple mechanisms are involved in carcinogenesis and alcohol affects many of those including epithelial-mesenchymal transition, cancer stem marker expression and inflammation as evidenced in our HCC model.
Collapse
|
34
|
Hirano J, Okamoto T, Sugiyama Y, Suzuki T, Kusakabe S, Tokunaga M, Fukuhara T, Sasai M, Tougan T, Matsunaga Y, Yamashita K, Sakai Y, Yamamoto M, Horii T, Standley DM, Moriishi K, Moriya K, Koike K, Matsuura Y. Characterization of SPP inhibitors suppressing propagation of HCV and protozoa. Proc Natl Acad Sci U S A 2017; 114:E10782-E10791. [PMID: 29187532 PMCID: PMC5740650 DOI: 10.1073/pnas.1712484114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Signal peptide peptidase (SPP) is an intramembrane aspartic protease involved in the maturation of the core protein of hepatitis C virus (HCV). The processing of HCV core protein by SPP has been reported to be critical for the propagation and pathogenesis of HCV. Here we examined the inhibitory activity of inhibitors for γ-secretase, another intramembrane cleaving protease, against SPP, and our findings revealed that the dibenzoazepine-type structure in the γ-secretase inhibitors is critical for the inhibition of SPP. The spatial distribution showed that the γ-secretase inhibitor compound YO-01027 with the dibenzoazepine structure exhibits potent inhibiting activity against SPP in vitro and in vivo through the interaction of Val223 in SPP. Treatment with this SPP inhibitor suppressed the maturation of core proteins of all HCV genotypes without the emergence of drug-resistant viruses, in contrast to the treatment with direct-acting antivirals. YO-01027 also efficiently inhibited the propagation of protozoa such as Plasmodium falciparum and Toxoplasma gondii These data suggest that SPP is an ideal target for the development of therapeutics not only against chronic hepatitis C but also against protozoiasis.
Collapse
Affiliation(s)
- Junki Hirano
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Toru Okamoto
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan;
| | - Yukari Sugiyama
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Tatsuya Suzuki
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Shinji Kusakabe
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Makoto Tokunaga
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Takasuke Fukuhara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Takahiro Tougan
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Yasue Matsunaga
- Planning and Promotion Office for University-Industry Collaboration, Osaka University, Osaka 565-0871, Japan
| | | | - Yusuke Sakai
- Department of Veterinary Pathology, Yamaguchi University, Yamaguchi 753-0841, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Toshihiro Horii
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Daron M Standley
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Kohji Moriishi
- Department of Microbiology, Faculty of Medicine, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Kyoji Moriya
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan;
| |
Collapse
|
35
|
Fan Y, Arechederra M, Richelme S, Daian F, Novello C, Calderaro J, Di Tommaso L, Morcrette G, Rebouissou S, Donadon M, Morenghi E, Zucman-Rossi J, Roncalli M, Dono R, Maina F. A phosphokinome-based screen uncovers new drug synergies for cancer driven by liver-specific gain of nononcogenic receptor tyrosine kinases. Hepatology 2017; 66:1644-1661. [PMID: 28586114 DOI: 10.1002/hep.29304] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/24/2017] [Accepted: 06/02/2017] [Indexed: 12/14/2022]
Abstract
UNLABELLED Genetic mutations leading to oncogenic variants of receptor tyrosine kinases (RTKs) are frequent events during tumorigenesis; however, the cellular vulnerability to nononcogenic RTK fluctuations has not been characterized. Here, we demonstrated genetically that in the liver subtle increases in wild-type Met RTK levels are sufficient for spontaneous tumors in mice (Alb-R26Met ), conceptually illustrating how the shift from physiological to pathological conditions results from slight perturbations in signaling dosage. By analyzing 96 different genes in a panel of tumor samples, we demonstrated that liver tumorigenesis modeled by Alb-R26Met mice corresponds to a subset of hepatocellular carcinoma (HCC) patients, thus establishing the clinical relevance of this HCC mouse model. We elucidated the regulatory networks underlying tumorigenesis by combining a phosphokinome screen with bioinformatics analysis. We then used the signaling diversity results obtained from Alb-R26Met HCC versus control livers to design an "educated guess" drug screen, which led to the identification of new, deleterious synthetic lethal interactions. In particular, we report synergistic effects of mitogen-activated protein kinase kinase, ribosomal S6 kinase, and cyclin-dependent kinase 1/2 in combination with Bcl-XL inhibition on a panel of liver cancer cells. Focusing on mitogen-activated protein kinase kinase and Bcl-XL targeting, we mechanistically demonstrated concomitant down-regulation of phosphorylated extracellular signal-regulated kinase and myeloid cell leukemia 1 levels. Of note, a phosphorylated extracellular signal-regulated kinase+/BCL-XL+ /myeloid cell leukemia 1+ signature, deregulated in Alb-R26Met tumors, characterizes a subgroup of HCC patients with poor prognosis. CONCLUSION Our genetic studies highlight the heightened vulnerability of liver cells to subtle changes in nononcogenic RTK levels, allowing them to acquire a molecular profile that facilitates the full tumorigenic program; furthermore, our outcomes uncover new synthetic lethal interactions as potential therapies for a cluster of HCC patients. (Hepatology 2017;66:1644-1661).
Collapse
Affiliation(s)
- Yannan Fan
- Aix Marseille Univ., CNRS, Institute of Developmental Biology of Marseille, Parc Scientifique de Luminy, Marseille, France
| | - Maria Arechederra
- Aix Marseille Univ., CNRS, Institute of Developmental Biology of Marseille, Parc Scientifique de Luminy, Marseille, France
| | - Sylvie Richelme
- Aix Marseille Univ., CNRS, Institute of Developmental Biology of Marseille, Parc Scientifique de Luminy, Marseille, France
| | - Fabrice Daian
- Aix Marseille Univ., CNRS, Institute of Developmental Biology of Marseille, Parc Scientifique de Luminy, Marseille, France
| | - Chiara Novello
- Pathology Unit, Humanitas Clinical and Research Center, and Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
| | - Julien Calderaro
- Département de Pathologie, APHP, Groupe Hospitalier Henri Mondor.,INSERM U955, Team 18, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Luca Di Tommaso
- Pathology Unit, Humanitas Clinical and Research Center, and Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
| | - Guillaume Morcrette
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR674, Génomique Fonctionnelle des Tumeurs Solides, Institut Universitaire d'Hematologie, Paris, France
| | - Sandra Rebouissou
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR674, Génomique Fonctionnelle des Tumeurs Solides, Institut Universitaire d'Hematologie, Paris, France
| | - Matteo Donadon
- Hepatobiliary and General Surgery, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Emanuela Morenghi
- Biostatistics Unit, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Jessica Zucman-Rossi
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR674, Génomique Fonctionnelle des Tumeurs Solides, Institut Universitaire d'Hematologie, Paris, France
| | - Massimo Roncalli
- Pathology Unit, Humanitas Clinical and Research Center, and Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
| | - Rosanna Dono
- Aix Marseille Univ., CNRS, Institute of Developmental Biology of Marseille, Parc Scientifique de Luminy, Marseille, France
| | - Flavio Maina
- Aix Marseille Univ., CNRS, Institute of Developmental Biology of Marseille, Parc Scientifique de Luminy, Marseille, France
| |
Collapse
|
36
|
Wang S, Chen G, Lin X, Xing X, Cai Z, Liu X, Liu J. Role of exosomes in hepatocellular carcinoma cell mobility alteration. Oncol Lett 2017; 14:8122-8131. [PMID: 29250190 PMCID: PMC5727617 DOI: 10.3892/ol.2017.7257] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/23/2017] [Indexed: 02/07/2023] Open
Abstract
Exosomes have gained increased research focus due to their key roles as messengers. The components of exosomes include proteins and RNAs that may be horizontally transferred between adjacent or distant cells. Hepatocellular carcinoma (HCC) is among the most malignant types of cancer worldwide, with exosomes implicated to play a crucial role in its regulation; however, the possible function of exosomes in modulating the motile ability of tumor cells and key molecules in HCC remain largely unknown. To investigate the regulatory effect of exosomes on the motile ability of HCC cells, exosomes from the culture medium of different HCC origins (high metastatic MHCC97-H and low metastatic MHCC97-L cells) were isolated for in vitro migration and invasion assays. The results indicated that the motile ability of MHCC97-L cells was significantly increased by pretreatment with MHCC97-H-derived exosomes when compared with MHCC97-L-exosome pretreatment (P<0.05). To further characterize the function of exosomes at the molecular level, protein profiling of exosomes from different cell origins was performed, which identified 129 proteins. Among these, adenylyl cyclase-associated protein 1, a protein implicated in HCC metastasis, was significantly enriched in exosomes from cells with high motile ability (P<0.05). The results of the present study validated the regulatory effect of exosomes on the motile ability of HCC cells. Furthermore, systematic analysis of the protein profiles of exosomes from different origins identified potential factors correlated with HCC metastasis, which may provide a basis for future functional analysis of exosomes regarding their involvement in cancer metastasis and recurrence.
Collapse
Affiliation(s)
- Sen Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China.,The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Geng Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China.,The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Xiao Lin
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350007, P.R. China
| | - Xiaohua Xing
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China.,The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China.,The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China.,The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China.,The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| |
Collapse
|
37
|
Fu XT, Shi YH, Zhou J, Peng YF, Liu WR, Shi GM, Gao Q, Wang XY, Song K, Fan J, Ding ZB. MicroRNA-30a suppresses autophagy-mediated anoikis resistance and metastasis in hepatocellular carcinoma. Cancer Lett 2017; 412:108-117. [PMID: 29061507 DOI: 10.1016/j.canlet.2017.10.012] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/19/2017] [Accepted: 10/11/2017] [Indexed: 02/07/2023]
Abstract
MiRNA-30a (miR-30a) was previously reported as one of metastatic hepatocellular carcinoma (HCC)-related microRNAs. However, the function of miR-30a on enhancing our biological understanding of HCC metastasis is not clear. This study demonstrated that miR-30a was significantly down-regulated in HCC tissues and cell lines, and was associated with vascular invasion, metastasis potential and recurrent disease in HCC. Functional studies confirmed that miR-30a could inhibit the metastasis of HCC in a well-established nude mouse model of lung metastasis. Moreover, miR-30a was proved to prevent anoikis inhibition of HCC cells in vivo and in vitro. Mechanically, autophagy related protein Beclin 1 and Atg5 were direct downstream targets of miR-30a, and mediated autophagy activity influence of miR-30a in HCC. Taken together, downregulated miR-30a in metastatic HCC mediates Beclin 1 and Atg5-dependent autophagy, which confers anoikis resistance in HCC cells. The molecular basis of autophagy action during this process partly contributes to the HCC metastasis, suggesting that targeting autophagy via miR-30a may have therapeutic implications for the prevention of HCC recurrence/metastasis.
Collapse
Affiliation(s)
- Xiu-Tao Fu
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.
| | - Ying-Hong Shi
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China; Institute of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Yuan-Fei Peng
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.
| | - Wei-Ren Liu
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.
| | - Guo-Ming Shi
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.
| | - Qiang Gao
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.
| | - Xiao-Ying Wang
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.
| | - Kang Song
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China; Institute of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Zhen-Bin Ding
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.
| |
Collapse
|
38
|
Tu T, Bühler S, Bartenschlager R. Chronic viral hepatitis and its association with liver cancer. Biol Chem 2017; 398:817-837. [PMID: 28455951 DOI: 10.1515/hsz-2017-0118] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/13/2017] [Indexed: 02/06/2023]
Abstract
Chronic infection with hepatitis viruses represents the major causative factor for end-stage liver diseases, including liver cirrhosis and primary liver cancer (hepatocellular carcinoma, HCC). In this review, we highlight the current understanding of the molecular mechanisms that drive the hepatocarcinogenesis associated with chronic hepatitis virus infections. While chronic inflammation (associated with a persistent, but impaired anti-viral immune response) plays a major role in HCC initiation and progression, hepatitis viruses can also directly drive liver cancer. The mechanisms by which hepatitis viruses induce HCC include: hepatitis B virus DNA integration into the host cell genome; metabolic reprogramming by virus infection; induction of the cellular stress response pathway by viral gene products; and interference with tumour suppressors. Finally, we summarise the limitations of hepatitis virus-associated HCC model systems and the development of new techniques to circumvent these shortcomings.
Collapse
|
39
|
Santos NP, Colaço AA, Oliveira PA. Animal models as a tool in hepatocellular carcinoma research: A Review. Tumour Biol 2017; 39:1010428317695923. [PMID: 28347231 DOI: 10.1177/1010428317695923] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cancer is the first cause of death in developed countries and the second in developing countries. Concerning the most frequent worldwide-diagnosed cancer, primary liver cancer represents approximately 4% of all new cancer cases diagnosed globally. However, among primary liver cancer, hepatocellular carcinoma is by far the most common histological subtype. Notwithstanding the health promotion and disease prevention campaigns, more than half a million new hepatocellular carcinoma cases are reported yearly, being estimated to growth continuously until 2020. Taking this scenario under consideration and the fact that some aspects concerning hepatocellular carcinoma evolution and metastasize process are still unknown, animal models assume a crucial role to understand this disease. The animal models have also provided the opportunity to screen new therapeutic strategies. The present review was supported on research and review papers aiming the complexity and often neglected chemically induced animal models in hepatocarcinogenesis research. Despite the ongoing debate, chemically induced animal models, namely, mice and rat, can provide unique valuable information on the biotransformation mechanisms against xenobiotics and apprehend the deleterious effects on DNA and cell proteins leading to carcinogenic development. In addition, taking under consideration that no model achieves all hepatocellular carcinoma research purposes, criteria to define the " ideal" animal model, depending on the researchers' approach, are also discussed in this review.
Collapse
Affiliation(s)
- Nuno Paula Santos
- 1 Department of Veterinary Sciences, Veterinary and Animal Science Research Center (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,2 Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Aura Antunes Colaço
- 1 Department of Veterinary Sciences, Veterinary and Animal Science Research Center (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Paula Alexandra Oliveira
- 1 Department of Veterinary Sciences, Veterinary and Animal Science Research Center (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,2 Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
40
|
Sánchez-Rodríguez R, Torres-Mena JE, Quintanar-Jurado V, Chagoya-Hazas V, Rojas Del Castillo E, Del Pozo Yauner L, Villa-Treviño S, Pérez-Carreón JI. Ptgr1 expression is regulated by NRF2 in rat hepatocarcinogenesis and promotes cell proliferation and resistance to oxidative stress. Free Radic Biol Med 2017; 102:87-99. [PMID: 27867096 DOI: 10.1016/j.freeradbiomed.2016.11.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/24/2016] [Accepted: 11/14/2016] [Indexed: 02/07/2023]
Abstract
Prostaglandin reductase-1 (Ptgr1) is an alkenal/one oxidoreductase that is involved in the catabolism of eicosanoids and lipid peroxidation such as 4-hydroxynonenal (4-HNE). Recently, we reported that Ptgr1 is overexpressed in human clinical and experimentally induced samples of hepatocellular carcinoma (HCC). However, how the expression of this gene is regulated and its role in carcinogenesis are not yet known. Here, we studied parameters associated with antioxidant responses and the mechanisms underlying the induction of Ptgr1 expression by the activation of Nuclear Factor (erythroid-derived-2)-like-2 (NRF2). For these experiments, we used two protocols of induced hepatocarcinogenesis in rats. Furthermore, we determined the effect of PTGR1 on cell proliferation and resistance to oxidative stress in cell cultures of the epithelial liver cell line, C9. Ptgr1 was overexpressed during the early phase in altered hepatocyte foci, and this high level of expression was maintained in persistent nodules until tumors developed. Ptgr1 expression was regulated by NRF2, which bound to an antioxidant response element at -653bp in the rat Ptgr1 gene. The activation of NRF2 induced the activation of an antioxidant response that included effects on proteins such as glutamate-cysteine ligase, catalytic subunit, NAD(P)H dehydrogenase quinone-1 (NQO1) and glutathione-S-transferase-P (GSTP1). These effects may have produced a reduced status that was associated with a high proliferation rate in experimental tumors. Indeed, when Ptgr1 was stably expressed, we observed a reduction in the time required for proliferation and a protective effect against hydrogen peroxide- and 4-HNE-induced cell death. These data were consistent with data showing colocalization between PTGR1 and 4-HNE protein adducts in liver nodules. These findings suggest that Ptgr1 and antioxidant responses act as a metabolic adaptation and could contribute to proliferation and cell-death evasion in liver tumor cells. Furthermore, these data indicate that Ptgr1 could be used to design early diagnostic tools or targeted therapies for HCC.
Collapse
Affiliation(s)
| | - Julia Esperanza Torres-Mena
- Instituto Nacional de Medicina Genómica, Mexico; Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico
| | | | | | | | | | - Saul Villa-Treviño
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico
| | | |
Collapse
|
41
|
The effect of JAK2 knockout on inhibition of liver tumor growth by inducing apoptosis, autophagy and anti-proliferation via STATs and PI3K/AKT signaling pathways. Biomed Pharmacother 2016; 84:1202-1212. [PMID: 27788478 DOI: 10.1016/j.biopha.2016.09.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/11/2016] [Accepted: 09/12/2016] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is a leading cause of cancer death, making it as the second most common cause for death from cancer globally. Though many studies before have explored a lot for liver cancer prevention and treatment, there are still a lot far from to know based on the molecular mechanisms. Janus kinase 2 (JAK2) has been reported to play an essential role in the progression of apoptosis, autophagy and proliferation for cells. Therefore, we were aimed to investigate the underlying mechanisms by which JAK2 performed its role in ameliorating liver cancer. JAK2 knockout liver cancer cell lines were involved for our experiments in vitro and in vivo. Western blotting, quantitative RT-PCR (qRT-PCR), ELISA, Immunohistochemistry, and flow-cytometric analysis were used to determine the key signaling pathway regulated by JAK2 for liver cancer progression. Data here indicated that JAK2, indeed, expressed highly in cancer cell lines compared to the normal liver cells. And apoptosis and autophagy were found in JAK2 knockout liver cancer cells through activating Caspase-3, Cyclin-D1 and mTOR regulated by STAT3/5 and PI3K/AKT signaling pathway. And also, the liver cancer cells proliferation was inhibited. In addition, tumor size and weight were reduced by knockout of JAK2 in vivo experiments. These findings demonstrated that JAK2 and its down-streaming signaling pathways play a direct role in the progression of liver cancer possibly. To our knowledge, it was the first time to evaluate the role of JAK2 knockout in improving liver cancer from apoptosis, autophagy and proliferation, which could be a potential target for future therapeutic approach clinically.
Collapse
|
42
|
Zhang S, Shu R, Yue M, Zhang S. Effect of Over-Expression of Zinc-Finger Protein (ZFX) on Self-Renewal and Drug-Resistance of Hepatocellular Carcinoma. Med Sci Monit 2016; 22:3025-34. [PMID: 27566731 PMCID: PMC5012459 DOI: 10.12659/msm.897699] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background X-chromosome-coupled zinc finger protein (ZFX) in the Zfy protein family is abundantly expressed in both embryonic and hematopoietic stem cells (HSCs). ZFX exist in various tumor cells and is correlated with proliferation and survival of tumor cells. As a malignant tumor with high invasiveness, hepatocellular carcinoma (HCC) may present resistance against chemotherapy and features of stem cells. This study aimed to explore the expression of ZFX in HCC cells, in an attempt to illustrate the role of ZFX in tumorigenesis. Material/Methods The expression of ZFX in tumor tissues was quantified by RT-PCR. The ZFX expression was then silenced to evaluate the stem cell-like features of HCC cells, including self-renewal, colony formation, and cell cycle, along with the sensitivity to cisplatin. Xenograft of ZFX-overexpressed HCC on nude mice was performed to evaluate the in vivo effect of ZFX on tumor growth. Results Quantitative RT-PCR showed over-expression of ZFX in 51.8% of HCC tumors. The silencing of ZFX gene inhibited the self-renewal, colony formation, and proliferation ability of HCC cells (p<0.05 in all cases) via the cell cycle arrest at G0/G1 phase, in addition to the elevated sensitivity of tumor cells to cisplatin (p<0.001). Further studies showed that binding between ZFX and promoter regions of Nanog or SOX-2 regulatory factor initiate their expression in HCC cells. The xenograft experiment indicated the potentiation of tumor growth by ZFX over-expression. Conclusions ZFX is over-expressed in HCC cells, and correlates with stem cell-like features and pleiotropic characteristics.
Collapse
Affiliation(s)
- Shuhong Zhang
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| | - Ronghua Shu
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| | - Meng Yue
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| | - Shuhong Zhang
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
43
|
He L, Tian DA, Li PY, He XX. Mouse models of liver cancer: Progress and recommendations. Oncotarget 2016; 6:23306-22. [PMID: 26259234 PMCID: PMC4695120 DOI: 10.18632/oncotarget.4202] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/23/2015] [Indexed: 02/06/2023] Open
Abstract
To clarify the pathogenesis of hepatocellular carcinoma (HCC) and investigate the effects of potential therapies, a number of mouse models have been developed. Subcutaneous xenograft models are widely used in the past decades. Yet, with the advent of in vivo imaging technology, investigators are more and more concerned with the orthotopic models nowadays. Genetically engineered mouse models (GEM) have greatly facilitated studies of gene function in HCC development. Recently, GEM of miR-122 and miR-221 provided new approaches for better understanding of the in vivo functions of microRNA in hepatocarcinogenesis. Chemically induced liver tumors in animals share many of the morphological, histogenic, and biochemical features of human HCC. Yet, the complicated and obscure genomic alternation restricts their applications. In this review, we highlight both the frequently used mouse models and some emerging ones with emphasis on their merits or defects, and give advises for investigators to chose a “best-fit” animal model in HCC research.
Collapse
Affiliation(s)
- Li He
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - De-An Tian
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei-Yuan Li
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing-Xing He
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
44
|
Witzigmann D, Quagliata L, Schenk SH, Quintavalle C, Terracciano LM, Huwyler J. Variable asialoglycoprotein receptor 1 expression in liver disease: Implications for therapeutic intervention. Hepatol Res 2016; 46:686-96. [PMID: 26422581 DOI: 10.1111/hepr.12599] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/07/2015] [Accepted: 09/19/2015] [Indexed: 02/08/2023]
Abstract
AIM One of the most promising strategies for the treatment of liver diseases is targeted drug delivery via the asialoglycoprotein receptor (ASGPR). The success of this approach heavily depends on the ASGPR expression level on parenchymal liver cells. In this study, we assessed the mRNA and protein expression levels of the major receptor subunit, ASGR1, in hepatocytes both in vitro and in vivo. METHODS In vitro, various liver cancer-derived cell lines were evaluated. In vivo, we screened the ASGR1 mRNA on 59 hepatocellular carcinoma and matched non-neoplastic tissue using RNA microarray. In addition, 350 human liver specimens of patients with hepatocellular carcinoma or non-neoplastic liver diseases were screened for ASGR1 protein level using tissue microarray analysis. RESULTS Our data reveal that the ASGR1 mRNA expression directly correlates with the protein level. We demonstrate that the ASGR1 expression is upregulated in cirrhotic specimens and is significantly decreased with increasing hepatocellular carcinoma grade. CONCLUSION Because the ASGR1 expression levels are variable between patients, our findings suggest that ASGPR-based targeting strategies should be combined with ASGPR-companion diagnostics to maximize clinical benefit.
Collapse
Affiliation(s)
- Dominik Witzigmann
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Luca Quagliata
- Institute of Pathology, Molecular Pathology Division, University Hospital of Basel, Basel, Switzerland
| | - Susanne H Schenk
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Cristina Quintavalle
- Institute of Pathology, Molecular Pathology Division, University Hospital of Basel, Basel, Switzerland
| | - Luigi M Terracciano
- Institute of Pathology, Molecular Pathology Division, University Hospital of Basel, Basel, Switzerland
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
45
|
Wu WR, Zhang R, Shi XD, Yi C, Xu LB, Liu C. Notch2 is a crucial regulator of self-renewal and tumorigenicity in human hepatocellular carcinoma cells. Oncol Rep 2016; 36:181-8. [PMID: 27221981 DOI: 10.3892/or.2016.4831] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/11/2016] [Indexed: 11/05/2022] Open
Abstract
The Notch pathway plays an important role in both stem cell biology and cancer. Notch2 was reported to be upregulated in human hepatocellular carcinoma (HCC) tissues. However, the biological function of Notch2 in human HCC cells has not yet been documented. The aim of this study was to investigate its possible function on the progression of human HCC cells. The expression of Notch2 was detected in four human HCC cell lines by western blotting. Next, Notch2 was knocked down by small interference RNA (siRNA) in human HCC cells. The role of Notch2 in human HCC cells was investigated by cell proliferation assay, colony formation assay, chemoresistance and xenograft formation assay. In the present study, western blotting revealed that the expression of Notch2 was upregulated in human HCC cell lines. Genetic depletion of Notch2 in HCC cells not only resulted in significantly inhibited proliferation, cell cycle progression and colony formation ability but also increased its sensitivity to 5-fluorouracil (5-FU) compared with controls. In addition, upregulation of Notch2 was discovered in CD90 positive HCC cells, CD90 is a marker of hepatic stem cells. Most importantly, knockdown of Notch2 in HCC cells impaired the tumor formation in vivo. Taken together, our findings indicate that Notch2 may confer stemness properties in HCC; downregulation of Notch2 inhibited the proliferation and tumor formation of HCC cells and increase their sensitivity to 5-FU, suggesting Notch2 as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Wen-Rui Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Pancreato-Biliary Surgery, SunYat-sen Memorial Hospital, SunYat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Rui Zhang
- SunYat-sen Memorial Hospital, SunYat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Xiang-De Shi
- SunYat-sen Memorial Hospital, SunYat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Cao Yi
- Department of Emergency, SunYat-sen Memorial Hospital, SunYat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Lei-Bo Xu
- SunYat-sen Memorial Hospital, SunYat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Chao Liu
- SunYat-sen Memorial Hospital, SunYat-sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
46
|
Ambade A, Satishchandran A, Gyongyosi B, Lowe P, Szabo G. Adult mouse model of early hepatocellular carcinoma promoted by alcoholic liver disease. World J Gastroenterol 2016; 22:4091-108. [PMID: 27122661 PMCID: PMC4837428 DOI: 10.3748/wjg.v22.i16.4091] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/09/2016] [Accepted: 03/18/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To establish a mouse model of alcohol-driven hepatocellular carcinoma (HCC) that develops in livers with alcoholic liver disease (ALD). METHODS Adult C57BL/6 male mice received multiple doses of chemical carcinogen diethyl nitrosamine (DEN) followed by 7 wk of 4% Lieber-DeCarli diet. Serum alanine aminotransferase (ALT), alpha fetoprotein (AFP) and liver Cyp2e1 were assessed. Expression of F4/80, CD68 for macrophages and Ly6G, MPO, E-selectin for neutrophils was measured. Macrophage polarization was determined by IL-1β/iNOS (M1) and Arg-1/IL-10/CD163/CD206 (M2) expression. Liver steatosis and fibrosis were measured by oil-red-O and Sirius red staining respectively. HCC development was monitored by magnetic resonance imaging, confirmed by histology. Cellular proliferation was assessed by proliferating cell nuclear antigen (PCNA). RESULTS Alcohol-DEN mice showed higher ALTs than pair fed-DEN mice throughout the alcohol feeding without weight gain. Alcohol feeding resulted in increased ALT, liver steatosis and inflammation compared to pair-fed controls. Alcohol-DEN mice had reduced steatosis and increased fibrosis indicating advanced liver disease. Molecular characterization showed highest levels of both neutrophil and macrophage markers in alcohol-DEN livers. Importantly, M2 macrophages were predominantly higher in alcohol-DEN livers. Magnetic resonance imaging revealed increased numbers of intrahepatic cysts and liver histology confirmed the presence of early HCC in alcohol-DEN mice compared to all other groups. This correlated with increased serum alpha-fetoprotein, a marker of HCC, in alcohol-DEN mice. PCNA immunostaining revealed significantly increased hepatocyte proliferation in livers from alcohol-DEN compared to pair fed-DEN or alcohol-fed mice. CONCLUSION We describe a new 12-wk HCC model in adult mice that develops in livers with alcoholic hepatitis and defines ALD as co-factor in HCC.
Collapse
MESH Headings
- Alanine Transaminase/blood
- Animals
- Biomarkers, Tumor/blood
- Carcinoma, Hepatocellular/blood
- Carcinoma, Hepatocellular/etiology
- Carcinoma, Hepatocellular/pathology
- Cell Proliferation
- Cytochrome P-450 CYP2E1/metabolism
- Diethylnitrosamine
- Endotoxins/blood
- Ethanol
- Fatty Liver, Alcoholic/blood
- Fatty Liver, Alcoholic/complications
- Fatty Liver, Alcoholic/pathology
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Immunohistochemistry
- Liver Cirrhosis, Alcoholic/blood
- Liver Cirrhosis, Alcoholic/complications
- Liver Cirrhosis, Alcoholic/pathology
- Liver Neoplasms, Experimental/blood
- Liver Neoplasms, Experimental/chemically induced
- Liver Neoplasms, Experimental/etiology
- Liver Neoplasms, Experimental/pathology
- Macrophage Activation
- Macrophages/metabolism
- Macrophages/pathology
- Magnetic Resonance Imaging
- Male
- Mice, Inbred C57BL
- Neutrophil Infiltration
- Neutrophils/metabolism
- Neutrophils/pathology
- Phenotype
- Time Factors
- alpha-Fetoproteins/metabolism
Collapse
|
47
|
Kumar A, Coquard L, Pasquereau S, Russo L, Valmary-Degano S, Borg C, Pothier P, Herbein G. Tumor control by human cytomegalovirus in a murine model of hepatocellular carcinoma. MOLECULAR THERAPY-ONCOLYTICS 2016; 3:16012. [PMID: 27626063 PMCID: PMC5008266 DOI: 10.1038/mto.2016.12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/14/2016] [Accepted: 02/29/2016] [Indexed: 02/07/2023]
Abstract
Although viruses can cause cancer, other studies reported the regression of human tumors upon viral infections. We investigated the cytoreductive potential of human cytomegalovirus (HCMV) in a murine model of human hepatocellular carcinoma (HCC) in severe-immunodeficient mice. Infection of HepG2 cells with HCMV resulted in the absence of tumor or in a limited tumor growth following injection of cells subcutaneously. By contrast all mice injected with uninfected HepG2 cells and with HepG2 cells infected with UV-treated HCMV did develop tumors without any significant restriction. Analysis of tumors indicated that in mice injected with HCMV-infected-HepG2 cells, but not in controls, a restricted cellular proliferation was observed parallel to a limited activation of the STAT3-cyclin D1 axis, decreased formation of colonies in soft agar, and activation of the intrinsic apoptotic pathway. We conclude that HCMV can provide antitumoral effects in a murine model of HCC which requires replicative virus at some stages that results in limitation of tumor cell proliferation and enhanced apoptosis mediated through the intrinsic caspase pathway.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Virology, Pathogens & Inflammation Laboratory, University of Franche-Comté and COMUE Bourgogne Franche-Comté University, UPRES EA4266, SFR FED 4234, CHRU Besançon , Besançon, France
| | - Laurie Coquard
- Department of Virology, Pathogens & Inflammation Laboratory, University of Franche-Comté and COMUE Bourgogne Franche-Comté University, UPRES EA4266, SFR FED 4234, CHRU Besançon , Besançon, France
| | - Sébastien Pasquereau
- Department of Virology, Pathogens & Inflammation Laboratory, University of Franche-Comté and COMUE Bourgogne Franche-Comté University, UPRES EA4266, SFR FED 4234, CHRU Besançon , Besançon, France
| | - Laetitia Russo
- Department of Pathology, CHRU Besançon , Besançon, France
| | | | - Christophe Borg
- Department of Medical Oncology, INSERM UMR1098, EFS Bourgogne Franche-Comté , Besançon, France
| | - Pierre Pothier
- Department of Virology, Pathogens & Inflammation Laboratory, UPRES EA4266, SFR FED 4234, CHU Dijon , Dijon, France
| | - Georges Herbein
- Department of Virology, Pathogens & Inflammation Laboratory, University of Franche-Comté and COMUE Bourgogne Franche-Comté University, UPRES EA4266, SFR FED 4234, CHRU Besançon , Besançon, France
| |
Collapse
|
48
|
Wang Q, Yu WN, Chen X, Peng XD, Jeon SM, Birnbaum MJ, Guzman G, Hay N. Spontaneous Hepatocellular Carcinoma after the Combined Deletion of Akt Isoforms. Cancer Cell 2016; 29:523-535. [PMID: 26996309 PMCID: PMC4921241 DOI: 10.1016/j.ccell.2016.02.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 12/12/2015] [Accepted: 02/16/2016] [Indexed: 02/07/2023]
Abstract
Akt is frequently hyperactivated in human cancers and is targeted for cancer therapy. However, the physiological consequences of systemic Akt isoform inhibition were not fully explored. We showed that while combined Akt1 and Akt3 deletion in adult mice is tolerated, combined Akt1 and Akt2 deletion induced rapid mortality. Akt2(-/-) mice survived hepatic Akt1 deletion but all developed spontaneous hepatocellular carcinoma (HCC), which is associated with FoxO-dependent liver injury and inflammation. The gene expression signature of HCC-bearing livers is similar to aggressive human HCC. Consistently, neither Akt1(-/-) nor Akt2(-/-) mice are resistant to diethylnitrosamine-induced hepatocarcinogenesis, and Akt2(-/-) mice display a high incidence of lung metastasis. Thus, in contrast to other cancers, hepatic Akt inhibition induces liver injury that could promote HCC.
Collapse
Affiliation(s)
- Qi Wang
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Wan-Ni Yu
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Xinyu Chen
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Xiao-Ding Peng
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Sang-Min Jeon
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Morris J Birnbaum
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Grace Guzman
- Department of Pathology, College of Medicine, Cancer Center, University of Illinois Hospital and Health Science Chicago, Chicago, IL 60612, USA
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA; Research & Development Section, Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
49
|
Selenium-substituted hydroxyapatite nanoparticles and their in vivo antitumor effect on hepatocellular carcinoma. Colloids Surf B Biointerfaces 2016; 140:297-306. [DOI: 10.1016/j.colsurfb.2015.12.056] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 11/24/2015] [Accepted: 12/30/2015] [Indexed: 02/07/2023]
|
50
|
Rao Q, You A, Guo Z, Zuo B, Gao X, Zhang T, Du Z, Wu C, Yin H. Intrahepatic Tissue Implantation Represents a Favorable Approach for Establishing Orthotopic Transplantation Hepatocellular Carcinoma Mouse Models. PLoS One 2016; 11:e0148263. [PMID: 26824903 PMCID: PMC4732811 DOI: 10.1371/journal.pone.0148263] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/15/2016] [Indexed: 02/07/2023] Open
Abstract
Mouse models are commonly used for studying hepatocellular carcinoma (HCC) biology and exploring new therapeutic interventions. Currently three main modalities of HCC mouse models have been extensively employed in pre-clinical studies including chemically induced, transgenic and transplantation models. Among them, transplantation models are preferred for evaluating in vivo drug efficacy in pre-clinical settings given the short latency, uniformity in size and close resemblance to tumors in patients. However methods used for establishing orthotopic HCC transplantation mouse models are diverse and fragmentized without a comprehensive comparison. Here, we systemically evaluate four different approaches commonly used to establish HCC mice in preclinical studies, including intravenous, intrasplenic, intrahepatic inoculation of tumor cells and intrahepatic tissue implantation. Four parameters--the latency period, take rates, pathological features and metastatic rates--were evaluated side-by-side. 100% take rates were achieved in liver with intrahepatic, intrasplenic inoculation of tumor cells and intrahepatic tissue implantation. In contrast, no tumor in liver was observed with intravenous injection of tumor cells. Intrahepatic tissue implantation resulted in the shortest latency with 0.5 cm (longitudinal diameter) tumors found in liver two weeks after implantation, compared to 0.1cm for intrahepatic inoculation of tumor cells. Approximately 0.1cm tumors were only visible at 4 weeks after intrasplenic inoculation. Uniform, focal and solitary tumors were formed with intrahepatic tissue implantation whereas multinodular, dispersed and non-uniform tumors produced with intrahepatic and intrasplenic inoculation of tumor cells. Notably, metastasis became visible in liver, peritoneum and mesenterium at 3 weeks post-implantation, and lung metastasis was visible after 7 weeks. T cell infiltration was evident in tumors, resembling the situation in HCC patients. Our study demonstrated that orthotopic HCC mouse models established via intrahepatic tissue implantation authentically reflect clinical manifestations in HCC patients pathologically and immunologically, suggesting intrahepatic tissue implantation is a preferable approach for establishing orthotopic HCC mouse models.
Collapse
Affiliation(s)
- Quan Rao
- Department of Cell Biology and Research Centre of Basic Medical Science, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin, 300070, China
- Third Central Clinical College, Tianjin Medical University, Jintang Road, Hedong District, Tianjin, 300170, China
| | - Abin You
- Department of Cell Biology and Research Centre of Basic Medical Science, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin, 300070, China
- Tianjin Cancer Hospital, Tianjin Medical University, Huanhu West Road, Hexi District, Tianjin, 300000, China
| | - Zhenglong Guo
- Department of Cell Biology and Research Centre of Basic Medical Science, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Bingfeng Zuo
- Department of Cell Biology and Research Centre of Basic Medical Science, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Xianjun Gao
- Department of Cell Biology and Research Centre of Basic Medical Science, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Ti Zhang
- Tianjin Cancer Hospital, Tianjin Medical University, Huanhu West Road, Hexi District, Tianjin, 300000, China
| | - Zhi Du
- Third Central Clinical College, Tianjin Medical University, Jintang Road, Hedong District, Tianjin, 300170, China
- Department of Hepatobiliary Surgery, Key Laboratory of Artificial Cell, Institute for Hepatobiliary Diseases, Third Central Hospital, Tianjin Medical University, Jintang Road, Hedong District, Tianjin 300170, China
| | - Chenxuan Wu
- Third Central Clinical College, Tianjin Medical University, Jintang Road, Hedong District, Tianjin, 300170, China
| | - HaiFang Yin
- Department of Cell Biology and Research Centre of Basic Medical Science, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin, 300070, China
| |
Collapse
|