1
|
Mikaberidze A, McDonald BA, Kronenberg L. A Genome-Wide Association Study Identifies Markers and Candidate Genes Affecting Tolerance to the Wheat Pathogen Zymoseptoria tritici. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025:MPMI08240085FI. [PMID: 40062942 DOI: 10.1094/mpmi-08-24-0085-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Plants defend themselves against pathogens using either resistance, measured as the host's ability to limit pathogen multiplication, or tolerance, measured as the host's ability to reduce the negative effects of infection. Tolerance is a promising trait for crop breeding, but its genetic basis has rarely been studied and remains poorly understood. Here, we reveal the genetic basis of leaf tolerance to the fungal pathogen Zymoseptoria tritici that causes the globally important septoria tritici blotch (STB) disease on wheat. Leaf tolerance to Z. tritici is a quantitative trait that was recently discovered in wheat by using automated image analyses that quantified the symptomatic leaf area and counted the number of pycnidia found on the same leaf. A genome-wide association study identified four chromosome intervals associated with tolerance and a separate chromosome interval associated with resistance. Within these intervals, we identified candidate genes, including wall-associated kinases similar to Stb6, the first cloned STB resistance gene. Our analysis revealed a strong negative genetic correlation between tolerance and resistance to STB, indicative of a trade-off. Such a trade-off between tolerance and resistance would hinder breeding simultaneously for both traits, but our findings suggest a way forward using marker-assisted breeding. We expect that the methods described here can be used to characterize tolerance to other fungal diseases that produce visible fruiting bodies, such as speckled leaf blotch on barley, potentially unveiling conserved tolerance mechanisms shared among plant species. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Alexey Mikaberidze
- School of Agriculture, Policy and Development, University of Reading, Reading, RG6 6EU, United Kingdom
| | - Bruce A McDonald
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Lukas Kronenberg
- Crop Genetics, The John Innes Centre, Norwich, NR4 7UH, United Kingdom
| |
Collapse
|
2
|
Bercovich U, Rasmussen MS, Li Z, Wiuf C, Albrechtsen A. Measuring linkage disequilibrium and improvement of pruning and clumping in structured populations. Genetics 2025; 229:iyaf009. [PMID: 39907701 DOI: 10.1093/genetics/iyaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/19/2024] [Indexed: 02/06/2025] Open
Abstract
Standard measures of linkage disequilibrium (LD) are affected by admixture and population structure, such that loci that are not in LD within each ancestral population appear linked when considered jointly across the populations. The influence of population structure on LD can cause problems for downstream analysis methods, in particular those that rely on LD pruning or clumping. To address this issue, we propose a measure of LD that accommodates population structure using the top inferred principal components. We estimate LD from the correlation of genotype residuals and prove that this LD measure remains unaffected by population structure when analyzing multiple populations jointly, even with admixed individuals. Based on this adjusted measure of LD, we can perform LD pruning to remove the correlation between markers for downstream analysis. Traditional LD pruning is more likely to remove markers with high differences in allele frequencies between populations, which biases measures for genetic differentiation and removes markers that are not in LD in the ancestral populations. Using data from moderately differentiated human populations and highly differentiated giraffe populations we show that traditional LD pruning biases FST and principal component analysis (PCA), which can be alleviated with the adjusted LD measure. In addition, we show that the adjusted LD leads to better PCA when pruning and that LD clumping retains more sites with the retained sites having stronger associations.
Collapse
Affiliation(s)
- Ulises Bercovich
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Malthe Sebro Rasmussen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen 2200, Denmark
| | - Zilong Li
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen 2200, Denmark
| | - Carsten Wiuf
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Anders Albrechtsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen 2200, Denmark
| |
Collapse
|
3
|
Bertolini E, Rice BR, Braud M, Yang J, Hake S, Strable J, Lipka AE, Eveland AL. Regulatory variation controlling architectural pleiotropy in maize. Nat Commun 2025; 16:2140. [PMID: 40032817 DOI: 10.1038/s41467-025-56884-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 02/05/2025] [Indexed: 03/05/2025] Open
Abstract
An early event in plant organogenesis is establishment of a boundary between the stem cell containing meristem and differentiating lateral organ. In maize (Zea mays), evidence suggests a common gene network functions at boundaries of distinct organs and contributes to pleiotropy between leaf angle and tassel branch number, two agronomic traits. To uncover regulatory variation at the nexus of these two traits, we use regulatory network topologies derived from specific developmental contexts to guide multivariate genome-wide association analyses. In addition to defining network plasticity around core pleiotropic loci, we identify new transcription factors that contribute to phenotypic variation in canopy architecture, and structural variation that contributes to cis-regulatory control of pleiotropy between tassel branching and leaf angle across maize diversity. Results demonstrate the power of informing statistical genetics with context-specific developmental networks to pinpoint pleiotropic loci and their cis-regulatory components, which can be used to fine-tune plant architecture for crop improvement.
Collapse
Affiliation(s)
| | - Brian R Rice
- Department of Crop Sciences, University of Illinois, Urbana-, Champaign, IL, 61801, USA
| | - Max Braud
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Jiani Yang
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Sarah Hake
- Plant Gene Expression Center, USDA-ARS, Albany, CA, 94710, USA
- Plant and Microbial Biology Department, University of California, Berkeley, CA, 94720, USA
| | - Josh Strable
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Alexander E Lipka
- Department of Crop Sciences, University of Illinois, Urbana-, Champaign, IL, 61801, USA
| | - Andrea L Eveland
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA.
| |
Collapse
|
4
|
Zhang B, Ma J, Shen L, Li Y, Xie S, Li H, Li J, Li X, Wang Z. Genomic insights into pigeon breeding: GWAS for economic traits and the development of a high-throughput liquid phase array chip. Poult Sci 2025; 104:104872. [PMID: 39919561 PMCID: PMC11851283 DOI: 10.1016/j.psj.2025.104872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/12/2025] [Accepted: 01/30/2025] [Indexed: 02/09/2025] Open
Abstract
Due to the monogamous mating system and late maturity of pigeons, their breeding cycle is longer compared to that of other poultry species, which has hindered the optimization of growth traits and meat quality. While traditional breeding methods are commonly used, they lack precision and are time-consuming. This study integrates phenotypic data from Tarim pigeons and White King pigeons with genomic information, using genome-wide association analysis (GWAS) to identify genetic markers associated with key economic traits, thereby accelerating the breeding process. The results reveal significant correlations between body type characteristics (e.g., live weight and chest depth) and carcass traits, supporting their use as indirect selection criteria. GWAS identified several candidate genes, including PPARGC1A and ADGRA3, linked to muscle development and metabolic regulation. To enhance breeding efficiency, this study developed a Liquid Phase Chip (LPC), designed to use high-throughput technology for identifying genetic markers related to carcass traits. Although the LPC is not yet commercially available, the 50 K pigeon LPC from this study could provide crucial theoretical support for its future application. Ultimately, the LPC will serve as an important tool for precision and efficiency in pigeon breeding, driving the development and optimization of the pigeon industry.
Collapse
Affiliation(s)
- Bo Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Jianyuan Ma
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
- College of Animal Science, Shandong Agricultural University, Taian 271018, PR China
| | - Li Shen
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
- College of Animal Science, Shandong Agricultural University, Taian 271018, PR China
| | - Yipu Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Shuxian Xie
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Haoxuan Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Jing Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Xianyao Li
- College of Animal Science, Shandong Agricultural University, Taian 271018, PR China
| | - Zheng Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| |
Collapse
|
5
|
Zemmoto C, Matsumoto Y, Arahori M, Inoue‐Murayama M. Genome-wide study suggests inheritance of personality traits in Toy Poodles and Miniature Dachshunds. Anim Genet 2025; 56:e13508. [PMID: 39888050 PMCID: PMC11783580 DOI: 10.1111/age.13508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/24/2024] [Accepted: 01/01/2025] [Indexed: 02/01/2025]
Abstract
Domestic dogs exhibit significant diversity in both morphology and personality. Recent studies focusing on large-breed dogs reported the contribution of genetic factors to personality. However, the genetic influence in small-breed dogs remains unexplored. In the present study, we investigated the personality of two small-breed dogs using a questionnaire and genome-wide single-nucleotide polymorphism data obtained from 301 Toy Poodles and 183 Miniature Dachshunds using the Illumina CanineHD 230K SNP BeadChip. The factor analysis conducted on a questionnaire consisting of 39 items identified seven factors. Among the seven personality factors, 'activeness' in Toy Poodles and 'human-directed sociability' in Miniature Dachshunds had an estimated heritability of 0.425 (SE = 0.311) and 0.514 (SE = 0.355), respectively. In addition, genome-wide association study suggested that two genomic regions possibly affect personality. The dog breeds focused on in this study are most popular in Japan, thus their information is in high demand.
Collapse
Affiliation(s)
- Chika Zemmoto
- Wildlife Research CenterKyoto UniversityKyotoKyoto PrefectureJapan
| | - Yuki Matsumoto
- Anicom Specialty Medical Institute Inc.YokohamaKanagawa PrefectureJapan
- Data Science CenterAzabu UniversitySagamiharaKanagawa PrefectureJapan
| | - Minori Arahori
- Wildlife Research CenterKyoto UniversityKyotoKyoto PrefectureJapan
- Anicom Specialty Medical Institute Inc.YokohamaKanagawa PrefectureJapan
| | | |
Collapse
|
6
|
Loya H, Kalantzis G, Cooper F, Palamara PF. A scalable variational inference approach for increased mixed-model association power. Nat Genet 2025; 57:461-468. [PMID: 39789286 PMCID: PMC11821521 DOI: 10.1038/s41588-024-02044-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/27/2024] [Indexed: 01/12/2025]
Abstract
The rapid growth of modern biobanks is creating new opportunities for large-scale genome-wide association studies (GWASs) and the analysis of complex traits. However, performing GWASs on millions of samples often leads to trade-offs between computational efficiency and statistical power, reducing the benefits of large-scale data collection efforts. We developed Quickdraws, a method that increases association power in quantitative and binary traits without sacrificing computational efficiency, leveraging a spike-and-slab prior on variant effects, stochastic variational inference and graphics processing unit acceleration. We applied Quickdraws to 79 quantitative and 50 binary traits in 405,088 UK Biobank samples, identifying 4.97% and 3.25% more associations than REGENIE and 22.71% and 7.07% more than FastGWA. Quickdraws had costs comparable to REGENIE, FastGWA and SAIGE on the UK Biobank Research Analysis Platform service, while being substantially faster than BOLT-LMM. These results highlight the promise of leveraging machine learning techniques for scalable GWASs without sacrificing power or robustness.
Collapse
Affiliation(s)
- Hrushikesh Loya
- Department of Statistics, University of Oxford, Oxford, UK
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Georgios Kalantzis
- Department of Statistics, University of Oxford, Oxford, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Fergus Cooper
- Doctoral Training Centre, University of Oxford, Oxford, UK
| | - Pier Francesco Palamara
- Department of Statistics, University of Oxford, Oxford, UK.
- Centre for Human Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Ye F, Jie H, Gan J, Liu K, Zhang Z, Xiang H, Liu W, Yin Q, Chen S, Yu H, Li H. Genome-wide association analysis of key genes for feed efficiency in Qingyuan Partridge chickens. Poult Sci 2025; 104:104632. [PMID: 39754929 PMCID: PMC11758409 DOI: 10.1016/j.psj.2024.104632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 01/06/2025] Open
Abstract
Qingyuan Partridge chickens represent a notable breed of high-quality, slow-growing chickens. The cost of feed constitutes 65-70 % of the total breeding expense for Qingyuan Partridge chickens. Enhancing feed utilization efficiency and reducing feed consumption are crucial for the advancement of Qingyuan Partridge chickens and the broader poultry industry. To investigate the key candidate genes associated with feed efficiency in Qingyuan Partridge chickens for genome selection, the genome-wide association study (GWAS) was performed in this study. Genetic parameters estimation results indiated that the heritability of 12-17 feed conversion ratio was 0.19, with the highest genetic correlation observed with 17 body weight (-0.96). Additionally, the heritability of 12-17 residual feed intake was 0.09, with the highest genetic correlation with 12-14 average daily feed intake (0.93). GWAS results revealed 28 significant SNPs associated with body weight, feed intake, metabolic weight, weight gain, feed conversion ratio, and residual feed intake. The multiple genes are significantly enriched in the aromatic compound biosynthetic process, heterocycle biosynthetic process, and nucleobase-containing compound biosynthetic process. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis showed that the expression levels of four genes-exocyst complex component 4(EXOC4), fibrosin like 1(FBRSL1), methionine adenosyltransferase 2 non-catalytic beta subunit (MAT2B), and cytidine/uridine monophosphate kinase 1(CMPK1)-related to significant SNPs exhibited significant differences in the liver tissues of high residual feed intake group compared with low residual feed intake group. These findings contribute to a better understanding of the molecular mechanisms underlying chicken feed efficiency traits, enabling further genetic improvement of Qingyuan Partridge chickens, and improving industrial efficiency.
Collapse
Affiliation(s)
- Fei Ye
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Hongwei Jie
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Jiankang Gan
- Guangdong Tinoo's Food Co., Ltd., Qingyuan, Guangdong 511500, China
| | - Kunyu Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Zhengfen Zhang
- Guangdong Tinoo's Food Co., Ltd., Qingyuan, Guangdong 511500, China
| | - Hai Xiang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Wei Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Qiong Yin
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Siyu Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Hui Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; Guangdong Tinoo's Food Co., Ltd., Qingyuan, Guangdong 511500, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; Guangdong Tinoo's Food Co., Ltd., Qingyuan, Guangdong 511500, China.
| |
Collapse
|
8
|
Raffle J, Novo Matos J, Wallace M, Wilkie L, Piercy RJ, Elliott P, Connolly DJ, Luis Fuentes V, Psifidi A. Identification of novel genetic variants associated with feline cardiomyopathy using targeted next-generation sequencing. Sci Rep 2025; 15:3871. [PMID: 39890868 PMCID: PMC11785968 DOI: 10.1038/s41598-025-87852-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 01/22/2025] [Indexed: 02/03/2025] Open
Abstract
Cardiomyopathies are the most common heritable heart diseases in cats and humans. This study aimed to identify novel genetic variants in cats with hypertrophic cardiomyopathy (HCM) and restrictive cardiomyopathy (RCM) using a targeted panel of genes associated with human cardiomyopathy. Cats were phenotyped for HCM/RCM by echocardiography ± necropsy. DNA was extracted from residual blood, and targeted next-generation sequencing was performed on two separate feline cohorts: an across-breed cohort (23 healthy cats and 21 HCM-affected pedigree or Domestic Shorthair cats), and a within-breed cohort of Birman pedigree cats (14 healthy, 8 HCM-affected, and 6 RCM-affected). Genome Analysis Toolkit was used for variant discovery. Genomic association analyses, including the covariates breed, age, and sex, were conducted to identify genetic variants of interest. We identified genetic variants associated with both HCM and RCM susceptibility in the sarcomeric genes ACTC1, ACTN2, MYH7, TNNT2 and the non-sarcomeric gene CSRP3 in the Birman pedigree cats. These findings suggest that, as proposed in humans, there is at least partial overlap in the genetic background between the HCM and RCM phenotypes in cats. These findings offer potential insights for comparative cardiac research and translational medicine.
Collapse
Affiliation(s)
- Jade Raffle
- Clinical Science and Services, Royal Veterinary College, London, UK.
| | - Jose Novo Matos
- Clinical Science and Services, Royal Veterinary College, London, UK
| | - Marsha Wallace
- Clinical Science and Services, Royal Veterinary College, London, UK
| | - Lois Wilkie
- Clinical Science and Services, Royal Veterinary College, London, UK
| | - Richard J Piercy
- Clinical Science and Services, Royal Veterinary College, London, UK
| | - Perry Elliott
- Institute of Cardiovascular Science, University College London, London, UK
| | - David J Connolly
- Clinical Science and Services, Royal Veterinary College, London, UK
| | | | - Androniki Psifidi
- Clinical Science and Services, Royal Veterinary College, London, UK.
| |
Collapse
|
9
|
McCaw ZR, Dey R, Somineni H, Amar D, Mukherjee S, Sandor K, Karaletsos T, Koller D, Aschard H, Smith GD, MacArthur D, O'Dushlaine C, Soare TW. Pitfalls in performing genome-wide association studies on ratio traits. HGG ADVANCES 2025; 6:100406. [PMID: 39818621 PMCID: PMC11808723 DOI: 10.1016/j.xhgg.2025.100406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/18/2025] Open
Abstract
Genome-wide association studies (GWASs) are often performed on ratios composed of a numerator trait divided by a denominator trait. Examples include body mass index (BMI) and the waist-to-hip ratio, among many others. Explicitly or implicitly, the goal of forming the ratio is typically to adjust for an association between the numerator and denominator. While forming ratios may be clinically expedient, there are several important issues with performing GWAS on ratios. Forming a ratio does not "adjust" for the denominator in the sense of conditioning on it, and it is unclear whether associations with ratios are attributable to the numerator, the denominator, or both. Here we demonstrate that associations arising in ratio GWAS can be entirely denominator driven, implying that at least some associations uncovered by ratio GWAS may be due solely to a putative adjustment variable. In a survey of 10 common ratio traits, we find that the ratio model disagrees with the adjusted model (performing GWAS on the numerator while conditioning on the denominator) at around 1/3 of loci. Using BMI as an example, we show that variants detected by only the ratio model are more strongly associated with the denominator (height), while variants detected by only the adjusted model are more strongly associated with the numerator (weight). Although the adjusted model provides effect sizes with a clearer interpretation, it is susceptible to collider bias. We propose and validate a simple method of correcting for the genetic component of collider bias via leave-one-chromosome-out polygenic scoring.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hugues Aschard
- Institut Pasteur, Université Paris Cité, Department of Computational Biology, Paris, France
| | | | - Daniel MacArthur
- Centre for Population Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia; Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | | | | |
Collapse
|
10
|
Gu LL, Wu HS, Liu TY, Zhang YJ, He JC, Liu XL, Wang ZY, Chen GB, Jiang D, Fang M. Rapid and accurate multi-phenotype imputation for millions of individuals. Nat Commun 2025; 16:387. [PMID: 39755672 DOI: 10.1038/s41467-024-55496-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/11/2024] [Indexed: 01/06/2025] Open
Abstract
Deep phenotyping can enhance the power of genetic analysis, including genome-wide association studies (GWAS), but the occurrence of missing phenotypes compromises the potential of such resources. Although many phenotypic imputation methods have been developed, the accurate imputation of millions of individuals remains challenging. In the present study, we have developed a multi-phenotype imputation method based on mixed fast random forest (PIXANT) by leveraging efficient machine learning (ML)-based algorithms. We demonstrate by extensive simulations that PIXANT is reliable, robust and highly resource-efficient. We then apply PIXANT to the UKB data of 277,301 unrelated White British citizens and 425 traits, and GWAS is subsequently performed on the imputed phenotypes, 18.4% more GWAS loci are identified than before imputation (8710 vs 7355). The increased statistical power of GWAS identified some additional candidate genes affecting heart rate, such as RNF220, SCN10A, and RGS6, suggesting that the use of imputed phenotype data from a large cohort may lead to the discovery of additional candidate genes for complex traits.
Collapse
Affiliation(s)
- Lin-Lin Gu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs & Fisheries college, Jimei University, Xiamen, Fujian, People's Republic of China
| | - Hong-Shan Wu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs & Fisheries college, Jimei University, Xiamen, Fujian, People's Republic of China
| | - Tian-Yi Liu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs & Fisheries college, Jimei University, Xiamen, Fujian, People's Republic of China
| | - Yong-Jie Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs & Fisheries college, Jimei University, Xiamen, Fujian, People's Republic of China
| | - Jing-Cheng He
- Center for Data Science, School of Mathematical Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiao-Lei Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Zhi-Yong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs & Fisheries college, Jimei University, Xiamen, Fujian, People's Republic of China
| | - Guo-Bo Chen
- Center for General Practice Medicine, Department of General Practice Medicine, Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China.
| | - Dan Jiang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs & Fisheries college, Jimei University, Xiamen, Fujian, People's Republic of China.
| | - Ming Fang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs & Fisheries college, Jimei University, Xiamen, Fujian, People's Republic of China.
| |
Collapse
|
11
|
Ko WH, Kim S, Catry A, Cho JY, Shin S. Genome-wide statistical evidence elucidates candidate factors of life expectancy in dogs. Mol Cells 2025; 48:100162. [PMID: 39580055 PMCID: PMC11721540 DOI: 10.1016/j.mocell.2024.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/28/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024] Open
Abstract
It is well-established that large and heavy dogs tend to live shorter lives. In this study, we aimed to determine whether traits other than body size are associated with the life expectancy of dogs. We compiled a dataset of 20 phenotypes, including body size, lifespan, snout ratio, and shedding, into a single matrix for 149 dog breeds using data from the American Kennel Club and other peer-reviewed sources. The analysis revealed that drooling might be associated with both the lifespan and body mass index of dogs. Furthermore, a genome-wide association study with adjusted phenotypes and statistical verification methods, such as Mendelian randomization. Additionally, conducting differential gene expression analysis with the salivary gland for the 2 cases, hypersalivation/less drooling vs various body sizes, we could observe the hypersalivation-related proteins. This genetic analysis suggests that body size and drooling might be candidate factors influencing lifespan. Consequently, we identified several candidate genes, including IGSF1, PACSIN2, PIK3R1, and MCCC2, as potential genetic factors influencing longevity-related phenotypes.
Collapse
Affiliation(s)
- Won Hee Ko
- School of Biological Sciences and Institute of Biodiversity, Seoul National University, Seoul 08826, Republic of Korea; Comparative Medicine Disease Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangil Kim
- School of Biological Sciences and Institute of Biodiversity, Seoul National University, Seoul 08826, Republic of Korea; Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alix Catry
- Université Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622, Villeurbanne, France
| | - Je-Yoel Cho
- Comparative Medicine Disease Research Center, Seoul National University, Seoul 08826, Republic of Korea; Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.
| | - Seunggwan Shin
- School of Biological Sciences and Institute of Biodiversity, Seoul National University, Seoul 08826, Republic of Korea; Comparative Medicine Disease Research Center, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
12
|
Akinbiyi T, McPeek MS, Abney M. ADELLE: A global testing method for trans-eQTL mapping. PLoS Genet 2025; 21:e1011563. [PMID: 39792937 PMCID: PMC11756770 DOI: 10.1371/journal.pgen.1011563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 01/23/2025] [Accepted: 12/31/2024] [Indexed: 01/12/2025] Open
Abstract
Understanding the genetic regulatory mechanisms of gene expression is an ongoing challenge. Genetic variants that are associated with expression levels are readily identified when they are proximal to the gene (i.e., cis-eQTLs), but SNPs distant from the gene whose expression levels they are associated with (i.e., trans-eQTLs) have been much more difficult to discover, even though they account for a majority of the heritability in gene expression levels. A major impediment to the identification of more trans-eQTLs is the lack of statistical methods that are powerful enough to overcome the obstacles of small effect sizes and large multiple testing burden of trans-eQTL mapping. Here, we propose ADELLE, a powerful statistical testing framework that requires only summary statistics and is designed to be most sensitive to SNPs that are associated with multiple gene expression levels, a characteristic of many trans-eQTLs. In simulations, we show that for detecting SNPs that are associated with 0.1%-2% of 10,000 traits, among the 8 methods we consider ADELLE is clearly the most powerful overall, with either the highest power or power not significantly different from the highest for all settings in that range. We apply ADELLE to a mouse advanced intercross line data set and show its ability to find trans-eQTLs that were not significant under a standard analysis. We also apply ADELLE to trans-eQTL mapping in the eQTLGen data, and for 1,451 previously identified trans-eQTLs, we discover trans association with additional expression traits beyond those previously identified. This demonstrates that ADELLE is a powerful tool at uncovering trans regulators of genetic expression.
Collapse
Affiliation(s)
- Takintayo Akinbiyi
- Department of Statistics, The University of Chicago, Chicago, Illinois, United States of America
| | - Mary Sara McPeek
- Department of Statistics, The University of Chicago, Chicago, Illinois, United States of America
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
| | - Mark Abney
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
13
|
Li S, Ge F, Chen L, Liu Y, Chen Y, Ma Y. Genome-wide association analysis of body conformation traits in Chinese Holstein Cattle. BMC Genomics 2024; 25:1174. [PMID: 39627684 PMCID: PMC11616231 DOI: 10.1186/s12864-024-11090-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND The body conformation traits of dairy cattle are closely related to their production performance and health. The present study aimed to identify gene variants associated with body conformation traits in Chinese Holstein cattle and provide marker loci for genomic selection in dairy cattle breeding. These findings could offer robust theoretical support for optimizing the health of dairy cattle and enhancing their production performance. RESULTS This study involved 586 Chinese Holstein cattle and used the predicted transmitting abilities (PTAs) of 17 body conformation traits evaluated by the Council on Dairy Cattle Breeding in the USA as phenotypic values. These traits were categorized into body size traits, rump traits, feet/legs traits, udder traits, and dairy characteristic traits. On the basis of the genomic profiling results from the Genomic Profiler Bovine 100 K SNP chip, genotype data were quality controlled via PLINK software, and 586 individuals and 80,713 SNPs were retained for further analysis. Genome-wide association studies (GWASs) were conducted via GEMMA software, which employs both univariate linear mixed models (LMMs) and multivariate linear mixed models (mvLMMs). The Bonferroni method was used to determine the significance threshold, identifying gene variants significantly associated with body conformation traits in Chinese Holstein cattle. The single-trait GWAS identified 24 SNPs significantly associated with body conformation traits (P < 0.01), with annotation leading to the identification of 21 candidate genes. The multi-trait GWAS identified 54 SNPs, which were annotated to 57 candidate genes, including 39 new SNPs not identified in the single-trait GWAS. Additionally, 14 SNPs in the 86.84-87.41 Mb region of chromosome 6 were significantly associated with multiple traits, such as body size, udder, and dairy characteristics. Four genes-SLC4A4, GC, NPFFR2, and ADAMTS3-were annotated in this region. CONCLUSIONS A total of 63 SNPs were identified as significantly associated with 17 body conformation traits in Chinese Holstein cattle through both single-trait and multi-trait GWAS analyses. Sixty-six candidate genes were annotated, with 12 genes identified by both methods, such as SLC4A4, GC, NPFFR2, and ADAMTS3, which are involved in pathways such as growth hormone synthesis and secretion, sphingolipid signaling, and dopaminergic synapse pathways. These findings provide potential genetic marker information related to body conformation traits for the breeding of Chinese Holstein cattle.
Collapse
Affiliation(s)
- Shuangshuang Li
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Fei Ge
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Lili Chen
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Yuxin Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Yan Chen
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
| | - Yi Ma
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.
| |
Collapse
|
14
|
Hooper DM, McDiarmid CS, Powers MJ, Justyn NM, Kučka M, Hart NS, Hill GE, Andolfatto P, Chan YF, Griffith SC. Spread of yellow-bill-color alleles favored by selection in the long-tailed finch hybrid system. Curr Biol 2024; 34:5444-5456.e8. [PMID: 39500321 DOI: 10.1016/j.cub.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 11/15/2024]
Abstract
Carotenoid pigments produce the yellow and red colors of birds and other vertebrates. Despite their importance in social signaling and sexual selection, our understanding of how carotenoid ornamentation evolves in nature remains limited. Here, we examine the long-tailed finch Poephila acuticauda, an Australian songbird with a yellow-billed western subspecies acuticauda and a red-billed eastern subspecies hecki, which hybridize where their ranges overlap. We found that yellow bills can be explained by the loss of C(4)-oxidation, thus preventing yellow dietary carotenoids from being converted to red. Combining linked-read genomic sequencing and reflectance spectrophotometry measurements of bill color collected from wild-sampled finches and laboratory crosses, we identify four loci that together explain 53% of variance in this trait. The two loci of largest effect contain the genes CYP2J19, an essential enzyme for producing red carotenoids, and TTC39B, an enhancer of carotenoid metabolism. A paucity of protein-coding changes and an enrichment of associated upstream variants suggest that the loss of C(4)-oxidation results from cis-regulatory evolution. Evolutionary genealogy reconstruction indicates that the red-billed phenotype is ancestral and that yellow alleles at CYP2J19 and TTC39B first arose and fixed in acuticauda approximately 100 kya. Yellow alleles subsequently introgressed into hecki less than 5 kya. Across all color loci, acuticauda-derived variants show evidence of selective sweeps, implying that yellow bill coloration has been favored by natural selection. Our study illustrates how evolutionary transitions between yellow and red coloration can be achieved by successive selective events acting on regulatory changes at a few interacting genes.
Collapse
Affiliation(s)
- Daniel M Hooper
- Institute for Comparative Genomics and Richard Gilder Graduate School, American Museum of Natural History, New York, NY 10024, USA; School of Natural Sciences, Macquarie University, Sydney, NSW 2213, Australia.
| | - Callum S McDiarmid
- School of Natural Sciences, Macquarie University, Sydney, NSW 2213, Australia
| | - Matthew J Powers
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | | | - Marek Kučka
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | - Nathan S Hart
- School of Natural Sciences, Macquarie University, Sydney, NSW 2213, Australia
| | - Geoffrey E Hill
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Peter Andolfatto
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Yingguang Frank Chan
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany; Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9747 AG Groningen, the Netherlands
| | - Simon C Griffith
- School of Natural Sciences, Macquarie University, Sydney, NSW 2213, Australia
| |
Collapse
|
15
|
Yusuf LH, Pascoal S, Moran PA, Bailey NW. Testing the genomic overlap between intraspecific mating traits and interspecific mating barriers. Evol Lett 2024; 8:902-915. [PMID: 39677567 PMCID: PMC11637687 DOI: 10.1093/evlett/qrae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 06/19/2024] [Accepted: 07/18/2024] [Indexed: 12/17/2024] Open
Abstract
Differences in interspecific mating traits, such as male sexual signals and female preferences, often evolve quickly as initial barriers to gene flow between nascent lineages, and they may also strengthen such barriers during secondary contact via reinforcement. However, it is an open question whether loci contributing to intraspecific variation in sexual traits are co-opted during the formation and strengthening of mating barriers between species. To test this, we used a population genomics approach in natural populations of Australian cricket sister species that overlap in a contact zone: Teleogryllus oceanicus and Teleogryllus commodus. First, we identified loci associated with intraspecific variation in T. oceanicus mating signals: advertisement song and cuticular hydrocarbon (CHC) pheromones. We then separately identified candidate interspecific barrier loci between the species. Genes showing elevated allelic divergence between species were enriched for neurological functions, indicating potential behavioral rewiring. Only two CHC-associated genes overlapped with these interspecific candidate barrier loci, and intraspecific CHC loci showed signatures of being under strong selective constraints between species. In contrast, 10 intraspecific song-associated genes showed high genetic differentiation between T. commodus and T. oceanicus, and 2 had signals of high genomic divergence. The overall lack of shared loci in intra vs. interspecific comparisons of mating trait and candidate barrier loci is consistent with limited co-option of the genetic architecture of interspecific mating signals during the establishment and maintenance of reproductive isolation.
Collapse
Affiliation(s)
- Leeban H Yusuf
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife, United Kingdom
| | - Sonia Pascoal
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Peter A Moran
- A-LIFE, Section Ecology & Evolution, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nathan W Bailey
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife, United Kingdom
| |
Collapse
|
16
|
Zhong C, Li X, Guan D, Zhang B, Wang X, Qu L, Zhou H, Fang L, Sun C, Yang N. Age-dependent genetic architectures of chicken body weight explored by multidimensional GWAS and molQTL analyses. J Genet Genomics 2024; 51:1423-1434. [PMID: 39306327 DOI: 10.1016/j.jgg.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 11/11/2024]
Abstract
Chicken body weight (BW) is a critical trait in breeding. Although genetic variants associated with BW have been investigated by genome-wide association studies (GWAS), the contributions of causal variants and their molecular mechanisms remain largely unclear in chickens. In this study, we construct a comprehensive genetic atlas of chicken BW by integrative analysis of 30 age points and 5 quantitative trait loci (QTL) across 27 tissues. We find that chicken growth is a cumulative non-linear process, which can be divided into three distinct stages. Our GWAS analysis reveals that BW-related genetic variations show ordered patterns in these three stages. Genetic variations in chromosome 1 may regulate the overall growth process, likely by modulating the hypothalamus-specific expression of SLC25A30 and retina-specific expression of NEK3. Moreover, genetic variations in chromosome 4 and chromosome 27 may play dominant roles in regulating BW during Stage 2 (8-22 weeks) and Stage 3 (23-72 weeks), respectively. In summary, our study presents a comprehensive genetic atlas regulating developmental stage-specific changes in chicken BW, thus providing important resources for genomic selection in breeding programs.
Collapse
Affiliation(s)
- Conghao Zhong
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Xiaochang Li
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Dailu Guan
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Boxuan Zhang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Xiqiong Wang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Liang Qu
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu 225125, China
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Lingzhao Fang
- Center for Quantitative Genetics and Genomics (QGG), Aarhus University, Aarhus 8000, Denmark
| | - Congjiao Sun
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China.
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
17
|
Couto EGO, Morales-Marroquín JA, Alves-Pereira A, Fernandes SB, Colombo CA, de Azevedo-Filho JA, Carvalho CRL, Zucchi MI. Genome-wide association insights into the genomic regions controlling vegetative and oil production traits in Acrocomia aculeata. BMC PLANT BIOLOGY 2024; 24:1125. [PMID: 39587483 PMCID: PMC11590364 DOI: 10.1186/s12870-024-05805-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Macauba (Acrocomia aculeata) is a non-domesticated neotropical palm that has been attracting attention for economic use due to its great potential for oil production comparable to the commercially used oil palm (Elaeis guineensis). The discovery of associations between quantitative trait loci and economically important traits represents an advance toward understanding its genetic architecture and can contribute to accelerating macauba domestication. Pursuing this advance, this study performs single-trait and multi-trait GWAS models to identify candidate genes associated with vegetative and oil production traits in macauba. Eighteen phenotypic traits were evaluated from 201 palms within a native population. Genotyping was performed with SNP markers, following the protocol of genotyping-by-sequencing. Given that macauba lacks a reference genome, SNP calling was performed using three different strategies: using i) de novo sequencing, ii) the Elaeis guineenses Jacq. reference genome and iii) the macauba transcriptome sequences. After quality control, we identified a total of 27,410 SNPs in 153 individuals for the de novo genotypic dataset, 10,444 SNPs in 158 individuals using the oil palm genotypic dataset, and 4,329 SNPs in 167 individuals using the transcriptome genotypic dataset. The GWAS analysis was then performed on these three genotypic datasets. RESULTS Statistical phenotypic analyses revealed significant differences across all studied traits, with heritability values ranging from 63 to 95%. This indicates that the population contains promising genotypes for selection and the initiation of breeding programs. Genetic correlations between the 18 traits ranged from -0.47 to 0.99. The total number of significant SNPs in the single-trait and multi-trait GWAS was 92 and 6 using the de novo genotypic dataset, 19 and 11 using the oil palm genotypic dataset, and 1 and 2 using the transcriptome genotypic dataset, respectively. Gene annotation identified 12 candidate genes in the single-trait GWAS and four in the multi-trait GWAS, across the 18 phenotypic traits studied, in the three genotypic datasets. Gene mapping of the macauba candidate genes revealed similarities with Elaeis guineensis and Phoenix dactylifera. The candidate genes detected are responsible for metal ion binding and transport, protein transportation, DNA repair, and other cell regulation biological processes. CONCLUSIONS We provide new insights into genomic regions that map candidate genes associated with vegetative and oil production traits in macauba. These potential candidate genes require confirmation through targeted functional analyses in the future, and multi-trait associations need to be scrutinized to investigate the presence of pleiotropic or linked genes. Markers linked to traits of interest could serve as valuable resources for the development of marker-assisted selection in macauba for its domestication and pre-breeding.
Collapse
Affiliation(s)
- Evellyn G O Couto
- Department of Genetics, "Luiz de Queiroz" College of Agriculture, São Paulo University, (ESALQ/USP), Piracicaba, Brazil.
| | - Jonathan A Morales-Marroquín
- Department of Genetics, "Luiz de Queiroz" College of Agriculture, São Paulo University, (ESALQ/USP), Piracicaba, Brazil
| | | | - Samuel B Fernandes
- Department of Crop Soil, and Enviromental Sciences, Center of Agrcultural Data Analytics, University of Arkansas, Fayetteville, USA
| | - Carlos Augusto Colombo
- Research Center of Plant Genetic Resources, Campinas Agronomic Institute, Campinas, Brazil
| | | | | | - Maria Imaculada Zucchi
- Department of Genetics, "Luiz de Queiroz" College of Agriculture, São Paulo University, (ESALQ/USP), Piracicaba, Brazil.
- Polo Centro Sul, São Paulo Agency for Agribusiness Technology (APTA), Piracicaba, Brazil.
| |
Collapse
|
18
|
Dunn PO, Sly ND, Freeman-Gallant CR, Henschen AE, Bossu CM, Ruegg KC, Minias P, Whittingham LA. Sexually selected differences in warbler plumage are related to a putative inversion on the Z chromosome. Mol Ecol 2024; 33:e17525. [PMID: 39268700 DOI: 10.1111/mec.17525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 08/16/2024] [Indexed: 09/17/2024]
Abstract
Large structural variants in the genome, such as inversions, may play an important role in producing population structure and local adaptation to the environment through suppression of recombination. However, relatively few studies have linked inversions to phenotypic traits that are sexually selected and may play a role in reproductive isolation. Here, we found that geographic differences in the sexually selected plumage of a warbler, the common yellowthroat (Geothlypis trichas), are largely due to differences in the Z (sex) chromosome (males are ZZ), which contains at least one putative inversion spanning 40% (31/77 Mb) of its length. The inversions on the Z chromosome vary dramatically east and west of the Appalachian Mountains, which provides evidence of cryptic population structure within the range of the most widespread eastern subspecies (G. t. trichas). In an eastern (New York) and western (Wisconsin) population of this subspecies, female prefer different male ornaments; larger black facial masks are preferred in Wisconsin and larger yellow breasts are preferred in New York. The putative inversion also contains genes related to vision, which could influence mating preferences. Thus, structural variants on the Z chromosome are associated with geographic differences in male ornaments and female choice, which may provide a mechanism for maintaining different patterns of sexual selection in spite of gene flow between populations of the same subspecies.
Collapse
Affiliation(s)
- Peter O Dunn
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Nicholas D Sly
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | | | - Amberleigh E Henschen
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Christen M Bossu
- Department of Biology, Colorado State University, Ft. Collins, Colorado, USA
| | - Kristen C Ruegg
- Department of Biology, Colorado State University, Ft. Collins, Colorado, USA
| | - Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Linda A Whittingham
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
19
|
Arouisse B, Thoen MPM, Kruijer W, Kunst JF, Jongsma MA, Keurentjes JJB, Kooke R, de Vos RCH, Mumm R, van Eeuwijk FA, Dicke M, Kloth KJ. Bivariate GWA mapping reveals associations between aliphatic glucosinolates and plant responses to thrips and heat stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:674-686. [PMID: 39316617 DOI: 10.1111/tpj.17009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/20/2024] [Indexed: 09/26/2024]
Abstract
Although plants harbor a huge phytochemical diversity, only a fraction of plant metabolites is functionally characterized. In this work, we aimed to identify the genetic basis of metabolite functions during harsh environmental conditions in Arabidopsis thaliana. With machine learning algorithms we predicted stress-specific metabolomes for 23 (a)biotic stress phenotypes of 300 natural Arabidopsis accessions. The prediction models identified several aliphatic glucosinolates (GLSs) and their breakdown products to be implicated in responses to heat stress in siliques and herbivory by Western flower thrips, Frankliniella occidentalis. Bivariate GWA mapping of the metabolome predictions and their respective (a)biotic stress phenotype revealed genetic associations with MAM, AOP, and GS-OH, all three involved in aliphatic GSL biosynthesis. We, therefore, investigated thrips herbivory on AOP, MAM, and GS-OH loss-of-function and/or overexpression lines. Arabidopsis accessions with a combination of MAM2 and AOP3, leading to 3-hydroxypropyl dominance, suffered less from thrips feeding damage. The requirement of MAM2 for this effect could, however, not be confirmed with an introgression line of ecotypes Cvi and Ler, most likely due to other, unknown susceptibility factors in the Ler background. However, AOP2 and GS-OH, adding alkenyl or hydroxy-butenyl groups, respectively, did not have major effects on thrips feeding. Overall, this study illustrates the complex implications of aliphatic GSL diversity in plant responses to heat stress and a cell-content-feeding herbivore.
Collapse
Affiliation(s)
- Bader Arouisse
- Biometris, Wageningen University and Research, Wageningen, the Netherlands
| | - Manus P M Thoen
- Laboratory of Entomology, Wageningen University & Research, Wageningen, the Netherlands
- Enza Seeds, Enkhuizen, the Netherlands
| | - Willem Kruijer
- Biometris, Wageningen University and Research, Wageningen, the Netherlands
| | - Jonathan F Kunst
- Biometris, Wageningen University and Research, Wageningen, the Netherlands
| | - Maarten A Jongsma
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Joost J B Keurentjes
- Laboratory of Genetics, Wageningen University and Research, Wageningen, the Netherlands
| | - Rik Kooke
- Biometris, Wageningen University and Research, Wageningen, the Netherlands
- Laboratory of Genetics, Wageningen University and Research, Wageningen, the Netherlands
| | - Ric C H de Vos
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Roland Mumm
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Fred A van Eeuwijk
- Biometris, Wageningen University and Research, Wageningen, the Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University & Research, Wageningen, the Netherlands
| | - Karen J Kloth
- Laboratory of Entomology, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
20
|
Kusmec A, Yeh CT'E, Schnable PS. Data-driven identification of environmental variables influencing phenotypic plasticity to facilitate breeding for future climates. THE NEW PHYTOLOGIST 2024; 244:618-634. [PMID: 39183371 DOI: 10.1111/nph.19937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/20/2024] [Indexed: 08/27/2024]
Abstract
Phenotypic plasticity describes a genotype's ability to produce different phenotypes in response to different environments. Breeding crops that exhibit appropriate levels of plasticity for future climates will be crucial to meeting global demand, but knowledge of the critical environmental factors is limited to a handful of well-studied major crops. Using 727 maize (Zea mays L.) hybrids phenotyped for grain yield in 45 environments, we investigated the ability of a genetic algorithm and two other methods to identify environmental determinants of grain yield from a large set of candidate environmental variables constructed using minimal assumptions. The genetic algorithm identified pre- and postanthesis maximum temperature, mid-season solar radiation, and whole season net evapotranspiration as the four most important variables from a candidate set of 9150. Importantly, these four variables are supported by previous literature. After calculating reaction norms for each environmental variable, candidate genes were identified and gene annotations investigated to demonstrate how this method can generate insights into phenotypic plasticity. The genetic algorithm successfully identified known environmental determinants of hybrid maize grain yield. This demonstrates that the methodology could be applied to other less well-studied phenotypes and crops to improve understanding of phenotypic plasticity and facilitate breeding crops for future climates.
Collapse
Affiliation(s)
- Aaron Kusmec
- Department of Agronomy, Iowa State University, Ames, IA, 50011-3650, USA
| | | | - Patrick S Schnable
- Department of Agronomy, Iowa State University, Ames, IA, 50011-3650, USA
- Plant Sciences Institute, Iowa State University, Ames, IA, 50011-3650, USA
| |
Collapse
|
21
|
Sun L, Lai M, Ghouri F, Nawaz MA, Ali F, Baloch FS, Nadeem MA, Aasim M, Shahid MQ. Modern Plant Breeding Techniques in Crop Improvement and Genetic Diversity: From Molecular Markers and Gene Editing to Artificial Intelligence-A Critical Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:2676. [PMID: 39409546 PMCID: PMC11478383 DOI: 10.3390/plants13192676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/08/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024]
Abstract
With the development of new technologies in recent years, researchers have made significant progress in crop breeding. Modern breeding differs from traditional breeding because of great changes in technical means and breeding concepts. Whereas traditional breeding initially focused on high yields, modern breeding focuses on breeding orientations based on different crops' audiences or by-products. The process of modern breeding starts from the creation of material populations, which can be constructed by natural mutagenesis, chemical mutagenesis, physical mutagenesis transfer DNA (T-DNA), Tos17 (endogenous retrotransposon), etc. Then, gene function can be mined through QTL mapping, Bulked-segregant analysis (BSA), Genome-wide association studies (GWASs), RNA interference (RNAi), and gene editing. Then, at the transcriptional, post-transcriptional, and translational levels, the functions of genes are described in terms of post-translational aspects. This article mainly discusses the application of the above modern scientific and technological methods of breeding and the advantages and limitations of crop breeding and diversity. In particular, the development of gene editing technology has contributed to modern breeding research.
Collapse
Affiliation(s)
- Lixia Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Mingyu Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Amjad Nawaz
- Education Scientific Center of Nanotechnology, Far Eastern Federal University, 690091 Vladivostok, Russia;
| | - Fawad Ali
- School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China;
| | - Faheem Shehzad Baloch
- Dapartment of Biotechnology, Faculty of Science, Mersin University, Mersin 33343, Türkiye;
| | - Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas 58140, Türkiye; (M.A.N.); (M.A.)
| | - Muhammad Aasim
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas 58140, Türkiye; (M.A.N.); (M.A.)
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
22
|
Iglesias Pastrana C, Navas González FJ, Macri M, Martínez Martínez MDA, Ciani E, Delgado Bermejo JV. Identification of novel genetic loci related to dromedary camel (Camelus dromedarius) morphometrics, biomechanics, and behavior by genome-wide association studies. BMC Vet Res 2024; 20:418. [PMID: 39294626 PMCID: PMC11409489 DOI: 10.1186/s12917-024-04263-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024] Open
Abstract
In the realm of animal breeding for sustainability, domestic camels have traditionally been valued for their milk and meat production. However, key aspects such as zoometrics, biomechanics, and behavior have often been overlooked in terms of their genetic foundations. Recognizing this gap, the present study perfomed genome-wide association analyses to identify genetic markers associated with zoometrics-, biomechanics-, and behavior-related traits in dromedary camels (Camelus dromedarius). 16 and 108 genetic markers were significantly associated (q < 0.05) at genome and chromosome-wide levels of significance, respectively, with zoometrics- (width, length, and perimeter/girth), biomechanics- (acceleration, displacement, spatial position, and velocity), and behavior-related traits (general cognition, intelligence, and Intelligence Quotient (IQ)) in dromedaries. In most association loci, the nearest protein-coding genes are linkedto neurodevelopmental and sensory disorders. This suggests that genetic variations related to neural development and sensory perception play crucial roles in shaping a dromedary camel's physical characteristics and behavior. In summary, this research advances our understanding of the genomic basis of essential traits in dromedary camels. Identifying specific genetic markers associated with zoometrics, biomechanics, and behavior provides valuable insights into camel domestication. Moreover, the links between these traits and genes related to neurodevelopmental and sensory disorders highlight the broader implications of domestication and modern selection on the health and welfare of dromedary camels. This knowledge could guide future breeding strategies, fostering a more holistic approach to camel husbandry and ensuring the sustainability of these animals in diverse agricultural contexts.
Collapse
Affiliation(s)
| | | | - Martina Macri
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, Córdoba, Spain
- Animal Breeding Consulting S.L, Parque Científico Tecnológico de Córdoba, Córdoba, Spain
| | | | - Elena Ciani
- Department of Biosciences, Biotechnologies and Environment, Faculty of Veterinary Sciences, University of Bari 'Aldo Moro', Bari, Italy
| | | |
Collapse
|
23
|
Xiang X, Liu S, He Y, Li D, Ofori AD, Ghani Kandhro A, Zheng T, Yi X, Li P, Huang F, Zheng A. Genome wide association study reveals new genes for resistance to striped stem borer in rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1466857. [PMID: 39345976 PMCID: PMC11427250 DOI: 10.3389/fpls.2024.1466857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024]
Abstract
Rice is one of the most important food crops in the world and is important for global food security. However, damage caused by striped stem borer (SSB) seriously threatens rice production and can cause significant yield losses. The development and use of resistant rice varieties or genes is currently the most effective strategy for controlling SSB. We genotyped 201 rice samples using 2849855 high-confidence single nucleotide polymorphisms (SNPs). We conducted a genome-wide association study (GWAS) based on observed variation data of 201 rice cultivars resistant to SSB. We obtained a quantitative trait locus (QTL)-qRSSB4 that confers resistance to SSB. Through annotation and analysis of genes within the qRSSB4 locus, as well as qRT-PCR detection in resistant rice cultivars, we ultimately selected the candidate gene LOC_Os04g34140 (named OsRSSB4) for further analysis. Next, we overexpressed the candidate gene OsRSSB4 in Nipponbare through transgenic methods, resulting in OsRSSB4 overexpressing lines (OsRSSB4OE). In addition, we evaluated the insect resistance of OsRSSB4OE lines using wild type (Nipponbare) as a control. The bioassay experiment results of live plants showed that after 20 days of inoculation with SSB, the withering heart rate of OsRSSB4OE-34 and OsRSSB4OE-39 lines was only 8.3% and 0%, with resistance levels of 1 and 0, respectively; however, the withering heart rate of the wild-type reached 100%, with a resistance level of 9. The results of the in vitro stem bioassay showed that, compared with the wild-type, the average corrected mortality rate of the SSB fed on the OsRSSB4OE line reached 94.3%, and the resistance reached a high level. In summary, we preliminarily confirmed that OsRSSB4 positively regulates the defense of rice against SSB. This research findings reveal new SSB resistance gene resources, providing an important genetic basis for SSB resistance breeding in rice crops.
Collapse
Affiliation(s)
- Xing Xiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Shuhua Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Yuewen He
- Guangan Vocational & Technical College, Guangan, China
| | - Deqiang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Andrews Danso Ofori
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Abdul Ghani Kandhro
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Tengda Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Xiaoqun Yi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Ping Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Fu Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Aiping Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
24
|
Guo H, Li T, Shi Y, Wang X. MTML: An Efficient Multitrait Multilocus GWAS Method Based on the Cauchy Combination Test. Biom J 2024; 66:e202300130. [PMID: 39076046 DOI: 10.1002/bimj.202300130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/19/2023] [Accepted: 11/27/2023] [Indexed: 07/31/2024]
Abstract
Genome-wide association study (GWAS) by measuring the joint effect of multiple loci on multiple traits, has recently attracted interest, due to the decreased costs of high-throughput genotyping and phenotyping technologies. Previous studies mainly focused on either multilocus models that identify associations with a single trait or multitrait models that scan a single marker at a time. Since these types of models cannot fully utilize the association information, the powers of the tests are usually low. To potentially address this problem, we present here a multitrait multilocus (MTML) modeling framework that implements in three steps: (1) simplify the complex calculation; (2) reduce the model dimension; (3) integrate the joint contribution of single markers to multiple traits by Cauchy combination. The performances of MTML are evaluated and compared with other three published methods by Monte Carlo simulations. Simulation results show that MTML is more powerful for quantitative trait nucleotide detection and robust for various numbers of traits. In the meanwhile, MTML can effectively control type I error rate at a reasonable level. Real data analysis of Arabidopsis thaliana shows that MTML identifies more pleiotropic genetic associations. Therefore, we conclude that MTML is an efficient GWAS method for joint analysis of multiple quantitative traits. The R package MTML, which facilitates the implementation of the proposed method, is publicly available on GitHub https://github.com/Guohongping/MTML.
Collapse
Affiliation(s)
- Hongping Guo
- School of Mathematics and Statistics, Hubei Normal University, Huangshi, China
| | - Tong Li
- School of Mathematics and Statistics, Hubei Normal University, Huangshi, China
| | - Yao Shi
- School of Mathematics and Statistics, Qingdao University, Qingdao, China
| | - Xiao Wang
- School of Mathematics and Statistics, Qingdao University, Qingdao, China
| |
Collapse
|
25
|
Zhou H, Gelernter J. Human genetics and epigenetics of alcohol use disorder. J Clin Invest 2024; 134:e172885. [PMID: 39145449 PMCID: PMC11324314 DOI: 10.1172/jci172885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Alcohol use disorder (AUD) is a prominent contributor to global morbidity and mortality. Its complex etiology involves genetics, epigenetics, and environmental factors. We review progress in understanding the genetics and epigenetics of AUD, summarizing the key findings. Advancements in technology over the decades have elevated research from early candidate gene studies to present-day genome-wide scans, unveiling numerous genetic and epigenetic risk factors for AUD. The latest GWAS on more than one million participants identified more than 100 genetic variants, and the largest epigenome-wide association studies (EWAS) in blood and brain samples have revealed tissue-specific epigenetic changes. Downstream analyses revealed enriched pathways, genetic correlations with other traits, transcriptome-wide association in brain tissues, and drug-gene interactions for AUD. We also discuss limitations and future directions, including increasing the power of GWAS and EWAS studies as well as expanding the diversity of populations included in these analyses. Larger samples, novel technologies, and analytic approaches are essential; these include whole-genome sequencing, multiomics, single-cell sequencing, spatial transcriptomics, deep-learning prediction of variant function, and integrated methods for disease risk prediction.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
- Department of Biomedical Informatics and Data Science
- Center for Brain and Mind Health
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
- Department of Genetics, and
- Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
26
|
Visconti A, Rossi N, Bondt A, Ederveen AH, Thareja G, Koeleman CAM, Stephan N, Halama A, Lomax-Browne HJ, Pickering MC, Zhou XJ, Wuhrer M, Suhre K, Falchi M. The genetics and epidemiology of N- and O-immunoglobulin A glycomics. Genome Med 2024; 16:96. [PMID: 39123268 PMCID: PMC11312925 DOI: 10.1186/s13073-024-01369-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Immunoglobulin (Ig) glycosylation modulates the immune response and plays a critical role in ageing and diseases. Studies have mainly focused on IgG glycosylation, and little is known about the genetics and epidemiology of IgA glycosylation. METHODS We generated, using a novel liquid chromatography-mass spectrometry method, the first large-scale IgA glycomics dataset in serum from 2423 twins, encompassing 71 N- and O-glycan species. RESULTS We showed that, despite the lack of a direct genetic template, glycosylation is highly heritable, and that glycopeptide structures are sex-specific, and undergo substantial changes with ageing. We observe extensive correlations between the IgA and IgG glycomes, and, exploiting the twin design, show that they are predominantly influenced by shared genetic factors. A genome-wide association study identified eight loci associated with both the IgA and IgG glycomes (ST6GAL1, ELL2, B4GALT1, ABCF2, TMEM121, SLC38A10, SMARCB1, and MGAT3) and two novel loci specifically modulating IgA O-glycosylation (C1GALT1 and ST3GAL1). Validation of our findings in an independent cohort of 320 individuals from Qatar showed that the underlying genetic architecture is conserved across ancestries. CONCLUSIONS Our study delineates the genetic landscape of IgA glycosylation and provides novel potential functional links with the aetiology of complex immune diseases, including genetic factors involved in IgA nephropathy risk.
Collapse
Affiliation(s)
- Alessia Visconti
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Center for Biostatistics, Epidemiology and Public Health, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Niccolò Rossi
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Albert Bondt
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Agnes Hipgrave Ederveen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gaurav Thareja
- Department of Biophysics and Physiology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Carolien A M Koeleman
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Nisha Stephan
- Department of Biophysics and Physiology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Anna Halama
- Department of Biophysics and Physiology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Hannah J Lomax-Browne
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Matthew C Pickering
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Xu-Jie Zhou
- Renal Division, Peking University First Hospital, Beijing, China
- Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Peking University, Beijing, China
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Karsten Suhre
- Department of Biophysics and Physiology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Mario Falchi
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.
| |
Collapse
|
27
|
Mbatchou J, McPeek MS. JASPER: Fast, powerful, multitrait association testing in structured samples gives insight on pleiotropy in gene expression. Am J Hum Genet 2024; 111:1750-1769. [PMID: 39025064 PMCID: PMC11339629 DOI: 10.1016/j.ajhg.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
Joint association analysis of multiple traits with multiple genetic variants can provide insight into genetic architecture and pleiotropy, improve trait prediction, and increase power for detecting association. Furthermore, some traits are naturally high-dimensional, e.g., images, networks, or longitudinally measured traits. Assessing significance for multitrait genetic association can be challenging, especially when the sample has population sub-structure and/or related individuals. Failure to adequately adjust for sample structure can lead to power loss and inflated type 1 error, and commonly used methods for assessing significance can work poorly with a large number of traits or be computationally slow. We developed JASPER, a fast, powerful, robust method for assessing significance of multitrait association with a set of genetic variants, in samples that have population sub-structure, admixture, and/or relatedness. In simulations, JASPER has higher power, better type 1 error control, and faster computation than existing methods, with the power and speed advantage of JASPER increasing with the number of traits. JASPER is potentially applicable to a wide range of association testing applications, including for multiple disease traits, expression traits, image-derived traits, and microbiome abundances. It allows for covariates, ascertainment, and rare variants and is robust to phenotype model misspecification. We apply JASPER to analyze gene expression in the Framingham Heart Study, where, compared to alternative approaches, JASPER finds more significant associations, including several that indicate pleiotropic effects, most of which replicate previous results, while others have not previously been reported. Our results demonstrate the promise of JASPER for powerful multitrait analysis in structured samples.
Collapse
Affiliation(s)
- Joelle Mbatchou
- Regeneron Genetics Center, Tarrytown, NY 10591, USA; Department of Statistics, The University of Chicago, Chicago, IL 60637, USA
| | - Mary Sara McPeek
- Department of Statistics, The University of Chicago, Chicago, IL 60637, USA; Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
28
|
Ali B, Huguenin-Bizot B, Laurent M, Chaumont F, Maistriaux LC, Nicolas S, Duborjal H, Welcker C, Tardieu F, Mary-Huard T, Moreau L, Charcosset A, Runcie D, Rincent R. High-dimensional multi-omics measured in controlled conditions are useful for maize platform and field trait predictions. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:175. [PMID: 38958724 DOI: 10.1007/s00122-024-04679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/15/2024] [Indexed: 07/04/2024]
Abstract
KEY MESSAGE Transcriptomics and proteomics information collected on a platform can predict additive and non-additive effects for platform traits and additive effects for field traits. The effects of climate change in the form of drought, heat stress, and irregular seasonal changes threaten global crop production. The ability of multi-omics data, such as transcripts and proteins, to reflect a plant's response to such climatic factors can be capitalized in prediction models to maximize crop improvement. Implementing multi-omics characterization in field evaluations is challenging due to high costs. It is, however, possible to do it on reference genotypes in controlled conditions. Using omics measured on a platform, we tested different multi-omics-based prediction approaches, using a high dimensional linear mixed model (MegaLMM) to predict genotypes for platform traits and agronomic field traits in a panel of 244 maize hybrids. We considered two prediction scenarios: in the first one, new hybrids are predicted (CV-NH), and in the second one, partially observed hybrids are predicted (CV-POH). For both scenarios, all hybrids were characterized for omics on the platform. We observed that omics can predict both additive and non-additive genetic effects for the platform traits, resulting in much higher predictive abilities than GBLUP. It highlights their efficiency in capturing regulatory processes in relation to growth conditions. For the field traits, we observed that the additive components of omics only slightly improved predictive abilities for predicting new hybrids (CV-NH, model MegaGAO) and for predicting partially observed hybrids (CV-POH, model GAOxW-BLUP) in comparison to GBLUP. We conclude that measuring the omics in the fields would be of considerable interest in predicting productivity if the costs of omics drop significantly.
Collapse
Affiliation(s)
- Baber Ali
- INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Université Paris-Saclay, 91190, Gif-Sur-Yvette, France
| | - Bertrand Huguenin-Bizot
- Laboratoire Reproduction Et Développement Des Plantes, CNRS, ENS de Lyon-46, Allée d'Italie, 69364, Lyon, France
| | - Maxime Laurent
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-La-Neuve, Belgium
| | - François Chaumont
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-La-Neuve, Belgium
| | - Laurie C Maistriaux
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-La-Neuve, Belgium
| | - Stéphane Nicolas
- INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Université Paris-Saclay, 91190, Gif-Sur-Yvette, France
| | - Hervé Duborjal
- Limagrain, Limagrain Fields Seeds, Research Centre, 63720, Chappes, France
| | | | | | - Tristan Mary-Huard
- INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Université Paris-Saclay, 91190, Gif-Sur-Yvette, France
| | - Laurence Moreau
- INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Université Paris-Saclay, 91190, Gif-Sur-Yvette, France
| | - Alain Charcosset
- INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Université Paris-Saclay, 91190, Gif-Sur-Yvette, France
| | - Daniel Runcie
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Renaud Rincent
- INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Université Paris-Saclay, 91190, Gif-Sur-Yvette, France.
| |
Collapse
|
29
|
Feng X, Zan Y, Li T, Yao Y, Ning Z, Li J, Charati H, Xu W, Wan Q, Zeng D, Zeng Z, Liu Y, Shen X. Dual-trait genomic analysis in highly stratified Arabidopsis thaliana populations using genome-wide association summary statistics. Heredity (Edinb) 2024; 133:11-20. [PMID: 38822132 PMCID: PMC11222461 DOI: 10.1038/s41437-024-00688-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/07/2024] [Indexed: 06/02/2024] Open
Abstract
Genome-wide association study (GWAS) is a powerful tool to identify genomic loci underlying complex traits. However, the application in natural populations comes with challenges, especially power loss due to population stratification. Here, we introduce a bivariate analysis approach to a GWAS dataset of Arabidopsis thaliana. We demonstrate the efficiency of dual-phenotype analysis to uncover hidden genetic loci masked by population structure via a series of simulations. In real data analysis, a common allele, strongly confounded with population structure, is discovered to be associated with late flowering and slow maturation of the plant. The discovered genetic effect on flowering time is further replicated in independent datasets. Using Mendelian randomization analysis based on summary statistics from our GWAS and expression QTL scans, we predicted and replicated a candidate gene AT1G11560 that potentially causes this association. Further analysis indicates that this locus is co-selected with flowering-time-related genes. The discovered pleiotropic genotype-phenotype map provides new insights into understanding the genetic correlation of complex traits.
Collapse
Affiliation(s)
- Xiao Feng
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Guangzhou, China
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Yanjun Zan
- Key Laboratory of Tobacco Improvement and Biotechnology, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Ting Li
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Guangzhou, China
| | - Yue Yao
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Guangzhou, China
| | - Zheng Ning
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jiabei Li
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Guangzhou, China
| | - Hadi Charati
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Guangzhou, China
| | - Weilin Xu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Qianhui Wan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Mathematics, University of California, Davis, CA, USA
| | - Dongyu Zeng
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Ziyi Zeng
- School of Engineering, Sun Yat-sen University, Guangzhou, China
| | - Yang Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China.
| | - Xia Shen
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Guangzhou, China.
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
- Center for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, Scotland, UK.
| |
Collapse
|
30
|
Li W, Dong X, Zhang X, Cao J, Liu M, Zhou X, Long H, Cao H, Lin H, Zhang L. Genome assembly and resequencing shed light on evolution, population selection, and sex identification in Vernicia montana. HORTICULTURE RESEARCH 2024; 11:uhae141. [PMID: 38988615 PMCID: PMC11233859 DOI: 10.1093/hr/uhae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/08/2024] [Indexed: 07/12/2024]
Abstract
Vernicia montana is a dioecious plant widely cultivated for high-quality tung oil production and ornamental purposes in the Euphorbiaceae family. The lack of genomic information has severely hindered molecular breeding for genetic improvement and early sex identification in V. montana. Here, we present a chromosome-level reference genome of a male V. montana with a total size of 1.29 Gb and a contig N50 of 3.69 Mb. Genome analysis revealed that different repeat lineages drove the expansion of genome size. The model of chromosome evolution in the Euphorbiaceae family suggests that polyploidization-induced genomic structural variation reshaped the chromosome structure, giving rise to the diverse modern chromosomes. Based on whole-genome resequencing data and analyses of selective sweep and genetic diversity, several genes associated with stress resistance and flavonoid synthesis such as CYP450 genes and members of the LRR-RLK family, were identified and presumed to have been selected during the evolutionary process. Genome-wide association studies were conducted and a putative sex-linked insertion and deletion (InDel) (Chr 2: 102 799 917-102 799 933 bp) was identified and developed as a polymorphic molecular marker capable of effectively detecting the gender of V. montana. This InDel is located in the second intron of VmBASS4, suggesting a possible role of VmBASS4 in sex determination in V. montana. This study sheds light on the genome evolution and sex identification of V. montana, which will facilitate research on the development of agronomically important traits and genomics-assisted breeding.
Collapse
Affiliation(s)
- Wenying Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Shaoshan South Road, No.498, Tianxin District, Changsha, Hunan 410004, China
- College of Biology and Agricultural Resources, Huanggang Normal University, No.146 Xingang 2nd Road, Huangzhou District, Huanggang, Hubei 438000, China
| | - Xiang Dong
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Shaoshan South Road, No.498, Tianxin District, Changsha, Hunan 410004, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No.7 Pengfei Road, Dapeng New District, Shenzhen 518120, China
| | - Jie Cao
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Shaoshan South Road, No.498, Tianxin District, Changsha, Hunan 410004, China
| | - Meilan Liu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Shaoshan South Road, No.498, Tianxin District, Changsha, Hunan 410004, China
| | - Xu Zhou
- College of Landscape Architecture, Central South University of Forestry and Technology, Shaoshan South Road, No.498, Tianxin District, Changsha, Hunan 410004, China
| | - Hongxu Long
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Shaoshan South Road, No.498, Tianxin District, Changsha, Hunan 410004, China
| | - Heping Cao
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Allen Toussaint Blvd, New Orleans, LA 70124-4305, USA
| | - Hai Lin
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Shaoshan South Road, No.498, Tianxin District, Changsha, Hunan 410004, China
| | - Lin Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Shaoshan South Road, No.498, Tianxin District, Changsha, Hunan 410004, China
| |
Collapse
|
31
|
Jighly A. Boosting genome-wide association power and genomic prediction accuracy for date palm fruit traits with advanced statistics. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 344:112110. [PMID: 38704095 DOI: 10.1016/j.plantsci.2024.112110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/05/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
The date palm is economically vital in the Middle East and North Africa, providing essential fibres, vitamins, and carbohydrates. Understanding the genetic architecture of its traits remains complex due to the tree's perennial nature and long generation times. This study aims to address these complexities by employing advanced genome-wide association (GWAS) and genomic prediction models using previously published data involving fruit acid content, sugar content, dimension, and colour traits. The multivariate GWAS model identified seven QTL, including five novel associations, that shed light on the genetic control of these traits. Furthermore, the research evaluates different genomic prediction models that considered genotype by environment and genotype by trait interactions. While colour- traits demonstrate strong predictive power, other traits display moderate accuracies across different models and scenarios aligned with the expectations when using small reference populations. When designing the cross-validation to predict new individuals, the accuracy of the best multi-trait model was significantly higher than all single-trait models for dimension traits, but not for the remaining traits, which showed similar performances. However, the cross-validation strategy that masked random phenotypic records (i.e., mimicking the unbalanced phenotypic records) showed significantly higher accuracy for all traits except acid contents. The findings underscore the importance of understanding genetic architecture for informed breeding strategies. The research emphasises the need for larger population sizes and multivariate models to enhance gene tagging power and predictive accuracy to advance date palm breeding programs. These findings support more targeted breeding in date palm, improving productivity and resilience to various environments.
Collapse
|
32
|
Rebhun RB, York D, De Graaf FMD, Yoon P, Batcher KL, Luker ME, Ryan S, Peyton J, Kent MS, Stern JA, Bannasch DL. A variant in the 5'UTR of ERBB4 is associated with lifespan in Golden Retrievers. GeroScience 2024; 46:2849-2862. [PMID: 37855863 PMCID: PMC11009206 DOI: 10.1007/s11357-023-00968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/29/2023] [Indexed: 10/20/2023] Open
Abstract
Genome-wide association studies (GWAS) in long-lived human populations have led to identification of variants associated with Alzheimer's disease and cardiovascular disease, the latter being the most common cause of mortality in people worldwide. In contrast, naturally occurring cancer represents the leading cause of death in pet dogs, and specific breeds like the Golden Retriever (GR) carry up to a 65% cancer-related death rate. We hypothesized that GWAS of long-lived GRs might lead to the identification of genetic variants capable of modifying longevity within this cancer-predisposed breed. A GWAS was performed comparing GR dogs ≥ 14 years to dogs dying prior to age 12 which revealed a significant association to ERBB4, the only member of the epidermal growth factor receptor family capable of serving as both a tumor suppressor gene and an oncogene. No coding variants were identified, however, distinct haplotypes in the 5'UTR were associated with reduced lifespan in two separate populations of GR dogs. When all GR dogs were analyzed together (n = 304), the presence of haplotype 3 was associated with shorter survival (11.8 years vs. 12.8 years, p = 0.024). GRs homozygous for haplotype 3 had the shortest survival, and GRs homozygous for haplotype 1 had the longest survival (11.6 years vs. 13.5 years, p = 0.0008). Sub-analyses revealed that the difference in lifespan for GRs carrying at least 1 copy of haplotype 3 was specific to female dogs (p = 0.009), whereas survival remained significantly different in both male and female GRs homozygous for haplotype 1 or haplotype 3 (p = 0.026 and p = 0.009, respectively). Taken together, these findings implicate a potential role for ERBB4 in GR longevity and provide evidence that within-breed canine lifespan studies could serve as a mechanism to identify favorable or disease-modifying variants important to the axis of aging and cancer.
Collapse
Affiliation(s)
- Robert B Rebhun
- Department of Surgical and Radiological Sciences, University of California, Davis, CA, USA.
| | - Daniel York
- Department of Surgical and Radiological Sciences, University of California, Davis, CA, USA
| | - Flora M D De Graaf
- Department of Population Health and Reproduction, University of California, Davis, CA, USA
| | - Paula Yoon
- Veterinary Medical Teaching Hospital, University of California, Davis, CA, USA
| | - Kevin L Batcher
- Department of Population Health and Reproduction, University of California, Davis, CA, USA
| | - Madison E Luker
- Department of Surgical and Radiological Sciences, University of California, Davis, CA, USA
| | - Stephanie Ryan
- Department of Population Health and Reproduction, University of California, Davis, CA, USA
| | - Jamie Peyton
- Veterinary Medical Teaching Hospital, University of California, Davis, CA, USA
| | - Michael S Kent
- Department of Surgical and Radiological Sciences, University of California, Davis, CA, USA
| | - Joshua A Stern
- Department of Medicine and Epidemiology, University of California, Davis, CA, USA
| | - Danika L Bannasch
- Department of Population Health and Reproduction, University of California, Davis, CA, USA.
| |
Collapse
|
33
|
Perini F, Cendron F, Lasagna E, Cassandro M, Penasa M. Genomic insights into shank and eggshell color in Italian local chickens. Poult Sci 2024; 103:103677. [PMID: 38593544 PMCID: PMC11004871 DOI: 10.1016/j.psj.2024.103677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
Eggshell and shank color in poultry is an intriguing topic of research due to the roles in selection, breed recognition, and environmental adaptation. This study delves into the genomics foundations of shank and eggshell pigmentation in Italian local chickens through genome-wide association studies analysis to uncover the mechanisms governing these phenotypes. To this purpose, 483 animals from 20 local breeds (n = 466) and 2 commercial lines (n = 17) were considered and evaluated for shank and eggshell color. All animals were genotyped using the Affymetrix Axiom 600 K Chicken Genotyping Array. As regards shank color, the most interesting locus was detected on chromosome Z, close to the TYRP1 gene, known to play a key role in avian pigmentation. Additionally, several novel loci and genes associated with shank pigmentation, skin pigmentation, UV protection, and melanocyte regulation were identified (e.g., MTAP, CDKN2A, CDKN2B). In eggshell, fewer significant loci were identified, including SLC7A11 and MITF on chromosomes 4 and 12, respectively, associated with melanocyte processes and pigment synthesis. This comprehensive study shed light on the genetic architecture underlying shank and eggshell color in Italian native chicken breeds, contributing to a better understanding of this phenomenon which plays a role in breed identification and conservation, and has ecological and economic implications.
Collapse
Affiliation(s)
- Francesco Perini
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro, Padua 35020, Italy
| | - Filippo Cendron
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro, Padua 35020, Italy.
| | - Emiliano Lasagna
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia 06121, Italy
| | - Martino Cassandro
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro, Padua 35020, Italy
| | - Mauro Penasa
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro, Padua 35020, Italy
| |
Collapse
|
34
|
Zhao J, Xu Y, Li H, An W, Yin Y, Wang B, Wang L, Wang B, Duan L, Ren X, Liang X, Wang Y, Wan R, Huang T, Zhang B, Li Y, Luo J, Cao Y. Metabolite-based genome-wide association studies enable the dissection of the genetic bases of flavonoids, betaine and spermidine in wolfberry (Lycium). PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1435-1452. [PMID: 38194521 PMCID: PMC11123438 DOI: 10.1111/pbi.14278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 10/28/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024]
Abstract
Wolfberry is a plant with medicinal and food values. However, its bioactive ingredients and the corresponding genetic bases have not been determined. Here, we de novo generated a chromosome-level genome assembly for wolfberry, yielding a genome sequence of ~1.77 Gb with contig N50 of 50.55 Mb and 39 224 predicted gene models. A variation map, using 307 re-sequenced accessions, was called based on this genome assembly. Furthermore, the fruit metabolome of these accessions was profiled using 563 annotated metabolites, which separated Lycium barbarum L. and non-L. barbarum L. The flavonoids, coumarins, alkaloids and nicotinic acid contents were higher in the former than in the latter. A metabolite-based genome-wide association study mapped 156 164 significant single nucleotide polymorphisms corresponding to 340 metabolites. This included 19 219 unique lead single nucleotide polymorphisms in 1517 significant association loci, of which three metabolites, flavonoids, betaine and spermidine, were highlighted. Two candidate genes, LbUGT (evm.TU.chr07.2692) and LbCHS (evm.TU.chr07.2738), with non-synonymous mutations, were associated with the flavonoids content. LbCHS is a structural gene that interacts with a nearby MYB transcription factor (evm.TU.chr07.2726) both in L. barbarum and L. ruthenicum. Thus, these three genes might be involved in the biosynthesis/metabolism of flavonoids. LbSSADH (evm.TU.chr09.627) was identified as possibly participating in betaine biosynthesis/metabolism. Four lycibarbarspermidines (E-G and O) were identified, and only the lycibarbarspermidines O content was higher in L. barbarum varieties than in non-L. barbarum varieties. The evm.TU.chr07.2680 gene associated with lycibarbarspermidines O was annotated as an acetyl-CoA-benzylalcohol acetyltransferase, suggesting that it is a candidate gene for spermidine biosynthesis. These results provide novel insights into the specific metabolite profile of non-L. barbarum L. and the genetic bases of flavonoids, betaine and spermidine biosynthesis/metabolism.
Collapse
Affiliation(s)
- Jianhua Zhao
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Yuhui Xu
- Adsen Biotechnology Co., Ltd.UrumchiChina
| | - Haoxia Li
- Desertification Control Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Wei An
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Yue Yin
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Bin Wang
- Wuhan Matware Biotechnology Co., Ltd.WuhanChina
| | - Liping Wang
- School of breeding and multiplcation (Sanya Institute of Breeding and Multiplication)Hainan, UniversitySanyaChina
| | - Bi Wang
- School of breeding and multiplcation (Sanya Institute of Breeding and Multiplication)Hainan, UniversitySanyaChina
| | - Linyuan Duan
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Xiaoyue Ren
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Xiaojie Liang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Yajun Wang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Ru Wan
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Ting Huang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Bo Zhang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Yanlong Li
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Jie Luo
- School of breeding and multiplcation (Sanya Institute of Breeding and Multiplication)Hainan, UniversitySanyaChina
| | - Youlong Cao
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| |
Collapse
|
35
|
Yang G, Pan Y, Pan W, Song Q, Zhang R, Tong W, Cui L, Ji W, Song W, Song B, Deng P, Nie X. Combined GWAS and eGWAS reveals the genetic basis underlying drought tolerance in emmer wheat (Triticum turgidum L.). THE NEW PHYTOLOGIST 2024; 242:2115-2131. [PMID: 38358006 DOI: 10.1111/nph.19589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/25/2024] [Indexed: 02/16/2024]
Abstract
Drought is one of the major environmental constraints for wheat production world-wide. As the progenitor and genetic reservoir of common wheat, emmer wheat is considered as an invaluable gene pool for breeding drought-tolerant wheat. Combining GWAS and eGWAS analysis of 107 accessions, we identified 86 QTLs, 105 462 eQTLs as well as 68 eQTL hotspots associating with drought tolerance (DT) in emmer wheat. A complex regulatory network composed of 185 upstream regulator and 2432 downstream drought-responsive candidates was developed, of which TtOTS1 was found to play a negative effect in determining DT through affecting root development. This study sheds light on revealing the genetic basis underlying DT, which will provide the indispensable genes and germplasm resources for elite drought tolerance wheat improvement and breeding.
Collapse
Affiliation(s)
- Guang Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
| | - Yan Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wenqiu Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qingting Song
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ruoyu Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wei Tong
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Licao Cui
- College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Weining Song
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Baoxing Song
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
| | - Pingchuan Deng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, 712100, Shaanxi, China
| |
Collapse
|
36
|
Chen PB, Chen R, LaPierre N, Chen Z, Mefford J, Marcus E, Heffel MG, Soto DC, Ernst J, Luo C, Flint J. Complementation testing identifies genes mediating effects at quantitative trait loci underlying fear-related behavior. CELL GENOMICS 2024; 4:100545. [PMID: 38697120 PMCID: PMC11099346 DOI: 10.1016/j.xgen.2024.100545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/23/2024] [Accepted: 04/04/2024] [Indexed: 05/04/2024]
Abstract
Knowing the genes involved in quantitative traits provides an entry point to understanding the biological bases of behavior, but there are very few examples where the pathway from genetic locus to behavioral change is known. To explore the role of specific genes in fear behavior, we mapped three fear-related traits, tested fourteen genes at six quantitative trait loci (QTLs) by quantitative complementation, and identified six genes. Four genes, Lamp, Ptprd, Nptx2, and Sh3gl, have known roles in synapse function; the fifth, Psip1, was not previously implicated in behavior; and the sixth is a long non-coding RNA, 4933413L06Rik, of unknown function. Variation in transcriptome and epigenetic modalities occurred preferentially in excitatory neurons, suggesting that genetic variation is more permissible in excitatory than inhibitory neuronal circuits. Our results relieve a bottleneck in using genetic mapping of QTLs to uncover biology underlying behavior and prompt a reconsideration of expected relationships between genetic and functional variation.
Collapse
Affiliation(s)
- Patrick B Chen
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rachel Chen
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nathan LaPierre
- Department of Computer Science, Samueli School of Engineering, University of California, Los Angeles, Los Angeles, CA, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zeyuan Chen
- Department of Computer Science, Samueli School of Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joel Mefford
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Emilie Marcus
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Matthew G Heffel
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Daniela C Soto
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jason Ernst
- Department of Computer Science, Samueli School of Engineering, University of California, Los Angeles, Los Angeles, CA, USA; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chongyuan Luo
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jonathan Flint
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
37
|
Balech R, Maalouf F, Kaur S, Jighly A, Joukhadar R, Alsamman AM, Hamwieh A, Khater LA, Rubiales D, Kumar S. Identification of novel genes associated with herbicide tolerance in Lentil (Lens culinaris ssp. culinaris Medik.). Sci Rep 2024; 14:10215. [PMID: 38702403 PMCID: PMC11068770 DOI: 10.1038/s41598-024-59695-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 04/15/2024] [Indexed: 05/06/2024] Open
Abstract
Weeds pose a major constraint in lentil cultivation, leading to decrease farmers' revenues by reducing the yield and increasing the management costs. The development of herbicide tolerant cultivars is essential to increase lentil yield. Even though herbicide tolerant lines have been identified in lentils, breeding efforts are still limited and lack proper validation. Marker assisted selection (MAS) can increase selection accuracy at early generations. Total 292 lentil accessions were evaluated under different dosages of two herbicides, metribuzin and imazethapyr, during two seasons at Marchouch, Morocco and Terbol, Lebanon. Highly significant differences among accessions were observed for days to flowering (DF) and maturity (DM), plant height (PH), biological yield (BY), seed yield (SY), number of pods per plant (NP), as well as the reduction indices (RI) for PH, BY, SY and NP. A total of 10,271 SNPs markers uniformly distributed along the lentil genome were assayed using Multispecies Pulse SNP chip developed at Agriculture Victoria, Melbourne. Meta-GWAS analysis was used to detect marker-trait associations, which detected 125 SNPs markers associated with different traits and clustered in 85 unique quantitative trait loci. These findings provide valuable insights for initiating MAS programs aiming to enhance herbicide tolerance in lentil crop.
Collapse
Affiliation(s)
- Rind Balech
- International Center for Agricultural Research in the Dry Areas (ICARDA), Terbol, Lebanon.
| | - Fouad Maalouf
- International Center for Agricultural Research in the Dry Areas (ICARDA), Terbol, Lebanon.
| | - Sukhjiwan Kaur
- Department of Energy, AgriBio, Environment and Climate Action, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia
| | - Abdulqader Jighly
- Department of Energy, AgriBio, Environment and Climate Action, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia
| | - Reem Joukhadar
- Department of Energy, AgriBio, Environment and Climate Action, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia
| | | | | | - Lynn Abou Khater
- International Center for Agricultural Research in the Dry Areas (ICARDA), Terbol, Lebanon
| | - Diego Rubiales
- Institute for Sustainable Agriculture, CSIC, Córdoba, Spain
| | | |
Collapse
|
38
|
Simon SJ, Furches A, Chhetri H, Evans L, Abeyratne CR, Jones P, Wimp G, Macaya-Sanz D, Jacobson D, Tschaplinski TJ, Tuskan GA, DiFazio SP. Genetic underpinnings of arthropod community distributions in Populus trichocarpa. THE NEW PHYTOLOGIST 2024; 242:1307-1323. [PMID: 38488269 DOI: 10.1111/nph.19660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/21/2024] [Indexed: 04/12/2024]
Abstract
Community genetics seeks to understand the mechanisms by which natural genetic variation in heritable host phenotypes can encompass assemblages of organisms such as bacteria, fungi, and many animals including arthropods. Prior studies that focused on plant genotypes have been unable to identify genes controlling community composition, a necessary step to predict ecosystem structure and function as underlying genes shift within plant populations. We surveyed arthropods within an association population of Populus trichocarpa in three common gardens to discover plant genes that contributed to arthropod community composition. We analyzed our surveys with traditional single-trait genome-wide association analysis (GWAS), multitrait GWAS, and functional networks built from a diverse set of plant phenotypes. Plant genotype was influential in structuring arthropod community composition among several garden sites. Candidate genes important for higher level organization of arthropod communities had broadly applicable functions, such as terpenoid biosynthesis and production of dsRNA binding proteins and protein kinases, which may be capable of targeting multiple arthropod species. We have demonstrated the ability to detect, in an uncontrolled environment, individual genes that are associated with the community assemblage of arthropods on a host plant, further enhancing our understanding of genetic mechanisms that impact ecosystem structure.
Collapse
Affiliation(s)
- Sandra J Simon
- Department of Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - Anna Furches
- Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, 37996, USA
| | - Hari Chhetri
- Department of Biology, West Virginia University, Morgantown, WV, 26506, USA
- Computational Systems Biology Group, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Luke Evans
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, 80309, USA
| | | | - Piet Jones
- Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, 37996, USA
| | - Gina Wimp
- Department of Biology, Georgetown University, Washington, DC, 20057, USA
| | - David Macaya-Sanz
- Department of Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - Daniel Jacobson
- Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, 37996, USA
| | - Timothy J Tschaplinski
- Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Gerald A Tuskan
- Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Stephen P DiFazio
- Department of Biology, West Virginia University, Morgantown, WV, 26506, USA
| |
Collapse
|
39
|
Wu Y, Zhang C, Duan S, Li Y, Lu L, Bajpai A, Yang C, Mi J, Tian G, Xu F, Qi D, Xu Z, Chi XD. TEAD1, MYO7A and NDUFC2 are novel functional genes associated with glucose metabolism in BXD recombinant inbred population. Diabetes Obes Metab 2024; 26:1775-1788. [PMID: 38385898 DOI: 10.1111/dom.15491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/23/2024]
Abstract
AIM The liver is an important metabolic organ that governs glucolipid metabolism, and its dysfunction may cause non-alcoholic fatty liver disease, type 2 diabetes mellitus, dyslipidaemia, etc. We aimed to systematic investigate the key factors related to hepatic glucose metabolism, which may be beneficial for understanding the underlying pathogenic mechanisms for obesity and diabetes mellitus. MATERIALS AND METHODS Oral glucose tolerance test (OGTT) phenotypes and liver transcriptomes of BXD mice under chow and high-fat diet conditions were collected from GeneNetwork. QTL mapping was conducted to pinpoint genomic regions associated with glucose homeostasis. Candidate genes were further nominated using a multi-criteria approach and validated to confirm their functional relevance in vitro. RESULTS Our results demonstrated that plasma glucose levels in OGTT were significantly affected by both diet and genetic background, with six genetic regulating loci were mapped on chromosomes 1, 4, and 7. Moreover, TEAD1, MYO7A and NDUFC2 were identified as the candidate genes. Functionally, siRNA-mediated TEAD1, MYO7A and NDUFC2 knockdown significantly decreased the glucose uptake and inhibited the transcription of genes related to insulin and glucose metabolism pathways. CONCLUSIONS Our study contributes novel insights to the understanding of hepatic glucose metabolism, demonstrating the impact of TEAD1, MYO7A and NDUFC2 on mitochondrial function in the liver and their regulatory role in maintaining in glucose homeostasis.
Collapse
Affiliation(s)
- Yingying Wu
- The Second School of Clinical Medicine of Binzhou Medical University, Yantai, China
| | - Chao Zhang
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Shaofei Duan
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, China
| | - Yushan Li
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, China
| | - Lu Lu
- The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Akhilesh Bajpai
- The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Chunhua Yang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, China
| | - Jia Mi
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, China
| | - Geng Tian
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, China
| | - Fuyi Xu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, China
| | - Donglai Qi
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, China
| | - Zhaowei Xu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, China
| | - Xiao Dong Chi
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, China
| |
Collapse
|
40
|
Cao X, Zhang S, Sha Q. A novel method for multiple phenotype association studies based on genotype and phenotype network. PLoS Genet 2024; 20:e1011245. [PMID: 38728360 PMCID: PMC11111089 DOI: 10.1371/journal.pgen.1011245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 05/22/2024] [Accepted: 03/29/2024] [Indexed: 05/12/2024] Open
Abstract
Joint analysis of multiple correlated phenotypes for genome-wide association studies (GWAS) can identify and interpret pleiotropic loci which are essential to understand pleiotropy in diseases and complex traits. Meanwhile, constructing a network based on associations between phenotypes and genotypes provides a new insight to analyze multiple phenotypes, which can explore whether phenotypes and genotypes might be related to each other at a higher level of cellular and organismal organization. In this paper, we first develop a bipartite signed network by linking phenotypes and genotypes into a Genotype and Phenotype Network (GPN). The GPN can be constructed by a mixture of quantitative and qualitative phenotypes and is applicable to binary phenotypes with extremely unbalanced case-control ratios in large-scale biobank datasets. We then apply a powerful community detection method to partition phenotypes into disjoint network modules based on GPN. Finally, we jointly test the association between multiple phenotypes in a network module and a single nucleotide polymorphism (SNP). Simulations and analyses of 72 complex traits in the UK Biobank show that multiple phenotype association tests based on network modules detected by GPN are much more powerful than those without considering network modules. The newly proposed GPN provides a new insight to investigate the genetic architecture among different types of phenotypes. Multiple phenotypes association studies based on GPN are improved by incorporating the genetic information into the phenotype clustering. Notably, it might broaden the understanding of genetic architecture that exists between diagnoses, genes, and pleiotropy.
Collapse
Affiliation(s)
- Xuewei Cao
- Department of Mathematical Sciences, Michigan Technological University, Houghton, Michigan, United States of America
| | - Shuanglin Zhang
- Department of Mathematical Sciences, Michigan Technological University, Houghton, Michigan, United States of America
| | - Qiuying Sha
- Department of Mathematical Sciences, Michigan Technological University, Houghton, Michigan, United States of America
| |
Collapse
|
41
|
Mentzer AJ, Dilthey AT, Pollard M, Gurdasani D, Karakoc E, Carstensen T, Muhwezi A, Cutland C, Diarra A, da Silva Antunes R, Paul S, Smits G, Wareing S, Kim H, Pomilla C, Chong AY, Brandt DYC, Nielsen R, Neaves S, Timpson N, Crinklaw A, Lindestam Arlehamn CS, Rautanen A, Kizito D, Parks T, Auckland K, Elliott KE, Mills T, Ewer K, Edwards N, Fatumo S, Webb E, Peacock S, Jeffery K, van der Klis FRM, Kaleebu P, Vijayanand P, Peters B, Sette A, Cereb N, Sirima S, Madhi SA, Elliott AM, McVean G, Hill AVS, Sandhu MS. High-resolution African HLA resource uncovers HLA-DRB1 expression effects underlying vaccine response. Nat Med 2024; 30:1384-1394. [PMID: 38740997 PMCID: PMC11108778 DOI: 10.1038/s41591-024-02944-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/25/2024] [Indexed: 05/16/2024]
Abstract
How human genetic variation contributes to vaccine effectiveness in infants is unclear, and data are limited on these relationships in populations with African ancestries. We undertook genetic analyses of vaccine antibody responses in infants from Uganda (n = 1391), Burkina Faso (n = 353) and South Africa (n = 755), identifying associations between human leukocyte antigen (HLA) and antibody response for five of eight tested antigens spanning pertussis, diphtheria and hepatitis B vaccines. In addition, through HLA typing 1,702 individuals from 11 populations of African ancestry derived predominantly from the 1000 Genomes Project, we constructed an imputation resource, fine-mapping class II HLA-DR and DQ associations explaining up to 10% of antibody response variance in our infant cohorts. We observed differences in the genetic architecture of pertussis antibody response between the cohorts with African ancestries and an independent cohort with European ancestry, but found no in silico evidence of differences in HLA peptide binding affinity or breadth. Using immune cell expression quantitative trait loci datasets derived from African-ancestry samples from the 1000 Genomes Project, we found evidence of differential HLA-DRB1 expression correlating with inferred protection from pertussis following vaccination. This work suggests that HLA-DRB1 expression may play a role in vaccine response and should be considered alongside peptide selection to improve vaccine design.
Collapse
Affiliation(s)
- Alexander J Mentzer
- Centre for Human Genetics, University of Oxford, Oxford, UK.
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK.
| | - Alexander T Dilthey
- Centre for Human Genetics, University of Oxford, Oxford, UK
- Institute of Medical Microbiology and Hospital Hygiene, University Hospital of Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | | | | | | | | | - Allan Muhwezi
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Clare Cutland
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Amidou Diarra
- Groupe de Recherche Action en Santé (GRAS) 06 BP 10248, Ouagadougou, Burkina Faso
| | | | - Sinu Paul
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Gaby Smits
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Susan Wareing
- Microbiology Department, John Radcliffe Hospital, Oxford University NHS Foundation Trust, Oxford, UK
| | | | | | - Amanda Y Chong
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Debora Y C Brandt
- Department of Integrative Biology, University of California at Berkeley, California, CA, USA
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California at Berkeley, California, CA, USA
| | - Samuel Neaves
- Avon Longitudinal Study of Parents and Children at University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Nicolas Timpson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Austin Crinklaw
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Anna Rautanen
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Dennison Kizito
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Tom Parks
- Centre for Human Genetics, University of Oxford, Oxford, UK
- Department of Infectious Disease, Imperial College London, London, UK
| | | | - Kate E Elliott
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Tara Mills
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Katie Ewer
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Nick Edwards
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Segun Fatumo
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- The Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine London, London, UK
| | - Emily Webb
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine London, London, UK
| | - Sarah Peacock
- Tissue Typing Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Katie Jeffery
- Microbiology Department, John Radcliffe Hospital, Oxford University NHS Foundation Trust, Oxford, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - Pontiano Kaleebu
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | | | - Bjorn Peters
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Alessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Sodiomon Sirima
- Groupe de Recherche Action en Santé (GRAS) 06 BP 10248, Ouagadougou, Burkina Faso
| | - Shabir A Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Alison M Elliott
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine London, London, UK
| | - Gil McVean
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Adrian V S Hill
- Centre for Human Genetics, University of Oxford, Oxford, UK
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Manjinder S Sandhu
- Department of Epidemiology & Biostatistics, School of Public Health, Imperial College London, London, UK.
| |
Collapse
|
42
|
Bass AJ, Bian S, Wingo AP, Wingo TS, Cutler DJ, Epstein MP. Identifying latent genetic interactions in genome-wide association studies using multiple traits. Genome Med 2024; 16:62. [PMID: 38664839 PMCID: PMC11044415 DOI: 10.1186/s13073-024-01329-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
The "missing" heritability of complex traits may be partly explained by genetic variants interacting with other genes or environments that are difficult to specify, observe, and detect. We propose a new kernel-based method called Latent Interaction Testing (LIT) to screen for genetic interactions that leverages pleiotropy from multiple related traits without requiring the interacting variable to be specified or observed. Using simulated data, we demonstrate that LIT increases power to detect latent genetic interactions compared to univariate methods. We then apply LIT to obesity-related traits in the UK Biobank and detect variants with interactive effects near known obesity-related genes (URL: https://CRAN.R-project.org/package=lit ).
Collapse
Affiliation(s)
- Andrew J Bass
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA.
| | - Shijia Bian
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, 30322, USA
| | - Aliza P Wingo
- Department of Psychiatry, Emory University, Atlanta, GA, 30322, USA
| | - Thomas S Wingo
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
- Department of Neurology, Emory University, Atlanta, GA, 30322, USA
| | - David J Cutler
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Michael P Epstein
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
43
|
Temme AA, Kerr KL, Nolting KM, Dittmar EL, Masalia RR, Bucksch AK, Burke JM, Donovan LA. The genomic basis of nitrogen utilization efficiency and trait plasticity to improve nutrient stress tolerance in cultivated sunflower. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2527-2544. [PMID: 38270266 DOI: 10.1093/jxb/erae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/23/2024] [Indexed: 01/26/2024]
Abstract
Maintaining crop productivity is challenging as population growth, climate change, and increasing fertilizer costs necessitate expanding crop production to poorer lands whilst reducing inputs. Enhancing crops' nutrient use efficiency is thus an important goal, but requires a better understanding of related traits and their genetic basis. We investigated variation in low nutrient stress tolerance in a diverse panel of cultivated sunflower genotypes grown under high and low nutrient conditions, assessing relative growth rate (RGR) as performance. We assessed variation in traits related to nitrogen utilization efficiency (NUtE), mass allocation, and leaf elemental content. Across genotypes, nutrient limitation generally reduced RGR. Moreover, there was a negative correlation between vigor (RGR in control) and decline in RGR in response to stress. Given this trade-off, we focused on nutrient stress tolerance independent of vigor. This tolerance metric correlated with the change in NUtE, plasticity for a suite of morphological traits, and leaf element content. Genome-wide associations revealed regions associated with variation and plasticity in multiple traits, including two regions with seemingly additive effects on NUtE change. Our results demonstrate potential avenues for improving sunflower nutrient stress tolerance independent of vigor, and highlight specific traits and genomic regions that could play a role in enhancing tolerance.
Collapse
Affiliation(s)
- Andries A Temme
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
- Department of Plant Breeding, Wageningen University & Research, 6700 HB Wageningen, The Netherlands
| | - Kelly L Kerr
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Kristen M Nolting
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Emily L Dittmar
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Rishi R Masalia
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | | | - John M Burke
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Lisa A Donovan
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
44
|
Zhou X, Xiang X, Cao D, Zhang L, Hu J. Selective sweep and GWAS provide insights into adaptive variation of Populus cathayana leaves. FORESTRY RESEARCH 2024; 4:e012. [PMID: 39524419 PMCID: PMC11524237 DOI: 10.48130/forres-0024-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/25/2024] [Accepted: 03/19/2024] [Indexed: 11/16/2024]
Abstract
Leaf morphology plays a crucial role in predicting the productivity and environmental adaptability of forest trees, making it essential to understand the genetic mechanisms behind leaf variation. In natural populations of Populus cathayana, leaf morphology exhibits rich intraspecific variation due to long-term selection. However, there have been no studies that systematically reveal the genetic mechanisms of leaf variation in P. cathayana. To fill this gap and enhance our understanding of leaf variation in P. cathayana, we collected nine leaf traits from the P. cathayana natural population, consisting of 416 accessions, and conducted the preliminary classification of leaf types with four categories. Subsequently, we conducted an analysis of selective sweep and genome-wide association studies (GWAS) to uncover the genetic basis of leaf traits variation. Most of the leaf traits displayed significant correlations, with broad-sense trait heritability ranging from 0.38 to 0.74. In total, three selective sweep methods ultimately identified 278 positively selected candidate regions and 493 genes associated with leaf size. Single-trait and multi-trait GWAS methods detected 13 and 59 genes, respectively. By integrating the results of selective sweep and GWAS, we further identified a total of nine overlapping genes. These genes may play a role in the leaf development process and are closely associated with leaf size. In particular, the gene CBSCBSPB3 (Pca07G009100) located on chromosome 7, was associated with the response to light stimulation. This study will deepen our understanding of the genetic mechanism of leaf adaptive variation in P. cathayana and provide valuable gene resources.
Collapse
Affiliation(s)
- Xinglu Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Xiaodong Xiang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Demei Cao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Lei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| |
Collapse
|
45
|
Fenton S, Jacobs A, Bean CW, Adams CE, Elmer KR. Genomic underpinnings of head and body shape in Arctic charr ecomorph pairs. Mol Ecol 2024; 33:e17305. [PMID: 38421099 DOI: 10.1111/mec.17305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
Across its Holarctic range, Arctic charr (Salvelinus alpinus) populations have diverged into distinct trophic specialists across independent replicate lakes. The major aspect of divergence between ecomorphs is in head shape and body shape, which are ecomorphological traits reflecting niche use. However, whether the genomic underpinnings of these parallel divergences are consistent across replicates was unknown but key for resolving the substrate of parallel evolution. We investigated the genomic basis of head shape and body shape morphology across four benthivore-planktivore ecomorph pairs of Arctic charr in Scotland. Through genome-wide association analyses, we found genomic regions associated with head shape (89 SNPs) or body shape (180 SNPs) separately and 50 of these SNPs were strongly associated with both body and head shape morphology. For each trait separately, only a small number of SNPs were shared across all ecomorph pairs (3 SNPs for head shape and 10 SNPs for body shape). Signs of selection on the associated genomic regions varied across pairs, consistent with evolutionary demography differing considerably across lakes. Using a comprehensive database of salmonid QTLs newly augmented and mapped to a charr genome, we found several of the head- and body-shape-associated SNPs were within or near morphology QTLs from other salmonid species, reflecting a shared genetic basis for these phenotypes across species. Overall, our results demonstrate how parallel ecotype divergences can have both population-specific and deeply shared genomic underpinnings across replicates, influenced by differences in their environments and demographic histories.
Collapse
Affiliation(s)
- Sam Fenton
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Arne Jacobs
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Colin W Bean
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
- NatureScot, Clydebank, UK
| | - Colin E Adams
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
- Scottish Centre for Ecology and the Natural Environment, University of Glasgow, Glasgow, UK
| | - Kathryn R Elmer
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
46
|
Roth L, Kronenberg L, Aasen H, Walter A, Hartung J, van Eeuwijk F, Piepho HP, Hund A. High-throughput field phenotyping reveals that selection in breeding has affected the phenology and temperature response of wheat in the stem elongation phase. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2084-2099. [PMID: 38134290 PMCID: PMC10967243 DOI: 10.1093/jxb/erad481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
Crop growth and phenology are driven by seasonal changes in environmental variables, with temperature as one important factor. However, knowledge about genotype-specific temperature response and its influence on phenology is limited. Such information is fundamental to improve crop models and adapt selection strategies. We measured the increase in height of 352 European winter wheat varieties in 4 years to quantify phenology, and fitted an asymptotic temperature response model. The model used hourly fluctuations in temperature to parameterize the base temperature (Tmin), the temperature optimum (rmax), and the steepness (lrc) of growth responses. Our results show that higher Tmin and lrc relate to an earlier start and end of stem elongation. A higher rmax relates to an increased final height. Both final height and rmax decreased for varieties originating from the continental east of Europe towards the maritime west. A genome-wide association study (GWAS) indicated a quantitative inheritance and a large degree of independence among loci. Nevertheless, genomic prediction accuracies (GBLUPs) for Tmin and lrc were low (r≤0.32) compared with other traits (r≥0.59). As well as known, major genes related to vernalization, photoperiod, or dwarfing, the GWAS indicated additional, as yet unknown loci that dominate the temperature response.
Collapse
Affiliation(s)
- Lukas Roth
- ETH Zurich, Institute of Agricultural Sciences, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Lukas Kronenberg
- ETH Zurich, Institute of Agricultural Sciences, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Helge Aasen
- ETH Zurich, Institute of Agricultural Sciences, Universitätstrasse 2, 8092 Zurich, Switzerland
- Agroscope, Earth Observation of Agroecosystems Team, Division Agroecology and Environment, Reckenholzstrasse 191, 8046 Zurich, Switzerland
| | - Achim Walter
- ETH Zurich, Institute of Agricultural Sciences, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Jens Hartung
- University of Hohenheim, Institute for Crop Science, Biostatistics Unit, Fruwirthstrasse 23, D-70593 Stuttgart, Germany
| | - Fred van Eeuwijk
- Wageningen University and Research, Biometris, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Hans-Peter Piepho
- University of Hohenheim, Institute for Crop Science, Biostatistics Unit, Fruwirthstrasse 23, D-70593 Stuttgart, Germany
| | - Andreas Hund
- ETH Zurich, Institute of Agricultural Sciences, Universitätstrasse 2, 8092 Zurich, Switzerland
| |
Collapse
|
47
|
Nandudu L, Strock C, Ogbonna A, Kawuki R, Jannink JL. Genetic analysis of cassava brown streak disease root necrosis using image analysis and genome-wide association studies. FRONTIERS IN PLANT SCIENCE 2024; 15:1360729. [PMID: 38562560 PMCID: PMC10982329 DOI: 10.3389/fpls.2024.1360729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
Cassava brown streak disease (CBSD) poses a substantial threat to food security. To address this challenge, we used PlantCV to extract CBSD root necrosis image traits from 320 clones, with an aim of identifying genomic regions through genome-wide association studies (GWAS) and candidate genes. Results revealed strong correlations among certain root necrosis image traits, such as necrotic area fraction and necrotic width fraction, as well as between the convex hull area of root necrosis and the percentage of necrosis. Low correlations were observed between CBSD scores obtained from the 1-5 scoring method and all root necrosis traits. Broad-sense heritability estimates of root necrosis image traits ranged from low to moderate, with the highest estimate of 0.42 observed for the percentage of necrosis, while narrow-sense heritability consistently remained low, ranging from 0.03 to 0.22. Leveraging data from 30,750 SNPs obtained through DArT genotyping, eight SNPs on chromosomes 1, 7, and 11 were identified and associated with both the ellipse eccentricity of root necrosis and the percentage of necrosis through GWAS. Candidate gene analysis in the 172.2kb region on the chromosome 1 revealed 24 potential genes with diverse functions, including ubiquitin-protein ligase, DNA-binding transcription factors, and RNA metabolism protein, among others. Despite our initial expectation that image analysis objectivity would yield better heritability estimates and stronger genomic associations than the 1-5 scoring method, the results were unexpectedly lower. Further research is needed to comprehensively understand the genetic basis of these traits and their relevance to cassava breeding and disease management.
Collapse
Affiliation(s)
- Leah Nandudu
- School of Integrative Plant Sciences, Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY, United States
- Root Crops Department, National Crops Resources Research Institute (NaCRRI), Kampala, Uganda
| | - Christopher Strock
- School of Integrative Plant Sciences, Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY, United States
| | - Alex Ogbonna
- School of Integrative Plant Sciences, Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY, United States
| | - Robert Kawuki
- Root Crops Department, National Crops Resources Research Institute (NaCRRI), Kampala, Uganda
| | - Jean-Luc Jannink
- School of Integrative Plant Sciences, Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY, United States
- US Department of Agriculture, Agricultural Research Service (USDA-ARS), Ithaca, NY, United States
| |
Collapse
|
48
|
Blancon J, Buet C, Dubreuil P, Tixier MH, Baret F, Praud S. Maize green leaf area index dynamics: genetic basis of a new secondary trait for grain yield in optimal and drought conditions. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:68. [PMID: 38441678 PMCID: PMC10914915 DOI: 10.1007/s00122-024-04572-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/03/2024] [Indexed: 03/07/2024]
Abstract
KEY MESSAGE Green Leaf Area Index dynamics is a promising secondary trait for grain yield and drought tolerance. Multivariate GWAS is particularly well suited to identify the genetic determinants of the green leaf area index dynamics. Improvement of maize grain yield is impeded by important genotype-environment interactions, especially under drought conditions. The use of secondary traits, that are correlated with yield, more heritable and less prone to genotype-environment interactions, can increase breeding efficiency. Here, we studied the genetic basis of a new secondary trait: the green leaf area index (GLAI) dynamics over the maize life cycle. For this, we used an unmanned aerial vehicle to characterize the GLAI dynamics of a diverse panel in well-watered and water-deficient trials in two years. From the dynamics, we derived 24 traits (slopes, durations, areas under the curve), and showed that six of them were heritable traits representative of the panel diversity. To identify the genetic determinants of GLAI, we compared two genome-wide association approaches: a univariate (single-trait) method and a multivariate (multi-trait) method combining GLAI traits, grain yield, and precocity. The explicit modeling of correlation structure between secondary traits and grain yield in the multivariate mixed model led to 2.5 times more associations detected. A total of 475 quantitative trait loci (QTLs) were detected. The genetic architecture of GLAI traits appears less complex than that of yield with stronger-effect QTLs that are more stable between environments. We also showed that a subset of GLAI QTLs explains nearly one fifth of yield variability across a larger environmental network of 11 water-deficient trials. GLAI dynamics is a promising grain yield secondary trait in optimal and drought conditions, and the detected QTLs could help to increase breeding efficiency through a marker-assisted approach.
Collapse
Affiliation(s)
- Justin Blancon
- UMR GDEC, INRAE, Université Clermont Auvergne, 63000, Clermont-Ferrand, France.
- Biogemma, Centre de Recherche de Chappes, 63720, Chappes, France.
| | - Clément Buet
- Biogemma, Centre de Recherche de Chappes, 63720, Chappes, France
| | - Pierre Dubreuil
- Biogemma, Centre de Recherche de Chappes, 63720, Chappes, France
| | | | | | - Sébastien Praud
- Biogemma, Centre de Recherche de Chappes, 63720, Chappes, France
| |
Collapse
|
49
|
Bazvand B, Rashidi A, Zandi MB, Moradi MH, Rostamzadeh J. Genome-wide analysis of population structure, effective population size and inbreeding in Iranian and exotic horses. PLoS One 2024; 19:e0299109. [PMID: 38442089 PMCID: PMC10914290 DOI: 10.1371/journal.pone.0299109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
Population structure and genetic diversity are the key parameters to study the breeding history of animals. This research aimed to provide a characterization of the population structure and to compare the effective population size (Ne), LD decay, genetic diversity, and genomic inbreeding in Iranian native Caspian (n = 38), Turkmen (n = 24) and Kurdish (n = 29) breeds and some other exotic horses consisting of Arabian (n = 24), Fell pony (n = 21) and Akhal-Teke (n = 20). A variety of statistical population analysis techniques, such as principal component analysis (PCA), discriminant analysis of principal component (DAPC) and model-based method (STRUCTURE) were employed. The results of the population analysis clearly demonstrated a distinct separation of native and exotic horse breeds and clarified the relationships between studied breeds. The effective population size (Ne) for the last six generations was estimated 54, 49, 37, 35, 27 and 26 for the Caspian, Kurdish, Arabian, Turkmen, Akhal-Teke and Fell pony breeds, respectively. The Caspian breed showed the lowest LD with an average r2 value of 0.079, while the highest was observed in Fell pony (0.148). The highest and lowest average observed heterozygosity were found in the Kurdish breeds (0.346) and Fell pony (0.290) breeds, respectively. The lowest genomic inbreeding coefficient based on run of homozygosity (FROH) and excess of homozygosity (FHOM) was in the Caspian and Kurdish breeds, respectively, while based on genomic relationship matrix) FGRM) and correlation between uniting gametes) FUNI) the lowest genomic inbreeding coefficient was found in the Kurdish breed. The estimation of genomic inbreeding rates in the six breeds revealed that FROH yielded lower estimates compared to the other three methods. Additionally, the Iranian breeds displayed lower levels of inbreeding compared to the exotic breeds. Overall, the findings of this study provide valuable insights for the development of effective breeding management strategies aimed at preserving these horse breeds.
Collapse
Affiliation(s)
- B. Bazvand
- Department of Animal Science, Faculty of Agriculture, University of Kurdishistan, Sanandaj, Kurdishistan, Iran
| | - A. Rashidi
- Department of Animal Science, Faculty of Agriculture, University of Kurdishistan, Sanandaj, Kurdishistan, Iran
| | - M. B. Zandi
- Department of Animal Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - M. H. Moradi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
| | - J. Rostamzadeh
- Department of Animal Science, Faculty of Agriculture, University of Kurdishistan, Sanandaj, Kurdishistan, Iran
| |
Collapse
|
50
|
Feldmann MJ, Pincot DDA, Vachev MV, Famula RA, Cole GS, Knapp SJ. Accelerating genetic gains for quantitative resistance to verticillium wilt through predictive breeding in strawberry. THE PLANT GENOME 2024; 17:e20405. [PMID: 37961831 DOI: 10.1002/tpg2.20405] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023]
Abstract
Verticillium wilt (VW), a devastating vascular wilt disease of strawberry (Fragaria × $\times$ ananassa), has caused economic losses for nearly a century. This disease is caused by the soil-borne pathogen Verticillium dahliae, which occurs nearly worldwide and causes disease in numerous agriculturally important plants. The development of VW-resistant cultivars is critically important for the sustainability of strawberry production. We previously showed that a preponderance of the genetic resources (asexually propagated hybrid individuals) preserved in public germplasm collections were moderately to highly susceptible and that genetic gains for increased resistance to VW have been negligible over the last 60 years. To more fully understand the challenges associated with breeding for increased quantitative resistance to this pathogen, we developed and phenotyped a training population of hybrids (n = 564 $n = 564$ ) among elite parents with a wide range of resistance phenotypes. When these data were combined with training data from a population of elite and exotic hybrids (n = 386 $n = 386$ ), genomic prediction accuracies of 0.47-0.48 were achieved and were predicted to explain 70%-75% of the additive genetic variance for resistance. We concluded that breeding values for resistance to VW can be predicted with sufficient accuracy for effective genomic selection with routine updating of training populations.
Collapse
Affiliation(s)
- Mitchell J Feldmann
- Department of Plant Sciences, University of California Davis, Davis, California, USA
| | - Dominique D A Pincot
- Department of Plant Sciences, University of California Davis, Davis, California, USA
| | - Mishi V Vachev
- Department of Plant Sciences, University of California Davis, Davis, California, USA
| | - Randi A Famula
- Department of Plant Sciences, University of California Davis, Davis, California, USA
| | - Glenn S Cole
- Department of Plant Sciences, University of California Davis, Davis, California, USA
| | - Steven J Knapp
- Department of Plant Sciences, University of California Davis, Davis, California, USA
| |
Collapse
|