1
|
Gardi N, Ketkar M, McKinnon RA, Pandol SJ, Dutt S, Barreto SG. Down-regulation of metabolic pathways could offset the poor prognosis conferred by co-existent diabetes mellitus in pancreatic (head) adenocarcinoma. ANZ J Surg 2021; 91:2466-2474. [PMID: 34514690 DOI: 10.1111/ans.17194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) patients with diabetes mellitus (DM) have poor overall survival. Underlying mechanisms have not been fully clarified. This presents an opportunity for precision-oncology for which we systematically analysed publicly-available PDAC transcriptome data. METHODS PDAC TCGA RNASeq data were used. Analyses were restricted to only 'high purity' and 'head' as anatomical site. Patients were characterised by: (1) Gene expression classification, and (2) Weighted gene correlation network analysis (WGCNA) to identify co-expression patterns of genes. Newly identified gene signature subclasses of pancreatic head PDAC were associated with clinical and functional characteristics of patients. RESULTS Consensus clustering identified two patient subclasses within PDAC involving pancreatic head. WGCNA identified 11 distinct networks of gene expression patterns across two sub-classes. Class 1 patients demonstrated a significant upregulation of Module 5 and Module 6 gene expression compared to Class 2. Class 1 predominantly expressed the acinar, ductal and islet cell gene signatures. There were significantly less patients with DM in Class 1 subclass compared to Class 2 (p < 0.037). Patients with DM had significant downregulation of pathways involved in cellular metabolism, hormone secretion and paucity of islet cell markers with no reduced survival compared with non-diabetics. CONCLUSIONS A significant proportion of patients with PDAC of pancreatic head and DM exhibit downregulation of pathways involved in cellular metabolism, hormone secretion and signalling accompanied by a paucity of islet expression. Investigating the relationship between DM and gene expression profiles in patients with PDAC presents opportunities to improve overall survival in diabetics with PDAC.
Collapse
Affiliation(s)
- Nilesh Gardi
- Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Madhura Ketkar
- Homi Bhabha National Institute, Mumbai, India.,Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Mumbai, India
| | - Ross A McKinnon
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Stephen J Pandol
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Shilpee Dutt
- Homi Bhabha National Institute, Mumbai, India.,Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Mumbai, India
| | - Savio G Barreto
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.,Division of Surgery and Perioperative Medicine, Flinders Medical Centre, Adelaide, South Australia, Australia
| |
Collapse
|
2
|
Casolino R, Braconi C, Malleo G, Paiella S, Bassi C, Milella M, Dreyer SB, Froeling FEM, Chang DK, Biankin AV, Golan T. Reshaping preoperative treatment of pancreatic cancer in the era of precision medicine. Ann Oncol 2021; 32:183-196. [PMID: 33248227 PMCID: PMC7840891 DOI: 10.1016/j.annonc.2020.11.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
This review summarises the recent evidence on preoperative therapeutic strategies in pancreatic cancer and discusses the rationale for an imminent need for a personalised therapeutic approach in non-metastatic disease. The molecular diversity of pancreatic cancer and its influence on prognosis and treatment response, combined with the failure of 'all-comer' treatments to significantly impact on patient outcomes, requires a paradigm shift towards a genomic-driven approach. This is particularly important in the preoperative, potentially curable setting, where a personalised treatment allocation has the substantial potential to reduce pancreatic cancer mortality.
Collapse
Affiliation(s)
- R Casolino
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, Scotland, UK; Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - C Braconi
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, Scotland, UK
| | - G Malleo
- Department of Surgery, University and Hospital Trust of Verona, Verona, Italy
| | - S Paiella
- Department of Surgery, University and Hospital Trust of Verona, Verona, Italy
| | - C Bassi
- Department of Surgery, University and Hospital Trust of Verona, Verona, Italy
| | - M Milella
- Department of Medicine, Medical Oncology, University and Hospital Trust of Verona, Verona (VR), Italy
| | - S B Dreyer
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, Scotland, UK; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - F E M Froeling
- Edinburgh Cancer Centre, Western General Hospital, NHS Lothian, Edinburgh, UK
| | - D K Chang
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, Scotland, UK; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - A V Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, Scotland, UK; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK; South Western Sydney Clinical School, Faculty of Medicine, University of NSW, Liverpool, NSW, Australia.
| | - T Golan
- Oncology Institute, Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
3
|
Cooper AJ, Kobayashi Y, Kim D, Clifford SE, Kravets S, Dahlberg SE, Chambers ES, Li J, Rangachari D, Nguyen T, Costa DB, Rabin MS, Wagle N, Sholl LM, Jänne PA, Oxnard GR. Identification of a RAS-activating TMEM87A-RASGRF1 Fusion in an Exceptional Responder to Sunitinib with Non-Small Cell Lung Cancer. Clin Cancer Res 2020; 26:4072-4079. [PMID: 32312893 PMCID: PMC7415568 DOI: 10.1158/1078-0432.ccr-20-0397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/24/2020] [Accepted: 04/10/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE We pursued genomic analysis of an exceptional responder with non-small cell lung cancer (NSCLC) through a multi-platform effort to discover novel oncogenic targets. EXPERIMENTAL DESIGN In this open-label, single-arm phase II study (NCT01829217), an enriched cohort of patients with advanced NSCLC was treated with the multi-kinase inhibitor sunitinib. The primary endpoint was objective response rate. Tissue was collected for multi-platform genomic analysis of responders, and a candidate oncogene was validated using in vitro models edited by CRISPR-Cas9. RESULTS Of 13 patients enrolled, 1 patient (8%), a never smoker, had a partial response lasting 33 months. Genomic analysis of the responder identified no oncogenic variant using multi-platform DNA analysis including hotspot allelotyping, massively parallel hybrid-capture next-generation sequencing, and whole-exome sequencing. However, bulk RNA-sequencing (RNA-seq) revealed a novel fusion, TMEM87A-RASGRF1, with high overexpression of the fusion partners. RASGRF1 encodes a guanine exchange factor which activates RAS from GDP-RAS to GTP-RAS. Oncogenicity was demonstrated in NIH/3T3 models with intrinsic TMEM87A-RASGRF1 fusion. In addition, activation of MAPK was shown in PC9 models edited to express this fusion, although sensitivity to MAPK inhibition was seen without apparent sensitivity to sunitinib. CONCLUSIONS Sunitinib exhibited limited activity in this enriched cohort of patients with advanced NSCLC. Nonetheless, we find that RNA-seq of exceptional responders represents a potentially underutilized opportunity to identify novel oncogenic targets including oncogenic activation of RASGRF1.
Collapse
Affiliation(s)
- Alissa J Cooper
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Yoshihisa Kobayashi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Dewey Kim
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Sarah E Clifford
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sasha Kravets
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Suzanne E Dahlberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Emily S Chambers
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jiaqi Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Deepa Rangachari
- Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center (a member of Beth Israel Lahey Health), Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Tom Nguyen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Daniel B Costa
- Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center (a member of Beth Israel Lahey Health), Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Michael S Rabin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Nikhil Wagle
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Lynette M Sholl
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Pasi A Jänne
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Geoffrey R Oxnard
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
4
|
Karass M, Bareja R, Shelkey E, Vlachostergios PJ, Robinson BD, Khani F, Mosquera JM, Scherr DS, Sboner A, Tagawa ST, Molina AM, Elemento O, Nanus DM, Faltas BM. Oncogenic Addiction to ERBB2 Signaling Predicts Response to Trastuzumab in Urothelial Cancer. J Natl Compr Canc Netw 2020; 17:194-200. [PMID: 30865916 DOI: 10.6004/jnccn.2018.7264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/18/2018] [Indexed: 11/17/2022]
Abstract
Urothelial carcinoma (UC) is a common and frequently lethal cancer. Despite the presence of genomic alterations creating dependency on particular signaling pathways, the use of targeted therapies in advanced and metastatic UC has been limited. We performed an integrated analysis of whole-exome and RNA sequencing of primary and metastatic tumors in a patient with platinum-resistant UC. We found a strikingly high ERBB2 mRNA expression and enrichment of downstream oncogenic ERBB2 signaling in this patient's tumors compared with tumors from an unselected group of patients with UC (N=17). This patient had an exceptional sustained response to trastuzumab. Our findings show that oncogenic addiction to ERBB2 signaling potentially predicts response to ERBB2-directed therapy of UC.
Collapse
Affiliation(s)
- Michael Karass
- Division of Internal Medicine, New York Medical College, Westchester Medical Center, Valhalla, New York
| | - Rohan Bareja
- Department of Physiology and Biophysics, and.,Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York
| | - Ethan Shelkey
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina; and
| | | | - Brian D Robinson
- Department of Pathology and Laboratory Medicine.,Englander Institute for Precision Medicine
| | | | - Juan Miguel Mosquera
- Department of Pathology and Laboratory Medicine.,Englander Institute for Precision Medicine
| | | | - Andrea Sboner
- Department of Physiology and Biophysics, and.,Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York.,Englander Institute for Precision Medicine
| | - Scott T Tagawa
- Department of Medicine, Division of Hematology and Medical Oncology.,Englander Institute for Precision Medicine.,Department of Urology, and.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Ana M Molina
- Department of Medicine, Division of Hematology and Medical Oncology.,Englander Institute for Precision Medicine.,Department of Urology, and.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Olivier Elemento
- Department of Physiology and Biophysics, and.,Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York.,Englander Institute for Precision Medicine.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - David M Nanus
- Department of Medicine, Division of Hematology and Medical Oncology.,Englander Institute for Precision Medicine.,Department of Urology, and.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Bishoy M Faltas
- Department of Medicine, Division of Hematology and Medical Oncology.,Englander Institute for Precision Medicine.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| |
Collapse
|
5
|
Dreyer SB, Jamieson NB, Morton JP, Sansom OJ, Biankin AV, Chang DK. Pancreatic Cancer: From Genome Discovery to PRECISION-Panc. Clin Oncol (R Coll Radiol) 2020; 32:5-8. [PMID: 31522943 DOI: 10.1016/j.clon.2019.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/19/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022]
Affiliation(s)
- S B Dreyer
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK.
| | - N B Jamieson
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - J P Morton
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK; Cancer Research UK Beatson Institute, Glasgow, UK
| | - O J Sansom
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK; Cancer Research UK Beatson Institute, Glasgow, UK
| | - A V Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - D K Chang
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK.
| |
Collapse
|
6
|
Bijou I, Wang J. Evolving trends in pancreatic cancer therapeutic development. ANNALS OF PANCREATIC CANCER 2019; 2:17. [PMID: 33089149 PMCID: PMC7575122 DOI: 10.21037/apc.2019.09.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Despite advances in translational research, the overall 5-year survival for pancreatic cancer remains dismal and with rising incidence pancreatic cancer is predicted to be the second leading cause of cancer death for many developed countries. Surgical intervention followed by cytotoxic chemotherapy are currently the best options for treatment, but disease recurrence is very common. Efforts to develop new therapeutic agents and delivery systems are necessary to achieve better clinical efficacy with less toxicity. Promising prospects are arising with new preclinical and clinical therapeutic strategies using small molecule targeted therapies, RNAi, stromal therapies, and immunotherapies. With a better understanding of the biology to aid target selection and discovery of biomarkers to aid precision medicine, better opportunities will evolve to shape the therapeutic landscape, enhance patient quality of life and increase overall survival.
Collapse
Affiliation(s)
- Imani Bijou
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Jin Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| |
Collapse
|
7
|
Saner FAM, Herschtal A, Nelson BH, deFazio A, Goode EL, Ramus SJ, Pandey A, Beach JA, Fereday S, Berchuck A, Lheureux S, Pearce CL, Pharoah PD, Pike MC, Garsed DW, Bowtell DDL. Going to extremes: determinants of extraordinary response and survival in patients with cancer. Nat Rev Cancer 2019; 19:339-348. [PMID: 31076661 PMCID: PMC7255796 DOI: 10.1038/s41568-019-0145-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Research into factors affecting treatment response or survival in patients with cancer frequently involves cohorts that span the most common range of clinical outcomes, as such patients are most readily available for study. However, attention has turned to highly unusual patients who have exceptionally favourable or atypically poor responses to treatment and/or overall survival, with the expectation that patients at the extremes may provide insights that could ultimately improve the outcome of individuals with more typical disease trajectories. While clinicians can often recount surprising patients whose clinical journey was very unusual, given known clinical characteristics and prognostic indicators, there is a lack of consensus among researchers on how best to define exceptional patients, and little has been proposed for the optimal design of studies to identify factors that dictate unusual outcome. In this Opinion article, we review different approaches to identifying exceptional patients with cancer and possible study designs to investigate extraordinary clinical outcomes. We discuss pitfalls with finding these rare patients, including challenges associated with accrual of patients across different treatment centres and time periods. We describe recent molecular and immunological factors that have been identified as contributing to unusual patient outcome and make recommendations for future studies on these intriguing patients.
Collapse
Affiliation(s)
| | - Alan Herschtal
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Brad H Nelson
- Deeley Research Centre, British Columbia Cancer Agency, Victoria, British Columbia, Canada
| | - Anna deFazio
- Department of Gynaecological Oncology, Westmead Hospital, Westmead, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - Ellen L Goode
- Department of Health Science Research, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Susan J Ramus
- School of Women's and Children's Health, University ofNew South Wales, Sydney, New South Wales, Australia
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Ahwan Pandey
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jessica A Beach
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Sian Fereday
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Andrew Berchuck
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Stephanie Lheureux
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
| | - Celeste Leigh Pearce
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Paul D Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Malcolm C Pike
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dale W Garsed
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia.
| | - David D L Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
8
|
Abstract
Cancers that appear morphologically similar often have dramatically different clinical features, respond variably to therapy and have a range of outcomes. Compelling evidence now demonstrates that differences in the molecular pathology of otherwise indistinguishable cancers substantially impact the clinical characteristics of the disease. Molecular subtypes now guide preclinical and clinical therapeutic development and treatment in many cancer types. The ability to predict optimal therapeutic strategies ahead of treatment improves overall patient outcomes, minimizing treatment-related morbidity and cost. Although clinical decision making based on histopathological criteria underpinned by robust data is well established in many cancer types, subtypes of pancreatic cancer do not currently inform treatment decisions. However, accumulating molecular data are defining subgroups in pancreatic cancer with distinct biology and potential subtype-specific therapeutic vulnerabilities, providing the opportunity to define a de novo clinically applicable molecular taxonomy. This Review summarizes current knowledge concerning the molecular subtyping of pancreatic cancer and explores future strategies for using a molecular taxonomy to guide therapeutic development and ultimately routine therapy with the overall goal of improving outcomes for this disease.
Collapse
Affiliation(s)
| | - Peter Bailey
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, Scotland, UK
| | - David K Chang
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, Scotland, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - Andrew V Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, Scotland, UK.
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK.
- South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, Australia.
| |
Collapse
|
9
|
Ruiz-Bañobre J, Kandimalla R, Goel A. Predictive Biomarkers in Metastatic Colorectal Cancer: A Systematic Review. JCO Precis Oncol 2019; 3:PO.18.00260. [PMID: 32914007 PMCID: PMC7446314 DOI: 10.1200/po.18.00260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2018] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The development and use of predictive biomarkers to guide treatment decisions are paramount not only for improving survival in patients with metastatic colorectal cancer (mCRC), but also for sparing them from unnecessary toxicity and reducing the economic burden of expensive treatments. We conducted a systematic review of published studies and evaluated the predictive biomarker landscape in the mCRC setting from a molecular and clinical viewpoint. METHODS Studies analyzing predictive biomarkers for approved therapies in patients with mCRC were identified systematically using electronic databases. Preclinical studies and those providing no relevant information were excluded. RESULTS A total of 173 studies comprising 148 biomarkers were selected for final analysis. Of all the biomarkers analyzed, 1.4% (two of 148) were explored in a prospective manner, whereas 98.6% (146 of 148) were evaluated in retrospective studies. Of the latter group, 78.8% (115 of 146) were not tested in subsequent phases, 9.6% (14 of 146) were tested in other retrospective cohorts, 8.9% (13 of 146) were retrospectively tested in at least one or more randomized cohorts, and only 2.7% (four of 146) were prospectively tested in a clinical trial. Finally, only 1.4% (two of 148) were validated sufficiently and are recognized as biomarkers for guiding treatment decision making in patients with mCRC. These markers were RAS mutational status for anti-EGFR antibodies and microsatellite instability status for anti-programmed cell death-1 drugs. CONCLUSION Despite notable efforts to identify predictive biomarkers for various therapies used in the mCRC setting, because of a lack of data beyond retrospective studies and successful biomarker-driven approaches, only two molecular biomarkers have thus far found their translation into the clinic, highlighting the imperative need for implementing novel strategies and additional research in this clinically important field.
Collapse
Affiliation(s)
- Juan Ruiz-Bañobre
- Arquitecto Marcide University Hospital, Ferrol, Spain
- Baylor University Medical Center, Dallas, TX
- ONCOMET, University Clinical Hospital of Santiago de Compostela, CIBERONC, Santiago de Compostela, Spain
| | | | - Ajay Goel
- Baylor University Medical Center, Dallas, TX
| |
Collapse
|
10
|
Lindsay CR, Shaw EC, Blackhall F, Blyth KG, Brenton JD, Chaturvedi A, Clarke N, Dick C, Evans TRJ, Hall G, Hanby AM, Harrison DJ, Johnston SRD, Mason MD, Morton D, Newton-Bishop J, Nicholson AG, Oien KA, Popat S, Rassl D, Sharpe R, Taniere P, Walker I, Wallace WA, West NP, Butler R, Gonzalez de Castro D, Griffiths M, Johnson PWM. Somatic cancer genetics in the UK: real-world data from phase I of the Cancer Research UK Stratified Medicine Programme. ESMO Open 2018; 3:e000408. [PMID: 30233821 PMCID: PMC6135448 DOI: 10.1136/esmoopen-2018-000408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION Phase I of the Cancer Research UK Stratified Medicine Programme (SMP1) was designed to roll out molecular pathology testing nationwide at the point of cancer diagnosis, as well as facilitate an infrastructure where surplus cancer tissue could be used for research. It offered a non-trial setting to examine common UK cancer genetics in a real-world context. METHODS A total of 26 sites in England, Wales and Scotland, recruited samples from 7814 patients for genetic examination between 2011 and 2013. Tumour types involved were breast, colorectal, lung, prostate, ovarian cancer and malignant melanoma. Centralised molecular testing of surplus material from resections or biopsies of primary/metastatic tissue was performed, with samples examined for 3-5 genetic alterations deemed to be of key interest in site-specific cancers by the National Cancer Research Institute Clinical Study groups. RESULTS 10 754 patients (98% of those approached) consented to participate, from which 7814 tumour samples were genetically analysed. In total, 53% had at least one genetic aberration detected. From 1885 patients with lung cancer, KRAS mutation was noted to be highly prevalent in adenocarcinoma (37%). In breast cancer (1873 patients), there was a striking contrast in TP53 mutation incidence between patients with ductal cancer (27.3%) and lobular cancer (3.4%). Vast inter-tumour heterogeneity of colorectal cancer (1550 patients) was observed, including myriad double and triple combinations of genetic aberrations. Significant losses of important clinical information included smoking status in lung cancer and loss of distinction between low-grade and high-grade serous ovarian cancers. CONCLUSION Nationwide molecular pathology testing in a non-trial setting is feasible. The experience with SMP1 has been used to inform ongoing CRUK flagship programmes such as the CRUK National Lung MATRIX trial and TRACERx.
Collapse
Affiliation(s)
- Colin R Lindsay
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Manchester Experimental Cancer Medicine Centre, Manchester, UK
- Division of Molecular and Clinical Cancer Sciences, University of Manchester, Manchester, UK
| | - Emily C Shaw
- Cancer Research UK, London, UK
- Southampton Experimental Cancer Medicine Centre, Southampton, UK
| | - Fiona Blackhall
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Manchester Experimental Cancer Medicine Centre, Manchester, UK
- Division of Molecular and Clinical Cancer Sciences, University of Manchester, Manchester, UK
| | - Kevin G Blyth
- Glasgow Experimental Cancer Medicine Centre, Glasgow, UK
- Department of Respiratory Medicine, Queen Elizabeth University Hospital, Glasgow, UK
- Institute ofInfection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - James D Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre and Cambridge Experimental Cancer Medicine Centre, Cambridge, UK
- Addenbrooke'sHospital, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Anshuman Chaturvedi
- Department of Histopathology, University Hospital of South Manchester NHS Foundation Trust, Manchester, UK
- Christie and Salford Royal NHS Foundation Trusts, Manchester, UK
| | - Noel Clarke
- Christie and Salford Royal NHS Foundation Trusts, Manchester, UK
| | - Craig Dick
- Glasgow Experimental Cancer Medicine Centre, Glasgow, UK
- Department of Pathology, Queen Elizabeth University Hospital, Glasgow, UK
| | - Thomas R J Evans
- Glasgow Experimental Cancer Medicine Centre, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Geoff Hall
- Leeds Experimental Cancer Medicine Centre, Leeds, UK
- St James's University Hospital, Cancer Research UK Clinical Cancer Centre, Leeds, UK
| | - Andrew M Hanby
- Leeds Experimental Cancer Medicine Centre, Leeds, UK
- Department of Cellular Pathology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- School of Medicine, University of Leeds, Leeds, UK
- Department of Pathology and Tumour Biology, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - David J Harrison
- School of Medicine, University of St Andrews, St Andrews, UK
- Edinburgh Experimental Cancer Medicine Centre, Edinburgh, UK
| | - Stephen R D Johnston
- Department of Medical Oncology, Royal Marsden Hospital, London, UK
- Institute of Cancer Research Experimental Cancer Medicine Centre, London, UK
| | - Malcolm D Mason
- Velindre Hospital, Cardiff University, Cardiff, UK
- School of Medicine, Cardiff University, Cardiff, UK
- Cardiff Experimental Cancer Medicine Centre, Cardiff, UK
| | - Dion Morton
- Academic Department of Surgery, University of Birmingham, Birmingham, UK
- Birmingham Experimental Cancer Medicine Centre, Birmingham, UK
| | - Julia Newton-Bishop
- Leeds Experimental Cancer Medicine Centre, Leeds, UK
- Section of Biostatistics and Epidemiology, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Andrew G Nicholson
- Royal Brompton and Harefield NHS Foundation Trust, London, UK
- National Heart and Lung Institute, Imperial College, London, UK
| | - Karin A Oien
- Glasgow Experimental Cancer Medicine Centre, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Sanjay Popat
- Institute of Cancer Research Experimental Cancer Medicine Centre, London, UK
- National Heart and Lung Institute, Imperial College, London, UK
- Lung Unit, Royal Marsden Hospital, London, UK
| | - Doris Rassl
- Cancer Research UK Cambridge Centre and Cambridge Experimental Cancer Medicine Centre, Cambridge, UK
- Department of Histopathology, Papworth Hospital, Cambridge, UK
| | | | - Phillipe Taniere
- Birmingham Experimental Cancer Medicine Centre, Birmingham, UK
- Department of Histopathology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | | | - William A Wallace
- Edinburgh Experimental Cancer Medicine Centre, Edinburgh, UK
- Department of Pathology, Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Nicholas P West
- Leeds Experimental Cancer Medicine Centre, Leeds, UK
- Department of Pathology and Tumour Biology, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | | | - David Gonzalez de Castro
- Genomic Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, UK
| | - Mike Griffiths
- West Midlands Regional Genetics Laboratory, Birmingham Women's NHS Foundation Trust, Birmingham, UK
| | - Peter W M Johnson
- Cancer Research UK, London, UK
- Southampton Experimental Cancer Medicine Centre, Southampton, UK
| |
Collapse
|
11
|
Ahangari N, Ghayour Mobarhan M, Sahebkar A, Pasdar A. Molecular aspects of hypercholesterolemia treatment: current perspectives and hopes. Ann Med 2018; 50:303-311. [PMID: 29578362 DOI: 10.1080/07853890.2018.1457795] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hypercholesterolemia is a pathological condition which has been reported in 39% of the worlds' adult population. We aimed to review molecular aspects of current and novel therapeutic approaches based on low-density lipoprotein cholesterol lowering strategies. Pathogenic mutations in the LDLR, ApoB, PCSK9 and LDLRAP genes cause deficient clearance of circulating low-density lipoprotein cholesterol particles via hepatic LDL receptor. This leads to increased plasma LDL cholesterol levels from birth, which can cause LDL depositions in the arterial walls. Ultimately, it progresses to atherosclerosis and an increased risk of premature cardiovascular diseases. Currently, statins, Ezetimibe, Bile acid sequestrants and PCSK9 inhibitors are the main therapeutic agents for the treatment of hypercholesterolemia. Moreover, novel RNA-based therapy had a strong impact on therapeutic strategies in recent decades. Additional development in understanding of the molecular basis of hypercholesterolemia will provide opportunities for the development of targeted therapy in the near future. Key Messages The most common genes involved in hypercholesterolemia are LDLR, PCSK9 and ApoB. Pharmacogenetic effects are typically constrained to pathways closely related to the pharmacodynamics and pharmacokinetics. Change in lifestyle and diet along with treatment of the underlying disease and drug therapy are the current therapeutic strategies.
Collapse
Affiliation(s)
- Najmeh Ahangari
- a Departement of Modern Sciences and Technologies, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Majid Ghayour Mobarhan
- b Metabolic Syndrome Research Centre, School of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Amirhossein Sahebkar
- c Biotechnology Research Center , Pharmaceutical Technology Institute, Mashhad University of Medical Sciences , Mashhad , Iran.,d Neurogenic Inflammation Research Center , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Alireza Pasdar
- e Medical Genetics Research Centre, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran.,f Division of Applied Medicine, Medical School , University of Aberdeen , Foresterhill , Aberdeen , UK
| |
Collapse
|
12
|
Kumar-Sinha C, Chinnaiyan AM. Precision oncology in the age of integrative genomics. Nat Biotechnol 2018; 36:46-60. [PMID: 29319699 PMCID: PMC6364676 DOI: 10.1038/nbt.4017] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/20/2017] [Indexed: 02/08/2023]
Abstract
Precision oncology applies genomic and other molecular analyses of tumor biopsies to improve the diagnosis and treatment of cancers. In addition to identifying therapeutic options, precision oncology tracks the response of a tumor to an intervention at the molecular level and detects drug resistance and the mechanisms by which it occurs. Integrative genomics can include sequencing specific panels of genes, exomes, or the entire triad of the patient's germline, tumor exome, and tumor transcriptome. Although the capabilities of sequencing technologies continue to improve, widespread adoption of genomics-driven precision oncology in the clinic has been held back by logistical, regulatory, financial, and ethical considerations. Nevertheless, integrative clinical sequencing programs applied at the point of care have the potential to improve the clinical management of cancer patients.
Collapse
Affiliation(s)
- Chandan Kumar-Sinha
- Michigan Center for Translational Pathology
- Department of Pathology, University of Michigan
| | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology
- Department of Pathology, University of Michigan
- Department of Computational Medicine and Bioinformatics,
University of Michigan
- Howard Hughes Medical Institute, University of Michigan
Medical School
- Department of Urology, University of Michigan
- Comprehensive Cancer Center, University of Michigan Medical
School, Ann Arbor, MI 48109
| |
Collapse
|
13
|
Garsed DW, Alsop K, Fereday S, Emmanuel C, Kennedy CJ, Etemadmoghadam D, Gao B, Gebski V, Garès V, Christie EL, Wouters MC, Milne K, George J, Patch AM, Li J, Arnau GM, Semple T, Gadipally SR, Chiew YE, Hendley J, Mikeska T, Zapparoli GV, Amarasinghe K, Grimmond SM, Pearson JV, Waddell N, Hung J, Stewart CJ, Sharma R, Allan PE, Rambau PF, McNally O, Mileshkin L, Hamilton A, Ananda S, Grossi M, Cohen PA, Leung YC, Rome RM, Beale P, Blomfield P, Friedlander M, Brand A, Dobrovic A, Köbel M, Harnett P, Nelson BH, Bowtell DDL, deFazio A. Homologous Recombination DNA Repair Pathway Disruption and Retinoblastoma Protein Loss Are Associated with Exceptional Survival in High-Grade Serous Ovarian Cancer. Clin Cancer Res 2017; 24:569-580. [DOI: 10.1158/1078-0432.ccr-17-1621] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/07/2017] [Accepted: 10/11/2017] [Indexed: 11/16/2022]
|
14
|
Horak P, Klink B, Heining C, Gröschel S, Hutter B, Fröhlich M, Uhrig S, Hübschmann D, Schlesner M, Eils R, Richter D, Pfütze K, Geörg C, Meißburger B, Wolf S, Schulz A, Penzel R, Herpel E, Kirchner M, Lier A, Endris V, Singer S, Schirmacher P, Weichert W, Stenzinger A, Schlenk RF, Schröck E, Brors B, von Kalle C, Glimm H, Fröhling S. Precision oncology based on omics data: The NCT Heidelberg experience. Int J Cancer 2017; 141:877-886. [PMID: 28597939 DOI: 10.1002/ijc.30828] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/24/2017] [Accepted: 05/29/2017] [Indexed: 12/17/2022]
Abstract
Precision oncology implies the ability to predict which patients will likely respond to specific cancer therapies based on increasingly accurate, high-resolution molecular diagnostics as well as the functional and mechanistic understanding of individual tumors. While molecular stratification of patients can be achieved through different means, a promising approach is next-generation sequencing of tumor DNA and RNA, which can reveal genomic alterations that have immediate clinical implications. Furthermore, certain genetic alterations are shared across multiple histologic entities, raising the fundamental question of whether tumors should be treated by molecular profile and not tissue of origin. We here describe MASTER (Molecularly Aided Stratification for Tumor Eradication Research), a clinically applicable platform for prospective, biology-driven stratification of younger adults with advanced-stage cancer across all histologies and patients with rare tumors. We illustrate how a standardized workflow for selection and consenting of patients, sample processing, whole-exome/genome and RNA sequencing, bioinformatic analysis, rigorous validation of potentially actionable findings, and data evaluation by a dedicated molecular tumor board enables categorization of patients into different intervention baskets and formulation of evidence-based recommendations for clinical management. Critical next steps will be to increase the number of patients that can be offered comprehensive molecular analysis through collaborations and partnering, to explore ways in which additional technologies can aid in patient stratification and individualization of treatment, to stimulate clinically guided exploratory research projects, and to gradually move away from assessing the therapeutic activity of targeted interventions on a case-by-case basis toward controlled clinical trials of genomics-guided treatments.
Collapse
Affiliation(s)
- Peter Horak
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Section for Personalized Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Barbara Klink
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Christoph Heining
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Section for Personalized Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Gröschel
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Section for Personalized Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Research Group Molecular Leukemogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Medical Oncology, NCT Heidelberg and Heidelberg University Hospital, Heidelberg, Germany.,DKTK, Heidelberg, Germany
| | - Barbara Hutter
- Division of Applied Bioinformatics, DKFZ and NCT Heidelberg, Heidelberg, Germany
| | - Martina Fröhlich
- Division of Applied Bioinformatics, DKFZ and NCT Heidelberg, Heidelberg, Germany
| | - Sebastian Uhrig
- Division of Applied Bioinformatics, DKFZ and NCT Heidelberg, Heidelberg, Germany
| | - Daniel Hübschmann
- Division of Theoretical Bioinformatics, DKFZ, Heidelberg, Germany.,Department of Pediatric Immunology, Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Roland Eils
- Division of Theoretical Bioinformatics, DKFZ, Heidelberg, Germany.,Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology and BioQuant, Heidelberg University, Heidelberg, Germany
| | - Daniela Richter
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katrin Pfütze
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,DKFZ-Heidelberg Center for Personalized Oncology (HIPO), Heidelberg, Germany
| | - Christina Geörg
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,DKFZ-Heidelberg Center for Personalized Oncology (HIPO), Heidelberg, Germany
| | - Bettina Meißburger
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,DKFZ-Heidelberg Center for Personalized Oncology (HIPO), Heidelberg, Germany
| | - Stephan Wolf
- Genomics and Proteomics Core Facility, DKFZ, Heidelberg, Germany
| | - Angela Schulz
- Genomics and Proteomics Core Facility, DKFZ, Heidelberg, Germany
| | - Roland Penzel
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Esther Herpel
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Martina Kirchner
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Amelie Lier
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Volker Endris
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stephan Singer
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter Schirmacher
- DKTK, Heidelberg, Germany.,Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Wilko Weichert
- Institute of Pathology, Technische Universität München, Munich, Germany.,DKTK, Munich, Germany
| | - Albrecht Stenzinger
- DKTK, Heidelberg, Germany.,Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Evelin Schröck
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Benedikt Brors
- DKTK, Heidelberg, Germany.,Division of Applied Bioinformatics, DKFZ and NCT Heidelberg, Heidelberg, Germany
| | - Christof von Kalle
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Section for Personalized Oncology, Heidelberg University Hospital, Heidelberg, Germany.,DKTK, Heidelberg, Germany.,DKFZ-Heidelberg Center for Personalized Oncology (HIPO), Heidelberg, Germany
| | - Hanno Glimm
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Section for Personalized Oncology, Heidelberg University Hospital, Heidelberg, Germany.,DKTK, Heidelberg, Germany
| | - Stefan Fröhling
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Section for Personalized Oncology, Heidelberg University Hospital, Heidelberg, Germany.,DKTK, Heidelberg, Germany
| |
Collapse
|
15
|
Coyle KM, Boudreau JE, Marcato P. Genetic Mutations and Epigenetic Modifications: Driving Cancer and Informing Precision Medicine. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9620870. [PMID: 28685150 PMCID: PMC5480027 DOI: 10.1155/2017/9620870] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/06/2017] [Accepted: 05/10/2017] [Indexed: 12/21/2022]
Abstract
Cancer treatment is undergoing a significant revolution from "one-size-fits-all" cytotoxic therapies to tailored approaches that precisely target molecular alterations. Precision strategies for drug development and patient stratification, based on the molecular features of tumors, are the next logical step in a long history of approaches to cancer therapy. In this review, we discuss the history of cancer treatment from generic natural extracts and radical surgical procedures to site-specific and combinatorial treatment regimens, which have incrementally improved patient outcomes. We discuss the related contributions of genetics and epigenetics to cancer progression and the response to targeted therapies and identify challenges and opportunities for the success of precision medicine. The identification of patients who will benefit from targeted therapies is more complex than simply identifying patients whose tumors harbour the targeted aberration, and intratumoral heterogeneity makes it difficult to determine if a precision therapy is successful during treatment. This heterogeneity enables tumors to develop resistance to targeted approaches; therefore, the rational combination of therapeutic agents will limit the threat of acquired resistance to therapeutic success. By incorporating the view of malignant transformation modulated by networks of genetic and epigenetic interactions, molecular strategies will enable precision medicine for effective treatment across cancer subtypes.
Collapse
Affiliation(s)
| | - Jeanette E. Boudreau
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
16
|
Abstract
Chemotherapy is widely used for cancer treatment, but its effectiveness is limited by drug resistance. Here, we report a mechanism by which cell density activates the Hippo pathway, which in turn inactivates YAP, leading to changes in the regulation of genes that control the intracellular concentrations of gemcitabine and several other US Food and Drug Administration (FDA)-approved oncology drugs. Hippo inactivation sensitizes a diverse panel of cell lines and human tumors to gemcitabine in 3D spheroid, mouse xenografts, and patient-derived xenograft models. Nuclear YAP enhances gemcitabine effectiveness by down-regulating multidrug transporters as well by converting gemcitabine to a less active form, both leading to its increased intracellular availability. Cancer cell lines carrying genetic aberrations that impair the Hippo signaling pathway showed heightened sensitivity to gemcitabine. These findings suggest that "switching off" of the Hippo-YAP pathway could help to prevent or reverse resistance to some cancer therapies.
Collapse
|
17
|
Diwakarla C, Hannan K, Hein N, Yip D. Advanced pancreatic ductal adenocarcinoma - Complexities of treatment and emerging therapeutic options. World J Gastroenterol 2017; 23:2276-2285. [PMID: 28428707 PMCID: PMC5385394 DOI: 10.3748/wjg.v23.i13.2276] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/20/2017] [Accepted: 03/15/2017] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is a devastating disease with a poor prognosis regardless of stage. To date the mainstay of therapy for advanced disease has been chemotherapy with little incremental improvements in outcome. Despite extensive research investigating new treatment options the current practices continue to utilise fluorouracil or gemcitabine containing combinations. The need for novel therapeutic approaches is mandated by the ongoing poor survival rates associated with this disease. One such approach may include manipulation of ribosome biogenesis and the nucleolar stress response, which has recently been applied to haematological malignancies such as lymphoma and prostate cancer with promising results. This review will focus on the current therapeutic options for pancreatic ductal adenocarcinoma and the complexities associated with developing novel treatments, with a particular emphasis on the role of the nucleolus as a treatment strategy.
Collapse
|
18
|
Dreyer SB, Chang DK, Bailey P, Biankin AV. Pancreatic Cancer Genomes: Implications for Clinical Management and Therapeutic Development. Clin Cancer Res 2017; 23:1638-1646. [PMID: 28373362 DOI: 10.1158/1078-0432.ccr-16-2411] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 01/25/2017] [Accepted: 01/27/2017] [Indexed: 12/12/2022]
Abstract
Pancreatic cancer has become the third leading cause of cancer-related death, with little improvement in outcomes despite decades of research. Surgery remains the only chance of cure, yet only 20% of patients will be alive at 5 years after pancreatic resection. Few chemotherapeutics provide any improvement in outcome, and even then, for approved therapies, the survival benefits are marginal. Genomic sequencing studies of pancreatic cancer have revealed a small set of consistent mutations found in most pancreatic cancers and beyond that, a low prevalence for targetable mutations. This may explain the failure of conventional clinical trial designs to show any meaningful survival benefit, except in small and undefined patient subgroups. With the development of next-generation sequencing technology, genomic sequencing and analysis can be performed in a clinically meaningful turnaround time. This can identify therapeutic targets in individual patients and personalize treatment selection. Incorporating preclinical discovery and molecularly guided therapy into clinical trial design has the potential to significantly improve outcomes in this lethal malignancy. In this review, we discuss the findings of recent large-scale genomic sequencing projects in pancreatic cancer and the potential relevance of these data to therapeutic development. Clin Cancer Res; 23(7); 1638-46. ©2017 AACRSee all articles in this CCR Focus section, "Pancreatic Cancer: Challenge and Inspiration."
Collapse
Affiliation(s)
- Stephan B Dreyer
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, Scotland, United Kingdom
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - David K Chang
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, Scotland, United Kingdom
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Peter Bailey
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, Scotland, United Kingdom
| | - Andrew V Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, Scotland, United Kingdom.
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, United Kingdom
- South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, New South Wales, Australia
| |
Collapse
|
19
|
Horak P, Fröhling S, Glimm H. Integrating next-generation sequencing into clinical oncology: strategies, promises and pitfalls. ESMO Open 2016; 1:e000094. [PMID: 27933214 PMCID: PMC5133384 DOI: 10.1136/esmoopen-2016-000094] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/06/2016] [Accepted: 10/17/2016] [Indexed: 12/24/2022] Open
Abstract
We live in an era of genomic medicine. The past five years brought about many significant achievements in the field of cancer genetics, driven by rapidly evolving technologies and plummeting costs of next-generation sequencing (NGS). The official completion of the Cancer Genome Project in 2014 led many to envision the clinical implementation of cancer genomic data as the next logical step in cancer therapy. Stemming from this vision, the term 'precision oncology' was coined to illustrate the novelty of this individualised approach. The basic assumption of precision oncology is that molecular markers detected by NGS will predict response to targeted therapies independently from tumour histology. However, along with a ubiquitous availability of NGS, the complexity and heterogeneity at the individual patient level had to be acknowledged. Not only does the latter present challenges to clinical decision-making based on sequencing data, it is also an obstacle to the rational design of clinical trials. Novel tissue-agnostic trial designs were quickly developed to overcome these challenges. Results from some of these trials have recently demonstrated the feasibility and efficacy of this approach. On the other hand, there is an increasing amount of whole-exome and whole-genome NGS data which allows us to assess ever smaller differences between individual patients with cancer. In this review, we highlight different tumour sequencing strategies currently used for precision oncology, describe their individual strengths and weaknesses, and emphasise their feasibility in different clinical settings. Further, we evaluate the possibility of NGS implementation in current and future clinical trials, and point to the significance of NGS for translational research.
Collapse
Affiliation(s)
- Peter Horak
- Department of Translational Oncology , National Center for Tumor Diseases Heidelberg, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Stefan Fröhling
- Department of Translational Oncology , National Center for Tumor Diseases Heidelberg, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Hanno Glimm
- Department of Translational Oncology , National Center for Tumor Diseases Heidelberg, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| |
Collapse
|
20
|
Kleeff J, Korc M, Apte M, La Vecchia C, Johnson CD, Biankin AV, Neale RE, Tempero M, Tuveson DA, Hruban RH, Neoptolemos JP. Pancreatic cancer. Nat Rev Dis Primers 2016; 2:16022. [PMID: 27158978 DOI: 10.1038/nrdp.2016.22] [Citation(s) in RCA: 1286] [Impact Index Per Article: 142.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pancreatic cancer is a major cause of cancer-associated mortality, with a dismal overall prognosis that has remained virtually unchanged for many decades. Currently, prevention or early diagnosis at a curable stage is exceedingly difficult; patients rarely exhibit symptoms and tumours do not display sensitive and specific markers to aid detection. Pancreatic cancers also have few prevalent genetic mutations; the most commonly mutated genes are KRAS, CDKN2A (encoding p16), TP53 and SMAD4 - none of which are currently druggable. Indeed, therapeutic options are limited and progress in drug development is impeded because most pancreatic cancers are complex at the genomic, epigenetic and metabolic levels, with multiple activated pathways and crosstalk evident. Furthermore, the multilayered interplay between neoplastic and stromal cells in the tumour microenvironment challenges medical treatment. Fewer than 20% of patients have surgically resectable disease; however, neoadjuvant therapies might shift tumours towards resectability. Although newer drug combinations and multimodal regimens in this setting, as well as the adjuvant setting, appreciably extend survival, ∼80% of patients will relapse after surgery and ultimately die of their disease. Thus, consideration of quality of life and overall survival is important. In this Primer, we summarize the current understanding of the salient pathophysiological, molecular, translational and clinical aspects of this disease. In addition, we present an outline of potential future directions for pancreatic cancer research and patient management.
Collapse
Affiliation(s)
- Jorg Kleeff
- NIHR Pancreas Biomedical Research Unit, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Duncan Building, Daulby Street, Liverpool L69 3GA, UK
- Department of General, Visceral and Pediatric Surgery, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Murray Korc
- Departments of Medicine, and Biochemistry and Molecular Biology, Indiana University School of Medicine, the Melvin and Bren Simon Cancer Center, and the Pancreatic Cancer Signature Center, Indianapolis, Indiana, USA
| | - Minoti Apte
- SWS Clinical School, University of New South Wales, and Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia
| | - Carlo La Vecchia
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Colin D Johnson
- University Surgical Unit, University Hospital Southampton, Southampton, UK
| | - Andrew V Biankin
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Garscube Estate, Bearsden, Glasgow, Scotland, UK
| | - Rachel E Neale
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Margaret Tempero
- UCSF Pancreas Center, University of California San Francisco - Mission Bay Campus/Mission Hall, San Francisco, California, USA
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, New York, USA
| | - Ralph H Hruban
- The Sol Goldman Pancreatic Cancer Research Center, Departments of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John P Neoptolemos
- NIHR Pancreas Biomedical Research Unit, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Duncan Building, Daulby Street, Liverpool L69 3GA, UK
| |
Collapse
|
21
|
Phoenix TN, Patmore DM, Boop S, Boulos N, Jacus MO, Patel YT, Roussel MF, Finkelstein D, Goumnerova L, Perreault S, Wadhwa E, Cho YJ, Stewart CF, Gilbertson RJ. Medulloblastoma Genotype Dictates Blood Brain Barrier Phenotype. Cancer Cell 2016; 29:508-522. [PMID: 27050100 PMCID: PMC4829447 DOI: 10.1016/j.ccell.2016.03.002] [Citation(s) in RCA: 242] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 12/23/2015] [Accepted: 03/01/2016] [Indexed: 12/15/2022]
Abstract
The childhood brain tumor, medulloblastoma, includes four subtypes with very different prognoses. Here, we show that paracrine signals driven by mutant β-catenin in WNT-medulloblastoma, an essentially curable form of the disease, induce an aberrant fenestrated vasculature that permits the accumulation of high levels of intra-tumoral chemotherapy and a robust therapeutic response. In contrast, SHH-medulloblastoma, a less curable disease subtype, contains an intact blood brain barrier, rendering this tumor impermeable and resistant to chemotherapy. The medulloblastoma-endothelial cell paracrine axis can be manipulated in vivo, altering chemotherapy permeability and clinical response. Thus, medulloblastoma genotype dictates tumor vessel phenotype, explaining in part the disparate prognoses among medulloblastoma subtypes and suggesting an approach to enhance the chemoresponsiveness of other brain tumors.
Collapse
Affiliation(s)
- Timothy N Phoenix
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Deanna M Patmore
- Li Ka Shing Centre, CRUK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, England
| | - Scott Boop
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Nidal Boulos
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Megan O Jacus
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yogesh T Patel
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | | | - Sebastien Perreault
- Department of Neurology and Neurological Sciences, Stanford University Medical Center, 1201 Welch Road, Stanford, CA 94305, USA
| | - Elizabeth Wadhwa
- Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Yoon-Jae Cho
- Department of Neurology and Neurological Sciences, Stanford University Medical Center, 1201 Welch Road, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University Medical Center, 1201 Welch Road, Stanford, CA 94305, USA
| | - Clinton F Stewart
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Richard J Gilbertson
- Li Ka Shing Centre, CRUK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, England.
| |
Collapse
|
22
|
Abstract
Understanding the molecular landscape of cancer has facilitated the development of diagnostic, prognostic, and predictive biomarkers for clinical oncology. Developments in next-generation DNA sequencing technologies have increased the speed and reduced the cost of sequencing the nucleic acids of cancer cells. This has unlocked opportunities to characterize the genomic and transcriptomic landscapes of cancer for basic science research through projects like The Cancer Genome Atlas. The cancer genome includes DNA-based alterations, such as point mutations or gene duplications. The cancer transcriptome involves RNA-based alterations, including changes in messenger RNAs. Together, the genome and transcriptome can provide a comprehensive view of an individual patient's cancer that is beginning to impact real-time clinical decision-making. The authors discuss several opportunities for translating this basic science knowledge into clinical practice, including a molecular classification of cancer, heritable risk of cancer, eligibility for targeted therapies, and the development of innovative, genomic-based clinical trials. In this review, key applications and new directions are outlined for translating the cancer genome and transcriptome into patient care in the clinic.
Collapse
Affiliation(s)
- Sameek Roychowdhury
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University, Columbus, Ohio 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210 USA
- Department of Pharmacology, The Ohio State University, Columbus, Ohio 43210 USA
| | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI 48109 USA
- Center for Computational Medicine and Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
23
|
Characterization of the NPC1L1 gene and proteome from an exceptional responder to ezetimibe. Atherosclerosis 2015; 246:78-86. [PMID: 26761771 DOI: 10.1016/j.atherosclerosis.2015.12.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND Strategies to reduce LDL-cholesterol involve reductions in cholesterol synthesis or absorption. We identified a familial hypercholesterolemia patient with an exceptional response to the cholesterol absorption inhibitor, ezetimibe. Niemann-Pick C 1-like 1 (NPC1L1) is the molecular target of ezetimibe. METHODS AND RESULTS Sequencing identified nucleotide changes predicted to change amino acids 52 (L52P), 300 (I300T) and 489 (S489G) in exceptional NPC1L1. In silico analyses identified increased stability and cholesterol binding affinity in L52P-NPC1L1 versus WT-NPC1L1. HEK293 cells overexpressing WT-NPC1L1 or NPC1L1 harboring amino acid changes singly or in combination (Comb-NPC1L1) had reduced cholesterol uptake in Comb-NPC1L1 when ezetimibe was present. Cholesterol uptake was reduced by ezetimibe in L52P-NPC1L1, I300T-NPC1L1, but increased in S489G-NPC1L1 overexpressing cells. Immunolocalization studies found preferential plasma membrane localization of mutant NPC1L1 independent of ezetimibe. Flotillin 1 and 2 expression was reduced and binding to Comb-NPC1L1 was reduced independent of ezetimibe exposure. Proteomic analyses identified increased association with proteins that modulate intermediate filament proteins in Comb-NPC1L1 versus WT-NPC1L1 treated with ezetimibe. CONCLUSION This is the first detailed analysis of the role of NPC1L1 mutations in an exceptional responder to ezetimibe. The results point to a complex set of events in which the combined mutations were shown to affect cholesterol uptake in the presence of ezetimibe. Proteomic analysis suggests that the exceptional response may also lie in the nature of interactions with cytosolic proteins.
Collapse
|
24
|
Prasad V, Vandross A. Characteristics of Exceptional or Super Responders to Cancer Drugs. Mayo Clin Proc 2015; 90:1639-49. [PMID: 26546106 DOI: 10.1016/j.mayocp.2015.08.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/02/2015] [Accepted: 08/25/2015] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To summarize case reports of exceptional and super responders already published in the biomedical literature. PATIENTS AND METHODS We searched for published case reports or abstracts of exceptional or super responders to a cancer drug using PubMed and Google Scholar search engines. Pooling such reports is widely considered a promising research strategy and the subject of several ongoing investigations, including the National Cancer Institute's Exceptional Responders Initiative. All articles were read in full, including relevant references. We extracted clinical characteristics of exceptional or super responders, including age, tumor type, drug, genetic mutations, depth of response, duration of response, number of previous lines of therapy, duration of response to a previous line of therapy, and the number of patients treated similarly to identify the exceptional case. This study was performed between March 1, 2015, and April 30, 2015. RESULTS Among 489 articles, 32 exceptional responders were identified. The most common malignancies described were renal cell cancer (5 of 32 [16%]) and urothelial carcinoma (4 of 32 [13%]). The use of targeted agents was common in these cases (26 of 32 [81%]), particularly inhibitors of the mTOR pathway (16 of 32 [50%]). The median duration of response among responders was 17.5 months, and 59% (19 of 32) of the patients were last known to be alive with continuing response or stable disease. Notably, 46% (12 of 26) of the patients had received 2 or more previous lines of therapy and 6 of the 32 cases (19%) did not report this information. Few authors report the number of patients treated similarly to observe the super response (12 of 32 [38%]). CONCLUSION Exceptional or super responders to cancer drugs have been described in the literature; however, there is incompleteness in the reporting of relevant data that may help clarify whether such responses are secondary to treatment or reflect underlying biology.
Collapse
Affiliation(s)
- Vinay Prasad
- Division of Hematology Oncology in the Knight Cancer Institute, Department of Public Health and Preventive Medicine, Oregon Health and Science University, Portland, OR.
| | - Andrae Vandross
- Division of Medical Oncology, University of California Los Angeles, Los Angeles
| |
Collapse
|
25
|
Hollingsworth SJ, Biankin AV. The Challenges of Precision Oncology Drug Development and Implementation. Public Health Genomics 2015; 18:338-48. [PMID: 26555355 DOI: 10.1159/000441557] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The drivers of precision medicine are clear: for patients (and physicians)--more options, durable clinical benefit, reduced exposure to non-effective drugs and potential to leverage current scientific and technological advances; for the pharmaceutical industry--the potential to tackle core challenges in discovering and developing better and more efficacious medicines, to reduce rates of attrition in drug development and to reduce development costs; for healthcare systems and payers--improved efficiency through the provision of effective care and avoiding ineffective treatments. Oncology has been at the vanguard, the improvements gained in patient survival notable. However, the increasing number of molecular subgroups requires an equally increasing number (and new generation) of highly selective agents targeting inevitably lower incidence molecular segments. Innovative trial designs (umbrella/basket studies) are emerging as a patient-centric approach to drug development, and the rise in public-private partnerships, cross-industry, government and non-profit sector collaborations is enabling implementation of complex clinical trial designs. This poses significant challenges for healthcare systems and regulatory approval. Further substantial evolution of policy and processes, particularly regulatory requirements for approval for new therapeutics, are required.
Collapse
|
26
|
Myklebost O. Personalized cancer therapy for soft tissue sarcomas: progress and pitfalls. Per Med 2015; 12:593-602. [PMID: 29750616 DOI: 10.2217/pme.15.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Precise differential diagnosis has led to good definition of most sarcoma subgroups, but although increasing molecular understanding and better diagnostic techniques will improve this further, the many subgroups lead to fragmented opportunities and limit even more the insufficient commercial interest. For novel, targeted strategies, gastrointestinal stromal tumors are a prime example of how a drug developed for another target in leukemia, has been successfully repurposed. The availability of new sequencing technologies creates a hope for better molecular stratification combined with new, targeted therapies to alleviate some of the therapeutic need, at least for some of the patients. However, the documentation of real clinical benefit will be challenging, and calls for systematic, research-based treatment and international collaboration.
Collapse
Affiliation(s)
- Ola Myklebost
- Institute for Cancer Research, Oslo University Hospital, Norwegian Radium Hospital, PO Box 4950 Nydalen, 0424 Oslo, Norway.,Norwegian Cancer Genomics Consortium (Cancer Genomics.No), Oslo, Norway.,Norwegian Sarcoma Consortium (NoSarC.No), Oslo, Norway.,Institute for Bioscience, University of Oslo, Norway
| |
Collapse
|
27
|
Murray BW, Miller N. Durability of Kinase-Directed Therapies--A Network Perspective on Response and Resistance. Mol Cancer Ther 2015; 14:1975-84. [PMID: 26264276 DOI: 10.1158/1535-7163.mct-15-0088] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 06/15/2015] [Indexed: 11/16/2022]
Abstract
Protein kinase-directed cancer therapies yield impressive initial clinical responses, but the benefits are typically transient. Enhancing the durability of clinical response is dependent upon patient selection, using drugs with more effective pharmacology, anticipating mechanisms of drug resistance, and applying concerted drug combinations. Achieving these tenets requires an understanding of the targeted kinase's role in signaling networks, how the network responds to drug perturbation, and patient-to-patient network variations. Protein kinases create sophisticated, malleable signaling networks with fidelity coded into the processes that regulate their presence and function. Robust and reliable signaling is facilitated through network processes (e.g., feedback regulation, and compensatory signaling). The routine use of kinase-directed therapies and advancements in both genomic analysis and tumor cell biology are illuminating the complexity of tumor network biology and its capacity to respond to perturbations. Drug efficacy is attenuated by alterations of the drug target (e.g., steric interference, compensatory activity, and conformational changes), compensatory signaling (bypass mechanisms and phenotype switching), and engagement of other oncogenic capabilities (polygenic disease). Factors influencing anticancer drug response and resistance are examined to define the behavior of kinases in network signaling, mechanisms of drug resistance, drug combinations necessary for durable clinical responses, and strategies to identify mechanisms of drug resistance.
Collapse
Affiliation(s)
- Brion W Murray
- Oncology Research Unit, Pfizer Worldwide Research and Development, San Diego, California.
| | - Nichol Miller
- Oncology Research Unit, Pfizer Worldwide Research and Development, San Diego, California
| |
Collapse
|
28
|
What can triumphs and tribulations from drug research in Alzheimer's disease tell us about the development of psychotropic drugs in general? Lancet Psychiatry 2015; 2:756-764. [PMID: 26249306 PMCID: PMC5161453 DOI: 10.1016/s2215-0366(15)00214-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 04/15/2015] [Accepted: 04/24/2015] [Indexed: 02/06/2023]
Abstract
Drug development for psychiatric disorders has almost ground to a halt. Some newer drugs are better tolerated or safer than older ones, but none is more effective. Years of failure in preventing or delaying the onset of illness, ameliorating symptoms, lowering suicide rates, or improving quality of life has put the commercial investments that had previously funded drug development at risk. To promote the development of psychiatric drugs with greater efficacy, we need to improve the way we bring potentially beneficial drugs to market. We need to acknowledge, as has been done in other specialties, that people differ in their response to drugs. Psychiatric drug research needs to be grounded in a better understanding of molecular brain mechanisms, neural circuits, and their relations to clinical disease. With this understanding, drugs need to be more precisely directed at specific brain targets. In psychiatric drug development, government, industry, regulatory bodies, and academia should realign to ensure medical science is used in the best interests of patients.
Collapse
|
29
|
|
30
|
Abstract
Pancreatic cancer is expected to be the second deadliest malignancy in the USA by 2020. The survival rates for patients with other gastrointestinal malignancies have increased consistently during the past 30 years; unfortunately, however, the outcomes of patients with pancreatic cancer have not changed significantly. Although surgery remains the only curative treatment for pancreatic cancer, therapeutic strategies based on initial resection have not substantially improved the survival of patients with resectable disease over the past 25 years; presently, more than 80% of patients suffer disease relapse after resection. Preclinical evidence that pancreatic cancer is a systemic disease suggests a possible benefit for early administration of systemic therapy in these patients. In locally advanced disease, the role of chemoradiotherapy is increasingly being questioned, particularly considering the results of the LAP-07 trial. Novel biomarkers are clearly needed to identify subsets of patients likely to benefit from chemoradiotherapy. In the metastatic setting, FOLFIRINOX (folinic acid, 5-fluorouracil, irinotecan, and oxaliplatin), and nab-paclitaxel plus gemcitabine have yielded only modest improvements in survival. Thus, new treatments are urgently needed for patients with pancreatic cancer. Herein, we review the state-of-the-art of pancreatic cancer treatment, and the upcoming novel therapeutics that hold promise in this disease are also discussed.
Collapse
|
31
|
Chan D, Clarke S, Gill AJ, Chantrill L, Samra J, Li BT, Barnes T, Nahar K, Pavlakis N. Pathogenic PALB2 mutation in metastatic pancreatic adenocarcinoma and neuroendocrine tumour: A case report. Mol Clin Oncol 2015; 3:817-819. [PMID: 26171187 DOI: 10.3892/mco.2015.533] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/16/2015] [Indexed: 12/13/2022] Open
Abstract
Adenocarcinoma of the pancreas is an aggressive malignancy with poor prognosis. Pancreatic neuroendocrine tumours (PNET) comprise ~3% of primary pancreatic neoplasms and they are more heterogeneous in their histological character and outcome. This is the case report of a 73-year-old female patient with synchronously diagnosed pancreatic adenocarcinoma and PNET, which is likely associated with a pathogenic partner and localizer of breast cancer 2, early onset (PALB2) mutation. The potential pathogenic significance of PALB2 and its association with various malignancies were investigated and the potential role of PALB2 in conferring sensitivity to chemotherapeutic agents, such as mitomycin C and cisplatin, was discussed. This case report highlights the significance of ongoing research into the molecular pathogenesis of pancreatic cancer, which may help guide the selection of optimal treatments for this disease, as well as the need for ongoing study of PALB2 as a possible predictive marker of response to DNA-damaging agents.
Collapse
Affiliation(s)
- David Chan
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - Stephen Clarke
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - Anthony J Gill
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | | | - Jas Samra
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - Bob T Li
- Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tristan Barnes
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - Kazi Nahar
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - Nick Pavlakis
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St. Leonards, NSW, Australia
| |
Collapse
|
32
|
Garrido-Laguna I, Tometich D, Hu N, Ying J, Geiersbach K, Whisenant J, Wang K, Ross JS, Sharma S. N of 1 case reports of exceptional responders accrued from pancreatic cancer patients enrolled in first-in-man studies from 2002 through 2012. Oncoscience 2015; 2:285-93. [PMID: 25897431 PMCID: PMC4394134 DOI: 10.18632/oncoscience.141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/04/2015] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To identify exceptional responders among patients with advanced pancreatic cancer enrolled in first-in-man (FIM) studies. METHODS A Scopus search identified 66 FIM studies that enrolled at least one patient with advanced pancreatic cancer between 2002-2012. Descriptive statistics were used to summarize categorical variables. We also screened CRKL amplifications in the FoundationOne™ pancreatic cancer database. RESULTS Most FIM studies included targeted therapies (76 vs. 24%). The most common targeted therapy involved cell cycle inhibitors (24%). Pharmacodynamic analyses were more frequently done in trials with targeted therapies (70 vs. 31%, p=0.006). Response rates were similar. Treatment-related death was 0.5%. Skin, cardiovascular and metabolic grade 3-4 toxicities were more frequent with targeted therapies. Four exceptional responses were identified including a complete response to bosutinib (Src Inhibitor) and partial responses to trametinib (MEK inhibitor) (2 patients) and CHR-3996 (histone deacetylase inhibitor). We found that CRKL amplifications, a potential biomarker for Src inhibitors, are present in 1% of PDA. CONCLUSIONS We retrospectively identified extraordinary responses among patients with advanced PDA enrolled in FIM studies with Src, HDAC and MEK inhibitors. We identified CRKL amplifications are present in 1% of PDA and need to be evaluated as predictive biomarker for Src inhibitors.
Collapse
Affiliation(s)
- Ignacio Garrido-Laguna
- Departments of Internal Medicine (Division of Oncology), Huntsman Cancer Institute and University of Utah School of Medicine, Salt Lake City
- Center for Investigational Therapeutics, Huntsman Cancer Institute and University of Utah School of Medicine, Salt Lake City
| | - Danielle Tometich
- Departments of Internal Medicine (Division of Oncology), Huntsman Cancer Institute and University of Utah School of Medicine, Salt Lake City
| | - Nan Hu
- Oncological Sciences, Huntsman Cancer Institute and University of Utah School of Medicine, Salt Lake City
| | - Jian Ying
- Oncological Sciences, Huntsman Cancer Institute and University of Utah School of Medicine, Salt Lake City
| | - Katherine Geiersbach
- Department of Pathology at Huntsman Cancer Institute and University of Utah School of Medicine, Salt Lake City
| | | | - Kai Wang
- Foundation Medicine, Cambridge, Massachusetts
| | - Jeffrey S. Ross
- Foundation Medicine, Cambridge, Massachusetts
- Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, New York, USA
| | - Sunil Sharma
- Departments of Internal Medicine (Division of Oncology), Huntsman Cancer Institute and University of Utah School of Medicine, Salt Lake City
- Center for Investigational Therapeutics, Huntsman Cancer Institute and University of Utah School of Medicine, Salt Lake City
| |
Collapse
|
33
|
Waddell N, Pajic M, Patch AM, Chang DK, Kassahn KS, Bailey P, Johns AL, Miller D, Nones K, Quek K, Quinn MCJ, Robertson AJ, Fadlullah MZH, Bruxner TJC, Christ AN, Harliwong I, Idrisoglu S, Manning S, Nourse C, Nourbakhsh E, Wani S, Wilson PJ, Markham E, Cloonan N, Anderson MJ, Fink JL, Holmes O, Kazakoff SH, Leonard C, Newell F, Poudel B, Song S, Taylor D, Waddell N, Wood S, Xu Q, Wu J, Pinese M, Cowley MJ, Lee HC, Jones MD, Nagrial AM, Humphris J, Chantrill LA, Chin V, Steinmann AM, Mawson A, Humphrey ES, Colvin EK, Chou A, Scarlett CJ, Pinho AV, Giry-Laterriere M, Rooman I, Samra JS, Kench JG, Pettitt JA, Merrett ND, Toon C, Epari K, Nguyen NQ, Barbour A, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Aust D, Hruban RH, Maitra A, Iacobuzio-Donahue CA, Wolfgang CL, Morgan RA, Lawlor RT, Corbo V, Bassi C, Falconi M, Zamboni G, Tortora G, Tempero MA, Gill AJ, Eshleman JR, Pilarsky C, Scarpa A, Musgrove EA, Pearson JV, Biankin AV, Grimmond SM. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 2015; 518:495-501. [PMID: 25719666 PMCID: PMC4523082 DOI: 10.1038/nature14169] [Citation(s) in RCA: 1939] [Impact Index Per Article: 193.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 12/18/2014] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded.
Collapse
Affiliation(s)
- Nicola Waddell
- 1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia [2] QIMR Berghofer Medical Research Institute, Herston Road, Brisbane 4006, Australia
| | - Marina Pajic
- 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales 2010, Australia
| | - Ann-Marie Patch
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - David K Chang
- 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, New South Wales 2200, Australia [3] South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, New South Wales 2170, Australia [4] Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Karin S Kassahn
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Peter Bailey
- 1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia [2] Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Amber L Johns
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - David Miller
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Katia Nones
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Kelly Quek
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Michael C J Quinn
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Alan J Robertson
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Muhammad Z H Fadlullah
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Tim J C Bruxner
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Angelika N Christ
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Ivon Harliwong
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Senel Idrisoglu
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Suzanne Manning
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Craig Nourse
- 1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia [2] Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Ehsan Nourbakhsh
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Shivangi Wani
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Peter J Wilson
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Emma Markham
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Nicole Cloonan
- 1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia [2] QIMR Berghofer Medical Research Institute, Herston Road, Brisbane 4006, Australia
| | - Matthew J Anderson
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - J Lynn Fink
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Oliver Holmes
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Stephen H Kazakoff
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Conrad Leonard
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Felicity Newell
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Barsha Poudel
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Sarah Song
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Darrin Taylor
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Nick Waddell
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Scott Wood
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Qinying Xu
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Jianmin Wu
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Mark Pinese
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Mark J Cowley
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Hong C Lee
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Marc D Jones
- 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Adnan M Nagrial
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Jeremy Humphris
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Lorraine A Chantrill
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Venessa Chin
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Angela M Steinmann
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Amanda Mawson
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Emily S Humphrey
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Emily K Colvin
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Angela Chou
- 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] Department of Anatomical Pathology, St Vincent's Hospital, Sydney, New South Wales 2010, Australia
| | - Christopher J Scarlett
- 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] School of Environmental &Life Sciences, University of Newcastle, Ourimbah, New South Wales 2258, Australia
| | - Andreia V Pinho
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Marc Giry-Laterriere
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Ilse Rooman
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Jaswinder S Samra
- 1] Department of Surgery, Royal North Shore Hospital, St Leonards, Sydney, New South Wales 2065, Australia [2] University of Sydney, Sydney, New South Wales 2006, Australia
| | - James G Kench
- 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] University of Sydney, Sydney, New South Wales 2006, Australia [3] Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales 2050, Australia
| | - Jessica A Pettitt
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Neil D Merrett
- 1] Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, New South Wales 2200, Australia [2] School of Medicine, University of Western Sydney, Penrith, New South Wales 2175, Australia
| | - Christopher Toon
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Krishna Epari
- Department of Surgery, Fremantle Hospital, Alma Street, Fremantle, Western Australia 6160, Australia
| | - Nam Q Nguyen
- Department of Gastroenterology, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia 5000, Australia
| | - Andrew Barbour
- Department of Surgery, Princess Alexandra Hospital, Ipswich Rd, Woollongabba, Queensland 4102, Australia
| | - Nikolajs Zeps
- 1] School of Surgery M507, University of Western Australia, 35 Stirling Highway, Nedlands 6009, Australia [2] St John of God Pathology, 12 Salvado Rd, Subiaco, Western Australia 6008, Australia [3] Bendat Family Comprehensive Cancer Centre, St John of God Subiaco Hospital, Subiaco, Western Australia 6008, Australia
| | - Nigel B Jamieson
- 1] Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK [2] Academic Unit of Surgery, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow G4 OSF, UK [3] West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, UK
| | - Janet S Graham
- 1] Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK [2] Department of Medical Oncology, Beatson West of Scotland Cancer Centre, 1053 Great Western Road, Glasgow G12 0YN, UK
| | - Simone P Niclou
- Norlux Neuro-Oncology Laboratory, CRP-Santé Luxembourg, 84 Val Fleuri, L-1526, Luxembourg
| | - Rolf Bjerkvig
- Norlux Neuro-Oncology, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5019 Bergen, Norway
| | - Robert Grützmann
- Departments of Surgery and Pathology, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Daniela Aust
- Departments of Surgery and Pathology, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Ralph H Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | - Anirban Maitra
- Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston Texas 77030, USA
| | - Christine A Iacobuzio-Donahue
- The David M. Rubenstein Pancreatic Cancer Research Center and Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Christopher L Wolfgang
- Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | - Richard A Morgan
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | - Rita T Lawlor
- 1] ARC-NET Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona 37134, Italy [2] Department of Pathology and Diagnostics, University of Verona, Verona 37134, Italy
| | - Vincenzo Corbo
- ARC-NET Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona 37134, Italy
| | - Claudio Bassi
- Department of Surgery and Oncology, Pancreas Institute, University and Hospital Trust of Verona, Verona 37134, Italy
| | - Massimo Falconi
- 1] Department of Surgery and Oncology, Pancreas Institute, University and Hospital Trust of Verona, Verona 37134, Italy [2] Departments of Surgery and Pathology, Ospedale Sacro Cuore Don Calabria Negrar, Verona 37024, Italy
| | - Giuseppe Zamboni
- 1] Department of Pathology and Diagnostics, University of Verona, Verona 37134, Italy [2] Departments of Surgery and Pathology, Ospedale Sacro Cuore Don Calabria Negrar, Verona 37024, Italy
| | - Giampaolo Tortora
- Department of Oncology, University and Hospital Trust of Verona, Verona 37134, Italy
| | - Margaret A Tempero
- Division of Hematology and Oncology, University of California, San Francisco, California 94122, USA
| | - Anthony J Gill
- 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] University of Sydney, Sydney, New South Wales 2006, Australia
| | - James R Eshleman
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | - Christian Pilarsky
- Departments of Surgery and Pathology, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Aldo Scarpa
- 1] ARC-NET Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona 37134, Italy [2] Department of Pathology and Diagnostics, University of Verona, Verona 37134, Italy
| | - Elizabeth A Musgrove
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - John V Pearson
- 1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia [2] QIMR Berghofer Medical Research Institute, Herston Road, Brisbane 4006, Australia
| | - Andrew V Biankin
- 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, New South Wales 2200, Australia [3] South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, New South Wales 2170, Australia [4] Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Sean M Grimmond
- 1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia [2] Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| |
Collapse
|