1
|
Kosanam S, Pasupula R. Effect of Methyl Glycoside on Apoptosis and Oxidative Stress in Hypoxia Induced-Reoxygenated H9C2 Cell Lines. Cell Biochem Biophys 2025; 83:1045-1056. [PMID: 39292425 DOI: 10.1007/s12013-024-01539-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
This study focuses on key genes (Caspase-3, JAK2, BCL2L1 and MAPK8) and their modulation in response to hypoxia-induced stress using Methyl Glycoside (MG), a small molecule spectroscopically screened from Aganosma dichotoma. Hypoxia/reoxygenation (H/R) induced H9C2 cells, pre- treated with MG, were subjected to cell viability assay, free radical scavenging activities (catalase, GST, GSH-Px, SOD), caspase activity, mitochondrial membrane potential, and gene expression profiling through standard assays and molecular techniques. Results indicated that MG treatment, has potential protective effects against H/R induced stress in H9C2 cell lines. Cell viability assays showed that MG maintained cellular viability with significant protection (P < 0.05) observed from 10 µM. Free radical scavenging assays revealed that MG, enhanced detoxification mechanisms and exhibited potential antioxidant effect in a significantly (P < 0.05) in a dose dependant manner. MG pre-treatment in H9C2 cells protected cellular damage from caspase activity, cells exhibited high mitochondrial membrane potential, and gene expression profiles, including upregulation of anti-apoptotic BCL2L1 and modulation of stress-responsive genes like CASP3, JAK2 and MAPK8. Hence, MG exhibited concentration-dependent protective effects on viability, oxidative stress, and apoptosis-related pathways, laying the foundation for further exploration and translational applications in cardiovascular interventions.
Collapse
Affiliation(s)
- Sreya Kosanam
- Department. of Pharmacology, College of Pharmacy, Koneru Lakshmaiah Education Foundation, KL deemed to be University, Green Fields, Vaddeswaram, Andhra Pradesh, India
| | - Rajeshwari Pasupula
- Department. of Pharmacology, College of Pharmacy, Koneru Lakshmaiah Education Foundation, KL deemed to be University, Green Fields, Vaddeswaram, Andhra Pradesh, India.
| |
Collapse
|
2
|
Nasir F, Yadav P, Sivanandam TM. NaHS alters synaptic plasticity proteins and enhances dendritic arborization to improve cognitive and motor deficits after traumatic brain injury in mice. Br J Pharmacol 2025; 182:1183-1205. [PMID: 39562524 DOI: 10.1111/bph.17386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 09/12/2024] [Accepted: 10/01/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND AND PURPOSE Traumatic brain injury (TBI) is a complex medical condition affecting people globally. Hydrogen sulfide (H2S) is a recently discovered gaseous mediator and is dysregulated in the brain after TBI. Sodium hydrogen sulfide (NaHS), a known donor of H2S, is beneficial in various biological processes involving aging and diseases, including injury. It is neuroprotective against oxidative stress, neuroinflammation, and other secondary injury processes. However, the NaHS-H2S system has not been investigated as a regulator of injury-mediated synaptic plasticity proteins and the underlying mechanisms after TBI. EXPERIMENTAL APPROACH We developed a model of TBI in Swiss albino mice to study the effects of exogenous H2S, administered as NaHS. We assessed cognitive function (Barnes maze and novel object recognition) and motor function (rotarod). Brain tissue was analysed with ELISA, qRT-PCR, immunoblotting, Golgi-cox staining, and immunofluorescence. KEY RESULTS NaHS administration restored the injury-caused decline in H2S levels. Injury-mediated oxidative stress parameters were improved following NaHS. It down-regulated TBI biomarkers, ameliorated the synaptic marker proteins, and improved cognitive and motor deficits. These changes were accompanied by enhanced dendritic arborization and spine number. Restoration of N-methyl D-aspartate receptor subunits and diminished glutamate and calcium levels, along with marked changes in microtubule-associated protein 2 A and calcium/calmodulin-dependent protein kinase II, formed the basis of the underlying mechanism(s). CONCLUSION AND IMPLICATIONS Our findings suggest that NaHS could have therapeutic activity against TBI, as it ameliorated cognitive and motor deficits caused by changes in synaptic plasticity proteins and dendritic arborisation, in our model.
Collapse
Affiliation(s)
- Farheen Nasir
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Priyanka Yadav
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Thamil Mani Sivanandam
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
3
|
Yang L, Chen J, Yao Z, Cai J, Zhang H, Wang Z, Guo H, Zha Y. Associations of multiple plasma metals with the risk of type 2 diabetes in Chinese adults: A cross-sectional study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117941. [PMID: 40009940 DOI: 10.1016/j.ecoenv.2025.117941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/12/2025] [Accepted: 02/19/2025] [Indexed: 02/28/2025]
Abstract
Evidence regarding the associations between co-exposure to multiple metals and diabetes risk was scarce. This study aimed to evaluate the associations of multiple metals with diabetes risk using multiple statistical methods. This cross-sectional study included 192 diabetic patients and 189 healthy subjects. We employed inductively coupled plasma mass spectrometry (ICP-MS) to determine the plasma concentrations of 18 metals. Least absolute shrinkage and selection operator (LASSO) regression, logistic regression, and Bayesian kernel machine regression (BKMR) were applied to evaluate associations of multiple metals with diabetes risk comprehensively. These models consistently suggested that aluminium and selenium were positively associated with diabetes risk, while manganese, rubidium, and lead were negatively associated with diabetes risk. Age-specific differences of selenium and sex-specific differences of manganese in diabetes risk were also observed based on stratified analyses. According to RCS analyses, we obtained dose-response relationships between metals and diabetes risk:(1) there were inverted U-shaped associations of plasma aluminium and selenium with diabetes risk, with the threshold close to 20.5µg/L and 75.9µg/L, respectively (both P for overall < 0.05; both P for non-linearity < 0.05). (2) There were L-shaped associations of rubidium and lead with diabetes risk, with the turning point close to 144.5µg/L and 2.5µg/L, respectively (both P for overall < 0.05; both P for non-linearity < 0.05). (3) Manganese was linearly and negatively correlated with diabetes risk when concentrations of manganese were less than approximately 4.2 μg/L (P for overall < 0.05; P for non-linearity = 0.268). The BKMR model also revealed a negative combined effect of metal mixtures on diabetes risk and potential interactions between six pairs of metals (aluminium-manganese, aluminium-selenium, aluminium-rubidium, aluminium-lead, manganese-selenium, and manganese-rubidium). In summary, we need to pay attention to the role of low plasma levels of aluminium, selenium, manganese, rubidium, and lead in diabetes, especially regarding their safety windows.
Collapse
Affiliation(s)
- Liting Yang
- Biomedical Research Institute of Hubei University of Medicine, Shiyan 442000, China
| | - Jin Chen
- School of Public Health, Hubei University of Medicine, Shiyan 442000, China
| | - Zijun Yao
- School of Public Health, Hubei University of Medicine, Shiyan 442000, China; Public Health Service Center of Wuhan East Lake Scenic District, Wuhan 430077, China
| | - Junwei Cai
- Department of Endocrinology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Han Zhang
- School of Public Health, Hubei University of Medicine, Shiyan 442000, China
| | - Zhen Wang
- School of Public Health, Hubei University of Medicine, Shiyan 442000, China
| | - Huailan Guo
- School of Public Health, Hubei University of Medicine, Shiyan 442000, China.
| | - Yongjiu Zha
- Emergency and Critical Care Center, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, China.
| |
Collapse
|
4
|
Girardo B, Yue Y, Lockridge O, Bartling AM, Schopfer LM, Augusto L, Larson MA. Francisella tularensis universal stress protein contributes to persistence during growth arrest and paraquat-induced superoxide stress. J Bacteriol 2025; 207:e0037724. [PMID: 39846732 PMCID: PMC11841066 DOI: 10.1128/jb.00377-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/21/2024] [Indexed: 01/24/2025] Open
Abstract
Francisella tularensis is one of the most virulent bacterial pathogens known and causes the disease tularemia, which can be fatal if untreated. This zoonotic and intracellular pathogen is exposed to diverse environmental and host stress factors that require an appropriate response to survive. However, the stress tolerance mechanisms used by F. tularensis to persist are not fully understood. To address this aspect, we evaluated the highly conserved universal stress protein (Usp) that is encoded by a single-copy gene in F. tularensis, unlike the majority of other bacterial pathogens that produce several to many Usp homologs. We determined that the F. tularensis Usp transcript is unusually stable with a half-life of over 30 minutes, and that usp transcript and protein levels remained abundant when exposed to low pH, nutrient deprivation, hydrogen peroxide, and paraquat. Of these and other stress conditions evaluated, the F. tularensis Δusp mutant only exhibited reduced survival relative to the wild type during stationary phase and exposure to paraquat, a highly toxic compound that generates superoxide anions and other free radicals. Comparison of transcript levels in untreated and paraquat-treated F. tularensis wild type and Δusp indicated that Usp contributes to enhanced expression of antioxidant defense genes, oxyR and katG. In summary, the high abundance and stability of Usp provide prompt protection during extended periods of growth arrest and free radical exposure, promoting F. tularensis persistence. We propose that F. tularensis Usp contributes to an adaptive response that prolongs viability and increases the longevity of this zoonotic pathogen in the environment. IMPORTANCE Francisella tularensis is classified as a Tier 1 select agent due to the low infectious dose, ease of transmission, and potential use as a bioweapon. To better understand the stress defense mechanisms that contribute to the ability of this highly virulent pathogen to persist, we evaluated the conserved F. tularensis universal stress protein (Usp). We show that F. tularensis Usp is unusually stable and remains abundant, regardless of the stress conditions tested, differing from other bacterial Usp homologs. We also determined that F. tularensis Usp enhances the expression of several critical antioxidant defense genes and increases survival during paraquat exposure and growth arrest. Determining the factors that promote F. tularensis persistence in the environment is needed to prevent tularemia transmission.
Collapse
Affiliation(s)
- Benjamin Girardo
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Yinshi Yue
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Oksana Lockridge
- Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Amanda M. Bartling
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | - Leonardo Augusto
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Marilynn A. Larson
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
5
|
Ren Z, Liu X, Lv G, Wang X, Wang J, Wu W, Li X, Wang J. Mitochondrial Localization of Antioxidant Nanodrug Suppresses Ocular Inflammation by Alleviating Oxidative Stress on Cells. Chemistry 2025; 31:e202402441. [PMID: 39833114 DOI: 10.1002/chem.202402441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/27/2024] [Accepted: 01/20/2025] [Indexed: 01/22/2025]
Abstract
External environments (e. g., pollutants, irritants, ultraviolet radiation, etc) probably activate oxidative stress on the ocular surface, further leading to inflammatory responses and cellular apoptosis. For treating ophthalmic diseases, one of the strategies is to regulate oxidative stress through antioxidants. Here we conjugate a polyphenolic antioxidant drug (i. e., caffeic acid) with a small peptide of protein tag to generate a peptide-drug conjugate as a nanodrug. With a self-assembled ability to form nanoparticles, the nanodrug mainly enters human corneal epithelial cells (HCEC) by caveolin-mediated endocytosis, succeeds lysosomal escape, and achieves mitochondrial localization of caffeic acid. Revealed by free radical scavenging experiments, the nanodrug shows considerable antioxidant capacities. In mouse leukemia cells of monocyte macrophage (RAW 264.7) induced by lipopolysaccharide (LPS), the nanodrug inhibits various pro-inflammatory cytokines (e. g., NO, IL-6, and TNF-α) by up-regulating the expression of anti-apoptotic protein (e. g., Bcl-2). As an investigation of alleviating oxidative stress by the mitochondrial localization of antioxidant, this work may establish an experimental foundation for the regulation of cellular redox balance, as well as provide different insights for the clinical development of antioxidant drug delivery systems in the treatment of ocular disease.
Collapse
Affiliation(s)
- Zhibin Ren
- National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology and Optometry & Biomedical Engineering, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China
| | - Xiaoying Liu
- National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology and Optometry & Biomedical Engineering, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China
| | - Guanghao Lv
- National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology and Optometry & Biomedical Engineering, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China
| | - Xiaiting Wang
- National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology and Optometry & Biomedical Engineering, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China
| | - Jingli Wang
- National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology and Optometry & Biomedical Engineering, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China
| | - Wei Wu
- National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology and Optometry & Biomedical Engineering, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China
| | - Xingyi Li
- National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology and Optometry & Biomedical Engineering, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China
| | - Jiaqing Wang
- National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology and Optometry & Biomedical Engineering, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China
| |
Collapse
|
6
|
Salunke MR, Shinde V. Molecular insights and efficacy of guava leaf oil emulgel in managing non diabetic as well as diabetic wound healing by reducing inflammation and oxidative stress. Inflammopharmacology 2025:10.1007/s10787-025-01648-7. [PMID: 39921809 DOI: 10.1007/s10787-025-01648-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/02/2025] [Indexed: 02/10/2025]
Abstract
Wound healing in diabetic patients is often compromised due to excessive inflammation, oxidative stress, and impaired angiogenesis, leading to delayed recovery and increased susceptibility to complications. This study aimed to develop an emulgel formulation of guava leaf oil, derived from Psidium guajava (Myrtaceae), and evaluate its wound healing potential in nondiabetic and diabetic rats. Preliminary phytochemical analysis of guava leaf oil identified active compounds such as D-limonene, β-caryophyllene, and 1,8-cineole, which are known for their anti-inflammatory and antioxidant properties. The emulgel was formulated and assessed for physical attributes, including pH, viscosity, spreadability, and stability. The emulgel demonstrated potent antimicrobial activity, with the 1% concentration showing significant efficacy. In vivo studies revealed enhanced wound contraction in diabetic rats treated with the emulgel, supporting its role in promoting excision wound healing. These findings underscore the therapeutic potential of guava leaf oil emulgel as an effective agent for managing nondiabetic and diabetic wounds, providing a foundation for future clinical applications.
Collapse
Affiliation(s)
- Malati R Salunke
- Department of Pharmacognosy, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be University), Erandwane, Pune, 411038, India
| | - Vaibhav Shinde
- Department of Pharmacognosy, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be University), Erandwane, Pune, 411038, India.
| |
Collapse
|
7
|
Kasem EA, Hamza G, El-Shafai NM, Ghanem NF, Mahmoud S, Sayed SM, Alshehri MA, Al-Shuraym LA, Ghamry HI, Mahfouz ME, Shukry M. Thymoquinone-Loaded Chitosan Nanoparticles Combat Testicular Aging and Oxidative Stress Through SIRT1/FOXO3a Activation: An In Vivo and In Vitro Study. Pharmaceutics 2025; 17:210. [PMID: 40006577 PMCID: PMC11858917 DOI: 10.3390/pharmaceutics17020210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/24/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Aging is a complex biological process characterized by the accumulation of molecular and cellular damage over time, often driven by oxidative stress. This oxidative stress is particularly detrimental to the testes, where it causes degeneration, reduced testosterone levels, and compromised fertility. D-galactose (D-gal) is commonly used to model aging as it induces oxidative stress, mimicking age-related cellular and molecular damage. Testicular aging is of significant concern due to its implications for reproductive health and hormonal balance. This research examines the protection by thymoquinone (TQ) or thymoquinone-loaded chitosan nanoparticles (NCPs) against D-galactose (D-gal)-induced aging in rat testes, focusing on biochemical, histological, and molecular changes. Aging, which is driven largely by oxidative stress, leads to significant testicular degeneration, reducing fertility. D-gal is widely used to model aging due to its ability to induce oxidative stress and mimic age-related damage. TQ, a bioactive ingredient of Nigella sativa, has earned a reputation for its anti-inflammatory, anti-apoptotic, and antioxidant characteristics, but its therapeutic application is limited by its poor bioavailability. Methods: Thymoquinone was loaded into chitosan nanoparticles (NCPs) to enhance its efficacy, and this was hypothesized to improve its stability and bioavailability. Four groups of male Wistar rats participated in the study: one for the control, one for D-gal, one for D-gal + TQ, and the last one for D-gal + NCP. Results: The results exhibited that D-gal substantially increased oxidative injury, reduced testosterone levels, and caused testicular damage. Treatment with TQ and NCPs significantly reduced oxidative stress, improved antioxidant enzyme levels, and restored testosterone levels, with NCPs showing a stronger protective effect than TQ alone. A histological analysis confirmed that NCPs better preserved testicular structure and function. Additionally, the NCP treatment upregulated the expression of key genes of oxidative stress resistance, mitochondrial function, and reproductive health, including SIRT1, FOXO3a, and TERT. Conclusions: The findings suggest that NCPs offer enhanced protection against aging-related testicular damage compared with TQ alone, which is likely due to the improved bioavailability and stability provided by the nanoparticle delivery system. This research emphasizes the potential of NCPs as a more effective therapeutic strategy for mitigating oxidative stress and age-related reproductive dysfunction. Future research should further explore the mechanisms underlying these protective effects.
Collapse
Affiliation(s)
- Enas A. Kasem
- Faculty of Science, Zoology Department, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Gehan Hamza
- Faculty of Science, Zoology Department, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Nagi M. El-Shafai
- Nanotechnology Center, Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Nora F. Ghanem
- Faculty of Science, Zoology Department, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Shawky Mahmoud
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Samy M. Sayed
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Laila A. Al-Shuraym
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Heba I. Ghamry
- Nutrition and Food Science, Department of Biology, College of Science, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia;
| | - Magdy E. Mahfouz
- Faculty of Science, Zoology Department, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
8
|
Martínez-Orozco H, Bencomo-Martínez A, Maya-Arteaga JP, Rubio-De Anda PF, Sanabria-Romero F, Casas ZGM, Rodríguez-Vargas I, Hernández-Puga AG, Sablón-Carrazana M, Menéndez-Soto del Valle R, Rodríguez-Tanty C, Díaz-Cintra S. CNEURO-201, an Anti-amyloidogenic Agent and σ1-Receptor Agonist, Improves Cognition in the 3xTg Mouse Model of Alzheimer's Disease by Multiple Actions in the Pathology. Int J Mol Sci 2025; 26:1301. [PMID: 39941068 PMCID: PMC11818425 DOI: 10.3390/ijms26031301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/25/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
The complexity of Alzheimer's disease (AD) pathophysiology represents a significant challenge in the development of effective therapeutic agents for its treatment. CNEURO-201 (CN, also Amylovis-201) is a novel pharmaceutical agent with dual activity as an anti-amyloid-β (Aβ) agent and σ1 receptor agonist. CN exhibits great efficacy at very low doses, delaying cognitive impairment and alleviating Aβ load in animal models of AD. However, CN functions on other remains related to this pathology remain to be investigated. The present study sought to evaluate the effects of CN treatment at a dosage of 0.1 mg kg-1 (p.o) over an eight-week period in the 3xTg-AD mouse model. In silico studies, as well as biochemical and immunofluorescence assays, were conducted on brain tissue to investigate the CN effects on acetylcholine metabolism, redox system, and glial cell activation-related biomarkers in brain regions that are relevant for memory. The results demonstrated that CN effectively rescues cognitive impairment of 3xTg-AD mice by influencing glial activity to reduce existing Aβ plaques but also modulating acetylcholine metabolism and the enzymatic response of proteins involved in the redox system. Our outcomes reinforced the potential of CN in treating AD by acting on multiple pathways altered in this disease.
Collapse
Affiliation(s)
- Humberto Martínez-Orozco
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología-UNAM Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla 76230, Querétaro, Mexico; (H.M.-O.); (J.P.M.-A.); (P.F.R.-D.A.); (F.S.-R.); (Z.G.M.C.); (I.R.-V.)
| | - Alberto Bencomo-Martínez
- Departamento de Farmacología, Centro de Neurociencias de Cuba, Avenida Independencia 8126, La Habana 11600, Cuba; (A.B.-M.); (M.S.-C.); (R.M.-S.d.V.); (C.R.-T.)
| | - Juan Pablo Maya-Arteaga
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología-UNAM Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla 76230, Querétaro, Mexico; (H.M.-O.); (J.P.M.-A.); (P.F.R.-D.A.); (F.S.-R.); (Z.G.M.C.); (I.R.-V.)
| | - Pedro Francisco Rubio-De Anda
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología-UNAM Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla 76230, Querétaro, Mexico; (H.M.-O.); (J.P.M.-A.); (P.F.R.-D.A.); (F.S.-R.); (Z.G.M.C.); (I.R.-V.)
| | - Fausto Sanabria-Romero
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología-UNAM Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla 76230, Querétaro, Mexico; (H.M.-O.); (J.P.M.-A.); (P.F.R.-D.A.); (F.S.-R.); (Z.G.M.C.); (I.R.-V.)
| | - Zyanya Gloria Mena Casas
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología-UNAM Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla 76230, Querétaro, Mexico; (H.M.-O.); (J.P.M.-A.); (P.F.R.-D.A.); (F.S.-R.); (Z.G.M.C.); (I.R.-V.)
| | - Isaac Rodríguez-Vargas
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología-UNAM Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla 76230, Querétaro, Mexico; (H.M.-O.); (J.P.M.-A.); (P.F.R.-D.A.); (F.S.-R.); (Z.G.M.C.); (I.R.-V.)
| | - Ana Gabriela Hernández-Puga
- Centro de Investigación Biomédica Avanzada, Facultad de Medicina, Universidad Autónoma de Querétaro, Carretera a Chichimequillas S/N, Santiago de Querétaro 76140, Querétaro, Mexico;
| | - Marquiza Sablón-Carrazana
- Departamento de Farmacología, Centro de Neurociencias de Cuba, Avenida Independencia 8126, La Habana 11600, Cuba; (A.B.-M.); (M.S.-C.); (R.M.-S.d.V.); (C.R.-T.)
| | - Roberto Menéndez-Soto del Valle
- Departamento de Farmacología, Centro de Neurociencias de Cuba, Avenida Independencia 8126, La Habana 11600, Cuba; (A.B.-M.); (M.S.-C.); (R.M.-S.d.V.); (C.R.-T.)
| | - Chryslaine Rodríguez-Tanty
- Departamento de Farmacología, Centro de Neurociencias de Cuba, Avenida Independencia 8126, La Habana 11600, Cuba; (A.B.-M.); (M.S.-C.); (R.M.-S.d.V.); (C.R.-T.)
| | - Sofía Díaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología-UNAM Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla 76230, Querétaro, Mexico; (H.M.-O.); (J.P.M.-A.); (P.F.R.-D.A.); (F.S.-R.); (Z.G.M.C.); (I.R.-V.)
| |
Collapse
|
9
|
Sivakumar B, Kurian GA. Temporal dynamics of PM 2.5 induced cell death: Emphasizing inflammation as key mediator in the late stages of prolonged myocardial toxicity. Exp Cell Res 2025; 445:114423. [PMID: 39818407 DOI: 10.1016/j.yexcr.2025.114423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/03/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Multiple forms of cell death contribute significantly to cardiovascular pathologies, negatively impacting cardiac remodeling and leading to heart failure. While myocardial cell death has been associated with PM2.5 induced cardiotoxicity, the temporal dynamics of various cell death forms, such as apoptosis, ferroptosis, necroptosis, and pyroptosis, in relation to inflammatory processes, remain underexplored. This study examines the time-dependent onset and progression of these cell death pathways in the myocardium and their correlation with inflammation in a Wistar rat model. Female rats were exposed to 250 μg/m³ of PM2.5 for 3 h daily over periods of 1, 7, 14, and 21 days. Gene expression analysis revealed that apoptotic markers (caspases 3, 7, and 9) were upregulated after 7 days of exposure, with continued elevation through 21 days. Ferroptotic markers, such as Ferritin and GPX4, declined significantly starting from day 14, while necroptosis (RIPK1) and pyroptosis (GSDMD) were prominent only after 21 days of exposure. In parallel, inflammatory markers, including IL-1β and TNF-α, showed substantial upregulation, particularly in the later stages, suggesting that inflammation plays a key role in amplifying myocardial damage in the prolonged exposure phase. These processes coincided with a progressive decrease in mitochondrial mass, elevated oxidative stress, and compromised bioenergetic function, all contributing to worsened cardiac function and remodeling by day 21.In conclusion, PM2.5 exposure initiates myocardial damage primarily through apoptosis and ferroptosis in the early stages. However, prolonged exposure exacerbates cell death via necroptosis and pyroptosis, with inflammation emerging as a critical factor driving late-stage myocardial toxicity. This study highlights the temporal dynamics of distinct cell death pathways, offering crucial insights into the mechanisms of PM2.5 induced cardiotoxicity and identifying potential therapeutic targets to mitigate its impact.
Collapse
Affiliation(s)
- Bhavana Sivakumar
- Cardiovascular Center, College of Medicine, University of Cincinnati, Ohio, 45267, USA
| | - Gino A Kurian
- Cardiovascular Center, College of Medicine, University of Cincinnati, Ohio, 45267, USA; School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India.
| |
Collapse
|
10
|
Najafzadeh A, Mahdizadeh M, Kakhki S, Rahimi A, Ahmadi-Soleimani SM, Beheshti F. Ascorbic acid supplementation in adolescent rats ameliorates anxiety-like and depressive-like manifestations of nicotine-ethanol abstinence: Role of oxidative stress, inflammatory, and serotonergic mechanisms. Int J Dev Neurosci 2025; 85:e10392. [PMID: 39632085 DOI: 10.1002/jdn.10392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/01/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND The present study aims to assess the therapeutic potential of vitamin C (Vit C) on anxiety- and depressive-like behavior induced by abstinence from chronic nicotine-ethanol co-exposure in adolescent male rats. MATERIALS AND METHODS Adolescent male rats were divided into seven experimental groups with ten rats as follows: 1) vehicle, 2) Nicotine (Nic)-Ethanol (Eth): received Nic (2 mg/kg) and Eth (20%) in drinking water from 21 to 42 days of age, 3-5) Nic-Eth-Vit C 100/200/400: received Nic and Eth from 21 to 42 days of age and received Vit C 100/200/400 mg/kg from 43 to 63 days of age, 6) Nic-Eth-Bupropion (Bup)- Naloxone (Nal): received Nic and Eth from 21 to 42 days of age and received Bup and Nal from 43 to 63 days of age, and 7) Vit C 400 mg/kg: received Vit C 400 mg/kg from 43 to 63 days of age. Behavioral assessments were done by elevated plus maze (EPM), forced swimming test (FST), marble burring test (MBT), and open field tests (OFT). Furthermore, specific biochemical variables associated with oxidative, inflammatory, and serotonergic profiles were quantified. RESULTS According to the obtained results, Nic and Eth induced anxiety and depression in treated rats. We showed that two higher doses of Vit C increases the active struggling time in FST and decreases both the time spent in the peripheral zone of OFT and the time spent in the closed arms of EPM. In addition, animals treated by Vit C buried less number of marbles in MBT compared to their control counterparts. Nic and Eth induced oxidative stress and inflammation in cortical tissues of treated rats. Biochemical parameters were improved in the Nic-Eth group receiving Vit C 200/400 mg/kg and Bup-Nal through establishing a balance between oxidant/anti-oxidant and inflammatory/anti-inflammatory mediators. In addition, serotonin level was increased, while Monoamine oxidase (MAO) activity was notably decreased. CONCLUSION The present findings support the beneficial effect of Vit C on anxiety- and depressive-like behavior induced by Nic-Eth withdrawal through various mechanisms such as the promotion of antioxidant defense, suppression of inflammatory mediators, and enhancement of serotoninergic function.
Collapse
Affiliation(s)
- Alireza Najafzadeh
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mobina Mahdizadeh
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Samaneh Kakhki
- Department of Clinical Biochemistry, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Ali Rahimi
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - S Mohammad Ahmadi-Soleimani
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| |
Collapse
|
11
|
Sivakumar B, Kurian GA. Mitigating PM 2.5 Induced Myocardial Metal Deposition Through Sodium Thiosulfate Resulted in Reduction of Cardiotoxicity and Physiological Recovery From Ischemia-Reperfusion via Mitochondrial Preservation. ENVIRONMENTAL TOXICOLOGY 2025. [PMID: 39873216 DOI: 10.1002/tox.24473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/13/2024] [Accepted: 01/12/2025] [Indexed: 01/30/2025]
Abstract
The cardiovascular risks linked to PM2.5 include calcification in both vasculature and myocardial tissues, leading to structural changes and functional decline. Through the selection of a clinically proven endogenous agent, sodium thiosulfate (STS), capable of addressing PM2.5 related cardiac abnormalities, we not only address the absence of effective solutions to mitigate PM2.5 toxicity, but also provide evidence for the repurposing potential of STS in ameliorating PM2.5 induced cardiac damage. Female Wistar rats were exposed to PM2.5 (250 μg/m3) for 3 h daily for 21 days. STS was administered thrice weekly for 3 weeks during exposure after which the hearts were excised and mounted on a Langendorff apparatus for induction of ischemia-reperfusion injury (IR). STS administration improved cardiac function in PM2.5 exposed rat hearts, accompanied by increased expression of the master regulator gene PGC1-α and increased mitochondrial mass. Moreover, STS restored bioenergetic function and balanced mitochondrial fission-fusion dynamics. The beneficial effects of STS were further evidenced by its ability to scavenge metals, thereby reducing heavy metal deposition in mitochondria and alleviating oxidative stress and inflammation. Furthermore, STS facilitated the clearance of damaged mitochondria through mitophagy. Additionally, STS activated the PI3K/AKT/GSK3ß signaling pathway, providing cardio protection against IR injury in PM2.5-exposed hearts by preserving mitochondrial function. These results underscore the potential therapeutic benefits of STS in mitigating the adverse cardiac effects induced by PM2.5 exposure. The translation of these findings to clinical practice holds promise for the development of targeted interventions aimed at reducing the cardiovascular toxicity associated with PM2.5 exposure.
Collapse
Affiliation(s)
- Bhavana Sivakumar
- Cardiovascular Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Gino A Kurian
- Cardiovascular Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| |
Collapse
|
12
|
Jin S, Wu J, Wang C, He Y, Tang Y, Huang L, Zhou H, Liu D, Wu Z, Feng Y, Chen H, He X, Yang G, Peng C, Qiu J, Li T, Yin Y, He L. Aspartate Metabolism-Driven Gut Microbiota Dynamics and RIP-Dependent Mitochondrial Function Counteract Oxidative Stress. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2404697. [PMID: 39874197 DOI: 10.1002/advs.202404697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 12/18/2024] [Indexed: 01/30/2025]
Abstract
Aspartate (Asp) metabolism-mediated antioxidant functions have important implications for neonatal growth and intestinal health; however, the antioxidant mechanisms through which Asp regulates the gut microbiota and influences RIP activation remain elusive. This study reports that chronic oxidative stress disrupts gut microbiota and metabolite balance and that such imbalance is intricately tied to the perturbation of Asp metabolism. Under normal conditions, in vivo and in vitro studies reveal that exogenous Asp improves intestinal health by regulating epithelial cell proliferation, nutrient uptake, and apoptosis. During oxidative stress, Asp reduces Megasphaera abundance while increasing Ruminococcaceae. This reversal effect depends on the enhanced production of the antioxidant eicosapentaenoic acid mediated through Asp metabolism and microbiota. Mechanistically, the application of exogenous Asp orchestrates the antioxidant responses in enterocytes via the modulation of the RIP3-MLKL and RIP1-Nrf2-NF-κB pathways to eliminate excessive reactive oxygen species and maintain mitochondrial functionality and cellular survival. These results demonstrate that Asp signaling alleviates oxidative stress by dynamically modulating the gut microbiota and RIP-dependent mitochondrial function, providing a potential therapeutic strategy for oxidative stress disease treatment.
Collapse
Affiliation(s)
- Shunshun Jin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan international joint laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, R3T2N2, Canada
| | - Jian Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, 410125, China
| | - Chenyu Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan international joint laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, 410125, China
| | - Yiwen He
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan international joint laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, 410125, China
| | - Yulong Tang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, 410125, China
| | - Le Huang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, 410125, China
| | - Hui Zhou
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan international joint laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, 410125, China
| | - Di Liu
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Ziping Wu
- Agricultural and Food Economics, Queen's University Belfast, Northern Ireland, BT95PX, UK
| | - Yanzhong Feng
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Heshu Chen
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Xinmiao He
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan international joint laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Guan Yang
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Can Peng
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, 410125, China
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infections Disease, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130025, China
| | - Tiejun Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, 410125, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, 410125, China
- Yuelushan Laboratory, No. 246 Hongqi Road, Furong District, Changsha, 410128, China
| | - Liuqin He
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan international joint laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, 410125, China
| |
Collapse
|
13
|
Meena UK, Maurya AK. Bacopa monnieri Extract Diminish Hypoxia-Induced Anxiety by Regulating HIF-1α Signaling and Enhancing the Antioxidant Defense System in Hippocampus. Neuromolecular Med 2025; 27:11. [PMID: 39853472 DOI: 10.1007/s12017-025-08833-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/10/2025] [Indexed: 01/26/2025]
Abstract
Hypoxia is a significant stressor, and stabilized hypoxia-inducible factor-1α (HIF-1α) regulates the expression of numerous genes, leading to various biochemical, molecular, physiological and genomic changes. The body's oxygen-sensing system activates gene expression to protect brain tissues from hypoxia. Gamma-aminobutyric acid, an inhibitory neurotransmitter, regulates brain excitability during hypoxia through the activation of HIF-1 α. Herbal medicines have been widely used for managing various toxicological effects and disorders including hypoxia; however, the data on safety, efficacy and the molecular mechanisms that increase vulnerability or lethality against hypoxia are still lacking and urgently need to be investigated. The Current study aims to investigate how Bacopa monnieri extract (BME), specially CDRI-08 affects the hippocampus of mice subjected to conditions that simulate hypoxia. The pre and co-treatment of mice involved administrating BME (200 mg/kg BW) for 14 days, followed by exposure to CoCl2 (40 mg/kg BW). BME decreased the levels of reactive oxygen species (ROS) and lipid peroxidation, while it increased the Gamma-aminobutyric acid receptor subunit-ɑ1 (GABAAR-ɑ1) level as well as the activity of antioxidant enzymes superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx). Furthermore BME reduced the levels of HIF-1α and its downstream targets glucose transporter-1 (GLUT-1) and erythropoietin (EPO) in the DG, CA1, and CA3 regions of hippocampus. Additionally, results obtained from the open field, elevated zero maze and plus maze tests indicate that BME restores anxiety caused by hypoxia. Together, these findings suggested that BME mitigates the harmful effects of oxidative stress and altered hypoxia related signaling in hippocampus; and may provide a basis for its therapeutic use in the recovery from hypoxia-led anxiety.
Collapse
Affiliation(s)
- Upendra Kumar Meena
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India
| | - Akhilendra Kumar Maurya
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India.
| |
Collapse
|
14
|
Tran QA, Tran GV, Velic S, Xiong HM, Kaur J, Moosavi Z, Nguyen P, Duong N, Luu VT, Singh G, Bui T, Rose M, Ho L. Effects of Astragaloside IV and Formononetin on Oxidative Stress and Mitochondrial Biogenesis in Hepatocytes. Int J Mol Sci 2025; 26:774. [PMID: 39859490 PMCID: PMC11765978 DOI: 10.3390/ijms26020774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/07/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Over-accumulation of reactive oxygen species (ROS) causes hepatocyte dysfunction and apoptosis that might lead to the progression of liver damage. Sirtuin-3 (SIRT3), the main NAD+-dependent deacetylase located in mitochondria, has a critical role in regulation of mitochondrial function and ROS production as well as in the mitochondrial antioxidant mechanism. This study explores the roles of astragaloside IV (AST-IV) and formononetin (FMR) in connection with SIRT3 for potential antioxidative effects. It was shown that the condition of combined pre- and post-treatment with AST-IV or FMR at all concentrations statistically increased and rescued cell proliferation. ROS levels were not affected by pre-or post-treatment individually with AST-IV or pre-treatment with FMR; however, post-treatment with FMR resulted in significant increases in ROS in all groups. Significant decreases in ROS levels were seen when pre- and post-treatment with AST-IV were combined at 5 and 10 μM, or FMR at 5 and 20 μM. In the condition of combined pre- and post-treatment with 10 μM AST-IV, there was a significant increase in SOD activity, and the transcriptional levels of Sod2, Cat, and GPX1 in all treatment groups, which is indicative of reactive oxygen species detoxification. Furthermore, AST-IV and FMR activated PGC-1α and AMPK as well as SIRT3 expression in AML12 hepatocytes exposed to t-BHP-induced oxidative stress, especially at high concentrations of FMR. This study presents a novel mechanism whereby AST-IV and FMR yield an antioxidant effect through induction of SIRT3 protein expression and activation of an antioxidant mechanism as well as mitochondrial biogenesis and mitochondrial content and potential. The findings suggest these agents can be used as SIRT3 modulators in treating oxidative-injury hepatocytes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Linh Ho
- College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
| |
Collapse
|
15
|
Tang CJ, Qu C, Tang X, Spinney R, Dionysiou DD, Wells GF, Xiao R. Acyl-Homoserine Lactone Enhances the Resistance of Anammox Consortia under Heavy Metal Stress: Quorum Sensing Regulatory Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:603-615. [PMID: 39723917 DOI: 10.1021/acs.est.4c09186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Anaerobic ammonium oxidation (anammox) represents an energy-efficient process for the removal of biological nitrogen from ammonium-rich wastewater. However, the susceptibility of anammox bacteria to coexisting heavy metals considerably restricts their use in engineering practices. Here, we report that acyl-homoserine lactone (AHL), a signaling molecule that mediates quorum sensing (QS), significantly enhances the nitrogen removal rate by 24% under Cu2+ stress. A suite of macro-/microanalytical and bioinformatic analyses was exploited to unravel the underlying mechanisms of AHL-induced Cu2+ resistance. Macro-/microanalytical evidence indicated that AHL regulations on the production, spatial distribution, and functional groups of extracellular polymeric substances were not significant, ruling out extracellular partitioning and complexation as a principal mechanism. Meanwhile, molecular biological evidence showed that AHL upregulated the transcriptional levels of resistance genes (sod, kat, cysQ, and czcC responsible for antioxidation defense, Cu2+ sequestration, and transport) to appreciable extents, indicating intracellular resistance as the primary mechanism. This study yielded a mechanistic understanding of the regulatory roles of AHL in extracellular and intracellular resistance of anammox consortia, providing a fundamental basis for utilizing QS regulation for efficient nitrogen removal in wastewaters with heavy metal stress.
Collapse
Affiliation(s)
- Chong-Jian Tang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Caiyan Qu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Xi Tang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Richard Spinney
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - George F Wells
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Ruiyang Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| |
Collapse
|
16
|
Sun S, Yu T, Huh JY, Cai Y, Yoon S, Javaid HMA. Aminoguanidine hemisulfate improves mitochondrial autophagy, oxidative stress, and muscle force in Duchenne muscular dystrophy via the AKT/FOXO1 pathway in mdx mice. Skelet Muscle 2025; 15:2. [PMID: 39806512 PMCID: PMC11726948 DOI: 10.1186/s13395-024-00371-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a prevalent, fatal degenerative muscle disease with no effective treatments. Mdx mouse model of DMD exhibits impaired muscle performance, oxidative stress, and dysfunctional autophagy. Although antioxidant treatments may improve the mdx phenotype, the precise molecular mechanisms remain unclear. This study investigates the effects of aminoguanidine hemisulfate (AGH), an inhibitor of reactive oxygen species (ROS), on mitochondrial autophagy, oxidative stress, and muscle force in mdx mice. METHODS Male wild-type (WT) and mdx mice were divided into three groups: WT, mdx, and AGH-treated mdx mice (40 mg/kg intraperitoneally for two weeks) at 6 weeks of age. Gene expression, western blotting, H&E staining, immunofluorescence, ROS assays, TUNEL apoptosis, glutathione activity, and muscle force measurements were performed. Statistical comparisons used one-way ANOVA. RESULTS AGH treatment significantly reduced the protein levels of LC3, and p62 in mdx mice, indicating improved autophagy activity and the ability to clear damaged mitochondria. AGH restored the expression of mitophagy-related genes Pink1 and Parkin and increased Mfn1, rebalancing mitochondrial dynamics. It also increased Pgc1α and mtTFA levels, promoting mitochondrial biogenesis. ROS levels were reduced, with higher Prdx3 and MnSOD expression, improving mitochondrial antioxidant defenses. AGH normalized the GSSG/GSH ratio and decreased glutathione reductase and peroxidase activities, further improving redox homeostasis. Additionally, AGH reduced apoptosis, shown by fewer TUNEL-positive cells and lower caspase-3 expression. Histological analysis revealed decreased muscle damage and fewer embryonic and neonatal myosin-expressing fibers. AGH altered fiber composition, decreasing MyH7 while increasing MyH4 and MyH2. Muscle force improved significantly, with greater twitch and tetanic forces. Mechanistically, AGH modulated the AKT/FOXO1 pathway, decreasing myogenin and Foxo1 while increasing MyoD. CONCLUSIONS AGH treatment restored mitochondrial autophagy, reduced oxidative stress, apoptosis, and altered muscle fiber composition via the AKT/FOXO1 pathway, collectively improving muscle force in mdx mice. We propose AGH as a potential therapeutic strategy for DMD and related muscle disorders.
Collapse
MESH Headings
- Animals
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/physiopathology
- Mice, Inbred mdx
- Oxidative Stress/drug effects
- Guanidines/pharmacology
- Guanidines/therapeutic use
- Male
- Proto-Oncogene Proteins c-akt/metabolism
- Proto-Oncogene Proteins c-akt/genetics
- Forkhead Box Protein O1/metabolism
- Forkhead Box Protein O1/genetics
- Mice
- Autophagy/drug effects
- Signal Transduction/drug effects
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Mice, Inbred C57BL
- Muscle Strength/drug effects
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/drug effects
- Mitochondria/drug effects
- Mitochondria/metabolism
- Reactive Oxygen Species/metabolism
Collapse
Affiliation(s)
- Shiyue Sun
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- College of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Tongtong Yu
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Joo Young Huh
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Yujie Cai
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Somy Yoon
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea.
| | - Hafiz Muhammad Ahmad Javaid
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
17
|
Aladenika YV, Akinjiyan MO, Elekofehinti OO, Adanlawo IG. Bambusa vulgaris leaf extract inhibits the inflammatory and oxidative pathways in streptozotocin-induced diabetic rats. JOURNAL OF ETHNOPHARMACOLOGY 2025; 339:119116. [PMID: 39580128 DOI: 10.1016/j.jep.2024.119116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional and medicinal plant treatments for diabetes mellitus (DM) include Bambusa vulgaris (Shrad.), but little is known about the mechanism. AIM OF THE STUDY This study investigated the antioxidant and hepatoprotective effects of B. vulgaris. MATERIALS AND METHODS DM was induced by intraperitoneal injection of streptozotocin (60 mg/kg). Thirty (30) male Wistar rats were then divided into six groups: control; diabetic control; metformin (100 mg/kg); 50, 100, and 200 mg/kg of B. vulgaris (BV) treated. Fasting blood glucose and weights of rats were monitored at three-day intervals and sacrifice was done after twenty-one days. The activities of SOD, CAT, and liver marker enzymes were investigated. The expressions of insulin-sensitive (TGR5, GLP-1), pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, ICAM), and antioxidant genes (SOD, CAT) were investigated using RT-PCR. Schrödinger suites and Auto-Dock Vina were used for docking B. vulgaris phytocompounds identified from works of literature with TGR-5. The liver's histology was also assessed. RESULTS BV increased antioxidant activities and reduced liver marker activities in the serum. BV downregulated the expressions of genes associated with inflammation and upregulated antioxidant and insulin-sensitive genes relative to diabetic control. BV regenerated the liver architectural tissue degenerated by inflammation due to STZ. B. vulgaris phytocompounds like farobin A (-11.493 kcal/mol), orientin (-12.296 kcal/mol), and rutin (-12.581 kcal/mol) have better binding energy with TGR5 than metformin (-1.961 kcal/mol). CONCLUSION The hepatoprotective and ameliorative effect of B. vulgaris in DM could be due to its ability to boost antioxidant status and insulin secretion and reduce inflammation.
Collapse
Affiliation(s)
- Yetunde Victoria Aladenika
- Department of Biochemistry, Faculty of Science, Ekiti State University, Ado-Ekiti, Nigeria; Department of Science Laboratory Technology, Biochemistry Option, Gateway (ICT) Polytechnic, Sapaade, Ogun state, Nigeria
| | - Moses Orimoloye Akinjiyan
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Ondo State, Nigeria; Medical Biochemistry, School of Basic Medical Sciences, Federal University of Technology, Akure, Ondo State, Nigeria.
| | - Olusola Olalekan Elekofehinti
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Ondo State, Nigeria
| | - Isaac Gbadura Adanlawo
- Department of Biochemistry, Faculty of Science, Ekiti State University, Ado-Ekiti, Nigeria
| |
Collapse
|
18
|
Guan G, Chen Y, Dong Y. Unraveling the AMPK-SIRT1-FOXO Pathway: The In-Depth Analysis and Breakthrough Prospects of Oxidative Stress-Induced Diseases. Antioxidants (Basel) 2025; 14:70. [PMID: 39857404 PMCID: PMC11763278 DOI: 10.3390/antiox14010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Oxidative stress (OS) refers to the production of a substantial amount of reactive oxygen species (ROS), leading to cellular and organ damage. This imbalance between oxidant and antioxidant activity contributes to various diseases, including cancer, cardiovascular disease, diabetes, and neurodegenerative conditions. The body's antioxidant system, mediated by various signaling pathways, includes the AMPK-SIRT1-FOXO pathway. In oxidative stress conditions, AMPK, an energy sensor, activates SIRT1, which in turn stimulates the FOXO transcription factor. This cascade enhances mitochondrial function, reduces mitochondrial damage, and mitigates OS-induced cellular injury. This review provides a comprehensive analysis of the biological roles, regulatory mechanisms, and functions of the AMPK-SIRT1-FOXO pathway in diseases influenced by OS, offering new insights and methods for understanding OS pathogenesis and its therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China; (G.G.); (Y.C.)
| |
Collapse
|
19
|
Cha D, Choi S, Lee Y, Cho J, Lee S. Mitoquinone improves porcine embryo development through modulating oxidative stress and mitochondrial function. Theriogenology 2025; 231:90-100. [PMID: 39427592 DOI: 10.1016/j.theriogenology.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024]
Abstract
Oxidative stress caused by excess reactive oxygen species (ROS) is one of the main causes of low efficiency in in vitro production of embryos. These ROS can cause mitochondrial dysfunction and apoptosis, resulting in poor embryo development. Therefore, to prevent mitochondrial damage and apoptosis caused by ROS, we investigated the effects of mitoquinone (MitoQ), a mitochondrial-targeted antioxidant, on the in vitro culture (IVC) of porcine embryos. Various concentrations of MitoQ (0, 0.01, 0.1, or 1 nM) were supplemented during the entire period of IVC. The results showed that supplementation with 0.1 nM MitoQ significantly increased the blastocyst formation rate, with a higher total cell number including trophectoderm cell number and higher transcript expression of lineage-specific transcription factors in blastocysts. In addition, the 0.1 nM MitoQ-treated group showed a significantly lower percentage and number of apoptotic cells in blastocysts with positively regulated transcript expression of apoptosis-related genes. Therefore, 0.1 nM MitoQ was suggested as optimal concentration for porcine IVC and used for further investigations. MitoQ treatment significantly reduced intracellular ROS levels and increased glutathione levels in Day 2 embryos, with upregulated the transcript expression of antioxidant enzymes-related genes. Furthermore, the MitoQ group exhibited a significantly higher mitochondrial quantity, mitochondrial membrane potential, and ATP content in Day 2 embryos, with increased transcript expression of mitochondrial biogenesis-related genes. Taken together, these findings reveal that MitoQ supplementation can enhance the developmental competence of porcine embryos by decreasing oxidative stress and improving mitochondrial function.
Collapse
Affiliation(s)
- Dabin Cha
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seunghyun Choi
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Yumin Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jongki Cho
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sanghoon Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
20
|
Gamal M, Awad MA, Shadidizaji A, Ibrahim MA, Ghoneim MA, Warda M. In vivo and in silico insights into the antidiabetic efficacy of EVOO and hydroxytyrosol in a rat model. J Nutr Biochem 2025; 135:109775. [PMID: 39370013 DOI: 10.1016/j.jnutbio.2024.109775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
Extra virgin olive oil (EVOO) has a putative antidiabetic activity mostly attributed to its polyphenol Hydroxytyrosol. In this study, we explored the antidiabetic effects of EVOO and Hydroxytyrosol on an in vivo T2D-simulated rat model as well as in in silico study. Wistar rats were divided into four groups. The first group served as a normal control (NC), while type 2 diabetes (T2D) was induced in the remaining groups using a high-fat diet (HFD) for 12 weeks followed by a single dose of streptozotocin (STZ, 30 mg/kg). One diabetic group remained untreated (DC), while the other two groups received an 8-week treatment with either EVOO (90 g/kg of the diet) (DO) or Hydroxytyrosol (17.3 mg/kg of the diet) (DH). The DC group exhibited hallmark features of established T2D, including elevated fasting blood glucose levels, impaired glucose tolerance, increased HOMA-IR, widespread downregulation of insulin receptor expression, heightened oxidative stress, and impaired β-cell function. In contrast, treatments with EVOO and Hydroxytyrosol elicited an antidiabetic response, characterized by improved glucose tolerance, as indicated by accelerated blood glucose clearance. Systematic analysis revealed the underlying antidiabetic mechanisms: both treatments enhanced insulin receptor expression in the liver and skeletal muscles, increased adiponectin levels, and mitigated oxidative stress. Moreover, while EVOO reduced intramyocellular lipids, Hydroxytyrosol restored adipose tissue insulin sensitivity and enhanced β-cell survival. Molecular docking and dynamics confirm Hydroxytyrosol's high affinity binding to PGC-1α, IRE-1α, and PPAR-γ, particularly IRE-1α, highlighting its potential to modulate diabetic signaling pathways. Collectively, these mechanisms highlight the putative antidiabetic role of EVOO and Hydroxytyrosol. Moreover, the favorable docking scores of Hydroxytyrosol with PGC-1α, IRE-1α, and PPAR-γ support the antidiabetic potential and offer promising avenues for further research and the development of novel antidiabetic therapies.
Collapse
Affiliation(s)
- Mahmoud Gamal
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Mohamed A Awad
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Azizeh Shadidizaji
- Department of Plant Biotechnology, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Magdy A Ghoneim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Mohamad Warda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
21
|
Bharathiraja P, Baskar S, Prasad NR. Solasodine Downregulates ABCB1 Overexpression in Multidrug Resistant Cancer Cells Via Inhibiting Nrf2/Keap1 Signaling Pathway. J Cell Biochem 2025; 126:e30674. [PMID: 39535293 DOI: 10.1002/jcb.30674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/19/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Multidrug-resistant (MDR) cancer cells maintain redox homeostasis to eliminate oxidative stress-mediated cell death. This study explores the effects of solasodine on regulating P-glycoprotein (P-gp) expression through the Nrf2/Keap1 signaling pathway and oxidative stress-induced sensitization of drug-resistant cancer cells to chemotherapeutics. Initially, the oxidative stress indicators such as intracellular ROS generation, the levels of 8-hydroxy-2-deoxyguanosine (8-OHdG) and gamma-H2AX (γ-H2AX) in the KBChR-8-5 drug-resistant cells were measured. Additionally, the protein expression levels of Nuclear factor erythroid 2-related factor 2 (Nrf-2), Kelch-like ECH-associated protein 1 (Keap1), and ATP Binding Cassette Subfamily B Member 1 (ABCB1)/P-gp were measured at various concentrations of solasodine (1, 5, & 10 µM) through immunofluorescence and western blot analysis. The antioxidant activities in the KBChR-8-5 cells were assessed using established protocols. In this investigation, the treatment with solasodine and doxorubicin combination showed a notable increase in intracellular ROS generation in KBChR-8-5 cells. Furthermore, this combination treatment led to enhanced nuclear condensation, elevated levels of 8-OHdG, and increased γ-H2AX foci formation in the KBChR-8-5 cells. Solasodine treatment effectively inhibited the nuclear translocation of Nrf2 and activation of the ABCB1 gene, consequently preventing overexpression of P-gp in KBChR-8-5 cells. Additionally, the combination therapy increased the lipid peroxidation levels while simultaneously reducing the activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and the levels of glutathione (GSH). These results demonstrated that solasodine disrupts redox balance, and overcomes drug resistance by downregulating P-gp via regulating Nrf2/Keap1 signaling pathway in MDR cancer cells.
Collapse
Affiliation(s)
- Pradhapsingh Bharathiraja
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Sugumar Baskar
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - N Rajendra Prasad
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| |
Collapse
|
22
|
Tang L, Bian M, Zhang P, Wang J. Salinity mediates the damage caused by acute and chronic ammonia stress in largemouth bass (Micropterus salmoides). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177494. [PMID: 39551219 DOI: 10.1016/j.scitotenv.2024.177494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/31/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024]
Abstract
Ammonia is a critical pollutant in aquatic environments, posing significant risks to aquaculture by accumulating in culture systems due to fish excretion and organic matter decomposition. This study investigated the effects of ammonia toxicity on juvenile largemouth bass (Micropterus salmoides) under varying salinity conditions (0 and 5 psu), focusing on physiological responses and gut microbiota changes. Results indicated that ammonia exposure led to increased mortality, oxidative stress, liver damage, and significant shifts in gut microbial communities, especially under freshwater conditions. Elevated salinity mitigated these effects by reducing the bioavailability of toxic un-ionized ammonia (UIA) and enhancing the fish's physiological resilience, particularly in the kidney and intestine. Ammonia exposure significantly increased the IBR index values in all three organs, with the gills showing the most pronounced stress response, followed by the kidney and intestine. Salinity had a significant mitigating effect by reducing the oxidative stress response in comparison to freshwater conditions. However, in the gills, the protective effect of salinity was not enough to fully counteract the oxidative stress induced by ammonia. Ammonia exposure in freshwater favored pathogenic gut bacteria genera such as Aeromonas, while higher salinity enriched stress-resistant genera like Ralstonia and Klebsiella. These findings contribute to a better understanding of the interaction between salinity and ammonia toxicity, suggesting that moderate salinity increases within the fish's tolerance range could be an effective strategy in aquaculture to reduce ammonia toxicity and promote fish health.
Collapse
Affiliation(s)
- Lei Tang
- College of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Mengying Bian
- College of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Peng Zhang
- College of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Jun Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
23
|
Dias MKHM, Jayathilaka ET, Jayasinghe JNC, Tennakoon N, Nikapitiya C, Whang I, De Zoysa M. Exploring the Proteomic Landscape and Immunomodulatory Functions of Edwardsiella piscicida Derived Extracellular Vesicles. J Microbiol Biotechnol 2024; 35:e2410001. [PMID: 39849936 PMCID: PMC11813346 DOI: 10.4014/jmb.2410.10001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/24/2024] [Accepted: 12/02/2024] [Indexed: 01/25/2025]
Abstract
Extracellular vesicles (EVs) have garnered attention in research for their potential as biochemical transporters and immune modulators, crucial for regulating the host immune system. The present study was conducted to isolate and characterize EVs from Gram negative bacteria Edwardsiella piscicida (EpEVs) and investigate their proteomic profile and immune responses. Isolation of EpEVs was carried out using ultracentrifugation method. Transmission electron microscopy results confirmed the spherical shape of EpEVs. The average size and zeta potential were 85.3 ± 1.8 nm and -8.28 ± 0.41 mV, respectively. EpEVs consisted of 1,487 distinct proteins. Subcellular localization analysis revealed that "cell" and "cell part" were the most predominant areas for protein localization. Proteins associated with virulence, along with several chaperones that facilitate protein folding and stability, were also present. No toxicity was detected when EpEVs were treated to fathead minnow (FHM) cells up to 100 μg/ml. Fluorescent-labeled EpEVs showed cellular internalization in FHM cells at 24 h post treatment (hpt). In-vitro gene expression in Raw 264.7 cells showed upregulation of interleukin (Il)6, Il1β, and interferon (Ifn)β with simultaneous upregulation of anti-inflammatory Il10. In vivo, gene expression revealed that except for heat shock protein (hsp)70, all other genes were upregulated suggesting that EpEVs induced the expression of immune-related genes. Western blot analysis showed increased protein levels of tumor necrosis factor (Tnf)α in EpEVs-treated spleen tissue of zebrafish. Our results confirm that EpEVs can be successfully isolated using the ultracentrifugation method. Furthermore, exploring immunomodulatory mechanism of EpEVs is essential for their potential use as novel therapeutics in fish medicine.
Collapse
Affiliation(s)
| | - E.H.T. Thulshan Jayathilaka
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | | | - Nipuna Tennakoon
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Chamilani Nikapitiya
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ilson Whang
- National Marine Biodiversity Institute of Korea (MABIK), Janghang-eup, Seocheon 33662, Republic of Korea
| | - Mahanama De Zoysa
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
24
|
Choi SR, Kulkarni S, Arnett E, Schlesinger LS, Britigan BE, Narayanasamy P. Efficacy and Possible Mechanism(s) of Action of Gallium Tetraphenylporphyrin Nanoparticles against HIV-TB Coinfection in an In Vitro Granuloma Structure Model. ACS Infect Dis 2024; 10:4279-4290. [PMID: 39499869 DOI: 10.1021/acsinfecdis.4c00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Coinfection of Mycobacterium tuberculosis (Mtb) and human immunodeficiency virus-1 (HIV) is a significant public health concern. Treatment is challenging due to prolonged duration of therapy and drug interactions between antiretroviral therapy (ART) and anti-TB drugs. Noniron gallium meso-tetraphenyl porphyrin (GaTP), a heme mimetic, has shown broad antimicrobial activity. Here, we investigated the efficacy of nanoparticle encapsulating GaTP (GaNP) for the treatment of HIV and Mtb coinfection or single infection in in vitro granuloma structures. GaNP significantly reduced viable Mtb within primary human in vitro granuloma structures infected with Mtb H37Rv-lux and significantly reduced levels of HIV in CD4+ T cells infected with the virus axenically. Similarly, GaNP exhibited significant antimicrobial activity against HIV/Mtb-coinfected granuloma structures created in vitro, which contain the primary immune cells seen in human TB granulomas, including CD4+ T cells and macrophages, as assessed by a luciferase assay for Mtb and p24 ELISA for HIV detection. Furthermore, mechanistic studies revealed that GaTP increases the level of reactive oxygen species and inhibits catalase in Mtb. A significant increase in Mtb nitrate reductase activity was also observed when Mtb was incubated with GaTP and sodium nitrate. Overall, increased oxidative stress and nitrite levels induced by GaTP are consistent with the possibility that GaTP inhibits Mtb aerobic respiration, which leads to incomplete O2 reduction and a shift to respiration using exogenous NO3. These cumulative data continue to support the potential for developing the noniron heme analog GaTP and its nanoparticle GaNP as new therapeutic approaches for the treatment of HIV/Mtb coinfection.
Collapse
Affiliation(s)
- Seoung-Ryoung Choi
- Department of Pathology, Microbiology and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Smita Kulkarni
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, Texas 78227, United States
| | - Eusondia Arnett
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, Texas 78227, United States
| | - Larry S Schlesinger
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, Texas 78227, United States
| | - Bradley E Britigan
- Department of Pathology, Microbiology and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Prabagaran Narayanasamy
- Department of Pathology, Microbiology and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
25
|
Bibi M, Baboo I, Majeed H, Kumar S, Lackner M. Molecular Docking of Key Compounds from Acacia Honey and Nigella sativa Oil and Experimental Validation for Colitis Treatment in Albino Mice. BIOLOGY 2024; 13:1035. [PMID: 39765702 PMCID: PMC11673436 DOI: 10.3390/biology13121035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
Colitis, an inflammatory condition of the colon that encompasses ulcerative colitis (UC) and Crohn's disease, presents significant challenges due to the limitations and side effects of current treatments. This study investigates the potential of natural products, specifically AH and NSO, as organic therapeutic agents for colitis. Molecular docking studies were conducted to identify the binding affinities and interaction mechanisms between the bioactive compounds in AH and NSO and proteins implicated in colitis, such as those involved in inflammation and oxidative stress pathways. An in vivo experiment was performed using an albino mouse model of colitis, with clinical symptoms, histopathological assessments, and biochemical analyses conducted to evaluate the therapeutic effects of the compounds both individually and in combination. Results from the molecular docking studies revealed promising binding interactions between fructose and Prostaglandin G/H synthase 2 (Ptgs2) and between fructose and cellular tumor antigen p53, with docking energy measured at -6.0 kcal/mol and -5.1 kcal/mol, respectively. Meanwhile, the presence of glucose molecule glucokinase chain A (-6.3 kcal/mol) and chain B (-5.8 kcal/mol) indicated potential efficacy in modulating inflammatory pathways. Experimental data demonstrated that treatment with AH and NSO significantly reduced inflammation, improved gut health, and ameliorated colitis symptoms. Histopathological evaluations confirmed reduced mucosal damage and immune cell infiltration, while biochemical analyses showed normalization of inflammatory markers and oxidative stress levels. This study provides compelling evidence for the potential of AH and NSO as natural, complementary treatments for colitis, suggesting their future role in integrative therapeutic strategies. However, further research into long-term safety, optimal dosing, and mechanisms of action is warranted to translate these findings into clinical applications.
Collapse
Affiliation(s)
- Mehwish Bibi
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan; (M.B.); (S.K.)
| | - Irfan Baboo
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan; (M.B.); (S.K.)
| | - Hamid Majeed
- Department of Food Science and Technology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan;
| | - Santosh Kumar
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan; (M.B.); (S.K.)
| | - Maximilian Lackner
- Department of Industrial Engineering, University of Applied Sciences Technikum Wien, 17 Hoechstaedtplatz 6, 1200 Vienna, Austria
| |
Collapse
|
26
|
Deepika NP, Krishnamurthy PT, Varshini MS, Naik MR, Sajini DV, Kiran AVR, Garikapati KK, Duraiswamy B, Sharma R. Ethnopharmacological validation of Karkataka Taila-An edible crab Rasayana in rotenone-induced in vitro and in vivo models of Parkinson's disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118691. [PMID: 39134229 DOI: 10.1016/j.jep.2024.118691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE 'Karkataka Taila (KT), an ancient Ayurvedic Rasayana comprising the edible freshwater crab Scylla serrata Forskal flesh, is still used by local traditional practitioners in Kerala state to treat tremors and palsy. In the scientific community, it becomes less exposed due to the lack of adequate scientific validations and brief reports. There has been no published research on the effectiveness of KT in treating Parkinson's disease (PD). PURPOSE The purpose of the current research work was to investigate the anti-Parkison's potential of KT against rotenone-induced neurotoxicity in SH-SY5Y cell lines and rat model of PD and investigate underlying molecular mechanisms. MATERIALS AND METHODS The components of KT have been identified by gas chromatography-mass spectroscopy (GC-MS). The neuroprotective activity of KT was assessed using SH-SY5Y cell lines and rats against rotenone-induced PD. The parameters used for asses the neuroprotection are antioxidant markers (ROS and SOD), anti-inflammatory markers (IL-6, IL-1β, TNF-α, and nitrite), and dopamine levels. Behavioral evaluation and rat brain histopathology were carried out to further support the neuroprotection. RESULT Analysis using GC-MS revealed 36 constituents in KT. In vitro, the KT displayed considerable neuroprotective effects in terms of decreasing oxidative stress (ROS and SOD), neuroinflammation (IL-6, IL-1β, TNF-α, and nitrite), and elevating dopamine concentration. In vivo data showing improvements in histopathological and biochemical parameters confirmed the in vitro study findings, and in terms of behavioral assays, KT displayed significant activity. CONCLUSION GC-MS profiling was used to identify the bioactive compounds of KT with antioxidant, anti-inflammatory, and neuroprotective properties. As a result, they may be responsible for the therapeutic effects of KT on PD.
Collapse
Affiliation(s)
- N P Deepika
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, The Nilgiris, Tamilnadu, India
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, The Nilgiris, Tamilnadu, India
| | - Magham Sai Varshini
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, The Nilgiris, Tamilnadu, India
| | - Mudavath Ravi Naik
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, The Nilgiris, Tamilnadu, India
| | - Deepak Vasudevan Sajini
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, The Nilgiris, Tamilnadu, India
| | - Ammu Vvv Ravi Kiran
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, The Nilgiris, Tamilnadu, India
| | - Kusuma Kumari Garikapati
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, The Nilgiris, Tamilnadu, India
| | - Basavan Duraiswamy
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, The Nilgiris, Tamilnadu, India
| | - Rohit Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
27
|
Azzam SM, Elsanhory HMA, Abd El-Slam AH, Diab MSM, Ibrahim HM, Yousef AM, Sabry FM, Khojah EY, Bokhari SA, Salem GEM, Zaghloul MS. Protective effects of Pelargonium graveolens (geranium) oil against cefotaxime-induced hepato-renal toxicity in rats. FRONTIERS IN TOXICOLOGY 2024; 6:1489310. [PMID: 39698236 PMCID: PMC11652510 DOI: 10.3389/ftox.2024.1489310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
Cefotaxime is a broad-spectrum antibiotic targeting Gram-negative bacteria used for diverse infections, but it can be toxic to the stomach, liver, and kidneys. This study explored the protective effects of geranium oil against cefotaxime-induced hepatotoxicity and nephrotoxicity in rats, employing biochemical, histopathological, and immunohistochemical evaluations. Thirty rats were divided into five groups of six animals each one. Group 1 received orally normal saline for 14 days, Group 2 was given orally 2.5% DMSO for 14 days, Group 3 received cefotaxime (200 mg/kg/day IM) for 14 days, Group 4 received with cefotaxime (200 mg/kg/day IM) and geranium oil (67 mg/kg b. w./day orally in DMSO) for 14 days, and Group 5 received geranium oil alone (67 mg/kg b. w./day orally in DMSO) for 14 days. Geranium oil significantly reduced cefotaxime-induced damage, evidenced by lower serum levels of liver enzymes (AST, ALT), renal markers (urea, creatinine), and other indicators (alkaline phosphatase, TNF-alpha, IL-1Beta, MAPK, nitric oxide, MDA). It also increased levels of protective tissue biomarkers such as NrF2, albumin, catalase, Beclin 1, and reduced glutathione (GSH). Histopathological and immunohistochemical analyses revealed significant protective effects in liver and renal tissues in rats treated with Geranium oil. These results suggest that Geranium oil is effective in mitigating cefotaxime-induced hepatotoxicity and renal toxicity.
Collapse
Affiliation(s)
- Shaimaa M. Azzam
- Department of Biochemistry, Egyptian Drug Authority (EDA), Formerly National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Heba M. A. Elsanhory
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Sinai University, El Ismailia, Egypt
| | - Ahmed H. Abd El-Slam
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Marwa S. M. Diab
- Cell Biology and Histology, Molecular Drug Evaluation Department, Egyptian Drug Authority (EDA) Formerly National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Halima Mohamed Ibrahim
- Department of Physiology, Egyptian Drug Authority (EDA), Formerly National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Abdalrahman Mohammed Yousef
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Fatma Mahmoud Sabry
- Pharmacology Department, Egyptian Drug Authority (EDA), Formerly National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Ebtihal Y. Khojah
- Department of Food Sciences and Nutrition, College of Science, Taif University, Taif, Saudi Arabia
| | - Somaiah A. Bokhari
- Pharmaceutical Care Department, Maternity and Children Hospital, Mecca, Saudi Arabia
| | - Gad Elsayed Mohamed Salem
- Department of Microbiology, Egyptian Drug Authority(EDA), Formerly National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Marwa Saad Zaghloul
- Department of Biochemistry, Egyptian Drug Authority (EDA), Formerly National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| |
Collapse
|
28
|
Ogunwole E, Emojevwe VO, Shittu HB, Olagoke IE, Ayodele FO. Deleterious Effects of Caffeine Consumption on Reproductive Functions of Female Wistar Rats. JBRA Assist Reprod 2024; 28:658-669. [PMID: 39405421 PMCID: PMC11622411 DOI: 10.5935/1518-0557.20240055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/25/2024] [Indexed: 12/06/2024] Open
Abstract
OBJECTIVE The deleterious effects of caffeine consumption on reproductive functions of female Wistar rats were investigated in this study. METHODS In this experimental study, 35 female Wistar rats (180-200g) were divided into 7 groups: Control, II-IV received oral caffeine (10, 20, and 40mg/kg/day respectively) for 21 days. V-VII received similar caffeine doses for 21 days, followed by a 21-day withdrawal period. The ovaries, fallopian tubes, and uteri were assessed for levels of malondialdehyde (MDA), nitric oxide (NO), reduced glutathione (GSH), superoxide dismutase (SOD), and catalase activity using spectrophotometry. Serum luteinizing hormone (LH), follicle-stimulating hormone (FSH), and estradiol levels were measured by ELISA. Organ histology was performed using microscopy. Statistical analysis employed ANOVA with significance at p<0.05. RESULTS Caffeine caused dose-dependent increases in MDA, NO, and catalase activity in the ovaries, fallopian tubes, and uteri which decreased upon withdrawal. GSH levels in the ovary and fallopian tubes decreased with caffeine intake but recovered during withdrawal. Caffeine reduced estradiol levels in a dose-dependent manner, its withdrawal led to reductions in serum LH at 20 and 40mg/kg/day and FSH at 40mg/kg/day. Histology revealed dose-dependent alterations in ovarian architecture with congested connective tissues. Caffeine caused sloughing of plicae in the muscularis of the fallopian tubes, degenerated epithelial layer in the uterus, and severe inflammation of the myometrial stroma cells that persisted during caffeine withdrawal. CONCLUSIONS Caffeine consumption adversely impacted the female reproductive functions of rats, altering hormonal balance and organ structure which persisted even after caffeine withdrawal.
Collapse
Affiliation(s)
- Eunice Ogunwole
- Reproductive Physiology and Developmental Programming unit, Department of
Physiology, University of Medical Sciences, Ondo City, Nigeria
| | - Victor Oghenekparobo Emojevwe
- Reproductive Physiology and Developmental Programming unit, Department of
Physiology, University of Medical Sciences, Ondo City, Nigeria
| | - Hannah Bolutife Shittu
- Reproductive Physiology and Developmental Programming unit, Department of
Physiology, University of Medical Sciences, Ondo City, Nigeria
| | - Iyanuoluwa Elizabeth Olagoke
- Reproductive Physiology and Developmental Programming unit, Department of
Physiology, University of Medical Sciences, Ondo City, Nigeria
| | - Favour Omolewami Ayodele
- Reproductive Physiology and Developmental Programming unit, Department of
Physiology, University of Medical Sciences, Ondo City, Nigeria
| |
Collapse
|
29
|
Saha S, Ghosh A, Santra HK, Banerjee D, Chattopadhyay S. Corrective role of endophytic exopolysaccharides from Clerodendrum infortunatum L. on arsenic-induced ovarian steroidogenic dysfunction and associated inflammatory responses. Int J Biol Macromol 2024; 282:136795. [PMID: 39442839 DOI: 10.1016/j.ijbiomac.2024.136795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/09/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
The present investigation aimed to evaluate the therapeutic potential of exopolysaccharides (EPSs) derived from endophytic fungi against arsenic [As(III)]-mediated metabolic and reproductive ailments. Two endophytic fungi, Diaporthe arengae (CleR1) and Fusarium proliferatum (CleR3), were isolated from Clerodendrum infortunatum (Cle), and used for the extraction of two types of EPSs. GC-MS analysis confirmed the presence of hydroxymethyl furfural (HMF) and α-d-glucopyranose in the EPS1 (CleR1) and EPS2 (CleR3), respectively. FTIR analysis revealed the potential As(III)-chelation properties of both EPSs. EPS1 and EPS2 significantly mitigated As(III)-induced oxidative stress and lipid peroxidation by restoring the activities of antioxidative enzymes. EPSs successfully corrected the gonadotropin imbalance and steroidogenic alterations. The downregulation of proinflammatory (NF-κB and TNF-α) and proapoptotic (BAX) mediators and the upregulation of antiapoptotic (Bcl-2) markers were also detected following the treatment with EPSs. Histomorphological restoration of reproductive and metabolic organs was also observed in both the EPS groups. Moreover, the As(III)-induced increase in the immunoreactivity of the androgen receptor (AR) was successfully reversed by these EPSs. Molecular docking predicted that HMF and α-d-glucopyranose of EPS1 and EPS2 interact with the active site of AR by limiting its activity. Hence, EPS could be effective for developing new therapeutic strategies for managing As(III) toxicity.
Collapse
Affiliation(s)
- Sangita Saha
- Centre for Life Sciences, Vidyasagar University, Midnapore 721102, West Bengal, India; Cellular and Molecular Toxicology Laboratory, Department of Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore 721102, West Bengal, India; Microbiology and Microbial Biotechnology Laboratory, Department of Botany and Forestry, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Angshita Ghosh
- Cellular and Molecular Toxicology Laboratory, Department of Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Hiran Kanti Santra
- Microbiology and Microbial Biotechnology Laboratory, Department of Botany and Forestry, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Debdulal Banerjee
- Centre for Life Sciences, Vidyasagar University, Midnapore 721102, West Bengal, India; Microbiology and Microbial Biotechnology Laboratory, Department of Botany and Forestry, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Sandip Chattopadhyay
- Centre for Life Sciences, Vidyasagar University, Midnapore 721102, West Bengal, India; Cellular and Molecular Toxicology Laboratory, Department of Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore 721102, West Bengal, India.
| |
Collapse
|
30
|
Ward MCE, Fallon AM. A rapid and simple micro-assay to assess catalase activity in individual mosquito tissues. Exp Parasitol 2024; 267:108862. [PMID: 39542162 DOI: 10.1016/j.exppara.2024.108862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Oxidative stress generated as a normal byproduct of aerobic metabolism is minimized by the enzyme catalase (CAT; EC 1.11.1.6), which reduces hydrogen peroxide to molecular oxygen and water. In various mosquitoes, hydrogen peroxide and/or CAT activity have been implicated in oxidative responses to viral and protozoal pathogens as well as in ovarian maturation and insecticide resistance. We combined features of various CAT assays to develop a simple micro-assay that enables comparison of enzyme activities in individual mosquito tissues on a microscope slide. Activity recovered in the supernatant of mosquito whole body homogenates was inhibited by the CAT-specific inhibitor 3-amino-1,2,4-triazole. Activity was higher in blood-fed mosquitoes, consistent with exogenous enzyme in vertebrate blood. Triton X-100 improved evaluation of dissected organs, and accurate comparisons required careful removal of extraneous tissues. In unfed mosquitoes baseline CAT activity was lower in ovaries than in midgut or fatbody, but increased as oocytes matured after a blood meal, and was detectable in a single mature egg. CAT has unusual kinetics and can be difficult to assay directly. Our observations provide a simple approach for direct evaluation of CAT activity independent of changes in transcript levels and results of RNAi-based interference.
Collapse
Affiliation(s)
- Mikkel C E Ward
- Department of Entomology, University of Minnesota, 1980 Folwell Ave, St. Paul, MN 55108, USA
| | - Ann M Fallon
- Department of Entomology, University of Minnesota, 1980 Folwell Ave, St. Paul, MN 55108, USA.
| |
Collapse
|
31
|
Barman A, Ghosh A, Kar TK, Chattopdhyay S. Methanolic extract of wheatgrass ( Triticum aestivum L.) prevents BPA-induced disruptions in the ovarian steroidogenic pathway and alleviates uterine inflammation in Wistar rats. 3 Biotech 2024; 14:310. [PMID: 39600302 PMCID: PMC11586330 DOI: 10.1007/s13205-024-04117-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/06/2024] [Indexed: 11/29/2024] Open
Abstract
The present study examined the anti-inflammatory and functional improvement of the uterus and ovary, respectively, in bisphenol-A (BPA)-fed adult Wistar rats following the ingestion of methanolic extract of wheatgrass (WG-ME). Four groups of rats were conditioned as vehicle-treated control, BPA-treated (100 mg/kg b.w.), BPA + WG-ME (100 mg BPA/kg b.w. + 200 mg WG-ME/kg b.w.), and WG-ME (200 mg/kg b.w.) groups. The LC-MS study confirmed the presence of numerous bioactive components in WG-ME. ELISA, PAGE, real-time PCR, and immunohistostaining were executed to test the efficacy of WG-ME against BPA. WG-ME was shown to induce significant weight gain of the uterus and ovaries as well as improve the estrous cycle and antioxidant status. WG-ME effectively suppressed the mRNA expression of TNF-α (tumor necrosis factor-alpha) and NF-κB (nuclear factor kappa-B). This extract also increased the expression of the antiapoptotic factor BCL2 (B-cell lymphoma 2) in the uterine tissue of rats administered BPA while impeding the abnormal expression of the tumor proteins p53, cylcin-D1, and BAX (BCL2-associated protein X). An enhanced steroidogenic event was supported by improved gonadotropins and reproductive hormone levels, feeble signaling of androgen receptors, and improved ovarian follicular growth with a distinct appearance of granulosa layer as well as better uterine histomorphology. The abundance of apigenin and catechin compounds in WG-ME may potentiate the above effects. The molecular interaction study predicted that apigenin inhibits TNF-α by interacting with its major site. Hence, WG-ME may exert its preventive efficacy in managing the functional imbalance of reproductive organs caused by BPA. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04117-0.
Collapse
Affiliation(s)
- Ananya Barman
- Department of Biomedical Laboratory Science and Management and Clinical Nutrition and Dietetics, Vidyasagar University, Midnapore, West Bengal 721102 India
| | - Angshita Ghosh
- Department of Biomedical Laboratory Science and Management and Clinical Nutrition and Dietetics, Vidyasagar University, Midnapore, West Bengal 721102 India
| | - Tarun Kumar Kar
- Department of Biomedical Laboratory Science and Management and Clinical Nutrition and Dietetics, Vidyasagar University, Midnapore, West Bengal 721102 India
| | - Sandip Chattopdhyay
- Department of Biomedical Laboratory Science and Management and Clinical Nutrition and Dietetics, Vidyasagar University, Midnapore, West Bengal 721102 India
| |
Collapse
|
32
|
Lane HY, Wang SH, Lin CH. Sex- and dose-dependent catalase increase and its clinical impact in a benzoate dose-finding, randomized, double-blind, placebo-controlled trial for Alzheimer's disease. Pharmacol Biochem Behav 2024; 245:173885. [PMID: 39384087 DOI: 10.1016/j.pbb.2024.173885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 09/03/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND Sex differences in Alzheimer's disease (AD) are gaining increasing attention. Previously research has shown that sodium benzoate treatment can improve cognitive function in AD patients, particularly in the female patients; and 1000 mg/day of benzoate appears more efficacious than lower doses. Catalase is a crucial endogenous antioxidant; and deficiency of catalase is regarded to be related to the pathogenesis of AD. The current study aimed to explore the role of sex and benzoate dose in the change of catalase activity among benzoate-treated AD patients. METHODS This secondary analysis used data from a double-blind trial, in which 149 CE patients were randomized to receive placebo or one of three benzoate doses (500, 750, or 1000 mg/day) and measured with Alzheimer's disease assessment scale-cognitive subscale. Plasma catalase was assayed before and after treatment. RESULTS Benzoate treatment, particularly at 1000 mg/day, increased catalase among female patients, but not among male. The increases in the catalase activity among the benzoate-treated women were correlated with their cognitive improvements. In addition, higher baseline catalase activity was associated with more cognitive improvement after benzoate treatment among both female and male patients. CONCLUSIONS Supporting the oxidative stress theory and sex difference in AD, the finding suggest that sex (female) and benzoate dose co-determine catalase increase in benzoate-treated AD patients and the catalase increment contributes to cognitive improvement of benzoate-treated women. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03752463.
Collapse
Affiliation(s)
- Hsien-Yuan Lane
- Department of Psychiatry & Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| | - Shi-Heng Wang
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Yunlin, Taiwan
| | - Chieh-Hsin Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan; School of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
33
|
Molina SJ, Corsi GN, Araujo Añon LC, Guelman LR. Sex-dependent effects of short-term ethanol, energy drinks and acute noise exposure on hippocampal oxidative balance and glutamate transporter EAAT-1 during rat adolescence. Neurotoxicology 2024; 105:147-157. [PMID: 39366467 DOI: 10.1016/j.neuro.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/17/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
It is known that human adolescents often consume ethanol (EtOH) alone or mixed with energy drinks (ED), especially in noisy environments. Although these agents impact the developing brain, their effects after brief exposure or when presented together remain unclear. Given that few animal studies in this subject are available, this research aimed to study the effects of a brief exposure to these stimuli on the oxidative state and EAAT-1 glutamate transporter levels in the developing rat hippocampus (HC). Adolescent Wistar rats were subjected to a two-bottle choice, limited access to drinking in the dark paradigm, for EtOH and EtOH+ED intake, for 4 days, and subsequent acute noise exposure. Next, hippocampal catalase activity, reactive oxygen species (ROS), glutaredoxin-1 (Grx-1) and glutamate transporter EAAT-1 levels were assessed. Results showed sex-dependent alterations after exposure to these stimuli: Females consuming EtOH had higher hippocampal ROS levels, which decreased when combined with noise; males showed reduced ROS levels only after noise exposure. No significant changes occurred in catalase activity, Grx-1, or EAAT-1 levels with EtOH and noise exposure in neither sex. Additionally, ED raised EtOH consumption in both sexes, normalizing ROS levels only in females when combined with EtOH. Finally, ED consumption altered Grx-1 and EAAT-1 levels in both sexes. In summary, brief exposure to these stimuli induced sex-dependent alterations, suggesting differentiated coping strategies between sexes. Whereas ED consumption may have antioxidant effects in some cases, it could also increase excitotoxicity risk. These novel findings raise questions for future research on the underlying corresponding mechanisms.
Collapse
Affiliation(s)
- Sonia Jazmín Molina
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET). Facultad de Medicina, Buenos Aires, Argentina.
| | - Gonzalo Nahuel Corsi
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET). Facultad de Medicina, Buenos Aires, Argentina
| | - Lara Candela Araujo Añon
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET). Facultad de Medicina, Buenos Aires, Argentina
| | - Laura Ruth Guelman
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET). Facultad de Medicina, Buenos Aires, Argentina; Universidad de Buenos Aires. Facultad de Medicina, 1ª Cátedra de Farmacología, Buenos Aires, Argentina
| |
Collapse
|
34
|
Panda ES, Gautam AS, Pandey SK, Singh RK. IL-17A-Induced Redox Imbalance and Inflammatory Responses in Mice Lung via Act1-TRAF6-IKBα Signaling Pathway: Implications for Lung Disease Pathogenesis. Inflammation 2024:10.1007/s10753-024-02199-9. [PMID: 39607627 DOI: 10.1007/s10753-024-02199-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/03/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
IL-17A is a potent proinflammatory cytokine that plays a crucial role in the pathogenesis of various lung diseases. This study focused on the evaluation of the role of IL-17 receptor signaling through one-week intranasal exposure of IL-17A in lung tissues of BALB/c mice. IL-17A triggered inflammatory responses in the mice lungs and led to changes in the morphological alveolar arrangements. Exposure of IL-17A induced redox imbalance by triggering an increase in the level of the pro-oxidants (reactive oxygen species, nitrite and malondialdehyde) and reduction of the levels of antioxidant proteins (glutathione, superoxide dismutase and catalase) in the lung tissue. IL-17A also caused a significant elevation in the levels of proinflammatory cytokines lines including TNF-α, IL-1β and IL-6, in lung tissue as well as in plasma. More interestingly, these changes were accompanied by the alterations in IL-17 receptor downstream signaling through activation of IL-17R-Act1-TRAF6-IKBα-mediated pathway. IL-17A exposure also caused lung tissue injury, recruitment and polarization of immune cells from anti-inflammatory to pro-inflammatory. This study clearly demonstrated the role of IL-17A-induced signaling in worsening lung inflammatory diseases, and hence points towards its emergence as an important therapeutic target to control lung inflammation.
Collapse
Affiliation(s)
- Ekta Swarnamayee Panda
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Transit Campus, Bijnour-Sisendi Road, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India
| | - Avtar Singh Gautam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Transit Campus, Bijnour-Sisendi Road, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India
| | - Shivam Kumar Pandey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Transit Campus, Bijnour-Sisendi Road, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India
| | - Rakesh Kumar Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Transit Campus, Bijnour-Sisendi Road, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India.
| |
Collapse
|
35
|
Hijam AC, Tongbram YC, Nongthombam PD, Meitei HN, Koijam AS, Rajashekar Y, Haobam R. Traditionally used edible medicinal plants protect against rotenone induced toxicity in SH-SY5Y cells-a prospect for the development of herbal nutraceuticals. Neurochem Int 2024; 180:105855. [PMID: 39244037 DOI: 10.1016/j.neuint.2024.105855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Plants are good sources of pharmacologically active compounds. The present study aimed to examine the neuroprotective potentials of the methanol extracts of Salix tetrasperma Roxb. leaf (STME) and Plantago asiatica L. (PAME), two edibles medicinal plants of Manipur, India against neurotoxicity induced by rotenone in SH-SY5Y cells. Free radical quenching activities were evaluated by ABTS and DPPH assays. The cytotoxicity of rotenone and the neuronal survival were assessed by MTT assay and MAP2 expression analysis. DCF-DA, Rhodamine 123 (Rh-123), and DAPI measured the intracellular reactive oxygen species (ROS) levels, mitochondrial membrane potential (MMP), and apoptotic nuclei, respectively. Superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) activities were also assessed. LC-QTOF-MS analysis was performed for the identification of the compounds present in STME and PAME. The study showed that both the plant extracts (STME and PAME) showed antioxidant and neuroprotective capabilities in rotenone-induced neurotoxicity by preventing oxidative stress through the reduction of intracellular ROS levels and reversing the activities of GPx, SOD, and CAT caused by rotenone. Further, both plants prevented apoptotic cell death by normalizing the steady state of MMP and protecting nuclear DNA condensation. LC-QTOF-MS analysis shows the presence of known neuroprotective compounds like uridine and gabapentin in STME and PAME respectively. The two plants might be an important source of natural antioxidants and nutraceuticals with neuroprotective abilities. This could be investigated further to formulate herbal nutraceuticals for the treatment of neurodegenerative disease like Parkinson's disease.
Collapse
Affiliation(s)
- Aruna Chanu Hijam
- Department of Biotechnology, Manipur University, Canchipur, Imphal, 795003, Manipur, India
| | | | - Pooja Devi Nongthombam
- Department of Biotechnology, Manipur University, Canchipur, Imphal, 795003, Manipur, India
| | | | - Arunkumar Singh Koijam
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal, 795001, Manipur, India
| | - Yallapa Rajashekar
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal, 795001, Manipur, India
| | - Reena Haobam
- Department of Biotechnology, Manipur University, Canchipur, Imphal, 795003, Manipur, India.
| |
Collapse
|
36
|
Shahabuddin F, Naseem S, Alam T, Khan AA, Khan F. Chronic aluminium chloride exposure induces redox imbalance, metabolic distress, DNA damage, and histopathologic alterations in Wistar rat liver. Toxicol Ind Health 2024; 40:581-595. [PMID: 39138847 DOI: 10.1177/07482337241269784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Aluminium, a ubiquitous environmental toxicant, is distinguished for eliciting a broad range of physiological, biochemical, and behavioural alterations in laboratory animals and humans. The present work was conducted to study the functional and structural changes induced by aluminium in rat liver. Twenty five adult male Wistar rats (150-200 g) were randomly divided into five groups; control group and four Al-treated groups viz: Al 1 (25 mg AlCl3/kg b.wt), Al 2 (35 mg AlCl3/kg b.wt), Al 3 (45 mg AlCl3/kg b.wt), and Al 4 (55 mg AlCl3/kg b.wt). Rats in the aluminium-treated groups were administered AlCl3 for 30 days through oral gavage. Aluminium significantly increased the serum levels of liver function markers (ALT, AST, and ALP), phospholipids, and cholesterol. The activities of hepatocyte membrane (ALP, GGT, and LAP) and carbohydrate metabolic (G6P, F16BP, HK, LDH, MDH, ME, and G6PDH) enzymes were significantly altered by AlCl3 administration. Prolonged Al exposure induced oxidative stress in the liver, as evident by significant hepatocellular DNA damage, increased lipid peroxidation, and decreased non-enzymatic and enzymatic antioxidants. The toxic effects observed in this study were AlCl3 dose-dependent. Histopathological examination of liver sections revealed enlargement of sinusoidal spaces, derangement of the hepatic chord, loss of discrete hepatic cell boundaries, congestion of hepatic sinusoids, and degeneration of hepatocytes in Al-intoxicated rats. In conclusion, aluminium causes severe hepatotoxicity by inhibiting the hepatocyte membrane enzymes and disrupting the liver's energy metabolism and antioxidant defence.
Collapse
Affiliation(s)
- Farha Shahabuddin
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Samina Naseem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Tauseef Alam
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Aijaz Ahmed Khan
- Department of Anatomy, Faculty of Medicine, JN Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Farah Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
37
|
Sivakumar B, Kurian GA. The Worsening of Myocardial Ischemia-Reperfusion Injury in Uremic Cardiomyopathy is Further Aggravated by PM 2.5 Exposure: Mitochondria Serve as the Central Focus of Pathology. Cardiovasc Toxicol 2024; 24:1236-1252. [PMID: 39264521 DOI: 10.1007/s12012-024-09920-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Uremic cardiomyopathy (UC) represents a complex syndrome characterized by different cardiac complications, including systolic and diastolic dysfunction, left ventricular hypertrophy, and diffuse fibrosis, potentially culminating in myocardial infarction (MI). Revascularization procedures are often necessary for MI management and can induce ischemia reperfusion injury (IR). Despite this clinical relevance, the role of fine particulate matter (PM2.5) in UC pathology and the underlying subcellular mechanisms governing this pathology remains poorly understood. Hence, we investigate the impact of PM2.5 exposure on UC susceptibility to IR injury. Using a rat model of adenine-induced chronic kidney disease (CKD), the animals were exposed to PM2.5 at 250 µg/m3 for 3 h daily over 21 days. Subsequently, hearts were isolated and subjected to 30 min of ischemia followed by 60 min of reperfusion to induce IR injury. UC hearts exposed to PM2.5 followed by IR induction (Adenine + PM_IR) exhibited significantly impaired cardiac function and increased cardiac injury (increased infarct size and apoptosis). Analysis at the subcellular level revealed reduced mitochondrial copy number, impaired mitochondrial bioenergetics, decreased expression of PGC1-α (a key regulator of mitochondrial biogenesis), and compromised mitochondrial quality control mechanisms. Additionally, increased mitochondrial oxidative stress and perturbation of the PI3K/AKT/AMPK signaling axis were evident. Our findings therefore collectively indicate that UC myocardium when exposed to PM2.5 is more vulnerable to IR-induced injury, primarily due to severe mitochondrial impairment.
Collapse
MESH Headings
- Animals
- Myocardial Reperfusion Injury/metabolism
- Myocardial Reperfusion Injury/pathology
- Myocardial Reperfusion Injury/physiopathology
- Myocardial Reperfusion Injury/chemically induced
- Particulate Matter/toxicity
- Disease Models, Animal
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Mitochondria, Heart/drug effects
- Male
- Signal Transduction
- Cardiomyopathies/metabolism
- Cardiomyopathies/pathology
- Cardiomyopathies/chemically induced
- Cardiomyopathies/physiopathology
- Apoptosis/drug effects
- Uremia/metabolism
- Uremia/chemically induced
- Uremia/pathology
- Uremia/complications
- Energy Metabolism/drug effects
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/drug effects
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/chemically induced
- Renal Insufficiency, Chronic/metabolism
- Air Pollutants/toxicity
- Rats, Sprague-Dawley
- Proto-Oncogene Proteins c-akt/metabolism
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics
- Adenine/toxicity
- Adenine/pharmacology
- Oxidative Stress/drug effects
- Ventricular Function, Left/drug effects
- Myocardial Infarction/pathology
- Myocardial Infarction/metabolism
- Myocardial Infarction/chemically induced
- Myocardial Infarction/physiopathology
- Phosphatidylinositol 3-Kinase/metabolism
Collapse
Affiliation(s)
- Bhavana Sivakumar
- Vascular Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Gino A Kurian
- Vascular Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India.
- School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India.
| |
Collapse
|
38
|
Sivakumar B, Kurian GA. Increased Susceptibility of Cardiac Tissue to PM 2.5-Induced Toxicity in Uremic Cardiomyopathic Rats Is Linked to Elevated Levels of Mitochondrial Dysfunction. ENVIRONMENTAL TOXICOLOGY 2024. [PMID: 39462878 DOI: 10.1002/tox.24437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/03/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024]
Abstract
Patients with chronic kidney disease (CKD) frequently develop uremic cardiomyopathy, characterized by mitochondrial dysfunction as one of its pathologically significant mediators. Given that PM2.5 specifically targets cardiac mitochondria, exacerbating toxicity, this study addresses the potential alterations in the severity of PM2.5 toxicity in the context of CKD conditions. Female Wistar rats were exposed to PM2.5 at a concentration of 250 μg/m3 daily for 3 h for 21 days after which an adenine-induced CKD model was developed. While both PM2.5 exposure and the induction of CKD in rats lead to cardiomyopathy, the CKD animals exposed to PM2.5 exhibited a notably severe extent of myocardial hypertrophy and fibrosis. ECG recordings in CKD+ PM2.5 animals revealed a depressed ST segment and prolonged QRS interval, with both PM2.5 and CKD animals displaying an elevated ST segment. Subcellular level analysis confirmed a significantly low mitochondrial copy number and a severe decline in mitochondrial bioenergetic function in the CKD+ PM2.5 group. The prominent decline in PGC1-α further affirmed the severe mitochondrial functional deterioration in CKD+ PM2.5 animals compared to other experimental groups. Additionally, myocardial calcification was enhanced in CKD+ PM2.5 animals, heightening the susceptibility of CKD animals to PM2.5 toxicity. In summary, our findings suggest that the increased vulnerability of CKD myocardium to PM2.5-induced toxicity may be attributed to severe mitochondrial damage and increased calcification in the myocardium.
Collapse
Affiliation(s)
- Bhavana Sivakumar
- Vascular Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Gino A Kurian
- Vascular Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| |
Collapse
|
39
|
Dahran N, Othman MS, Ghoniem ME, Samak MA, Elabbasy MT, Obeidat ST, Aleid GM, Abo Elnaga S, Khaled AM, Altaleb AA, Abdel Moneim AE. Evaluation of Vincamine Loaded with Silver Nanoparticles as a New Potential Therapeutic Agent Against Ehrlich's Solid Carcinoma in Mice. Cells 2024; 13:1762. [PMID: 39513869 PMCID: PMC11545257 DOI: 10.3390/cells13211762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Vincamine, a monoterpenoid indole alkaloid with vasodilatory properties, is extracted from the leaves of Vinca minor. The present study aimed to determine the potential anticancer effects of vincamine loaded in silver nanoparticles (VCN-AgNPs) in mice with Ehrlich solid carcinoma (ESC). After tumor transplantation, the mice were divided into five groups: ESC, ESC+Cisplatin (CPN; 5 mg/kg), ESC+VCN (40 mg/kg), ESC+AgNPs (6 mg/kg), and ESC+VCN-AgNPs (20 mg/kg). The administration of VCN-AgNPs to ESC-bearing mice improved their survival rate and reduced their body weight, tumor size, and tumor weight compared to the ESC group. Furthermore, VCN-AgNPs intensified oxidative stress in tumor tissues, as evidenced by elevated levels of lipid peroxidation (LPO) and nitric oxide (NO), along with a reduction in the levels of the antioxidants investigated (GSH, GPx, GR, SOD, CAT, and TAC). Furthermore, VCN-AgNPs increased the apoptotic proteins Bax and caspase-3, decreased the anti-apoptotic protein (Bcl-2), increased the inflammatory markers TNF-α and IL-1β, and inhibited angiogenesis by lowering VEGF levels in tumor tissues, all of which led to apoptosis. Furthermore, histopathological studies showed that VCN-AgNPs suppressed the progression of Ehrlich carcinoma and induced the formation of clusters of necrotic and fragmented tumor cells. VCN-AgNPs possess cytotoxic and genotoxic effects against ESC because of their pro-oxidant, pro-apoptotic, pro-inflammatory, and antiangiogenic effects. Additionally, the combination of VCN-AgNPs was more effective and safer than chemically synthesized AgNPs, as indicated by an increase in the lifespan of animals and the total tumor inhibition index.
Collapse
Affiliation(s)
- Naief Dahran
- Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah 21959, Saudi Arabia;
| | - Mohamed S. Othman
- Biochemistry Department, College of Medicine, University of Ha’il, Ha′il 2440, Saudi Arabia; (G.M.A.); (A.M.K.)
- Faculty of Biotechnology, October University for Modern Science and Arts (MSA), Giza 12566, Egypt
| | - Mohamed E. Ghoniem
- Department of Internal Medicine, College of Medicine, University of Ha’il, Ha’il 2240, Saudi Arabia;
- Department of Internal Medicine, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mai A. Samak
- College of Medicine, University of Ha’il, Ha’il 2240, Saudi Arabia; (M.A.S.); (M.T.E.)
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed T. Elabbasy
- College of Medicine, University of Ha’il, Ha’il 2240, Saudi Arabia; (M.A.S.); (M.T.E.)
| | - Sofian T. Obeidat
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha’il, Ha′il 2440, Saudi Arabia; (S.T.O.); (S.A.E.)
| | - Ghada M. Aleid
- Biochemistry Department, College of Medicine, University of Ha’il, Ha′il 2440, Saudi Arabia; (G.M.A.); (A.M.K.)
| | - Shimaa Abo Elnaga
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha’il, Ha′il 2440, Saudi Arabia; (S.T.O.); (S.A.E.)
| | - Azza M. Khaled
- Biochemistry Department, College of Medicine, University of Ha’il, Ha′il 2440, Saudi Arabia; (G.M.A.); (A.M.K.)
| | - Aya A. Altaleb
- College of Medicine, University of Gazi, Ankara 06500, Turkey;
| | - Ahmed E. Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Ain Helwan, Cairo 11795, Egypt
- Al-Ayen Scientific Research Center, Al-Ayen Iraqi University, AUIQ, An Nasiriyah, Thi Qar P.O. Box 64004, Iraq
| |
Collapse
|
40
|
Zhang S, Zhang H, Li M, Song H, Sun J, Fan C, Xie Y, Wang H, Ge Z. Differentiating Reactive Oxygen Species with DNA Framework Monitors. NANO LETTERS 2024; 24:13438-13446. [PMID: 39382404 DOI: 10.1021/acs.nanolett.4c04210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The lifespan, oxidizing properties, bonding behaviors, and reactivity of reactive oxygen species (ROS) produced during photocatalytic activation can vary significantly due to the differences in electron configurations of ROS, which are dependent on their generation mechanisms: energy transfer or charge transfer. Hence, identifying and differentiating ROS of different mechanisms can improve our understanding of redox reactions and related diseases, providing a basis for the prevention and treatment of related diseases. Here, we have developed a DNA framework monitor (DFM) based on dynamic DNA structural changes to effectively distinguish the two types of ROS produced in photocatalytic activation of O2. This DFM provides a visualization tool for observing the reaction kinetics of ROS with DNA, not only distinguishing two types of ROS with different mechanisms but also serving as a universal system for evaluating the efficacy and performance of nanomaterials for ROS regulation.
Collapse
Affiliation(s)
- Shuangye Zhang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hairuo Zhang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingqiang Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haitao Song
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jielin Sun
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi Xie
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hui Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhilei Ge
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
41
|
Saha S, Alshammari A, Albekairi NA, Zulfiquar TN, Shakil MS, Mondal KR, Kundu MK, Mondal M, Mubarak MS. Exploring the antioxidant and protective effects of Marsdenia thyrsiflora Hook.f. leaf extract against carbon tetrachloride-induced hepatic damage in rat models. Front Pharmacol 2024; 15:1463922. [PMID: 39502533 PMCID: PMC11534673 DOI: 10.3389/fphar.2024.1463922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Medicinal plants are vital to healthcare, yet many remain unexplored. Marsdenia thyrsiflora Hook.f., from Bangladesh's Bhawal Forest, lacks research on its medicinal properties, especially its antioxidant capacities and protection against CCl4-induced liver toxicity. This study aims to evaluate the antioxidant properties of M. thyrsiflora leaf extract to determine its protective effects on rodents against CCl4-induced liver injury. Methods After extraction, the total phenol, flavonoid content, and antioxidant capacity of the leaf extract were measured using established protocols. Free radical scavenging abilities were evaluated with 2,2'-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (NO) assays. Additionally, reducing power was assessed through cupric-reducing and ferric-reducing assays. Based on the OECD 420 recommendation, acute toxicity was tested on Swiss albino mice to establish an effective and safe dosage. For the hepatoprotective study, Sprague-Dawley rats were pre-treated with M. thyrsiflora leaf methanolic extract (MTLM) at 250 and 500 mg/kg body weight, and CCl4 was administered to induce liver damage. Serum hepatic enzyme levels (alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT)), lipid profile (total cholesterol, triglycerides), total bilirubin, and markers of lipid peroxidation (Malondialdehyde (MDA)) were measured. The activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) were also evaluated to assess oxidative stress. Results The results demonstrated that MTLM, rich in phenolic and flavonoid content, exhibits significant antioxidant activities in DPPH and NO radical scavenging assays, as well as in reducing power assays. The acute toxicity study confirmed the safety of MTLM, with no adverse effects observed even at high doses. For the hepatoprotective study, rats were administered CCl4 to induce liver damage, followed by treatment with MTLM. Results showed that MTLM significantly reduces liver damage markers such as elevated serum hepatic enzyme levels, lipid profile, total bilirubin, and lipid peroxidation and improves the activities of GSH and key antioxidant enzymes such as SOD and CAT. Histopathological analysis corroborated these findings, displaying reduced necrosis, inflammation, and edema in liver tissues treated with MTLM. Conclusion MTLM extract exhibits potent antioxidant and hepatoprotective properties. Its ability to attenuate oxidative stress, enhance antioxidant enzyme activities, and facilitate histopathological changes in the liver highlights its potential as a natural therapeutic agent for liver damage. However, further investigation is required to understand its molecular processes, safety profiles, and active component characterization.
Collapse
Affiliation(s)
- Sushmita Saha
- Department of Pharmacy, Jahangirnagar University, Dhaka, Bangladesh
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Norah A. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Tasniya Nahiyan Zulfiquar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Md Salman Shakil
- Department of Mathematics and Natural Sciences, Brac University, Dhaka, Bangladesh
| | | | - Milton Kumar Kundu
- Department of Chemistry, Tennessee State University, Nashville, TN, United States
| | - Milon Mondal
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Mohammad S. Mubarak
- Department of Chemistry, The University of Jordan, Amman, Jordan
- Department of Chemistry, Indiana University, Bloomington, IN, United States
| |
Collapse
|
42
|
Khalil EM, Rady MI, Darwish SF, Abd-Allah ER. Nano Spirulina platensis countered cisplatin-induced repro-toxicity by reversing the expression of altered steroid hormones and downregulation of the StAR gene. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03483-z. [PMID: 39414699 DOI: 10.1007/s00210-024-03483-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 09/21/2024] [Indexed: 10/18/2024]
Abstract
Cisplatin is a commonly utilized chemotherapy medication for treating different sarcomas and carcinomas. Its ability interferes with cancer cells' DNA repair pathways and postpones unfavorable outcomes in cancer patients. The current investigation's goal was to ascertain if nano Spirulina platensis (NSP) might shield rat testicles from cisplatin damage by assessing the expression of the StAR and SOD genes, sex hormones, 17ß-hydroxysteroid dehydrogenase(17ß-HSD), sperm profile picture, oxidative condition of testes, testicular histology, and DNA damage. Four equal and random groups of 28 adult male Wistar rats were created; the control group was given saline for 8 weeks. An extraction of NSP at a concentration of 2500 mg/kg body weight was administered orally for 8 weeks to the NSP group. For the first 4 weeks, the cisplatin group was intraperitoneally injected with 2 mg/kg/body weight of cisplatin, and for the next 4 weeks, they were given a dosage of 4 mg/kg/body weight. The cisplatin + NSP group was given both NSP and cisplatin. The results of the experiment showed that intake of NSP and cisplatin improved sperm profile; re-established the balance of oxidizing agents and antioxidant state; enhanced testicular histology; promoted the histometric parameters of seminiferous tubules including epithelial height, their diameter, and Johnsen's score, decreasing DNA breakage in testicular tissue; increased testosterone level; decreased 17ß-HSD concentration; and upregulated both the StAR and SOD gene expression in testicles compared to rats exposed to cisplatin alone. These results demonstrate that NSP is a promising agent for improving cisplatin-induced testicular injury and infertility.
Collapse
Affiliation(s)
- Eman M Khalil
- Department of Zoology, Faculty of Science (Girls), Al-Azhar University, Nasr City, Egypt
| | - Mohamed I Rady
- Department of Zoology, Faculty of Science (Boys), Al-Azhar University, Nasr City, Egypt
| | - Samah F Darwish
- Biotechnology Research Unit, Animal Reproduction Research Institute, Giza, Egypt
| | - Entsar R Abd-Allah
- Department of Zoology, Faculty of Science (Girls), Al-Azhar University, Nasr City, Egypt.
| |
Collapse
|
43
|
Rezavanimehr MM, Kakhki S, Pahlavani H, Khosropour M, Khatibi SR, Beheshti F. Vitamin B 12 supplementation improved memory impairment following nicotine withdrawal in adolescent male rats: The role of oxidative stress, inflammatory, BDNF, GFAP, and AChE activity. Behav Brain Res 2024; 474:115180. [PMID: 39111405 DOI: 10.1016/j.bbr.2024.115180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/24/2024] [Accepted: 08/04/2024] [Indexed: 08/20/2024]
Abstract
The present study aimed to assess the potential effect of vitamin B12 (Vit B12) on cognition impairment caused by nicotine (Nic) cessation in adolescent male rats. Adolescent male rats were categorized into two main groups as vehicle (normal saline, intraperitoneally), and Nic group in which received Nic (2 mg/kg) from 21 to 42 days of ages and then the Nic group were divided into three groups as withdrawal (the animals returned to regular diet without treatment), second and third groups received bupropion (20 mg/kg), and Vit B12 at three different doses including 0.5,1, and 1.5 mg/kg by oral gavage as treatments to attenuate Nic withdrawal symptoms. The last group including normal animals received the highest doses of Vit B12 just in the Nic abstinence period to compare the effect of that with vehicle. In MWM, Vit B12and bupropion increased the time spent in the target quadrant that is strongly associated with spatial memory as well as the more time spent with the NORT. Vit B12 and bupropion modulated both oxidant/antioxidant and inflammatory/anti-inflammatory balance, alongside inhibitory effect on AChE, and GFAP. However, BDNF and amyloid-B showed insignificant difference as compared to Vit B12 and bupropion. Considering the present results and similar related studies, Vit B12 can be introduced as a strong anti-oxidant, and anti-inflammatory agent by which probably improved memory impairment caused by Nic addiction accompanied by withdrawal. Further, other mechanisms including activity reduction of AChE, and GFAP should be considered; however, it needs further investigation and larger-scale evidences.
Collapse
Affiliation(s)
| | - Samaneh Kakhki
- Department of Clinical Biochemistry, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Hossein Pahlavani
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Maryam Khosropour
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Seyed Reza Khatibi
- Department of Epidemiology and Biostatistics, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Farimah Beheshti
- Departments of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
| |
Collapse
|
44
|
Xu M, Wu G, You Q, Chen X. The Landscape of Smart Biomaterial-Based Hydrogen Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401310. [PMID: 39166484 PMCID: PMC11497043 DOI: 10.1002/advs.202401310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/19/2024] [Indexed: 08/23/2024]
Abstract
Hydrogen (H2) therapy is an emerging, novel, and safe therapeutic modality that uses molecular hydrogen for effective treatment. However, the impact of H2 therapy is limited because hydrogen molecules predominantly depend on the systemic administration of H2 gas, which cannot accumulate at the lesion site with high concentration, thus leading to limited targeting and utilization. Biomaterials are developed to specifically deliver H2 and control its release. In this review, the development process, stimuli-responsive release strategies, and potential therapeutic mechanisms of biomaterial-based H2 therapy are summarized. H2 therapy. Specifically, the produced H2 from biomaterials not only can scavenge free radicals, such as reactive oxygen species (ROS) and lipid peroxidation (LPO), but also can inhibit the danger factors of initiating diseases, including pro-inflammatory cytokines, adenosine triphosphate (ATP), and heat shock protein (HSP). In addition, the released H2 can further act as signal molecules to regulate key pathways for disease treatment. The current opportunities and challenges of H2-based therapy are discussed, and the future research directions of biomaterial-based H2 therapy for clinical applications are emphasized.
Collapse
Affiliation(s)
- Min Xu
- College of Biomedical EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Gege Wu
- Departments of Diagnostic Radiology, SurgeryChemical and Biomolecular Engineeringand Biomedical EngineeringYong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
| | - Qing You
- Departments of Diagnostic Radiology, SurgeryChemical and Biomolecular Engineeringand Biomedical EngineeringYong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, SurgeryChemical and Biomolecular Engineeringand Biomedical EngineeringYong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
| |
Collapse
|
45
|
Zhou XR, Wang XY, Sun YM, Zhang C, Liu KJ, Zhang FY, Xiang B. Glycyrrhizin Protects Submandibular Gland Against Radiation Damage by Enhancing Antioxidant Defense and Preserving Mitochondrial Homeostasis. Antioxid Redox Signal 2024; 41:723-743. [PMID: 38069572 DOI: 10.1089/ars.2022.0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Aims: Radiotherapy inevitably causes radiation damage to the salivary glands (SGs) in patients with head and neck cancers (HNCs). Excessive reactive oxygen species (ROS) levels and imbalanced mitochondrial homeostasis are serious consequences of ionizing radiation in SGs; however, there are few mitochondria-targeting therapeutic approaches. Glycyrrhizin is the main extract of licorice root and exhibits antioxidant activity to relieve mitochondrial damage in certain oxidative stress conditions. Herein, the effects of glycyrrhizin on irradiated submandibular glands (SMGs) and the related mechanisms were investigated. Results: Glycyrrhizin reduced radiation damage in rat SMGs at both the cell and tissue levels, and promoted saliva secretion in irradiated SMGs. Glycyrrhizin significantly downregulated high-mobility group box-1 protein (HMGB1) and toll-like receptor 5 (TLR5). Moreover, glycyrrhizin significantly suppressed the increases in malondialdehyde and glutathione disulfide (GSSG) levels; elevated the activity of some critical antioxidants, including superoxide dismutase, catalase, glutathione peroxidase, and glutathione (GSH); and increased the GSH/GSSG ratio in irradiated cells. Importantly, glycyrrhizin effectively enhanced thioredoxin-2 levels and scavenged mitochondrial ROS, inhibited the decline in mitochondrial membrane potential, improved adenosine triphosphate synthesis, preserved the mitochondrial ultrastructure, activated the proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α)/nuclear respiratory factor 1/2 (NRF1/2)/mitochondrial transcription factor A (TFAM) signaling pathway, and inhibited mitochondria-related apoptosis in irradiated SMG cells and tissues. Innovation: Radiotherapy causes radiation sialadenitis in HNC patients. Our data suggest that glycyrrhizin could be a mitochondria-targeted antioxidant for the prevention of radiation damage in SGs. Conclusion: These findings demonstrate that glycyrrhizin protects SMGs from radiation damage by downregulating HMGB1/TLR5 signaling, maintaining intracellular redox balance, eliminating mitochondrial ROS, preserving mitochondrial homeostasis, and inhibiting apoptosis.
Collapse
Affiliation(s)
- Xin-Ru Zhou
- Laboratory of Oral and Maxillofacial Disease, Dalian, China
| | - Xin-Yue Wang
- Laboratory of Oral and Maxillofacial Disease, Dalian, China
| | - Yue-Mei Sun
- Laboratory of Oral and Maxillofacial Disease, Dalian, China
| | - Chong Zhang
- Laboratory of Oral and Maxillofacial Disease, Dalian, China
| | - Ke Jian Liu
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Fu-Yin Zhang
- Department of Oral Surgery, Second Hospital of Dalian Medical University, Dalian, China
| | - Bin Xiang
- Laboratory of Oral and Maxillofacial Disease, Dalian, China
| |
Collapse
|
46
|
Nicy V, Gurusubramanian G, Roy VK. Effects of chronic CuNPs treatment followed by termination for two spermatogenic cycles in the testicular functions of mice. Reprod Toxicol 2024; 129:108669. [PMID: 39038765 DOI: 10.1016/j.reprotox.2024.108669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
The present study investigated the possible effects of copper nanoparticles (CuNPs) after discontinuing treatment on testicular activity in a mouse model. The male mice were given continuous CuNPs treatment for 70 days and left untreated for 70 days. The results show that even after the discontinuation of CuNPs treatment, the testicular impairment was persistent till 140 days at a higher dose (200 mg/kg group). The spermatogenesis, sperm parameters, proliferation and antioxidant status were suppressed in the higher dose groups. However, these effects were also observed at moderate levels in the other CuNPs treated groups, such as at 10 mg/kg and 100 mg/kg. The apoptosis was stimulated at a higher dose compared to the other groups. The testosterone, LH levels and AR expression were suppressed in all the CuNPs treated groups, along with slight elevation in the estrogen levels and up-regulated ERβ expression. The fertility data also showed a decline in all CuNPs treated groups with the lowest litter size in the 200 mg/kg treated group. Despite testis, epididymis and accessory sex organs like prostate, seminal vesicle, and vas deferens, histoarchitecture also showed impairment. This is the first report on how CuNPs affect the male reproductive system in mice even after treatment was terminated. The current study also demonstrated possible negative effects on male reproductive function that might last for longer at higher dosages of chronic CuNPs exposure even after termination.
Collapse
Affiliation(s)
- Vanrohlu Nicy
- Department of Zoology, Mizoram University, Aizawl, Mizoram 796004, India
| | | | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram 796004, India.
| |
Collapse
|
47
|
Poyraz F, Akbaş G, Duranoğlu D, Acar S, Mansuroğlu B, Ersöz M. Sinapic-Acid-Loaded Nanoparticles Optimized via Experimental Design Methods: Cytotoxic, Antiapoptotoic, Antiproliferative, and Antioxidant Activity. ACS OMEGA 2024; 9:40329-40345. [PMID: 39371991 PMCID: PMC11447863 DOI: 10.1021/acsomega.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 10/08/2024]
Abstract
Nanoparticles are frequently investigated as carrier systems that increase the biological activities of hydrophobic molecules, especially by providing them with water solubility. Sinapic acid (Sa), commonly found in plants, is a phenolic compound with a wide spectrum of biological activities and extensive pharmacological properties. The aim of this study was the synthesis/characterization of optimized sinapic-acid-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (SaNPs) to improve the solubility of sinapic acid (Sa) that limit its use in the biological system and investigate the biological activities of these nanoparticles in the breast cancer cell line. For this purpose, sinapic-acid-loaded PLGA nanoparticles were obtained and optimized by experimental design methods. Then, cytotoxic (MTT method), antiapoptotic (terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay), antiproliferative (immunocytochemically by PCNA assay), and antioxidant activities (superoxide dismutase (SOD) and catalase activities, glutathione, malondialdehyde (MDA), and caspase-3 levels) of optimized nanoparticles were examined comperatively with free drug on MCF-7 cells. The IC50 values of the SaNPs (170.6 ± 3.6 nm size) in MCF-7 cells were determined at 180, 168, and 145 μg/mL for 24, 48, and 72 h, respectively, and at these doses, the nanoparticles did not show any toxic effect on the MCF10A cell line. Treatment of Sa and SaNPs at doses of 24 and 48 h showed a statistically significant reduction in the PCNA level in MCF-7 cells, with an increase in the number of cells leading to apoptosis. In MCF-7 cells treated with SaNP at concentrations of 150 and 200 μg/mL for 24 h, MDA levels were significantly increased, SOD activities were significantly decreased, and reduced glutathione (GSH) and catalase levels were increased compared with control groups. The findings of this study indicate that polyphenolic compounds can contribute to the design of drugs for treatment by forming nanoparticle formulations. The developed nanoparticle formulation is thought to be a useful model for other hydrophobic biological active substances.
Collapse
Affiliation(s)
- Fatma
Şayan Poyraz
- Department
of Molecular Biology and Genetics, Faculty of Art and Sciences, Yildiz Technical University, Istanbul 34349, Turkey
| | - Gülşah Akbaş
- Department
of Molecular Biology and Genetics, Faculty of Art and Sciences, Yildiz Technical University, Istanbul 34349, Turkey
| | - Dilek Duranoğlu
- Department
of Chemical Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34210, Turkey
| | - Serap Acar
- Department
of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34220, Turkey
| | - Banu Mansuroğlu
- Department
of Molecular Biology and Genetics, Faculty of Art and Sciences, Yildiz Technical University, Istanbul 34349, Turkey
| | - Melike Ersöz
- Department
of Molecular Biology and Genetics, Faculty of Arts and Sciences, Demiroglu Bilim University, Istanbul 34394, Turkey
| |
Collapse
|
48
|
Gholami M, Ghelichkhani Z, Aghakhani R, Klionsky DJ, Motaghinejad O, Motaghinejad M, Koohi MK, Hassan J. Minocycline Acts as a Neuroprotective Agent Against Tramadol-Induced Neurodegeneration: Behavioral and Molecular Evidence. Int J Prev Med 2024; 15:47. [PMID: 39539580 PMCID: PMC11559692 DOI: 10.4103/ijpvm.ijpvm_10_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/04/2024] [Indexed: 11/16/2024] Open
Abstract
Background Previous evidence indicates that tramadol (TRA) can lead to neurodegenerative events and minocycline (MIN) has neuroprotective properties. Aim of the Study The current research evaluated the neuroprotective effects of MIN for TRA-promoted neurodegeneration. Methods Sixty adult male rats were placed into the following groups: 1 (received 0.7 ml/rat of normal saline, IP), 2 (received 50 mg/kg of TRA, i.p.), 3, 4, 5 (administered TRA as 50 mg/kg simultaneously with MIN at 20, 40, and 60 mg/kg, IP, respectively), and 6 (received MIN alone as 60 mg/kg, IP). The treatment procedure was 21 days. An open field test (OFT) was used to measure motor activity and anxiety-related behavior. Furthermore, oxidative stress; hippocampal inflammation; apoptotic parameters as well as activity of mitochondrial complexes I, II, III, and IV; ATP levels; and mitochondrial membrane potential (MMP) were evaluated. In addition, histomorphological alteration was assessed in two regions of the hippocampus: Cornu Ammonis (CA1) and dentate gyrus (DG). Results MIN treatment could inhibit TRA-induced anxiety and motor activity disturbances (P < 0.05). In addition, MIN could attenuate reactive oxygen species (ROS), H2O2, oxidized glutathione (GSSG), and malondialdehyde (MDA) level (P < 0.05), while there was increased reduced glutathione (GSH), total antioxidant capacity (TAC), ATP, MMP, and BCL2 levels (P < 0.05) and also elevation of SOD, GPX, GSR (P < 0.05), and mitochondrial complexes I, II, III, and IV activity (P < 0.05) in TRA-treated rats. In consistence with these findings, MIN could reduce TNF/TNF-α, IL1B/IL1-β, BAX, and CASP3 levels (P < 0.05) in TRA-treated rats. MIN also restored the quantitative (P < 0.05) and qualitative histomorphological sequels of TRA in both CA1 and DG areas of the hippocampus. Conclusions MIN probably has repositioning capability for inhibition of TRA-induced neurodegeneration via modulation of inflammation, oxidative stress, apoptosis, and mitochondrial disorders.
Collapse
Affiliation(s)
- Mina Gholami
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Reza Aghakhani
- Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
| | | | - Ozra Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Kazem Koohi
- Department of Comparative Bioscience, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Jalal Hassan
- Division of Toxicology, Department of Comparative Bioscience, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
49
|
Rezai S, Ghorbani E, Khazaei M, Nazari SE, Rahmani F, Naimi H, Afshari A, Avan A, Ryzhikov M, Soleimanpour S, Mehr SMH. Evaluation Recovery of Ulcerative Colitis with a Lactobacillus Cocktail Derived from Traditional Dairy Products: In vivo Study. Adv Biomed Res 2024; 13:85. [PMID: 39512406 PMCID: PMC11542696 DOI: 10.4103/abr.abr_157_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 11/15/2024] Open
Abstract
Background This investigation investigates the anti-inflammatory and fibrinolytic effects of a cocktail of probiotics derived from traditional dairy products in a murine model of ulcerative colitis (UC). Materials and Methods A mix of newly isolated probiotics containing L. plantarum, L. brevis, L. delbrueckii, and L. helveticus was characterized and orally administered to inbred eight-week-old C57BL/6 male mice (n = 6). Clinical symptoms, pathohistological changes, and inflammatory and fibrosis markers were analyzed in the existence and absence of probiotics in colitis mice. Results Dairy lactobacillus probiotics potently attenuated colitis symptoms by decreasing dextran sulfate sodium (DSS)-induced body weight loss, colon shortening, rectal bleeding, and rectal prolapse. Consistently, a cocktail of probiotics could significantly improve histopathological grading by suppressing crypt loss, mucosal damage, and inflammation scores in colitis tissues. Moreover, the mix of probiotics suppressed pro-inflammatory genes including interleukin (IL)-1β, IL-6, tumor necrosis factor-alpha (TNF-α), and interferon-gamma (IFN-γ), and increased anti-oxidant markers and activity such as superoxide dismutase and catalase in colon tissue. Furthermore, compared to the no-treated group, the administration of probiotics reduced fibrosis by decreasing collagen deposition in tissue sections and down-regulating levels of pro-fibrotic genes including alpha-actin-2 (Acta2), collagen (Col) 1a1, and Col 1a2 in colitis tissue homogenates. Conclusions The results show the newly isolated cocktail of probiotics elicits a potent protective effect on UC symptoms in mice model. Further study on these probiotics is required to fully explore their effectiveness, strength, and safety considerations.
Collapse
Affiliation(s)
- Shaghayegh Rezai
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Ghorbani
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Elnaz Nazari
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzad Rahmani
- Kashmar School of Nursing, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Naimi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asma Afshari
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Human Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mikhail Ryzhikov
- Saint Louis University, School of Medicine, Saint Louis, MO, USA
| | - Saman Soleimanpour
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hasanian Mehr
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
50
|
Wu W, Yang H, Xing P, Zhu G, Han X, Xue M, Min G, Ding H, Wu G, Liu Z. Brassica rapa BrICE1 and BrICE2 Positively Regulate the Cold Tolerance via CBF and ROS Pathways, Balancing Growth and Defense in Transgenic Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2024; 13:2625. [PMID: 39339599 PMCID: PMC11435425 DOI: 10.3390/plants13182625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
Winter rapeseed (Brassica rapa) has a good chilling and freezing tolerance. inducer of CBF expression 1 (ICE1) plays a crucial role in cold signaling in plants; however, its role in Brassica rapa remains unclear. In this study, we identified 41 ICE1 homologous genes from six widely cultivated Brassica species. These genes exhibited high conservation, with evolutionary complexity between diploid and allotetraploid species. Cold stress induced ICE1 homolog expression, with differences between strongly and weakly cold-tolerant varieties. Two novel ICE1 paralogs, BrICE1 and BrICE2, were cloned from Brassica rapa Longyou 6. Subcellular localization assays showed that they localized to the nucleus, and low temperature did not affect their nuclear localization. The overexpression of BrICE1 and BrICE2 increased cold tolerance in transgenic Arabidopsis and enhanced reactive oxygen species' (ROS) scavenging ability. Furthermore, our data demonstrate that overexpression of BrICE1 and BrICE2 inhibited root growth in Arabidopsis, and low temperatures could induce the degradation of BrICE1 and BrICE2 via the 26S-proteasome pathway. In summary, ICE1 homologous genes exhibit complex evolutionary relationships in Brassica species and are involved in the C-repeat/DREB binding factor (CBF) pathway and ROS scavenging mechanism in response to cold stress; these regulating mechanisms might also be responsible for balancing the development and cold defense of Brassica rapa.
Collapse
Affiliation(s)
- Wangze Wu
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Haobo Yang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Peng Xing
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Guoting Zhu
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Xueyan Han
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Mei Xue
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Guotai Min
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Haijun Ding
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Guofan Wu
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Zigang Liu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|